
	

	
 	
 	

	

Faculty of Science and Technology

Department of Computer Science

Mario
A System for Iterative and Interactive Processing of Biological Data
—	

Martin Ernstsen
INF-3990 Master’s Thesis in Computer Science, November 2013

Abstract

This thesis address challenges in metagenomic data processing on clusters
of computers; in particular the need for interactive response times during
development, debugging and tuning of data processing pipelines. Typical
metagenomics pipelines batch process data, and have execution times ranging
from hours to months, making configuration and tuning time consuming and
impractical.

We have analyzed the data usage of metagenomic pipelines, including a visu-
alization frontend, to develop an approach that use an online, data-parallel
processing model, where changes in the pipeline configuration are quickly
reflected in updated pipeline output available to the user.

We describe the design and implementation of the Mario system that real-
izes the approach. Mario is a distributed system built on top of the HBase
storage system, that provide data processing using commonly used bioinfor-
matics applications, interactive tuning, automatic parallelization and data
provenance support.

We evaluate Mario and its underlying storage system, HBase, using a bench-
mark developed to simulate I/O loads that are representative for biological
data processing. The results show that Mario adds less than 100 millisec-
onds to the end-to-end latency of processing one item of data. This low
latency, combined with Mario’s storage of all intermediate data generated
by the processing, enables easy parameter tuning. In addition to improved
interactivity, Mario also offer integrated data provenance, by storing detailed
pipeline configurations associated with the data.

The evaluation of Mario demonstrate that it can be used to achieve more
interactivity in the configuration of pipelines for processing biological data.
We believe that biology researchers can take advantage of this interactivity to
perform better parameter tuning, which may lead to more accurate analyses,

iii

iv Abstract

and ultimately to new scientific discoveries.

Acknowledgements

First and foremost I would like to thank my advisor, Associate Professor
Lars Ailo Bongo, for providing invaluable guidance throughout this project.
I would also like to thank my co-advisor, Professor Nils-Peder Willassen for
providing me with insights from the biology side of things.

Jon Ivar Kristiansen has been very helpful with installation of software and
troubleshooting the systems I have used. I am also very grateful to Erik
Kjærner-Semb, for letting me use results from his Master’s thesis as a moti-
vation in my own work.

Finally, special thanks go to Laura Liikanen for supporting my career change,
and for her support and encouragement during the last months.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Bioinformatics and Metagenomics 1

1.2 Pipelines in Bioinformatics . 2

1.2.1 Observations . 2

1.2.2 Issues . 4

1.2.3 Approaches . 5

1.3 Big Data Analysis . 8

1.4 Mario . 9

1.5 Contributions . 10

1.6 Conclusion . 11

2 Mario Architecture 13

2.1 Use Case . 16

2.2 Storage Layer . 16

2.3 Logic and Computation Layer 17

vii

viii Contents

2.4 Web Server . 18

2.5 Visualization and Analysis . 18

3 Mario Design and Implementation 19

3.1 HBase . 19

3.2 Mario Storage . 23

3.2.1 HBase . 23

3.2.2 MySQL . 25

3.3 Mario Master Server . 26

3.4 Mario Worker Server . 28

3.5 Reservoir Sampling . 29

3.6 Scheduling . 30

3.7 Visualization and Analysis Interface 31

3.8 Technologies . 31

4 Evaluation 33

4.1 Evaluation of HBase as Storage Backend 35

4.1.1 Test Data Generator 36

4.1.2 Experiment Design . 37

4.1.3 Results and Discussion 39

4.2 Mario Evaluation . 41

4.2.1 Latency . 42

4.2.2 Throughput . 42

4.2.3 Sampling . 44

4.2.4 CPU Usage . 45

Contents ix

4.2.5 Network Usage . 46

4.2.6 Memory . 46

4.2.7 Storage . 47

4.2.8 Reliability . 47

5 Related Work 49

5.1 Hadoop/MapReduce . 49

5.2 HBase . 49

5.3 Apache Pig . 50

5.4 GeStore . 50

5.5 Galaxy and Taverna . 51

5.6 Spark . 51

5.7 Dryad . 52

5.8 Naiad . 52

5.9 Dremel . 53

6 Conclusion 55

7 Future Work 57

References 59

Appendices

List of Figures

1.1 Applications arranged in a pipeline 2

1.2 Example of parameter tuning 4

1.3 Number of taxa found vs. number of reads processed from a
metagenomic sample . 7

2.1 Architecture of Mario . 14

2.2 Independent parallel processing of data by to Mario workers . 15

3.1 HBase KeyValue format . 20

3.2 HBase client request with empty client cache. 21

3.3 HBase region server design . 22

3.4 Mario HBase schema . 23

3.5 Data versions with HBase column names 24

3.6 Use of temporary files . 29

4.1 HBase evaluation: workflow in a single stage 37

4.2 One minute CPU load . 45

4.3 Network bytes out . 46

xi

List of Abbreviations

GFS Google File System.

GUI Graphical User Interface.

HDFS Hadoop Distributed File System.

RDD Resilient Distributed Dataset.

RPC Remote Procedure Call.

WAL Write-Ahead Log.

xiii

Chapter 1

Introduction

1.1 Bioinformatics and Metagenomics

Metagenomics is the study of metagenomes - genetic material isolated di-
rectly from environmental samples. While traditional genomics (e.g. analysis
of structure and function on genomes) rely on being able to isolate and cul-
tivate the organism under study, metagenomics is cultivation independent.
With todays cultivation technologies only a small fraction of microorganisms
have been successfully cultivated. Advances in sequencing and computing
technologies have made metagenomics feasible, and it has now become a pre-
ferred technology to study whole bacterial communities, addressing questions
like; who is there, what are they doing and how are they doing it[30].

Bioinformatics is an interdisciplinary field comprising algorithms and appli-
cations for storing, processing and analyzing biological data. Bioinformatics
and computer systems research is becoming more and more important be-
cause data generation from sequencing is doubling every nine months - much
faster than the increase in processing and storage capacity[16]. According
to Sboner et al.[26], in year 2000 the sequencing itself would dominate the
overall cost of a sequencing project, while in 2010 the cost of data manage-
ment and analysis would dominate. As a consequence of this trend, new
infrastructure systems are needed for efficient handling and analysis of the
data.

1

2 1 Introduction

1.2 Pipelines in Bioinformatics

A computer system for analyzing biological data typically consist of three
main components: the input data, a set of tools “chained” together in a
pipeline, and finally an analysis- and/or a visualization system (figure 1.1).

Input data to a typical pipeline are produced by instruments such as sequenc-
ing machines in a laboratory. This data consist of sequences of nucleotides of
varying length, and the datasets can range in size from megabytes to several
terabytes of data.

The input data are typically processed by a series of applications, arranged
so that the output of one application is the input to the next application
(figure 1.1). Many different applications can be used in the pipeline stages.
Some are small user-created scripts, others are large complex applications.
Some are open-source and others are proprietary with source code that is not
available to the end-user. This setup is referred to as a pipeline or sometimes
as a workflow.

Application
1

Application
2

Application
3Input Output

ParametersParameters Parameters

Visualization

Statistical
analysis

Data Computation Analysis

Figure 1.1: Applications arranged in a pipeline

The final output from the pipeline can be imported into applications that
perform statistical analysis or visualization of the results.

1.2.1 Observations

As an example of a typical pipeline, the METApipe pipeline[15] used for
metagenomics at the University of Tromsø, contains the following applica-
tions or stages:

1.2 Pipelines in Bioinformatics 3

1. MGA - Multiple Genome Aligner[11]

2. MGA-Exporter (in house)

3. Filescheduler

4. BLASTP[1]

5. HMMer[6]

6. Annotator

7. Annotator-Exporter

The output is manually imported into METAREP[10] for statistical analysis
and visualization. The pipeline batch-processes the data, meaning that one
stage is completed before the next stage is started. Common for many of
these pipelines is that one or more of the stages are CPU-intensive, resulting
in execution times of days, weeks or even months on the compute clusters
available to the research groups.

Some other characteristics seen in these pipelines are:

1. The tools used in the pipeline stages take files as input and produce files
as output. These files are copied between computers, either manually,
or using scripts.

2. Parallelization is performed only on the most resource-intensive pipeline
stages, by splitting input files and moving these to other compute nodes
and then collecting results.

3. Pipeline configuration is time consuming, since changing a stage re-
quires recomputing downstream stages to see the effect of the change.
Returning to the original setting requires another recomputation.

4. Data and the pipeline configuration are separate, in the sense that
the configuration is not recorded with the data. The researcher must
therefore manually keep track of which configurations were used with
which data, thereby increasing the risk of making mistakes.

4 1 Introduction

1.2.2 Issues

An important and time consuming part of bioinformatics analysis is setup
and configuration of pipelines. This involves deciding on which tools to use
for each stage, and the best parameters for each tool. The parameters used
may have a big impact on the quality of the output data from the pipeline,
but since the pipeline typically contains long-running batch jobs, it is time
consuming and difficult to make an informed decision on the settings.

As an example of the significance of parameter tuning in taxonomic clas-
sification of metagenomics samples, figure 1.2 show the number of different
taxa remaining for increasing values of a confidence cutoff parameter (unpub-
lished, Kjærner-Semb, Department of Chemistry, University of Tromsø[17]).
If the parameter is set to a low value, little statistical confidence is needed
to include a data point. For example, if the parameter is set to 0.1, approx-
imately 80% of genera remains. If the parameter is set to a higher value of
0.9, approximately 10% of genera remain.

Programmet RDP-Classifier ble brukt for å utføre taksonomisk klassifisering av metagenom-datasettet.
RDP-Classifier har en parameter (confidence cutoff) som er en terskelverdi for hvor mye statistisk
støtte hver takson må ha for å bli akseptert. Effekten av denne parameteren ble undersøkt ved å variere
den fra 0 til 1. Det er tydelig at mange taksa forsvinner når det kreves strengere statistisk støtte. Man
reduserer dermed antallet falske positiver, men risikerer også å miste informasjon. Det kan derfor være
nyttig å se hvordan denne parameteren påvirker datasettet.

Fra figuren kan man f.eks. se at om man setter confidence cutoff til 0.8 (standard) fjerner man ca. 85%
av alle taksa på genus-nivå.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0%

20%

40%

60%

80%

100%

Testing RDP-Classifier confidence cutoff

Taxa remaining when increasing confidence cutoff.

Phyla

Class

Order

Family

Genus

Confidence cutoff

T
a

xa
 r

e
m

a
in

in
g

 w
h

e
n

 in
cr

e
a

si
n

g
 c

o
n

fid
e

n
ce

 c
u

to
ff

Figure 1.2: Example of parameter tuning: analysis of remaining taxa for
varying cutoff parameter to RDP-Classifier application. Figure from [17].

