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1. Preface

This doctoral thesis is the results of a 3 years PhD study within the Northern Environmental 

Waste Management (EWMA) program financed through Forskningsløft i Nord

(NORDSATSING) of the Norwegian Research Council (grant number: 195160) and 

EniNorge AS. The overall goal of the EWMA project is to develop a distinct Northern 

Norwegian competence cluster in waste handling of Arctic oil industry and shipping 

activities. The PhD-project was carried out at the Department of Geology, University of 

Tromsø -The Arctic University of Norway (UiT), Tromsø, Norway.  

Analyzed sediment samples were provided by EWMA-project collaborators at the 

Department of Chemistry of UiT, Tore Lejon and Kristine Bondo Pederesen (paper I); the 

Mareano project through the Norwegian Polar Institute (paper II); Statoil AS through UniLab 

AS (paper II); or collected by the authors (paper II, III and IV). 

During the span of the PhD study, the candidate participated and assisted on marine-

geological and geophysical cruises with the R/V Helmer Hanssen arranged by the Department 

of Geology at UiT. As part of the PhD education, the candidate participated in national and 

international courses, both in topics related to the PhD study, and general topics within the 

field of (marine) geology. Beyond the obligatory 30 credit point, the candidate attended three 

short courses on statistical topics and one course in scientific writing. 

The candidate is a member of the FOraminiferal BIo-Monitoring expert workgroup 

(FOBIMO) and participated in a number of workshops intended to strengthen the position of 

benthic foraminifera as bio-monitoring tool.  

Results of this doctoral thesis were presented as first author in four oral and five poster 

presentations during national and international workshops and conferences. The thesis 

resulted in five scientific papers that contribute towards a better understanding of the utility of 

benthic foraminifera as indicators of both anthropogenic and natural environmental changes in 

the (sub-)Arctic region.  
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The scientific papers are: 

Paper 1: 

Dijkstra, N., Junttila, J., Carroll, J., Husum, K., and Hald, M., The impact of contaminants 

and grain size on benthic foraminiferal assemblages in the harbor of Hammerfest, 

northern Norway, submitted to Norwegian Journal of Geology  

Paper 2: 

Dijkstra, N., Junttila, J., Carroll, J., Husum, K., Elvebakk, G., Godtliebsen, F., and Hald, M., 

Baseline benthic foraminiferal assemblages and habitat conditions in a sub-Arctic region 

of increasing petroleum development, in press at Marine Environmental Research, 2013, 

doi:10.1016/j.marenvres.2013.09.014 

Paper 3: 

Dijkstra, N., Junttila, J., Husum, K., Carroll, J., and Hald, M., Natural variability of benthic 

foraminiferal assemblages and metal concentrations during the last 150 yrs. in the 

Ingøydjupet trough, SW Barents Sea, manuscript intended for submission to Marine 

Micropaleontology 

Paper 4: 

Junttila, J., Carroll, J., Husum, K., and Dijkstra, N., Sediment transport and deposition in

the Ingøydjupet trough, SW Barents Sea, submitted to Continental Shelf Research 

Paper 5:

Schönfeld, J., Alve, E., Geslin, E., Jorissen, F., Korsun, S., Spezzaferri, S., and Members of 

the FOBIMO group*1, 2012, The FOBIMO (Foraminiferal Bio-Monitoring) initiative –

Towards a standardized protocol for soft-bottom benthic foraminiferal monitoring 

studies. Marine Micropaleontology, vol. 94-95, p. 1-13

1 * Abramovich, S., Almogi-Labin, A., Armynot du Chatelet, E., Barras, C., Bergamin, L., Bicchi, E.,

Bouchet,V., Cearreta, A., Di Bella, L., Dijkstra, N., Disaro, S.T., Ferraro, L., Frontalini, F., Gennari, G., 

Golikova, E., Haynert, K., Hess, S., Husum, K., Martins, V., McGann, M., Oron, S., Romano, E., Sousa, S.M., 

and Tsujimoto, A..

3



2. Acknowledgements

This PhD thesis would not have been here today without the support and guidance of many 

people. 

First of all, I would like to acknowledge my team of supervisors including Prof. Morten Hald, 

Prof. JoLynn Carroll, Dr. Juho Junttila and Dr. Katrine Husum. I am very grateful that I got 

the opportunity to start this PhD project. Thank you for supporting me throughout the years, 

for giving me constructive feedback on my work and for believing in me. Special thanks 

should go to Juho, my main supervisor during my studies. You provided me not only with 

guidance, but also with many cups of coffee and some ‘fantastic’ word jokes. Being a good 

supervisor, “you has it”! Katrine also deserves a big thank you. Even though you were on 

paper not officially my supervisor, you were always there for organizational help and giving 

me scientific directions. Morten and JoLynn always managed to make time in their busy 

schedule to provide me with feedback and help when it was most needed.  

Takk, Thank You, Kiitos, Tak! 

There are many people at the university whose technical and organizational help contributed 

to the realization of this thesis. The EWMA-project leaders Stian Røberg and Morten 

Brattvoll; the ‘lab-ladies’ Trine Dahl, Ingvild Hald and Edel Ellingsen; the captain and crew 

of R/V Helmer Hanssen; the technical staff members Steinar Iversen, Bjørn Runar Olsen, Rolf 

Andersen, Jan P. Holm and; the administrational staff members Magrethe Lindquist and 

Annbjørg Johansen. Also all the EWMA-project partners, in particular Tore Lejon and 

Kristine Bondo Pedersen should be mentioned here. Tusen Takk til dere! 

Maarten Prins and Simon Troelstra are thanked for awakening my interest in (Arctic) marine 

geology and introducing me to the world of science. Dorthe Klitgaard Kristensen gave me the 

opportunity to move to Tromsø. So far the best decision of my life. Thank you! 

Many friends and colleagues at the Department of Geology are thanked for inspiring me, and 

maybe most importantly for spending everyday life at the institute and all the social activities 

outside of work. Also, I would like to acknowledge all the fascinating people I met throughout 

the years on numerous workshops, conferences and courses, in particular my AG-326 UNIS-

friends. Naming all of you would double the length of this thesis. 

A special thanks goes to the Bene(lux) group: Diane, Sarah and Nicole, for giving me a piece 

of home away from home and real friendship. Lindsay is thanked for moral support, good 

4



advice and making Tromsø feel as my new home immediately. Also Pati&Matze are thanked 

for their kindness and huge hospitality. And thank you Wesley, for being the friend back at 

home for more than 15 years now. It means a lot! 

The biggest “Thank You” goes to my family: Johan, Mariët and Anneloes & Matt. For always 

encouraging me to do just that little bit more than I think I am able to do, for supporting me, 

and for all the phone calls, messages and post cards making me forget we are living so far 

apart. My parents always ‘forced’ me to look at rocks, flora, fauna and glacial moraines 

during the summer vacations, of which many were spent in Scandinavia. I guess it gave me 

the curiosity needed to write this PhD thesis. Thank you for always telling me: “Het komt wel 

goed schatje”. Misschien hebben jullie inderdaad gelijk… 

Tromsø, October 2013 

5



6



3. Introduction and objectives

Urbanization of the coastal areas and industrial activities in the open sea have increased since 

the 19th century and resulted in extensive alternation of estuarine, coastal and open marine

environments. Enhanced contaminations of these environments may result in changes to the 

structure and function of the ecosystem. World-wide regulatory statuses were enacted to 

prevent further deterioration and to restore the ecological quality of these ecosystems. In 

Europe this included adoption of the Water Framework Directive (WFD; 

EuropeanCommission, 2003) and the Marine Strategy Framework Directive (MSFD; 

EuropeanParliament, 2008). These directives are designed to achieve and maintain good 

environmental status of estuarine, coastal and open marine environments by 2020 

(EuropeanCommission, 2010). Good environmental status applies to both the concentrations 

of pollutants in the marine environment and the structure and function of the ecosystem. The 

MSFD underlines the necessity to select and define bio-indicators: species or groups of 

species that can reflect the state of the environment or ecosystem. The impact of contaminants 

on organisms has traditionally been tested by the use of macrofaunal organisms. Amongst 

these organisms, easily applicable and objective descriptors were selected. Based upon the 

diversity and relative abundance of macrofaunal bio-indicators (Pearson and Rosenberg, 

1976), biotic indices were developed, enabling a quantitative estimation of the state of the 

environment (e.g. Borja et al., 2000; Borja et al., 2007; Borja et al., 2009; Diaz et al., 2004). 

The use of benthic foraminifera as bio-indicators is less established; however previous studies 

have proven the ability of benthic foraminifera to monitor the environmental quality (e.g. 

Alve, 1995; Alve et al., 2009; Armynot du Châtelet et al., 2009; Armynot du Châtelet et al., 

2004; Bouchet et al., 2012; Bouchet et al., 2007; Coccioni et al., 2009; Dolven et al., 2013; 

Ferraro et al., 2006; Frontalini et al., 2009; Hess et al., 2013). An adequate bio-indicator is 

characterized by fast turnover rates and specific habitats. Benthic foraminifera meet these 

criteria: they have a short reproductive cycle, typically one month to one year (Kramer and 

Botterweg, 1991) and have specific environmental preferences (Boltovskoy et al., 1991; 

Murray, 2006; Schafer, 2000; Scott et al., 2001).  

The preservation of foraminiferal tests in the sediment after death is one of the main 

advantages of benthic foraminifera in bio-monitoring studies in comparison to macrofauna. 

Preservation of foraminiferal tests in sediment archives enables the reconstruction of pristine 

pre-impacted faunal conditions. This is especially useful in areas were no pre-impacted 

baseline studies have been carried out, since comparison of the fauna between impacted sites 
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and pristine reference sites is complicated by the high spatial variability of foraminifera. 

Reference conditions from pristine sites, with similar ecological characteristics as impacted 

sites, are thus challenging to establish (Alve et al., 2009). 

To further strengthen the position of benthic foraminifera as a bio-monitoring tool, 

standardization of methodology is needed. Whereas the macrofaunal scientific community has 

largely standardized their methodology and developed biotic indices (ANSI, 2007; Borja et 

al., 2000; Rees et al., 2009; Rosenberg et al., 2005; Rumohr, 2004), a consensus on 

methodology to be used in benthic foraminiferal bio-monitoring studies was not established 

until recently. Full implementation of this standardized methodology will occur in the years to 

come. Additionally, Bouchet et al. (2012) recently formulated classes defining ecological 

quality status (EcoQS) based on living benthic foraminifera applicable to fossil assemblages 

as well  (Dolven et al., 2013).

Benthic foraminifera are amongst the most abundant and diverse group of shelled 

microorganisms in the marine environment (Sen Gupta, 1999). In pristine environments, the 

distribution of benthic foraminifera is mainly affected by variables including water mass 

temperature and salinity, the availability of nutrients, the type of substrate and the amount of 

dissolved oxygen (Murray, 2006). Anthropogenic stressors may lead to alternations in the 

community structure of benthic foraminifera. This include changes in density and diversity 

(Schafer, 1973; Yanko et al., 1994), high abundance of opportunistic species (e.g. Ellison et 

al., 1986; Murray, 2006; Pearson and Rosenberg, 1976), barren areas (Elberling et al., 2003; 

Ferraro et al., 2006; Samir, 2000), test deformations (e.g. Geslin et al., 1998; Yanko et al., 

1998) and changes of the test chemistry (Nigam et al., 2006).

Identifying the state of the environment with the use of benthic foraminifera is often 

complicated by the natural variability of both the ecosystem and the physical environment. 

Furthermore, the impact of anthropogenic stressors on benthic foraminiferal communities 

depends on the type of stressors, the supply rate, the bio-availability of the contaminants and 

the geographical location. Therefore, site specific impact studies are needed to develop an 

accurate bio-monitoring tool, linking responses of foraminiferal assemblages to observed 

environmental conditions.  

While several studies focus on the use or development of foraminifera as a bio-indicator in 

areas of the Mediterranean, the Atlantic Coast and southern Norway fjords, few studies focus 

on high latitude areas. High latitude areas are however valuable areas to monitor 

environmental changes and to test the applicability of benthic foraminifera to monitor 

8



environmental change. The areas are still relatively pristine, yet industrial activities are 

projected to increase in the near future.    

The overall objectives of this thesis is to contribute to the understanding of the imprint of both 

natural and anthropogenic induced environmental changes on benthic foraminifera in an (sub)  

Arctic region subjected to increased anthropogenic activities. Sub-objectives were established 

to answer to the overall objective and are: 

a) Establish pre-impact baseline conditions of the present state of the environment,

both in terms of the variations in benthic foraminiferal faunal distributions and sediment 

properties, i.e. grain size and contaminant levels. Such pre-impact baseline conditions can be 

used for future references to monitor potential environmental change. 

b) Understand the relationship between benthic foraminifera, ocean currents and

sediment properties on a high resolution time scale over the last 150 years. 

c) Test the utility of benthic foraminifera as indicators of anthropogenic impacts in the

(sub-) Arctic region. 

The objectives were accomplished by: 

a) Characterization of the benthic foraminiferal assemblages, i.e. both modern living

assemblages and past assemblages covering the last 150 years. 

b) Characterization of sediment properties, i.e. grain size distributions, sediment

accumulation rates, sortable silt mean grain size, smectite clay mineral assemblages and total 

organic carbon content. 

c) Characterization of contaminant concentrations, i.e. concentrations of (heavy)

metals and persistent organic pollutants. 

d) Defining the relation between foraminiferal distribution, sediment properties and

contaminant concentrations by a set of statistical methods, i.e. Q- and R- mode clustering, 

Pearson correlations, principal component analysis and multiple regression linear modeling.  

The area of focus of this thesis is the relatively pristine southwestern Barents Sea and its 

adjacent coastal area, where petroleum related activities are expected to expand. With these 

prospects for the coming years, the region is a valuable natural laboratory to monitor and 

assess the impact of increasing industrial activities on the environment (Paper II-IV).  

Additionally, a highly impacted harbor environment in the Barents Sea coastal region was 

studied (Paper I) to test the behavior of benthic foraminifera in a sub-arctic area subjected to 

anthropogenic impact.  
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During the research period of this PhD thesis, consensus was reached by topical experts 

(FOBIMO network) on a standardized methodology for living benthic foraminiferal studies 

with a focus on bio-monitoring (Paper V).  

This study contributes to the establishment of pre-impacted reference conditions of the area of 

study, increased understanding of the natural variability within the studied area, and the 

development of a bio-monitoring tool using benthic foraminifera applicable in high latitudes. 

With the expected increase of industrial activities in the polar regions, and consequently the 

potential for increased industrial discharges into the marine environment such a bio-

monitoring tool is expected to be of great relevance for the region.  

4. Study areas and oceanographic setting

In this study sediment samples from the harbor of Hammerfest (paper I), Northern Norway, 

and the SW Barents Sea (paper II-IV) were analyzed (figure 1). Methodology paper V is not 

confined to a specific area. The study area in the SW Barents Sea is characterized as open 

marine and influenced mainly by two ocean currents, while the harbor of Hammerfest is 

mainly influenced by local hydrological features.  

4.1 Hammerfest arbor

The inner harbor of the town of Hammerfest (70°39′45″N 23°41′00″E) is focus of paper I

(figure 1). The inner harbor is a 600 meter wide embayment with water depths ranging from 2

to 40 m. Salinity in the water column of the harbor embayment varies between 31 to 34 psu

(Akvaplan-niva, 1995). September temperatures are of approximately 8ᵒC (Akvaplan-niva, 

1995), while November temperatures are around 6.5ᵒC. Bottom current speeds of < 5 cm/s, 

are measured for the inner part of the harbor (Akvaplan-niva, 2013), and occasionally 

exceeding 10 cm/s. In the NE corner of the harbor, fresh water enters the embayment by the 

river Storelva draining from the lake Storvatn.

Activities in the harbor include ship traffic associated with the petroleum, fishing and tourism 

industry. Other activities in and around the harbor include small scale industry, shipyards,

mechanical workshops, and depots of oil, salt and coal (Skjegstad et al., 2003). Contaminants 

also enter the harbor embayment via leakage of polluted soils, illegal discharges from sewers 

and the disposal of garbage. Additionally, contaminants are discharged into the harbor via 

inflow of the River Storelva which drains from the highly polluted Lake Storvatn (Skjegstad 

et al., 2003). Pollutants mainly include heavy metals and persistent organic pollutants (POPs).
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Figure 1. Overview maps. (a) Map of the northern North Atlantic and western Barents Sea showing the major 
ocean currents. NAC = North Atlantic Current, WSC = West Spitsbergen Current, NCaC= North Cape Current, 
NCC = Norwegian Coastal Current, PW = Polar Waters. Area of map (b) is indicated. Map modified after 
bathymetric and topographic maps provided by Jan Sverre Laberg and Tom Arne Rydningen; (b) Detailed 
bathymetric map of the SW Barents Sea. The studied areas of paper I-IV are indicated, as are the most important 
location names and the Snøhvit and Goliat fields. Map was modified after bathymetric map provided by Monica 
Winsborrow. 
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Especially pollutants associated to shipyards, i.e. cupper and tributyltin (TBT), used to be of 

exceptional high concentrations (Danielsberg et al., 2005). These were major components of 

ship painting until their use was banned in 2003.  

