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Perturbed atoms in molecules and solids: The PATMOS model
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A new computational method for electronic-structure studies of molecules and solids is presented.
The key element in the new model — denoted the perturbed atoms in molecules and solids model
— is the concept of a perturbed atom in a complex. The basic approximation of the new model is
unrestricted Hartree Fock (UHF). The UHF orbitals are localized by the Edmiston-Ruedenberg pro-
cedure. The perturbed atoms are defined by distributing the orbitals among the nuclei in such a way
that the sum of the intra-atomic UHF energies has a minimum. Energy corrections with respect to
the UHF energy, are calculated within the energy incremental scheme. The most important three-
and four-electron corrections are selected by introducing a modified geminal approach. Test cal-
culations are performed on N, Li,, and parallel arrays of hydrogen atoms. The character of the
perturbed atoms is illustrated by calculations on H,, CHy, and C¢Hg. © 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4818577]

I. INTRODUCTION

The atomic hypothesis of Democritus, refined and con-
firmed by the work of Dalton and Boltzmann in the 19th cen-
tury, is perhaps one of the most fruitful scientific ideas ever
formulated. Feynman' asks the following question in vol-
ume one of his well-known books The Feynman Lectures on
Physics. What statement would contain most information in
the fewest words? His answer is the following: “I believe it
is the atomic hypothesis — that all things are made of atoms
— little particles that move around in perpetual motion, at-
tracting each other when they are a small distance apart, but
repelling upon being squeezed into each other. In that one
sentence there is an enormous amount of information about
the world, if just a little thinking and imagination are applied.”

In chemistry and physics, a huge body of experimental
results can be interpreted by the notion that matter consists of
atoms. In spite of this tremendous success, the fundamental
theory of chemistry — quantum mechanics — cannot rigorously
support the notion of a well-defined state of an atom in a com-
plex. The reason is easy to understand. Quantum mechanics
is a holistic theory. Hence, even the states of non-interacting
subsystems in a complex — if previously entangled — are not
defined. A trivial case is the dissociation of the hydrogen
molecule in the ground state. This particular feature of quan-
tum mechanics is usually denoted Einstein-Podolsky-Rosen
correlations.? Nevertheless, we do not consider a proper wave
function for the whole universe. Non-interacting complexes
are described by simple products of wave functions.

The first attempt to identify an atomic state in a molecular
wave function can be traced back to the work of Moffitt.> By
using properly antisymmetrized product functions of atomic
wave functions for the isolated subsystems as zero-order func-
tions, he suggested in principle a perturbation approach for
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the molecular problem where the interaction between the
atoms was treated as a perturbation. In this approach, the
atoms in a sense keep their individuality during molecular for-
mation. However, it seems to be extremely difficult to apply
this approach to a solid.

The one-electron density is the basis for several ap-
proaches defining atoms in a complex. In density functional
theory,*® an atom in a molecule is defined by the following
suppositions: First, the sum of atomic densities is equal to the
molecular density. Second, the atoms are minimally promoted
from their ground state. Third, the atoms in the molecule have
equal chemical potentials. By using this approach, Palke® and
Guse® have performed calculations identifying the hydrogen
atom in the hydrogen molecule. Rychlewski and Parr® in-
troduced a wave function approach for defining an atom in
molecule. Their approach was restricted to homonuclear di-
atomic molecules.

Bader and co-workers'®!7 define atoms in a molecule by
partitioning the one-electron density. The key element is the
zero-flux condition yielding closed surfaces separating differ-
ent parts of the real space. In this approach, an atom is a region
of the real space that contains a single nucleus. Properties
of the atoms, such as electron population and energies, can
then be calculated by integrating over the appropriate part of
the real space. Bader’s'®"!'7 theory makes it also possible to
obtain a unique network of bonds for each geometry. This
network is represented by a molecular graph. A molecu-
lar structure is defined as an equivalence class of molecular
graphs. Bader’s'*!7 definition of an atom in a molecule is
both creative and fruitful. However, it is very different from
the common connotation that an atom is many-particle system
comprising a nucleus and a number of electrons.