Doing exhaustive parameter studies on pipelines with many stages and pa-
rameters is computationally expensive and probably not practical. However,
we believe having system support that make it easy and fast (more interac-
tive) for the user to try out different values may lead in scientific discoveries
that would otherwise have been missed.

A related issue is that of data provenance. Reproducibility of research re-

1.2 Pipelines in Bioinformatics 5

sults are at the center of the scientific method. Studies have shown that
bioinformatics-based research can be difficult to reproduce[13]. To quote
from that study:

The main reason for failure to reproduce was data unavailability,
and discrepancies were mostly due to incomplete data annotation
or specification of data processing and analysis.

The specification of data processing and analysis for a metagenomic pipeline
can be challenging due to the complexity of the processing:

• The pipelines contain many pipeline stages.

• The application used in each stage can exist in multiple versions, giving
different output.

• Each application typically take parameters that can have different val-
ues.

• Pipeline stages are likely to contain custom made applications, such
as filtering scripts and data transformation scripts that may not be
publicly available and may not be under version control.

• The data is stored separate from the processing specification, putting
a bookkeeping burden on the researcher.

This gets more challenging when parameter tuning is involved, since the
researcher need to keep track of multiple datasets with corresponding con-
figurations.

With reference to the above discussion, there is a need for infrastructure
systems that can support easy configuration of pipelines, recording of prove-
nance data and reliable data storage.

1.2.3 Approaches

Typically, data is inspected at the end of the pipeline in the form of a vi-
sualization or a statistical analysis. To support easy parameter tuning, it is
therefore important that the delay from a parameter change until new data
show up at the end of the pipeline, is a short as possible.

6 1 Introduction

By storing intermediate data between the stages, only downstream stages
need to be recomputed after a parameter change. This reduces the number
of recomputations and improves the response time to a parameter change.
One problem with this approach is that for the early stages in the pipeline,
execution time will be close to that of re-executing the whole pipeline.

Another problem is that if the user, after trying new parameters, decides to
revert back to some previous setting, the computations must be redone. To
avoid this, all versions of the intermediate data can be stored. Increasing
interactivity using this technique therefore incur storage overhead and data
management issues that must be handled.

Another way of improving the pipeline response time is to use a subset of
the full input dataset. By sampling the input dataset, and then executing
the pipeline on the sample, execution times can be significantly reduced. For
example, the commonly used BLAST application does a similarity search
against a database for each query sequence in the input data[1]. A BLAST
stage operating on a 1% sample of the full input would then require 1% of
the execution time of a similar stage operating on the full input.

Sampling is not only useful for parameter tuning: a sample of the dataset
can contain enough information for scientific discoveries. Figure 1.3 is an-
other example of current work being done (unpublished, Kjærner-Semb, E.,
Dept. of Chemistry, University of Tromsø[17]). It shows the number of taxa
found versus the amount of data processed in a metagenomic dataset. In this
example, about 50% of genera are discovered after processing 4 million reads
(one fourth of the dataset). About 75% of orders are discovered after pro-
cessing 2 million reads (one eighth of the dataset). This shows that samples
of a metagenomic dataset can provide biological insight.

A third way of improving response time is to use online processing, where
each data point is processed through the whole pipeline before the next data
point is processed, as opposed to batch processing, where all data points are
processed through one stage before the next stage is started. This technique
is particularly well suited to data parallel execution. It can also be combined
with the two previous techniques (downstream recomputing, and sampling).

For complex metagenomic pipelines, it is important that the complete config-
uration of the pipeline is recorded, so that results can be reproduced. Some
guidelines for achieving reproducible computational research are discussed in
[25].

1.2 Pipelines in Bioinformatics 7

Varierende antall sekvenserte reads ble tilfeldig valgt ut fra metagenom-datasettet. Deretter ble det
utført taksonomisk klassifisering for å undersøke hvor mange organismer som finnes i datasettet på
forskjellige taksonomiske nivåer (hierarki). Grafen flater ut etter hvert fordi de fleste av organismene
har blitt klassifisert (siden datasettet inneholder et gitt antall organismer). Dette er nyttig hvis man
ønsker å se om man har funet alle (el. de fleste) organismene.

Ønsker man f.eks. å se på de organismene som det er mest av trenger man kanskje ikke å bruke flere
enn 4 millioner reads for å få en oversikt.

0 4 8 12 16
0

20

40

60

80

100

120

Rarefaction curve

phylum

class

order

family

genus

million reads

#
 ta

xa

Figure 1.3: Number of taxa found vs. number of reads processed from a
metagenomic sample. Figure from [17].

8 1 Introduction

1.3 Big Data Analysis

Mario use the storage and processing capacity of a cluster of computers with
Hadoop, Hadoop Distributed File System (HDFS) and HBase installed.

HDFS is a open-source distributed file system that provides reliable stor-
age of petabyte-sized datasets. HDFS is inspired by Google File System
(GFS)[8]. Hadoop1 is a system for high throughput, data-parallel process-
ing of data stored in HDFS. Hadoop is an open-source implementation of
Google’s MapReduce system[3]. Several systems based on Hadoop and HDFS
provide additional capabilities for handling petabyte-scale datasets. One of
these is HBase2, a distributed, random access storage system for structured
data, modelled after Google’s Bigtable system[2]. The Mario system, pre-
sented in this work, use HBase extensively.

Other systems in the Hadoop ecosystem include:

• Hive3, a data warehousing system.

• Pig4, a system that provides an easy to use, SQL-like interface to
MapReduce.

• Mahout5, a system providing implementations of machine learning al-
gorithms that can be executed on Hadoop.

Data in bioinformatics are typically multi-dimensional, heterogeneous and
noisy, in contrast to the text-based web-page data that Hadoop and HBase
was originally designed for. Nevertheless, systems from the Hadoop ecosys-
tem are being increasingly used for bioinformatics due to their scalability to
large datasets[29]. There is however, no Hadoop-based system that provides
interactivity and iterative computations for biological data.

Mario use HBase to improve on some of the weak points of the piplines
discussed in section 1.2.

1http://hadoop.apache.org
2http://hbase.apache.org/
3http://hive.apache.org/
4http://pig.apache.org/
5http://mahout.apache.org/

http://hadoop.apache.org
http://hbase.apache.org/
http://hive.apache.org/
http://pig.apache.org/
http://mahout.apache.org/

1.4 Mario 9

1.4 Mario

We believe that a system for processing and analyzing metagenomic datasets
should satisfy the following requirements:

1. Interactivity. A system with response time from user input until results
start showing up on screen of less than 100ms, will appear to the user
as responding instantaneously. If the response time is longer than 10
seconds, the user’s attention may be lost [19]. Since a metagenomics
pipeline can contain a variable number of stages containing applica-
tions where even the smallest input can take seconds to compute, it
is difficult to define general response time requirements. Instead, this
requirement will be stated in terms of latency for doing a null operation
on input data at the finest granularity (a single nucleotide sequence).
This requirement is set at 100ms.

2. Flexibility. The main goal is to make it easy to tune parameters to
applications used in pipelines.

3. Generality. The system should make it easy to replace stages with a
variety of metagenomic pipelines and tools.

4. Scalability. The system should scale to meet the demands of processing
upcoming petabyte-scale datasets.

5. Ease-of-use. The system should be easy to adapt to existing pipelines,
since it is not practical to make changes to pipeline tool code. The
system should also handle input and output from each stage regardless
of the data format the tools use.

6. Provenance. Data provenance support should be an integrated part of
the system.

To our knowledge, no existing system fulfill all these requirements. Hadoop/MapReduce[3]
does not satisfy the interactivity requirement, since even a null operation
can take tens of seconds to complete. Apache Pig is an interface to Hadoop
and is therefore not interactive. GeStore focuses on incremental updates of
metadata, and does not satisfy the interactivity requirement. Galaxy and
Taverna are workflow managers that provides provenance and an easy to use
interface to applications, but does not provide interactivity. Spark has, to
our knowledge, not been integrated with bioinformatics tools. More detailed
descriptions of these systems are given in chapter 5.

10 1 Introduction

Based on these requirements, the Mario system is proposed, which fulfill the
requirements as follows:

1. Interactivity is achieved using iterative processing, sampling, and stor-
age of intermediate data.

2. Flexibility is achieved using an interface where pipeline configurations
can be changed during processing, by sending messages with updated
configuration to the system.

3. Generality is achieved by using existing, unmodified tools in the pipeline
stages.

4. Scalability is achieved using a parallel shared-nothing architecture for
computations and a highly scalable storage system.

5. Ease-of-use is achieved by using existing, unmodified tools in the pipeline
stages, and through the use of a storage model that is agnostic to the
data types used by the tools.

6. Data provenance is achieved by storing the complete configuration of
the pipeline, including versions of applications used in each stage, and
providing a mapping between data and configuration.

1.5 Contributions

The contributions of this work are:

1. An analysis of the METApipe metagenomics pipeline, including the
METAREP visualization and analysis frontend, to better understand
how to make real-world bioinformatics pipelines more interactive.

2. An approach for, and an implementation, of a bioinformatics pipeline
system, Mario, that provide iterative and interactive processing, and
has support for data provenance.

3. An experimental evaluation to determine whether HBase provides the
required features and performance to be used as a storage system for
interactive processing of biological data.

4. An experimental evaluation of the Mario system, demonstrating that
it can achieve interactive performance for processing of biological data.

1.6 Conclusion 11

1.6 Conclusion

The evaluation of Mario and HBase indicate that that Mario add consid-
erably less than 100 milliseconds to the latency of processing one item of
data. This low latency, combined with Mario’s storage of versioned interme-
diate data enables easy parameter tuning. Mario also have high throughput,
making it suitable for processing large datasets. In addition to this, Mario
offer integrated data provenance, with detailed pipeline configurations being
stored in the system, and associated with the data.

The evaluation of Mario demonstrate that it can be used to achieve more
interactivity in the configuration of pipelines for processing biological data.
We believe that biology researchers can take advantage of this interactivity to
perform better parameter tuning, which may lead to more accurate analyses,
and ultimately to new scientific discoveries.

Chapter 2

Mario Architecture

Based on analysis of METApipe and other bioinformatics analysis pipelines,
the following assumptions are believed to be valid for many use cases, and
form the basis for for the architecture and design of Mario:

1. Input data can be split into parts with fine granularity.

2. No intermediate pipeline stage requires access to the complete input
data.

3. There is enough storage to hold the intermediate data.

The first two assumptions allow the dataset to be processed iteratively with
inspection of output as the computation proceeds. This is the main key to
achieving interactivity in the configuration of the pipeline. The third assump-
tions allow intermediate data to be stored, thereby reducing recomputation
after configuration changes.

