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ABSTRACT 

 Silica defenses in grasses have been recently proposed to be important for plant-

herbivore interactions. High silica levels in grasses have been found to have a negative impact 

on herbivores performance and act as an herbivory deterrent. Moreover, accumulation of 

silica has been proposed to be inducible, i.e. highly grazed grasses accumulate silica in their 

leaves. In order to assess whether silica induction is an important mechanism of plant-

herbivore interactions also in sub-arctic ecosystems, we conducted a large-scale herbivore 

exclosure experiment in northern Norway. 

 We measured silica concentrations in leaves of five common grass species. Two 

species showed differences in silica concentrations when herbivory was excluded and one 

species showed variation in the levels of silica between areas of different grazing pressure, 

otherwise, we found no clear results supporting silica accumulation in grasses as an important 

response to herbivory in sub-arctic areas. 

 Silica uptake in grasses is a complex process, regulated by several factors, where 

herbivory is one of them, but other abiotic factors (i.e. temperature, pH of the soil, etc.) may 

mask the effect of herbivory in gasses silica accumulation. A better understanding of the 

biotic and abiotic factors that affects silica induction is necessary to interpret correctly the 

role of silica in plant-herbivore interactions. 
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INTRODUCTION  

 Silicon (Si) is the second most abundant element in the earth´s crust and in its form of 

silica (SiO2) represents an important inorganic constituent in plants (Epstein 1999; Müller 

2003). Although all plants contains silicon, the concentration of this element varies greatly 

among plant species (0,1-10% dry weight). Silicon content also varies vastly in different 

ecotypes and different parts of the plants. In higher plants, species of Poaceae (grasses) and 

Cyperaceae (sedges) families are considered Si-accumulating plants (Müller 2003). Grasses 

actively absorb silicon from the soil in the form of silicic acid (H4SiO4) and accumulate it as 

silica phytoliths in their tissues (Vicari and Bazely 1993; Massey and Hartley 2006b) or 

passively carry silica upwards in the transpiration steam and deposit it at sites of evaporation 

from plant surfaces (McNaughton, Tarrants et al. 1985). Anyhow, which silicon uptake 

mechanism occur (passive or active), are dependent on both plant species and external silicon 

concentration (Liang, Hua et al. 2006).  

Silica accumulation has been associated with a variety of functions in grasses, 

including  protection against fungal attacks, resistance to water loss, stimulation of 

photosynthesis and structural support (Lux, Luxová et al. 2003; Müller 2003; Fauteux, Rémus-

Borel et al. 2005; Hattori, Inanaga et al. 2005), in addition, silica has an important role in 

grass-herbivore interactions acting as an anti-herbivore mechanism (Vicari and Bazely 1993; 

Massey and Hartley 2006b). 

 Recently, there have been several investigations into the role of silica as a defense 

mechanism in grasses. Massey et al (2006a, 2006b, 2007, 2008, 2009) show in their studies in 

Great Britain, that accumulation of silica in grasses leads to an increase in leaf abrasiveness, 

act as feeding deterrent, reduce growth performance and change feeding preferences of 

folivorous insects, small herbivorous mammals (voles) and sheep. In addition, high 

concentrations of silica in grasses cause tooth wear in voles (Vicari and Bazely 1993) and 

deterioration of insect mandibles (Massey and Hartley 2009). Moreover, voles and insects 

have impact on silica accumulation, increasing silica concentration in grass leaves. Repeated 

feeding of mammals and insects on grasses produce a stronger response, i.e. frequently 

grazed grasses accumulate more silica in their leaves. Silica based defenses have been 

hypothesized, with empirical data, to play an important role in small rodents cycles (Massey, 

Smith et al. 2008). These findings propose silicon as an important element within plant-
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herbivore interactions and we ask whether similar mechanisms may act in sub-arctic 

ecosystems. 

