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Abstract

This thesis presents the implementation and application of a computer pro-
gram for the open-ended calculation of response properties of molecular
systems. Using recursive programming techniques, a recently published for-
mulation of response theory can be implemented in a manner that allows
the calculation of response properties to arbitrary order. The limitations of
the code are dictated by the limitations of connected modules that provide
perturbed one- and two-electron integral contributions and exchange and
correlation contributions. The properties available from the code are used
for a selection of applications: The calculation of the cubic force constants of
the second hyperpolarizability of HSOH at the Hartree-Fock level, cubic and
quartic force constants of various organic molecules at the density-functional
theory (DFT) level, pure vibrational contributions to the polarizability and
first hyperpolarizability of retinal and retinal derivatives at the DFT level,
and hyper-Raman spectra of two conformations of retinal at the DFT level.
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Jaszuński, and Luca Oggioni. They are gratefully acknowledged.

I would also like to acknowledge the excellent working environment that
the CTCC has proven to be. This includes the people with whom I have
shared offices at various times, everyone that has been part of the daily life
of the CTCC in Tromsø, and the people at the CTCC in Oslo who I have
had the pleasure of getting to know at the CTCC meetings. I can truly
say that working here has been thoroughly enjoyable thanks to everyone’s
friendly and helpful disposition.

III



IV

Finally, I sincerely wish to thank my family and friends for their support
during my work on this thesis. This work has come with both progress and
setbacks, and their emotional support has given me the opportunity to grow
from the setbacks and come back to progress.
Tromsø, October 2013

Magnus Ringholm



Contents

1 Introduction 1

2 Theory 3

2.1 Quantum chemistry . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Hartree-Fock theory . . . . . . . . . . . . . . . . . . . 6

2.1.2 Density-functional theory . . . . . . . . . . . . . . . . 8

2.2 Molecular properties and response theory . . . . . . . . . . . 11

2.2.1 The wavefunction in perturbing fields and the quasienergy 11

2.2.2 Response theory . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Molecular properties . . . . . . . . . . . . . . . . . . . 18

2.3 Molecular vibrations . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Identifying molecular vibrations . . . . . . . . . . . . . 23

2.3.2 Corrections to vibrational frequencies . . . . . . . . . 25

2.3.3 Vibrational contributions to molecular properties . . . 26

2.3.4 Vibrational spectroscopies and geometrical derivatives
of polarization properties . . . . . . . . . . . . . . . . 30

2.4 Programming techniques for a general response code . . . . . 31

2.4.1 (Circularly) linked lists . . . . . . . . . . . . . . . . . 31

2.4.2 Recursive programming . . . . . . . . . . . . . . . . . 33

3 Summary of papers 37

3.1 Paper I: A general open-ended response code . . . . . . . . . 37

3.2 Paper II: Cubic and quartic force constants . . . . . . . . . . 37

3.3 Paper III: Pure vibrational contributions for retinal and reti-
nal derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Paper IV: Hyper-Raman spectra of retinal . . . . . . . . . . . 38

4 Outlook 39

4.1 Structural development of OpenRSP . . . . . . . . . . . . . 39

V



VI CONTENTS

4.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



List of papers

This thesis is based on the following scientific papers:

I A general, recursive and open-ended response code: M. Ringholm, D.
Jonsson, and K. Ruud, Submitted to J. Comput. Chem.

II Analytic cubic and quartic force fields using density-functional theory:
M. Ringholm, D. Jonsson, R. Bast, B. Gao, A. J. Thorvaldsen, U.
Ekström, T. Helgaker, and K. Ruud, Submitted to J. Chem. Phys.

III Analytic density-functional theory calculations of pure vibrational hy-
perpolarizabilities: The first dipole hyperpolarizability of retinal and
related molecules: B. Gao, M. Ringholm, R. Bast, K. Ruud, A. J.
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Chapter 1

Introduction

Computational chemistry is a valuable complement to experimental chem-
istry. By the creation of computer programs based on chemical theory, the
researcher is able to use simulation to supplement or surpass experimental
methods, gaining a greater understanding of the phenomena being studied
due to the analytical quality of the theory from which the program was cre-
ated. Computational methods lend themselves excellentely to studies of a
wide range of molecular systems without many of the limitations that can
constrain experimental work. Calculations can be done on a wide range
of compounds for which experiments would have been impractical or eco-
nomically unfeasible: The compounds may be challenging to synthesize, or
there may be a large number of candidate molecules for a particular appli-
cation, making a complete experimental analysis difficult. In addition, the
experimental work may be impossible due to the nature of the experimental
conditions, for example extreme conditions such as the ones found in stellar
matter [1], or dangerous or expensive compounds may be involved.

The computational methods available today are routinely able to de-
scribe various chemical situations with ever increasing accuracy. Still, there
is a large number of phenomena or molecular systems for which an ade-
quate computational tool is not yet available. Therefore, a lot of effort has
been put into the creation of programs that can manage such calculations.
Concurrently, the computational capacity has been increasing steadily since
the beginning of the field of computational chemistry, meaning that both
software and hardware development expand the range of applications for
computational chemistry.

The behavior of molecular systems can be studied in a wide range of
external conditions, such as being subjected to electric or magnetic fields or

1



2 CHAPTER 1. INTRODUCTION

being considered at a particular temperature. The properties that the sys-
tem can show under these conditions vary widely in nature and complexity,
and although many of them are now considered to be well understood and
readily calculated, there is still a great number of properties to be explored
and made available for calculation. These properties can be used in the
simulation of a large selection of spectroscopical processes, providing the re-
searcher with a better understanding of phenomena encountered in current
chemical research.

The principal aim of this doctoral thesis has been the creation of a pro-
gram to allow analytic calculations of molecular properties for which such
calculations are difficult to the extent that they have previously rarely or
never been done. Based on a recently developed theoretical work[2], we have
developed a methodology that allows this and created a program in which
this methodology is implemented. We have then used this program for the
calculation of various molecular properties, some of which are complicated
and have not been calculated before, or have until now only been possible
to calculate through the application of numerical methods.

The rest of the text is organized as follows: In Chapter 2, we present the
theory that is relevant to the thesis. In Chapter 3, we give an overview of
the papers included in this thesis. Finally, there will be a brief discussion of
future work in Chapter 4.



Chapter 2

Theory

In this chapter, we provide the theoretical foundation on which the the-
sis is built. In Section 2.1, we give an introduction to the basic concepts
and methods of quantum chemistry by presenting the fundamental topics
and outlining the Hartree-Fock and density-functional theory approaches.
In Section 2.2, we introduce molecular properties and response theory. We
proceed to give an overview of the basics of molecular vibrations and re-
lated topics in Section 2.3. In Section 2.4, we present some of the central
programming techniques used in the development of the general open-ended
response code which is the main outcome of this work. In all sections, we
will use atomic units unless otherwise stated.

2.1 Quantum chemistry

This section will give an introduction to the concepts of quantum chemistry
that are most important in this thesis. It will cover the fundamentals of
quantum chemistry and present the Hartree-Fock (HF) method and density-
functional theory (DFT). Significant parts of this section has been based
on the textbook material[3] by Peter Atkins and Ronald Friedman and the
introduction to the doctoral thesis by Andreas J. Thorvaldsen[4]. Some parts
of this section follow the introduction to the doctoral thesis by Arnfinn H.
Steindal[5].

At the core of quantum chemistry is the Schrödinger equation. The
state of a quantum-mechanical system is described by a wavefunction Ψ(r),
where r is a set of coordinates (generally spatial and spin coordinates) that
describes the system. The time-dependent Schrödinger equation has the
form

3



4 CHAPTER 2. THEORY

i
∂

∂t
Ψ = ĤΨ (2.1)

where we introduced the Hamiltonian operator Ĥ, which is the operator
for the total energy of the system. For a collection of particles p of the
system, with positions rp, masses mp and charges qp, for which a collection
of distinct particle pairs (p, q) can be considered, the Hamiltonian takes the
form

Ĥ =
∑
p

T̂p +
∑
p>q

V̂pq, (2.2)

where the kinetic energy T̂p and potential energy V̂pq operators have been
introduced and are given by

T̂p = − 1

2mp
∇2

p (2.3)

and

V̂pq =
qpqq

||rp − rq|| . (2.4)

If the potential energy does not depend on time, the Schrödinger equa-
tion can be separated into parts that depend on time and space alone, respec-
tively. The time-independent Schrödinger equation is the resulting spatial
part of this separation, and it has the form

Ĥψ = Eψ, (2.5)

where the energy E of the system is an eigenvalue of Ĥ, with ψ being an
eigenfunction of Ĥ.

The energy of the system is an example of an observable, which is a
property of the system that it is possible to measure. In a series of mea-
surements of an observable represented by the operator Ω̂, the mean value
of the measurements is called the expectation value 〈Ω〉 and is given by

〈Ω〉 =
∫
ψ∗Ω̂ψdτ∫
ψ∗ψdτ

=
〈ψ|Ω̂|ψ〉
〈ψ|ψ〉 , (2.6)

where we have introduced the commonly used bra-ket notation

〈ψ|Ω̂|ψ〉 =
∫

ψ∗Ω̂ψdτ . (2.7)
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The ket |ψ〉 denotes the state of the system, and 〈ψ| = |ψ〉†, where the
superscript † denotes taking the Hermitian adjoint. The state |ψ〉 is a vector
in a space of states, and it is possible to express it as a linear combination
of orthonormal basis vectors |n〉 that completely span this space, so that

|ψ〉 =
∑
n

cn|n〉, (2.8)

where cn are the expansion coefficients.
In the Born-Oppenheimer approximation [6], we consider the nuclei of a

molecular system to be fixed in space, so that they give rise to a static electric
potential. The validity of this approximation is based on the fact that the
nuclei are much heavier than the electrons, and therefore, electrons can
respond practically instantaneously to any changes in the nuclear positions.
The Hamiltonian of the molecular system is then written as a kinetic term
T̂n involving only the nuclei, and an electronic Hamiltonian Ĥel, so that

Ĥ =
∑
n

T̂n + Ĥel, (2.9)

where

Ĥel =
∑
n>m

V̂nm +
∑
e

(
T̂e +

∑
n

V̂en

)
+
∑
f,e>f

V̂ef (2.10)

for nuclei m and n and electrons e and f , where the first term on the right-
hand side is a nuclear repulsion term commmonly denoted by hnuc, the terms
in the summation over e are one-electron terms that are denoted by ĥ, and
the last term is a two-electron term that we denote by ĝ.