An overview of the Mario architecture is given in figure 2.1. It consists of
four tiers: storage, logic/computation, the web server and the client/UI. The
system will normally be installed on a cluster of computers, with the master
process at the cluster frontend, and the workers at the compute nodes of the
cluster. Mario will normally be colocated with an HBase installation that
has the HBase master at the frontend and the HBase region servers at the
compute nodes. The web server and the MySQL server can be located on
the cluster frontend, or on separate computers.

13

14 2 Mario Architecture

Visualization/AnalysisMario Control Interface

Client
browser

Web
server

HTML &
Javascript

HBase

Worker
2

Worker
...

Worker
n

Worker
1

MasterMySQL Interface to
Krona or R

Krona or R

C
lu

st
er

Ba
ck

en
d

C
lu

st
er

Fr
on

te
nd

Figure 2.1: Architecture of Mario. Greyed out parts are not implemented in
prototype.

15

The user control Mario via a web interface, where the pipline is configured,
dataset selected, and the computations can be started, paused and stopped.
The configurations and control messages are sent as JSON messages from the
client browser to the web server, which forward them to the Mario master
server. The master server transmit task messages to the Mario worker pro-
cesses and receive notifications when work is completed. The workers retrieve
input data from HBase, run it through the pipeline, and write the results to
HBase.

A visualization/analysis interface retrieve results from HBase, either period-
ically, or when notified of the presence of new results by the Mario master,
and formats the results for the visualization or analysis system being used.
For example, if Krona[23] is used for visualization, the interface will create
an XML-file with hierachies of organisms that can be visualized. The web
server transfer the XML-file to the web browser running Krona (the same
browser that are used for controlling Mario).

HBase table: {key1: data1, key2: data2, …}

Master

1
ge

tK
ey

sI
nD

at
as

et2
pr

oc
es

s(
ke

y1
)

4 get(key1)

6 put(out1)

7 d
on

e

Worker 1

data1 Pipeline out1

5 process data1
Worker 2

data2 Pipeline out2

5 process data2

4
ge

t(k
ey

2)

6
pu

t(o
ut

2)

7 done

3 process(key2)

Figure 2.2: Independent parallel processing of data by two workers. Blue
labels show sequence of events after a user starts Mario.

All workers operate independent of each other, processing separate parts of
the dataset in parallel. Figure 2.2 show the sequence of events when the Mario

16 2 Mario Architecture

master schedule tasks to workers, who then process the data independently
in parllel: The master first request a key iterator from HBase. Iterating
over the keys, the master send task messages to each worker, containing the
key. Each worker then retrieve the data associated with the key, and process
this data. After processing, the worker put the data to HBase and send a
notification to the master that processing is completed.

2.1 Use Case

To analyze a dataset using Mario, the user would first insert the input data
into HBase. She would then define the pipeline operations that will operate
on the data. This is done by, for each pipeline stage, specifying the applica-
tion to execute, the version of the application, and the parameters to pass
to the application. This pipeline configuration can be entered via a web
interface such as Galaxy[9] or Taverna[21] or from a script that sends the
configuration to the Mario master. As part of the configuration, the option
to sample the dataset can be selected together with the sample size. The
user then start the initial computation. As the computation proceeds, she
might want to change the parameters or application used in a stage. This is
done by sending an updated configuration message to the master, which will
start scheduling work with the new configuration. If the new configuration
is not satisfactory, the previous configuration can be restarted, and old data
is restored without recomputing.

2.2 Storage Layer

The primary component of the storage layer is an HBase installation. HBase
is used to store input data, intermediate data and output data. Intermediate
and output data can be stored in multiple versions resulting from the use of
different settings to pipeline stages. HBase was selected as storage backend
due to its low-latency random read and write capability (chapter 4), its
ability to efficiently store sparse data, and its ability to easily scale to store
current and future large biological datasets on clusters used by bioinformatics
research groups. When a metagenomics project is completed the intermediate
data can be deleted and a major compaction performed(ref. section 3.1) to
reduce the long time storage requirements.

2.3 Logic and Computation Layer 17

Also part of the storage layer is a MySQL database. This database has
three uses in Mario: First, it is used to store the different settings used in
each of the pipeline stages. This provides access to the different pipeline
configurations, including parameters to each stage, used for computing the
intermediate and output data stored in HBase. This represents a history
of configurations, so that a Mario user can revert to previous configurations
and benefit from previously computed results. Second, the database is used
to store metadata about datasets stored in Mario’s HBase tables. Third, the
database is used to store information about available tools that can be used
in each pipeline stage, such as version and allowed parameters.

2.3 Logic and Computation Layer

This layer contains a single master server, and multiple worker processes.
The master is controlled by the user through the web client. When starting
a job, the master will distribute work to the workers. It does this by providing
each worker with the current configuration of the pipeline and the HBase row
key of the data to be processed. If desired, the master can also query HBase
for the location of the HBase region server responsible for the key, and assign
the key to a Mario worker located on the same server. This will improve data
locality and potentially reduce network traffic.

The master retrieves the row keys from HBase, but does not retrieve the
data stored under each key, or perform any processing. It is therefore lightly
loaded. If sampling is selected, the sample is stored in memory as a list of
row keys. This sample is the main source of memory usage in the master.
Assuming 20 byte key length, a large sample of four million keys will only
consume approximately 80MB of memory.

The worker processes wait for messages from the master server. When such a
message is received, the worker retrieves the relevant data from HBase. This
data is then processed through all the stages of the pipeline, with intermedi-
ate and final output inserted back into HBase. When a worker has completed
its work, a message is sent to the master. This enables the master to adjust
work distribution to the capacity of the workers. This also makes it easy to
notify the METAREP/Krona interface that work has been completed. The
worker processes can be expected to be CPU and memory intensive, due to
the applications used in the pipeline stages.

18 2 Mario Architecture

Communications between the master server and workers, web server and vi-
sualization/analysis interface is performed using the ZeroMQ library1, which
is a low-latency, high-performance asynchronous messaging library. ZeroMQ
provides a brokerless communication architecture with automatic handling
of transfer and buffering of messages.

2.4 Web Server

The web server serves the Mario control application to the users web browser,
and forwards requests from this application to the master server. The web
server is also used to serve data generated by the visualization and analysis
interface to the visualization or analysis application being used.

2.5 Visualization and Analysis

To integrate Mario with a visualization system such as Krona, an interface
must be implemented. This interface simply generates the data required by
the visualization system based on the data available. For Krona, this involves
generating an XML-file of the organism hierarchies found in the data. This
interface can be implemented in any programming language that has ZeroMQ
bindings and can access data from HBase, such as Python or Perl, both of
which are popular in the bioinformatics community.

To perform analysis, the interface could be implemented as part of an analysis
script in R, since R has ZeroMQ bindings and can access HBase.

1http://zeromq.org/

http://zeromq.org/

Chapter 3

Mario Design and
Implementation

This chapter begins with a detailed description of the HBase storage system
used by Mario. This is necessary to understand the performance character-
istics of Mario. The design of the Mario system is then presented with some
detail.

3.1 HBase

HBase is an open-source, distributed storage system for structured data,
based on Google’s Bigtable[2]. It has a single HBase master server, and
multiple region servers. These servers are located on a cluster of computers
and are often co-located with other systems. In addition to the master and
the region servers, HBase use the Apache ZooKeeper[12] system for tasks
such as bootstrapping, server discovery and server failure detection. Data
is primarily stored in HDFS (similar to GFS), but can HBase can also be
configured to use Amazon S3.

Mario store data in HBase tables. A table consists of rows that are identified
by row keys. Each row has cells containing data. The cells are identified
uniquely by a row key consisting of column family, a column and a cell ver-
sion(a timestamp by default). Thus, for a given table, a cell in a specific
row is identified by the following vector: (row key, column family, column
qualifier, cell version). The first three components are strings, and the cell

19

20 3 Mario Design and Implementation

version/timestamp is a long. The key is stored together with each cell in a
byte array known as a KeyValue(figure 3.1). The KeyValues are stored in
immutable HFiles, lexicographically ordered by row key. This design makes
HBase ideal for efficient storage of sparse data, which is data with many
columns, most of which are empty. This is precisely the storage characteris-
tics of Mario.

Another consequence of this design is that columns can be added dynamically
at runtime. Mario use dynamically generated column names to provide a
mapping between the data in the column and the pipeline configuration used
to generate that data.

Key
Length

Value
Length

Row
Length Row ColFam

Length
Column
Family

Column
Qualifier

Time-
stamp

Key
Type Value

Key Value

Figure 3.1: KeyValue format. Figure based on figure 8-7 in [7].

A disadvantage of storing the key with every data cell is that for very small
cells, the key can represents a large part of the total data. Whether this
is the case for Mario depends on the applications used in each stage of the
pipeline. Some of this disadvantage is mitigated with compression, but it is
still important to keep the row key, column family name and column qualifier
as short as possible to reduce overhead on small cells.

The HBase master server decides which region server shall handle which re-
gion, handles creation and deletion of tables, load balancing, and also handle
region server failures. HBase clients does not communicate with the master.

The HBase region servers are responsible for reading and writing data. Each
region server is responsible for zero or more regions, each containing a given
range of keys. HBase metadata is stored in two special HBase tables: the
-ROOT- table contain the locations of the .META. table, which contain the
locations of the different regions. When a client send a (get) request to
HBase for the first time, the following events take place (figure 3.2): 1. the
client sends a request to ZooKeeper for the location of the -ROOT- table.
2. the client sends a request to the region server holding the -ROOT- table
for the location of the .META. table. 3. the client sends a request to the
region server holding the relevant part of the .META. table for the location
of the KeyValue. 4. the client sends a request to the region server holding the

3.1 HBase 21

KeyValue. All results of these metadata requests are cached by the client, to
minimise subsequent lookups.

ClientHBase
Master

Region
Server

Region
Server

Region
Server

Region
Server

Region
Server

Zoo-
Keeper

 -ROOT- table
stored here

Relevant part of
.META. table
stored here

KeyValue
stored here

1 get -ROOT- location

2 get .M
ETA. lo

cation 3 get KeyValue location

4 get KeyValue

Figure 3.2: HBase client request with empty client cache.

A region server can contain multiple regions. Each of these are represented as
HRegion instances (figure 3.3) containing one Store instance for each column
family and HBase table. Each store has a MemStore, and one or more
StoreFiles, which are wrappers around an HFile. Each column family can
be configured to use compression, which will generally increase performance,
due to reduced disk access. Each column family can also be configured to use
Bloom filters, which can be used to exclude files from searching for a given
row key, thereby increasing read performance.