 In sub-arctic ecosystems, like in northern Norway, tundra heath vegetation dominates 

the landscape. However, in riparian sediment plains, moisture and nutrients are sufficient to 

sustain meadows and tall thickets of willows that represent hot-spots of plant-herbivore 

interactions (Bråthen, Ims et al. 2007). The meadows typically consist of a field layer of 

grasses, sedges, forbs and deciduous shrubs. Patches of dense willow thickets are 

interspersed within the meadows and they act as shelter and food source for herbivores. 

These habitats can support high diversity and productivity and may therefore be essential as 

food source for tundra herbivores (Bråthen, Ims et al. 2007; Ravolainen 2009). 

The two focal groups of herbivores for our study in northern Norway were large 

ungulates (reindeer) and small rodents (lemmings and voles). In Finmark, the main large 

herbivore is the semi-domesticated reindeer (Rangifer tarandus). Reindeer populations can 

reach very high densities in Finnmark, but their abundance and time of the year when they 

are present, varies because they are migratory animals. The focal small herbivores are 

represented in northern Norway by lemmings (Lemmus lemmus) and two species of voles 

(Microtous oeconmus and Myodes rufocanus). Populations of these small rodents, undergo 

cyclic high amplitude changes of density (Killengreen, Ims et al. 2007). Small rodents are 

disproportionally abundant during the peak years and they require a high rate of food intake 

(due to their high metabolic rate) (Ims, Yoccoz et al. 2007). Reindeer and small rodents 

grazing have been found to have a major impact on vegetation composition of riparian 

sediment plains (Ravolainen 2009). 

To study the effect of herbivory in silica induction in grasses in northern Norway, we 

conducted a large-scale experiment in three different areas of Finnmark, northern Norway. 

Within three to four sections of each of these areas, we set up an exclosure experiment with 

three different treatments: control, exclusion of reindeer and exclusion of all mammal 

herbivores. 
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The following predictions were tested: 

1. On the previous year to our study, high density peaks of small rodents populations 

were found in our study areas (Henden, Ims et al. 2011), together with stable 

seasonal high densities of reindeer. As a result of this potential herbivore grazing 

pressure, grasses from both exclosure treatments are expected to have less silica in 

their leaves than those from control plots.  

2. As a result of spatial differences in grazing pressures as well as other environmental 

factors, between the three areas, silica levels in grasses will differ between 

different areas. 

3. All plants have silicon in their tissues, but the constitutive levels of silicon differ 

between species. Therefore, the different grass species of our experiment should 

have different silica concentrations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 

MATERIALS AND METHODS 

 

Study Area 

The study was conducted from 2006 to 2008 in two different regions of Finnmark 

(northern Norway): Varanger Peninsula and Laksefjordvidda. Two study areas were located 

on the Varanger Peninsula: Komagdalen (70⁰19´ N, 30⁰01´ E) and Vestre Jakobselv (70⁰18´ N, 

29⁰16´ E) and one study area on Laksefjordvidda: Ifjordfjellet (70⁰25´ N, 27⁰20´ E) (See Figure 

1). 

Figure 1. Location of the study area. Top figure represents a map of the study areas. IF=Ifjordfjellet; VJ=Vestre Jakobselv; 
KO=Komagdalen. 

The bottom figure is a schematic illustration of the study and sampling area. The left illustration is a representation of the 
riparian plains. The middle is a representation of the sampling grids. In grey are represented the willow thickets and in green 
the meadow vegetation. The right shows the three different treatments: control, reindeer exclosure and all mammal 
herbivores exclosure. 
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The study region is bioclimatically classified as a low arctic shrub-tundra (Walker, 

Raynolds et al. 2005). Mean temperatures in July has a rage from 7,9 ⁰C to 11,1 ⁰C and annual 

precipitation from 365 mm to 460 mm (Norwegian-Metereological-Institute). Our study areas 

are situated above the tree line and are mostly represented by Empetrum hermaphroditum 

dominated heath. However, in riparian plains we can find meadow vegetation with patches of 

willow thicket formations. The thickets mainly consist of Salix phylicifolia, Salix glauca and 

Salix lanata and can be over two meters high. The meadows associated with the thickets are 

characterized by a great variety of growth forms like mosses, forbs, grasses (e.g. Avenella 

flexuosa, Deschampsia cespitosa), sedges (Carex spp), and herbaceous dicotyledons (e.g. Viola 

biflora, Bistorta vivipara) (Ravolainen 2009). These rich areas represent hot-spots habitats 

within arctic ecosystems. 