The present work has its origin in a conviction that the
most appropriate root function in an ab initio calculation of
the electronic structure of a complex, is likely to be based
on one spatial orbital for each valence electron participating

© 2013 AIP Publishing LLC
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in the bonding. Hence, the bonding electrons should ideally
be associated with a group function of the spin optimized
Hartree-Fock (SOHF) type.'3-2° All possible fragmentation of
a complex can be qualitatively correctly described by this type
of wave function. Furthermore, for a huge class of molecules
and solids, the SOHF-orbitals are essentially distorted or per-
turbed atomic type orbitals. Accordingly, they can be assigned
to the atoms of the complex. Unfortunately, the determination
of the SOHF group function is numerically very demanding
for electron groups with more than a few electrons, and prac-
tically impossible for electron groups with more than, say,
14-16 electrons.? In this work, we will therefore adopt a sim-
pler procedure.

The basic approximation of the new model is unrestricted
Hartree-Fock (UHF). The UHF orbitals can describe qualita-
tively any partitioning of a complex into fragments since there
is a separate spatial orbital for each electron. In order to define
atoms in a complex, the UHF orbitals have to be localized.
The localized orbitals are chosen as the orthogonal Hartree
orbitals which are expressed in terms of the optimized UHF
orbitals. The orbitals obtained by this procedure are attributed
to the nuclei in such a way that the sum of the intra-atomic
components of the UHF energy has a minimum. A nucleus
and the attributed localized UHF orbitals, are then denoted
a perturbed atom of the complex in question. The perturbed
atom can be a neutral entity or an ion.

As in the energy incremental method,?'~2® we include in
an additive way intra-atomic correlation energy, diatomic cor-
relation energy, and if necessary polyatomic correlation cor-
rections.

Within this framework, a complex may be considered
as a collection of interacting perturbed atoms. This model is
therefore denoted the PATMOS model (Perturbed AToms in
MOlecules and Solids).

In this work, we will argue that the concept of perturbed
atoms in a complex can be useful in different ways. It can
serve interpretative purposes and simplify electronic structure
calculations.

The preliminary version of the model is restricted to the
ground state of a complex.

The structure of the article is as follows. Section II is de-
voted to the theoretical framework, i.e., defining the model.
Section III is concerned with UHF applied to extended sys-
tems. In Sec. IV, we present some test calculations related
to the accuracy of the model. The character of the perturbed
atoms is illustrated by calculations on the hydrogen molecule,
methane, and benzene in Sec. V.

Il. THE PATMOS MODEL

The PATMOS model is based on three basic assumptions.
First, the root function is a UHF wave function. Second, a
specific localization scheme for the UHF orbitals allowing
the definition of perturbed atoms. Third, the energy incre-
mental scheme.?'~?® The total energy is written as a sum of
intra-atomic terms, diatomic terms, and so on. At the highest
level, the model is equivalent to a full configuration interac-
tion (FCI) model. The FCI level is of course of limited in-
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terest. In practice, it can never be reached except for systems
with very few electrons and/or small basis sets.

A. Determination of the PATMOS orbitals

Localization of the UHF orbitals is a key issue in our
approach. There are several localization scheme which can
be used for obtaining localized orbitals. The Boys localiza-
tion scheme,”’ the Pipek-Mezey scheme,’® and the Edmiston-
Ruedenberg scheme® are the most commonly adopted ones.
These localization schemes give typically very similar results.
The main difference is that the Pipek-Mezey scheme does
not mix o- and w-type orbitals. In this work, we prefer the
Edmiston-Ruedenberg scheme since it is equivalent to obtain-
ing a set of basis set restricted Hartree orbitals.

1. A basis set restricted Hartree model

Let {1 <i < Ny} and {""F;1 <i < Ny} de-
note, respectively, the optimized a- and B-type UHF orbitals.
Similarly, we have Hartree orbitals: {wiH “1 <i < Ny} and
{1//1-]{;‘3 ;1 <i < Ng}. The basis set restricted Hartree orbitals
are orthonormal, and they are expressed in terms of the UHF
orbitals by a unitary transformation

Noz
=2 Ui, (M)
and

UHF b ?)