When a region server receives a put request, it passes the request to the
relevant HRegion object responsible for the key range the put belongs to.
The HRegion object first write the data to the Write-Ahead Log (WAL).
The WAL store the request in HLog files in case the server fails. To ensure
consistency in case of disk failures the log entry is synchronously written to
a configurable number (default 3) of replicas on different servers. If a slight
reduction in reliability is acceptable, the log replication can be performed
asynchronously for better performance. Although not recommended, the
WAL can also be disabled completely, resulting in data loss if the server fails
before or during a write.

After updating the WAL, the HRegion instance then it inserts the data into

22 3 Mario Design and Implementation

HRegionServer

HRegion

Store

StoreFile
HFile

StoreFile
HFile

MemStore Store

StoreFile
HFile

StoreFile
HFile

MemStore
HLog

Figure 3.3: HBase region server design. Figure based on figure 8-3 in [7].

the in-memory MemStore. If the MemStore is full, it is flushed to disk,
creating a new StoreFile. Since data is generally not inserted in lexicographic
order, multiple StoreFiles is created, which internally are in lexicographic
order. These are periodically cleaned up by merging the latest StoreFiles
together into a larger StoreFile. This process is called a minor compaction.
Minor compactions ignore StoreFiles larger than configurable maximum size.
Periodically (default: every 24 hours) a major compaction is performed.
These merge all the StoreFiles into one large StoreFile, at the same time
removing data that have been marked for deletion.

When the size of the largest StoreFile exceeds some configurable limit, a
region split is triggered. This splits the region key range in the middle,
thereby creating two new regions. After updating the .META. tables these
new regions are served like other regions. If the load on the region server
is high, the master server can move some regions to other region servers for
load balancing.

When a region server receives a get request, each associated cell of data can
be located in several HFiles or in the memstore. When a get is performed, an
exclusion check is first performed to exclude HFiles from search. If the get
includes a timestamp, all HFiles that were written earlier than the timestamp
can be ignored. If the optional Bloom filter is used, it is also queried to
exclude files not containing the key. All included files are then scanned for
the requested key. By using an index at the end of the StoreFiles, this
scanning can be performed fast.

HDFS can store data reliably by taking advantage of HDFS replication.
HDFS is by default set to replicate data to 3 other nodes. HBase can also

3.2 Mario Storage 23

be configured to replicate the whole HBase cluster to other slave cluster at
geographically distant locations.

3.2 Mario Storage

3.2.1 HBase

The HBase storage system form the backbone of Mario. It handles the fol-
lowing tasks:

1. Store the input data to Mario. This data is loaded using an external
loader script.

2. Store intermediate and output data from the pipeline, in a way such
that the pipeline configuration used to process the data can be inferred
from the data.

3. Provide random access to the data with latencies that make it possible
to meet the requirements outlined in chapter 1.

The HBase schema used is shown in figure 3.4. Before starting execution,
input data is loaded and stored in the in column family. Input data is stored
as a key-value pair, where the key can be any identifier that uniquely identifies
the value. For example, the key can be the line number in the input file that
contains the data value, or it can be a sequence ID if the input is a FASTA
file.

CF: in CF: out

key input out_1_0_1 out_2_1_1 out_3_1_1 out_4_1_1

Figure 3.4: HBase schema

Output from pipeline stages are stored in the out column family. When a
pipeline is configured, each stage is given a version number of 1. The version
numbers are used in the column names of the HBase columns that store

24 3 Mario Design and Implementation

the data. The configuration used to process the data in a given column is
identified in the following way: a column name of out 3 2 1 means that the
data contained in the column is the output from the 3rd stage of the pipeline,
using version 1 of the stage and based on input from version 2 of the parent
stage.

Figure 3.5 show an example of a three stage pipeline where the stages have
been modified by the user three times. The top row show the column names
for the initial versions of each stage of the pipeline. When a stage is changed,
by setting a different parameter or using a different application, the result
can be a version tree as shown. The second branch in the version tree in
figure 3.5 is the result of changing the first stage of the pipeline, but leaving
the other two stages unchanged. Even if only the first stage is changed, the
version numbers of the downstream stages must be incremented to create
columns for storing the data based on the output from the new first stage.
In the same way, the lower branch in figure 3.5 is the result of changing the
second stage of the pipeline.

input out_1_0_1 out_2_1_1 out_3_1_1

out_1_0_2 out_2_2_2 out_3_2_2

out_2_2_3 out_3_3_3

v1

v2

v1 v1

v2

v3

v2

v3

Figure 3.5: Data versions with HBase column names

The HBase table resulting from the previous example will have eight columns
in the out column family. For a long running computation, it is reasonable
to believe that most parameter tuning will occur during the first minutes of
the computation. This implies that after running the whole dataset through
the pipeline, most columns will be empty for most of the rows. HBase is
ideally suited for storage of sparse data such as this ref. section 3.1.

3.2 Mario Storage 25

3.2.2 MySQL

The pipeline configuration is stored in a MySQL database. It consists of two
tables. The stageversion table contains the configuration of each stage in the
pipeline. The definition of this table is shown in table 3.1. The stage field is
a foreign key into the stage table, and indicates which stage the stageversion
belongs to. The sequence number field hold the sequence number of the
stage, and the parent field is a foreign key into the stageversion table itself,
pointing to the parent stageversion. Together, these are used to store the data
version tree show in figure 3.5. The data field hold a string serialization of the
complete stage configuration, including the command to execute, version of
the application, and values of parameters. Since stages need to be compared
to determine if a stage has changed, and the data string can be long, a hash

field store a 32 bit hashcode of the data string. If two stages have different
hash, the stages are different. If two stages have similar hash, the data field
is compared for similarity.

Table 3.1: Schema of stageversion table

Field Type Null Key Defaul Extra

id int(10) unsigned NO PRI NULL auto increment
stage int(10) unsigned NO NULL
parent int(10) unsigned NO NULL
sequence number int(10) unsigned) NO NULL
hash int(11) NO NULL
data text NO NULL

The stage table contains name, description and the current version number
of each stage, as shown in table 3.2. By querying this table the system can
determine the latest configuration set by the user, and thereby know which
HBase columns contain valid data.

Table 3.2: Schema of stage table

Field Type Null Key Default Extra

id int(10 unsigned NO PRI NULL auto increment
name varchar(255) NO
current value int(10) unsigned NO 1
description text NO

26 3 Mario Design and Implementation

3.3 Mario Master Server

Mario has a single master server. The master server handle the following
tasks:

• Communication with the frontend control interface.

• Storage of pipeline configurations.

• Pushing notifications of completed work to the visualization or analysis
interface.

• Retrieving dataset keys from HBase, and schedule work by transmitting
task messages containing keys to the Mario workers.

The master server is implemented using two threads; a master thread lis-
ten for control messages and take appropriate actions, and a task ventilator
thread handle distribution of tasks to the workers.

In the Mario prototype, the web interface is not completed, and the web
server has only been used for proof-of-concept testing. For the evalua-
tion of Mario, messages from the web server are simulated using a Python-
script. These ClientMasterMessage messages contain a JSON object with
an optional command and an optional pipeline configuration. The follow-
ing Python function show the structure of the JSON objects, for one of the
dummy pipelines used in the evaluation of Mario:

def experiment():

mongrel = context.socket(zmq.PUSH)

mongrel.bind(’tcp://*:20003’)

time.sleep(1)

stage1 = {’command’: ’cat’, ’version’: ’1.0’, ’parameterList’: []}

stage2 = {’command’: ’cat’, ’version’: ’0.2’, ’parameterList’: []}

stage3 = {’command’: ’cat’, ’version’: ’3.1’, ’parameterList’: []}

stage4 = {’command’: ’cat’, ’version’: ’3.1’, ’parameterList’: []}

desc = {’command’: ’START’,

’pipelineDescription’: {’stages’: [stage1, stage2,

stage3, stage4]}}

msg = json.dumps(desc)

mongrel.send(msg)

3.3 Mario Master Server 27

This message contain a four-stage pipeline configuration, having the Linux cat
application in each stage. Each stage contain a command, a version number
(random in the example), and a parameter list (empty in the example).
Together, the stages represent a complete pipeline. The example also include
a START command, that tell the Mario master to start processing when this
message is received.

The master thread contain a version manager that is responsible for storing
pipeline configurations in the MySQL database and maintaining the pipeline
version numbers as pipeline configurations are updated. The version manager
contain all logic related to the construction of the version tree, which is
used to decide which version numbers to change when an updated pipeline
configuration is received. Furthermore, the version manager maintain the
Master server’s list of currently valid version numbers. This list is distributed
with each task message to a worker. If a worker find that its own version
numbers are outdated, meaning that the worker has an outdated pipeline
configuration, the worker will request a new pipeline configuration description
from the master server. This configuration description is created by the
version manager.

The other thread in the master server is a task ventilator that distribute
task messages to the Mario workers. When starting up the master server,
the ventilator will first wait for synchronization messages from the expected
number of workers. When the workers are connected, the ventilator opens a
connection the HBase table containing the input data. It then perform a scan
over the keys. For each key, it construct a TaskMessage object containing
the key (a string), and an array of version numbers (of type Long). This
object is serialized and transmitted to the worker.

The ventilator throttle the distribution of tasks to the workers. This is done
by sending a batch of task messages to each worker, and then waiting for the
workers to complete processing, before sending the next batch. The batch
number is configurable at compile time, but for most of the development
and evaluation a number of two has been used. This mean that each worker
receive two task messages that must be processed before before being assigned
more tasks.

The ventilator thread is also responsible performing the optional sampling.
The sampling is performed using the algorithm described in section 3.5. The
sample is stored in memory as an array of keys. After the sampling, the
array is used as the source for generating task messages to the workers.

28 3 Mario Design and Implementation

3.4 Mario Worker Server

Mario use one or more worker servers, ideally one for each available compute
node in the cluster. The task of the workers is to listen for incoming task
messages and, when one is received, retrieve the specified data from HBase
and process it through the pipeline, finally writing the intermediate and
output data to HBase.

The worker use two threads. The worker thread listen for incoming control
and task messages, and take appropriate actions when one is received. The
other thread is a TaskRunner thread that perform the processing.

When a worker thread receive a task message, it checks if it has a valid
pipeline configuration, by comparing the version numbers in the task message
with the version numbers of its own pipeline configurations. If the pipeline
configuration is outdated, the worker send a request to the Mario master
server for an updated configuration. This configuration is then stored in
memory. After checking the versions numbers, the task message is passed to
the TaskRunner thread for processing.

To execute a single stage in a pipeline, the TaskRunner thread retrieve the
data from the relevant HBase row and write it to a temporary file. Executing
the stage will result in an output file which is then put into HBase (figure 3.6).
For pipeline stages where the application can stdin and stdout for reading and
writing data, the relevant temporary files will be automatically piped to/from
the application. If the application need the filenames of input and output
files, the position of these names must be specified in the command that the
stage will execute. This is done by inserting special tokens in the command
at the right position, for example a GCC command would look like this:
”gcc -o {out} {in}”. Here the {out} and {in} tokens will be automatically
replaced by the relevant temporary files before the command is executed.

