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HAAVOLD PER ØYSTEIN  

13. WHAT CHARACTERISES HIGH ACHIEVING 
STUDENTS’ MATHEMATICAL REASONING? 

INTRODUCTION 

This study investigates high achieving students’ mathematical reasoning when given 
an unfamiliar trigonometric equation. The findings indicate that the students’ way 
of thinking is strongly linked with imitative reasoning and only when they received 
some form of guidance, were they able to display flexible and creative mathematical 
reasoning.  

Research Question 

The purpose of this study is to investigate the reasoning that high achieving students’ 
in upper secondary school display when they meet an unfamiliar trigonometric 
equation. The underlying motivation for the study, is the relationship between the 
socially constructed “high achievements” in school mathematics and the theoretical 
concept of “mathematical competence”. For the purpose of this study, the author 
proposes that high achieving students are students who consistently get grades five 
and six in upper secondary school mathematics. But are high achieving students also 
mathematically competent students? Are the two terms synonymous? Research by 
Lithner (see for instance 2000, 2003 and 2008) indicate that even high achieving 
students make use of superficial reasoning when given an unfamiliar mathema-
tical task. Niss & Jensen (2002) dissect mathematical competency into eight, distinct 
and clearly recognizable competencies: thinking mathematically, posing and 
solving mathematical problems, modelling mathematically, reasoning mathematically, 
representing mathematical entities, handling mathematical symbols and formalisms, 
communicating in, with and about mathematics and making use of aids and tools. 
Other frameworks, e.g. NCTM (2000) define mathematical competence similarly. 
However, mathematical cognitive activity is incredibly complex. Every investigation 
of mathematical understanding will have to be in some ways simplified (Niss, 1999). 
So although this study is motivated by the possible discrepancy between high achieve-
ments and the term mathematical competency in upper secondary school mathema-
tics, the aim here is to capture some key aspects of high achieving students’ reasoning 
structure when working with a mathematical problem. Not to give a complete descrip-
tion of high achieving students’ mathematical understanding and mathematical 
thinking vis-à-vis certain mathematical concepts. 
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In this study, the author hopes to qualitatively characterise the mathematical 
reasoning of three high achieving students when they meet a mathematical problem 
and the following two research questions will be investigated: 
– Is it true that high achieving students display superficial reasoning when given 

an unfamiliar trigonometric equation? 
– What characterises the students’ mathematical reasoning when given an unfamiliar 

trigonometric equation? 
Hiebert (2003) argues that students learn what they are given an opportunity 

to learn. If there is a lack of focus on mathematical reasoning, mathematical 
thinking and problem solving in the students’ learning environment, it is the author’s 
contention that it may not be unrealistic to expect even high achieving students 
in some situations to focus on surface and not structural features of mathematical 
problems. Trends in International Mathematics and Science Study, TIMSS, Advanced 
2008 (Mullis et al., 2009) and the PISA + study (Kirsti Klette et al., 2008) show 
that there is a lack of focus on problem solving and mathematical reasoning in both 
upper and lower secondary school in Norway. Students are rarely asked to explain 
their answers and communicate mathematical arguments to others. Instead, the primary 
activities in the classroom are direct instruction from the teacher and students working 
on problems on their own. Furthermore, the problems the students are working 
with are, according to Klette et al. (ibid), not stimulating problem solving skills. If 
students learn what they are given an opportunity to learn, do even high achieving 
students resort to superficial reasoning when given an unfamiliar mathematical 
task? Or are they able to, in many ways in spite of their learning milieu, identify 
and focus on the structural features of the problems and display mathematically correct 
reasoning? The first research questions sets out to determine whether or not there 
are high achieving students who actually do display superficial mathematical reasoning 
in upper secondary school. Once this has been answered, a more thorough investiga-
tion of the mathematical reasoning displayed is needed. The second research question 
looks more closely at the quality of the mathematical reasoning displayed by the 
students when they meet an unfamiliar task, to see if there are certain characteristics 
that are associated with the students’ mathematical reasoning. 

Literature Review 

Algorithms are a key component of mathematics. They can not only serve as the 
basis for mathematical understanding, but they can also relieve the cognitive demands 
of complicated calculations. Even professional mathematicians use algorithms and 
fixed procedures when dealing with routine calculations. However, algorithms and 
procedures are just one small part of mathematics. Halmos (1980) states that problem 
solving is the heart of mathematics which in many ways is supported by Freudenthal 
(1991) who claims that mathematics is an activity of discovering and organizing of 
content and form. In a learning environment, algorithms and procedures need to be 
supplemented with other aspects of mathematics such as problem solving activities 
and deductive proofs. A narrow focus on algorithms and routine tasks can limit the 
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students’ ability to use mathematics. McNeal (1995) and Kamii & Dominick (1997) 
argues that students when working with algorithms, tend to focus on remembering 
each step in the algorithm and not the underlying mathematical structures. Pesek & 
Kirshner (2000) states that instrumental instruction can interfere with later relational 
learning. Furthermore, not only can a narrow focus on algorithms and skill to 
some degree hinder learning of mathematics, but the mathematics curricula in most 
countries emphasize problem solving on its own as an important aspect of mathema-
tics. The NCTM Standards states that reasoning and problem solving are key compo-
nents of mathematics and we find similar statements in the Norwegian mathematics 
syllabus (KD, 2006).  

Traditional mathematics teaching emphasizes procedures, computation and 
algorithms. There is little attention to developing conceptual ideas, mathematical 
reasoning and problem solving activities. The result is that students’ mathematical 
knowledge is without much depth and conceptual understanding (Hiebert, 2003). 
These findings are also seen in Selden et al.’s (1994) study where students with 
grades A and B struggle with non routine problems. Selden et al. concluded that the 
students possessed a sufficient knowledge base of calculus skill and that the students’ 
problem solving difficulties was often not caused by a lack of basic resources. Instead, 
they say, traditional teaching does not prepare students for the use of calculus 
creatively. Lithner (2003) and Schoenfeld (1985) show how many of the students, 
even high achieving students, try to solve problems using superficial reasoning. 
A possible hypothesis which could explain this phenomenon is seen in Cox (1994), 
where the author argues that first year students in universities are able to get good 
grades by focusing on certain topics at a superficial level, rather than develop a 
deep understanding. It is important at this stage to clarify that it is not the author’s 
claim or intention to argue that high achieving students are not capable of becoming 
mathematically competent students or that high achieving students in general are 
not mathematical competent students. However, there are certain indications that 
students can get good grades in school, in spite of certain shortcomings vis-à-vis 
the concept of mathematical competence as defined by Niss and Jensen (2002) and 
NCTM standards. 