When trying to determine the wavefunction at some level of theory, a
trial wavefunction ψt can be introduced as a guess or estimate for the true
wavefunction or optimal wavefunction at that level of theory. Let E0 be
the lowest energy of a system described by a Hamiltonian Ĥ. The Rayleigh
ratio E is then given by

E =
〈ψt|Ĥ|ψt〉
〈ψt|ψt〉 . (2.11)

Then, for any ψt, the variational principle states that

E ≥ E0, (2.12)

meaning that a trial wavefunction will never have an energy lower than that
of the true ground-state energy of the system. Furthermore, E = E0 if
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and only if ψt is the true ground-state wavefunction ψ of the system. The
variational principle can be used in determining the optimal wavefunction
at some level of theory in what is called the variational method, where one
tries to determine a wavefunction ψt so that the Rayleigh ratio is minimzed.

The Schrödinger equation can not be solved analytically for systems
that contain more than one electron and one nucleus. A common way of
addressing this is to use self-consistent field (SCF) approaches. The starting
point for SCF methods is the representation of the wavefunction as a Slater
determinant. We first introduce the concept of a molecular orbital (MO) to
represent the electronic wavefunction. A molecular orbital φk can contain up
to two electrons, where, in the case of double occupancy, the electrons will
have spin states that are opposite to each other. In the linear combination of
atomic orbitals (LCAO) approximation, the MOs are represented as linearly
independent combinations of atomic orbitals

φk =
∑
μ

Cμkχμ, (2.13)

where Cμk is an expansion coefficient and χμ is an atomic orbital (AO).
The atomic orbitals are one-electron atomic wavefunctions centered on the
nuclei, and they can in turn be represented by basis functions that together
attempt to imitate the true shape of the atomic wavefunction. With a Slater
determinant [7], theN -electron wavefunction is represented as a combination
of MOs φiτ (n) for each electron n, where a subscript τ denotes a spin state
(α or β), so that the Slater determinant representing the wavefunction ψ is
given by

ψ =
1√
N !

∣∣∣∣∣∣∣∣∣∣

φ1α(1) φ1β(1) · · · φN
2
β(1)

φ1α(2) φ1β(2) · · · φN
2
β(2)

...
...

. . .
...

φ1α(N) φ1β(N) · · · φN
2
β(N)

∣∣∣∣∣∣∣∣∣∣
, (2.14)

where 1√
N !

is a normalization factor. Using a determinant to represent the

wavefunction ensures that the products obtained are antisymmetric, thus
automatically supporting the Pauli exclusion principle[8].

2.1.1 Hartree-Fock theory

Hartree-Fock (HF) theory[9] is one of the most common examples of an SCF
method, and is the result of applying the variational method to the Slater
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determinant of eqn. (2.14) using the electronic Hamiltonian of eqn. (2.10).
The energy can then be evaluated from the expression

E = hnuc +
∑
k

〈
φk

∣∣∣∣∣−1

2
∇2 −

∑
n

qn
||r− rn||

∣∣∣∣∣φk

〉
+

1

2

∑
jk

∫ ∫
φ∗
j (r1)φ

∗
k(r2)

1

r12
[φj(r1)φk(r2)− φk(r1)φj(r2)] dr1dr2

(2.15)

In eqn. (2.15), the first term on the second line is called the Coulomb re-
pulsion term, dealing with the electrostatic repulsion between the charge
distribution of each electron and the charge distributions of the other elec-
trons, so that this effect deals with the “mean effect” of the other electrons
on each electron. The second term is called the exchange interaction term,
which is a quantum effect that is a consequence of the Pauli exclusion prin-
ciple for identical fermions.

Using C to represent the matrix of all the AO expansion coefficients of
eqn. (2.13), eqn. (2.15) can be reformulated in matrix form as

E = hnuc +Tr(C†HC) +
1

2
Tr(C†G(CC†)C, (2.16)

where the one-electron matrix H has been introduced as

Hμν =
〈
χμ

∣∣∣ĥ∣∣∣χν

〉
=

〈
χμ

∣∣∣∣∣−1

2
∇2 −

∑
n

qn
||r− rn||

∣∣∣∣∣χν

〉
, (2.17)

where ĥ is the one-electron part of eqn. (2.10). Correspondingly, the two-
electron matrix G(A), dependent on some matrix A, is defined as

G(A)μν =
∑
ρσ

Gμν,ρσAσρ, (2.18)

corresponding to the integral of ĝ of eqn. (2.10), where

Gμν,ρσ =

∫ ∫
χ∗
μ(r1)χ

∗
ρ(r2)

1

r12
[χν(r1)χσ(r2)− χσ(r1)χν(r2)] dr1dr2.

(2.19)
The orthonormality requirement of the orbitals can be written on the form

〈φj |φk〉 = δjk → C†SC = 1, (2.20)
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where the overlap matrix S was introduced and is given by

Sμν = 〈χμ|χν〉. (2.21)

With an eye to the formalism used in the papers of this thesis, we intro-
duce the density matrix D = CC†, for which the dimensionality corresponds
directly to the basis functions of the atomic orbitals. Eqn. (2.16) can in the
density matrix formulation be written as

E = hnuc +Tr(HD) +
1

2
Tr(G(D)D. (2.22)

Pre- and postmultiplying eqn. (2.20) by C and C†, respectively, the idem-
potency condition

DSD = D, (2.23)

defining a constraint on constraint on D, is obtained. It can be shown[10]
that the variational condition in this formulation, under the constraint of
eqn. (2.23), can be written as

FDS = SDF, (2.24)

where the Fock matrix F = H+G(D) was introduced.
The HF procedure then begins by choosing basis functions to represent

the atomic orbitals, and they are used to calculate S from eqn. (2.21). Next,
an initial guess of D is made, and F can then be calculated. The energy
can be calculated from eqn. (2.22). Eqn. (2.24) can then be solved for
an updated D, which in turn can be used to calculate an updated F, and
this iterative procedure can be continued. The new D and the associated
energy from eqn. (2.22) can be compared with D and the associated energy
obtained in the previous iteration until the difference between the present
and previous iteration is small enough that self-consistency can be said to
have been reached.

2.1.2 Density-functional theory

As discussed in the previous section, the Coulomb term in eqn. (2.15) de-
scribes the mean Coulomb repulsion on an electron from the other electrons
in the molecule. What is neglected with this method is the instantaneous
repulsion between the electrons. This effect is commonly called electronic
correlation, and the Hartree-Fock method is commonly referred to as an
uncorrelated method (that is, not including electronic correlation). This is
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despite the fact that electronic exchange, which is included in Hartree-Fock
theory, is a form of electronic correlation. Henceforth, we will take the elec-
tron correlation energy (or just “correlation energy” for short) to mean the
difference in energy obtained by the uncorrelated HF method and the energy
obtained from a correlated method, which is a method that tries to describe
the electronic correlation that HF theory does not.

There are several ways of introducing correlation in the theory. One
can for example use Slater determinants that include excited states, or one
can use perturbation theory to make corrections to the wavefunction. How-
ever, this section will be restricted to Kohn-Sham density-functional theory
(DFT)[11], which is a method where the spatial electron density is the ba-
sic concept from which the behavior of the system is found through the
formulation of a functional for the system’s energy.

Let the ground-state spatial electronic density ρ(r) of some wavefunction
be defined by

ρ(r) = C

∫
|ψ|2dτ , (2.25)

where C is some normalization constant. Then, the Hohenberg-Kohn theo-
rem states that there is a one-to-one relation between ρ(r) and the potential
functions v(r) in the electronic Hamiltonian, so that for a given electronic
ground-state density, there exists exactly one Hamiltonian. In molecular
systems, the external potential v(r) is defined by the Coulomb attractions

v(r) = −
∑
n

qn
||r− rn|| (2.26)

between the electrons and the nuclei. If, furthermore, the ground state
is non-degenerate, then there exists a variational energy functional Ev[ρ]
that describes the energy of the system, so that for the true density ρ(r),
the energy Ev[ρ] corresponds to the ground state energy of the system. A
functional is a function which takes another function as argument, which in
turn can take another function or scalar as its argument. The general form
of Ev[ρ] is

Ev[ρ] = hnuc +

∫
v(r)ρ(r)dr+ (T + V )[ρ], (2.27)

where T [ρ] and V [ρ] are functionals for the electronic kinetic energy and
Coulomb and exchange repulsion, respectively. In eqn. (2.27), the form of
the nuclear repulsion hnuc and electron-nuclear attraction

∫
v(r)ρ(r) contri-

butions are known, but T [ρ] and V [ρ] are not known.
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A viable approach to deal with the unknown functionals T [ρ] and V [ρ]
is to identify large analytic or well-defined parts of them from other levels
of theory, in order to make the unknown parts of T [ρ] and V [ρ] smaller.
Hartree-Fock theory, for instance, contains both a kinetic energy term Ts[ρ]
between noninteracting electrons, and a Coulomb electron-electron repulsion
term, J [ρ], where J [ρ] is written as

J [ρ] =
1

2

∫
ρ(r1)

1

r12
ρ(r2)dr1dr2. (2.28)

In Kohn-Sham DFT [11], Ts[ρ] and J [ρ] are separated from T [ρ] and V [ρ], re-
spectively and the remainder of T [ρ] and V [ρ] is combined into the exchange-
correlation functional Exc[ρ], so that