 

 

Figure 2. Reindeer abundance from 2006 to 2008. S=Summer, A=Autumn. Measures represent average presence of feces per 
plot. Based on eight plots of 0,5 x 0,5 meters regularly spaced along the perimeter of each grid (EcoFinn poject data). 

 

KO = Komagdalen 

 VJ = Vestre Jakobselv 

 IF = Ifjordfjellet 
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The dominating large herbivore is the semi-domestic reindeer (Rangifer tarandus). 

Varanger Peninsula is used as summer pasture for an average of 11500 reindeer (on average 

3,2 reindeer/Km2). Ifjordfjellet is a spring and autumn transition area, and support less 

reindeer densities than Varanger Peninsula (Figure 2) (Anonymous 2009). As small mammal 

herbivores, we find Norwegian lemmings (Lemmus lemmus), Grey-sided Voles (Myodes 

rufocanus) and Root Voles (Microtous oeconomus) (Killengreen, Ims et al. 2007). They are 

present year-round in the area and they have high density cycles (Ims and Fuglei 2005), in 

northern Norway these cycles normally have a 5-year period (Yoccoz and Ims 2004). The year 

previous to the collection of grasses, there was a population peak in every area but of 

different magnitude and different species (Figure 3).  

Different areas had different herbivores densities (Figures 2 and 3). Sites at Varanger 

Peninsula had a higher Reindeer pressure than Ifjordfjellet (Figure 2). Both, the amplitude of 

small rodents’ population peak and which species were the most abundant were different 

between the study areas. Komagdalen (at Varanger Peninsula) was the site with highest peak 

of rodents whereas Vestre Jakobselv was the site with the lowest (Figure 3). 

 

 

 

Figure 3. Small rodents’ abundance from 2006 to 2008. S=summer, A=autumn. Values expressed in %. Three rodent traps at 
each corner of the grid. Set for 48 hours (EcoFinn project data).   

Areas:  KO = Komagdalen 

 VJ = Vestre Jakobselv 

 IF = Ifjordfjellet 
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Study design 

In each study areas, three to four sections were selected. At Ifjordfjellet (mean soil pH 

= 4,4) we chose four sections along the mountain pass and in a rage of altitude between 260-

360 meters above sea level. At Varanger peninsula, the two study areas; Vestre Jakobselv and 

Komagdalen, were located between 110-290 meters over the sea level. At Vestre Jakobselv 

(mean soil pH = 4,7) we selected three sections, two side valleys of Jakobselv river and one 

more in the upper part of the river (Jakobselvkroken). At Komagelvdalen (mean soil pH = 4,6) 

another three sections were selected along the river valley, starting 15 km from the coast. 

Sampling grids associated to thicket formations were established in every section (Table 1). 

The minimum distance between grids was 164 meters and the average distance was 652 

meters. The sampling grids (n=36 in total, between 1 and 5 per section) consist of 15x15 meter 

square placed in riparian herbaceous vegetation, with one side aligned with the edge of a 

thicket (Figure 1). 

 

Table.1 Hierarchical structure and number of study units (sampling grids) of the study design. See map in figure 1 for the 

situation of the region and area levels. 