Before processing each stage in the pipeline, the TaskRunner generate the
column names for the input and output data. It then checks which columns
exist in the row retrieved from HBase. If the column already exist in the row,
meaning that the result has been computed previously, the pipeline stage is
skipped.

3.5 Reservoir Sampling 29

key input out_1_0_1

temporary file temporary filePipeline Stage
input output

HBase row:

Figure 3.6: Use of temporary files

3.5 Reservoir Sampling

Reservoir sampling is a collection of algorithms that produce a random sam-
ple of elements from a stream, without knowing the number of elements in
the stream beforehand. Mario perform the sampling using algorithm 1. It
can be shown that using this algorithm, each element in the stream has equal
probability of being in the sample. The algorithm does one pass through the
stream, and requires the generation of one random number per element. The
single-pass property of reservoir sampling make this technique well suited for
sampling large datasets where performance is I/O limited. The algorithm
can be improved to require less random number generation. Algorithm 1
and improvements are detailed in [31].

In Mario, the sampling is done by the master when processing the dataset
for the first time. The sample is stored as an array of IDs in memory. It is
not persisted to disk.

Algorithm 1 samples uniformly from the input stream. If the sample is used
for analysis, for example because analysing the whole dataset in intractable,
there is a risk of weak signals in the data being lost in the sampling process.
Research is being done into weighted sampling methods that increase the
chance of sampling data points that are deemed important[27]. Weighted

30 3 Mario Design and Implementation

Algorithm 1 Uniform reservoir sampling

Require: |A| ≤ |s|
function sample(s, A) . Sample from stream s into array A

i← 0
while s.hasNext() do

e← s.next()
if i < |A| then

A[i]← e
else

r ← random(0, i− 1) . Inclusive range
if r < |A| then

A[r]← e
end if

end if
i← i + 1

end while
end function

sampling can also be implemented using single pass reservoir methods[5].

3.6 Scheduling

In the Mario prototype, the master process schedules work using a round
robin scheduler. This is done for simplicity, but will result in reduced perfor-
mance on realistic clusters where the performance can be expected to vary
between nodes. Also, round robin scheduling precludes the possibility of
scheduling work close to the data (data locality).

To synchronize the transmission of work messages from the master with the
work done by the worker, the master will transmit a certain number of mes-
sages to each worker, before pausing and waiting for completion messages.
When enough completion messages are received, the master send another
batch. The number of messages sent in each batch is configurable at compile
time as a multiple of the number of workers. Sending multiple messages to
each worker can improve performance, since a worker can start a new task
immediately after finishing the previous task without having to wait for the
master to perform a new scheduling.

3.7 Visualization and Analysis Interface 31

3.7 Visualization and Analysis Interface

The visualization and analysis interface is a component of Mario that must
be custom made to support the visualization and analysis frontend used by
the researcher. In MapReduce terminology, this interface is a Reducer. Its
task is to aggregate the available results, and present the data in a format
that the frontend can use. For a Krona[23] visualization, this would involve
generating an XML-file containing hierarchical data. Due to time constraints,
no such interface is yet implemented in Mario.

3.8 Technologies

The backend system is implemented using the Java programming language.
This choice is largely pragmatic: the language is easy to use because of the
native interfaces offered by the Hadoop ecosystem.

For communications, the ZeroMQ library is used1. ZeroMQ is a low-latency,
high-performance asynchronous messaging library with origins in the finance
industry. It provides a socket-like interface, and has features that make it
easy to implement common communications pattern such as publish - sub-
scribe, push - pull and request - response. ZeroMQ is used for communications
because it is easier to use than regular sockets, and also because it makes
it easy to implement components of the system in any language that has
bindings to ZeroMQ.

The web server used for Mario is Mongrel2 2. Mongrel2 is used because
it is designed for easy communication with ZeroMQ backends. The Angu-
larJS 3 framework is used for Mario’s web control interface. AngularJS is a
JavaScript based MVC framework for web applications. One of the principle
features is a binding between model and view, so that an update of a model
is immediately reflected in an updated view, and vice versa. In the Mario
prototype, the web interface is not completed, and the web server has only
been used for proof-of-concept testing. For the evaluation of Mario, messages
from the web server are simulated using a Python-script.

1http://zeromq.org/
2http://mongrel2.org/
3http://angularjs.org/

http://zeromq.org/
http://mongrel2.org/
http://angularjs.org/

Chapter 4

Evaluation

The goal of the experimental evaluation is to 1. validate the suitability of
HBase as a storage backend for a iterative, interactive system, and 2. validate
the architecture and the design choices made for the Mario prototype.

To do this, latency, throughput and resource usage is measured and discussed.

Since interactivity is the primary goal of Mario, latency is the most important
metric to evaluate. Latency can be defined as the time from an input is made
to the system, until some result or consequence of that input is visible to the
user. For Mario, latency can be defined as the time from a computation is
started or a pipeline configuration change is made, until the first results are
ready to be visualized.

Interactivity, and therefore latency, is most important during pipeline devel-
opment, debugging and tuning. After that point, throughput becomes more
important, especially if the user want to process the complete dataset (as
opposed to using sampling). Throughput is defined as the amount of data
that can be processed by the system per unit time. Throughput is therefore
the second most important metric to evaluate.

Mario’s latency and throughput is dependent on several factors:

• The number of stages in the pipeline. More stages in the pipeline will
result in more intermediate input and output files being created by the
workers, and will therefore reduce throughput and increase latency.

• The computations being done in each stage of the pipeline, which is

33

34 4 Evaluation

related to the applications used in the stages, will directly affect both
latency and throughput.

• The granularity of input data to the pipeline. Does the input data
consist of a few large items, or many small items? The former will
result in higher latencies, but might improve throughput. The latter
will result in lower latencies, but might reduce throughput. The total
amount of input data is irrelevant to both latency and throughput, but
will naturally affect total execution time.

• Scheduling. By scheduling a worker to use data from a HBase region
server on the same node, data transfer over the network can be reduced,
and both throughput and latency improved. The Mario prototype does
not support location aware scheduling.

Since Mario essentially is an orchestrator that provide unmodified bioinfor-
matics applications with data and take care of the output, it is important
that Mario leave as much as possible of the hardware resources available for
use by the applications. These resources include CPU, network, memory and
disk usage.

The experiments consist of two parts: the first part is an evaluation of the
latencies that can be expected when using HBase to store and retrieve rep-
resentative biological data. Mario can only be made interactive if these la-
tencies are within an acceptable level. The second part is the evaluation
of Mario itself, with focus on throughput and end-to-end latencies, but also
including an evaluation of CPU, memory, storage and network requirements.

A cluster of nine computers was used for the experiments. All computers in
the cluster had the following hardware:

• CPU: 8 core Intel Xeon E5-1620 3.6GHz

• Memory: 32GB

• Disk: 2 x 2TB

• Network configuration: all servers have 1Gbps network cards and are
connected via a single 1Gbps switch.

The operating system used on the cluster is CentOS 6.31, distributed as part

1http://www.centos.org/

http://www.centos.org/

4.1 Evaluation of HBase as Storage Backend 35

of the Rocks Cluster Distribution2. The HBase and Hadoop stack used is
from the Cloudera cdh4.3.03 distribution. This includes HBase v0.94.6 and
Hadoop v2.0.0. ZeroMQ v3.2.4 is used for communication.

The HBase master server was configured with 4GB of memory. HBase re-
gionservers were configured with 12GB of memory. These settings are rec-
ommended in [7, pp. 37].

The most important HBase and HDFS settings are summarized here:

• HDFS block size: 128MB

• HDFS replication factor: 3

• HDFS datanode Java heap size: 1GB

• HDFS namenode Java heap size: 1GB

• HBase master Java heap size: 4GB

• HBase region server Java heap size: 12GB

• HBase client write buffer: 2MB

• HBase maximum size of all memstores in region server: 40% of heap
size

• HBase region server memstore flush size: 128MB

• HBase region server maximum file size: 1GB

• HBase region server HFile block cache size: 25% of heap size

4.1 Evaluation of HBase as Storage Backend

It is likely that the storage and retrieval requirements of Mario will involve
jobs accessing both large and small amounts of data. The performance of
HBase and Google’s Bigtable has been evaluated by many researchers, for
example [2]. These experiments focus on throughput by testing with millions
of rows. This evaluation therefore focus on the latencies involved in insertion
and retrieval of small amounts of data to and from HBase.

2http://www.rocksclusters.org/wordpress/
3http://www.cloudera.com/

http://www.rocksclusters.org/wordpress/
http://www.cloudera.com/

36 4 Evaluation

4.1.1 Test Data Generator

Test data is needed to evaluate the read and write performance of HBase.
The test data should be representative of data that is expected to be used
by Mario.

The evaluation started out using a dataset with real biological data, but the
amount of data was not sufficient for all experiments. A data generator was
therefore implemented, that can generate specified amounts of two kinds of
representative output:

1. FASTA files with random nucleotide sequences, ranging in length be-
tween 100 and 5000 bases. IDs were random 15 character strings. These
were used to test retrieval of data from HBase.

2. Emulated BLAST[1] tabular output, with random values in all fields
(similar to -m 8 option).

The following is an example of the contents of a FASTA file with two very
short sequences. A FASTA entry begin an angle bracket followed by the ID
of the entry. On the following lines follow the sequence data. An entry end
when a new angle bracket, or end of file, is encountered.

>72T70EOKK2ZZB1S

GGGTTGTATTCGACGCCAAGTCAGCTGAAGCACCATTACCCGATCAAAACATATCAGAAA

TGATTGACGTATCACAAGCCGGATTTTGTTTACAGCCTGTCTTA

>QXCEYEJ50XUPCZP

CCGCCTATTCGAACGGGCGAATCTACCTAGGTCGCTCAGAACCGGCACCCTTAACCATCC

ATATCCTTCAGTTCCATAGGCCTCTGTGCGGGATTTGTGAACGTTC

An example of emulated BLAST tabular output can be as follows:

KVBU00MPH538IQJ KXR7KCKPTO7GPTC 46.383774280548096 81 3 50 35 83\

102 69 0.7433696 91.58855080604553

YRYLF3AWRME2UPQ NP3O8X6P3FOU7LA 71.27521634101868 43 13 38 86 66\

13 6 0.31663144 86.0497236251831

This data consist of rows, with some columns containing characters, and
others containing numerical data.

4.1 Evaluation of HBase as Storage Backend 37

The test data output is representative of real biological data used by re-
searchers in the group.