Environmental studies with focus on contaminant concentrations in the water column, surface 

sediments and biota have been conducted in the harbor since 1985 (e.g. Bakke et al., 2001; 

Dahl-Hansen, 2005; Evenset et al., 2006; Jahren and Hellands, 2009; Johnsen and Jørgesen, 

2006; Skjegstad et al., 2003). This chemical analysis showed that sediments from the inner 

harbor all correspond to levels considered as unacceptable according to the guidelines of the 

WFD (Skjegstad et al., 2003). Additionally, analysis of contaminants concentrations in 

mussels and bivalves were unacceptably high, while contaminant concentrations in the water 

column were in general lower, however still of significant level (Jahren and Hellands, 2009). 

Due to the high environmental risk the municipality of Hammerfest formulated measures to 

diminish the contaminant rates of the sediments. These included: a) mapping of pollution 

sources; b) preventing and limiting the input of contaminants into the marine environment; c) 

cleaning the harbor from garbage and; d) stabilizing the polluted sediments by changing 

shipping routes. In addition, a start was made to cap, remove or remediate the contaminated 

sediments of the harbor basin (Jahren and Hellands, 2009). 

4.2 SW Barents Sea

Paper II to IV focus the Tromsøflaket-Ingøydjupet area located in the SW Barents Sea (figure 

1). The Barents Sea is a relatively shallow epicontinental sea covering a wide continental 

shelf. It is bounded to the north and west by continental slopes, to the east by Novaja Zemlja 

and to the south by the Fennoscandian coast. The Barents Sea is characterized by bank areas, 

e.g. Tromsøflaket, and transverse glacial troughs, e.g. Ingøydjupet. The shallow bank area of 

Tromsøflaket lies at 150 to 300 meters of water depth. To the west, the bank is bounded by 

the steep slopes of the Egga shelf edge, and to the south by Sørøydjupet. The NE-SW trending 

glacial trough Ingøydjupet is bordering Tromsøflaket to the east with water depths of over 

400 m.  Both Ingøydjupet and Tromsøflaket are bordered by the cross shelf trough 

Bjørnøyrenna, with water depths between 300 – 500 m (Andreassen et al., 2008).

During the Late Weichselian, the Barents Sea ice sheet advanced until the edge of 

Tromsøflaket. The southern Barents Sea deglaciated after 15 000 14C (e.g. Andreassen et al.,

2008; Hald et al., 1990; Ottesen et al., 2005; Vorren and Kristoffersen, 1986). Holocene 

sediments are deposited above the Late Weichselian glacigenic diamicton. The sediment 

regime of the region is influenced by strong currents on the shallow bank areas, for example 
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Tromsøflaket and calm conditions in the deeper trough of Ingøydjupet (Bellec et al., 2008; 

Bellec et al., 2009; Jensen et al., 2009), resulting in a thin cover (< 1 m) of coarse grained 

material in the bank areas, and a thicker cover (1-15 m) of fine grained sediments in the 

deeper troughs (Hald and Steinsund, 1992; Hald et al., 1990; Vorren et al., 1989). The 

Holocene sediment cover is mainly derived from re-depositing of glacigenic sediments as 

well as from the modern environment (Hald and Vorren, 1984; Vorren et al., 1978).   

Warm and saline Atlantic Water (AW) enters the Barents Sea with the North Atlantic Current 

(NAC; T > 2°C; S > 35 psu) (Swift, 1986). The direction of the NAC is topographically 

steered along the Norwegian shelf (figure 1).  The NAC splits into a zonal and a meridional 

component north of Norway. The meridional component, the West Spitsbergen Current 

(WSC; 3 °C < T > 7 °C; 34.9 < S > 35.2 psu), flows northward along the continental shelf and 

west of Spitsbergen towards the Arctic Ocean (Schauer et al., 2004). The zonal component, 

the North Cape Current (NCaC; T > 3 °C; S > 34.9) flows eastward into the SW Barents Sea 

(Hopkins, 1991; Schauer et al., 2002; Ådlandsvik and Loeng, 1991).  The coastal zone of 

Norway is influenced by the Norwegian Coastal Current (NCC; 3 < T > 13 °C; 30 < S > 35 

psu), which overlies both the NAC and the NCaC, in a thinning wedge towards the west and 

north respectively, with maximum thicknesses of 150 meters water depth (Aure and Strand, 

2001; Sætre and Ljøen, 1971). The polar front in the northwestern part of the Barents Sea 

separates the WSC from the East Spitsbergen Current (ESC; < 0 °C, 34.3 - 34.8 psu). The 

ESC brings relatively fresh and cool water into the Barents Sea (Loeng, 1991). 

The investigated area (paper II-IV) is influenced by the NCaC and NCC only. The NCC 

dominates the southern part by Tromsøflaket, while the NAC dominates the rest of the bank 

(Bellec et al., 2008; Vikebø and Ådlandsvik, 2005). The core sites in Ingøydjupet are situated 

under the axes of the inflowing NCaC and the NCC. The water column in the present day 

Ingøydjupet is characterized by a stable stratification with NCaC at the bottom and the NCC 

in the first 30-50 m of the water column (Chistyakova et al., 2010; Ingvaldsen et al., 2004; 

Loeng, 1991). Bottom current velocities of < 5 cm/s were reconstructed for Ingøydjupet, 

while bottom current velocities are between 5 to 50 cm/s on Tromsøflaket (Bellec et al., 

2008).

The SW Barents Sea area is considered to be relatively pristine currently; input of 

contaminants to the area mainly occurs through the atmosphere by long-range transport. 

However, large hydrocarbon reserves were identified in the region. Extensive petroleum 

exploration and production in the near future is therefore expected.  Other industrial activities 

in the Barents Sea are confined to fishing activities and ship traffic.   
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The first exploration drilling started after opening of the region during the 1980s. In 2007, the 

Snøhvit field was the first field to start producing. Production at the nearby Goliat field will 

start in late 2014 (NPD, 2012).

Sources of contaminant and disturbances associated with drilling operations are caused by 

drilling muds, drill cuttings and produced water. Drill cuttings mainly contain crushed rock 

material. Drilling muds are used to lubricate the drill hole and might contain small quantities 

of heavy metals and polycyclic aromatic hydrocarbons (PAHs). Currently only discharge of 

water based drill cuttings and drilling muds from the top-hole is allowed in the Barents Sea to 

extents not harmful to the environment (Øfjord et al., 2012). Produced water consists of a 

mixture of sea water and formation water. This formation water is the natural layer of water 

found below the hydrocarbons in the reservoir field. To achieve maximum oil recovery, sea 

water is injected into the field to force the hydrocarbons out. Discharges of these produced 

waters might result in the release of oil components and other chemicals into the environment 

(Ekins et al., 2006). At present, a zero-harmful discharge policy applies to the Barents Sea 

region, implying that only discharges of amounts considered to be non-harmful to the 

environment are allowed (Knol, 2011).

5. Material and Methods

Papers I to III presented in this thesis are based upon analyses of benthic foraminiferal fauna 

analyses complemented with sedimentological, geochemical and oceanographic data, from 

surface samples and sediment cores from the SW Barents Sea and harbor of Hammerfest, 

Northern Norway. Paper IV focuses on sediment properties and sediment accumulation rates 

in the Ingøydjupet trough. The description and evaluation of the methodology used in these 

papers is presented below. Paper V discusses the appropriate methodology in bio-monitoring 

studies using living benthic foraminifera. This FOraminiferal Bio-Monitoring (FOBIMO) 

protocol was established (2011) and published (2012) after most of the sediment samples 

intended for living benthic foraminifera analyses (paper I-II) were collected (2006-2011) and 

analyzed (2010-2011). The used methodology in the living benthic foraminiferal studies in 

papers I and II therefore deviate on some points from the FOBIMO-protocol. Rationale for the 

used methodology, the differences between the used methodology and the FOBIMO-protocol 

and the possible effects this might have on the outcome of the analyses is discussed in chapter 

5.7. 
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5.1. Sample retrieval and treatment 

Surface sediment samples collected in Hammerfest harbor (paper I), were retrieved with a van 

Veen grab corer in October 2010. Sample locations were chosen close to sites used in 

previous environmental studies (Skjegstad et al., 2003). Surface sediment samples collected in 

the SW Barents Sea (paper II), were retrieved with a multi corer, box corer, van Veen grab or 

a combi corer, depending on the substrate type and sampling campaign. Surface sediment 

samples were retrieved during several sampling campaigns in June 2006, April 2007, June 

2010 and July 2011 (Andreassen, 2011; Jensen et al., 2007, 2008; Mannvik et al., 2011).

Samples locations include sites close to petroleum industry related activity and more regional 

sites. The sediment cores from Ingøydjupet (paper III-IV) were retrieved with a multicorer by 

the R/V Helmer Hanssen in July 2011. Sample locations were selected at the deepest water 

depths in Ingøydjupet.  

All collected samples and cores were carefully studied for disturbances; only visible 

undisturbed surfaces and cores were used for further analyses. Replicate samples were not 

collected. In addition to sediment samples, at some sample localities CTD (conductivity, 

temperature, density) measurements were taken with a Seabird SBE 911 plus to obtain 

information about the physical oceanographic properties of the water column.  

Living benthic foraminiferal assemblages (paper I and II) were studied in the uppermost 

centimeters of the sediment; the 0-2 cm interval of the samples from Hammerfest harbor and 

the 0-1 cm interval of the samples from the SW Barents Sea. A rose Bengal enthanol mixture 

(1g/L ethanol 95%) was added to preserve and stain the living foraminifera (Walton, 1952) 

immediately after sub-sampling. The added mixture was equal to the sample volume to ensure 

dilution of the mixture by poor water did not result in concentrations below 70 %; the 

minimum concentrations for preservation of specimens (Murray, 2006). Samples were stored 

cool until further laboratory processing for a minimum period of 2 weeks (Lutze and 

Altenbach, 1991). 

The analyzed multi-corers from Ingøydjupet (paper III and IV) were sub-sampled at a one 

centimeter interval directly after retrieval down to 20 cm core depth. Samples were stored 

cool until further analyses. 

5.2. Granulometric analyses 

Samples were wet sieved at 63 μm, 100 μm and 1 mm meshes. The multi-corer samples of 

paper III and IV were freeze dried before sieving. Bulk samples and sieved size fractions were 

weighted to enable calculations of grain size distributions. The 100 μm – 1 mm fractions were 

15



kept for foraminiferal analyses; samples intended for living foraminiferal counts were kept in 

rose Bengal until further analyses, samples intended for dead foraminiferal counts were dried.  

The < 63 μm fraction was analyzed on the Micrometics SediGraph 5100 according to the 

method described by Coakly and Syvitski (Coakley and Syvitski, 1991) to determine weight 

percentages of silt (4 – 63 μm) and clay (< 4 μm). The > 63 μm fraction corresponds to the 

sand content of the samples.  

Sortable silt mean grain-size (S̅S̅) was analyzed for the sediment samples presented in paper 

II-IV. The S̅S̅ was calculated from the 10 – 63 μm fraction and is based on the principle of the 

ability of particles < 10 μm to flocculate (Bianchi and McCave, 1999; Hass, 2002; McCave et 

al., 1995). In paleo-records the S̅S̅ enables the reconstruction of mean current velocity. Such 

reconstructions are difficult for modern sediments as a result of the high variability of current 

strength due to the presence of eddies (McCave et al., 1995). Therefore, patterns observed in 

S̅S̅ will be considered only as indicators of changes in bottom current strength.  

Clay mineral composition of the < 2 μm fraction was analyzed (paper II and IV) by X-ray 

diffraction (XRD) according to the procedures described by Jensen et al. (2007) for the 

analyses preformed at Norwegian Geological Survey (NGU) and according to the method of 

Moore and Reynolds (1997) described by Rüther et al. (2012) for the analyses at the Iceland 

GeoSurvey. The data was processed using the MacDiff software version 4.2.5 (Petschick, 

2010). Quantification of the abundance of the minerals is expressed as weight percentage, and 

occurred by by peak fitting of the four clay minerals: illite, smecite, chlorite and kaolinite.  

5.3. Geochemical analyses 

The total organic carbon (TOC) content of the samples from Hammerfest harbor (paper I) was 

analyzed using infrared spectrometry (IR-S) according to the Norwegian Standard EN 13137-

A (NorwegianStandard, 2011). The TOC of most of the samples from the SW Barents Sea 

(paper II-IV) was analyzed using a Leco CS-2000 induction furnace. Prior to analyses, the 

inorganic matter (CaCO3) was removed from the bulk sediments using HCl (10 %). Samples 

were place in an oven and headed to 1350 °C to burn all components other than organic 

carbon. Furthermore, the Total Organic Matter (TOM) concentration of a selection of surface 

samples (paper II) was measured according to the methods described by Mannvik et al. 

(2011). Analyses are based on a similar principle as the TOC analyses; however samples are 

headed up to 480 °C. This lower temperature results in quantification of not only organic 

carbon, but also organic matter, oxygen, nitrogen and sulfur. Therefore TOC and TOM values 

are not directly comparable; however they are expected to reflect similar patterns.  
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Metal concentrations and persistent organic pollutant of the surface samples from Hammerfest 

(paper I) were analyzed by Eurofins Environmnetal Testing Norway AS. Arsenic, lead, 

cupper, chromium, nickel and zinc concentrations were analyzed using inductively coupled 

plasma atomic emission spectroscopy (ICP-AES) according to Norwegian Standard (NS) 

method EN ISO 11885 (NorwegianStandard, 2009). Cadmium was analyzed using 

inductively coupled plasma mass spectroscopy (ICP-MS) according to NS method EN ISO 

17294-2 (NorwegianStandard, 2004). Mercury was analyzed using atomic absorption 

spectroscopy (AAS) according to NS method NS 4768 (NorwegianStandard, 1989). The 

concentrations of the different polycyclic aromatic hydrocarbon (PAHs) and total 

hydrocarbons (THC) were measured with gas chromatography (GC) following NS method 

ISO DIS 16703-Mod (NorwegianStandard, 2011). Tributyltin (TBT) concentrations were 

analyzed using GC following an intern certified method of Eurofins. 

Metal concentrations of the sediment samples from the SW Barents Sea (paper II-III) were 

analyzed by Unilab AS or NGU. Before analyzes, sediments were dried at 40 °C, 

homogenized, sieved and decomposed with nitric acid (HNO3). Concentrations of barium, 

cadmium, cupper, chromium, zinc and lead were analyzed using ICP-AES or inductively 

coupled plasma sector field mass spectrometry (ICP-SFMS) depending on the metal 

concentration following NS 4470 (NorwegianStandard, 1994). Hg concentrations were 

analyzed with atom fluorescence (AFD) according to method NS 4768 (NorwegianStandard, 

1989). 

5.4. Benthic foraminiferal analyses 

Living benthic foraminifera (paper I and II) were quantified and identified in the 100 μm to 1 

mm size fraction. A modified Elmgren wet splitter (Elmgren, 1973) was used to split the 

samples into a practical size. The species were wet picked, to better distinguish between 

stained and non-stained specimens. The staining of rose Bengal differs between the different 

species. In general, a bright stain inside more than half of the test was the criterion for a 

specimen to be considered as alive during sample taking (de Stigter et al., 1998; de Stigter et 

al., 1999). Additionally, for agglutinated foraminifera the presence of stain in the aperture was 

an extra criterion to be considered as living.  

Counting and identification of the dead fauna (paper III) was performed in the 100 to 1 μm 

size fraction. Species were dry picked and a dry splitter was used for partitioning of the 

sample when needed. 
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In the studies of both the living and the dead fauna calcareous and agglutinated species were 

considered; organic walled species were not. A minimum of 300 specimens from a known 

split of the sediment was counted and identified, to precisely determine the abundances of the 

species in the assemblages (Patterson and Fishbein, 1989). When less than 300 living 

specimens were observed in a sample, the whole sample volume was counted and identified. 

Specimens were identified down to species level following the generic classification of 

Loeblich and Tappan (1987) and the holotype descriptions of Ellis and Messina (1940–1978). 

The accepted nomenclature as referred to in the WoRMS database (Appeltans et al., 2012) is 

used in this thesis.  

The foraminiferal results are presented in different terms as defined below: 

- Relative abundance 

The relative abundance of a species in a sample is the percentage of the species in relation to 

all the other counted specimens in the sample.  

- Absolute abundance 

The absolute abundance of a species is the number of specimens of the species with 

standardization for a sediment volume of 50 ml (living specimens; paper I and II) or 1 gram of 

bulk sediment (dead specimens; paper III).  

- Foraminiferal and species flux 

Fluxes were calculated (paper III) as described by Ehrmann and Thiede (1985) with: 

flux (#/cm2/yr) = absolute abundance (#/g) x bulk density (g/cm3) x SAR (cm/yr)

with # is the number of specimens and SAR abbreviating sediment accumulation rates. The 

bulk density was reconstructed from the moisture content and porosity of the sediments 

assuming an average mineral density of 2.45 g/cm3.

- Diversity  

The taxonomic diversity is expressed as the Shannon index (H’; Shannon, 1948) or the bias 

corrected Shannon-Wiener index (expH'bc; Chao and Shen, 2003) and was calculated using 

respectively the PAST software (Hammer et al., 2001) and the Entropy library (version 1.2.0; 

Hausser and Strimmer, 2009) of the statistical language R (version 2.14.2; RDCTeam, 2012). 

5.5. Chronology

Chronologies of the investigated sediment cores presented in paper III and IV were 

constructed based on ages obtained by 210Pb dating. Analyses were performed at GEL

Laboratories in Charleston, South Carolina, USA. The cores were dated on a 1 cm interval. 