Region Area Section 
Sampling 

Grids 

  
Aestorjohka 4 

 
Ifjordfjellet (IF) Gurojohka 1 

Laksefjordvidda 
 

Sulojavri 2 

    Stuorrajohka 4 

  
Upper Komag river 5 

 
Komagdalen (KO) Middle Komag river 5 

Varanger    Lower Komag river 2 

Peninsula 
 

Lavdnevarjohka 4 

 
Vestre Jakobselv 

(VJ) 
Bearalveaijohka 5 

    Jakobselvkroken 4 
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Within each grid, three blocks of three experimental plots (in total nine plots per grid) 

were established. Within the blocks, each plot was randomly assigned to one treatment. The 

different treatments were: (1) exclusion of all vertebrate herbivores by placing small-meshed 

cages (iron mesh size of approximately 1x1 cm), (2) exclusion of large herbivores by placing 

large-messed cages (mesh size of approximately 3x3 cm) and (3) non-enclosed control plots 

that were potentially grazed by any kind of herbivore (see Figure 1) 

 The exclosures were set up in June 2006, so ensure no grazing from the selected 

herbivores during two years prior to the sampling (2008). The cages were approximately 50 

cm sideway and approximately 60 cm high, thus reaching above the vegetation. They were 

placed between 0,5 and 6 meters from the thicket edge (Figure 1). All exclosures were dug 5-

10 cm into the ground (below the root layer) and similar cut was dug in the soil of the control 

plots. 

 

Study Species 

 Seven of the most common grass species of the region were selected for the study. 

The selected species were Avenella flexuosa, Anthoxantum nipponicum, Deschampsia 

cespitosa, Nardus stricta, Festuca spp, Calamagrostis phragmitoides and Phleum alpinum. 

These grasses are common in northern Norway, and represent in average 6% of the total 

standing crop and 75% of the grasses present in the study sites (Ravolainen unpublished 

data). These species have been found to be part of the diet of large herbivores (see review in 

(Bråthen and Oksanen 2001)) and small rodents. (Soininen, Valentini et al. 2009). All species 

present at a given treatment plot were sampled, however, because of an uneven presence of 

species the final sample size of the selected species was also uneven (see Table 2). 
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Table 2. Number of samples analyzed from the three different areas and treatments. Due to small sample size, Festuca spp. 

and Nardus stricta were excluded from the analysis. Samples from Deschampsia cespitosa and Phleum alpinum from 

Ifjordfjellet were also excluded from the analysis. Treatments: C=control, R=reindeer exclosure and S=all mammal exclosure. 

Species   
Avenella 
flexuosa 

Anthoxantum 
nipponicum 

Calamagrostis 
Phragmitoides 

Deschampsia 
cespitosa 

Festuca  
Spp. 

Nardus 
stricta 

Phleum 
alpinum 

 
  Ifjordfjellet 

 
C 19 12 7 0 2 2 1 

Treatment R 11 7 2 0 0 0 0 

 
S 14 5 1 0 1 4 0 

    Vestre Jakobselv 

 
C 24 30 23 8 2 2 17 

Treatment R 18 16 13 3 3 0 3 

  S 19 12 6 1 1 0 9 

    Komagelva 

 
C 33 18 10 35 1 5 21 

Treatment R 10 9 4 16 0 1 2 

  S 18 7 1 18 1 1 12 

 

Samples analysis 

Every sample collected in the field was folded in a paper bag and labeled with the 

species name, location, plot number and date. The samples were dried at room temperature 

and stored. Before the analysis, the specimens were re-dried at 60ºC during two days. Dry 

leaves of each sample were cut and weighted. We selected green leaves, excluding leaves 

with a dead tip longer than 5mm. When the sample size was less than 0,2 grams, we pooled 

material of different samples, always with samples of the same grid, same treatment and 

same species, (see Table 3) until we reached the minimum weight of 0,2 grams. Samples were 

sorted and grinded using a ball mill (Mixer Mill, MM301; Retsch GmbH & Co. Haan, Germany) 

for 30 seconds, 30 rotations per second, until we had a homogeneous powder. Thereafter, the 

grass powder was pressed using a hydraulic press with 11 tons of pressure to produce flat 

pellets of 13mm of diameter. To analyze the concentration of silica in our samples we used 

the X-Ray Fluorescence (XRF) method, using a Nilton XL3t portable XRF analyzer (Thermo 

Fisher Scientific, Inc.) at the University of Sussex. The samples were irradiated during 30 

seconds under helium atmosphere to avoid signal loss by air absorption (Reidinger, Hartley et 

al in prep). Every 20 analyses, one control sample (sample of known Si concentration) was 

tested to verify that the calibration was correct. In addition, random samples of all species 

(n=42) were re-analyzed to test consistency in the method (mean variation < 0,02%). 
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Table 3. Number of samples pooled together for silica analysis. 