(T + V )[ρ] = Exc[ρ] + Ts[ρ] + J [ρ]. (2.29)

Inserting this into eqn. (2.27), the Kohn-Sham density functional can be
written as

Ev[ρ] = hnuc +

∫
v(r)ρ(r)dr+ (Ts + J)[ρ] + Exc[ρ]. (2.30)

A vast amount of work has been done in trying to find forms of Exc[ρ] that
yield accurate results. It is possible to classify these functionals obtained into
broad categories. In the simplest approximation, it is assumed that Exc[ρ]
can be described simply as the integral over some function of the density
ρ(r) alone. This approximation is called the local density approximation
(LDA). It is also possible to include the gradient of ρ(r) in the function
to be integrated, in what is called the generalized gradient approximation
(GGA). In meta-GGA functionals, the kinetic energy density[12] τ(r) of the
occupied orbitals is also included, where

τ(r) =
1

2

occupied∑
α

|∇φα(r)|2. (2.31)

Hartree-Fock theory includes electronic exchange effects. Some fraction
of this effect can be included explicitly in Exc[ρ]. The functional thus ob-
tained is called a hybrid functional. Finally, some fraction of correlation
effects from other levels of theory can be separated out from Exc[ρ] in ad-
dition to taking the aforementioned exhange contribution from HF theory.
A functional incorporating both these elements is called a double hybrid
functional. The increasing complexity of the various theories to determine
Exc[ρ] will in general yield increasingly accurate results. This progression
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has been likened to a “Jacob’s ladder” stretching from HF theory to the
“heaven of chemical accuracy”[13].

2.2 Molecular properties and response theory

In this section, we turn to the discussion of molecular properties and the
theory necessary for their calculation. In this work, a molecular property is
taken to be some feature of a molecular system that is related to the way
the system acts when subjected to one or a collection of internal or external
factors that could be said to change or perturb the state of the system. Such
a perturbation could for instance be an electromagnetic field, or shifting the
molecular geometry from its equilibrium position.

We begin by showing that a description of the behavior of the perturbed
system can be obtained from considering the so-called quasienergy of the
system. Using the quasienergy framework, it will be shown that molecular
properties can be described using response theory. A presentation of some
of these properties and their possible applications will be given in the final
part of this section. The theory presented in this section follows closely both
the work of Ove Christiansen and co-workers [14] and the introduction to
the doctoral thesis of Andreas J. Thorvaldsen [4].

2.2.1 The wavefunction in perturbing fields and the quasienergy

When a molecular system is subjected to one or more external perturbing
fields, this can be described by adding a potential V̂ t to the Hamiltonian
Ĥ of the isolated system. The perturbing fields can oscillate with their
respective frequencies, or they can be static. As will be shown below, these
frequencies can form the basis of a Fourier decomposition, and with an eye
to this, we denote by Ω the set of all integer multiples of the frequencies of
the perturbing fields.

In general, because of non-stationary fluctuations, the state of the system
is dependent on when the perturbation came into effect, i.e. when (and how
gradually or suddenly) it was switched on. However, in the following we
disregard this effect, and consider the perturbation to always have been on,
so that no such effects need to be considered. Furthermore, we impose on
the wavefunction for the system, denoted by ψ̃, that it must be possible to
separate it into a product

ψ̃ = e−iF (t)ψ (2.32)
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of a phase factor e−iF (t) (with a presently unspecified time-dependent func-
tion F (t)) and a phase-isolated wavefunction ψ, and that the phase-isolated
part is quasi-periodic with respect to the perturbing fields. This means that
ψ can be written as a Fourier decomposition

ψ =
∑
w∈Ω

eiωtψω, (2.33)

where the set Ω defined above is applied. For a general collection of pertur-
bations, this means that ψ can be considered to be periodic to arbitrarily
high precision - hence the term ”quasi-periodic”. The reason for this is that
the frequency components of the perturbing fields may in general not share
a common divisor. Consequently, there may not be a fundamental frequency
of which all field frequencies is a multiple, so that a Fourier decomposition
in Ω is not necessarily periodic. However, in practice, if the frequencies
are specified to arbitrary but finite precision (for example limited by ma-
chine precision), there must exist such a fundamental frequency, and both
the perturbations and any Fourier decomposition in Ω must therefore be
periodic.

The time-dependent Schrödinger equation can then be formulated as

(
Ĥ + V̂ t

)
ψ̃ = i

∂

∂t
ψ̃. (2.34)

Inserting eqn. (2.32), the expression

(
Ĥ + V̂ t

)
e−iF (t)ψ = i

∂

∂t
e−iF (t)ψ (2.35)

is obtained, where the right-hand side can be expressed as

i
∂

∂t
e−iF (t)ψ = e−iF (t)

(
Ḟ (t) + i

∂

∂t

)
ψ. (2.36)

Setting Ḟ (t) to be the time-dependent quasienergy Q(t), eqn. (2.35) can be
reformulated as the Floquet-Schrödinger equation(

Ĥ + V̂ t − i
∂

∂t

)
|ψ〉 = Q(t)|ψ〉. (2.37)

It can be seen from eqn. (2.37) thatQ(t) takes on a similar role to the energy,
within the perturbational situation and the assumptions made above.

Let |δψ̃〉 be a first-order variation of |ψ̃〉. From eqn. (2.32), |δψ̃〉 can be
rewritten as
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|δψ̃〉 = e−iF |δψ〉 − iδFe−iF |ψ〉 (2.38)

Due to the fact that δF and δψ are independent variations, when projecting
the variation |δψ̃〉 onto eqn. (2.37), the resulting expression can be written
as

〈δψ̃|
(
Ĥ + V̂ t − i

∂

∂t

)
−Q(t)|ψ〉 = 0. (2.39)

This expression is also known as Frenkel’s time-dependent variational prin-
ciple [17]. It is known that

〈ψ̃|ψ̃〉 = 〈ψ|eiF e−iF |ψ〉 = 〈ψ|ψ〉 = 1. (2.40)

Applying a variation to (2.40),

0 = δ(1) = δ(〈ψ̃|ψ̃〉)
= 〈δψ̃|ψ̃〉+ 〈ψ̃|δψ̃〉
= 〈δψ|eiF e−iF |ψ〉+ 〈ψ|eiF e−iF |δψ〉+ iδF 〈ψ|eiF e−iF |ψ〉 − iδF 〈ψ|eiF e−iF |ψ〉,

(2.41)

where it was used that the variation δF is only dependent on time, and can
therefore be moved outside the bracket. Eqn. (2.41) can be written on a
form that imposes a requirement on all variations of |ψ〉, namely that for
such a variation |δψ〉,

〈δψ|ψ〉+ 〈ψ|δψ〉 = 0. (2.42)

The valid variations |δψ〉 can be decomposed into a part |δψ⊥〉 that is or-
thogonal to |ψ〉 and a part that is parallel as

|δψ〉 = |δψ⊥〉+ iδα|ψ〉, (2.43)

where the variation δα is real. Projecting 〈δψ⊥| onto eqn. (2.37), it is seen
that

〈δψ⊥|Ĥ + V̂ t − i
∂

∂t
|ψ〉 = 0. (2.44)

Applying eqn. (2.43) to eqn. (2.42), we obtain

〈δψ⊥|ψ〉 = 0 (2.45)
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If the real and imaginary orthogonal variations of the variational parameters
of |ψ〉 are independent, there exists an equation which is similar to (2.44),
but where the variation was i〈δψ⊥|. This last result and eqn. (2.44) can be
formulated as

Re〈δψ⊥|Ĥ + V̂ t − i
∂

∂t
|ψ〉 = 0, (2.46)

where i〈δψ⊥| can also be used instead of 〈δψ⊥|. We note that iδα〈ψ|Ĥ +
V̂ t− i ∂

∂t |ψ〉 is imaginary, and therefore, using eqn. (2.43), we can bring eqn.
(2.46) on the form

Re〈δψ|
(
Ĥ + V̂ t − i

∂

∂t

)
|ψ〉 = 0. (2.47)

Eqn. (2.47) can then be expanded by its Hermitian conjugate to give

〈δψ|
(
Ĥ + V̂ t − i

∂

∂t

)
|ψ〉+ 〈

(
Ĥ + V̂ t − i

∂

∂t

)
ψ|δψ〉 = 0, (2.48)

which can be rearranged into

δ〈ψ|
(
Ĥ + V̂ t − i

∂

∂t

)
|ψ〉+ i

∂

∂t
〈ψ|δψ〉 = 0, (2.49)

used by Langhoff and co-workers [16], and the definition of Q(t) can be
recognized, allowing simplification of eqn. (2.49) into

δQ(t) + i
∂

∂t
〈ψ|δψ〉 = 0. (2.50)

By the Hellmann-Feynman theorem [18][19], differentiation of the energy
with respect to a perturbation strength ε gives

dE

dε
=

d〈ψ|Ĥ + V̂ t|ψ〉
dε

= 〈ψ|∂(Ĥ + V̂ t)

∂ε
|ψ〉. (2.51)

Applying the same differentiation to the time-dependent quasienergy, the
expression

dQ(t)

dε
=

d〈ψ|Ĥ + V̂ t − i ∂
∂t |ψ〉

dε
= 〈ψ|∂(Ĥ + V̂ t)

∂ε
|ψ〉 − i

∂

∂t
〈ψ|dψ

dε
〉 (2.52)
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is obtained. To continue, it is necessary to take a closer look at the form of
the perturbations V̂ t. From the previous discussion, the perturbations can
be said to be quasi-periodic, so they can be expressed as a Fourier series

V̂ t =

N∑
k=−N

e−iωktV̂ ωk , (2.53)

where the component V̂ ωk can be represented as a combination

V̂ ωk =
∑
x

εx(ωk)X, (2.54)

where εx andX are a perturbation strength and operator, respectively. From
this, it is seen that

∂(Ĥ + V̂ t)

∂εx(ωk)
= Xe−iωkt, (2.55)

and this can be inserted into eqn. (2.52), which, finally, can be rearranged
into

〈ψ|X|ψ〉e−iωkt =
∂Q(t)

∂εx(ωk)
+ i

∂

∂t
〈ψ| dψ

dεx(ωk)
〉 (2.56)

In the next section, we will show how to develop the theory presented so far
into response functions.