All ages were calculated for mid-layer depths. Three models are generally used to determine 
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210Pb ages and will be briefly summarized here. A detailed overview of these models can be 

found in Appleby and Oldfield (1992).

Ages are calculated according to the general decay equation: 
t

i eAtA 0)( (1) 

from which t can be solved: 

)(
1 0

tA
At
i

(2) 

where Ai(t) is the measured 210Pb activity at interval ‘i’, corresponding to time ‘t’; λ is the
210Pb decay constant (0.03114 yr-1); A0 is the initial 210Pb activity of which the definition

depends on the used model. 

In the simplest model, the Constant Flux, Constant Sedimentation (CF-CS) model, a constant 
210Pb flux and a constant sediment accumulation rate is assumed. In the CF-CS model, A0

corresponds to the 210Pb activity at the sediment-water interface.

In the Constant Rate of Supply (CRS) model the 210Pb flux is assumed to be constant. The

sediment flux varies with time. A0 (or Ainventory) is expressed as the total 210Pb inventory and is

calculated according to:  

i
iiiinventory dPbA 210 (3) 

where (210Pb)i is the excess 210Pb activity in layer ‘i’, di is the thickness of layer ‘i’, and ρi is

the bulk density of layer ‘i’. Bulk densities and porosities were calculated from sediment 

moisture contents assuming an average mineral density of 2.45 g/cm3.

The Constant Initial Concentration (CIC) model assumes that the initial sedimentation activity 

of 210Pb is constant and that the 210Pb flux is proportional to the sediment flux. The sediment

flux is allowed to vary with time. A0 is the extrapolated 210Pb activity at the sediment-water

interface.  

Ages of the cores presented in paper III and IV are based upon the CRS model; linear 

sedimentation accumulation rates presented in paper IV were based on the Constant Initial 

Concentration (CIC) model. 

5.6. Statistical methods 

A number of statistical methods were performed (paper I and II). The similarity of sample 

stations based on their abiotic variables was defined with Q-mode hierarchical clustering, 

using Ward’s method and Euclidean distance (Ward, 1963). The main modes of variations 
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within the abiotic variables were defined using a principal component analysis (PCA) (Davis, 

2002; Harper, 1999). Analyzed abiotic parameters were only included when measured in 

every sample station of the study. Before analysis the parameters were normalized to remove 

the effect of different orders of magnitude (Manly, 1997).

Sub-assemblages or associations within the total living foraminiferal assemblage were defined 

with R-mode hierarchical clustering, using Ward’s method and Euclidean distance (Ward, 

1963) based on the absolute abundance of the species. Absolute abundance were standardized 

and normalized before clustering was applied to increase the importance of the less abundant 

species (Manly, 1997). Only species with a relative abundance of > 5 % in at least one sample 

were considered to avoid bias of the data set (Fishbein and Patterson, 1993). 

The relation between abiotic variables and the benthic foraminiferal assemblage was found 

with a Pearson correlation matrix (paper I) or multiple regression linear models (paper II). 

The multiple regression linear models used a stepwise regression with bidirectional 

elimination, using the Akaike information criterion (AIC). The model defined which of the 

abiotic variables are needed to explain the distribution of the benthic foraminiferal 

assemblage in the best possible way.

Q- and R-mode hierarchical clustering, PCA and the Pearson correlation matrix were 

performed using the statistical program PAST (version 2.17c; Hammer et al., 2001) Multiple 

regression linear modelling was performed using the statistical program R (version 2.14.2c; 

RDCTeam, 2012).

5.7. Rationale methodology 

The methodology used for preparation and handling of samples intended for living benthic 

foraminiferal analyses presented in paper I and II, deviate from the FOBIMO-protocol (paper 

V) for reasons discussed above. The main points from which the methodology in paper I and

II deviate from the methodology presented in paper V and the potential this might have on the 

outcome and interpretation of the results presented in those papers, are the following: 

a) Sampling device

Sediment surfaces can be easily disturbed during sample taking. Disturbance of the sediment 

layer is smallest when interface corers are used, e.g. a Barnett multiple corer type sampler 

(Barnett et al., 1984). Such interface corers can successfully operate in fine sediments, 

however are not always successful in sandy sediments. In sandy sediments box corers 

facilitate a good and undisturbed recovery (Bouma and Marshall, 1964). Grab corers can 
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create a strong bow wave during employment, disturbing the structure of the sediment 

(Riddle, 1989; Wigley, 1967). During recovery through the water column, part of the sample 

might be washed out, resulting in a potential loss of foraminiferal species (Schönfeld, 2012).

The use of an interface corer or a box corer, depending on the sampling substrate, is therefore 

a mandatory requirement for bio-monitoring studies using living benthic foraminifera 

according to the FOBIMO-protocol (Schönfeld et al., 2012). The use of grab samplers should 

be avoided on soft substrates; on sandy substrates grab samplers might occasionally be the 

only possible device for sample collecting.  

Most of the surface sediment samples in paper II of this thesis were collected using either a 

multi corer or box corer. However, some of the samples, i.e. those close to exploration and 

drilling sites, were collected with a grab corer. Additionally, surface sediments from the 

harbor of Hammerfest (paper I) were collected using a grab corer. This was the only 

possibility to collected samples from these locations. All collected surface sediment samples 

were carefully studied for potential disturbances of the sediment surface. However, 

disturbances might not always be visually recognizable. Disturbances might results in loss of 

diversity and foraminiferal density, and therefore care should be taken when interpreting the 

results from surface samples collected by a grab sampler. 

b) Replicates

The distribution of benthic foraminifera is known to be patchy (Barras et al., 2010; Bernstein 

et al., 1978; Fontanier et al., 2003; Griveaud et al., 2010). Studies of living benthic 

foraminifera are often based on non-replicate analyses, which might result in a variability 

which is not representative for the actual assemblage of the sample location (Schönfeld, 

2012). Heterogeneity might be obtained by collecting replicate samples from each sample 

location. A statistical study by Bouchet et al. (2012) concluded that three replicates are 

sufficient for determining a reliable representation of the diversity at the sample locations. To 

accurately describe the variability of the ecosystem, the FOBIMO-protocol made it a 

mandatory recommendation to obtain and analyze three replicates at each sample site 

(Schönfeld et al., 2012).  

In the in this thesis presented studies of living foraminifera (paper I and II), non-replicate 

samples were analyzed. This might result in an over representation of variability of the 

studied area. This should be taken into account when interpreting the foraminiferal counts of 

the areas. Care should be taken when comparing the here presented results with samples taken 

from the same sites in the future to detect changes in distribution patterns. Changes in 
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regional, rather than local or site specific foraminiferal distribution patterns might therefore be 

more accurate for describing environmental changes.  

c) Size fraction

Paper I and II investigated the living foraminiferal assemblages in the 100 μm – 1 mm 

fraction. Which size fraction is most appropriate for analyses of living benthic foraminifera 

has been under debate for a long time. An inventory by Schönfeld (2012) concluded that the > 

125 μm fraction is currently the most common size fraction used in living foraminiferal 

studies. Several studies have however shown a considerable loss in diversity and foraminiferal 

density when a larger fraction, i.e. > 125 μm or 150 μm, is used rather than a smaller fraction, 

i.e. > 63 μm (Fontanier et al., 2006; Fontanier et al., 2008; Mojtahid et al., 2008). Therefore, 

considering only the larger fraction might result in an underrepresentation of the small species 

and juveniles (Duchemin et al., 2007; Schröder et al., 1987). A study by Bouchet et al. (2012) 

concluded however that important environmental parameters are adequately reflected by both 

fine and coarse fractions. The FOBIMO-protocol concluded to make analyses of the > 125 

μm a mandatory recommendation for bio-monitoring studies (Schönfeld et al., 2012). 

In the polar regions foraminiferal tests do often not exceed test diameters of over 125 μm 

(Knudsen and Austin, 1996). Therefore the > 100 μm is often analyzed in these regions. 

Additionally, this size fraction was chosen in the studies of this thesis to enable comparison of 

the results with results from previous studies from the same region (e.g. Hald and Steinsund, 

1992, 1996; Saher et al., 2009; Saher et al., 2012; Steinsund, 1994). Analyses of the living 

benthic foraminifera in the > 100 μm fraction of the surface sediment samples presented in 

paper II, also enables comparison to the dead assemblages presented in paper III. The > 100 

μm fraction in paper III was chosen to enable comparison to other paleo-studies (e.g. 

Chistyakova et al., 2010; Hald et al., 2011; Husum and Hald, 2004; Jernas et al., 2013; Wilson 

et al., 2011). 

Given the conclusions of Bouchet et al. (2012) it is expected that the studied size fraction of 

100 μm – 1 mm can adequately reflect important environmental changes. However, it must be 

taken into account that the smaller species might not have been registered, and consequently 

the true diversity of the samples might be higher. Additionally, comparison of the established 

baselines and assemblages in these papers can in the future only be compared to studies using 

a similar size fraction.  

22



6. Summary of papers

Paper 1: 

Dijkstra, N., Junttila, J., Carroll, J., Husum, K., and Hald, M., The impact of contaminants 

and grain size on benthic foraminiferal assemblages in the harbor of Hammerfest, 

northern Norway, submitted to Norwegian Journal of Geology 

The harbor of Hammerfest, northern Norway is highly contaminated by persistent organic 

pollutants (POPs) and heavy metals, due to discharges from local industrial activities and ship 

traffic. The main objective of this study was to evaluate the utility of benthic foraminiferal 

assemblages from the harbor as indicators of anthropogenic stressors. Sediment grain size 

properties, contaminants levels and foraminiferal assemblages of the harbor environment were 

characterized. The relationship between the abiotic variables and benthic foraminiferal species 

was established using principal component analyses (PCA), Q-mode clustering and a Pearson 

correlation matrix. Due to recent measures taken in the harbor to diminish the input of 

contaminants, sediment contaminant concentrations have decreased since 1998 (Skjegstad et 

al., 2003). However, contaminant levels still correspond to an environmental quality 

considered being harmful to the environment (level III-V). These high contaminant levels are 

reflected in the foraminiferal community, showing a low density and diversity. Diversity 

values correspond to environmental status levels II to IV. Sample stations can be divided into 

three groups based on abiotic variables, reflecting the high variability of habitat characteristics 

and anthropogenic stressors in the harbor. Group I is associated with stations highly affected 

by ship traffic. Grain sizes are coarse due to reworking of the sediment by ship propellers and 

levels of tributyltin (TBT) are high due to shipyard activities. The foraminiferal assemblage in 

these locations is dominated by the species: L. lobatula, B. marginata, C. albiumbilicatum and

B. frigida. Group II covers the least impacted, however still heavily contaminated sites. 

Sediments are in general fine grained and contain high levels of heavy metals. The 

foraminiferal assemblage in these locations is dominated by stress tolerant species: S.

fusiformis, S. biformis, B. spathulata and E. excavatum. Group III consists of one station, 

located in front of a river outlet and is characterized by high levels for heavy metal 

concentrations and total organic carbon (TOC). The sample was barren of living benthic 

foraminifera. The absence of living foraminifera can be attributed to a combination of fresh 

water inflow from the river, high contaminant concentrations and a high TOC content. The 

patterns identified through this investigation provide a valuable baseline for future 

investigations of the ecological impacts of industrialization in northern coastal communities.
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Paper 2: 

Dijkstra, N., Junttila, J., Carroll, J., Husum, K., Elvebakk, G., Godtliebsen, F., and Hald, M., 

2013, Baseline benthic foraminiferal assemblages and habitat conditions in a sub-Arctic 

region of increasing petroleum development, in press at Marine Environmental Research, 

doi:10.1016/j.marenvres.2013.09.014 

Petroleum production will expand significantly in the Barents Sea in the coming years, raising

the chance for increased industrial releases into the marine environment. The purpose of this 

study was to establish the present day pre-impact baseline conditions for the SW Barents Sea. 

The study is based on a set of surface samples retrieved from the Tromsøflaket-Ingøydjupet

region where petroleum related activities will increase in the coming years. Surface sediment 

samples were investigated on their living benthic foraminiferal assemblages, their sediment 

properties and their concentrations of a selection of metals. Relationships between habitat

characteristics and foraminiferal assemblages were established using statistical methods 

including principal component analysis, Q- and R-mode clustering and multiple regression 

linear modeling. Metal concentrations never exceeded threshold levels considered to be 

harmful to the environment, indicating that the area reflects pre-impacted baseline conditions.

A slight elevation of metal concentrations can be observed in the fine grained sediments of the 

deeper area, due to the ability of clay minerals and organic matter to trap contaminants. This

might indicate that the deep areas serve as trapping zones of contaminants related to 

discharges from petroleum drilling sites nearby. Three associations were distinguished in the 

foraminiferal assemblage of the region reflecting the different habitat characteristics found in 

the study area. The first association is mainly dominated by epifaunal species, i.e. L. lobatula,

T. angulosa and C. laevigata. This Lobatula-Trifarina (LT) association is more frequently,

though not exclusively, observed in samples from the shallow Tromsøflaket. The species of 

the LT-association reflect the habitat characteristics predominating on the relatively shallow

Tromsøflaket, i.e. high bottom current activity and coarse grained sediments. The second

association is mainly dominated by infaunal species, e.g. M. barleeanus, P. bulloides and N.

auricula. This Melonis-Nonionella (MN) association is more abundant in samples from the 

relatively deep Ingøydupet. The species of the MN-association reflect the habitat

characteristics of the Ingøydjupet trough, i.e. fine grained sediment, relatively high

availability of organic matter and calm bottom current conditions. The third association 

consists of Reophax spp., Trochammina spp., and E. nipponica. No clear habitat preference 

was observed for this association within the study area. The outcome of this study might 
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contribute to the development of a bio-monitoring tool applicable to the study area using 

benthic foraminifera. Both the LT-association and MN-association were considered as 

potential bio-indicators for this region due to their specific habitat characteristics and feeding 

strategy; the R-association was not considered to be useful for bio-monitoring due to the 

absence of a habitat pattern.  

Paper 3: 

Dijkstra, N., Junttila, J., Husum, K.,  Carroll, J., and Hald, M., Natural variability of benthic 

foraminiferal assemblages and metal concentrations during the last 150 yrs. in the 

Ingøydjupet trough, SW Barents Sea, manuscript intended for submission to Marine 

Micropaleontology 

The use of benthic foraminifera as bio-monitoring tool is often complicated by the natural 

variability of both the ecosystem and the physical environment. Therefore site specific studies 

are needed to understand the interaction between benthic foraminifera and the physical 

environment and to gain insight into the range of natural variability. Four 20 cm long 

sediment cores from the Ingøydjupet trough were investigated on their benthic foraminiferal 

assemblage and metal concentrations. The objective of this paper was to characterize the 

temporal variability of these parameters over a 150 year time span. These variables were 

correlated to changes in sediment properties and TOC as presented in Junttila et al. 

(submitted) (Paper IV). The results were interpreted in terms of changes in strength and 

dominance of the water masses prevailing in the trough, i.e. the North Cape Current (NCaC) 

and Norwegian Coastal Current (NCC). Species associated to temperate water masses 

dominated the assemblage, i.e. E. nipponica, M. barleeanus, L. lobatula and C. laevigata.

Additionally C. neoteretis associated with colder water masses was frequently observed. 

Foraminiferal distributions in the near shore cores 150 and 151, were affected by a strong 

influence of fluctuating strength of the NCC. A strong and relatively stable bottom current 

was active at these locations between 1926-1978 CE and 1940-1988 CE respectively. The 

foraminiferal assemblages of core 152, located in the middle of trough, experienced influence 

of both the NCC and NCaC throughout the studied time interval. Changes in foraminiferal

assemblages of core 154, located furthest off shore, can be attributed to changes in inflow of 

the NCaC. Superimposed on the local trends, all cores showed an increased influence of the 

NCaC towards present times. The reconstructed patterns of variability in bottom current 

strength and water mass dominance correspond to those reconstructed by Junttila et al. 

(submitted) (Paper IV) based on sediment properties. Additionally, the foraminiferal 
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assemblages of some cores might reflect the climatic transition between the Little Ice Age and 

the Modern Warming. Decadal scale climatic oscillations between warm and cool 

temperatures can also be observed in some of the cores. Metal concentrations in the sediments 

correspond to background levels. Down core changes are attributable to clay and TOC 

content, and therefore reflect the natural variability of the region. Only the down core 

distribution of Pb and Hg in core 152 might reflect an anthropogenic signal related to 

combustion of leaded gasoline. The strong correlation between contaminants and sediment 

properties, and the strong influence of water masses on the sediment distributions, indicates 

that changes in oceanography might have an influence on the deposition of contaminants in 

the region.  

Paper 4: 

Junttila, J., Carroll, J., Husum, K., and Dijkstra, N., Sediment transport and deposition in 

the Ingøydjupet trough, SW Barents Sea, submitted to Continental Shelf Research 

Increased petroleum activities in the SW Barents Sea might result in an increase of releases of 

drill cuttings into the ocean. This requires site specific knowledge on potential pathways and 

accumulation areas of released drill cuttings and contaminants. The objectives of this paper 

were to determine the sediment accumulation rates, to characterize the natural variability of 

sediment assemblages and to determine the effect of bottom currents on the transportation of 

sediment in the Ingøydjupet trough. Baseline characterization of four sediment cores from 

known accumulation areas in the Ingøydjupet trough were investigate in terms of grain size, 

smectite clay mineral content, sortable silt mean grain size and total organic carbon (TOC). 

