
Multiscale Methods for Statistical Inference on
Regular Lattice Data

Kevin Thon

A dissertation for the degree of Philosophiae Doctor

August 2013





A B S T R AC T

This thesis presents methods for multiscale statistical inference on random fields on a regular two-

dimensional lattice. There are two distinct concepts of scale that are used in the thesis. The first

one is connected to the computer vision community’s understanding of scale-space as a family of

smooths of a digital image, with fine structure being revealed at low levels of smoothing and the

coarser structures standing out at high levels. The second way scale enters is through use of the two-

dimensional wavelet transform, and the different scales can be though of as providing information

on the energy content in different frequency bands.

All the methods that are developed herein are in the form of statistical hypothesis tests. Pa-

per I uses a Bayesian framework, and statistically significant gradient and curvature is determined

through thresholding their posterior probabilities. The last two papers use standard frequentist meth-

ods, in Paper II for determining if a random field is isotropic, meaning that the second order statis-

tical properties are independent of direction. Paper III addresses the problem of determining if two

samples from a random field are realizations from the same underlying random field.

Much emphasis is on computational efficiency issues, since the proposed methods are intended

to be practical for use on large images as typically attained from modern digital cameras. This

is achieved at the expense of some flexibility, restricting the models to be that of stationary or

intrinsically stationary random fields on a regular grid, and for all the methods developed herein

there will be a region of pixels near the image borders where inference is not valid.

The methods are demonstrated in practical examples, for Paper I on dermascopic images of

skin lesions where it is used to detect hairs and dots/globules, potentially important components

of a system for evaluating the risk of melanoma. In Paper II the test for isotropy is applied to

paper density images of handsheets, useful for determining the quality of the paper. Finally, the

methodology from Paper III is applied on small projections of the cosmic microwave background

(CMB) temperature map from the Planck mission, and offers an alternative test for the overall

isotropy of the CMB.
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1
BAC K G RO U N D

All three papers that make up the main part of this thesis are concerned with the development

of methods for multiscale statistical inference for random fields on regular two-dimensional

grids. In Papers II and III scale enters through wavelet filtering operations, while the concept of

scale in Paper I is closely related to the scale-space concept within the field of computer vision,

where it refers to a family of smooths of a digital image. Scale-space ideas gained widespread

popularity with the seminal work of Lindeberg (1994). The important insight underlying the

methods is that different features will appear at different scales, and only appear as meaningful

entities over certain ranges of scales. Rather than searching for the, in some sense, optimal scale,

the scale-space mode of thinking demands that a wide range of scales are considered, and higher

scales will reveal coarse structures whereas the lower scales will reveal details. Scale is, in this

context, introduced through convolution of the image with kernels of different bandwidths, with

the bandwidth of the kernel determining the scale.

An important development in scale-space methodology came, from a statistical viewpoint,

with the introduction of SiZer (SIgnificant ZERo crossings of derivatives) in Chaudhuri and

Marron (1999), where scale-space ideas are combined with statistical methods to find significant

structures at different levels of smoothing. The SiZer methodology has later been refined and

expanded upon in, e.g., Chaudhuri and Marron (2000); Hannig and Marron (2006); Hannig and

Lee (2006), and in Godtliebsen et al. (2002) and Godtliebsen et al. (2004) the methodology was

developed for the two-dimensional cases of, respectively, bivariate density estimation and deter-

mining significant structure in images. The above can be considered as traditional scale-space

methods, with the bandwidth of a smoothing kernel defining the scale. A somewhat different

approach was taken in Godtliebsen and Øigård (2005), and later improved in most respects in

Øigård et al. (2006). Here, the underlying signal is given a prior distribution, and inference is

done on multiple scales, where the scale is defined in terms of the parameter defining the prior

through a local neighborhood structure. As in SiZer, the scale determines the level of smooth-

ing, but the Bayesian framework allows for valid inference on much lower scales. Paper I in

this thesis essentially develops the above methods for two dimensions, where the prior image

model is that of a Gaussian Markov random field. The focus is on finding statistically significant

gradient and curvature in the form of forward differences and, as such, has much in common

with Godtliebsen and Øigård (2005). Computationally, the method is closer to the methods of

Øigård et al. (2006).
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Also in wavelet analysis the concept of scale is central. In the spatial context, a wavelet

analysis offers a decomposition that is localized in space as well as in scale, which is related to

frequency, and is often contrasted with the standard Fourier transform, which is only localized in

frequency. Traditionally, the wavelet transform has therefore found use in non-stationary signal

analysis. A two-dimensional wavelet transform is generally constructed by the successive appli-

cation of one-dimensional differencing (wavelet) and/or averaging (scaling) filters to the rows

and columns of the image (Mondal and Percival, 2012). The differencing filters are approximate

band-pass filters, while the scaling filters are low-pass filters (Percival and Walden, 2000). Con-

sidering stationary random fields, this allows for an interpretation of the scale as representing

particular frequency bands. Although there exist explicit connections between traditional scale-

space theory and some wavelet transforms (Ferdman et al., 2007), this will not be explored in

this thesis. We note informally that convolution with a Gaussian kernel represents a low-pass

filtering operation, so traditional scale-space representations can also be thought of in terms of

a frequency decomposition. Papers II and III in this thesis develop a multiscale wavelet-based

test for isotropy and equality of (Gaussian) random fields, respectively.

The spatial models used in Papers I-III will be presented in Section 1.1. In Section 1.2 relevant

background theory regarding the wavelet transform will be given, and in Section 2 all three

papers will be discussed and summarized, including suggestions for further developments. Part

II contains the full manuscripts of Papers I,II and III, and constitutes the main part of this thesis.