2.2.2 Response theory

In this section, we use time-averaging as a crucial step in obtaining response
functions. For a function F (t), the time-average {F (t)}T is defined as

{F (t)}T =
1

T

∫ T/2

−T/2
F (t)dt, (2.57)

where the T denotes some period of averaging. We will be concerned with
periodic functions (for the purposes of this discussion, we will regard quasi-
periodic functions as periodic), and so the T will be taken to mean the
period of such functions. We note that the periodic function V̂ t with period
T by definition has the property

V̂ t(t+ T ) = V̂ t(t). (2.58)
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For a periodic function F (t) which is time-differentiated, it can be shown
that {

∂F (t)

∂t

}
T

= 0 (2.59)

Applying eqn. (2.57) to eqn. (2.50) and using eqn. (2.59), the expression

δ{Q(t)}T = 0 (2.60)

is obtained, where the time-averaged quasienergy {Q(t)}T was introduced.
In the following, we will simply use the term quasienergy for {Q(t)}T to
distinguish it from the non-time-averaged or time-dependent quasienergy of
the preceding section. An analogous treatment of eqn. (2.56) yields

d{Q(t)}T
dεx(ω)

= {〈ψ|X|ψ〉e−iωxt}T . (2.61)

At this point, it is necessary to discuss the periodicity of |ψ〉. Eqn. (2.50)
can be rewritten on the form

δ〈ψ|H − i
∂

∂t
|ψ〉+ i

∂

∂t
〈ψ|δψ〉 = −δ〈ψ|V̂ t|ψ〉. (2.62)

We will now show that the periodicity of |ψ〉 is similar to that of V̂ t, whose
periodicity is stated in eqn. (2.58). Let V̂ t be given to some order n. Then,
collecting terms to the same total order of perturbation, only contributions
up to and including order (n−1) in the perturbed wavefunction enter into the
right-hand side of eqn. (2.62), while the left-hand side also contains terms
to order n in the wavefunction. The first-order perturbed wavefunction
|ψ(1)(t)〉 can be written as

|ψ(1)(t)〉 =
∑
k1

|ψ(1)(ωk1)〉e−iωk1
t, (2.63)

and it can be shown by induction that at the second order,

|ψ(2)(t)〉 =
∑
k1,k2

|ψ(2)(ωk1 , ωk2)〉e−i(ωk1
+ωk2

)t, (2.64)

and, in general,

|ψ(n)(t)〉 =
∑

k1,k2,...,kn

|ψ(n)(ωk1 , ωk2 , . . . , ωkn)〉e−i
∑n

j=1 ωkj
t
. (2.65)
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From the above expressions, it can be seen that the wavefunction is com-
posed of terms that use the same Fourier frequency components as V̂ t, and it
can therefore be said to be periodic in the same way as V̂ t. Therefore, there
exists a period over which the time-averaging over terms involving both the
wavefunction and V̂ t, like in eqn. (2.61), can be done.

In order to complete the connection between the quasienergy and the
response properties, we begin by noting that, for an observable represented
by a Hermitian operator X, for which the expectation value in absence
of any perturbations is represented by 〈X〉, an expansion in orders of the
perturbations to which the system is subjected can always be made, having
the form

〈ψ̃|X|ψ̃〉 = 〈ψ|X|ψ〉
= 〈X〉+

∑
k1

e−iωk1
t
∑
y

〈〈X;Y 〉〉ωk1
εy(ωk1)+

1

2

∑
k1,k2

e−i(ωk1
+ωk2

)t
∑
y,z

〈〈X;Y, Z〉〉ωk1
,ωk2

εy(ωk1)εz(ωk2) + . . . .

(2.66)

In eqn. (2.66), the linear response function 〈〈X;Y 〉〉ωk1
, the quadratic re-

sponse function 〈〈X;Y, Z〉〉ωk1
,ωk2

, and so on for higher orders, represent
Fourier expansion coefficients. Eqn. (2.66) can be inserted for 〈ψ|X|ψ〉 in
eqn. (2.61) to yield

d{Q(t)}T
dεx(ω)

= 〈X〉+
∑
y

∑
k1

〈〈X;Y 〉〉ωk1
εy(ωk1)δ(ω + ωk1)

+
1

2

∑
y,z

∑
k1,k2

〈〈X;Y, Z〉〉ωk1
,ωk2

εy(ωk1)εz(ωk2)δ(ω + ωk1 + ωk2) + . . . ,

(2.67)

which connects the quasienergy to the response functions. In eqn. (2.67),
δ(ω) is defined to be zero, unless ω = 0, in which case it is unity. Finally,
the structure of eqn. (2.67) can be recognized to be that of a perturbation
expansion, where the response functions take the place of the derivatives of
the quasienergy. From this, we can write down the quasienergy derivative

〈X〉 = d{Q(t)}T
dεx(0)

(2.68)

and the response functions
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〈〈X;Y 〉〉ωk1
=

d2{Q(t)}T
dεx(ω0)dεy(ωk1)

;ω0 = −ωk1 , (2.69)

〈〈X;Y, Z〉〉ωk1
,ωk2

=
d3{Q(t)}T

dεx(ω0)dεy(ωk1)dεz(ωk2)
;ω0 = −(ωk1 + ωk2), (2.70)

and, in general,

〈〈X;Y, Z . . .〉〉ωk1
,ωk2

,... =
dn+1{Q(t)}T

dεx(ω0)dεy(ωk1)dεz(ωk2) · · ·
;ω0 = −

n∑
j=1

ωkj .

(2.71)
In this formulation of response theory, the wavefunction perturbed to

order n can be used to calculate response properties to order n+ 1, as will
be shown in some more detail in Section 2.2.3. Hence, we say that response
properties calculated in this way follow the n + 1 rule. However, using
the method of Lagrangian multipliers, it is possible to formulate response
functions in such a way that the wavefunction to order n can be used to
calculate properties up to order 2n+1. The theory for this method will not
be covered here, but will be presented in a density-matrix formulation in
Paper I.

2.2.3 Molecular properties

The previous section dealt with obtaining response functions as quasienergy
derivatives, and in this section, the attention will be shifted to the molecular
properties that these response functions describe.

There is a vast number of properties that might be of interest to the
researcher, but this and later sections will only deal with properties related
to the electric dipole of a system when subjected to one or more electric fields
and properties that stem from shifting the molecule’s nuclei, and to some
extent properties that combine these two categories, since these categories
together encompass well the properties that have been explored in the papers
of this thesis.

When the molecular system is subjected to an electromagnetic field,
where F, G, and B are the electric field, electric field gradient and magnetic
field, respectively, the potential V̂ t can be written as[20]

V̂ t = −F · μ̂−G · Θ̂−B · m̂− higher order terms, (2.72)
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where, using the atomic masses, charges and positions mp, qp, and rp, we
have introduced the electric dipole operator

μ̂ =
∑
p

qprp, (2.73)

the electric quadrupole operator

Θ̂ =
∑
p

qp
2
rpr

T
p , (2.74)

and the magnetic dipole operator

m̂ =
∑
p

qp
2mp

lp =
∑
p

qp
2mp

rp ×∇p, (2.75)

where Θ̂ is a symmetric 3 × 3 matrix. These contributions to V̂ t all come
from a multipole expansion of the electromagnetic wave vector, and this
expansion can be extended to include higher-order terms. However, in this
work, we are primarily concerned with effects involving the electric dipole
operator, and we will make the approximation where eqn. (2.72) is truncated
after the −F · μ̂ term, so that

V̂ t = −F · μ̂. (2.76)

We note that this approximation is sufficient for a large number of compu-
tational tasks, and that in many cases, the vast majority of the effect of a
perturbing electric field is adequately described with this truncation. The
electric field takes the form

F = fe−iωt +
(
fe−iωt

)∗
, (2.77)

where the Jones vector f was introduced [21]. This vector describes the
amplitude, phase and polarization of the electric field. The effect on the
system of applying an electric field can be described by perturbations to the
quasienergy as

Q = E0 + fQf + f∗Qf∗
+

1

2
ffQff + f∗fQf∗f +

1

2
f∗f∗Qf∗f∗

+ . . ..