Results were interpreted in relation to the role of bottom currents as transport agents of 

sediments. Variations in smectite content and TOC revealed information on sediment sources. 

Average sediment accumulation rates of the investigated cores decreases with distance 

offshore, and vary between 1 to 2.4 mm/yr. Additionally, the analyzed variables reflect the 

distribution of the two main water masses in this area; the Norwegian Atlantic Current (NAC) 

and Norwegian Coastal Current (NCC). The down core distribution of sortable silt mean grain 

size and fine sediment fractions revealed a more variable and stronger bottom current allied to 

the NCC active at two coring localities near shore. The increasing sand content towards the 

top of these cores, indicates an intensification of the strength of the current towards present 

day. More stable and calm bottom current conditions are active in the station farthest offshore. 

The higher TOC concentrations measured here indicate the influence of the NAC at this 
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locality. The deepest station, situated in the middle of Ingøydjupet showed influence of both 

the NAC and NCC, with both stronger bottom currents and higher TOC contents.  

Contribution to paper 4: 

The thesis author participated in retrieving, sampling and evaluating the quality of the 

investigated cores. Additionally, contribution to paper 4 was given by evaluating the data of 

the sediment properties and the age model, and by discussing the implications this data had 

for reconstruction of the variability and influence of the NAC and NCC.  

Paper 5: 

Schönfeld, J., Alve, E., Geslin, E., Jorissen, F., Korsun, S., Spezzaferri, S., and Members of 

the FOBIMO group*2, 2012, The FOBIMO (Foraminiferal Bio-Monitoring) initiative –

Towards a standardized protocol for soft-bottom benthic foraminiferal monitoring 

studies. Marine Micropaleontology, vol. 94-95, p. 1-13

The ecological quality of the marine ecosystem is traditionally monitored by surveys of the 

composition of the macrofaunal community. During the last decades, benthic foraminifera 

have also proved to be helpful indicators of ecological quality, given their high reproduction 

rates, specialized environmental preferences and preservation potential in the fossil record. 

The latter enables reconstruction of past levels of ecological quality. Whereas macrafaunal 

bio-monitoring studies are performed according to a standardized methodology, this did not 

exist for benthic foraminifera until publication of this paper. The main goal of the 

FOraminiferal Bio-Monitoring (FOBIMO) expert workshop was to develop a set of 

recommendations of standardized methods. This paper presents a list of mandatory and 

advisory recommendations regarding methodology to be used in bio-monitoring studies using 

living benthic foraminifera. The mandatory recommendations should be followed in order for 

such studies to qualify as comprehensive and according to the norms. Scientific rigor and 

practical limitations were taking into account when defining the recommendations. The list of 

recommendations is intended to strengthen the use of benthic foraminifera in bio-monitoring 

studies and not to limit the pure scientific studies.  

                                                            
2* Abramovich, S., Almogi-Labin, A., Armynot du Chatelet, E., Barras, C., Bergamin, L., Bicchi, E., Bouchet, 

V., Cearreta, A., Di Bella, L., Dijkstra, N., Disaro, S.T., Ferraro, L., Frontalini, F., Gennari, G., Golikova, E., 

Haynert, K., Hess, S., Husum, K., Martins, V., McGann, M., Oron, S., Romano, E., Sousa, S.M., and Tsujimoto, 

A.. 
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Mandatory recommendations include: 

Usage of an interface or box corer in soft sediments to prevent sediment disturbances.

A grab samples can only be used on hard grounds. 

Sampling of the 0 to 1 cm interval of the sediment surface.

Collection and analyzes of three replicate samples from at each monitoring site.

Washing of samples over a 63 μm screen, however counting should occur in the > 125

μm fraction.

Counting of whole splits. Either wet or dry splitters are to be used.

Soft shelled foraminifera are not to be included in bio-monitoring studies.

Counted foraminifera of one replicate per station are to be archived for future

references. Also census and laboratory data are to be archived. 

Advisory recommendations include:

Samples should be 50 cm2, corresponding to a coring tube with an 8 cm inner

diameter.

Ethanol with a concentration of > 70 % is recommended as a preservative.

A Rose Bengal ethanol mixture with a concentration of 2 g per liter and a staining time

of at least 14 days is advised. 

Separation by means of heavy liquids should be avoided.

Analyzing of the > 63 μm fraction might be desirable in some environments.

Both wet and dry picking is considered to be appropriate.

Dead assemblages can contain important information on pre-impacted conditions;

living fauna in deeper sediment levels may also yield extra information 

Untreated samples might be preserved and stored for future references when possible.

Application of this protocol is a first step towards strengthening and acceptance of benthic

foraminifera as reliable bio-monitoring tool.  

Contribution to paper 5: 

The thesis author is part of the FOBIMO expert group and actively participated in the 

discussions and decisions that lead to this paper, in addition to helping preparing it. 
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7. Synthesis

The overall objective of this thesis was to elucidate the imprint of both natural and 

anthropogenic induced environmental changes on benthic foraminifera in the SW Barents Sea 

and the Hammerfest harbor, Northern Norway. In Hammerfest harbor, the environment is 

highly contaminated due to industrial activities. The SW Barents Sea is considered to be 

relatively pristine, however industrial activities are projected to expand in the years to come. 

In order to improve the understanding of foraminiferal responses to contaminants in these 

regions, it is not only necessary to understand the impact of contaminants (paper I), the 

natural response to changes in the physical environment are also of importance (paper II-IV). 

Establishing baseline conditions are of great value for development of a bio-monitoring tool 

based on using benthic foraminifera. Detailed benthic foraminiferal assemblage studies were 

performed in this thesis in combination with characterizations of the physical environment, 

i.e. sediment properties and contaminant concentrations in both contaminated and un-

impacted areas. To strengthen the position of benthic foraminifera as indicators it is also 

crucial that a standardized methodology protocol is developed, to enable comparison of 

environments (paper V). 

The following main conclusions were reached based upon the results presented in the thesis: 

In the contaminated Hammerfest harbor, stress tolerant species dominate the

assemblages (paper I), reflecting the different anthropogenic stressors active in the harbor. In 

the pristine SW Barents Sea (paper II and III), both living and dead assemblages reflect the 

natural variability of the physical environment of the region. 

Stressors having direct or indirect influence on the living assemblage of Hammerfest

harbor (paper I) are: (a) disturbance of the sediments by ship propellers; (b) high persistent 

organic pollutant and heavy metal concentrations and; (c) the inflow of fresh, highly 

contaminated river water.  

The living foraminiferal assemblage in the SW Barents Sea (paper II) can be divided

into three groups: (a) Epifaunal species tolerating higher bottom current speeds dominate the 

surface sediments from the shallow Tromsøflaket, which are characterized by coarse grain 

sizes due to the prevailing high bottom current speeds; (b) Infaunal species associated to fine 

grain sizes and high food availability dominate the assemblages in the relatively deep 

Ingøydjupet with reduced bottom current speed, and; (c) Species with no clear habitat 

preference or spatial distribution pattern. The first two associations are considered to have 
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potential to be included in a bio-monitoring tool applicable to the studied area, as they have a 

specific habitat preference and feeding strategy.  

The dead assemblages from Ingøydjupet covering the last 150 years (paper III) were

mainly influenced by the variability in strength or dominance of the two prevailing water 

masses in the Ingøydjupet trough; i.e. the Norwegian Coastal Current (NCC) and North Cape 

Current (NCaC).  

Changes in sediment properties of the cores from Ingøydjupet reconstructed similar

patterns of variability in the NCC and NCaC (paper IV) as suggested by the dead 

foraminiferal assemblages (paper III).  The variability in strength and dominance of the NCaC 

and NCC has a strong influence on the deposition regime in the trough. A strong correlation 

between sediment properties and metal concentrations was observed, indicating that changes 

in the oceanography might have an influence on the deposition of contaminants in the region 

as well (paper III).  

Standardization of methodology is crucial to strengthen further development of

benthic foraminifera as a bio-monitoring tool. The guidelines and recommendations 

formulated by the FOBIMO expert workgroup are a large step forward (paper V). Bio-

monitoring studies based on living benthic foraminifera, should follow the recommended 

methodology to qualify as accurate.  

Overall, this study elucidated the response of benthic foraminifera to both natural and 

anthropogenic induced environmental changes in the sub- Arctic region. Benthic foraminifera 

show a strong and specific response to different types of anthropogenic stressors (paper I). In 

the investigated pristine SW Barents Sea, benthic foraminifera mainly react to, and reflect the 

high natural variability of the region (paper II-IV). Petroleum production is projected to 

expand significantly in the SW Barents Sea in the coming years raising the potential of 

increased industrial discharges. The outcome of this study contributes to the development of a 

bio-monitoring tool applicable to the (sub-) Arctic region using benthic foraminifera (see next 

chapter). Such a bio-monitoring tool is expected to be of great relevance to monitor potential 

deterioration of the environment. Additionally, a bio-monitoring tool can be applied to 

monitor potential recovery of the environmental quality in the contaminated Hammerfest 

harbor, were measures are implemented to diminish contaminant levels.   
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8. Outlook and future work – Towards a benthic foraminiferal bio-monitoring tool for 

the Arctic region 

The marine environment is affected by environmental challenges, including global warming, 

ocean acidification and input of pollutants. This also applies to the Arctic region. 

Governmental programs, e.g. the WFD and MSFD, were initiated to maintain or achieve an 

acceptable environmental status. These measures require accurate information on the status of 

the environment. Evaluating the status of the environment can for example be done with the 

use of bio-monitoring tool. Such tools are based upon the abundance and physical condition

of organisms able to indicate pollution or human impact. Development of an accurate bio-

monitoring tool requires adequate indicator species, definition of biotic indices and well 

established reference conditions, for reasons explained below. 

Bio-monitoring of the marine environment is conventionally based on functional groups or 

indicator species belonging to macrofauna (e.g. Borja and Dauer, 2008; Josefson et al., 2009).

A growing number of studies demonstrate however the suitability of benthic foraminiferal 

species as indicators of the environmental quality in impacted areas with different disturbance 

sources, e.g. contamination by aquaculture, oil spills, heavy metal pollution, urban sewage 

and deposition of drill cuttings (e.g. Alve, 1995; Alve et al., 2009; Armynot du Châtelet et al., 

2009; Armynot du Châtelet et al., 2004; Bouchet et al., 2012; Bouchet et al., 2007; Burone et 

al., 2006; Coccioni et al., 2009; Dolven et al., 2013; Ferraro et al., 2006; Frontalini et al., 

2009; Hess et al., 2013; Martínez-Colón et al., 2009; Morvan et al., 2004; Nigam et al., 2006; 

Scott et al., 2001). 

8.1 Indicator species 

Benthic foraminifera are suitable as indicator species of disturbances because of their high 

degree of adaptation and fast turnover rates. Changes in assemblage composition or the 

presences of high numbers of stress tolerant species can be considered as adequate recorders 

of the impact of environmental changes. However chemical analyses will still be required 

additionally to determine the type of stressors responsible for the deterioration (Martínez-

Colón et al., 2009). 

Hily (1984) proposed a model to divide soft-bottom macrofauna into five groups based upon 

their response to anthropogenic stressors or other disturbance sources (figure 2). With some 

adaptations this model can be applied to benthic foraminifera as well (Schönfeld, pers. comm. 

2012).  
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The groups (figure 2) have been defined by (Borja et al., 2000; Grall and Glemarec, 1997):

(a) Group I: Sensitive species. Dominant at the reference site, disappear or decrease towards 

sites of maximum disturbances. 

(b) Group II: Indifferent species No clear trend in abundance, decrease towards highest 

disturbed sites. 

(c) Group III: 3rd order opportunists. Abundant at the reference sites, clearly increase towards

the pollution source. Their density maximum is further away from the disturbance source than 

those of group IV and V. 

(d) Group IV: 2nd order opportunists. Absent at reference sites, increase towards disturbance

source, with a density maximum between those of group III and V. 

(e) Group V: 1st order opportunists. Absent at the reference sites, strongly increase abundance

towards disturbance source, with a density maximum close to the disturbance source. 

After assignment of the species of an assemblage of to a group, the summed relative 

abundance of each of the groups can be calculated. These relative abundances can then be 

used as input to calculate a biotic coefficient (BC), according to model proposed by Borja et 

al. (2000). These BCs give an objective number to estimate the state of the environment. Such 

biotic coefficients are not developed yet for benthic foraminifera.  

Figure 2. Theoretical model. Schematic scheme showing the theoretical distribution of five ecological groups 

(y-axis) along a transect of increasing disturbance or pollution (x-axis). Modified after the model by Hily (1984) 

with adaptations by J. Schönfeld (personal communication, 2012).
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From the results presented in this thesis, it is not possible to study stepwise changes in the 

benthic foraminiferal assemblage along a pollution gradient yet, due to the relative pristine 

conditions of the Ingøydjupet trough with no local contaminant source (paper II-III) and the 

absence of non-impacted reference sites in the highly contaminated Hammerfest Harbor. 

However clear habitat preferences and distinct feeding strategies of the defined associations 

from the SW Barents Sea were documented (paper II), which possibly might be a first step to 

define indicator species for the region. The toxicity of a pollutant is highly depended on its 

bioavailability, i.e. if organisms are able to take up the pollutant. Mesothropic conditions can 

increase bioavailability of contaminants. This explains why infaunal taxa, as those dominating 

in the Ingøydjupet trough, are most likely to encounter bio-available contaminants in 

mesothropic to eutrophic environments (Martínez-Colón et al., 2009). Additionally, indication 

was found that the Ingøydjupet trough might serve as a trap for contaminants (paper II-III). 

This makes the epifaunal species of Ingøydjupet, potential early indicators of changes in the 

environmental quality.  

Future work should include transects away from production or exploration wells in 

Ingøydjupet to identify possible impacts of drill cutting discharges or produced water and 

their associated contaminants on indicator species. However contaminant levels along these 

transects are most likely low due to strong regulations from the Norwegian Government. 

Alternatively a laboratory study with similar physical conditions and assemblages as the 

investigated areas could contribute to identification and definition of indicator species. It is 

however important that such experiments are performed under similar physical conditions as 

these parameters have influence on the bio-availability of toxins (Martínez-Colón et al., 

2009). Furthermore, definition of indicator species using results from other locations is also 

possible. However, it must be taken into account that applicability to our investigated areas 

might only be possible when similar physical environment apply. Finally, focus in future 

studies should not only be on the dominating species, as in the papers included in this thesis, 

but also on the rare, less abundant species. These are known to contribute most to the 

diversity of the benthic foraminiferal community (Murray, 2013). As diversity often decreases 

in impacted areas (Schafer, 1973; Yanko et al., 1994), rare species are crucial to detect 

changes in the quality of the marine ecosystems (Cao et al., 1998).

8.2 Biotic indices 

Besides identification of indicator species, definition of biotic indices is an important step in 

the development of a bio-monitoring tool for the polar region. Diversity is often used as input 
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for bio-indices enabling a quantitative definition of the environmental quality. It might 

however also be relevant to include BCs into such indices.  

Currently environmental quality is mainly described with the use of biotic indices based on 

macrofauna, e.g. AMBI and M-AMBI (Borja and Tunberg, 2011; Muxika et al., 2007).

Benthic foraminifera might be suitable for such a biotic index as well. Bouchet et al. (2012) 

were the first to define a quantitative classification based on benthic foraminifera. This 

EcoQS index is based upon the diversity of the samples from the investigated region. 

Diversity was expressed as the bias corrected Shannon-Wiener Index (Chao and Shen, 2003), 

ranging from 0, corresponding to an azoic sample, to the highest expected diversity of the 

investigated region (Bouchet et al., 2012). The range in diversity was then equally divided 

into five EcoQS classes. These classes correspond to those of the WFD classification, i.e. 

unacceptable statuses, bad and poor, and acceptable statuses, moderate, good and high (WFD, 

2000). Correlation between the defined diversity classes to the WFD classes of oxygen 

conditions gave a strong linear response, indicating that the EcoQS classes based on 

foraminiferal diversity accurately reflect the state of the environment (Bouchet et al., 2012).  

It must however be noted that reference conditions are often type and site specific (WFD, 

2000). It might therefore be more appropriate to develop site-specific boundaries between 

EcoQS classes for application to other regions.  

Adjustment of the criteria established by Bouchet et al. (2012) might be necessary before they 

are applied in this study’s investigated areas, due to the specific physical environment and 

unique assemblage structures. Not only a biotic index based on diversity of the samples might 

be of importance for the region, additionally, a biotic index using the indicator species defined 

along the steps explained in chapter 8.1 might be relevant for the region.  

Future studies, might also include a joint comparison of differences between the performances 

of both macrofauna and benthic foraminifera as indicators of environmental changes caused 

by both natural and anthropogenic processes. This can be based upon assemblage 

characteristics, indicator species or biotic indices. A study by Włodarska-Kowalczuk et al. 

(2013) is the only published study comparing macrofauna and benthic foraminiferal 

assemblages in high latitudes. Such comparison would be a natural extension of the present 

PhD thesis work in the investigated areas. 