Much research within mathematics education has focused on learning difficulties 
regarding mathematical understanding and in a broader sense, my research question 
are part of a greater, more fundamental issue in mathematics education. Skemp (1976) 
defined this issue as the dichotomy between relational understanding and instrumental 
understanding. Instrumental understanding consists of a number of fixed and specific 
plans or strategies for solving specific tasks. The students lack an overall under-
standing of the relationship between the individual stages and the final goal of the 
exercise. To learn a new way to solve a particular branch of problems, as a “way to 
get there”, the learner is dependent on external guidance. Relational understanding, 
on the other hand, is defined as: “[it] consists of building up a conceptual structure 
from which its possessor can produce and unlimited number of plans for getting from 
any starting point within his schema to any finishing point.” (ibid). The knowledge 
and understanding becomes the goal in itself, not necessarily successfully solving a 
particular problem. The plans are no longer fixed and immediately tied to a particular 
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class of problems. Others, such as Ausubel (1962) and Hiebert & Lefevre (1986) 
outlines similar dichotomies: meaningful vs. rote learning and conceptual vs. 
procedural knowledge respectively. Relational understanding, meaningful learning 
and conceptual knowledge are all characterised by the fact that new knowledge is 
related and connected to other existing schemas.  

A related issue in dealing with difficulties in mathematical understanding is 
students’ tendency to view mathematics almost exclusively as a collection of processes 
or procedures. Evidence suggests that the flexibility to view objects as both a process 
and a concept is vital to future success (Gray & Tall, 1991). This cognitive conflict 
is similarly described via versatile and adaptable mathematical knowledge within 
the context of algebra (Sfard & Linchevski, 1994). Versatile knowledge is being able 
to view mathematical expressions in many different ways. Adaptable knowledge is 
being able to view a mathematical expression in an appropriate way. Versatility 
refers to the different ways of solving a problem and how each of those strategies 
are carried out. Adaptability refers to choosing the most appropriate strategy for the 
problem at hand. Sfard & Linchevski states that both versatility and adaptability 
is necessary to fully succeed in algebra. The extensive procedural focus on mathema-
tics is characterised as a reduction of complexity of mathematical concepts, processes 
and mathematical thinking. Research shows that students, teachers, textbook writers 
etc, in order to satisfy tough curriculum goals focus on algorithmic thinking and 
not deep mathematical reasoning (Lithner, 2005). 

CONCEPTUAL FRAMEWORK 

In the field of mathematics education, the term mathematical reasoning is often used 
without an explicit definition, under the assumption that there is a universal agree-
ment on its meaning (Yackel & Hanna, 2003). Lithner (2006) claims that reasoning 
is often implicitly seen as a process characterised by a high deductive-logical quality, 
frequently in connection with formal mathematical proofs. However, in this study 
the students are in upper secondary school and such a strict definition of reasoning 
is not appropriate. Thus, a more inclusive definition of the term reasoning is used 
in this study. In Merriam-Webster’s online dictionary, reasoning is defined, among 
other, as “the drawing of inferences through the use of reason”. Reason is then defined 
as “a statement offered in explanation or justification”. So mathematical reasoning 
is, for the purpose of this study, the line of thought adopted to produce assertions 
and reach conclusions in task solving (ibid). Or, the arguments produced to convince 
one self and/or others of the truth of an assertion. A line of thought might be mathe-
matically incorrect or flawed, as long as it makes some kind of sense to the reasoner 
itself.  
 Harel (2008) defines mathematical activity as a triad of concepts: mental act, 
way of understanding and way of thinking: 

“A person’s statements and actions may signify cognitive products of a mental 
act carried out by the person. Such a product is the person’s way of under-
standing associated with that mental act. Repeated observations of one’s way 
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of understanding may reveal that they share a common cognitive characteristic. 
Such a characteristic is referred to as a way of thinking associated with that 
mental act”.  

Mental acts are basic elements of human cognition, such as interpreting, inferring, 
proving, generalizing etc. Although mathematical reasoning involves numerous 
mental acts, in this study mathematical reasoning itself is a mental act. It is the 
cognitive process of convincing oneself and/or others of the truth of an assertion.  

In this study, the author intends to investigate what characterises high achieving 
students’ mathematical reasoning. By looking at the students’ arguments, solutions 
and written work, a pattern characterising their work could appear. Characteristics 
of their way of understanding might give some insight into their way of thinking. 
There is an important difference between behaviour and cognition. This dichotomy 
between way of thinking and way of understanding, is also seen in Lithner’s (2006) 
view of reasoning as both a thinking process and the product of that process. 
The product of the thinking processes, the way of understanding, we can observe 
as behaviour, but whatever inferences we make regarding the underlying cognitive 
processes, will still be, to some degree, speculative. In this study, mathematical 
reasoning is a mental act and the purpose is to investigate the students’ way of thinking. 
This is done by looking more closely at the students’ way of understanding.  

To further investigate the mental act of mathematical reasoning and the 
characteristics of the students’ way of understanding, the author have chosen a 
framework by Lithner (2006) that allows me to qualitatively classify and assess 
specific aspects of the students’ mathematical reasoning. The framework is built 
up using specific mathematical examples and well defined concepts describing 
mathematical reasoning. It is based on empirical data and it describes mathematical 
reasoning in general and is not tied up to a particular set of problems or themes. 
Here, two main classes of reasoning are defined: creative reasoning and imitative 
reasoning:  
 

 

Figure 1. Creative and imitative reasoning (Lithner, 2008). 
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CREATIVE REASONING 

The basic idea of creative reasoning, or creative mathematically founded reasoning as 
it is also referred to in the framework, is the creation of new and reasonably well-
founded task solutions. Not necessarily geniality or superior thinking. For the reason-
ing to be called creative reasoning, two conditions must be met (Bergqvist, 2007): 
– The reasoning sequence must be new to the reasoner (novelty) 
– The reasoning sequence must contain strategy choices and/or implementations 

supported by arguments that motivates why the conclusions are true or plausible 
(plausibility), and are anchored in intrinsic mathematical properties of the compo-
nents involved in the reasoning (mathematical foundation). 
The definition of creative reasoning is very similar to creativity in general. 