1.1 S PAT I A L M O D E L S

The underlying image model in all three papers in this thesis is that of a stationary or intrinsi-

cally stationary Gaussian Field (GF) on a regular two-dimensional lattice {Xu,v : (u,v) ∈ Z
2}. A

GF is normally specified in terms of its mean function μ(·) and covariance function C(·). Sta-

tionary fields are defined in terms of having constant mean μ(·) = μ and covariance function

that is a function only of the relative displacement of the sites, C(κκκ) = cov(Xu,v,Xu+κ1,v+κ2
) for

all lags κκκ = (κ1,κ2) ∈ Z
2 (Cressie, 1993). Following Künsch (1987), the more general class of

intrinsically stationary fields of order d are defined in terms of all increment processes of order

d being stationary. Intrinsically stationary fields of unit order, common in geostatistics, are spec-

ified through the semivariogram γ(κκκ) = 1
2
var(Xu,v −Xu+κ1,v+κ2

). If, in addition, the covariance

function or semivariogram is a function only of the Euclidean distance |κκκ| between the sites,

the fields are called isotropic. Specification of a field through the covariance function allows for

a intuitive interpretation of the fields properties. These types of models are commonly used in

geostatistics and spatial statistics in general (Chilès and Delfiner, 2012; Cressie, 1993).

A different modeling strategy is to use a Gaussian Markov random field (GMRF) model,

which is a discretely indexed Gaussian field where the full conditionals π(Xi|X−i) depend only

on a set of neighbors ∂ i to each site i (Rue and Held, 2005). For our purposes i = (u,v) ∈ Z
2,
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and X−i denotes the field excluding location i. The advantages of GMRF models are mainly

computational: The number of non-zero elements in the precision (inverse covariance) matrix

Q will depend directly on the neighborhood structure, since Qi j �= 0 ⇔ i ∈ ∂ j∪ j. Usually, the

neighborhood will be relatively small, meaning that Q will be sparse, and this allows for the

use of highly efficient sparse matrix methods for calculating most quantities of interest. GMRFs

can be specified a number of ways. In conditional autoregressions (CAR) models, pioneered

by Besag (1974), it is done implicitly through specifying the full conditionals, subject to some

constraints to ensure the semi-positive definiteness of the precision matrix. Alternatively, the

GMRF may be specified in terms of a normal increment process, from which the full condition-

als follow. This is the approach that has been favored in Paper I, where the two image models

under consideration are defined in terms of having first or second order normal increments. Due

to their computationally attractive qualities, GMRF models have found use in a wide range of

applications, including spatial statistics and image analysis, see, e.g., Rue and Held (2005) for

an overview.

1.2 WAV E L E T VA R I A N C E A N A LY S I S

In Papers II and III the tests that are developed are based on the wavelet variances of two-

dimensional random fields on a regular lattice. In this section some further background regard-

ing wavelet variances will be given, with the focus being on the interpretation of the scaling and

wavelet filters as low-pass and band-pass filters, respectively. The wavelet transform described

here is the maximal overlap discrete wavelet transform (MODWT), which is a modified version

of the traditional discrete wavelet transform (DWT) (Percival and Walden, 2000). In contrast

with the DWT, there is no output sub-sampling with the MODWT, thus making it a highly

redundant and non-orthogonal wavelet transform. The main disadvantage of the MODWT com-

pared to the DWT is an increase in computational burden. Since there exists a highly efficient

pyramid algorithm, with the same computational complexity as the fast Fourier transform (FFT),

the computational requirements are usually manageable. Also, the redundancy of the MODWT

requires the storage of large amounts of output data. On the other hand, a circular shift of the

input to the DWT can lead to a different DWT-based power spectrum, while the MODWT-based

power spectrum is invariant to shifting. The partial DWT, i.e., the standard DWT stopped after

J0 repetitions, requires the length of the input to be a integer multiple of 2J0 . A desirable prop-

erty of the MODWT is that there are no restrictions on the size of the input input (Percival and

Walden, 2000). Although we will consistently be using the MODWT, it should be noted that

there exist a multitude of transforms that are similar, or practically identical, but under differ-

ent names, see, e.g., (Shensa, 1992; Beylkin, 1992; Unser, 1995; Coifman and Donoho, 1995;

Nason and Silverman, 1995; Pesquet et al., 1996; Bruce and Gao, 1996).
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Figure 1: Wavelet (left) and scaling (right) D(L) filters for L = 2,4,6,8.

The particular unit-level wavelet filters {h1,l} we are considering are of the Daubechies class.

These are the filters having the maximal number of vanishing moments for a given support

(Daubechies, 1992), and additionally satisfy the following criteria:

L−1

∑
l=0

h1,l = 0,
L−1

∑
l=0

h2
1,l =

1

2
and

L−1

∑
l=0

h1,lh1,l+2n =
∞

∑
l=−∞

h1,lh1,l+2n = 0, (1)

with L being the length of the filter, and n being any non-zero integer. The corresponding scaling

filter, {g1,l}, is the quadrature mirror filter of {hl},

g1,l ≡ (−1)l+1h1,L−1−l.