8.3 Reference conditions 

The assessment of environmental quality is based upon the extent of deviation from reference 

conditions (WFD, 2000). These reference conditions are often defined by comparison of 
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impacted sites to non-impacted environments (e.g. Bigot et al., 2008; Borja et al., 2012; Borja 

and Tunberg, 2011; Bouchet and Sauriau, 2008; Muxika et al., 2007). Definition of true 

reference conditions in present-day ecosystems is often difficult as these conditions are site-

specific and are rarely found due to high rates of degradation of ecosystems as a result of long 

term input of contaminants to the environment (Alve et al., 2009). The preservation of 

foraminiferal tests in the fossil record enables both the objective reconstruction of historical 

environmental disturbances and the reconstruction of in situ reference or pre-impact 

conditions, provided that possible impacts of taphonomic processes are considered (Alve et 

al., 2009). Comparison of the pre-impacted baseline assemblages in sediment cores to the 

modern living foraminiferal assemblage at the same location, enables the determination of the 

impact of anthropogenic stressors (Alve et al., 2009). This recognition of anthropogenic 

disturbances might however be obscured by background natural variability (Elliott and 

Quintino, 2007). Therefore, long term data on natural variability is necessary to distinguish if 

a low diversity is due to a natural stressed environment or due to anthropogenic stress. The 

results presented in this thesis, reconstructed the pre-impacted baselines and natural 

variability of the investigated areas (paper II-IV). The SW Barents Sea is still considered to be 

a pristine area (paper II and III). With the prospects of increased industrial activities and 

possible enhanced input of associated contaminants to the environment, the area is a valuable 

natural laboratory to monitor and assess the impact of these activities on the environment, by 

comparison to the baselines defined through this PhD thesis.  

It was not possible to study reference sites or define pre-impacted baselines in Hammerfest 

Harbor. Future studies in the harbor embayment could include investigation of sediment cores 

from the deepest part of the embayment. This could reveal the pollution history of the 

embayment, and might enable the reconstruction of reference conditions. Current measures to 

diminish the contaminant levels in the harbor could benefit largely from definitions of 

references conditions. These reference conditions help determine if a poor environmental 

quality is solely attributable to high contaminant levels, or if natural stressors, as for example 

fresh water inflow or oxygen depletion, are also critical stress factors the harbor.  Hammerfest 

harbor is one of the many high latitude harbors affected by pollution. Investigations of benthic 

foraminifera in other high latitude harbor environments might therefore be of interest in the 

future, to either investigate the impact of these high pollution levels on the environmental 

quality, or to monitor restoration of environmental quality after capping and remediation of 

the impacted areas.  
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To summarize, this thesis provided baselines of pre-impacted conditions of an area under 

increased industrial development (Paper II), insight into the natural variability of this system 

(Paper III and IV), and knowledge on the behavior of benthic foraminifera under high 

environmental stress (Paper I) in a high latitude environment. Results presented in this work 

can serve as a valuable input for a bio-monitoring tool applicable in these regions. 

Additionally it can serve as a baseline for future comparison to monitor changes in the 

environmental quality of the marine ecosystem. Furthermore, standardization of the 

methodology of living benthic foraminiferal studies for bio-monitoring purposes (paper V) 

has contributed to the scientific rigor of benthic foraminifera as an accurate and reliable bio-

monitoring tool. 
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Abstract 

The aim of this study is to establish pre-impact baseline conditions for an Arctic region where 

petroleum activities are projected to increase in the coming decades. We characterize the 

spatial distribution of living benthic foraminifera in the Tromsøflaket-Ingøydjupet region of 

the Barents Sea and relate this to sediment properties and their associated metal 

concentrations. Metal concentrations of the sediments did not exceed threshold levels of 

harmful environmental effects, indicating that the area exhibits pre-impact baseline 

conditions. Foraminiferal assemblages reflect the pristine environment. Epifaunal species 

dominate in Tromsøflaket, a high energy environment characterized by coarse grained 

sediments. Infaunal species dominate in Ingøydjupet, a low energy environment characterized 

by fine grained sediments. Metal concentrations were slightly elevated in the fine grained 

sediments from Ingøydjupet which suggest that these areas may in the future serve as trapping 

zones for contaminants associated with discharges from nearby petroleum sites. 
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1. Introduction

The southwestern (SW) Barents Sea contains significant oil and gas resources. Exploration 

activities were initiated in this region during the 1980s (NPD, 2012). Gas production started at 

the Snøhvit Field in 2007 while oil production will begin at the Goliat Field in 2014 (Fig. 1b). 

Petroleum production in the region is projected to expand significantly in the coming years, 

increasing the potential for releases of industrial waste into the marine environment. Chemical 

releases associated with petroleum production, resource shipments and accidents may include 

a variety of metals, petroleum hydrocarbons, and other organic compounds. With these 

prospects for the coming years, the region is a valuable natural laboratory to monitor and 

assess the impact of increasing industrial activities on the environment.  

The model of macro-benthic community response to chemical discharges (Pearson and 

Rosenberg, 1976) is today the standard methodology used to demonstrate the impact of 

petroleum industry related activities on the Norwegian continental shelf. However, benthic 

foraminifera are also sensitive indicators of environmental conditions. In pristine 

environments the foraminiferal distribution is mainly affected by abiotic parameters, 

including temperature, salinity, nutrient availability, bottom substrate and dissolved oxygen 

(Murray, 2006). Changes have been documented in environments exposed to stressors 

including low foraminiferal density and diversity (Schafer, 1973; Yanko et al., 1994), high 

numbers of opportunistic species (e.g. Ellison et al., 1986; Murray, 2006; Pearson and 

Rosenberg, 1976), alterations of test chemistry (Nigam et al., 2006) and deformation of the 

test (e.g. Geslin et al., 1998; Yanko et al., 1998).

Environmental monitoring studies using benthic foraminiferal assemblages have several 

advantages. Benthic foraminifera are widely distributed and have specific environmental 

preferences (Boltovskoy et al., 1991; Murray, 2006; Schafer, 2000; Scott et al., 2001). They 

are often present in high numbers in marine sediments, therefore allowing for small sediment 

samples to be used in order to achieve statistically reliable assessments (Murray, 2006).

Foraminiferal reproductive cycles are short, and therefore their response to environmental 

change is fast (Kramer and Botterweg, 1991). Finally, benthic foraminiferal tests remain in 

the fossil record, enabling the reconstruction of past environments and therefore pre-impact 

conditions (Alve, 1991a, b; Dolven et al., 2013). Recently, a list of recommendations to 

standardize the methodology in bio-monitoring studies using benthic foraminifera was 

formulated (Schönfeld et al., 2012). 

The use of fauna as a monitoring tool is often complicated due to natural variability in both 

the ecosystem and the physical environment. As a result, site specific impact studies are 
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needed in a variety of habitat types in order to develop an accurate bio-monitoring tool using 

benthic foraminifera. Such studies link responses of foraminiferal assemblages to observed 

environmental conditions.  

With few studies performed in high latitude areas, the aim of the present investigation is to 

establish a pre-impact reference point for a relatively pristine area where industrial activities 

are projected to increase over time. This baseline study establishes a data set of the spatial 

distribution of living benthic foraminifera in the Ingøydjupet-Tromsøflaket region of the SW 

Barents Sea (Fig. 1). Previous studies in this region on modern distributions of benthic 

foraminifera focused mainly on the relationship between foraminiferal assemblages, 

oceanography, grain size and climate change (Hald and Steinsund, 1992; Saher et al., 2009; 

Saher et al., 2012; Steinsund, 1994).  

The living benthic foraminiferal assemblage in the Ingøydjupet-Tromsøflaket region, SW 

Barents Sea (Fig.1) was investigated together with sediment properties, i.e. grain size, organic 

matter content and concentrations of a selection of metals. Relationships between sediment 

properties and assemblage distributions were determined using principal component analysis 

and a multiple regression linear model. The study supports the development of a bio-

monitoring tool using foraminifera.  

2. Regional setting

The southwestern part of the Barents Sea (Fig. 1) is characterized by bank areas incised by 

transverse glacial troughs. Our study area comprises two banks: Tromsøflaket in the west and 

Nordkappbanken to the east (Fig. 1b). Water depths range between 150 and 200 m on the 

Tromsøflaket bank area. Tromsøflaket is bounded by slopes towards three glacial troughs: 

Ingøydjupet (>400 m) in the east; Bjørnøyrenna (>400 m) to the north and Sørøysundet (280-

300 m) to the south. In the west, Tromsøflaket is bounded by the steep Egga shelf edge (Fig. 

1b).  

The sedimentary characteristics of the open marine environment have previously been 

investigated in this region. Studies included grain-size distributions (Vogt and Knies, 2008), 

total organic carbon (TOC) concentrations (Knies and Martinez, 2009), metals and polycyclic 

aromatic hydrocarbons (PAHs) (Bakke et al., 2001; Boitsov et al., 2009a, b; Boitsov et al., 

2011; Dahle et al., 2009; Jensen et al., 2009; Mannvik and Wasbotten, 2008; Mannvik et al., 

2011; Nøland et al., 1999; Trannum et al., 2004).

In the Barents Sea, water masses are comprised of Arctic, Atlantic, Coastal and local waters 

(Carmack, 1990; Hopkins, 1991; Loeng, 1991; Mosby, 1968; Treshnikov, 1985). In the study 
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area, Atlantic and Coastal water are the dominating water masses (Fig. 1a). Atlantic water is 

transported northwards by the Norwegian Atlantic Current (NAC). Temperatures are in 

general >2 ° C, but can vary seasonally by about 2 ° C; salinity of the NAC is around 35 psu 

(Hopkins, 1991; Ådlandsvik and Loeng, 1991). The NAC turns eastward into the Barents Sea 

at the northern tip of Tromsøflaket (Ingvaldsen et al., 2004). The Norwegian Coastal Current 

(NCC; 3 to 13 ° C) is a surface current following the Norwegian coast from the south into the 

Barents Sea and is relatively fresh (30 to 35 psu) due to the local input by river runoff (Aure 

and Strand, 2001; Sætre and Ljøen, 1971).

A model by Vikebø and Ådlandsvik (2005) implies that the NCC dominates the southern part 

of Tromsøflaket, while the NAC dominates the rest of the bank. Based on sediment patterns in 

iceberg plough marks, Bellec et al. (2008) reconstructed a similar pattern with Atlantic water 

entering Tromsøflaket both from the northwest across the slope, and from Bjørnøyrenna in the 

north. In Ingøydjupet, a stratified water column with Atlantic Water at the bottom and Coastal 

Water in the upper 30-50 meters of the water column was observed (Chistyakova et al., 2010; 

Ingvaldsen et al., 2004; Loeng, 1991). 

3. Material and methods

3.1 Sampling procedures 

Sediment samples were collected (2006-2011) and analyzed (2010-2011), before 

establishment (2011) and publication (2012) of the FOBIMO-protocol (Schönfeld et al., 

2012). The here used sampling and analysis techniques might therefore deviate from the 

recommendations made in the FOBIMO-protocol.  

In total 37 surface samples, covering the top centimeter (0-1 cm) of the sediment surface, 

were collected during four different sampling campaigns in June 2006, April 2007, June 2010, 

and July 2011 (Fig. 1b; Table 1). Surface samples from 2006 and 2007 were provided by the 

Mareano project (www.mareano.no), hereafter referred to as the ‘Mareano-set’, and cover 

Tromsøflaket and the slopes towards Ingøydjupet. Surface samples from 2010, provided by 

Statoil AS and hereafter referred to as the ‘Statoil-set’, were taken in the proximity of the 

producing Snøhvit Field, the Goliat Field and other exploration wells. Samples from 2011 

were collected on board of R/V Helmer Hanssen of the University of Tromsø (UiT) in the 

deepest parts of Ingøydjupet, and are hereafter referred to as the ‘UiT-set’. At some of the 

sample localities, physical oceanographic properties were measured with a CTD (Seabird 

SBE 9111 plus), providing information on temperature (T) and salinity (S) throughout the 

water column (Table 1).  
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Sediment samples were retrieved with a multi corer, box corer, van Veen grab or a combi 

grab, depending on substrate type and sampling campaign (Table 1). After retrieval the 

surface of the samples were carefully studied for disturbances (Andreassen, 2011; Jensen et 

al., 2007, 2008; Mannvik et al., 2011). Especially grab corers are known to easily disturb the 

sediment surface, which might results in the loss of some specimens (Riddle, 1989; Wigley, 

1967). Only undisturbed surfaces were used for further analyses. Sub samples were taken for 

analyses of metal concentrations, total organic carbon (TOC), grain size, clay mineral 

analyses and foraminiferal assemblages. None of the sampling expeditions included the 

collection of replicate samples. Analyses of the sample sets were performed at the University 

of Tromsø, Iceland GeoSurvey, Norwegian Geological Survey and UniLab AS (Table 1). 

All samples of the Mareano-set were kept frozen (-18 ° C) until further analyses, apart from 

those intended for foraminiferal analyses which were stored cool (4 ° C). All of the Statoil 

samples were frozen (-20 ° C) directly after retrieval. All sediment samples from the UiT-set 

were stored cool (4 ° C). 

3.2 Grain size parameters and total organic carbon

Sediments were wet sieved at size fractions 63 μm, 100 μm and 1 mm. Silt and clay fractions 

(<63 μm) were analyzed on the Micrometics SediGraph 5100 according to the technique 

described by Coakley and Syvitski (1991). Weight percentages of sand (>63 μm), silt (4-63 

μm) and clay (<4 μm) fractions were calculated from the resulting grain size distributions.  

Sortable silt mean grain-size (SS) was calculated from the sedigraph analyses using the 10-

63μm fraction (Bianchi and McCave, 1999; Hass, 2002; McCave et al., 1995). Whereas in 

paleo-records the mean current velocity can be calculated from SS, this is not possible for 

modern sediments (McCave et al., 1995). Hence we are concentrating only on patterns seen in 

SS, and interpret these as changes in strength of the bottom current. 

X-ray diffraction (XRD) was applied to the < 2 μm fraction to differentiate between the 

different clay minerals: kaolinite, chlorite, illite and smectite.  Mareano samples were 

analyzed at the Geological Survey of Norway (NGU) according to the procedures described 

by Jensen et al. (2007) and Vogt and Knies (2008);  Statoil and UiT were analyzed at the 

Iceland GeoSurvey (ISOR) are according to the method of Moore and Reynolds (1997) as

described by Rüther et al. (2012). MacDiff software version 4.2.5 (Petschick, 2010) was used 

to process the XRD measurements and quantify the four different clay minerals. Since 

smectite might be an indicator of inflow of Atlantic waters (Junttila et al., 2010; Vogt and 

Knies, 2008), only smectite was considered in the studies. 
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The TOC concentrations of the samples of the Mareano and UiT-set were analyzed using a 

Leco CS-200 induction furnace. Inorganic matter was removed from the bulk sediment with 

HCl (10%) prior to measurement. During measurement, samples are placed in an oven (1350 

° C), burning all components except organic carbon. For the Statoil-set, instead of  TOC, total 

organic matter (TOM) concentrations were measured according to the method described by 

Mannvik et al. (2011). Due to lower heating temperatures during the analyses of TOM (480 ° 

C), this method quantifies sediment organic carbon, organic matter, oxygen, nitrogen and 

sulfur concentrations. 

3.3 Chemical analyses 

The sediment samples for chemical analyses were dried at 40 °C, homogenized and sieved at 

a <2mm mesh before decomposing with nitric acid (HNO3). Barium (Ba), cadmium (Cd), 

copper (Cu), chromium (Cr), zinc (Zn) and lead (Pb) concentrations were analyzed with 

inductively coupled plasma atomic emission spectroscopy (ICP-AES) or inductively coupled 

plasma sector field spectroscopy (ICP-SFMS), depending on the concentrations of the metals, 

following the procedures of Norwegian Standard (NS) 4770. Concentrations of mercury (Hg) 

were analyzed with atom fluorescence (AFS) following the procedures of NS 4768. Chemical 

analyses of the samples of the Mareano-set were prepared according to the methods described 

in Jensen et al. (2007, 2008); preparation of the Statoil-set and UiT-set were according to the 

methods described in Mannvik et al. (2011). 

3.4 Foraminiferal assemblages 

A rose Bengal ethanol mixture (1g/1L ethanol 95%) was added to the sediment samples 

intended for foraminiferal analyses to stain the cytoplasm and distinguish between living 

(stained) and dead fauna (Walton, 1952). Samples of the Mareano and UiT-set were stained 

directly after retrieval. Samples of the Statoil set, frozen directly after retrieval, were stained 

during the thawing process before analyses. Samples were gently shaken to enable staining of 

living foraminifera within sediment clumps. Staining of the samples was allowed for a 

minimum of two weeks (Lutze and Altenbach, 1991).

In polar regions benthic foraminifera have mainly be analyzed using the > 100 μm size 

fraction due to the generally small size of the foraminifera from these environments (Knudsen 

and Austin, 1996). Hence, living benthic foraminiferal assemblages were studied in the 100 

μm to 1 mm size fraction. This additionally allows a direct comparison to previous studies of 

living foraminifera from the Barents Sea (e.g. Hald and Steinsund, 1992, 1996; Saher et al., 
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2009; Saher et al., 2012; Steinsund, 1994). Both calcareous and agglutinated species were 

considered. The samples were split using a modified Elmgren wet splitter (Elmgren, 1973).

The samples were examined wet to better distinguish between stained and non-stained 

specimens. The coloration of rose Bengal stained living specimens differs among species. 