ZU

The Hartree wave function and the corresponding Hartree
energy

Ny Np
y Hartree _ <1_[ I/[iH;ot> 1_[ wJH;ﬁ , 3)
i=1 =1

Ny
[Hartree _ Z Hot|hl//H01 )+ Z Hﬁ|th ﬂ)

Ny Np

+ Z Z [lea 1//il-l;w |WJHﬂ I/IJHﬁ]

i=1 j=1

Ny
+ > [yt eyt

i<j

H;p wiﬂ;ﬂ \ wjljl;ﬂ w}H;ﬁ] ) 4)

Sl

i<j

In Eq. (4), h denotes the one-electron Hamiltonian, and
Mulliken notation is adopted for the two-electron integrals.
Since the first three sums in Eq. (4) are invariant by unitary
transformations, it follows that minimizing EHa¢ is equiva-
lent to minimizing the Coulombic repulsion energies associ-
ated with each set of Hartree orbitals. Hence, the basis set
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restricted Hartree orbitals are identical to the localized or-
bitals obtained by the Edmiston-Ruedenberg localization
scheme.

2. Definition of perturbed atoms

By having constructed and tested several approaches for
defining perturbed atoms in a complex, we arrived at the fol-
lowing unequivocal procedure based on minimizing the sum
of the intra-atomic components of the UHF energy with re-
spect to the distribution of localized spin orbitals:

Naoms [ N2 Ny
A A5 A; A;
g _ 3° {Zw,- )+ 3 g )
A=1 i=1 i=1
NA

+Z ([wiA;awiA;ah/f}‘l;al/f;l;a]

i<j

—[y ey ey

Nj
+ Z ([wiA;ﬁwiA;ﬁ w;\:ﬁw}‘\;ﬁ]

i<j

—[Iﬁ'iA;ﬂ ij,ﬂ ‘ wiAiﬂ ij,ﬂ])

NA NG
+3°) [w,-A;”w,-A;‘*lvf;‘;ﬁw;‘;ﬂ]}, (5)

i=1 j=1

where h, is the one-electron Hamiltonian associated with nu-
cleus A, charge Z,4, and nuclear position R 4, i.e.,

_lvz — Za

h = _
e A T g

(6)

The spin orbitals {1/fiA;“;1 <i < N2} and {wiA;ﬂ;l <i
<N g‘} are localized spin orbitals associated with nucleus A.

The minimization procedure runs over all possible distri-
butions of the spin orbitals with respect to the nuclei. To each
distribution of the spin orbitals, there is associated a value of
the functional EJHF. The optimal distribution is then the one
which has the lowest value of EJFF. This particular distri-
bution defines the perturbed atoms. A perturbed atom is then
characterized by a nucleus and a set of spin orbitals, i.e., a set
of a-type orbitals and/or a set of B-type orbitals. The number
of spin orbitals associated with each nucleus, i.e., NO‘:‘ + N2,
determines whether the perturbed atom is a neutral entity or
an ion.

The number of different distributions of the spin orbitals
might be huge for a large molecule. However, in practice only
a small fraction needs to be considered. First, we start by cal-
culating the charge centroids of the spin orbitals. Then we cal-
culate the distance between a charge centroid and the position
of all nuclei. The spin orbital in question is then associated
with the closest nucleus, but with a restriction that a neutral
molecule should have neutral atoms in the initial distribution.
Second, the core orbitals are kept fixed. Interchanging core
orbitals between atoms yields a distribution far away from
the optimal distribution. Third, a procedure for interchanging
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and/or shifting valence orbitals between neighbouring nuclei
yields the optimal distribution.

An example: For the equilibrium structure of the Nj
molecule, the Edmiston-Ruedenberg localization yields three
equivalent o type bond orbitals and three equivalent 8 type
bond orbitals. The spatial parts of these orbitals coincide pair-
wise, i.e., overlap completely, but this does not affect the min-
imization procedure. With three orbitals on each nucleus, we
can for these six spin orbitals construct 20 (6!/(3!)?) differ-
ent distributions. Among these distributions, there will be two
different distributions corresponding to the lowest value of
EYHF: three a-type orbitals on one nucleus and three B-type
orbitals on the other or vice versa. The 18 distributions char-
acterized by a mixture of «- and B-type orbitals on each nu-
cleus, have higher values of E Efg . We can choose either of the
optimal distributions. When the spatial orbitals of an «S-pair
starts to split, then there will be just one distribution corre-
sponding to the minimum.