Sternberg & Lubart (1999) define creativity as the ability to produce original and 
useful work. Sriraman (2009) raises the objection that many mathematicians would 
object to the criteria of usefulness, as a lot of work in mathematics do not have 
immediate implications for the “real world”. However, in this study, the term useful-
ness is seen as a correct solution of a mathematics task. The mathematical reasoning 
is plausible and based on intrinsic mathematical properties. Not whether or not it 
has implications or uses in the “real world”. Creative reasoning is therefore a subset 
of the general term creativity and the terms novel and plausible are analogous to 
original and useful. Furthermore, the originality and novelty of the mathematical 
reasoning, is relative to the reasoner. What might be trivial routine for a mathematics 
professor, could be an original and novel solution to a problem for an upper secondary 
mathematics student. The reasoning sequence must be new to the reasoner, not 
necessarily new to the rest of the mathematics community.  

Creative reasoning does not imply strict logical deductive reasoning. Even though it 
is normal to distinguish a proof from a guess vis-a-vis mathematical reasoning 
(Polya, 1954). The value of the reasoning of a proof is based on its correctness or 
logical rigour. Students however, unlike mathematicians, engineers, economists etc, 
can afford to guess, take chances and not always give the correct answer to every 
problem or exercise. Creative reasoning therefore distinguishes a guess from a more 
reasonable guess, and not a guess from a proof. To determine whether or not a 
sequence of reasoning is creative mathematically founded, the following criteria must 
be fulfilled: novelty, flexibility, plausibility and a sound mathematical foundation. 

Novelty refers to the fact that a new, to the reasoner, sequence of reasoning is 
created or a forgotten sequence is re-created. If an answer or solution is imitated, 
it is not considered to be creative mathematically founded reasoning. Second, the 
reasoning must be flexible. This implies the ability to utilize different approaches 
and adaptations to the specific problem. The student is not fixed on one specific 
strategy choice or sequence of reasoning that hinders progress. Plausibility means 
that there are arguments supporting the strategy choice and explains why the 
conclusions are true or plausible. Last, the arguments are based on intrinsic mathe-
matical properties; the arguments are based on a sound mathematical foundation.  

The arguments used to show that an answer to a problem or exercise is correct 
can be based on sound mathematical properties or less sound mathematical properties. 
However, before sound and less sound mathematical properties can be defined we 
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need to establish the mathematical components which we deal with when solving 
problems. The framework defines the following components relevant for solving 
mathematics exercises and problems: Objects are the things that one is doing some-
thing with. This could be numbers, functions, variables etc. Transformations is what is 
being done to the objects. For instance adding to real numbers. Last, is the concept 
which is a central mathematical idea built on a set of objects and transformations 
(e.g. the function concept). These components have certain mathematical properties 
and the framework separates intrinsic and superficial properties.  

An intrinsic mathematical property of an exercise is a property that is relevant 
for how you solve the exercise. This means that an intrinsic mathematical property 
is central to a particular context and in a particular problem. A surface property, on 
the other hand, has little or no relevance for how a given exercise can be solved. 
In each task, there are potentially numerous both intrinsic and surface properties. 
The relevancy of a mathematical property depends on the context. For instance, in 
deciding if or is larger, the size of the numbers is a surface property, while the 
quotient captures the intrinsic property (Lithner, 2008). Another example is naive 
empiricism (Schoenfeld, 1985) in an attempt to bisect angels. The visual appearance 
of angles is a surface property, while the formal congruency of the triangles in 
the construction is the intrinsic property.  

IMITATIVE REASONING 

Imitative reasoning is a term that describes several different types of reasoning 
which are based on previous experiences, but without any attempts at originality. 
This means that students try to solve problems and exercises by copying textbook 
examples, earlier task solutions or through remembering certain algorithms. Imitative 
reasoning is in many cases a superficial sequence of reasoning, not grounded on 
intrinsic mathematical properties, but rather on surface properties. The students chose 
their strategy for solving the problems on superficial properties they recognize 
from earlier experiences and not on intrinsic mathematical properties. From empirical 
research, imitative reasoning has been classified further into subcategories, where 
the two main categories are memorized reasoning and algorithmic reasoning. 

Memorized Reasoning 

Memorized reasoning is determined by two conditions: first, the strategy choice is 
founded on recalling a complete answer by memory. Second, implementing said 
strategy choice consists only of writing it down. For instance, remembering each step 
of a proof and writing it down is memorized reasoning. Of course, a common mistake 
when employing memorized reasoning is that the different parts of a solution can 
be written down in the wrong order since the parts do not depend on each other and 
the reasoning is not based on intrinsic properties. 

Algorithmic Reasoning 

An algorithm is a set of instructions or procedures that will solve a particular type of 
problem. For instance, the chain rule for finding the derivative of a composite function. 
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Algorithmic reasoning is determined by two conditions: first, the strategy choice 
is founded on recalling an algorithm that will guarantee that a correct solution 
can be reached. Second, implementing the strategy consists of trivial transfor-
mations. The formula for solving a quadratic equation is an example that illustrates 
the difference between algorithmic reasoning and memorized reasoning. In the 
latter case the exact same equation and corresponding solution would be written 
down from memory. In the former case the algorithm, or formula, would be applied 
to this specific equation. The student would not recall the entire solution to the 
equation, but rather remember the algorithm and know that it would give a 
solution.  

Algorithmic reasoning is a reliable method for solving problems when the student 
knows exactly what to do and why the chosen algorithm is appropriate. Even 
professional mathematicians use algorithms when solving routine problems. The 
use of algorithmic reasoning in itself is not an indication of a lack of understanding 
as it saves time and reduces the risk of miscalculations. The key here is the mathe-
matical properties on which the algorithmic reasoning is based on. In many cases 
students use algorithmic reasoning in problematic situations, which indicates that it 
is based on superficial and not intrinsic mathematical properties.  