Treatment : 

C = control 

R = reindeer exclusion 

S = all mammal herbivores exclusion 

 

 

 

 

 

Statistical analysis 

 Two analyses were conducted: one to analyze the effect of treatment and area in silica 

levels within species and other to analyze differences in silica between species. Data from 

Nardus stricta and Festuca spp. were excluded from the analyses, due to their low sample size. 

 The effect of treatments (control and exclosures) and spatial variation (three different 

areas) were analyzed with a linear mixed effects model fit by REML (function lme in nlme 

package of R, (Pinheiro, Bates et al. 2009)). We used both treatments and area as fixed 

effects in an additive model and grid was included as a random effect in the model. We used 

an additive model instead of an interaction model due to low sample size.  

To analyze differences in silica content between species, a linear mixed effects model 

was run (Referenced above). Species was used as fixed effect and again grid as random effect. 

Only data from the control plots were analyzed to exclude treatments effect.  

 The models were run with log+1 data, to meet assumption of normality. Model results 

of p-values<0,05 were considered significant. Results are presented as effect size, i.e. the 

modeled contrast between levels of fixed effects. All analyses were conducted in the R-

environment (R Development Core R_Development_Core_Team 2010). 

 

 

 

Samples pooled  Total C R S 

Avenella flexuosa 40 22 9 9 

Anthoxantum nipponicum 51 25 14 12 

Festuca spp. 6 2 1 3 

Phleum alpinum 37 19 3 15 

Deschampsia cespitosa 11 6 3 2 

Calamagrostis phragmitoides 7 4 2 1 

Nardus stricta 2 2 0 0 
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RESULTS 

Leaf silica content of our grass species did not show consistent variation between the 

different treatments (all mammal herbivores exclosure, reindeer exclosure and control) (see 

Table 4 and Figure 4). However, we found significant differences in A.nipponicum, where 

leaves from reindeer exclosure treatment had higher silica than leaves sampled in the control 

plots (back-transformed effect size = 0,079%, p-value = 0,032) (Table 4). Also, leaves of 

D.cespitosa contained higher silica in the control plots than in the all mammal herbivores 

exclosures (back-transformed effect size = -0,122%, p-value = 0,046) (Table 4).  

 

Figure 4. Average foliar silica content in different grass species from different areas and treatments. Note that the “y” axis 

has different graduation in the left and right panels. Foliar silica values are expressed in percentage SiO2 of dry weight. 

Nardus stricta and Festuca spp. have not been included in the statistical analysis, but are included here. 

 

 

 

 

Areas: 

IF = Ifjordfjellet 

KO = Komagdalen 

VJ = Vestre 
Jakobselv 

Treatments: 

C = control 

R = reindeer 
exclosure 

S = all mammal 
herbivores 
exclosure 
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A significant difference in grass silica content between the study areas was found for 

leaves of Avenella flexuosa which had higher silica concentrations in Vestre Jakobselv than 

Komagelva (back-transformed effect size = 0,227%, p-value = 0,0007) (Table 4) and also had 

higher silica levels in Vestre Jakobselv than Ifjordfjellet (back-transformed effect size = 

0,353%, p-value = 0,000)(Table 4). Also we found a tendency (p-value = 0,087) for Avenella 

flexuosa, to have higher silica in Komagelva than Ifjordfjellet (see Table 4 and Figure 4). 