Fig. 1 displays the unit-level wavelet and scaling filters for the Daubechies D(L) (see below)

filters of indicated length L. Note that the factor 1/2 in the second relation in Equation (1)

follows since we are considering the MODWT. The squared gain functions H( f ) and G( f ) of

{h1,l} and {g1,l} are defined as the squared modulus of their transfer functions H( f ) and G( f ),

i.e.,

H( f ) = |H( f )|2 with H( f ) =
L−1

∑
l=0

h1,le−i2π f l,

G( f ) = |G( f )|2 with G( f ) =
L−1

∑
l=0

g1,le−i2π f l.
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Higher level wavelet and scaling filters are obtained from the unit-level filters through the rela-

tions,

Hj( f ) = H(2 j−1 f )
j−2

∏
l=0

G(2l f ) and G j( f ) =
j−1

∏
l=0

G(2l f ).

As shown in Percival and Walden (2000), the squared gain function of the unit-level Daubechies

scaling filter is

G( f )≡ cosL(π f )
L/2−1

∑
l=0

(L
2
−1+ l

l

)
sin2l(π f ), (2)

with (
a
b

)
≡ a!

b!(a−b)!
,

where the associated squared gain function of the wavelet filter follows from the relation H( f )=

G( f + 1
2
);

H( f )≡ sinL(π f )
L/2−1

∑
l=0

(L
2
−1+ l

l

)
cos2l(π f ).

In other words, unit-level Daubechies class scaling (and wavelet) filters differ only in their phase

response θ (G)( f ), since

G( f ) = |G( f )| 1
2 eiθ (G)( f ).

Using different criteria for the spectral factorization of G( f ) leads to different phase responses,

giving the extremal phase D(L) and the least asymmetric LA(L) wavelets. The technicalities

regarding the spectral factorization process for obtaining the Daubechies wavelets are intricate,

and are beyond the scope of this introduction (see, e.g., Daubechies (1992) or Percival and

Walden (2000) for an in depth exposition). For our purposes, the LA(L) filters are the most in-

teresting. They are constructed such that, of all length L filters with squared gain function as in

Equation (2), their phase is as close as possible to being linear. For L ≤ 6 the D(L) and LA(L) fil-

ters are identical, also in phase. Fig. 2 displays the phase responses of the D(8) (left) and LA(8)

(right) scaling filters, with a dashed line indicating the closest linear phase function, illustrating

the near linearity of the LA(8) filter. Linearity in phase is highly desirable in many applications,

since this corresponds to all frequency components of the input being shifted equally, thus al-

lowing the output to be aligned with the parts of the underlying signal it represents, a property

that is exploited in Paper III.
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Figure 2: Phase response of D(8) (left) and LA(8) (right) scaling filters. The dashed line indicates the

closest linear phase function.

The two-dimensional MODWT of a random field {Xu,v} is defined in terms a tensor product of

the one-dimensional wavelet and/or scaling filters, yielding the wavelet-wavelet (ww), scaling-

wavelet (sw), wavelet-scaling (ws), and scaling-scaling (ss) coefficient processes,

Wj, j′(u,v) =
L j−1

∑
l=0

L j′−1

∑
l′=0

h j,lh j′,l′Xu−l,v−l′ , (3)

Uj, j′(u,v) =
L j−1

∑
l=0

L j′−1

∑
l′=0

g j,lh j′,l′Xu−l,v−l′ , (4)

Vj, j′(u,v) =
L j−1

∑
l=0

L j′−1

∑
l′=0

h j,lg j′,l′Xu−l,v−l′ , (5)

Z j, j′(u,v) =
L j−1

∑
l=0

L j′−1

∑
l′=0

g j,lg j′,l′Xu−l,v−l′ , (6)

where L j = (2 j −1)(L−1)+1 and L j′ denote the length of the level j and j′ wavelet and scaling

filters, respectively. The level j wavelet filters essentially produce differences on scale τ j = 2 j−1,

while the level j scaling filters average on scale 2τ j. The wavelet variances are defined simply

as the variances of the coefficient processes, i.e., with C denoting any of the coefficients from

Equations (3) – (6), ν2
C, j, j′ = var{Cj, j′(u,v)}. The wavelet variances can be used to decompose

the variance of the underlying process, and Mondal and Percival (2012) derived the following

relationships for stationary random fields,

var(Xu,v) =
∞

∑
j=1

∞

∑
j′=1

ν2
W, j, j′ , (7)

var(Xu,v) =
∞

∑
j=1

ν2
W, j, j +

∞

∑
j=1

ν2
U, j, j +

∞

∑
j=1

ν2
V, j, j. (8)

Since the level j wavelet filters are approximate band-pass filters with, assuming unit-distance

between neighboring points, pass-band (1/2 j+1,1/2 j), while the level j scaling filters are ap-
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Figure 3: Partitioning of the frequency domain from Equation (7) (left) and (8) (right)

proximate low-pass filters with cutoff at f = 1/2 j+1, these decompositions of variance corre-

spond to two different partitionings of the frequency domain, as illustrated in Fig. 3. Through

the Wiener-Khinchin relation and standard filtering results, the spectral density function (SDF)

of the coefficient processes in Equations (3) – (5) may be written out in terms of the transfer

functions and SDF of the underlying field, i.e,

SWj j′ ,Wj j′ ( f , f ′) = |Hj( f )|2|Hj′( f ′)|2SX( f , f ′),

SUj j′ ,Uj j′ ( f , f ′) = |G j( f )|2|Hj′( f ′)|2SX( f , f ′),

SVj j′ ,Vj j′ ( f , f ′) = |Hj( f )|2|G j′( f ′)|2SX( f , f ′),

which makes explicit the partitioning in Fig. 3.