METHODS 

Procedures 

The empirical data was collected from three clinical task based interviews. In each 
interview, the students were given a specific trigonometric task designed by the 
author and asked to solve it while they were “thinking aloud”. Each interview lasted 
for approximately 30 minutes. Before each interview, a short, informal conversation 
between the student and the author took place. The objective of the short, informal 
conversation was to create a more comfortable environment and situation for the 
student. At the start of the interview, the following monologue, recommended by 
Ericsson & Simon (1993) was given by the researcher in order to initiate the 
student’s think aloud talk: 

“Tell me EVERYTHING you are thinking from the time you first see the 
question until you give an answer. I would like you to talk aloud CONSTANTLY 
from the time I present each problem until you have given your final answer 
to the question. I don’t want you to try to plan out what to say or try to explain 
to me what are you saying. Just act as if you are alone in the room speaking to 
yourself. It is most important that you keep talking. If you are silent for any 
long period of time I will ask you to talk (p. 378).” 

The interview was separated into two parts. The first 10–15 minutes, the author 
stayed silent and only reminded the subjects to keep talking if they stayed silent for 
extended periods of time. If the students struggled with the task given and showed 
signs of giving up, the author gave them a similar, but simpler task and asked them 



WHAT CHARACTERISES HIGH ACHIEVING STUDENTS’ 

201 

if they could solve the new task. After working for a few minutes on the new task, 
the author then asked them if they now could go back and solve the original task. 
The final 15 minutes of the interview, was less structured and the author asked more 
direct questions. Trying to get the students to justify and explain what they were 
doing and why they were doing it.  

Participants 

Three students in grade 13 who are all taking an advanced mathematics course in a 
local upper secondary school were selected for this study. However, it was not the 
author who selected the students to be interviewed. Instead, the mathematics teacher 
who was teaching the advanced mathematics course was asked to select 2–4 students 
which she deemed to be high achieving. The author wanted the teacher to select the 
students for the study, as this would, in a more general sense, give access to students 
who the Norwegian educational system classifies as high achieving students. The 
author had no other criteria set forth to the teacher, other than that the students had 
to be considered consistent high achievers in mathematics. The author did not ask the 
teacher to select what she would call typical or atypical high achieving students. 
There were two reasons for this. First, the author wanted to see which students the 
teacher, when given few restrictions, would classify as high achieving students. 
Second, it might have been difficult to find high achieving students if there were 
several restrictions. 

Tasks 

The task given to the students, was the trigonometric equation in which the students 
were asked to find a: 
 sin x + cos x = a  

The task was chosen for several reasons. First, the students in grade 13 are quite 
familiar with trigonometric equations. In the textbook, there is a large section devoted 
entirely to trigonometric functions and a subsection which focus specifically on the 
equation. It would therefore be reasonable to expect high achieving students to 
have the necessary domain knowledge to solve the trigonometric equation. Second, 
the task is designed in such a way that it can be solved in a multitude of ways. Third, 
compared to the tasks given in the textbook and tasks given by the teacher to the 
class, the task is unusual. Not only because the answer is an interval and not a single 
value, but also because it contains both the variable x and the parameter a. Further-
more, in the textbooks, c is given as an integer. In the task in the study, c is an 
unknown parameter. This presumably creates a problematic situation for the students. 
They have the necessary domain knowledge to solve the problem, but may not know 
of any immediately available procedures or algorithms that will solve it. This opens 
up for both flexible and creative reasoning when trying to solve the equation. In 
this article, the terms problem, task and equation will be used interchangeably about 
the trigonometric equation the students’ tried to solve during the interview. 
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If the students looked like they were struggling with the first task, a prompt was 
given. This is also a trigonometric equation, but less complex. Here as well, the 
students were asked to find a: 

sin x = a  
This task was designed with two considerations in mind. First, the task is 

significantly easier than the original task. There are fewer components in the task 
and, as such, it might be easier to notice the structural aspects of the task than in the 
first task given. So the prompt was designed in order to help the students by reducing 
the complexity of the tasks. Second, it also allowed the author to see if the students 
were able to generalize their reasoning from the simpler task to the more complex 
task. 

ANALYSIS 

The data material consisted of the transcribed interviews and the written work the 
students produced during the interview. The interviews were transcribed by the 
author. As the research questions in this study deals with characterizing students’ 
mathematical reasoning, the transcriptions were primarily focused on verbal and 
written mathematical communication. Such as arguments, guesses, assertions, con-
jectures etc directly related to mathematics which were produced in written or oral 
form during the interview. Although other aspects such as body language, type of 
interaction between the author and the student, tone of voice etc obviously play an 
important part in the students’ behaviour and may say something about the students’ 
mathematical reasoning in general, in this study the focus is the students’ mathema-
tical argumentation and justification. The explicit mathematical reasoning they 
display when they meet an unfamiliar mathematical problem. 

The analysis consisted of two parts; first, identification of each reasoning sequence 
and then classification of each reasoning sequence according to the framework: 
1. Lithner (2008) proposes that a reasoning structure is carried out in four parts. A 

task is met, a strategy choice is made, the strategy is implemented and a conclusion 
is obtained. To identify separate reasoning sequences, the strategy choice and 
conclusion of each reasoning sequence was identified in the transcripts. Strategy 
choice is seen in a wide sense here. Strategy ranges from local procedures to 
general approaches and choice includes recall, choose, construct, discover, guess 
etc. A conclusion is reached after the strategy has been implemented. The con-
clusion is simply the product of the implementation of a certain strategy and it 
can be both incorrect and/or incomplete. For each student, there might be one or 
several attempts at solving the task.  

2. After the individual sequences was identified, each reasoning sequence was then 
classified according to the framework presented earlier. This was accomplished 
by first classifying the reasoning sequence as either creative reasoning or imitative 
reasoning. If the reasoning sequence was classified as imitative reasoning, further 
analysis is carried out to determine whether the reasoning sequence is algorithmic 
or memorized.  
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METHODOLOGICAL ISSUES 

Validity 

Regardless of which epistemological position one takes it is widely accepted that 
there is a need for some form of measurement of validity in qualitative research 
(Ritchie & Lewis, 2003). For the purpose of this particular study, a pragmatical and 
practical view of validity will be adopted. Research, both quantitative and qualitative, 
is a human experience prone to the same mistakes as every other human activity.  