(2.78)

In eqn. (2.78), a superscript on Q denotes differentiation as in eqns. (2.69)-
(2.71). Looking at the properties in this expansion, it is seen, in line with
eqn. (2.61), that the first derivative Qf is
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Qf =
d{Q(t)}T
df(ω)

= {−〈ψ|μ̂|ψ〉e−iωt}T . (2.79)

We note that eqn. (2.79) contains only the zeroth-order wavefunction |ψ〉,
which is in line with the discussion of the n + 1 rule made in the previous
section. Turning now to the higher-order derivatives Qff , Qf∗f , and Qf∗f∗

,
we consider only the cases where the perturbing field has a frequency ω �= 0.
It is then seen that Qff = 0 and Qf∗f∗

= 0 because of the requirement
ω0 = −ωk1 in eqn. (2.69). However, Qf∗f can be nonzero and will be
explored in the following. Taking the derivative with respect to f∗ of eqn.
(2.79), the expression

Qff∗
=

d2{Q(t)}T
df(ω)df∗(−ω)

=
d

df∗(−ω)
{−〈ψ|μ̂|ψ〉e−iωt}T

= {−
(
〈ψf |μ̂|ψ〉e−iωt + 〈ψ|μ̂|ψf∗〉e−iωt

)
}T

(2.80)

is found, and it is seen that it is necessary to calculate the first-order per-
turbed wavefunction ψf in order to determine Qff∗

. Differentiating eqn.
(2.37), where we let it be implicit that we also evaluate the resulting expres-
sion at zero field strength, we see that

d

df

(
Ĥ + V̂ t − i

∂

∂t
−Q

)
|ψ〉 = 0

↓(
Ĥ + V̂ t − i

∂

∂t
−Q

)
|ψf 〉 =

(
e−iωtμ̂+Qf

)
|ψ〉,

↓(
Ĥ − ω − E0

)
|ψf 〉 = (

e−iωtμ̂
) |ψ〉,

(2.81)

where it was used that Qf = 0 unless ω = 0, and where the evaluation
at zero field strength means that V̂ t = 0 and that Q is the unperturbed
ground-state energy E0. Furthermore, the only time-dependent term on the
right-hand side of the second line of eqn. (2.81) is e−iωt, whereas the only
time-dependent term on the corresponding left-hand side is |ψf 〉, so |ψf 〉
must have the phase factor e−iωt. Consequently, −i ∂

∂t |ψf 〉 = ω|ψf 〉, and
this is used when going from the second to the third line of eqn. (2.81).
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Let the ground state be denoted by |ψ0〉 and an excited eigenstate of Ĥ
by |ψx〉, so that all the states make up a complete orthonormal basis. Then,
Ĥ can be written as

Ĥ = E0|ψ0〉〈ψ0|+
∑
x �=0

Ex|ψx〉〈ψx|, (2.82)

so that, by the resolution of the identity, |ψ0〉〈ψ0| +
∑

x |ψx〉〈ψx| = 1. By

the same principle, we can write the inverse of
(
Ĥ − ω − E0

)
as

(
Ĥ − ω − E0

)−1
=

1

E0 − ω − E0
|ψ0〉〈ψ0|+ 1

Ex − ω − E0
|ψx〉〈ψx|. (2.83)

Inserting eqn. (2.83) into eqn. (2.81), the first-order perturbed wavefunction
|ψf 〉 can now be written as

|ψf 〉 = e−iωt

(
−〈ψ0|μ̂|ψ0〉

ω
|ψ0〉+

∑
x

〈ψx|μ̂|ψ0〉
Ex − ω − E0

|ψx〉
)
. (2.84)

A similar derivation for |ψf∗〉 would show that it could be obtained by
changing ω to −ω in eqn. (2.84). Finally, inserting ψf and ψf∗

into eqn.
(2.80), the expression

Qff∗
= −

∑
x

[〈ψ0|μ̂|ψx〉〈ψx|μ̂|ψ0〉
(Ex − E0) + ω

+
〈ψ0|μ̂|ψx〉〈ψx|μ̂|ψ0〉

(Ex − E0)− ω

]
(2.85)

is found, expressing Qff∗
as a sum over excited states of the system. Fur-

thermore, noting that the electric dipole moment can be expanded in a
Taylor expansion as

μ = μ0 + αf +
1

2
βff +

1

6
γfff + . . . , (2.86)

where μ0 is the dipole moment in the absence of external fields, and where
we introduced the molecular polarizability and first and second hyperpolar-
izabilities α, β, and γ, respectively, it can be recognized that Qff∗

corre-
sponds to the negative of the molecular polarizability in eqn. (2.86). We
note that although the derivation leading to eqn. (2.85) was done under the
assumption that ω �= 0, we will use it in Section 2.3.3 for the case ω = 0. In
general, higher-order quasienergy derivatives with respect to electric fields
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correspond to higher-order terms in eqn. (2.86). To represent the general
high-order case, we introduce a notation where electric dipole perturbation
differentiation is represented by a superscript F on Q, and the subscripts
on the differentiated Q denote, in order, the frequencies of the associated
perturbation. For example, the second hyperpolarizability γ(−2ω;ω, ω, 0) is
represented as QFFFF−2ω,ω,ω,0.

The other kind of perturbation featured in this section is the so-called ge-
ometrical perturbation, which comes from displacing the molecule’s nuclei.
The frequency of such a perturbation is zero, and we denote the perturba-
tion by G. In the quasienergy-derivative notation introduced above, we omit
the frequency subscript for G derivatives because it is not needed. The ge-
ometrical perturbation is mainly relevant for situations involving molecular
vibrations, to be treated in more detail in Section 2.3.

We can expand the energy in the coordinates {xi} of the system as

E = E0 +
∑
i

∂E

∂xi
xi +

1

2!

∑
i,j

∂2E

∂xi∂xj
xixj +

1

3!

∑
i,j,k

∂3E

∂xi∂xj∂xk
xixjxk+

1

4!

∑
i,j,k,l

∂4E

∂xi∂xj∂xk∂xl
xixjxkxl + . . . ,

(2.87)

where the type of coordinates used is unspecified. Typically, the expansion
is done with respect to either the Cartesian or the normal coordinates of
the system. The latter will be presented in Section 2.3. From eqn. (2.87),

we can recognize elements of the molecular gradient ∂E
∂xi

, the Hessian ∂2E
∂xi∂xj

,

and the cubic and quartic force fields ∂3E
∂xi∂xj∂xk

and ∂4E
∂xi∂xj∂xk∂xl

, respec-

tively. These properties can be expressed in terms of energy derivatives as
QG, QGG, QGGG, and QGGGG, respectively. We note that these properties
can be calculated through the (n + 1) rule response formalism introduced
earlier, but for high-order properties, one will typically resort to calculations
by other rule choices than the (n+1) rule to save computation time. There
are several uses for these properties, of which we can mention optimization
of the molecular geometry through the Newton method or quasi-Newton
methods using the molecular gradient (and additionally the Hessian for the
former), determination of the system’s normal coordinates (in the so-called
harmonic approximation) using the Hessian, and methods to make correc-
tions to various properties to account for the anharmonic nature of molecular
vibrations, using various higher-order geometrical derivatives.
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Finally, we mention that there exist many well-known combined geomet-
rical and electric dipole properties. This category of properties finds its use
in a variety of spectroscopies involving molecular vibrations, and any discus-
sion of these properties is best done after having covered this topic in some
more detail. We therefore postpone comments about combined electric and
geometric properties to a later part of Section 2.3.

2.3 Molecular vibrations

In this section, we present some topics related to molecular vibrations. We
begin by showing how vibrations in a molecule can be identified and char-
acterized, and then discuss some more advanced topics like corrections of
fundamental vibrational frequencies by high-order force constants and vi-
brational contributions to polarization properties. Finally, we make some
remarks related to vibrational spectroscopies.

2.3.1 Identifying molecular vibrations

As shown in eqn. (2.87), the energy can be expanded in the geometrical
coordinates of the system. We will in the following always assume that the
molecule is at its equilibrium geometry, so that the gradient g = ∇E =
[∂E/∂x1, ∂E/∂x2, . . . , ∂E/∂xM ]T is zero, where M is the number of coor-
dinates.

The starting point for the discussion of molecular vibrations is the molec-
ular Hessian H. As mentioned earlier, the Hessian is the matrix containing
the second derivatives of the molecular energy with respect to some kind
of geometrical displacement. A typical choice of displacement coordinate is
the Cartesian coordinates Xi of the atoms in the molecule, so that, for a
molecule with N atoms, we define the Cartesian Hessian Hcart as

Hcart =

⎛
⎜⎜⎜⎜⎜⎝

∂2E
∂X2

1

∂2E
∂X1∂X2

· · · ∂2E
∂X1∂X3N

∂2E
∂X2∂X1

∂2E
∂X2

2
· · · ∂2E

∂X2∂X3N

...
...

. . .
...

∂2E
∂X3N∂X1

∂2E
∂X3N∂X2

· · · ∂2E
∂X2

3N

⎞
⎟⎟⎟⎟⎟⎠ . (2.88)

The molecule can vibrate in certain different ways that can be expressed
as displacements of any of the Cartesian coordinates of its constituent atoms.
We define a normal mode as such a way in which a molecule can vibrate.
A well-established assumption, adopted here, is that the oscillations of the
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vibrational modes are simple harmonic oscillations. All of the information
about the molecular vibrations is then contained in Hcart. In this approxi-
mation, the normal modes vibrate independently of each other.

The vibrational modes will be independent of the location or orientation
of the molecule in space, so that translational and rotational degrees of
freedom should be eliminated. For nonlinear molecules, there are six such
degrees of freedom, whereas for linear molecules, there are five.

The molecule is defined by 3N Cartesian coordinates, but this is an
overdefinition. The extent of the overdefinition is the number of the transla-
tional and rotational degrees of freedom, and so, there are 3N −6 or 3N −5
independent normal modes for nonlinear and linear molecules, respectively.

The normal modes and their corresponding frequencies of vibration can
be identified by an eigenanalysis of Hcart. This is under the assumptions
that translational and rotational degrees of freedom have been projected
out of Hcart (but at the equilibrium geometry, these effects will be small, so
such a projection is usually not necessary), and that the elements of Hcart

have been weighted according to the masses of the nuclei that are related
to each element, yielding the mass-weighted, translation/rotation-invariant
Cartesian Hessian Hcart, mwproj . The procedures for such projection and
mass-weighting will not be covered here, but it is remarked that they are
straightforward and readily carried out by a computer program.

Upon diagonalization of Hcart, mwproj , a set of 3N eigenvalues λ and a
3N×3N eigenvector matrix Q will be found. There will be six eigenvalues of
value zero (or five for a linear molecule). Disregarding the zero eigenvalues
of λ and removing the corresponding columns of Q, the remaining part of
Q is a 3N × (3N − 6) (or 3N × (3N − 5)) matrix defining the normal modes
in terms of Cartesian displacements, and for each of the eigenvalues λi, the
frequency ωi of the corresponding normal mode Qi is given by ωi =

√
λi.

For reference, we can now write eqn. (2.87) as

E = E0 +
∑
a

∂E

∂Qa
Qa +

1

2!

∑
a,b

∂2E

∂Qa∂Qb
QaQb +

1

3!