However, in general only specimens with a bright stain inside more than half of the chambers 

were considered to be living at the time of sampling (de Stigter et al., 1998; 1999). For 

agglutinated foraminifera, the presence of stain in the aperture was an additional requirement 

to be considered as living. A minimum of 300 specimens from a known split of the sediment 

was identified to precisely determine the relative abundance of species of the assemblage 

(Patterson and Fishbein, 1989). When less than 300 living specimens were present in the 

sample, the whole sample volume was counted. The living foraminifera were identified down 

to species level following Loeblich and Tappan (1987) and Ellis and Messina (1940–1978),

except for the Reophax and Trochammina species. Those were grouped as Reophax spp. and 

Trochammina spp. 

Absolute abundance of species was normalized to a sample volume of 50 ml (specimens/50 

ml of sediment). The taxonomic diversity of the foraminiferal assemblages was investigated 

using the Shannon index (H'; Shannon, 1948), and was calculated with the PAST software 

(version 2.17c; Hammer et al., 2001) using the absolute abundances of all observed species, 

with grouping of the Reophax and Trochammina species. 

3.5 Data analysis  

Similarity between the stations based on the measured abiotic variables was determined with 

Q-mode hierarchical clustering, using Ward’s method and Euclidean distance (Ward, 1963).

Additionally, a principal component analysis (PCA) was performed on the abiotic variables to 

find the main modes of variation (Davis, 2002; Harper, 1999). 

Depth, SS, fine fraction (<63 μm), smectite and the concentrations of Pb, Ba, Hg, Cd, Cr, Cu 

and Zn were included. Sand, silt and clay are expressed as percentages. To avoid bias in the 

statistical analyses by variables influencing each other, silt and clay were summed to reflect 

the fine fraction (<63 μm), while the coarse fraction represented by sand (>63 μm) was left 

out of the analyses. The assumption was made that a positive correlation to the fine fraction 

implies a negative correlation to the coarse fraction and vice versa. Ti, TOM and TOC were 

also removed from the calculations, since they were not measured in every station and might 

bias the results. R68-3a and R68-3b were left out of the clustering and PCA due to a lack of 

metal concentrations data (Table 1). 
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Abiotic variables were standardized before analyses to remove the effect of different orders of 

magnitudes by subtracting the mean (μ) of the variable from the analyzed value (X) and 

dividing by the standard deviation (σ): i.e. standardized value = (X-μ)/σ. 

To identify different associations within the living foraminiferal assemblage, foraminiferal 

species were grouped with R-mode hierarchical clustering, using Ward’s method and 

Euclidean distance (Ward, 1963). Absolute abundance, standardized to 50 ml of sediment was 

used as input for R-mode clustering. Only species that had a relative abundance of >5 % in at 

least one sample were considered (Fishbein and Patterson, 1993). 

Relations between abiotic variables and benthic foraminifera were found by multiple 

regression linear modeling using a stepwise regression with bidirectional elimination, using 

the Akaike information criterion (AIC). The same abiotic variables and foraminiferal species 

as for the Q-mode and R-mode clustering were used as input for the linear model. The linear 

model defines which of these abiotic variables are necessary to explain, in the best possible 

way, the variability observed in the benthic foraminiferal assemblages. The model was run for 

both the summed abundances of the species of the associations found by the R-mode 

clustering and for each of the species separately. To test the significance and performance of 

the model the two way probability (p) and multiple regression coefficient (mR2) was

calculated. A correlation is considered to be of intermediate to high significance when p<0.01 

(see Table 2 for a more detailed classification). 

Q- and R-mode hierarchical clustering and principal component analysis (PCA) were 

performed using the statistical program PAST (version 2.17c; Hammer et al., 2001). Stepwise 

regression was performed using the statistical program R (version 2.14.2; RDCTeam, 2012).

4. Results

4.1 Grain size parameters and total organic carbon

Generally, the silt and clay content increases at water depths deeper than ~317m, with coarser 

grain sizes observed at Tromsøflaket (sand to sandy silt; average sand content: 58 %) and 

finer sediments (clayey silt to silt; average sand content: 12%) prevailing in Ingøydjupet (Fig. 

2a and b). Particles >1 mm consist mainly of gravel, shell (fragments) and sponge spicules. 

Sediment samples from Tromsøflaket are rich in sponge spicules. Some >1 mm fractions of 

the sediment samples contained larger dead foraminifera, mainly Ammolagena clavata,

Lobatula lobatula, Paromalina coronata and Psammosphaera fusca. Some of these 

II - 8



foraminifera were found attached to the substrate; however none of the foraminifera were 

stained and are therefore not considered in this study.

The organic content of the samples is reflected by TOC (Mareano-set and UiT-set) and TOM 

(Statoil-set) (Fig. 2b). Since TOM reflects organic carbon content as well as the oxygen, 

nitrogen and sulfur concentrations, TOM concentrations are consequently higher than TOC 

concentrations. TOC varies between 0.24 % and 0.98%; TOM varies between 1.90 and 

7.60%. However, both parameters indicated a similar pattern. In general, TOC and TOM 

concentrations are slightly higher in the finer grained sediments deposited in the deeper areas 

compared to coarser grained sediments deposited in shallower areas (Fig. 2b).  

Clay mineral assemblages (smectite, illite, kaolinite and chlorite) were analyzed. Only 

smectite is considered here as a tracer of Atlantic water inflow (Junttila et al., 2010; Vogt and 

Knies, 2008). Smectite concentrations fluctuate between 0 and 18 %, with an average 

abundance of 5.8 % (Fig. 2c). Smectite concentrations are highest in the samples from 

Ingøydjupet.  

Sortable silt mean grain size (SS) fluctuates between ~19 μm and ~30 μm (average value ≈ 23 

μm). This indicator of bottom current strength (Bianchi and McCave, 1999; Hass, 2002; 

McCave et al., 1995), has comparable average values in both Tromsøflaket and Ingøydjupet. 

Values are slightly enhanced in the samples from Nordkappbanken and are particularly low in 

the samples taken around the Snøhvit Field (Fig. 2c). 

4.2 Metal concentrations 

Concentrations of the analyzed metals are presented in Fig. 3 (values are tabulated in 

Appendix A).  

In general, Cr (average concentrations ≈ 27 mg/kg), Cu (average ≈ 10 mg/kg), Pb (average ≈ 

14 mg/kg), Ti (average ≈ 562 mg/kg) and Zn (average ≈ 43 mg/kg) show elevated 

concentrations toward the deeper water depths of Ingøydjupet, which coincides with the 

higher silt and clay contents of the sediments from this region. Ba (average ≈ 105 mg/kg) and 

to less extent Pb, have elevated concentrations around the Snøhvit Field. Cd (average ≈ 0.10 

mg/kg) has no clear spatial trend and has two peaks of elevated concentrations at station R81

and R87 on Tromsøflaket. Also Hg (average ≈ 0.05 mg/kg) has no clear spatial pattern, but 

has elevated concentrations in stations HH150, HH154 and NVA-05.  

Almost all metal concentrations measured in the surface sediments correspond to background 

levels (level I) according to the guidelines of the Water Framework Directive (WFD; 

EuropeanCommission, 2003). Only the Cd concentration of station R87 and Hg 
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concentrations of stations HH150, HH154 and NVA-05 correspond to a good environmental 

status; WFD level II. Metal concentrations were never at harmful environmental levels, i.e., 

WFD level III to V.  

4.3 Benthic foraminiferal assemblages 

A total of 134 living benthic foraminiferal species, 103 calcareous and 31 agglutinated, were 

identified in the samples. Only 19 species of these have a relative abundance of >5 % in at 

least one sample and together describe between 73 and 96 % of the total living assemblage. 

Diversity (H’) varies between 1.9 (sample HH150) and 3.0 (sample R22) of the Shannon 

Index (Fig. 4). Although a spatial trend for H’ is not pronounced, diversity seems to be 

slightly lower in the samples from Ingøydjupet. H’ was calculated using the grouped 

abundance of Trochammina and Reophax species. Therefore, the true H’, i.e. when the 

different Trochammina and Reophax species would have been counted separately, would have 

been slightly higher. However, the spatial pattern of H’ is expected to be similar.  

The number of living specimens varies from 84 (station SF-11) to 6874 specimens (station 

R81) per 50 ml of sediment (Fig. 4). Despite the low foraminiferal abundance of station 

reg09-04 and R17 located on Tromsøflaket, foraminiferal abundance is in general decreased 

in the samples from the Snøhvit field and the deeper areas of Ingøydjupet (R5, R4, R3). 

Sediment samples collected at the Snøhvit Field have a relatively low foraminiferal 

abundance.  

The relative and absolute abundance of the most frequent taxa is plotted in Fig. 5. The 

assemblage of living foraminifera is dominated mainly by Reophax spp., Lobatula lobatula,

Trifarina angulosa and Epistominella nipponica. In addition, Trochammina spp., Cassidulina 

laevigata, Nonionella auricula, Cassidulina reniforme and Melonis barleeanus are commonly 

observed.  

In general, patterns of these species show that L. lobatula, T. angulosa, C. reniforme and C.

laevigata are more common in the Tromsøflaket samples (Fig. 5a-d). C. reniforme was only 

observed in the samples from Tromsøflaket, and is absent in the samples from Ingøydjupet 

and Nordkappbanken (Fig. 5d). M. barleeanus, N. auricula and Trochammina spp., are more 

frequently observed in Ingøydjupet (Fig. 5e-g). Reophax spp. does not show a clear spatial 

trend (Fig. 5h), whereas the relative abundance of E. nipponica is remarkably higher in the 

stations from the Snøhvit Field (Fig. 5i). The high relative abundance of E. nipponica in the 

Snøhvit samples is not visible in the absolute abundance of the species. In fact, the absolute 
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abundance of E. nipponica, and other species, is lower in the Snøhvit samples in comparison 

to the other stations.  

4.4 Habitat characteristics – Q-mode clustering and PCA 

Q-mode clustering delineates two sedimentary groups based on water depth, fine sediment 

fraction (<63 μm), SS, smectite content and metal concentrations (Fig. 6a). In general, 

samples from the shallower Tromsøflaket were grouped in cluster I (average water depth = 

268 m), hereafter referred to as the TF-cluster (filled symbols in Fig. 1). Cluster II mainly 

comprises samples from the deeper Ingøydjupet (average water depth = 388 m), hereafter 

referred to as the ID-cluster (open symbols in Fig. 1). Exceptions are stations R7 from 

Ingøydjupet grouped in the TF-cluster and R87 from Tromsøflaket grouped in the ID-cluster.  

Similar clusters of samples were found by the PCA (Fig. 6b). The first component of the 

PCA, PCA1, explains 43.9% of the variance; the second component, PCA 2, explains 14.8% 

of the variance. PCA1 is positively correlated to Cu, Cr, Zn, Pb, Ba and the fine (<63 μm) 

sediment fraction, and negatively correlated to SS. PCA2 positively correlates to depth, 

smectite, Zn and SS, and negatively correlates to Cd, Pb and Ba.

Samples of the TF-cluster have negative values on the PCA1-axis, and plot thus in opposite 

direction as the metals and fine fraction, suggesting that samples of the TF-cluster negatively 

relate to these abiotic variables (Fig. 6b). SS plots in similar directions as samples from the 

TF-clusters, implying a positive relationship between these samples and SS. 

Most of the samples of the ID-cluster show a positive relationship to PCA1 and concomitantly 

a strong positive response to fine (<63 μm) sediments as well as many of the metal 

concentrations (Fig. 6b).  

4.5 Foraminiferal associations – R-mode clustering

R-mode clustering grouped the most abundant living benthic foraminiferal into three sub-

assemblages or associations (Fig. 7a). The first association, the Lobatula-Trifarina association 

(LT-association; Fig. 7a) is dominated by L. lobatula and T. angulosa. In addition, C. 

laevigata and C. reniforme are important attribute species in this association. In general, the 

abundance of species from the LT-association decreases towards Ingøydjupet (Fig. 5 a-d). 

Also the summed abundances of the species of the LT-association are highest on 

Tromsøflaket and decreases towards Ingøydjupet (Fig. 7b).  

The second association, the Reophax association (R-association; Fig. 7a), is dominated by 

Reophax spp. In addition, Trochammina spp. and E. nipponica are part of this association. 
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There is no unilateral regional pattern observed for the three species of the R-association (Fig. 

5 g-i); the summed abundance possibly shows a small increase towards Ingøydjupet (Fig. 7b). 

The third association, the Melonis-Nonionella association (MN-association; Fig. 7a) consists 

of the frequently abundant M. barleeanus, N. auricula and Pullenia bulloides. In addition, the 

less abundant Fissurina marginata, Elphidium excavatum, Cribroelphidium incertum, 

Miliolinella sp., Islandiella norcrossi, Quinqueloculina seminulum, Elphidium sp., Islandiella 

helenae and Rosalina sp. are grouped in this association. The overall pattern observed for the 

dominant species of the MN-association (Fig. 5e-f) is an increase from Tromsøflaket towards 

Ingøydjupet. This increase is less pronounced for the summed abundance of the MN-

association (Fig. 7b), most likely due to the less frequent species which have no clear spatial 

pattern.  

4.6 Foraminifera - habitat relationships - multiple regression linear modeling 

Multiple regression linear models were fitted to find relationships between abiotic variables 

and the benthic foraminiferal species and associations (Table 2 and Appendix B).  

The best fitting model for the LT-association found a negative response of the species of the 

group to fine fraction (p= 0.16) and Ba (p=0.08), while a positive response to Cd (p=0.02) and 

Zn (p=0.004) was found. In addition, a strong negative response to Cr (p=0.005) is observed. 

The mR2 of the linear model for the LT-association is 0.42. In general, similar relations were

observed when the linear model was run for the species of the LT-association separately. 

Exceptions are T. angulosa, which positively relates to SS (p=0.06) and C. laevigata which 

negatively relates to Cu (p=0.0007). 

The chosen model for the R-association calculated negative responses to water depth 

(p=0.23), fine fraction (p=0.07), smectite (p=0.19), Pb (p=0.004) and Hg (p=0.06). The R-

association positively correlates to SS (p=0.08), Cd (p=0.0002), Cr (p=0.11) and Zn (p=0.04). 

The mR2 of the model for the R-association is 0.56. The low mR2 value (0.06) of

Trochammina spp. indicates that the abiotic variables used as input to the model, do not 

explain the distribution of this species group. 

The best fit linear model for the MN-association found a positive response of the species to 

SS (p=0.18), Cd (p=0.0001) and Zn (p=0.04) and negative responses to the fine fraction 

(p=0.01), Ba (p=0.12) and Hg (p=0.16). The mR2 of the linear model for the MN-association

is 0.53. Some deviations to the linear model of the MN-association were found when the 

model was run for the individual species. The most pronounced differences are: the negative 

response of F. marginata (p=0.006) and E. excavatum (p=5.87e-05) to Pb; the strong positive 
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response of Miliolinella sp. (p=0.0009) and strong negative response of M. barleeanus 

(p=0.0001) and P. bulloides (p=0.004) to Cu and; the negative response of Miliolinella sp.

(p=8.78e-05) and Q. seminulum (p=0.01097) to Zn. Rosalina sp. was the only species for 

which no significant relation was found to any of the explanatory variables included in the 

model.  

5. Discussion

The projected increase in petroleum industry related activities in the SW Barents Sea might 

result in increased releases of contaminants into the marine environment. To assess the impact 

of these activities on the environment, site specific and accurate bio-monitoring tools are 

needed. The aim of the present investigation is to establish a baseline data set of the spatial 

distribution of living benthic foraminifera in the relatively pristine Ingøydjupet-Tromsøflaket 

region. The present day habitat of benthic foraminifera was characterized (grain size, organic 

matter content, metal concentrations) and the relationship between foraminiferal associations 

and habitat characteristics was identified.  

5.1 Habitat characteristics and foraminiferal assemblages  

In the Ingøydjupet-Tromsøflaket region, three foraminiferal associations were identified by R-

mode clustering: the LT-association, the R-association and the MN-association (Fig. 7a). Q-

mode clustering divided the sediment samples into two clusters based on their abiotic 

variables: the TF-cluster consisting of samples from Tromsøflaket and the ID-cluster 

consisting of samples from Ingøydjupet (Fig. 6). The response of these associations to abiotic 

variables was modeled using a multiple regression linear model. 

The LT-association is dominated primarily by L. lobatula and T. angulosa, but also C. 

laevigata and C. reniforme are grouped in this association. The abundance of the LT-

association is in general highest in samples clustered in the TF-cluster, characterized by 

coarse grain sizes (Fig. 7 and 2). The multiple regression linear model (Table 2; Appendix B) 

found a negative relation for fine grained (<63 μm) sediments and the LT-association. 

Consequently this implies a positive response of the LT-species to the coarse fraction (see 

explanation in 3.5: Data analysis). Previous studies documented similar preferences for coarse 

grained sediments for C. laevigata, L. lobatula and T. angulosa (Hald and Steinsund, 1992; 

Harloff and Mackensen, 1997; Mackensen et al., 1993; Mackensen and Hald, 1988; 

Mackensen et al., 1985; Nyholm, 1961). It must be noted however, that the negative response 
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of species of the LT-association to fine grain sizes is not highly statistically significant 

(p>0.01). This might be a result of the occurrence of the LT-species in both the fine grained 

samples, i.e. samples from the ID-cluster, and coarser grained samples, i.e. samples from the 

TF-cluster (Fig. 5a-d). In finer grained habitats, L. lobatula occurs attached to, for example, 

polychaete tubes (Steinsund, 1994).  