The primary concern in this study, is internal validity, which relates to the extent 
the research correctly map or document the phenomenon in question (Hammersley, 
1990). Is the author really investigating what the author claims to be investigating? 
In this study, this question is related to whether or not the author is able during the 
interview, and in the following analysis, to characterize the students’ mathematical 
reasoning. Every interview will have epistemological conflict between the need for 
complete or rich data and the need for minimizing interference (Clement, 2000). As 
a compromise, the interview session in this study consisted of two parts. During the 
first part, the students were asked to think aloud while they tried to solve a trigono-
metric equation. The students talked freely with little or no intervention from the 
author. In the second part, the author engaged more actively in the interview and 
probed further, in order to get the students to explain in greater detail their mathema-
tical reasoning. The structure of the interview was designed in order to provide 
valid and rich data, respectively. 

Reliability 

Reliability describes the replicability and the consistency of results. Hammersley 
(1992) refers to reliability as: “...the degree of consistency with which instances are 
assigned to the same category by different observers or by the same observer on 
different occasions.” Although qualitative researchers, whether they are constructivists 
or positivists, do not calculate interrater reliability (Ballan, 2001), other steps can 
be taken to improve reliability. In this article, both the collection and analysis of 
the data was carried out by the author. To improve reliability, extensive excerpts from 
the interviews, which the analysis is based on, are given. The methods used to gather 
and analyze the data are also explained in detail.  

RESULTS 

Here, several examples of individual reasoning sequences will be given and analyzed 
at two points during the interview session: when they first begin working on the 
problem and when they are given the prompt and solve the problem. For each 
episode, a description of what the student was doing will be given. Then the reasoning 
structure will be outlined and commented on. Each of the reasoning sequences can 
be said to be the students’ way of understanding and the recurring characteristics of 
their way of understanding, says something about the students’ way of thinking. 
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Attacking the Problem 

An interesting aspect of students’ mathematical reasoning, is how they first attack a 
problem. How do the students approach a new problem when they are not given any 
specific instructions regarding how the problem is to be solved. Here, a description 
and interpretation of what the students first did when they saw the problem are 
given.  

– Alf 

Description 

[The author gives Alf the task.] 
Alf:  “Ok, so here we have cosine and sine and we need to get this into a regular 

cosine function. Let’s see. [Looks in his textbook for about 15 seconds].  
I don’t remember which chapter this was. Yes. Now I remember. It was 
about harmonic equations. Let’s see. Ok. I see this is a sine and cosine 
function that can be transformed into a tangent function. Sin x divided by 
cos x. [Does some calculations on his work sheet]. Same as tan x. Plus 
one equals a. So that is tan x plus one equals a. That is what I was supposed 
to find?” 

Author:  “You can find a numerical value for a in the task”. 
Alf:  “I can? But then I need to find tangent a x, I need to invert it. I can’t find x. 

How can I find a numerical value if I have two variables? I have two 
unknowns. [Alf is quiet for 10 seconds]. Let’s see. If I am going to find a,  
I need to find x first. But that makes no sense.”  

Interpretation  

Alf ’s first reasoning sequence when he begins working on the problem is quite clear: 

1.  Strategy choice: divide each term by cos x and use that 
xcos
xsinxtan =  to simplify 

the equation. Then, invert both sides of the equation and find x. 
2.  Strategy implementation: Alf divides each term on the left side of the equation 

by cos x. However, he forgets to divide the term on the right side by cos x.  
3.  Conclusion: The equation 1 + tanx = a can not be solved.  

The procedure Alf first chose, transforming an equation with a sine and a cosine 
term into an equation with a tangent term, is, as he said, mentioned several times in 
the students’ textbook. Both in the form of worked examples and as similar tasks. 
Alf recognizes the general structure of the equation and assumes it can be solved as 
the tasks and examples he has seen in the textbook. The argument he presents, is 
that he has seen this type of equation several times in the textbook. It is a familiar 
algorithm. So, it is reasonable to conclude that Alf’s first attempt at solving the task is 
imitative in nature and, more specifically, algorithmic reasoning. 
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The mistake Alf made implementing the strategy, was apparently a minor and 
insignificant, as he corrected it later during the interview without the author pointing it 
out. It is also not unreasonable to expect that Alf would have drawn the same 
conclusion even if he had implemented the strategy correctly. This is seen when he 
states that he can’t find a number if he has two variables. The two variables or 
unknowns are x and a. Even if he had implemented the strategy correctly, he would 
have ended up with what Alf calls “two variables”. 

– Anna 

Description 

[The author gives Anna the task.] 
Anna:  [Reads the task instructions and is quiet for a few seconds]. “Ok, I need 

to find some connection between sine and cosine, but i don’t remember 
the formulas by heart. [Anna looks in her textbook for about 15 seconds]. 
Ok, if I divide each term by cos x, then I might end up with tan x here on 
the first part. [She proceeds to divide each term in the equation with cos x, 
writes down the answer on paper.] So I have one and a divided by cos x. 
That doesn’t help me much.” 

Author:  “Why not?” 
Anna:  “I think I have two unknowns here. Both tangent and cosine. [Anna is quiet 

for the next 15 seconds.] 

Interpretation 

Anna’s first reasoning sequence is similar to Alf ’s first reasoning sequence: 

1.  Strategy choice: divide each term by cos x and use that 
xcos
xsinxtan =  to simplify 

the equation. Then, invert both sides of the equation and find x. 
2.  Strategy implementation: divides each term on both sides of the equation by 

cos x.  

3.  Conclusion: the equation 
xcos

axtan1 =+  can not be solved.  

Anna’s first attempt at solving the task is, as Alf’s first attempt, algorithmic 
reasoning. She doesn’t remember the procedure in full, but after looking in her 
textbook for a few seconds she remembers it and applies it to the task. She quickly 
concludes, however, that the procedure didn’t solve the task and she has to start 
over. The only significant difference in Alf’s and Anna’s reasoning structure, is that 
Anna implements the strategy correctly. However, the conclusion is, as Alf’s con-
clusion, that the resulting equation can not be solved, as she says she has two un-
knowns there. Presumably, both Anna and Alf wanted to invert both sides of the 
equation and find a numerical value for x. This is how the procedure is described in 
the textbook. 
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– Hege 

Description 

[The author gives Hege the task.] 
Hege:  “I don’t remember this. It’s been a while since we were working on this. 