Table 4. Model estimates of silica content of all species (additive linear mixed-effect model). The intercept corresponds to 

the region “KO” and the treatment “Control”. All values expressed in Log(x+1). Significant values (p<0,05) are indicated in 

bold. 

  

Avenella flexuosa Anthoxantum Nipponicum Phleum alpinum 

 

Contrast Estimate DF p-value Estimate DF p-value Estimate DF p-value 

Fixed Effects   

        

  

Intercept   0,648 132 0,000 0,928 86 0,000 0,438 41 0,000 

                      

Treatment  CvsR 0,002 132 0,921 0,076 86 0,032 0,084 41 0,099 

Treatment CvsS -0,015 132 0,521 0,032 86 0,402 -0,004 41 0,890 

Treatment RvsS -0,018 132 0,530 -0,044 86 0,307 -0,089 41 0,099 

                      

Area  KOvsIF -0,096 29 0,087 -0,01 25 0,923 

   Area KOvsVJ 0,205 29 0,0007 -0,151 25 0,141 0,096 19 0,102 

Area  IFvsVJ 0,302 29 0,000 -0,141 25 0,148 

   Random Effects                     

Grid   0,109 

  

0,194 

  

0,112 

 

  

Residual   0,129     0,152     0,098     

 

  

Treatment: 

 C = control 

 R = reindeer exclusion 

 S = all mammal exclusion 

  

Area: 

 KO = Komagdalen 

 VJ = Vestre Jakobselv 

 IF = Ifjordfjellet 

 

 

 

 

  

Deschampsia cespitosa Calamagrostis phragmitoides 

 

Contrast Estimate DF p-value Estimate DF p-value 

Fixed Effects   

      Intercept   1,2990 64 0,000 1,388 40 0,000 

                

Treatment  CvsR -0,058 64 0,364 0,051 40 0,473 

Treatment  CvsS -0,130 64 0,046 -0,003 40 0,976 

Treatment  RvsS -0,072 64 0,337 -0,055 40 0,615 

                

Area  KOvsIF       -0,062 22 0,664 

Area  KOvsVJ 0,220 13 0,808 0,006 22 0,956 

Area  IFvsVJ       0,068 22 0,604 

Random Effects               

Grid   0,079     0,178     

Residual   0,227     0,243     
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All species had significantly different silica content from each other except 

Deschampsia cespitosa (back transformed effect size = 2,629%) and Calamagrostis 

phragmitoides (back-transformed effect size = 2,92%) (see Table 5). These two species were 

found to have the highest silica content (Table 5), after which in descending order of silica 

content were Anthoxantum nipponicum (back-transformed effect size = 1,363%), Avenella 

flexuosa (back-transformed effect size = 0,96%) and Pleum alpinum (back-transformed effect 

size = 0,576%) (Table 5). 

 

Table 5. Model estimates of silica content of all species (linear mixed-effects model). All values correspond to samples from 

the treatment “control”. The values are expressed in log(x+1). Random Effect Values: Grid = 0,116; Residual = 0,183. 

 

Avenella flexuosa Anthoxantum nipponicum Phleum alpinum 

 

Estimate DF p-value Estimate DF p-value Estimate DF p-value 

                    

Intercept 0,673 230 0 0,86 230 0 0,455 230 0 

                    

A.flexuosa - - - -0,187 230 0 0,218 230 0 

A.nipponicum 0,187 230 0 - - - 0,405 230 0 

P.alpinum -0,218 230 0 -0,405 230 0 - - - 

D.cespitosa 0,616 230 0 0,429 230 0 0,834 230 0 

C.phragmitoides 0,692 230 0 0,506 230 0 0,911 230 0 

 

 

Deschampsia cespitosa Calamagrostis phragmitoides 

 

Estimate DF p-value Estimate DF p-value 

              

Intercept 1,2890 230 0 1,366 230 0 

              

A.flexuosa -0,616 230 0 -0,692 230 0 

A.nipponicum -0,429 230 0 -0,506 230 0 

P.alpinum -0,834 230 0 -0,911 230 0 

D.cespitosa - - - -0,077 230 0,078 

C.phragmitoides 0,077 230 0,078 -  -  -  

 

 

 

 

 



22 

DISCUSSION 

 We conducted a large scale exclosure experiment to test silica accumulation in sub-

arctic tundra grasses as a defense mechanism against herbivory. We predicted that (1) 

grasses would respond to herbivore exclusion with decreased silica content, that (2) silica 

levels would differ both spatially between individuals of a species and (3) between species. 