An important question when doing a wavelet analysis, is what wavelet filter to use, and what

constitutes an optimal filter will usually be application dependent. The MODWT is not as sen-

sitive to the choice of wavelet as the DWT, but the choice will still affect the analysis. In the

applications in this thesis, the wavelet variances are used for making scale-based inference, with

scale interpreted as representing frequency as above. The validity of this interpretation relies to

some extent on the properties of the wavelet used in the analysis and, in general, the approxima-

tion of the wavelet and scaling filters as band-pass and lowpass filters improves with increasing

filter length, as can be seen in Fig. 4 where we have plotted the squared gain functions for the

Haar (D(2)) and LA(20) wavelet filters for levels 1− 4. The dotted vertical lines in the figure

indicate the approximate pass-band of the filters, so the area beneath the solid curve outside

the dotted region indicates the amount of spectral leakage that would occur compared to the

ideal highpass or band-pass filter. Spectral leakage is a well known phenomenon in the field of

spectral estimation (see, e.g., Percival and Walden (1993) or Priestley (1981)), and can in the

current context be thought of as a measure of the influence of frequencies outside the assumed
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Figure 4: Squared gain function of wavelet filter for Haar (left) and LA(20) (right) wavelet filters levels

1−4.

pass-band. In principle, it would therefore be recommended to use as long filters as possible,

but practical considerations will often limit the choice of filter length. Boundary effects, e.g.,

will cause a band of coefficients of length L j to be invalid for the level j coefficients, unless the

data is truly circular (on a torus in the two-dimensional case). In the applications we consider

in Papers II and III, this favors the shorter filters, though it is near impossible to give universal

recommendations with regard to what wavelet to use in a general application.
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2
R E S U LT S A N D D I S C U S S I O N

In this chapter a short summary of Papers I-III will be given, along with a limited discussion of

the main findings. Some supplementary material connected to Paper II will be presented, and

possible avenues for further research based on the work in each paper will be discussed.

2.1 PA P E R I - B AY E S I A N M U LT I S C A L E A N A LY S I S

This paper (Thon et al., 2012) develops tests for statistically significant gradient and curvature

for noisy images modeled as two different types of GMRFs, and is essentially a two-dimensional

version of the methodology in Godtliebsen and Øigård (2005) and Øigård et al. (2006). It is

based on a simple image plus noise model, where it is assumed that the noise variance is known

or can be estimated. The method is Bayesian in the sense that a prior image model is used,

and statistical significance is determined through the posterior distribution of the gradient and

curvature. The two prior image models used in the paper are defined by the first or second order

normal increment processes on a local neighborhood having precision κ , and yield priors that are

first-order or second-order intrinsic GMRFs, respectively. The level of smoothing is determined

by the κ parameter, which can be thought of as placing different weight on the model compared

to the noise, effectively determining the assumed signal to noise ratio.

The method is intended for use with large images from modern digital cameras, and much

emphasis is on computational efficiency issues. Computational efficiency is achieved through

restricting the scope to (intrinsically) stationary models defined on a toroidal grid, following

Rue and Held (2005). This introduces correlations across opposing image borders, but allows

for the use of the FFT to calculate both the posterior expectations and covariance matrix. With

N being the number of pixels in the image, the computational cost of the method is O(N log(N)),

while a straightforward implementation involving naive direct matrix inversion would be O(N3).

The FFT implementation is also faster than the sparse matrix methods described in Rue and Held

(2005), which are typically O(N3/2). In Holmström and Pasanen (2012) a similar methodology

to that of Thon et al. (2012) is developed, with the main focus being on finding significant

differences between noisy images. In this formulation there is more flexibility with regard to the

types of priors that can be used, and also the uncertainty in the noise variance can be built in

through giving it a prior distribution reflecting the uncertainty. Also versions with correlated or

heteroscedastic noise are developed. In general the more refined models rely on Gibbs sampling
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for finding the posterior quantities of interest, and the computational cost vastly exceeds that of

our simple model.

Our method is demonstrated on two practical problems, both related to dermascopic images

of skin lesions. The first application shows the ability of the method to detect hairs, which will

show up as valleys in the image, and the other shows how the method can be used to detect

dots/globules in the skin lesion. The use of multiple scales facilitates the detection of both the

finer and coarser structures.

Future work

An obvious extension of the method would be to allow for more flexibility in the choice of

prior image model. While the priors used in Paper I are quite reasonable choices for many

natural images, there might be applications where one wishes to incorporate specific knowledge

of the spatial covariance structure of the random field that goes beyond these simple models.

Recent work by Lindgren et al. (2011) has established a explicit link between the GF and GMRF

modeling strategies, and shows how a GF with covariance matrix ΣΣΣ can be represented by a

GMRF with a local neighborhood and precision matrix Q such that Q−1 is close to ΣΣΣ in some

norm. They demonstrate how a GMRF representation can be constructed explicitly through a

stochastic partial differential equation that has GFs with with Matérn covariance function as

solution when driven by Gaussian white noise. This, in general, allows for the use of the full

array of sparse matrix methods for doing calculations regarding the GF. Such an approach can

certainly be used for constructing priors based on specific covariance models for use with the

methods of Paper I. However, since the computational efficiency of our method depends on the

structure of the precision/covariance matrix, rather than the sparsity, a simpler approach may

be preferable. In, e.g., Dietrich and Newsam (1997); Stein (2002), a procedure called circulant

embedding of the covariance matrix is employed for fast and exact simulations from GFs. The

basic idea is to create a larger block-circulant matrix (see Paper I for definitions regarding block-

circulant matrices) from the block-Toepliz covariance matrix that is defined in terms of the

GFs covariance function, thus making available all the FFT-based methods for calculating, e.g.,

eigenvalues and inverses. This amounts to wrapping the GF on a torus, and an important issue

is determining the minimal size of the embedded field for guaranteeing that the resulting block-

circulant covariance matrix is non-negatively definite. To use this methodology for defining prior

image models as in Paper I, would require the base of the block-circulant matrix to be the same

size as the image. This would likely put limits on the range of dependencies in the model that

can be approximated by such a procedure.