We would also like to stress that the valence orbitals as-
sociated with a nucleus are not localized on this nucleus in
a strict sense of the word. However, they are essentially lo-
calized in the region between the nucleus in question and the
nearest neighbouring nuclei, see Fig. 4, the benzene case dis-
cussed in Sec. V C. But the localized orbitals have the proper
“asymptotic” character, i.e., they move with the nuclei in a
fragmentation or dissociation process, see Fig. 2 in Sec. V A.

Our definition of the perturbed atoms depends on the
chosen localization procedure, i.e., the Edmiston-Ruedenberg
procedure. In principle, it is possible to eliminate this de-
pendence on the localization scheme. By having obtained the
atoms as described, we can minimize EEEaF further by rotat-
ing localized orbitals belonging to different atoms. Contrary
to the advocated approach, this improved procedure will also
change the orbitals. The suggested procedure is computation-
ally complicated, but feasible. It will be explored in future
works.

B. Intra-atomic correlation terms
1. The general solution

Let H denote the Hamiltonian of a N-electron complex
where only Coulombic interactions are included

N N 1
H=) htri)+) —
i=1

9
i<j Y

(N

1 NﬂlOmS Z
hor)=—-v2— Yy 24 8
(n=-3 ; T ®)

In Egs. (7) and (8), the symbols have their standard mean-
ing. The UHF wave function is in our spin orbital notation

1
WUHE _ ﬁ det{yr1 v ... ¥n}, 9

and the corresponding UHF energy

EUHF — (\I/UHF|H\IJUHF>. (]O)
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In solving the Hartree-Fock problem, we also obtain a
set of virtual spin orbitals {yr,; N+ 1 <a < M}, where M is
twice the number of spatial basis functions. Let @El/“;il) denote
a Slater determinant where the occupied spin orbital I/ff? is re-
placed by the virtual orbital v,,, @}’ ;| a Slater determinant
where the two occupied spin orbitals wf and wfz‘ are replaced
by, respectively, the virtual orbitals v,, and v,,, and similar
for higher order excitations associated with atom A. The FCI
expansion for intra-atomic correlation for atom A has then the

following form:

FCI _ UHF ay 3,4
Vi = v +Z > @,
i1=la;=N+1

NA M
ayay ayay
+ Z Z Ciiy Piaiiyin

iy<ip N+1<a;<a;
M
alaz...aNA ayaz... aNA
Z €1t Peara tyny D

N+1§u1<a2<...<aNA

+... 4+

The coefficients of Eq. (11) is in principle determined by the
FCI eigenvalue equation

HYE = AN hel (12)

The intra-atomic correlation energy is defined as

FCI FCI UHE

E, " =iy —ET. (13)

It is well known that the solution of Eq. (12), from a com-

putational point of view, is impossible except for systems with

a small number of electrons and/or a small basis sets. Hence,

approximative solutions of this equation are of paramount
importance.

2. Numerical models

There are two problems to be attacked: to reduce the large
number of virtual orbitals and to select a feasible correlation
method. We will first address the basis set problem.

By construction, the occupied orbitals of atom A, i.e.,
{yA;1 <i < N4}, are localized in the vicinity of the nu-
cleus of atom A. Hence, intra-atomic correlation can to a very
good approximation be described by a modified one center
expansion.

In the following, we have to distinguish between o and
B type spin orbitals. The spatial part of these orbitals are de-
noted, respectively, {¢7;1 <i < Ny} and {@lfiﬁ;l <i < Ng}.
We define a modified set of one-center functions for virtual «
type orbitals

A= = PEoxy 1< <ma. (14)

In Eq. (14), { X,f; 1 < 1t < m,} is the basis function centered
on nucleus A, and P _ is the projection operator defined by

the occupied « type orbitals, i.e.,

Z ) (15)
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We then diagonalize the overlap matrix ({} Vo | 4y), and select
the eigenfunctions corresponding to the (m4 — N2) largest
eigenvalues (N2 is the number of & type spin orbitals of atom
A). By this procedure, we obtain the same number of virtual «
type spin orbitals as we have for the isolated atom. The virtual
orbital space for the atom in the complex is (slightly) distorted
compared with the virtual space for the isolated atom. How-
ever, this distortion is in a sense a physical effect. It is due
to the presence of the partner atoms. We can also notice that
this procedure will eliminate a basis set superposition error
(BSSE) at the correlation level. The virtual 8 type orbitals are
obtained in a similar way.