∑
a,b,c

∂3E

∂Qa∂Qb∂Qc
QaQbQc+

1

4!

∑
a,b,c,d

∂4E

∂Qa∂Qb∂Qc∂Qd
QaQbQcQd + . . . ,

(2.89)

where the expansion is now with respect to normal modes. Finally, we note
that it is also possible to transform these normal coordinates to so-called
reduced[22] normal coordinates q, where
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qi =

√
2πcωi

�
Qi (2.90)

for some normal mode i, where qi is typically expressed in units of wavenum-
bers (cm−1). Reduced normal modes are often used in various applications
because it simplifies expressions involving vibrational matrix elements.

2.3.2 Corrections to vibrational frequencies

The assumption that the normal mode vibrations behave as harmonic os-
cillators, called the harmonic approximation, is a good approximation, but
in general, there are situations where such a description is not adequate. In
order to deal with this, eqn. (2.89) can be truncated at higher orders than
the second-order truncation used in the harmonic approximation, and cor-
rections to the harmonic frequencies ωi can be carried out by the application
of perturbation theory, yielding a corrected set of fundamental frequencies
νi. A common procedure is to use second-order perturbation theory, which
entails truncating eqn. (2.89) after the fourth-order (quartic) terms and
also including some rotational effects. By this procedure, using reduced
normal coordinates, the corrected fundamental frequencies νi are given by
the expressions[23, 24, 25]

νi = ωi + 2Xii +
∑

j �= i
Xij

2
, (2.91)

where

Xii =
φiiii

16
−
∑
k

φ2
iik

(
8ω2

i − 3ω2
k

)
16ωk

(
4ω2

i − ω2
k

) (2.92)

and

Xij =
φiijj

4
−
∑
k

φiikφjjk

4ωk
−
∑
k

φ2
ijk

ωk

(
ω2
i + ω2

j − ω2
k

)
2Ωijk

+
∑
α

Bα(ζ
α
ij)

2

(
ωi

ωj + ωj
ωi

)
,

(2.93)
where φijk and φijkl are cubic and quartic force constants, respectively, Bα

is a rotational constant for the Cartesian axis α, ζαij is a Coriolis coupling
tensor element describing vibration-rotation coupling, while

Ωijk = (ωi + ωj + ωk) (−ωi + ωj + ωk) (ωi − ωj + ωk) (ωi + ωj − ωk) .
(2.94)
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A complication of this procedure is the fact that some differences between
overtones 2ωi or combination frequencies ωi + ωj (i �= j) can be very close
to fundamental harmonic frequencies ωk, so that the perturbation theory
breaks down because denominators in eqns. (2.92) and (2.93) approach
zero. This phenomenon is called a Fermi resonance, and methods to deal
with this have been developed, but will not be covered here.

2.3.3 Vibrational contributions to molecular properties

In this section, we develop expressions for vibrational contributions to the
molecular polarizability and first hyperpolarizability. The theory presented
here follows the work of Bishop, Kirtman, and Luis[39, 40, 41].

In Section 2.2.3, the calculation of the molecular polarizability α was
presented. This property can be written in a sum-over-states formulation as

ααβ(−ωσ;ω1) =
∑
m̄>0

[〈ψ0|μ̂α|ψm̄〉〈ψm̄|μ̂β |ψ0〉
(Em̄ − E0)− ωσ

+
〈ψ0|μ̂β |ψm̄〉〈ψm̄|μ̂α|ψ0〉

(Em̄ − E0) + ω1

]
,

(2.95)
where Greek subscripts on polarization properties represent Cartesian axes,
and where ωσ is the sum of all incident frequencies so that, here, ωσ =∑

i ωi = ω1. In eqn. (2.95), the excited state characterized by the quantum
number m̄ is in general taken to involve both the electronic, vibrational and
rotational states of the system. In the following, as an approximation, the
rotational states will be disregarded, except for the extent to which they can
later be taken into consideration by orientational averaging. The attention
will instead be given to the electronic and vibrational states. The quantum
number m̄ then refers to a vibronic state |ψm̄〉 ≡ |m̄〉, which is a combined
electronic and vibrational state of the system.

Denoting the quantum numbers of the electronic and vibrational states
of the system by M and m, respectively, it is, by employing the Born-
Oppenheimer approximation, possible to separate a summation over the
vibronic m̄ into electronic and vibrational parts. By considering terms in-
volving the electronic or vibrational ground states separately, the state sum-
mation over the excited m̄ can be written as

∑
m̄>0

=
∑
m>0

∣∣∣∣∣
M=0

+
∑
m

∑
M>0

. (2.96)

Applying the summation splitting in eqn. (2.96) to the state summation in
eqn. (2.95), two distinct contributions to ααβ can be identified, each corre-
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sponding to one term on the right-hand side of eqn. (2.96). The contribution
corresponding to the first of these terms is called the pure vibrational (PV)
term, while the final term is a combination of the zero-point vibrational
average (ZPVA) and electronic contribution to the property. When using
the response theory of Section 2.2, typically only the electronic contribution
to the property is calculated. This is usually the largest contribution to
the property, but the PV and ZPVA contributions can also be important.
Disregarding the ZPVA contribution as it is outside the scope of this work,
we will in the following show how working expressions for the PV contribu-
tions can be derived. We will therefore only concern ourselves with the term∑

m>0

∣∣
M=0

.
Starting with eqn. (2.95), the summation splitting means that |m̄〉 =

|M,m〉 = |0,m〉, so that

αPV
αβ (−ωσ;ω1) =

∑
m>0

∑
Pαβ

[〈0, 0|μ̂α|0,m〉〈0,m|μ̂β |0, 0〉
ωm − ωσ

]

=
∑
m>0

∑
Pαβ

[〈0|μα|m〉〈m|μβ |0〉
ωm − ωσ

]
,

(2.97)

where ωm denotes the energy of the vibrational state |m〉 relative to the
ground state and the perturbation sum operator

∑
Pαβ carries out the si-

multaneous permutation of the pairs (α,−ωσ) and (β, ω1) of associated axes
and frequencies and sums the terms thus obtained. When going from the
first to the second line of eqn. (2.97), the integration 〈0|μ̂α|0〉 ≡ μα was
done, where the state in the bra and ket is the electronic ground state.

As was done for the energy, the electric dipole moment can also be
expanded in the normal coordinates of the system. Let P be a polarization
property. Then, the expansion

P = P 0 +
∑
a

∂P

∂Qa
Qa +

1

2!

∑
a,b

∂2P

∂Qa∂Qb
QaQb +

1

3!

∑
a,b,c

∂3P

∂Qa∂Qb∂Qc
QaQbQc + . . .

(2.98)

can be made. The twofold approximation where eqn. (2.98) is truncated
after the first derivative, and where the harmonic approximation is made for
the vibrational wavefunction, is called the double harmonic approximation,
and this is adopted in the following. Inserting the appropriately truncated
expansion of eqn. (2.98) into eqn. (2.97), we get
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αPV
αβ (−ω;ω) =

∑
m>0

∑
Pαβ

⎡
⎣〈0|μ0

α +
∑

a
∂μα

∂Qa
Qa|m〉〈m|μ0

β +
∑

b
∂μβ

∂Qb
Qb|0〉

ωm − ω

⎤
⎦

=
∑
m>0

∑
Pαβ

∑
a,b

[
∂μα

∂Qa

∂μβ

∂Qb

〈0|Qa|m〉〈m|Qb|0〉
ωm − ω

]
,

(2.99)

where the terms involving μ0
α and μ0

β vanish because they involve products
〈0|m〉, which are zero by orthonormality. When going from the first to the

second line of eqn. (2.99), it was also used that ∂μα

∂Qa
and

∂μβ

∂Qb
are scalars

and can therefore be moved outside the integral brackets. The vibrational
state |m〉 can be said to consist of individual wavefunctions k of each normal
mode with quantum number mk, so that |m〉 = |amabmb

· · ·NmN 〉, where N
is here used both to denote the number of normal modes of the system and
the wavefunction of the Nth normal mode. Each of these wavefunctions
contain Hermite polynomials, which have the property that [26]

〈ama |Qa|ama±1〉 =
√

ma +
1
2 ± 1

2

2ωa
, (2.100)

and the integral is zero unless the bra and ket quantum number differ by
exactly one. Applying eqn. (2.100) to the term 〈0|Qa|m〉 in eqn. (2.99), it
is seen that this term can only be nonzero if |m〉 = |a1b0 · · ·N0〉, i.e. the
state corresponding to the first excited state of one of the vibrational modes.
Denoting this state by |a〉, and inserting in eqn. (2.99), the expression

αPV
αβ (−ω;ω) =

1

2

∑
Pαβ

∑
a

∂μα

∂Qa

∂μβ

∂Qa

ω2
a − ω2

(2.101)

is found, where a similar argument to the one above was used to find that
b = a, and the summations over m and b are no longer necessary. The
frequency ωa refers to the energy of the state |a〉 relative to the ground
state.