4.1.2 Experiment Design

The measurements consists of timing the following two operations:

1. Retrieve 200 000 nucleotide sequences in FASTA format from HBase.
The size of this dataset is approximately 500MB.

2. Insert 200 000 rows of BLAST output data into HBase. The size of this
dataset is 22MB.

The experiment is designed to emulate the I/O operations of a stage in the
METApipe pipeline[15] used at the University of Tromsø. The stage does a
BLAST similarity search with a FASTA file as input and a BLAST output
file as output. Executing this stage with HBase as a storage backend would
involve retrieving the data from HBase, writing it to a file, and then loading
the output file into HBase. This workflow is illustrated in figure 4.1.

HBase table
FASTA sequences

HBase table
BLAST results

Temporary
FASTA file

Temporary
BLAST

output file

BLAST
DB

BLAST

read write

Figure 4.1: HBase evaluation: workflow in a single stage

38 4 Evaluation

When data are inserted in an empty HBase table, all are written to one
region, handled by one region server (a number of other region servers will
store replicas as well). As the amount of data in the table grows, the region
will be split into two ranges of keys, one of which can be moved to a different
region server. This behaviour makes it reasonable to believe that read and
write performance on almost empty tables served by one region server can
be different from larger tables handled by multiple region servers. The mea-
surements are therefore done both on an almost empty table and on a larger
table with approximately 500GB of data. 500GB is chosen deliberately to
be larger than the available memory of the cluster (which is 288GB).

Since the BLAST search is CPU intensive and does not give information of
interest to the HBase evaluation, this step of the workflow is not performed.

For the retrival experiment, the following HBase configurations are tested:

1. No compression, Bloom filter off.

2. No compression, Bloom filter on.

3. Snappy compression, Bloom filter off.

4. Snappy compression, Bloom filter on.

As discussed in section 3.1, compression can reduce storage requirements
and increase read performance by reducing network traffic. HBase support
several compression algorithms: GZIP, LZO and Snappy, of which Snappy is
the one offering the highest encoding and decoding rate[7, pp. 424]. Snappy
is available on our test cluster. Unless storing already compressed data, it is
generally recommended to always use compression with HBase.

Bloom filters are data structures that can can be used to check if a key has
been registered/stored. It is a hash-based probabilistic data structure that
is usually very compact, so it can fit in memory. A Bloom filter will never
return a false negative, but can return false positives. HBase can use Bloom
filters to avoid having to scan files for keys that are not in the file. This can
reduce disk accesses, thereby improving read performance at the cost of a
slight storage overhead.

Scanner caching is an HBase feature that reduce the number of Remote
Procedure Calls (RPCs) by transferring multiple rows per RPC, during a scan
operation. Initial I/O operations were performed with scanner caching off,

4.1 Evaluation of HBase as Storage Backend 39

but due to a significant decrease in scanning performance this configuration
was dropped to reduce the time required for the experiments.

For the insertion experiment, the following HBase configurations are evalu-
ated:

1. No compression.

2. Snappy compression.

Ideally, the Bloom filter configuration should have been a part of this eval-
uation, since updating the Bloom filter might have an impact on write per-
formance. This was, unfortunately, not done.

The initial evaluation was performed with the default write-ahead logger(WAL)
setting, which is to log each write to disk before the write itself is performed.
The performance using this configuration was an order of magnitude worse
then what was achieved using deferred log flushing, which will collect log
entries in memory and flush to disk periodically. As a result, all inserts were
performed with deferred log flushing. This configuration has the potential of
losing some data if a server fails, but this is not critical since data is handled
at fine granularity and can be easily recomputed.

The experiments measure the elapsed wall time. Each experiment is per-
formed five times, and then average time and sample standard deviation is
calculated. The HBase cache is flushed between each measurement to get
the worst case performance. Informal experiments show that not flushing
the cache result in an order of magnitude better performance.

4.1.3 Results and Discussion

The results of the read evaluation are shown in table 4.1.

These results show that reading 200 000 rows of data from an HBase ta-
ble containing only that data, takes approximately 11 seconds, regardless of
compression and Bloom filter settings. Reading the same number of rows
from the larger table containing other data, takes approximately 13 seconds.
This slightly worse performance on the larger table is probably caused by
the single client having to access different HBase region servers during the
scan, and these servers are cold on first contact. Due to caching performed

40 4 Evaluation

Table 4.1: Time to retrieve 200k rows from HBase

Small table1 Large table2

Configuration Avg(s) SD Avg(s) SD

Compression: off, Bloom filter: off 11.1 0.4 13.2 1.2
Compression: off, Bloom filter: row 11.1 3.2 13.1 1.7
Compression: Snappy, Bloom filter: off 10.9 1.6 13.8 1.1
Compression: Snappy, Bloom filter: row 11.4 1.4 13.7 1.2
1 A table containing only the 200k rows (approximately 500MB)
2 A table containing approximately 500GB of data

by HBase, these results represent worst case performance. The results are
considered sufficient to use HBase as a storage backend for Mario. For a
more detailed discussion on read performance, see the discussion on Mario
performance in section 4.2.

The results of the write evaluation are shown in table4.2.

Table 4.2: Time to insert 200k rows into HBase

Empty table Large table1

Configuration Avg(s) SD Avg(s) SD

Compression: off 10.3 0.3 8.5 0.4
Compression: Snappy 10.1 0.3 6.1 0.2
1 A table containing approximately 500GB of data

These results show that inserting 200 000 rows into an empty HBase take ap-
proximately 10 seconds, regardless of compression setting. Inserting the same
data into an already populated table takes approximately 7 seconds. This
increased performance on a populated table is expected, since the writes are
then performed on different region servers. These results are also considered
sufficient for Mario. For a more detailed discussion on write performance,
see the discussion on Mario performance in section 4.2.

It is interesting to note that the learning curve for a new HBase user is
quite steep. First of all, installation proved troublesome, even for our very
experienced system administrator. This was possibly caused by an old HBase
version that had been used previously on the cluster. After installation, the
performance and stability proved to be poor. It turned out that the default

4.2 Mario Evaluation 41

Java heap size for both the HBase master server and the region servers was
set at approximately 750GB, well short of the recommended minimum 4GB
and 12GB, respectively. Solved the stability issues, and also improved the
performance. Nevertheless, in [28], the authors argue that getting the best
performance from a Hadoop system requires considerable tuning, even when
done by experts. In light of this, it is likely that the performance of HBase
on our test cluster can be improved if enough effort and/or expert support
is used.

4.2 Mario Evaluation

To evaluate the performance of Mario itself, with the minimum influence
from external applications, a dummy pipeline is used. This pipeline is a
four-stage pipeline using the Linux cat application in each stage. With test
data preloaded into Mario, the experiments measure execution time from
the master start handing out tasks to workers, until the last worker is done
processing. Worker processing, in this case, involve writing the data to a local
file, piping this file to cat, and piping the output to another local file. This
mean that all data is read, but not modified, by each stage in the pipeline.
This represent a pipeline with null operations in each stage, but where all
data is accessed for each stage. The worker write intermediate and final
output to HBase, before notifying the master that the task is completed.
This is the I/O pattern that the applications in the pipeline stages have.

To emulate a user doing parameter tuning, each experiment consists of three
steps, where the time is measured for each individual step:

1. The data is processed by the dummy pipeline.

2. The same data is processed by a pipeline where the last two stages
have been modified (still using the cat application in each stage, but
with modified version string to trigger recomputation). In this step,
the worker detect that data exists for the first two stages, and only
pipe data through cat for the last two stages. At this step, HBase will
have cached the data, providing faster access.

3. The same data is processed by the same pipeline as in step 1.

Together, these steps emulate a user that start a computation, then try a
different parameter, but decides to revert back to the initial parameter.

42 4 Evaluation

The test data used is FASTA-type data generated by the test data generator
described in section 4.1.1.

4.2.1 Latency

The latency is measured by processing one item of data using the dummy
pipeline described above. The time is measured from the Mario master get
the start message, until the master receives notification from the worker that
processing is completed. Each experiment is performed five times, and the
average time (in milliseconds) and standard deviation is calculated for each
step in the experiment. A summary of the results are listed in table 4.3.

Table 4.3: Time to process
one row

Avg(ms)1 SD

Step 1 68 6.4
Step 2 7 1.4
Step 3 6 1.1
1 Average of 5 runs

The results show that the latency of the first step in the experiment is 68ms.
For step two and three the latencies drop to 7ms and 6ms, respectively. The
minimal difference between step two and step three indicate that piping the
data through two stages in step two, and skipping all reading of data in
step three have negligible performance differences. The significant drop in
latency from step one to step two show the effectiveness of caching in HBase.
To conclude, for processing a single data element, Mario add latencies that
are well within the desired goal of 100ms.

4.2.2 Throughput

The throughput is measured by processing a 500MB dataset consisting of
200 000 FASTA sequences, through the same dummy pipeline described in
section 4.2.1. This is done using the same three steps as in section 4.2.1.

The rationale for using a dataset of this size is that it is believed to be
sufficiently large to provide biological insights. Referring to figure 1.3, it can

4.2 Mario Evaluation 43

be seen that a large fraction of organisms are discovered after processing
two million reads. The sequences used in that particular experiment are
unassembled reads with a length of approximately 250 base pairs, which
translate to approximately 250 bytes in FASTA format. The two million
reads then correspond to approximately 500MB of data. The sequence data
available for the HBase evaluation contained assembled sequences of much
larger size. So, to simulate assembled data, 200 000 sequences with an average
length of approximately 2500 base pairs were used. This resulted in a dataset
of approximately 500MB.

The experiment is performed using two, four and eight Mario workers. Each
experiment is performed five times, and the average execution time (in mil-
liseconds) and standard deviation is calculated for each step in the experi-
ment. A summary of the results are listed in table 4.4.

Table 4.4: Time to process 200 000 rows

2 Workers 4 Workers 8 Workers

Avg(ms)1 SD Avg(ms)1 SD Avg(ms)1 SD

Step 1 11699 766 11874 1871 10817 1224
Step 2 7432 288 8279 2497 8302 1377
Step 3 7689 483 8406 2334 8563 2096
1 Average of 5 runs

The results show little difference as the number of Mario workers are varied.
This result is expected and desired, as it show that the processing is limited
by the Mario master’s ability to distribute tasks to the workers. Since the
dummy pipeline consists of null operations, the worker tasks should complete
with low latency.

The results also show that the reduction in processing time from step one
to step two and three, are less pronounced than that found in section 4.2.1.
Referring to the HBase settings in the beginning of this chapter, it can be
seen that the 500MB dataset will fit on a single region server. Since the
HFile block cache size of the region servers are 3GB, the dataset should
fit completely in the cache. The numbers are then likely explained by the
Mario master gaining faster access to the data keys due to caching, but still
being limited by its ability to iterate the sequence of keys and transmit task
messages to workers.