As for an electron correlation method, there are several
options: perturbation theory, conventional configuration inter-
action, coupled cluster methods, and the energy incremental
scheme. In the first version of the computational implementa-
tion of the PATMOS model, we choose the energy incremen-
tal scheme. We shall use a modification of Nesbet’s?! original
formulation of the energy incremental scheme. In Nesbet’s?!
approach, the correlation energy is a sum of one-electron cor-
rections, two-electron corrections, three-electron corrections,
and so on. For an N-electron system with UHF wave function

WUHE — det{yr1 ¥ ... ¥}, (16)

and where {;; 1 <i < N} are the occupied spin orbitals, the
correlation energy is simply written as

ZQ""ZQ]"‘ Z Etjk+ Z 611k1+

i<j i<j<k i<j<k<l
a7
The energy corrections are obtained by partial FCI calcula-
tions, i.e., one-electron FCI calculations, two-electron FCI
calculations, and so on. For a fully optimized UHF root func-
tion, the orbital corrections {€;; 1 <i < N} are zero.

One problem with a straightforward application of this
approach is the huge number of FCI calculations which are
required. Furthermore, a large number of three- and four-
electron corrections are very small. Hence, they can be ne-
glected. In this work, we shall devise a computational strat-
egy where we include the most important of the three- and
four-electron corrections. A key element in this computa-
tional scheme is the introduction of UHF geminals. Our
approach has strong similarity to the extended geminal mod-
els introduced by Rgeggen®>?° and the form of the incre-
mental scheme advocated by Stoll and co-workers?> for
closed shell systems. The more recent work by Bytautas and
Ruedenberg? is also relevant in this context.

For atom A, we have an effective Hamiltonian

H?ff—zheff(")‘*‘z— (18)

i=1 i<j
where the effective one-electron Hamiltonian is given by

B
Naoms N

hir) =hr) + > Y A% - KD, (19)

B#A j=1

In Eq. (19), h(r;) is the one-electron for the complex consid-
ered, i.e., Eq. (8), and J f and Kf are, respectively, Coulomb
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and exchange operators derived from the spin orbital wf of
atom B. The UHF wave function for atom A is written as

UHF Aa  AB Aa AP A, A,
W = det {y "y, ...I//N;WN; IpN;"fH...wN;“}

A
Nj

[]a%F wﬁg’;l . w;j; . (20)

r=1

= det

In Eq. (20), {wiA""; 1<i< Noj‘} denote the a-type spin or-
bitals and {wf’ﬁ;l <j< ng‘} the B-type spin orbitals of
atom A. Furthermore, we assume N(f > N lg‘. The UHF gemi-
nal AH;’F is simply the product function

A — ey as, e

The ordering of the orbitals is such that we have a maximum
overlap between the spatial orbitals of the spin orbitals of a
geminal.

One- and two-electron corrections are calculated as in
the original Nesbet’s scheme. By using the general spin or-
bital notation, i.e., not distinguishing between « and g spin
orbitals, we have the following expansion for the correction
of spin orbital /;:

virt

Wi = Wi+ Y ol (22)

where the sum runs over the orbitals in the modified virtual
spaces, and ®{,, j 1s a Slater determinant where the occupied
orbital j is replaced by the virtual orbital a. The corresponding
eigenvalue equation

HZ WIS = 250w (23)

The orbital correction

€y =g —ERT (24)
where
EWF = (W HZ, W), (25)

The two-electron correction €3’/

expansion

is derived from the

virt virt

FCI UHF
WG = oW+ ) Dl + ) Gl
a a

virt
+ O (26)
a<b

The corresponding eigenvalue equation
A \yFCI _ , FCI g,FCI
Heff‘yA;ij - )‘A;ij lIlA;ij' (27)
Two-electron correction
corr __ 4 FCI UHF corr corr
€aij = Maij — ExT —€aq —€q- (28)