Another possible extension of the method would be to sacrifice some computational efficiency

by avoiding the use of a toroidal grid, and rather use a more standard GMRF formulation, relying

on the sparse matrix methods in Rue and Held (2005). The obvious advantage from this is that
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the whole image can be considered, also the borders. To incorporate the use of priors defined

through the covariance function of a GF, as outlined above, would in this case demand the use

of a method such as in Lindgren et al. (2011) (for GFs with with Matérn covariance function),

or some other method for representing a GF as a GMRF, see, e.g., Rue and Tjelmeland (2002).

2.2 PA P E R I I - WAV E L E T- B A S E D T E S T F O R I S OT RO P Y

A common assumption when using random field models, is that the field in question is isotropic,

meaning that the second order statistics of the field are independent of direction. In Paper II,

a multiscale statistical test for isotropy of random fields is developed, based on the estimated

wavelet variances over multiple scales. For an isotropic random field, the covariance function or

semivariogram will depend only on the Euclidean distance between the locations, meaning that

it will be completely symmetric around the origin when plotted as a function of lag (iso-contour

lines will be perfectly circular). For a stationary field, the spectral density function will exhibit

the same symmetries so, referring to Fig. 3, this means that ν2
W, j, j′ = ν2

W, j′, j and ν2
U, j, j = ν2

V, j, j,

where the last relation generalizes to ν2
U, j, j′ = ν2

V, j′, j. As a consequence, for an isotropic field,

log

(
ν2

U, j, j′

ν2
V, j′, j

)
= 0 and log

(
ν2

W, j, j′

ν2
W, j′, j

)
= 0, (9)

and replacing the variances in Equation (9) with their estimates from Equations (3) to (5) gives

the test statistic for the single scale test developed in Paper I. The test is further developed to

include the ratios of choice, giving a multiscale test of isotropy. Large sample results are used

to find the null distribution of the test statistic as a chi square with J degrees of freedom, where

J denotes the number of ratios included. A simulation study shows that the asymptotic null dis-

tribution is a reasonable approximation for the empirical distribution even for quite small grids,

and the test has considerable power in rejecting anisotropic fields. The test is compared against

three existing methods (Lu and Zimmerman, 2005; Guan et al., 2004; Richard and Bierme,

2010). The wavelet-based test is shown to outperform the others since its rejection rate under

isotropy is consistently closest to the nominal level, while having rejection rates comparable to

or exceeding the existing methods. In addition, the wavelet-based test is more general in that it

handles the case of intrinsically stationary fields. The method is demonstrated on paper density

images of handsheets.

Supplementary material

This paragraph can only be understood with reference to the power study in Paper II, and the

relevant definitions and description of the study are to be found there. In the paper, due to
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space considerations, rejection rates are given only for the 5% nominal level and only for the

D(4) wavelet, although the simulation study was run also with the Haar and LA(8) wavelet. To

complete the story, Fig. 5 shows three receiver operating characteristic (ROC) curves. The power

is calculated as the average over thirty different parametrizations of anisotropic exponential

fields, each of which are based on 1000 samples. The average rejection rate (power) of the test

performed on the exponential fields is plotted as a function of the size of the test, for 20× 20

(left), 40× 40 (middle), and 128× 128 (right) grids. As apparent from the ROC curves, the

power is consistently lower for the longer filters, and this is likely connected to there being

fewer coefficients available for estimating the necessary variances/covariances for constructing

the test. The effect is quite pronounced for the smallest 20×20 and, to a lesser extent, 40×40

fields. For the 128×128 fields the shorter wavelets still have a slightly higher rejection rate but,

for practical purposes, the performance of the different wavelets is identical. This is consistent

with the effect having to do with the number of valid coefficients available for calculating the

necessary estimates, since as the grid size increases, the relative proportion of invalid coefficient

decreases for all wavelets, but more dramatically for the longer ones.

Another choice that was made in the power study, was to consider only the test constructed

from a single ratio. This was done since we wished to make a fair comparison with the other

methods in the comparative study, using the same test statistic for all image sizes. In Fig. 6

the average power of the D(4) test based on unit-level, levels (1,2), and (1,2,3) diagonal sw/ws

ratios for 128×128 exponential (left), spherical (middle) and fractional Brownian fields (FBFs)

(right) are plotted. For the exponential and spherical fields, the average rejection rate is actually

highest for the single scale test, and decreases with the addition of higher level ratios. In view

of Fig. 3 this is somewhat counter intuitive, since inclusion of more levels should correspond to

including more of the power spectrum in the test. The likely explanation for this effect is that

the elements of ΣΣΣ needed for constructing the test need to be estimated. The small and possibly

correlated errors in the the estimates are sufficient to reduce the power of the test, and including

more scales warrants the estimation of more quantities. The samples used in the study are also

such that the field is equally anisotropic on all scales, so the benefits of including more scales

are outweighed by the additional estimation needed. In real world applications, this need not be

the case, and a field can conceivably be anisotropic on some scales and on others not. In such a

case the multiple ratio test statistic will be relevant for evaluating the anisotropy of the field as a

whole. For the FBFs, the trend is different, and the average power increases with the inclusion

of more scales. This is likely an effect of the long range dependencies in the FBFs, and causes

the discriminatory power to be larger for the higher scales.
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Figure 5: The average power of the Haar, D(4) and LA(8) test based on unit-level diagonal sw/ws ratio

for 20×20 (left), 40×40 (middle), and 128×128 (right) grids. Note that the scale on the y-axis

is different in the three ROC curves.
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Figure 6: The average power of the D(4) test based on unit-level, levels (1,2), and (1,2,3) diagonal sw/ws

ratios for 128×128 exponential (left), spherical (middle) and fractional Brownian fields (right).