Both L. lobatula and T. angulosa tolerate high hydrodynamic activity (Hald and Steinsund,

1992). The linear model found a positive response between T. angulosa and the bottom 

current indicator SS. The high abundance of these current indicating species, together with the 

positive response of the TF-cluster to coarse grained sediments, implies high bottom current 

velocities at Tromsøflaket. The positive relation between SS and the TF-cluster found by the 

PCA (Fig. 6) also indicates enhanced bottom current velocities here. The relationship between 

mean grain size and current speed is well studied with higher bottom current velocities 

associated with erosion and transport of coarser grained particles (e.g.Gao and Collins, 1992; 

Hjulström, 1935; Li and Amos, 2001; Nichols, 1999; Yang, 2006). At Tromsøflaket, bottom 

current velocities are strong enough to erode and transport fine grained sediments away 

exhibiting a predominance of coarser grained sediments on the seafloor. Bellec et al. (2008) 

calculated bottom current velocities on Tromsøflaket based upon sediment maps inferred from 

backscatter data of video transects. Near-seafloor velocities fluctuated between 5 to 50 cm/s, 

with the highest current speeds at the shallowest parts of Tromsøflaket and in Sørøysundet 

(Bellec et al., 2008).

Thus, the foraminiferal species of the LT-association dominating at Tromsøflaket reflect the 

prevailing habitat conditions at Tromsøflaket, i.e., coarse grained sediments and high bottom 

current velocity. 

The R-association, dominated by Reophax spp. and with E. nipponica and Trochammina spp. 

as important attribute species, shows in general a negative response to the fine fraction and on 

a lower significance level a positive response to SS (Table 2). Trochammina spp. poorly 

relates to any of the abiotic parameters included in the linear model and has a low mR2 (0.06).

This might indicate the indifference of the species to any of the explanatory variables 

included in the model or be an effect of the poor preservation potential of the fragile tests of 

the species (Hald and Steinsund, 1992).  

There is no unilateral regional pattern observed for the three species of the R-association (Fig. 

5g-i). Despite the weak positive relation found by the linear model for sand and SS, the 

summed abundance shows a small increase towards Ingøydjupet (Fig. 7b). This is mainly the 
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effect of the increase of Trochammina spp. (Fig. 5g) towards Ingøydjupet; Reophax spp. (Fig. 

5h) has no regional trend, E. nipponica (Fig. 5i) has maximum relative abundances around the 

Snøhvit Field. The increase of Trochammina spp. towards Ingøydjupet might be the effect of 

the calmer bottom water conditions in this area and relatively higher sedimentation rates (see 

discussion below), enabling the preservation of the species. Reophax spp. is known to thrive 

in both muddy and coarse environments (Murray, 2006), explaining the absence of a regional 

pattern.  

The relative abundance of E. nipponica is highest around the Snøhvit Field. It must be noted 

however, that the absolute abundances of E. nipponica is low in these samples, as is the 

absolute abundance of the other living species (Fig. 5) and overall foraminiferal abundance 

(Fig. 4). In previous studies, highest abundances of E. nipponica were observed on the flanks 

of Ingøydjupet where few other foraminifera were present (Hald and Steinsund, 1992). This 

was attributed to reworking facilitated by the small size and round feature of the species 

(Murray et al., 1982; Scott and Medioli, 1980). The specimens of E. nipponica identified in 

this study were all clearly stained, and were therefore considered to be living during sampling. 

No clear signs of reworking, i.e., damaged tests, were observed. The presence of E. 

nipponica, while other species are absent, might also suggest an opportunistic behavior. Other 

Epistominella species, i.e. Epistominella vitrea and Epistominella exigua, and the

morphologically identical deep water species Alabaminella weddellensis are interpreted as 

opportunistic species tolerant to high food availability (Jorissen et al., 1992), varying organic 

flux (Altenbach et al., 1999) and pulsed phytodetritus (Gooday et al., 1993; Gooday and 

Lambshead, 1989; Smart and Gooday, 1997; Sun et al., 2006) respectively. However, organic 

matter concentrations around the Snøhvit Field are not of values considered to limit 

foraminiferal distribution (Fig. 2). It is therefore suggested that the peak in relative abundance 

of E. nipponica is the effect of high sediment accumulation rates around the field. Hald and 

Steinsund (1992) observed the highest concentrations of E. nipponica when Holocene 

sediments were thickest. The increase of the fine fraction in the Snøhvit Field compared to 

Tromsøflaket, indicates calm bottom conditions. These calm conditions enable the settling of 

fine sediments and might result in high sediment inputs compared to the surrounding area. 

This enhanced sediment input might dilute the foraminiferal signal, explaining the low 

absolute abundances observed around the Snøhvit Field (Fig. 4). Similar low foraminiferal 

abundances and fine grain size were also observed in the deepest stations of Ingøydjupet, (R5, 

R4, R3), suggesting that similar calm conditions and high sedimentation rates might dilute the 

foraminiferal signal (Fig. 3 and 4).  

II - 15



To summarize, although the linear model indicates a slight preference of the R-association to 

coarser grained habitats with higher current speeds, there is no strong habitat-species 

relationship identified for this assemblage.  

The third association, the MN-association is dominated by M. barleeanus, N. auricula and P. 

bulloides. In addition, nine less frequent species are clustered in this association (Fig. 7a). The 

main species of the MN-association are in general more abundant in the samples from the ID-

cluster (Fig. 5e-f), characterized by fine grained sediments and relatively higher percentages 

of organic matter (Fig. 2). The linear model found a positive response of the MN-species to 

SS and a negative response of these species to the fine sediment fraction (<63 μm; Table 2). 

Especially for M. barleeanus and P. bulloides, this negative response to fine sediments is 

surprising, because both species are known to thrive in fine grained sediments (Hald and 

Steinsund, 1992; Mackensen et al., 1985). However, many of the species of the MN 

association can exist both as infaunal and epifaunal depending on food supply and grain size 

(Alve and Murray, 1999; Linke and Lutze, 1993; Matera and Lee, 1972). Most of these 

species are indeed observed in both the coarse sediments of Tromsøflaket and in the fine 

sediments of Ingøydjupet (Fig. 5). This might explain the negative response to fine grained

sediments.  

The relatively low mR2 values calculated by the linear model for M. barleeanus, P. bulloides

and N. auricula might be the result of the fact that organic matter was not included as an 

explanatory variable in the model. Organic matter is known to have a strong influence on the 

distribution of M. barleeanus, P. bulloides and N. auricula, which feed on buried decayed

organic detritus (Fontanier et al., 2002; Korsun and Polyak, 1989; Steinsund, 1994). 

The fine grained sediments of the ID-cluster and foraminiferal species preferring calm bottom 

conditions indicate low bottom current velocities in Ingøydjupet. Bellec et al (2008), indeed 

calculated lower bottom velocities for Ingøydjupet (<5 cm/s) compared to Tromsøflaket (5-50 

cm/s).  

Although not fully supported by the linear model, the foraminiferal species of the MN-

association reflect the prevailing conditions at Ingøydjupet, i.e., fine grained sediments, calm 

bottom water conditions and relatively higher concentrations of organic matter. 

The mR2 of the linear models varied between 0.06 and 0.75 with an average mR2 of 0.42

(Table 2, Appendix B). The often relatively low mR2 of the linear models, might be the result

of the high variability within the study area, the indifference of certain foraminiferal species 
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to environmental parameters used as input variables and/or, the low metal concentrations (see 

discussion below). The low mR2 values might also indicate the presence of explanatory 

variables that were not incorporated into the model. Besides grain size and metal 

concentrations, differences in bottom water conditions (T and S), competition between species 

and nutrient availability might influence the distribution of foraminifera within the study area. 

Bottom water conditions and organic matter content were not included in the linear model, 

since they were not measured consistently at every station. Despite the presence of two 

prevailing water masses in the studied area, NCC and NAC, CTD measurements taken during 

sampling do not show large variations in bottom T and S for the study area (ΔT= 1.81 ° C; 

ΔS=0.01 psu; Table 1). Bottom T and S are therefore not expected to have a direct influence 

on the distribution patterns of the three assemblages identified for this study area. Differences 

in concentrations of TOC and TOM, reflecting nutrient availability, are however expected to 

explain partly the difference of the foraminiferal distribution between the two regions (see 

discussion below). 

Some considerations regarding the methodology of this study should be taken into account 

when interpreting the foraminiferal results and when comparing these to past and future 

studies to monitor environmental change. Foraminiferal assemblages in the 100 μm – 1 mm 

fraction were studied. Previous studies have shown a considerable loss in both diversity and 

foraminiferal abundance when larger fractions (> 125 μm or 150 μm) rather than smaller 

fractions (> 63 μm) were analyzed (Fontanier et al., 2006; Fontanier et al., 2008; Mojtahid et 

al., 2009). Analyses of the larger fractions only, may therefore result in underrepresentation or 

absence of small species and juveniles (Duchemin et al., 2007; Schröder et al., 1987). A 

recent study by Bouchet et al. (2012) concluded however that foraminiferal assemblages of 

both fine and coarse fractions adequately reflect important environmental parameters. The 

FOBIMO-group made it a therefore a mandatory recommendation to study the > 125 μm 

fraction (Schönfeld et al., 2012). However, in the polar regions foraminiferal tests do often 

not attain test diameters of over 125 μm (Knudsen and Austin, 1996), hence the > 100 μm is 

often analyzed in these regions. The living 100 μm – 1 mm fraction is expected to adequately 

reflect potential future impacts of contaminants. It must however be noted, that our baselines 

only represent the studied size fraction. 

Only one replicate at each sample location was analyzed. The distribution of living benthic 

foraminifera is known to show patchiness, and the use of non-replicate samples might 

therefore reflect an unrepresentative variability (Barras et al., 2010; Bernstein et al., 1978; 
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Fontanier et al., 2003; Griveaud et al., 2010). Variability between sample localities was 

indeed observed in this study. However most of this variability could be explained by the 

variability in habitat characteristics of that sample locality (see discussion below). The three 

foraminiferal associations are therefore expected to reflect the general faunal distribution 

patterns of the region. Nevertheless, variability due to patchiness should be taken into account 

in future comparison of foraminiferal assemblages at the same sample locations.  

Sediment samples for foraminiferal analyses were collected over a time span of 5 years in 

different months (April, June and July). This might affect the interpretation of the results due 

to interannual and seasonal variability. Temporal variability in, for example, food availability 

might result in reproductive responses and high abundances of opportunistic taxa (e.g. 

Duchemin et al., 2008; Fontanier et al., 2006; Fontanier et al., 2008; Fontanier et al., 2002; 

Gooday and Hughes, 2002). Overall the reconstructed spatial pattern of benthic foraminifera 

and habitat characteristics (Fig.2 and Fig.5) does not show any variability between the four 

different sample sets that can be attributed to seasonal or interannual variability, e.g. large 

differences in organic matter between the sample sets or high numbers of opportunistic 

species. The presence of interannual and seasonal variability should however be taken into 

account when these foraminiferal associations are compared with future studies.

The distribution of the three foraminiferal associations reflect the natural variability in the 

studied area, i.e. differences in water depth, grain size, bottom current velocity and the 

availability of organic matter. In general, weak responses were observed of foraminiferal 

species to metal concentrations. These weak response, both negative and positive, are likely 

due to the low concentration levels of metals, with all concentrations characterized as 

background levels (WFD level I; EuropeanCommission, 2003). Exceptions are Cd and Zn, 

showing a strong positive response to the standardized absolute abundance of most of the 

foraminiferal species. This might be explained by the fact that these elements have oceanic 

distribution patterns related to nutrients; i.e., dissolved Cd has a distribution similar to the 

nutrient phosphate (Boyle, 1988; Boyle et al., 1976; Elderfield and Rickaby, 2000), while Zn 

displays a refractory nutrient-type distribution and is well correlated with silica (Bruland and 

Franks, 1983; Bruland et al., 1978; Martin et al., 1993). The positive responses therefore 

might be a secondary effect and reflect the affinity of the foraminifera to organic matter, 

rather than an affinity to the elements.  

II - 18



5.2 Sediment characteristics and metal concentrations 

The increase of metal concentrations and organic matter from Tromsøflaket towards 

Ingøydjupet (Fig. 3) is an effect of the increase in fine grained particles, rather than an effect 

of enhanced supplies to this region. Previous studies have documented a positive correlation 

between finer particles (clay and silt) and metal concentrations, due to the absorptive 

properties of clay minerals and the large specific surface area of finer particles (e.g. Contu et 

al., 1984; Degetto et al., 1997; Horowitz, 1991; Kennedy et al., 2002). This is supported by 

the positive correlation between the <63 μm fraction and most of the metals found by PCA 

(Fig. 6b) and the similar trends of <63 μm fraction and metal concentrations along the depth 

transect (Fig. 3). Additionally, organic matter is known to have an affinity to finer grain sizes 

(Kennedy et al., 2002). Organic matter was not included in the PCA. However, we observe a 

slight increase of organic matter concentrations towards the deeper Ingøydjupet (Fig. 2). 

Studies by Contu et al. (1984) and Degetto et al. (1997) suggest also a positive correlation 

between organic matter and Hg, Pb, Cu and Zn. It is therefore suggested that higher organic 

matter concentrations in the deeper stations also contribute to the observed higher metal

concentrations detected in samples from these localities.  

Some exceptions are observed to this general pattern of finer grained sediments with higher 

metal concentrations in Ingøydjupet, and coarser grained sediments with lower metal 

concentrations on Tromsøflaket (Fig. 2 and 3). These deviations might be the effect of local 

topography, i.e., local depressions or topographic highs. Bellec et al. (2008) showed that the 

morphology of Tromsøflaket has a large influence on sediment deposition with relatively

coarse sediments on ridges and shallow banks, and relatively fine sediments in depressions 

and on the slopes of Tromsøflaket (Bellec et al., 2008). The effect of high local variability is 

seen both in the metal concentrations and distribution of the foraminiferal associations. For 

example, the relatively fine grained sediment samples R87 and R17 (Fig. 2) have relatively 

high concentrations of some of the metals (Fig. 3) and a relatively high abundance of species 

of the MN association (Fig. 7b). These conditions indicate calm bottom conditions yet 

Tromsøflaket is characterized as a high energy environment. Another example is R11, a 

station rich in SS and therefore indicating high current velocities, which shows relatively high 

abundances of the current tolerant species of the LT association (Fig. 2 and 7b). This local 

variability might also be reflected in the linear model, by the sometimes relatively low mR2-

values. 

Ba concentrations around Snøhvit are elevated compared to other surrounding stations (Fig. 

3), although concentrations still correspond to background levels (WFD level I) 
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(EuropeanCommission, 2003). Ba is one of the constituents of barite (BaSO4) used as a 

weighting agent during the drilling process (Carroll et al., 2000). Low values of SS and 

relatively high clay percentages (Fig. 2) were observed in the Snøhvit samples. The 

bathymetric map of the study area (Fig. 1) shows that the Snøhvit samples are located in a 

small basin sheltered by relatively shallow areas. This most likely implies calm conditions, 

i.e., low bottom current velocities, at the Snøhvit Field, enabling the settling of fine grained

sediments. Chemical discharges from the Snøhvit Field may therefore not be transported over 

long distances but rather be deposited locally in this basin. However, when contaminant-laden 

fine grained sediments are transported away from the Snøhvit Field, they are likely to settle in 

Ingøydjupet. The drop in current speed, prevailing fine grained sediments and relatively 

higher TOC concentrations indicate that the sediments of Ingøydjupet might serve as a trap 

for contaminants. 

5.3 Implications for bio-monitoring

Responses of the ecosystem to different anthropogenic stressors have been extensively studied 

in temperate regions, but few data exist for the (sub-) Arctic region. A study of macro benthic 

communities by Olsen et al. (2007), suggests that (sub-) Arctic benthic communities are more 

vulnerable to petroleum related stressors than those in temperate regions. Therefore, 

indicators of environmental impact need to be further developed for the (sub-) Arctic region 

specifically. Currently, macro-benthos community structure is often the standard methodology 

to test the impact of anthropogenic activities on marine sedimentary environments. However, 

benthic foraminifera are also sensitive indicators of environmental condition, and have proven 

to be early indicators of the impact of stressors on the ecosystem (e.g. Alve, 1991a; Alve, 

1995; Alve et al., 2009; Armynot du Châtelet et al., 2009; Armynot du Châtelet et al., 2004; 

Bouchet et al., 2007; Coccioni et al., 2009; Ferraro et al., 2006; Foster et al., 2012; Frontalini 

et al., 2009; Hess et al., 2013; Jorissen et al., 2009; Mojtahid et al., 2006; Nigam et al., 2006; 

Yanko et al., 1998; Yanko et al., 1994). Additionally, their large abundances (Murray, 2006),

in comparison to macro fauna, enables statistically robust observations of faunal communities. 

The use of bio-indicators can be complicated by the strong natural and regional variability of 

benthic organisms. Hence when applying bio-indicators, it is essential to first obtain a solid 

understanding of the factors controlling natural variability, the range of this variability, and 

documentation of local baseline and pre-impact conditions.  

For example, Carroll et al. (2000) reported that 92% of the variability in benthic macro fauna 

communities close to petroleum fields on the Norwegian continental shelf are mainly 
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attributed to local natural factors, such as water depth, grain size and inter-annual variations. 