The corresponding PV contribution to the first hyperpolarizability βαβγ
can be derived from the same principles, but the derivation is somewhat
more involved. Using a form analogous to eqn. (2.97), but for the moment
still considering all vibronic states, βαβγ can be written as
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βPV
αβγ(−ωσ;ω1, ω2) =

∑
m̄>0

∑
n̄>0

∑
Pαβγ

[〈0|μ̂α|m̄〉〈m̄| ¯̂μβ |n̄〉〈n̄|μ̂γ |0〉
(ωm̄ − ωσ)(ωn̄ − ω2)

]
,

(2.102)
where ¯̂μβ = μ̂β − 〈0|μ̂β |0〉, where the integration was done over electronic
states. The vibronic state summations can now be split in the same way as
was done in eqn. (2.96), but now, this splitting produces four contributions,
namely

∑
m̄>0

∑
n̄>0

=
∑

m,n>0

∣∣∣∣∣∣
M,N=0

+
∑
m

∑
M>0

∑
n>0

∣∣∣∣∣
N=0

+
∑
m>0

∑
n

∑
N>0

∣∣∣∣∣
M=0

+
∑
m,n

∑
M,N>0

,

(2.103)
where the ZPVA and electronic contributions are contained in the last term.
The PV contribution βPV

αβγ can be written as as sum of two contributions as

βαβγ = [μα] + [μ3], (2.104)

where [μ3] corresponds to the part of eqn. (2.102) that includes only con-
tributions from the first term on the right-hand side of eqn. (2.103). The
contribution [μα] contains the corresponding contributions from the second
and third right-hand side terms of eqn. (2.103). Adopting the double har-
monic approximation, the contribution [μ3] will be zero due to the Hermite
integral properties of eqn. (2.100). To see this, it is sufficient to consider
the term

∑
m,n>0

∑
a,b,c

〈0|Qa|m〉〈m|Qb|n〉〈n|Qc|0〉, (2.105)

which is proportional to the [μ3] term after the appropriate Taylor expan-
sions have been made in the double harmonic approximation. In this ex-
pression, it is clear that |m〉 must be |a1〉. From this, the state |n〉 must be
|a2〉 or |a1b1〉 where b �= a, since |n〉 cannot be the ground state. However,
the last integral 〈n|Qc|0〉 must be zero since the bra and ket states differ by
two quantum numbers (either two quanta for one normal mode or one for
each of two different modes), and the entire [μ3] contribution must therefore
be zero.

Turning now to [μα], this term can be written as
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[μα] =
∑
M>0

∑
m

∑
n>0

∑
Pαβγ

[〈0, 0|μ̂α|M,m〉〈M,m| ¯̂μβ |0, n〉〈0, n|μ̂γ |0, 0〉
(ωM,m − ωσ)(ωn − ω2)

]
+

∑
m>0

∑
N>0

∑
n

∑
Pαβγ

[〈0, 0|μ̂α|0,m〉〈0,m| ¯̂μβ |N,n〉〈N,n|μ̂γ |0, 0〉
(ωm − ωσ)(ωN,n − ω2)

]
(2.106)

where ωM,m is the energy of the vibronic state |M,m〉 relative to the ground
state. Making the approximation ωM,m ≈ ωM,0 ≡ ωM (and similarly for
ωN,n), resolution of the identity can be applied over the vibrational states
|m〉 and |n〉 of the first and second terms of the right-hand side of eqn.
(2.106), respectively, since there now are no other places referring to those
states in these terms than the products |m〉〈m| and |n〉〈n|, respectively. Fur-
thermore, the sum-over-states expression of eqn. (2.95) for the polarizabil-
ity α(0; 0) can be recognized in the resulting expressions after renaming of
states and making use of the permutational symmetry afforded by the sum-
mation

∑
Pα,β,γ . Applying the double-harmonic approximation, rewriting

eqn. (2.106) in terms of the polarizabilities that were recognized and simpli-
fying the resulting expresssion, the PV contribution to βαβγ in the double
harmonic approximation can be written as

βPV
αβγ(−ωσ;ω1, ω2) = [μα] =

1

2

∑
Pαβγ

∑
a

∂μα

∂Qa

∂αβγ

∂Qa

ω2
a − ω2

σ

. (2.107)

Corresponding derivations can be done for higher-order polarization prop-
erties, but we will not concern ourselves with this here.

Finally, we note that it is possible to go beyond the double-harmonic ap-
proximation. Including higher-order terms in the expansions of eqns. (2.98)
and (2.89) is called introducing electrical and mechanical anharmonicity,
respectively. The derivations of such higher-order contributions are compli-
cated and not suitable to present in this text, but we remark that for their
evaluation, it is necessary to be able to calculate higher-order geometrical
derivatives of polarization properties.

2.3.4 Vibrational spectroscopies and geometrical derivatives
of polarization properties

In the final part of this section, we will make some remarks related to spec-
troscopies involving molecular vibrations. When a system is subjected to an
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electric field or several fields with frequencies in the infrared (IR) domain,
it can be excited to a higher vibrational state. This can also happen indi-
rectly from inelastic scattering by the application of an electric field or fields
in the ultraviolet or visible range, as in Raman spectroscopy. If the Born-
Oppenheimer approximation is adopted, the intensity of the observed signal
in these spectroscopies is typically proportional to an integral 〈0|Qa|m〉,
where |m〉 is a vibrational state, or proportional to a series of integrals like
in eqn. (2.105). Therefore, derivations with similarities to the ones leading
up to eqns. (2.101) and (2.107), using the expansions of eqns. (2.98) and
(2.89), can typically be done to obtain expressions for the spectroscopic in-
tensities. We will not cover these derivations in detail, but we mention that
in the double-harmonic approximation, assuming that the intensities can be
derived in the way just mentioned, the intensity associated with a transition
to a singly excited state |a1〉 can only be nonzero if a corresponding first geo-
metrical derivative ∂P

∂Qa
of the associated polarization property P is nonzero.

All other kinds of excited states (such as overtones and combination excited
states) will not contribute to a spectrum calculated under this approxima-
tion. For IR spectroscopy, the associated property is the dipole moment,
and for Raman spectroscopy, it is the polarizability. It is this consideration
that gives rise to the well-known selection rules ∂μ

∂Qa
�= 0 and ∂α

∂Qa
�= 0 for

IR and Raman transitions, respectively. As was done for the PV contri-
butions, we note again that anharmonicity can be introduced by including
higher-order terms in the expansions of eqns. (2.98) and (2.89). By includ-
ing anharmonicity, higher-order effects can appear, including signals from
overtone and combination excitations and Fermi resonance effects. This can
give contributions that lead to ”weakly allowed” signals in the well-known
spectroscopies.

2.4 Programming techniques for a general response
code

In this section, we present two of the programming techniques used in the
development of the general response code featured in paper I and applied in
the subsequent papers: (Circularly) linked lists and recursive programming.

2.4.1 (Circularly) linked lists

Suppose, for a computer program, that a programmer wants to store infor-
mation that may be in an unwieldy but still a well-defined format. Suppose
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furthermore that there may be an indefinite number of such pieces of infor-
mation, and that it is desirable to be able to freely insert into and delete
from storage such pieces as the program is run. Finally, suppose that the
speed with which relevant information is located upon inquiry is not crucial.
Then, linked lists may be a good option.

To understand linked lists, it is necessary to introduce the concept of a
pointer. In computer programs, variables and data structures are typically
declared (or their structure is inferred by the compiler), and the relevant
space in memory is reserved for the information to be stored in the variable
or datatype. A pointer is also declared with respect to a given kind of
variable or datatype. However, it does not contain the information of a
datatype, but may instead contain information that tells where an instance
of such a datatype is stored, i.e. it points to such a location. If it does,
a pointer is said to be associated. To disassociate a pointer is called to
nullify it. When referred to as a regular variable or datatype, the pointer
will return the relevant information located at the position in memory to
which it is pointing. Because of this, pointers are a flexible tool that can be
used to save memory when dealing with information that would otherwise
be duplicated, or it can be used to build topological relations between data.

A linked list is a data structure that contains a given number of entries,
which are instances of a datatype. In its basic form, this datatype (the
entry) contains two parts:

1. A pointer to the next element in the list

2. Information (if any) stored in the entry

When creating the first entry in a linked list, the pointer is typically
left unassociated. Alternatively, in a circularly linked list, the pointer of
the first entry points to itself. Inserting a new entry into some position in
the list entails reassociating the pointer of the preceding entry to the new
entry, while associating the pointer of the new entry to where the pointer of
the preceding entry was associated before the insertion of the new element
(or leaving it disassociated if the preceding entry was the final entry in a
non-circularly linked list). An illustration of the structure of a circularly
linked list is shown in Figure 2.4.1.

To retrieve information from the list, it is necessary to start at some entry
– typically the first entry in a non-circularly linked list, but an arbitrary
element is sufficient in a circularly linked list – and then traverse the list by
following the pointers of each entry until the desired entry is found (typically,
an entry may contain some header information identifying it). Once the
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Entry 1

Data

Entry 2

Data

Entry . . .

Data

Entry N

Data

Figure 2.1: Circularly linked list. Pointer associations are shown by arrows.

correct entry is located, the information it contains can be addressed and
handled in a regular way.

A drawback of linked lists is that traversal may be time-consuming when
the number of entries is large, and each new entry added could in general
add to the retrieval time of many or all of the entries. However, the circu-
larly linked list methodology is sufficient for the purposes of this work, and
possible ways of addressing situations where retrieval time is more important
will therefore not be covered here.

2.4.2 Recursive programming

Another key element of the code that has been developed in this work is
the use of recursive programming. Recursive routines can be used to create
code that is compact and general in a situation where there is an indefinite
number of layers, or orders, of complexity.

A recursive routine is a routine that can invoke itself, usually with dif-
ferent arguments than the ones of its present invocation. An often-used
example to illustrate recursive routines is the task of calculating the facto-
rial of a (nonnegative) integer N . An iterative (non-recursive) function is
shown in Algorithm 1.