Note that the scale on the y-axis is different in the three ROC curves.

Future work

The estimators of the covariances needed for constructing the test rely on use of the periodogram,

whose suboptimal properties are well known. It would be interesting to explore the use of other

spectral estimates, although this would lead to an increase in computational burden. The two-

dimensional wavelet transform has already been used successfully within the field of texture

analysis and segmentation, see, e.g., Unser (1995); Do and Vetterli (2002). An interesting av-

enue of research would be to explore the usefulness of the test statistic in Paper II as a texture

measure, i.e., use the degree of anisotropy as an image feature. The wavelet transform should

then be applied over the entire image, and the coefficients shifted to compensate for the non-

zero phase of wavelet filters. The image can then be divided into boxes of a chosen size, and

the variances can be calculated locally. With appropriate modification of the variance estimators

and the estimators of the covariance between the different variance estimators, the test applies

as described in Paper II.

15



2.3 PA P E R I I I - WAV E L E T- B A S E D T E S T F O R E Q UA L I T Y O F R A N D O M F I E L D S

The test developed in Paper III is for determining if two independent samples are realizations

from the same random field. It is based on the vector difference of the estimated wavelet vari-

ances of two fields over a range of scales. Samples from the same field should, up to sampling

variability, have the same wavelet variances, and the test is developed using the large sample dis-

tribution of the wavelet variances for estimating the distribution of the multiple scale test statistic.

The scales included in the test should reflect the frequency bands that are most interesting for

the application at hand. A simulation study shows that the test statistic follows the hypothesized

null distribution closely, even for moderately sized images, and that it has considerable power

in differentiating between samples from different random fields.

The dominant theories within the field of cosmology predict that the cosmic microwave back-

ground (CMB) should be a realization from an isotropic Gaussian field (Dodelson, 2003). With

the release of the latest CMB measurements from the Planck satellite, researchers have avail-

able CMB data of unprecedented quality and resolution (Planck Collaboration, 2013a). The

high resolution of the measurements allow for making small projections to regular grids, and

the methodology developed in Paper III can be applied to projections in antipodal regions, i.e.,

regions separated by the maximum great circle distance, since the assumption of isotropy on the

sphere means that the projections should be realizations from the same Gaussian field. A simu-

lation study involving sampling CMB realizations with the required angular spectrum (Planck

Collaboration, 2013b) on a sphere demonstrates the validity of the approach under the null hy-

pothesis of isotropy. Finally, we apply the method to the actual Planck CMB temperature map.

While we do find indications of anisotropies, these have thus far not been verified in terms of

robustness against systematic measurement errors, or other noise sources.

Future work

In this section some methods that are closely related to the test for equality of random fields

from Paper III are outlined. Much of the definitions are from Paper III, so this section can only

be fully understood with reference to the paper. The methodologies presented here, are to be

considered merely an outline for future research and are as such neither complete nor backed up

by extensive simulation studies or practical examples.
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Test against theoretical random field

We wish to develop a test of whether a random field sample is from a particular random field

with a particular parametrization. First we note that, for a stationary field {Xu,v} with covariance

function sX ,κ1,κ2
, the wavelet variances may be written as

ν2
W, j, j′ =

L j−1

∑
l,l′=0

L j′−1

∑
k,k′=0

h j,lh j,l′h j′,kh j′,k′sX ,l−l′,k−k′ , (10)

ν2
U, j, j′ =

L j−1

∑
l,l′=0

L j′−1

∑
k,k′=0

g j,lh j,l′g j′,kh j′,k′sX ,l−l′,k−k′ , (11)

ν2
V, j, j′ =

L j−1

∑
l,l′=0

L j′−1

∑
k,k′=0

h j,lg j,l′h j′,kg j′,k′sX ,l−l′,k−k′ . (12)

When {Xu,v} is intrinsically stationary, we can express Equations (10) – (12) in terms of its

semivariogram,

ν2
W, j, j′ =−

L j−1

∑
l,l′=0

L j′−1

∑
k,k′=0

h j,lh j,l′h j′,kh j′,k′γX ,l−l′,k−k′ . (13)

with similar forms for ν2
U, j, j′ and ν2

V, j, j′ . Now, assume that the field X comes from a specific

covariance model parametrized by θθθ . Letting β̂ββ = [ν̂2
W,1,1, . . . , ν̂2

W,J,J]
T denote the vector of diag-

onal ww variance estimators, J denoting the highest included level, we know from Mondal and

Percival (2012) that

β̂ββ D→N (βββ ,ΣΣΣ) ,

where

ΣΣΣ =

⎡⎢⎢⎢⎢⎢⎢⎣
var{ν̂2

W,1,1} cov{ν̂2
W,1,1, ν̂2

W,2,2} · · · cov{ν̂2
W,1,1, ν̂2

W,J,J}
cov{ν̂2

W,2,2, ν̂2
W,1,1} var{ν̂2

W,2,2} · · · cov{ν̂2
W,2,2, ν̂2

W,J,J}
...