To conclude, the results essentially show the overhead incurred by using

44 4 Evaluation

Mario for processing larger datasets. This overhead is low, showing that
Mario can be used for processing such datasets.

4.2.3 Sampling

The purpose of the sampling evaluation is to measure the overhead incurred
by the sampling procedure.

Sampling was tested with eight Mario workers, using a similar dataset, pipeline
and sequence of steps as used in section 4.2.2. A sample of size 10 000 was
created by the Mario master, and then processed by the workers. Each ex-
periment is performed five times, and the average execution time (in millisec-
onds) and standard deviation is calculated for each step in the experiment.
A summary of the results are listen in table 4.5.

Table 4.5: Time to pro-
cess 10 000 row sample of
200 000 rows using eight
workers

Avg(ms)1 SD

Step 1 10777 242
Step 2 55 6
Step 3 38 13
1 Average of 5 runs

The results show that the execution time for the first step, where the sam-
pling is performed, is approximately equal to the non-sampling case. This
is slightly surprising, since the sampling result in a two-step procedure: first
do the sampling, putting the sampled keys in a local in-memory array, and
then transmit the keys in the array to the workers. The conclusion from this
is that the sampling procedure has extremely low overhead. Looking at the
numbers for step two and tree, it is clear that transmitting the samples to
the workers is also cheap. To conclude, Mario can perform efficient sampling
of datasets.

4.2 Mario Evaluation 45

4.2.4 CPU Usage

Mario’s resource usage is important, since Mario is running on the same
compute nodes that the resource intensive bioinformatics applications are
executed on.

Since Mario is tightly integrated with HBase and HDFS which is running on
the same cluster, CPU load is best measured as an aggregate for each node
in the cluster. To test this, 1 000 000 rows or FASTA data (approximately
2.5GB) was uploaded to Mario. Then, the same four stage pipeline with null
operations, as used for the latency tests, was executed twice using eight Mario
workers. The one minute CPU load, as reported by Ganglia4 , is shown in
figure 4.2. The first experiment was started at 21:11 and lasted 56.2 seconds.
The second experiment was started at 21:12 and lasted for 42.9 seconds. The
Mario master server is located on the compute-0-0 node, together with the
HBase Master. Figure 4.2 show that there is very little change in one minute
load when processing. The Mario workers and the HBase region servers are
running on all the other nodes. On these nodes, figure 4.2 show in increase
in one minute load up to approximately 1.0, which is not much on an eight
core processor.

Figure 4.2: One minute CPU load as reported by Ganglia. The experiments
were performed between 21:11 and 21:13.

4http://ganglia.sourceforge.net/

http://ganglia.sourceforge.net/

46 4 Evaluation

4.2.5 Network Usage

During the same experiment that is described in section 4.2.4, the network
traffic was also monitored using the bytes out Ganglia metric. These results
are seen in figure 4.3. The compute-0-0 node with the master servers have
a low network out traffic of approximately 3MB/s, equivalent to 24Mbps,
which is expected since HBase master server does little communications and
the Mario master server only transmit keys to the workers. The other nodes
show different amount of network traffic, up to a maximum of approximately
30MB/s, equivalent to 240Mbps. These values are higher than the one for
compute-0-0, which is expected since there is data transfer from the HBase
region servers to the Mario workers. Adding the network traffic for all the
nodes, a peak network traffic of approximately 900Mbps is found. This traffic
is well below the capacity of the individual network cards and the intercon-
nect switch. Nevertheless, it would be interesting to investigate the use of a
data-location aware scheduler in Mario, to see how much the network traffic
could be reduced.

Figure 4.3: Network bytes out as reported by Ganglia. The experiments were
performed between 21:11 and 21:13.

4.2.6 Memory

Referring to section 2.3, the memory consumption of Mario itself is minimal
since data is only passed through the servers. An exception to this is the
array used for sampling, but a large sample of four million keys will still

4.2 Mario Evaluation 47

only consume approximately 80MB of memory. More significant is the fact
that Mario require an HBase installation which has considerable memory
requirements. For example, the HBase region servers on the test cluster is
set up with a 12GB Java heap size. Since servers with more that 32GB of
memory are getting more and more common, these memory requirements are
considered acceptable.

4.2.7 Storage

The storage requirements of Mario can be easily modelled as follows: Assume
that the input data size is 1TB, and this data is processed by a 5 stage
pipeline. Normally, the amount of data that is passed from one stage of
the pipeline to the next decreases as the data nears the end of the pipeline,
but to be conservative we can assume that there is no decrease. Then, a
5 stage pipeline requires storage of 4TB of intermediate data and 1TB of
output data, for a total of 6TB. If we further assume that parameter tuning
is performed after processing 1GB of data, and 100 parameter changes are
made on the first stage of the pipeline (thereby triggering recomputation of
all stages), an additional 100×5GB = 500GB is require, for a total of 6.5TB.
Using a replication factor of three for HDFS then result in a total storage
requirement of 6.5× 3 = 19.5TB.

If later use of the intermediate data is unlikely, the user can delete it to reduce
the storage requirements. This reduces the data size to 6TB (input data,
output data, both stored with a replication factor of three). To conclude,
Mario’s storage requirements are acceptable.

4.2.8 Reliability

Mario is tested on a small cluster of computers, where failures are expected
to be infrequent. HBase data storage is reliable due to the data replication
in the underlying HDFS. Therefore, data that has already been processed in
Mario is reliably stored. Failures during processing will result in reprocessing
of the data being in use at the time of the failure. The cost of this depend
on the level of granularity of the input data. For fine grained input data, the
cost will be small. For coarse grained input data, the cost might be high.

Chapter 5

Related Work

5.1 Hadoop/MapReduce

Hadoop and MapReduce[3] is probably the most popular system for pro-
cessing of large datasets. The input dataset is split into smaller parts that
are first processed in parallel using user-defined map functions. The results
are then collected and processed by user-defined reduce functions. Paral-
lelization, scheduling (including load balancing and data locality) and fault
tolerance are all handled automatically by the system.

MapReduce and Hadoop work by splitting data into parts, that are processed
independently by workers processed and combined by combiner processes.
This is similar to the way Mario process data. MapReduce and Hadoop pro-
cess the data completely before results are available to the user. Also, job
startup times are long, normally tens of seconds in Hadoop (the problem
of long startup latencies are reportedly solve in Google’s MapReduce imple-
mentation by keeping workers alive instead of starting them for each job[4]).
This makes Hadoop unsuitable for interactive processing of the kind that
Mario does.

5.2 HBase

HBase, which is based on Google’s Bigtable[2] is designed for real time ran-
dom access to data, and is often used for interactive analytics. A detailed

49

50 5 Related Work

description of HBase is given in section 3.1.

5.3 Apache Pig

Pig Latin is a high-level language with SQL-like syntax that executes on the
Apache Pig[22] runtime. Pig compile Pig Latin into MapReduce code that
is executed on Hadoop. The primary advantage of this is that it is easy
to implement an analysis using Pig Latin, even for non-programmers, end
especially for data analysts with knowledge of SQL.

Pig include Pig Pen; a debugging environment for Pig Latin programs. Pig
Pen will create a small dataset that can quickly show the result of the program
statements, therefore freeing the user from having to wait for a long-running
computation to see if the program is correct. The small dataset (called a
sandbox dataset) is created partly by sampling from the real dataset, and
partly by generating data that look like the real data.

Mario uses a similar idea, in that the user should be presented with results
of the computation as quickly as possible, so that the pipeline configuration
(which is Mario’s equivalent of a Pig Latin program) can be adjusted or
”debugged“ easily. Mario does this by quickly presenting the user with results
of computing only parts of the complete dataset, obtained either through
sampling (like Pig Pen) or by processing from the start of the dataset. Mario
does not generate artificial data.

Pig Pen make it easy to create correct Pig Latin programs. However, when
compiled and executed on real data, the program performs like a regular
MapReduce program on Hadoop, which has little or no possibilities for in-
teractivity.

5.4 GeStore

Several common bioinformatics applications use external metadata collec-
tions for data processing. When these collections are updated, new knowl-
edge can be gained by executing a pipeline on an old dataset. GeStore[24]
reduce the cost of this recomputing, by allowing incremental updates of re-
sults when metadata collections are updated. GeStore is essentially a layer

5.5 Galaxy and Taverna 51

between a pipeline and the storage layer, that is able to perform the in-
cremental updates. In contrast to Mario, GeStore does not implement the
pipeline itself. Also GeStore perform the updates using MapReduce, without
requiring inspection by the user. This is different from the Mario use case,
where interactivity is required to efficiently configure the pipeline.

5.5 Galaxy and Taverna

Galaxy[9] is a platform for accessible and reproducible analysis of genomic
data. Galaxy provides a toolbox of applications from which the user can
compose workflows or pipelines using a user-friendly Graphical User Inter-
face (GUI). The workflow is shown in a web page that can be shared between
users together with the data, improving the reproducibility of the analysis.
Galaxy is similar to Mario in that the user can compose a pipeline from
existing applications, but Galaxy support the creation of more general exe-
cution graphs, as opposed to Mario’s linear pipeline model. The cost of this
generality is that Galaxy does not provide interactive analysis. Mario’s lim-
itation to linear pipelines is caused by the interactivity requirement. Linear
pipelines also make it easy for Mario to provide automatic parallelization,
which is not provided by Galaxy.

Taverna[21] is a platform that is very similar to Galaxy, and the same com-
ments above apply to Taverna vs. Mario.

5.6 Spark

Spark[32] is a system for efficient parallel execution of computations that
reuse the same dateset, that is iterative processing. Such computations can
be performed on MapReduce/Hadoop, but then require loading the dataset
from disk for each use. Spark keep the data in in-memory read-only data
structures called Resilient Distributed Datasets (RDDs), so that subsequent
operations on the same data avoids disk operations. This makes iterative
computation over the same dataset efficient, if the dataset fits in memory
on the cluster running Spark. Spark is also efficient for the same type of
analytics typically performed from Apache Pig, since the dataset can be held
in memory after the first query, but this also assume that there is enough
memory available.

52 5 Related Work

Discretized streams is a computing model implemented on Streaming Spark
[33], where a stream of input data is divided into short intervals of data
that are batch-processed, using RDDs for temporary storage to increase per-
formance. Discretized streams focus on low latency operations and fault
recovery. Fault recovery is handled by recording lineage data for a stream
window of sufficient length.

In contrast to Discretized streams on Spark, Mario provides permanent lin-
eage/provenance, by implicitly tagging data (through column naming), and
storing metadata related to the computations.

It is, however, likely that Mario could be implemented with Spark as a re-
placement for HBase.