A recursive factorial function can also be constructed and is shown in
Algorithm 2.
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Algorithm 1 Iterative factorial function

fact = 1
for i in 2, N do

fact = fact · i
end for
return fact

Algorithm 2 Recursive factorial function fact

if N > 1: then
return N · fact(N - 1)

end if
if N = 1 or N = 0 : then

return 1
end if

As can be seen from the code, in Algorithm 2, the function constructs
the factorial of N (if N > 1) by invoking itself at smaller values of the
argument until terminating when invoked with argument 1, replicating the
definition

N ! = N · (N − 1) · (N − 2) · . . . · 2 · 1, (2.108)

while in Algorithm 1, the factorial is constructed within one invocation. Ar-
guably, none of algorithms 1 and 2 are significantly better than the other in
this simple example, but for more complicated situations, the use of recur-
sive routines can result in a compact code. Consider, for example, the task
of differentiating the expression for the molecular energy, E(D), where the
D in parentheses denotes a functional dependence on the density matrix,
with respect to some perturbations a, b, c, . . ., collected in a perturbation
tuple bN . In general, both E and D depend on the perturbations, and use
must be made of both the product and chain rules of differentiation:

Ea =E0,a

Eab =E0,ab + E1,aDb + E1,bDa + E1Dab + (E2Da)Db

Eabc =E0,abc + E1,abDc + E1,acDb + E1,aDbc + (E2,aDb)Dc+

E1,bcDa + E1,bDac + (E2,bDa)Dc + E1,cDab + E1Dabc + (E2Dab)Dc+

(E2,cDa)Db + (E2Dac)Db + (E2Da)Dbc + ((E3Da)Db)Dc

(2.109)

As is apparent from the above expressions, the complexity rises rapidly
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at higher orders. Note that in the general case, use will be made of trun-
cation rules such as the n + 1 and 2n + 1 rules of Section 2.2, which may
remove some terms, but will at the same time add to the complexity of the
task due to the need to decide for each term whether to truncate it because
of the rule choice or not. An iterative algorithm for carrying out the dif-
ferentiation would be complicated, and may be difficult to create without
resorting to “order-by-order” methods with different ways of handling each
order of differentiation, which could result in code that grows rapidly with
the highest order of differentiation supported. Using recursion, however, a
routine such as Algorithm 3, adapted from Paper I, can be created. This
routine can carry out the differentiation of E to any order, and does so in
a modest number of lines. We also remark that the information in some
of the contributions thus identified can be re-used in other contributions.
It is therefore possible to store contributions in a cache for later retrieval,
and the circularly linked list methodology presented in Section 2.4.1 is well
suited to this purpose.

Routines such as the one outlined in Algorithm 3 form the backbone of
the open-ended response code OpenRSP featured in this work. The struc-
ture of the open-ended response theory developed by Andreas Thorvaldsen
and co-workers[2] lends itself well to an implementation where recursive rou-
tines are featured heavily, and by this, it is possible to create a general code
to manage the calculation of any response property. A more detailed expla-
nation of the most important routines in the OpenRSP code can be found
in Paper I.
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Algorithm 3 Identify energy contributions (bN , bdiff)

Arguments: Perturbation tuple bN , perturbation tuple, list bdiff
First invocation arguments: bN for the property under consideration,
one empty perturbation tuple in bdiff
Perturbation tuple: b∗N
Perturbation tuple, list : b∗diff

if N > 0 then
for i in 1, length(bdiff) + 1 do

b∗diff ← bdiff
if i = length(bdiff)+1 then

Extend b∗diff by one tuple
b∗diff,i ← bN,1

else
Add bN,1 to b∗diff,i

end if
b∗N ← bN
Remove b∗N,1 from b∗N
Call self(b∗N , b∗diff)

end for
else

if contribution not retrievable from cache then
if not truncating because of rule choice then

Calculate contribution for bdiff and store in cache
end if

end if
end if



Chapter 3

Summary of papers

3.1 Paper I: A general open-ended response code

In this paper, we present an implementation of the general open-ended re-
sponse theory by Andreas Thorvaldsen and co-workers[2]. We show that
through the use of recursive routines, a program can be made to calculate
any molecular property analytically, as long as the necessary contributions
from integral codes are available. Various intermediate contributions can
be stored in circularly linked lists and retrieved at later stages of the cal-
culation for convenience and computational savings. We demonstrate the
code by presenting results of the analytic calculation of the cubic force field
of the second hyperpolarizability of HSOH, which is a seventh-order prop-
erty of such a complexity that a tailored implementation would have been
cumbersome to create.

3.2 Paper II: Cubic and quartic force constants

In this paper, we use the OpenRSP program and recent developments in
integral codes [27] [28] [29] [30] [31] and exchange-correlation routines [32]
[33] to calculate cubic and quartic force constants for a selection of systems at
both Hartree-Fock and DFT levels of theory. We use the cubic and quartic
force constants to calculate corrected fundamental vibrational frequencies
for methane, ethane, benzene, and aniline. It is seen that correlation effects,
while not dominant, regularly show differences in fundamental vibrational
frequency corrections of up to ±10% compared to the Hartree-Fock results,
and sometimes, even larger differences are produced. For the fundamental
vibrational frequencies, the DFT (B3LYP) results show the best agreement
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to experimental values.

3.3 Paper III: Pure vibrational contributions for
retinal and retinal derivatives

In this paper, OpenRSP is used for the calculation of pure vibrational (PV)
contributions to the polarizability and first hyperpolarizability of retinal and
retinal derivatives at the DFT level. It is seen that the vibrational contribu-
tions to the first hyperpolarizability are modest if the electric field frequency
is nonzero, but in the static case, the vibrational effects can be on the order
of the electronic contribution. It is also seen that, in the static case, correla-
tion effects are substantial for the pure vibrational contributions to the first
hyperpolarizability. The results agree reasonably well with experiment.

3.4 Paper IV: Hyper-Raman spectra of retinal

In this paper, we use OpenRSP in the calculation of hyper-Raman spectra
of all-trans- and 11-cis-retinal at both the HF and DFT level. The hyper-
Raman process is a spectroscopic process in the same family as Raman
spectroscopy, but the selection rule deals with the first hyperpolarizability
of the system under study, and not the polarizability (which is the case for
Raman spectroscopy). It is seen that the Hartree-Fock results (with a DFT
(B3LYP) vibrational analysis) come closest to the experimental results for
the all-trans isomer (no experimental results were found for the 11-cis iso-
mer), but the good agreement at this lower level of theory is believed to
be accidental. When correlation effects in the hyper-Raman intensities are
included by DFT, some differences appear in the spectra. Of the DFT re-
sults, hybrid functionals seem to perform better than pure GGA functionals.
There are some differences in the hyper-Raman spectra of the two isomers,
but altogether, the current data suggests that hyper-Raman spectroscopy is
not an attractive option for investigating isomerism in these systems.



Chapter 4

Outlook

4.1 Structural development of OpenRSP

While the main routines that make up OpenRSP are now functioning to
an extent where projects like the ones in this doctoral work can be pursued,
development to bring the program to a more mature form is still needed.
The program in its present form is run inside the Dalton quantum chem-
ical program[34]. Making the OpenRSP code into a standalone program
will make it easier to connect it to modules that provide various information
that OpenRSP needs, such as routines for 1-electron and 2-electron integral
contributions, exchange/correlation contributions, response equation solver
modules (this latter topic to be introduced in some more detail in Paper
I), and, potentially, methodology that takes relativistic effects into consid-
eration. Various features, such as restart options and a sufficient degree of
sophistication in input/output handling, have been given a low priority thus
far, but should also be pursued.

4.2 Applications

The OpenRSP program, with the current support of the integral codes,
can be used for a large selection of properties. We will here make a brief
mention of some of the projects that are planned or under development.

The expansion in eqn. (2.87) goes on indefinitely, and with OpenRSP,
it is possible to calculate sixth-order force constants. These find some use in
e.g. vibrational perturbation theory corrections to rotational constants[35].
The present OpenRSP code and associated integral codes[27] [28] [29] [30]
[31] have been found to work for sixth-order force constants at the Hartree-
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Fock level, and calculations on some triatomic systems are in progress.
One experimental technique involving high-order electric dipole, mag-

netic dipole and electric quadrupole response functions is called electric field-
induced second-harmonic generation circular intensity difference (EFISHG-
CID)[36] [37]. The response functions needed for a computational treatment
of this technique, including the use of London atomic orbitals[38] when mag-
netic dipole effects are involved, could be calculated using OpenRSP. Devel-
opment is still ongoing for this project, and a lower-order property involving
magnetic dipole effects has been found to work at the Hartree-Fock level.

It was mentioned in Section 2.3.3 that it is possible to go beyond the
double harmonic approximation for the calculation of pure vibrational con-
tributions to polarization properties. Working expressions for this purpose
have been derived[39, 40, 41], and with OpenRSP, it is possible to calculate
the geometrical derivatives of polarization properties that are necessary for
the evaluation of these expressions. Preliminary calculations suggest that,
to a combined second order of anharmonicity in the polarization properties
and the vibrational wavefunction, all necessary properties can be calculated
at the Hartree-Fock level. Most of the needed properties can also be calcu-
lated at the DFT level, and work is ongoing to enable calculation of all the
needed properties at this level.

Also mentioned in Section 2.3.3 were zero-point vibrational average (ZPVA)
contributions. The calculation of ZPVA contributions involve geometrical
derivatives of both the energy and various polarization properties. The re-
sults so far suggest that all of the necessary response properties are available
at the HF level, and most of them are also available at the DFT level.

There is a large number of high-order vibrational spectroscopies for which
computational work is scarce. A computational treatment of such spectro-
scopies typically involves high-order properties, and, with the properties
that can be calculated with OpenRSP, it is possible to explore such spec-
troscopies in an analytic manner. Work has been started on a program for
the calculation of high-order vibrational spectra.

Work has also been started on making polarizable embedding approaches
such as combined quantummechanics/molecular mechanics (QM/MM) techniques[42],
including approaches where the functionality of the polarizable continuum
model (PCM)[43] is included together with the QM/MM methodology[44],
available toOpenRSP for a better treatment of the surroundings of a molec-
ular system under study, which are neglected in the present version of the
program. This work should enable an improved description of situations like
solvation and binding at molecular interfaces.

In summary, OpenRSP can take a central position in many interest-
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ing applications that involve properties that until now have been difficult
to calculate, or at least may have been difficult to calculate analytically.
The recursive approach used in OpenRSP is open-ended and is therefore
readily extended to arbitrary-order properties given that the necessary one-
electron and two-electron integral and exchange/correlation contributions
are available. With the code developed in this doctoral work, we can now
perform analytic calculations of novel, high-order properties of spectroscopic
relevance, in time including also the effects of the molecular environment.
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