Sine x plus cosine x equals [uniteligeble], we two unknowns here. I need 
to somehow combine sine x and cosine x into one expression. I don’t 
remember anything of this.” [She start looking through her textbook. She 
is quiet for about 30 seconds.] 

Author:  “What are you looking for?” 
Hege:  “I don’t know. I need to find some formula to combine cosine x and sine x. 

[She looks in her textbook for the next minute, then puts it down.] It 
wasn’t there. I’m trying to find some formulas for the sum. But I can’t do 
it when I don’t know what x is.” 

Author:  “What are you supposed to find here?” 
Hege:  “An unknown, but I don’t know how to do it.” 

Interpretation 

Hege’s reasoning structure is less clear than the previous two. She looks for a 
trigonometric identity or procedure in the textbook that can transform the given task 
into an equation with just one trigonometric expression, but says she didn’t find 
what she was looking for. Although she quickly gives up, the reasoning structure 
can be formulated as following: 
1.  Strategy choice: simplify the equation by finding a formula or procedure that 

can combine two trigonometric expressions into one trigonometric equation.  
2.  Strategy implementation: look for a formula or procedure in the textbook. 
3.  Conclusion: an appropriate formula or procedure was not found and the task can 

not be solved. 
Based on the description of Hege’s first attempt at solving the equation, it is 

difficult to know exactly what procedure or formula she is looking for. If the author 
were to speculate, it seems she vaguely remembers a procedure or formula that can 
transform this equation from having two trigonometric terms into an equation with 
just one trigonometric term. Even though Hege’s attempt at solving the equation is 
neither as sophisticated nor as fruitful as the other two students’ attempts, it is similar 
in nature. As Anna and Alf, Hege’s first attempt is clearly algorithmic reasoning as 
she looks for a specific procedure or formula that can help her solve the equation. 
The main difference between Hege and the other two students, is that Hege does 
not remember or know the exact procedure. 

The Prompt and Solution 

Another interest of the author, which would shed some light on the students’ mathe-
matical reasoning, was their behaviour when given the prompt. The purpose of the 
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prompt was two fold. First, it served as an implicit hint. It gave some insight into 
how the original equation could be solved. Second, the author wanted to see how 
the students generalized the properties of the prompt to the original equation. 

– Alf 

Description 

[The author gives Alf the prompt.]  
Alf:  “Ok. This is the sine graph. I can just draw it.” [Alf draws the graph of 

the sine function on a piece of paper and is quiet for about 15 seconds] 
Author:  “Can you say something about a?” 
Alf:  “a is an interval. It’s between -1 and 1.” [Alf writes down 1,1−=a  next 

to the sine graph.] 
Author:  “so if you now go back to the original problem...” 
Alf:  “ok, but the tangent function is completely different. It goes like this.” 

[Alf draws the graph of the tangent function next to the graph of the sine 
function.] 

Author:  “What if you look at the original equation.” 
Alf:  [Alf is quiet for 10 seconds]. “I can transform it into a sine function 

and then find what a can be. As an intervall. It is dependent, but it must 
be within some range. It can. Wait a minute. A must be a function of 
[unintelligible] oscillation with sine. I can see that now. [Alf does some 
calculations on the piece of paper]. Then we have a squared plus b squared. 
This is it. C is the square root of two. Then we have to find the others as 
well. That means. But c is also one. So that is easy. It is the square root 
of two multiplied by sine x. Plus b over a. Which is one. Plus d, which 
we don’t have to find, because that is just the equilibrium position which 
is zero. So d equals zero. [Alf continues to write down his solution on the 
piece of paper]. Ok, since the peak amplitude is the square root of two, 
that means a is between the square root of two and minus the square root 
of two.” 

Author:  “Why is that?” 
Alf:  Because I made it into a sine function. Which means I have a graph that 

represents a here.” 

Interpretation  

When given the prompt, Alf immediately says that this is the sine function and that 
a must be between -1 and 1. After a bit of guidance, he identifies the original 
equation of being similar in nature to the prompt. He knows that a is an interval in 
both cases. The generalization from the simpler to the more complex case is mathe-
matically correct and he identified the structural similarities of the two equations. 
He furthermore shows a flexible understanding of the equation when he says that it 
is a function. The problem given is no longer just an equation with two variables, 
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as Alf stated earlier, but a is a function of x as well now. This allows him to calculate 
the range of the function. The reasoning structure as he solves the equation is as 
following: 
1.  Strategy choice: The equation is also a function. The left side of the equation 

can be transformed into a sine function using )ckxsin(Akxcosbkxsina +=+ . 
Find a by finding the range of the function. 

2.  Strategy implementation: Alf calculates 2baA 22 =+= , 1k =  and, wrongly, 

that 1
b
ac == . He concludes that the equilibrium position is zero. Giving him 

that )1xsin(2xcosxsin +=+ . The peak amplitude is 2 , so ⎥⎦
⎤

⎢⎣
⎡−= 2,2a . 

3.  Conclusion: A is an interval between minus the square root of two and the 
square root of two. 
Even though Alf made a minor mistake in calculating c, this reasoning structure 

is to some degree creative in nature. The calculations Alf carried out were algorithmic 
and procedural, but looking at the equation as a function and evaluating its range is 
flexible, plausible and based on mathematical properties. Three of the four criteria 
needed for the reasoning to be classified as creative. The last of the criteria, novelty, is 
more difficult to evaluate. The author can not claim with certainty that the reasoning 
sequence was new to Alf, but the fact that he needed to see the prompt to make the 
necessary connections and initiate this reasoning sequence, indicate that it could be 
novel. Either as entirely new to the reasoner or as rediscovering a forgotten reasoning 
sequence.  

An important point that needs to made, is that it was only after seeing the prompt 
Alf discovered the structural properties of the original equation necessary to apply 
his strategy choice. It was only after seeing the simpler equation he noticed that a 
had to be an interval and that he could look at the original equation as a function. 
From there, he could apply a familiar procedure in order to find the function’s 
range. When Alf first began working on the equation, he didn’t seem to investigate 
more closely the nature of a or what he was asked to find. Instead, he just looked at 
the equation, applied a familiar procedure and concluded it could not be solved as 
the equation contained two variables. The author finds it reasonable to conclude that 
Alf first focused on the surface properties of the equation and only after seeing the 
prompt, did he focus more closely on the structural features of the equation. 