. . .
...

cov{ν̂2
W,J,J, ν̂2

W,1,1} · · · · · · var{ν̂2
W,J,J}

⎤⎥⎥⎥⎥⎥⎥⎦ .

with βββ = [ν2
W,1,1, . . . ,ν2

W,J,J]
T being the vector of true wavelet variances. We wish to test if the

considered sample is from a particular random field, so we by assumption know the covariance

function sX ,κ1,κ2
or semivariogram γX ,κ1,κ2

for intrinsically stationary fields. This means that

we can easily calculate the theoretical wavelet variances βββθθθ for the field in question through

Equation (10) or (13). The covariances between the estimators can be calculated efficiently by

17



the fast Fourier transform (FFT), so assuming that the sample is from the hypothesized random

field,

β̂ββ −βββθθθ
D→N (000,ΣΣΣ) .

A test for determining whether the sample is from the random field in question can therefore be

phrased as

H0 : βββ −βββθθθ = 000; H1 : βββ −βββθθθ �= 000.

χ = (β̂ββ −βββθθθ )
TΣΣΣ−1(β̂ββ −βββθθθ ) is under the null hypothesis distributed as χ2

J , the chi-square distri-

bution with J degrees of freedom. Using χ as the test statistic, we find that for significance level

α , H0 will be rejected when χ > qχ2
J
(α), the upper (100α)th percentile of the χ2

J distribution.

The test as described above, is for testing what is described in DasGupta (2008) as a simple

hypothesis H0, where the model is fully specified both in terms of covariance type and para-

metrization. A more realistic scenario is that you wish to test for whether a sample is from a

class of covariance functions (e.g., exponential, spherical, fractional Brownian surface), and the

parameters need to be estimated. This constitutes a composite hypothesis, and the methodology

described above does not immediately lend itself to the task. βββθθθ would be replaced by the ran-

dom variable βββθ̂θθ , where θ̂θθ is some estimator for θθθ . Even for a normally distributed estimator θ̂θθ
with known variance, finding the distribution of βββθ̂θθ through Equations (10) or (13) is non-trivial.

Maximum likelihood estimator of parameters of random field

The same basic idea as above can be used for estimating the unknown parameters defining the

field sample in question. The likelihood is

L(θθθ ,β̂ββ ) = P(β̂ββ |θθθ) = P(β̂ββ |βββθθθ ) =N
(

β̂ββ −βββθθθ ,ΣΣΣ
)

(14)

Finding the value of θθθ that maximizes Equation (14) is equivalent to finding the θθθ that minimizes

−2log
(

L(θθθ ,β̂ββ )
)
= J log(2π)+ log(|ΣΣΣ|)+(β̂ββ −βββθθθ )

TΣΣΣ−1(β̂ββ −βββθθθ ),

so

θ̂θθ = argmin
θθθ

(
log(|ΣΣΣ|)+(β̂ββ −βββθθθ )

TΣΣΣ−1(β̂ββ −βββθθθ )
)
,

gives the maximum likelihood estimate. The complicated relationship between ΣΣΣ and the para-

metrization of the underlying field prohibits an analytical solution of the above. Since the sup-
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port of the parameters of most fields is usually limited, we rather recommend a numerical pro-

cedure, where the minimization is done first on a coarse grid, and then on a finer grid around the

minimum from the previous step.

Steps towards a test of correlated samples

The test developed in Paper III assumes that the samples being tested for equality are indepen-

dent. An interesting application of the methodology from Paper III might be to quantify the

textural difference between regions within an single image, taking into account the possible cor-

relations between the regions. In the following, some steps along the way to developing such a

test are outlined.

With X and Y denoting the respective fields under consideration, and with β̂ββ X and β̂ββY denoting

the vector of wavelet variances from field X and Y , respectively, we construct the vector

β̂ββ = [ν̂2
WX ,1,1, ν̂

2
WY ,1,1, . . . , ν̂

2
WX ,J,J, ν̂

2
WY ,J,J]

T

by placing pairwise the corresponding elements from β̂ββ X and β̂ββY . ν̂2
WX , j, j and ν̂2

WY , j, j denote the

level j diagonal ww-variance estimators of the first and second field, respectively. The asymp-

totic normality of the estimators gives,

β̂ββ D→N (βββ ,ΣΣΣ1) ,

where

ΣΣΣ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

var{ν̂2
WX ,1,1

} cov{ν̂2
WX ,1,1

, ν̂2
WY ,1,1

} cov{ν̂2
WX ,1,1

, ν̂2
WX ,2,2

} · · · cov{ν̂2
WX ,1,1

, ν̂2
WY ,J,J}

cov{ν̂2
WY ,1,1

, ν̂2
WX ,1,1

} var{ν̂2
WY ,1,1

} cov{ν̂2
WY ,1,1

, ν̂2
WX ,2,2

} · · · cov{ν̂2
WY ,1,1

, ν̂2
WY ,J,J}

cov{ν̂2
WX ,2,2

, ν̂2
WX ,1,1

} cov{ν̂2
WX ,2,2

, ν̂2
WY ,1,1

} var{ν̂2
WX ,2,2

} · · · cov{ν̂2
WX ,2,2

, ν̂2
WY ,J,J}

...
. . .

...

cov{ν̂2
WY ,J,J , ν̂

2
WX ,1,1

} · · · · · · · · · var{ν̂2
WY ,J,J}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with βββ = [ν2
WX ,1,1

, . . . ,ν2
WY ,J,J]

T being the vector of theoretical wavelet variances. Introducing

the differencing matrix

B =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −1 0 0 · · · 0 0

0 0 1 −1 · · · 0 0
...

. . .
...