The experiment was set up in areas of continuous grazing by reindeer and where small rodent 

population fluctuations are occurring. Collection of grass leaves was following a peak year of 

small rodent grazing.  

 We found no consistent variation in silica levels of grass leaves of the different study 

species when herbivory was excluded. Two of the five study species responded to herbivore 

exclusion, whereas the other three did not. Of these two, D.cespitosa responded with a 

decrease of silica content to exclusion of all mammal herbivores (supporting prediction 1), 

whereas reindeer exclusion alone had no effect. The other species, A.nipponicum, responded 

with an increase of silica content to reindeer exclusion (contradicting prediction 1). In 

addition, we only found one species (A.flexuosa) that had different silica levels between the 

study areas, thus prediction 2 was supported by only one species. Silica concentrations found 

in A.flexuosa were correlated with the abundance of reindeer in the different areas, that is, 

where reindeer were most abundant (Vestre Jakobselv), we found the highest leaf silica 

levels, whereas in the area with the lowest densities of reindeer (Ifjordfjellet) leaves of 

A.flexuosa had the lowest levels of silica. However, as long as these silica levels was not 

matched by reduced silica levels in response to reindeer exclusion, silica levels of A.flexuosa 

grass leaves from different areas, may not be explained by reindeer grazing pressure (or 

grazing in general) but more likely by other ecological (e.g. temperature) or genetic (different 

genotypes within species) differences. Finally, we found that different grass species have 

different levels of silica content (supporting prediction 3) under natural conditions (i.e. 

controls). 
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Silica accumulation in response to herbivory 

 In grasses, silica accumulation has been proposed to play a key role within grass-

herbivore interactions (e.g. (McNaughton and Tarrants 1983; Vicari and Bazely 1993; Massey 

and Hartley 2006b; Massey, Smith et al. 2008)). In recent years, several studies has been 

conducted in the subject, leading to propose silica defenses as one of the most important 

inducible defense mechanism in grasses, and it has even been suggested to shape cyclic small 

rodent population dynamics (Massey and Hartley 2006b; Massey, Smith et al. 2008). Grasses 

with high silica content, have a deterrent effect on mammal herbivores and insects (Vicari and 

Bazely 1993; Massey, Ennos et al. 2006a; Massey and Hartley 2006b; Massey and Hartley 

2009). The effects of silica based defenses and their induction in grasses in response to 

herbivory, have been found to be important for plant-herbivore interactions in different areas 

of Africa, Europe and America (McNaughton and Tarrants 1983; Brizuela, Detling et al. 1986; 

Cid, Detling et al. 1989; Massey, Roland Ennos et al. 2007; Massey, Smith et al. 2008), but we 

propose that this was not the case in Finnmark. Our results do not suggest that silica 

accumulation is a general response to grazing of sub-arctic grasses, either when herbivory 

was excluded or when grazing pressure was different. One reason may be that grasses in our 

study area are common, but do not represent the majority of vegetation, hence selection 

pressure for induction may be not sufficient, in addition, among our study species, only 

D.cespitosa and C.phragmitoides are silica rich grasses. Alternatively, these contrasting results 

may be due to different ecological conditions for silica induction in grasses in sub-arctic 

tundra (i.e. temperature, soil pH, length of growing season, etc.) compared to grasses from 

southern areas on which similar studies were conducted. 