5.7 Dryad

Dryad[14] is an execution engine for coarse-grain data-parallel applications.
It lets users write sequential programs, which are then automatically sched-
uled in parallel on systems ranging from a single multi-core computer up to
clusters of thousands of computers. In contrast to MapReduce, Dryad al-
low the user to specify arbitrary acyclic execution graphs. This means that
Dryad can execute programs that would require the composition of multi-
ple MapReduce programs. Similar to Mario, dryad support the execution of
legacy executables, through wrappers that work with arbitrary data types.
Dryad operates on coarse-grained data, making it unsuitable for low latency
interactive computations.

5.8 Naiad

Naiad[20] is a system for data parallel processing on streams of data. Naiad
uses a computational model called timely dataflow, that support cycles in the
dataflow and stateful processing vertices that do not require global coordina-
tion. This enables Naiad to provide high throughput, low latency, iterative
computations, where subcomputations can be nested and composed.

To our knowledge, no metagenomics pipelines have been integrated with
Naiad. It is likely that Mario could have been designed to have a similar ex-

5.9 Dremel 53

ecution model as Naiad, but that would require a redesign of Mario’s storage
model.

5.9 Dremel

Google’s Dremel[18] system is designed for ad-hoc, low latency analytics on
large, nested, read-only datasets. By using a columnar storage model, Dremel
can keep disk accesses to a minimum and therefore access data quickly.
Dremel provide a SQL-like language for writing queries.

Dremel provide low latency reading of data and efficient queries on that data,
but is not optimized for writing data. It is therefore not suitable for Mario’s
use case.

Chapter 6

Conclusion

This work has outlined Mario - a system for iterative and interactive process-
ing of biological data. Mario provides a solution to some of the issues that
are typically associated with the batch processing pipelines used in metage-
nomics. These issues include the difficulty of tuning pipelines, and the main-
taining of data provenance.

The Mario system offer an online, data-parallel processing model where
changes in the pipeline configuration are quickly reflected in update of pipeline
output available to the user, and where provenance data is stored in the sys-
tem as a ”first-class citizen“.

Mario and its underlying storage system, HBase, were evaluated using a
benchmark developed to simulate I/O loads that are representative for bio-
logical data processing. The results showed that Mario adds less than 100
milliseconds to the end-to-end latency of processing one item of data. This
low latency, combined with Mario’s storage of all intermediate data gener-
ated by the processing, enables easy parameter tuning. In addition to the
improved interactivity, Mario also offer integrated data provenance, by stor-
ing detailed pipeline configurations associated with the data.

The evaluation of Mario demonstrated that it can be used to achieve more
interactivity in the configuration of pipelines for processing biological data.
We believe that biology researchers can take advantage of this interactivity to
perform better parameter tuning, which may lead to more accurate analyses,
and ultimately to new scientific discoveries.

55

Chapter 7

Future Work

Although Mario solve the problems outlined in section 1.2.2 there are still
opportunities for future work. The following is a list of some improvements
that would make Mario more useful. These features were not implemented
for this project due to time contstraints.

1. Implement a graphical user interface, in the form of a web application.

2. Integration with Krona or other tools for visualization of output data.
This integration is done in the interface shown in figure 2.1. It involves
aggregating data from the pipeline output, to present it in a format
suitable for Krona or METAREP. This is the one component of Mario
that require custom code depending on the tool used.

3. Improved scheduler to handle variations in worker performance (strag-
glers) and take advantage of data locality. This will improve the per-
formance of Mario by improving the utilization of the workers, and by
providing the workers with faster access to data.

4. Support for dataset management. The prototype only support process-
ing of a single dataset. Since Mario is also a long term storage system,
functionality should be added to enable upload and storage of multiple
datasets. The user should be able to select one or more datasets to be
used for analysis.

5. Improve source code quality. The prototype contain very little error
handling. In addition to improvements in code quality, support should
be added to forward error messages from the pipeline stage tools to

57

58 7 Future Work

the users. This is important since it is likely that the user can input
application parameters that will lead to errors.

6. Mario should contain a database of bioinformatics applications that
can be used in the pipeline stages. This database should contain the
different parameters available for tuning, and if possible, their allowed
values. This approach is used by Galaxy[9] and Taverna[21].

References

[1] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui
Zhang, Zheng Zhang, Webb Miller, and David J Lipman. Gapped blast
and psi-blast: a new generation of protein database search programs.
Nucleic acids research, 25(17):3389–3402, 1997.

[2] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Debo-
rah A Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E Gruber. Bigtable: A distributed storage system for structured
data. ACM Transactions on Computer Systems (TOCS), 26(2):4, 2008.

[3] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107–113,
2008.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data pro-
cessing tool. Communications of the ACM, 53(1):72–77, 2010.

[5] Pavlos S Efraimidis and Paul G Spirakis. Weighted random sampling
with a reservoir. Information Processing Letters, 97(5):181–185, 2006.

[6] Robert D Finn, Jody Clements, and Sean R Eddy. HMMer web
server: interactive sequence similarity searching. Nucleic acids research,
39(suppl 2):W29–W37, 2011.

[7] Lars George. HBase: the definitive guide. O’Reilly Media, Inc., 2011.

[8] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google
file system. In ACM SIGOPS Operating Systems Review, volume 37,
pages 29–43. ACM, 2003.

[9] Jeremy Goecks, Anton Nekrutenko, James Taylor, T Galaxy Team,
et al. Galaxy: a comprehensive approach for supporting accessible, re-

59

60 References

producible, and transparent computational research in the life sciences.
Genome Biol, 11(8):R86, 2010.

[10] Johannes Goll, Douglas B Rusch, David M Tanenbaum, Mathangi Thi-
agarajan, Kelvin Li, Barbara A Methé, and Shibu Yooseph. Metarep:
Jcvi metagenomics reports—an open source tool for high-performance
comparative metagenomics. Bioinformatics, 26(20):2631–2632, 2010.

[11] Michael Höhl, Stefan Kurtz, and Enno Ohlebusch. Efficient multiple
genome alignment. Bioinformatics, 18(suppl 1):S312–S320, 2002.

[12] Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and Benjamin Reed.
Zookeeper: wait-free coordination for internet-scale systems. In Pro-
ceedings of the 2010 USENIX conference on USENIX annual technical
conference, volume 8, pages 11–11, 2010.

[13] John PA Ioannidis, David B Allison, Catherine A Ball, Issa Coulibaly,
Xiangqin Cui, Aed́ın C Culhane, Mario Falchi, Cesare Furlanello, Lau-
rence Game, Giuseppe Jurman, et al. Repeatability of published mi-
croarray gene expression analyses. Nature genetics, 41(2):149–155, 2008.

[14] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fet-
terly. Dryad: distributed data-parallel programs from sequential build-
ing blocks. ACM SIGOPS Operating Systems Review, 41(3):59–72, 2007.

[15] Tim Kahlke. METApipe pipeline. Unpublished work at the University
of Tromsø.

[16] Scott D Kahn. On the future of genomic data. Science(Washington),
331(6018):728–729, 2011.

[17] Erik Kjærner-Semb. Master’s thesis in chemistry. Master’s thesis, Uni-
versity of Tromsø, 2013. To be submitted December 2013.

[18] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva
Shivakumar, Matt Tolton, and Theo Vassilakis. Dremel: interactive
analysis of web-scale datasets. Proceedings of the VLDB Endowment,
3(1-2):330–339, 2010.

[19] Robert B Miller. Response time in man-computer conversational trans-
actions. In Proceedings of the December 9-11, 1968, fall joint computer
conference, part I, pages 267–277. ACM, 1968.

References 61

[20] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martin Abadi. Naiad: a timely dataflow system. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 439–455. ACM, 2013.

[21] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Sen-
ger, Mark Greenwood, Tim Carver, Kevin Glover, Matthew R Pocock,
Anil Wipat, et al. Taverna: a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics, 20(17):3045–3054, 2004.

[22] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar,
and Andrew Tomkins. Pig latin: a not-so-foreign language for data
processing. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1099–1110. ACM, 2008.

[23] Brian Ondov, Nicholas Bergman, and Adam Phillippy. Interactive
metagenomic visualization in a web browser. BMC bioinformatics,
12(1):385, 2011.

[24] Edvard Pedersen. GeStore - incremental computation for metagenomic
pipelines. Master’s thesis, University of Tromsø, 2012.

[25] Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind Hovig.
Ten simple rules for reproducible computational research. PLoS Com-
putational Biology, 9(10):e1003285, 2013.

[26] Andrea Sboner, Xinmeng Jasmine Mu, Dov Greenbaum, Raymond K
Auerbach, Mark B Gerstein, et al. The real cost of sequencing: higher
than you think. Genome Biol, 12(8):125, 2011.

[27] Lefteris Sidirourgos, Martin Kersten, and Peter Boncz. Scientific dis-
covery through weighted sampling.

[28] Michael Stonebraker, Daniel Abadi, David J DeWitt, Sam Madden, Erik
Paulson, Andrew Pavlo, and Alexander Rasin. Mapreduce and parallel
dbmss: friends or foes? Communications of the ACM, 53(1):64–71,
2010.

[29] Ronald C Taylor. An overview of the hadoop/mapreduce/hbase frame-
work and its current applications in bioinformatics. BMC bioinformatics,
11(Suppl 12):S1, 2010.

[30] Susannah Green Tringe and Edward M Rubin. Metagenomics: Dna se-
quencing of environmental samples. Nature reviews genetics, 6(11):805–
814, 2005.

62 Appendix

[31] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions
on Mathematical Software (TOMS), 11(1):37–57, 1985.

[32] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. Spark: cluster computing with working sets. In Proceed-
ings of the 2nd USENIX conference on Hot topics in cloud computing,
pages 10–10, 2010.

[33] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, pages 423–438. ACM, 2013.

	Abstract
	Acknowledgements
	Introduction
	Bioinformatics and Metagenomics
	Pipelines in Bioinformatics
	Observations
	Issues
	Approaches

	Big Data Analysis
	Mario
	Contributions
	Conclusion

	Mario Architecture
	Use Case
	Storage Layer
	Logic and Computation Layer
	Web Server
	Visualization and Analysis

	Mario Design and Implementation
	HBase
	Mario Storage
	HBase
	MySQL

	Mario Master Server
	Mario Worker Server
	Reservoir Sampling
	Scheduling
	Visualization and Analysis Interface
	Technologies

	Evaluation
	Evaluation of HBase as Storage Backend
	Test Data Generator
	Experiment Design
	Results and Discussion

	Mario Evaluation
	Latency
	Throughput
	Sampling
	CPU Usage
	Network Usage
	Memory
	Storage
	Reliability

	Related Work
	Hadoop/MapReduce
	HBase
	Apache Pig
	GeStore
	Galaxy and Taverna
	Spark
	Dryad
	Naiad
	Dremel

	Conclusion
	Future Work
	References