– Anna 

Description 

[The author gives Anna the prompt.] 
Anna:  [Quiet for 20 seconds]. “I have two unknowns. If it had been a number 

instead, for example two [pointing to a], then I could just say that x is 
sine inverted of two” 

Author:  “Ok”. 
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Anna:  “But I wouldn’t get anything. Not now anyway.” 
Author:  “Why not?” 
Anna:  “Because sine can not be greater than one. [Quiet for 5 seconds]. I am 

very uncertain about this. When I have two unknowns.” 
Author:  “What is a? Is it an integer?” 
Anna:  “It can be many. A is a variable, right?” [Quiet for 15 seconds]. 
Author:  “Remember to keep talking.” 
Anna:  “I don’t know. It’s all very difficult now.” 
Author:  “You said a could be many. What can a be?” 
Anna:  “It can be between one and minus one. I don’t think I can find a more 

accurate answer than that.” 
Author:  “What if you look at the original equation?” 
Anna:  “[Quiet for 10 seconds]. Yes, I don’t know. It’s been a while since we 

worked on this. Secondly, when there are so many unknowns. I don’t 
know. What am I supposed to find here? Is it a number, is it an interval is 
it an expression.” 

Author:  “What did you find in the other task?” 
Anna:  “That a had to be between one and minus one.” 
Author:  “What is that?” 
Anna:  “It is an interval. [quiet for a few seconds]. Ok, it is exactly the same 

task. There is an interval here as well. Only difference is that here we 
have sine x plus cosine x and here it is just sine x. So if I can use this 
way of solving this, then I get. But then I get one and minus one.” 

Author:  “It’s the same interval in both equations?” 
Anna:  “Yes, it must be. If sine x plus cosine x, then both of them can be one. So 

one plus one equals two. But they can’t be one simultaneously. If we 
look at the unit circle, [draws the unit cirlce] if cosine x is one, then sine 
x is zero. So maybe what I found is correct after all.” 

Author:  “You could see if it is correct.” 
Anna:  “Ok, if I try 40 degrees. [makes the necessary calculations on a calculator]. 

Ok, that is not right. I got 1.41. [Quiet for 25 seconds]. I must have mis-
understood. [She picks up the calculator]. If I put it in here. If i put in y 
eqauls sine x plus cosine x. And set x from zero to ten and y from minus 
two to two. [She plots the graph of the function on the calculator]. If I find 
the maximum and the minimum, that will tell me how high and low a can 
be. Ok, so I get that maximum is 1.4 and the minimum is minus 1.4.” 

Author:  “Have you now found a?” 
Anna:  “Yes.” 

Interpretation 

It is clear from the transcript that when Anna is given the prompt, there are a two 
features of the problem that confuse her. The first is, as she mentions, the two un-
knowns or variables. There is both an x and an a in the equation. It seems obvious 
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that she is not used to working with a single equation with more than one variable. 
She expresses her frustration as she doesn’t know what to do or how to solve an 
equation with two variables. The second frustration, is seen when she asks what she 
is supposed to find. It seems she is uncertain of the properties of a. This is also 
seen when she asks if a is a number, an interval or an expression. On a more 
general basis, the frustration stems from not knowing how to solve the equation 
and not knowing what the solution is supposed to look like. However, with a little 
guidance from the author, she correctly answers that a is an interval between one 
and minus one.  

The uncertainty regarding a is also seen when she tries to generalize her findings 
in the simpler equation to the original equation. Even though she found that a had 
to be between one and minus one in the simpler equation, she asks the author if a is 
supposed to be an interval, an integer or an expression. However, after the author 
asks what she found out when given the prompt, she correctly concludes that a 
must be an interval in the original equation as well. She then says that the interval 
in the original equation is also one to minus one, but she quickly corrects herself. 
First saying that the interval must be from two to minus two. Then, referencing the 
unit circle, she goes back to her original answer and says the interval is one to minus 
one. She doesn’t offer any justification for chosing a 40 degree angle as an example 
or why she think calculating one example could verify her solution. It may be possible 
that by looking at the unit circle, she, explicitly or implicitly, concluded that the 
sum sine x plus cosine x would be greater near a 45 degree angle. When she sees 
that the answer is greater than one, but less than two, it seems she understands that 
the upper limit of the interval is somewhere between one and two. As Alf, Anna 
was now able to treat the equation as a function. Where a was a function of x. The 
reasoning structure that enable her to solve the equation is as following: 

1.  Strategy choice: The equation is also a function. The function can be plotted on 
the calculator. Finding the maximum and the minimum of the function will give 
the interval of a. 

2.  Strategy implementation: Plot xcosxsiny +=  on the calculator. The maxima is 
1.4 and the minima is -1.4. 

3.  Conclusion: [ ]4.1  ,4.1a −=  

Although Anna needed some help from the author to solve the equation, there 
are some indications of creativity in her reasoning process. As Alf, her reasoning is 
flexible as she is able to view the equation as a function and find the interval by 
calculating the maxima and minima of the function. Here, two connections were 
necessary. First, she had to look at a as a function of x and consequently plot the 
left side of the equation on her calculator. Second, she needed to make the connection 
between finding a and finding the maxima and minima of the function. The reasoning 
sequence is flexible, it is based on mathematical properties and plausible. The 
author can not say with certainty that the reasoning sequence is new to Anna, but 
later in the interview she expresses that looking at the equation as a function was 
unusual; especially since a was a function of x and not y as a function of x. This 
might indicate that the reasoning sequence is indeed new, or rediscovered, to Anna. 
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As such, the reasoning sequence does fulfil all the criteria of creative reasoning, 
but at the same time she experienced several difficulties and needed help from the 
author to solve the equation.  

– Hege 

Description 

Hege’s reaction and work when given the prompt was very similar to what Anna 
did. Therefore, only a quick summary of her work will be given here. Hege needed 
some help from the author identifying the interval of a in the prompt. When she 
tried to generalize the results from the prompt and back to the original equation, 
she first expressed that the interval of a was from one to minus one in the original 
equation as well. She then reconsidered and concluded that the interval was from 
two to minus two. However, she quickly corrected herself, saying that cosine and 
sine couldn’t both be one simultaneously. Hege quickly concluded that the interval 
of a had to be between one and minus one. Trying to verify her conclusion, she 

chose 
3
πx =  and found that a = 1.36 Afterwards, she said that the upper limit of a 

had to be greater than one, but less than two. She then became quiet for some time 
and the author asked her what she was thinking: 
Hege:  I’m trying to think. If I... [quiet for 10 seconds]. I have to maximize this. 