0 · · · 1 −1

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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results in, using standard results from multivariate theory (see, e.g., Johnson and Wichern (2007)),

Bβ̂ββ = β̂ββ X − β̂ββY
D→N (βββ X −βββY ,ΣΣΣ) ,

where ΣΣΣ = BΣΣΣ1BT , with elements

Σs,t = cov{β̂2s, β̂2t}+ cov{β̂2s−1, β̂2t−1}− cov{β̂2s, β̂2t−1}− cov{β̂2s−1, β̂2t}.

A test can therefore be formulated as

H0 : βββ X −βββY = 000; H1 : βββ X −βββY �= 000.

Under the null hypothesis χ = (β̂ββ X − β̂ββY )
TΣΣΣ−1(β̂ββ X − β̂ββY ) is distributed as χ2

J . Using χ as the

test statistic, we find that for significance level α , H0 will be rejected when χ > qχ2
J
(α). In a

practical application of the test, the elements in ΣΣΣ1 must be replaced with their estimates. For

the elements pertaining to the cross-level covariances of the ww variance estimates from the

same field, the estimators from Paper III can be used, but the between field estimators need to

be developed. In the following this development will be somewhat superficial and the interested

reader is referred to Paper II for more detail. First we note that, assuming that the random fields

are both of size N ×M, and with Nj = N −L j +1 (Mj, Nk and Mk are defined equivalently),

cov
{

ν̂2
WX , j, j, ν̂

2
WY ,k,k

}
= cov

{
1

NjMj

N−1

∑
a=L j−1

M−1

∑
b=L j−1

WX
2
j, j,a,b,

1

NkMk

N−1

∑
c=Lk−1

M−1

∑
d=Lk−1

WY
2
k,k,c,d

}

=
1

NjMjNkMk

N−1

∑
a=L j−1

M−1

∑
b=L j−1

N−1

∑
c=Lk−1

M−1

∑
d=Lk−1

cov
{

WX
2
j, j,a,b,WY

2
k,k,c,d

}
.

After applying Isserlis Theorem and some asymptotically justified simplifications, we find that

cov
{

ν̂2
WX , j, j, ν̂

2
WY ,k,k

}≈ 2

N+M+

∞

∑
t=−∞

∞

∑
t ′=−∞

s2
WX , j jWY,kk

(t, t ′) =
2A j, j,k,k

N+M+
,

where sWX , j jWY,kk(t, t
′) = cov

{
WX j, j,u,v,WY k,k,u+t,v+t ′

}
. In the above N+ =max(Nj,Nk) and M+ =

max(Mj,Mk). By Parseval’s theorem,

A j, j,k,k =
∞

∑
t=−∞

∞

∑
t ′=−∞

s2
WX , j jWY,kk

(t, t ′) =
∫ 1/2

−1/2

∫ 1/2

−1/2
|SWX , j jWY,kk( f , f ′)|2 df df ′,

SWX , j jWY,kk( f , f ′) being the cross-spectral density between WX , j j and WY,kk. We further note that

SWX , j jWY,kk( f , f ′) = Hj( f )∗Hj( f ′)∗Hk( f )Hk( f ′)SX ,Y ( f , f ′),
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and

SWX , j jWX , j j( f , f ′)SWY,kkWY,kk( f , f ′) = |Hj( f )|2|Hj( f ′)|2|Hk( f )|2|Hk( f ′)|2SX( f , f ′)SY ( f , f ′),

so,

SWX , j jWX , j j( f , f ′)SWY,kkWY,kk( f , f ′)
|SWX , j jWY,kk( f , f ′)|2 =

SX( f , f ′)SY ( f , f ′)
|SX ,Y ( f , f ′)|2 =

1

ξX ,Y ( f , f ′)
,

where ξX ,Y ( f , f ′) denotes the magnitude squared coherence (MSC) between X and Y . Thus, the

expectation of the squared modulus of the cross-periodogram can be written

E
{
|Ŝ(p)

WX , j jWY,kk
( f , f ′)|2

}
≈ SWX , j jWX , j j( f , f ′)SWY,kkWY,kk( f , f ′)+ |SWX , j jWY,kk( f , f ′)|2

=

(
SWX , j jWX , j j( f , f ′)SWY,kkWY,kk( f , f ′)

|SWX , j jWY,kk( f , f ′)|2 +1

)
|SWX , j jWY,kk( f , f ′)|2

=

(
1

ξX ,Y ( f , f ′)
+1

)
|SWX , j jWY,kk( f , f ′)|2.

Assuming that an unbiased estimator ξ̂X ,Y ( f , f ′) can be found for the MSC (Jakobsson et al.,

2007), this means that an approximately unbiased estimator for cov
{

ν̂2
WX , j, j, ν̂

2
WY ,k,k

}
is given

by

σ̂WX j jWY kk =
2Â j, j,k,k

N+M+
,

with

Â j, j,k,k =
N−−1

∑
n=−(N−−1)

M−−1

∑
m=−(M−−1)

ξ̂X ,Y ( fn, f ′m)
ξ̂X ,Y ( fn, f ′m)+1

|Ŝ(p)
WX , j jWY,kk

( fn, f ′m)|2

where N− = min(Nj,Nk) and M− = min(Mj,Mk), and the summation is over the Fourier fre-

quencies. This assumes that ξ̂X ,Y ( f , f ′) is independent of Ŝ(p)
WX , j jWY,kk

( f , f ′). We note that when X

and Y are independent, ξ̂X ,Y ( fn, f ′m) should be close to zero, making σ̂WX j jWY kk close to zero, in

agreement with the test for independent samples. Also, if X = Y the MSC equals unity, and we

get the estimator from Paper II for the cross-level covariances.

Implementation and testing of the above estimators will be the subject of future research.
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