The physiological mechanism of silica uptake in grasses is a complex process. Previous 

studies suggest that in silica accumulator species, like grasses (Epstein 1999; Müller 2003), 

external factors affect the uptake of silicon from the soil. Physical and chemical factors like 

low temperatures or acid soils have been found to inhibit the uptake of silicon from the soil in 

grasses (Liang, Hua et al. 2006). The low temperatures and low soil pH (4-5) (Ancin-Murguzur 

unpublished data) from our study areas may be an explanation of the lack of silica 

accumulation in response to herbivory found in our experiment, i.e. previous studies that 

showed silica induction in grasses (Massey and Hartley 2006b; Massey and Hartley 2009), 

were conducted under greenhouse condition where temperature and soil pH were more 

favorable for silicon uptake. 
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Anyhow, parallel studies in Finnmark from the same exclosure experiment (Kollstrøm 

2009; Ravolainen 2009) showed a clear effect of the herbivore exclusion on the vegetation of 

the area. When mammal herbivores were excluded from grazing, significant changes in plant 

species community composition occurred (Ravolainen 2009).  

 

Specific silica concentrations 

 We found different levels of silica between all studied species (supporting prediction 3) 

except for D. cespitosa and C. phragmitoides which both had higher silica levels than the other 

species. These two species may have higher constitutive defenses (higher concentration of 

silica) as a strategy against grazing. Accordingly, biomass of species with high silica levels, 

namely D.cespitosa decreased in the exclosure treatments while biomass of non-silica rich 

grasses increased (Ravolainen 2009). These results may suggest that in our study area, silica 

rich grasses had a competitive advantage in presence of herbivores. 

 

Silica defenses in arctic tundra 

 Silica defenses have been proposed to be an inducible defense mechanism 

(e.g.(Massey, Roland Ennos et al. 2007)), and the deterrent effect of silica in different 

herbivore grazers have been empirically demonstrated (e.g.(Massey and Hartley 2006b)). 

However, as we showed, constitutive level of silica varies between species, indicating level of 

deterrence varies between species. We showed that D.cespitosa (silica rich species) had less 

silica concentration when mammal herbivores were excluded. Similar responses were 

expected to happen in C.phragmitoides, that also is a silica rich species, but we have not found 

any significant response to the exclosure treatments for this species. This lack of response 

may however be due to low sample size and hence low statistical power, as trends were in the 

same direction as that for D.cespitosa. Induction of silica may thus be a successful strategy for 

those species with high constitutive levels of silica but less likely to those with low 

constitutive levels of silica. Alternatively, the snow free season in Finnmark is too short for 

grasses to be grazed several times by herbivores, thus may not lead to silica induction in 

grasses. Nevertheless, we propose that silica as an inducible defense mechanism may be only 

effective against herbivory when the constitutive levels of silica are high, otherwise, different 
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defense mechanisms (i.e. endophytes) or strategies (tolerance instead of defense) may be 

more plausible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 

CONCLUSIONS 

 We have not found clear evidences that support silica accumulation as a response to 

herbivory in grasses from Finnmark. Only one species (D.cespitosa) presented lower silica 

levels when all mammal herbivores where excluded. In addition, one species (A.flexuosa) 

showed differences on silica concentrations in grasses from different areas, but did not vary 

when herbivory was excluded. 

Silica in grasses is likely to play an important role in plant-herbivore interactions, i.e. 

silica rich grasses are more abundant when grazing pressure is high. Anyhow, in our areas, 

silica is neither induced by herbivore grazing but for one species, nor reaches high levels in the 

leaves of common sub-arctic grasses, which indicates that silica accumulation in grasses do 

not shape rodent cycles in sub-arctic ecosystems. 

The particular ecological conditions of Finnmark (short growing season, low 

temperatures, etc.) are likely to affect strongly the silicon uptake mechanisms, possibly 

causing that no general pattern of silica accumulations in response to herbivory have been 

found. 

 In order to correctly interpret the role of silica in natural systems, a better 

understanding of the factors causing silica induction, are needed. The process of silica uptake 

and the different biotic and physicochemical conditions that affect these processes are still 

not clear, and further studies would be desirable. 
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