Only 8% of the variation in community composition was attributable to the effects of 

contaminants. As previously noted, the present study indicates that the observed benthic 

foraminiferal assemblages in this study are predominantly affected by natural factors, e.g. 

grain size, food availability and current speed.  

The range of metal concentrations detected in this study is comparable to those found in the 

surrounding region (table 3; Renaud et al., 2008). The range of the measured metal 

concentrations is considered to be of background to good environmental quality according to 

the WFD levels of environmental status (EuropeanCommission, 2003; Molvær et al., 1997).

Therefore, our study area is characterized as pristine; the measured metal concentrations and 

foraminiferal assemblages reflect pre-impact conditions.

The only sign that might indicate an anthropogenic disturbance is the elevated Ba levels (and 

to a lesser extent Pb) around the Snøhvit Field. Drill cuttings are rich in non-degradable and 

non-toxic Ba, making Ba a useful tracer of drilling related discharges. Other toxic heavy 

metals (Cd, Pb and Zn), commonly found in water-based drilling muds, do not generally 

affect benthic macro fauna (Carroll et al., 2000). However, the deposition of drill cuttings on 

the natural sediment surface can have a smothering effect on both the sessile benthic macro 

fauna and foraminifera. Whereas macro fauna are able to migrate through this layer (Carroll et 

al., 2000; Schaanning et al., 2008; Trannum et al., 2011; Trannum et al., 2010), benthic 

foraminifera only need a coverage of 2 cm to decline severely in abundance (Hess et al., 

2013). Although indications of high sedimentation rates at the Snøhvit Field were observed, 

these are not expected to be associated with drill cutting discharges from petroleum 

operations.  

Two of the three foraminiferal associations reflect the physical conditions of the investigated 

sub-regions. The LT-association, frequently abundant in the coarse grained high energy 

environment of Tromsøflaket, is dominated by epifaunal suspension feeders preferring these 

types of environments. The MN-association, frequently abundant in the fine grained calm 

environment of Ingøydjupet, is dominated by infaunal species thriving on buried organic 

material and preferring these calm environments. Similar patterns were observed in macro 

fauna assemblages from this region (Carroll et al., 2000; Renaud et al., 2008). In areas with 

coarse sands, suspension feeding bivalves and carnivorous worms dominated, while in fine 

deposits burrowing bivalve mollusks and tube dwelling polychaete worms thrived (Carroll et 

al., 2000).  
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The species of the R-association do not show a regional pattern, nor do they exhibit a clear 

response to the physical environment. Due to this lack of regional pattern, species of the R-

association are not likely to prove useful as bio-indicators in this region. The mainly epifaunal 

species of the LT-association and mainly infaunal species of the MN-association have a clear 

habitat preference, and are therefore considered as potential bio-indicators for this region. In 

addition, their differences in feeding strategies provide relevant information on the impact of 

human activities on ecosystems (Jørgensen et al., 2011). The epifaunal species of the LT-

association feed on high quality food sinking through the water column or the most recently 

deposited organic matter on the sediment surface. These suspension feeders might therefore 

be more sensitive and rapid indicators of environmental contaminations than infaunal species, 

since contaminants follow the same pathways as the organic matter these species feed on 

(Jørgensen et al., 2011). In addition, species of the LT-association are less mobile due to their 

sessile nature, compared to the relatively mobile species of the MN-association. In the case of 

drill cutting releases, the infaunal species of the MN-association are likely to migrate through 

this layer, whereas the sessile LT-associated species are likely to get smothered (Hess et al., 

2013). Due to their feeding strategy and sessile nature, species of the LT-association might be 

more vulnerable to anthropogenic impact and might thus be better bio-indicators than MN-

associated species. The MN-associated species on the other hand, are more abundant in fine 

grained sediments, where due to the fine grain sizes and calm water conditions, contaminants 

are more likely to accumulate. Toxicity threshold levels may therefore be exceeded more 

quickly and consequently an anthropogenic impact will be detected more rapidly.  

Four considerations should be made when developing a bio-monitoring tool for the SW 

Barents Sea, using the baseline conditions established in this study. Firstly, the differences in 

distribution of the foraminiferal associations are mainly the effect of grain size and organic 

matter availability and reflect the high natural variability of the studied region. This suggests 

that site specific conditions have a larger impact than regional scale differences (Renaud et 

al., 2008). When a tool is developed using the here described associations as input, it can only 

be applied to locations with physical properties within the range covered by this study.  

Secondly, benthic species exhibit a threshold effect rather than a gradual response to, for 

example, increased metal concentrations (Carroll et al., 2000). The responses observed in the 

present study between foraminiferal assemblages and metal concentrations might therefore be 

different when such threshold levels are exceeded. Additionally, potential toxicity of metals 

also depends on factors such as acidity, oxygen conditions and the presence of inorganic 
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elements such as sulfides (Somerfield et al., 1994). Metals as Cu and Cr can be bio-available 

under aerobic conditions, while they occur as metal-sulfide complexes and are thus non-

bioavailable in anaerobic environments (Hare et al., 1994). The modeled relationships are 

therefore only valid within the range (Table 3) of the explanatory variables used as input to 

the model and under similar acidity and oxygen conditions.  

Thirdly, the linear model only included the dominant species (i.e. species with a relative 

abundance of > 5% in at least one sample). Rare species are known to contribute most to the 

diversity of the benthic foraminiferal community (Murray, 2013). Since diversity is often 

reduced in impacted areas (Schafer, 1973; Yanko et al., 1994), rare species are crucial to 

detect ecological changes and are therefore critical in bio-monitoring studies (Cao et al., 

1998). Therefore, not only changes in the distribution pattern of the three defined associations 

might provide information on environmental change in the study area. Changes in the 

diversity of the samples (H’) might also be of importance.

Additionally, changes in the Barents Sea may include other factors than discussed here, such 

as climate change, ocean acidification and the activity of natural seeps. These factors might 

influence benthic foraminiferal assemblages and should therefore additionally be considered 

when developing a bio-indicator for monitoring the environment in the future.  

6. Conclusions

This study has documented the present day, pre-impacted state of the marine environment in 

the SW Barents Sea. The range of measured metal concentrations in the study area indicates 

background to good environmental quality according to the Water Framework Directive 

levels of environmental status. The environmental properties and benthic foraminiferal 

assemblages are therefore considered to reflect pre-impact conditions for this region.  

Three benthic foraminiferal associations were defined within the Tromsøflaket-Ingøydjupet 

region. Their distribution patterns are driven by the natural variations in the physical 

environment of the region. On the shallow Tromsøflaket, the physical environment is 

characterized by coarse sediments and high bottom current velocities. In this region, the 

Lobatula-Trifarina (LT) association has been identified with the sessile epifaunal species, L. 

lobatula, T. angulosa and C. laevigata predominating and reflecting the higher energy 

physical environment of Tromsøflaket. In Ingøydjupet, the physical environment is 

characterized by deeper water depths and calmer current conditions, with sediments of finer 

grain size and higher organic matter concentrations. Here, a Melonis-Nonionella (MN) 

association prevails, with M. barleeanus, P. bulloides and N. auricula as dominant species. 
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These infaunal species thrive on fine grained sediments and degraded organic matter. A third 

association, the Reophax (R) association, consisting of Reophax spp., Trochammina spp. and 

E. nipponica did not show a clear habitat preference. 

Species of the LT-association and MN-association are considered to be good bio-indicators, 

due to their specific habitat preferences and feeding strategies; those of the R-association are 

not considered as an adequate bio-indicator due to the absence of a clear regional and habitat 

pattern. The sessile nature and feeding strategy of species of the LT-association might make 

them more vulnerable to environmental disturbances. Species of the MN-association however 

dominate in fine grained sediments, where contaminants are more likely to settle and effects 

of increased contamination might be detected more rapidly.  

Overall, this study establishes the pre-impact conditions of the SW Barents Sea which 

contributes to the development of a bio-monitoring tool using benthic foraminifera for the 

region. Petroleum production is projected to expand significantly in the Barents Sea in the 

coming years, raising the potential for increased industrial discharges into the marine 

environment. Hence, such a bio-monitoring tool is expected to be of great relevance for this 

region.  
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Table 1. Sample locations and conducted analyses. 

Stations and corresponding coordinates (in decimal degrees), location, water depth, water 

temperature (T) and salinity (S) for the different sample sets. In addition, the coring 

equipment used to collect surface sediments for each analyses and the institute where those 

analyses were performed are given. For samples taken close to exploration wells the field 

name is indicated. Abbreviations: GS= grain size, SS=sortable silt mean grain size, ID= 

Ingøydjupet, TF= Tromsøflaket, NB= Nordkappbanken, BR=Bjørnøyrenna, BC= box corer, 

GC=grab corer, MC=multi corer, UiT=University of Tromsø, ISOR= Iceland GeoSurvey, 

NGU= Norwegian Geological Survey, UL= UniLab AS, N/A= not analyzed. 

Sample location analyses depth CTD
Mareano 

2006 lat long region GS/SS Forams Clay metals
TOC/
TOM (m)

T
(C)

S
(psu)

R3 71.33833333 22.42611111 ID BC(UiT) BC(UiT) MC(NGU) MC(NGU) MC(NGU) 435 5.01 35.13
R4 71.33638889 22.48972222 ID BC(UiT) BC(UiT) MC(NGU) MC(NGU) MC(NGU) 433 4.89 35.13
R5 71.30388889 22.53444444 ID BC(UiT) BC(UiT) MC(NGU) MC(NGU) MC(NGU) 422 5.06 35.13
R7 71.32638889 22.21083333 TF BC(UiT) BC(UiT) MC(NGU) MC(NGU) MC(NGU) 355 5.18 35.13
R8 71.28027778 22.14277778 TF BC(UiT) BC(UiT) MC(NGU) MC(NGU) MC(NGU) 313 5.38 35.14
R10 71.21722222 21.45583333 TF BC(UiT) BC(UiT) MC(NGU) MC(NGU) MC(NGU) 321 5.45 35.14
R11 71.22277778 21.72805556 TF BC(UiT) BC(UiT) MC(NGU) MC(NGU) MC(NGU) 301 5.31 35.14
R14 71.13361111 21.44055556 TF BC(UiT) BC(UiT) MC(NGU) MC(NGU) MC(NGU) 221 5.75 35.14
R17 71.270989 21.17611111 TF BC(UiT) BC(UiT) MC(NGU) MC(NGU) MC(NGU) 280 5.71 35.14
R22 71.04333333 21.85777778 TF BC(UiT) BC(UiT) MC(NGU) MC(NGU) MC(NGU) 249 5.82 35.14
R45 70.88555556 21.80138889 TF GC(UiT) GC(UiT) MC(ISOR) MC(NGU) N/A 300 5.95 35.13

R68-1 71.321072 22.48853 ID BC(UiT) BC(UiT) MC(NGU) MC(NGU) MC(NGU) 440 N/A N/A
R68-2a 71.319952 22.49888889 ID BC(UiT) BC(UiT) MC(NGU) MC(NGU) MC(NGU) 440 N/A N/A
R68-2b 71.31722222 22.50138889 ID BC(UiT) BC(UiT) MC(NGU) MC(NGU) MC(NGU) 435 N/A N/A
R68-3a 71.31666667 22.49527778 ID BC(UiT) BC(UiT) N/A N/A N/A 438 5.22 35.13
R68-3b 71.32083333 22.50333333 ID BC(UiT) BC(UiT) N/A N/A N/A 435 N/A N/A

Mareano 
2007
R81 71.16388889 18.65222222 TF BC(UiT) BC(UiT) BC(ISOR) MC(NGU) MC(NGU) 349 N/A N/A
R87 71.301743 20.33888889 TF BC(UiT) BC(UiT) BC(ISOR) MC(NGU) MC(NGU) 239 N/A N/A
R92 71.07472222 19.57166667 TF BC(UiT) BC(UiT) BC(ISOR) MC(NGU) N/A 202 N/A N/A

Statoil 
2010

HEL 01 71.588432 24.099612 NB/Heilo GC(UiT) GC(UiT) GC(ISOR) GC(UL) GC(UL) 302 N/A N/A
NVA-05 72.916358 25.88912 BR/Norvarg GC(UiT) GC(UiT) GC(ISOR) GC(UL) GC(UL) 381 N/A N/A
PL529 70.84835363 16.55828915 shelf/Bøna BC(UiT) BC(UiT) BC(ISOR) BC(UL) BC(UL) 1389 N/A N/A

reg 09-04 71.00189157 18.99970658 TF GC(UiT) GC(UiT) GC(ISOR) GC(UL) GC(UL) 187 N/A N/A
reg 09-05 71.275564 22.11647404 TF GC(UiT) GC(UiT) GC(ISOR) GC(UL) GC(UL) 307 N/A N/A
reg 09-06 71.02907465 19.65660024 TF/Lunde GC(UiT) GC(UiT) GC(ISOR) GC(UL) GC(UL) 194 N/A N/A
reg 10-01 72.62878933 22.78128686 BR GC(UiT) GC(UiT) GC(ISOR) GC(UL) GC(UL) 382 N/A N/A

SD-11 71.59191651 21.27961423 ID/Snøhvit GC(UiT) GC(UiT) GC(ISOR) GC(UL) GC(UL) 336 N/A N/A
SE-11 71.59527269 21.18950676 ID/Snøhvit GC(UiT) GC(UiT) GC(ISOR) GC(UL) GC(UL) 337 N/A N/A
SF-11 71.61089457 21.06035211 ID/Snøhvit GC(UiT) GC(UiT) GC(ISOR) GC(UL) GC(UL) 317 N/A N/A
SN-03 71.4919087 21.08882364 ID/Snøhvit GC(UiT) GC(UiT) GC(ISOR) GC(UL) GC(UL) 326 N/A N/A
SN-11 71.48824219 21.08779078 ID/Snøhvit GC(UiT) GC(UiT) GC(ISOR) GC(UL) GC(UL) 326 N/A N/A

UiT
2011

HH-150 71.405744 21.643258 ID UiT(MC) UiT(MC) MC(ISOR) MC(UL) MC(UiT) 383 4.61 35.13
HH-151 71.504059 22.766747 ID UiT(MC) UiT(MC) MC(ISOR) MC(UL) MC(UiT) 434 4.55 35.13
HH-152 71.738064 22.319259 ID UiT(MC) UiT(MC) MC(ISOR) MC(UL) MC(UiT) 394 4.40 35.13
HH-154 72.019437 20.599746 ID UiT(MC) UiT(MC) MC(ISOR) MC(UL) MC(UiT) 400 4.14 35.14
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Table 2. Multiple regression linear model. 

Interpretations of the outcome of the best fitting multiple regression model. Positive responses 

between abiotic variables and benthic foraminiferal species/associations are indicated by the 

green shading, while negative responses are indicated by the red shading. The two-way 

probability of the found relations (p) is given by the shading and symbols as indicated in the 

legend. The multiple R2 (mR2) is given. Values describing the linear model can be found in

Appendix B. Abbreviations: SS = sortable silt mean grain size, <63 μm = fine sediment 

fraction, Pb = lead, Ba = barium, Hg = mercury, Cd = cadmium, Cr = chromium, Cu= copper, 

Zn = zinc.   
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I: Lobatulus-Trifarina 
association . * ** ** 0,419

- C. reniforme . ** *** ** 0,4194
- C. laevigata * ** *** *** 0,4736
- T. angulosa . * ** * 0,3679
- L. lobatula ** * 0,3004

II: Reophax association . . ** . *** * 0,5575
- Trochammina spp. 0,06068
- E. nipponica * * . *** ** 0,5593
- Reophax spp. ** * *** * *** * * 0,6625

III:Melonis-Nonionella 
association * *** * 0,5264

- N. auricula * . 0,2701
- Miliolinella sp. * *** *** *** 0,7507
- M. barleeanus * * *** *** 0,4856
- P. bulloides . ** ** ** 0,3518
- F. marginata . ** *** ** 0,6504
- E. excavatum * *** . *** * 0,6383
- Q. seminulum . * ** 0,3189
- Elphidium sp. 0,1383
- I. helenae ** * . ** * 0,3969
- C. incertum 0,06768
- Rosalina sp. -
- I. norcrossi . 0,1181

p= significance
>0.1 low

. . 0.05-0.1 poor
* * 0.01-0.05 intermediate
** ** 0.001-0.01 good
*** *** 0-0.001 high
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Table 3.  Ranges of variables and threshold levels. 

Ranges of values for water depth, grain size and organic matter, as well as a selection of metal 

concentrations for the study area and offshore region IX (Renaud et al., 2008). Threshold 

levels correspond to concentrations at the lower limit of WFD level III 

(EuropeanCommission, 2003), reflecting lower boundary of concentrations levels considered 

to be harmful to the ecosystem (Molvær et al., 1997). 

Tromsøflaket-Ingøydjupet
(this study)

region IX
(Renaud et al., 2008)

threshold levels
(Molvær et al., 1998)

depth (m) 187-1389 160-365

<63 μm/pellite (%) 16.8-97.2 5.9-96.6

TOM (%) 1.9-7.6 1.3-11.3

Ba (mg/kg) 29.8-364 19-945

Cd (mg/kg) 0.01-0.3 0.025-0.339 2.6

Cu (mg/kg) 3.02-17.3 1.9-19.1 51

Hg (mg/kg) 0.01-0.2 0.020-0.08 0.63

Pb (mg/kg) 5.22-26.2 22.8-45.3 83

Zn (mg/kg) 5.23-79.6 0.7-60 360
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