If I insert two pi. No, that’s not right. No, I don’t know how to do it. 
[Quiet for 15 seconds]. 

Author:  Can you do it graphically? 
Hege:  Yes, you can. But you will find y instead of a. 
She then proceeds to plot the graph of xcosxsiny +=  on her calculator. She finds the 
maxima and minima of the function. 
Hege:  The maximum and minimum of the graph is...eh...1.4 and minus 1.4. [quiet 

for 15 seconds] 
Author:  What does that tell you about a? 
Hege:  Doesn’t it say a is between minus 1.4 and 1.4? 
Author:  Is that your answer? 
Hege:  I don’t know when the equation is solved! 

Interpretation 

As Anna, Hege solved the equation by looking at I as a function, plotting the graph 
and finding the maxima and minima of the function using her calculator. The 
reasoning sequence is therefore: 
1.  Strategy choice: The equation is also a function. The function can be plotted on 

the calculator. Finding the maximum and the minimum of the function will give 
the interval of a. 
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2.  Strategy implementation: Plots xcosxsiny +=  on the calculator. Find the maxima 
and minima of the function by using the tools available on the graphical calculator. 
The maxima is 1.4 and the minima is -1.4. 

3.  Conclusion: [ ]4.1  ,4.1a −=  

Like Anna, Hege realized that in order to find the interval of a, she had to, first, 
find the maximum value of the left side of the equation. However, unlike Anna, she 
did not view the equation also as a function. Only when the author asked her if she 
could find the maxima graphically, did she make the necessary internal connection. 
She was now able to treat the equation as a function. This is seen when she says 
that solving the problem graphically will give her the values for y and not a. It is 
reasonable to conclude that Hege’s understanding of the function concept is not 
flexible. So the well known procedures and algorithms for finding the maxima and 
minima of a function are not applicable in this situation, where the right side of the 
equal sign is a and not y. Hege was not able to solve the equation without significant 
help from the author and although she found the interval of y of the function 

xcosxsiny += , she was not immediately able to transfer this information to the 
case of a.  

DISCUSSION 

The purpose of the study was to investigate the mathematical reasoning of high 
achieving students in upper secondary school. Two research questions were formula-
ted in the introduction and in this section, the author will try to answer both. When 
the students were first given the equation, all three attempted algorithmic reasoning. 
The students in varying ways attempted to find an algorithm or formula that would 
solve the equation. Algorithmic reasoning, when applied correctly, can reduce the 
cognitive load of solving mathematical problems. However, in this case, all three 
students attempted to use or find algorithms and/or formulas that were not helpful 
for solving the equation. A plausible explanation is that the students did not consider 
the intrinsic properties of the equation, but focused instead on the surface appearance. 
On the surface, the equation looked like equations they had met earlier in the text-
book. The equations in the textbook could be solved using the formulas and algorithms 
Anna and Alf utilized, while Hege presumably looked for a similar algorithm or 
formula. This is seen in Hege’s statements, where she said that she didn’t remember 
how to solve the equation. The answer to the first research question, is therefore 
that in this case the high achieving students did display superficial reasoning when 
given an unfamiliar trigonometric equation. 

The students’ behaviour when they first approached the equation, also reveal 
that imitative reasoning is a strong characteristic of their mathematical reasoning. 
All three students’ first strategy choice was to somehow simplify the equation using 
some standardized procedure or formula. Based on the students’ behaviour, it became 
clear quite early on that they were not able to solve the equation on their own. 
After Alf was given the prompt, he quickly realized a had to be an interval in both 
the easier equation and in the original equation. He then solved the equation by 
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looking at it as a function. Anna and Hege also solved the equation by looking it as a 
function, but unlike Alf they needed significant help from the author during the inter-
view to make the necessary connection. However, regardless of the guidance from 
the author during the interview, all three students were able to view the equation as 
a function. This allowed them to solve the equation using simple calculations. The 
problem was that they did not make this connection without explicit or implicit 
guidance. Alf needed the prompt and Anna and Hege needed explicit guidance 
from the author during the interview. The ability to view the equation in multiple 
ways indicated versatility, but not necessarily adaptability (Sfard & Linchevski, 
1994) as the students needed help to view the equation as a function. 

Based on the observations made in this study, it is the author’s claim that the 
students possess the necessary domain knowledge to solve the equation. The students’ 
were, for all intents and purposes, able to make the necessary connections and 
calculations to solve the equation on their own. The problem was a more general and 
structural behavioural pattern. When the students first began working on the equation, 
they immediately began looking for a formula, algorithm or procedure that would 
let them solve the equation. Later in the interview, all three students were able to 
focus on the intrinsic properties of the equation and solve it, but only with explicit 
or implicit help from the author. As defined earlier in the article, the students’ 
behaviour, arguments and written product is the basis for their way of understanding. 
By looking at the students’ way of understanding, it may be possible to say something 
about their way of thinking. Based on the observations in this study, the author 
contends that it is plausible to suggest that the students’ way of thinking vis-à-vis 
mathematical reasoning is characterised by an expectation that mathematical problems 
can be solved using a familiar procedure or algorithm.  

The findings of this study reinforce earlier findings, which have indicated that 
even high achieving students display superficial reasoning when faced with a mathe-
matical problem (Selden et al., 1994, Lithner, 2000 & Schoenfeld, 1985). Although 
the results are not generalizeable to all high achieving students, the three cases 
presented in this study do generate other questions. In particular, why do the students 
in this study display superficial reasoning? Why isn’t their way of thinking, when 
given an unfamiliar equation, more flexible and creative? Hiebert (2003) argues that 
students learn what they are given an opportunity to learn. A possible explanatory 
hypothesis, is that the three students in this study have gotten good grades in school 
mathematics by focusing on memorizing and applying algorithms and procedures. 
They are simply a result of their learning milieu, which rewards imitative reasoning 
and not creative reasoning. However, the framework and methods used in this study 
can not give an answer to these questions. Future studies in which high achieving 
students’ learning milieu is investigated is needed. 
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