When N2 — N E? >3, there are two different sets
of three-electron corrections: intra-“valence” and geminal-
“valence” corrections. In a general spin orbital notation, we
have in both case, a three-electron cluster associated with
occupied orbitals {7, ]A, ¥}, In order to obtain a com-
putational feasible scheme, we perform a truncation of the
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virtual space. This can be done by expressing the wave func-
tions \IJECJ in terms of natural orbitals (NOs) and select the
most important NOs. For the three-electron cluster (i, j, k),
we construct different sets of NOs which we merge into one
set of a-type virtual orbitals and of one set of B-type virtual
orbitals. A detailed description of this procedure is given in
Subsection II G. In this truncated virtual space, we recalcu-

late one- and two-electron corrections: {€37;", €57, €3%'} and

{éfﬁg, Exiks ég‘z;rk}. For the three-electron cluster (i, j, k), we
have the following FCI equation:
A \FCI 5FCI \f,FCI
B Wi = A Was k- (29)
The wave function W}S!, is just an extension of Eq. (26) in-
cluding triple excitations. The ~ sign implies that all terms
refer to the truncated virtual space. The three-electron corre-

lation correction for this particular cluster

corr XFCI _ EUHF _ georr _ zcorr _ xcorr

€aijk = MAsijk

A €ai T €Ay Ask
~COrT ~COrT ~COIT
“Caij T €k T €Ak (30)
For the inter-geminal corrections, we calculate correc-
tions which also include the appropriate three-electron cor-
rections. For the four-electron cluster associated with geminal
product

ALFAR =y ey Pyt =y, GBD)

we construct the relevant set of NOs and recalcu-
late one- and two-electron corrections within the
truncated  virtual  space: {€}, éfﬁ;r, Ers €1t and
{ef{?g, ez"g{ ei{’ﬁ ef{?‘;k, ef{’;rl eﬁ{?,‘fl . For the fqur-electron
cluster (i, j, k, [), we have the following FCI equation:
A §FCl _ 3FCI |FCI

Heff"I]A;ijkl = AW asijr- (32)
The wave function \flﬁ%kl is an expansion comprising W {HF
and the determinants obtained by all single, double, triple, and
quadruple excitations from (i, j, k, /) into the truncated vir-
tual space. The inter-geminal correction, including all three-
electron corrections for this cluster and the four-electron cor-
rection, is given by

6COl‘l‘
Ai(gem,r),(gem,s)

__ FFCI
= Apiju —

UHF ~COIT ~COIT ~COIT ~COIT
Ey7 — & — € —€ax —E€a

~COoIT ~COIT ~COIT ~COoIT ~COIT ~COIT
—€aj — €aik — €ar — €ajr — €ay — Eaa- 33)

The total correlation energy for atom A is then given by
the following approximation:

NA NA NZ
corr __ corr corr corr
EYT = § €4 T E :EA;ij + E €4ijk
i=l1 i<j N}?<i<j<k

Ni o Ng N
corr corr
+ Z Z EA;(gem,r);i + Z GA;(gem,r),(gem,s)' (34)

r=1 i:Ng\_H r<s

The third sum in Eq. (34) is included only when N/ — N
> 3, the fourth sum only when Ng‘ > 1 and le > N;‘, and
the last term only when N /? > 2. In the case when N g‘ > N(f,
we just interchange the role of « and 8 spin orbitals.
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C. Diatomic correlation terms
1. The general solution

Let \1'1];:%1 represent the FCI expansion where we include
all possible excitations from the occupied orbitals of both
atoms A and B. The corresponding FCI equation

HYLG = 25 Wi (35)

The interatomic correlation energy for the cluster (A, B) is
then simply

ENG = 25G — EVAF — pRCT . pECL (36)

In Eq. (36), EX" and EE! are the intra-atomic correlation
energy defined in Sec. I[I B 1.

As in the intra-atomic case, we must in practical calcu-
lations reduce the number of virtual orbitals and choose an
appropriate model for approximating the FCI energy.

2. Numerical models

The occupied orbitals of atoms A and B are localized in
the vicinity of the nuclei A and B. Hence, it is sufficient to
include virtual orbitals located in the same part of the physical
space. Our procedure is a simple extension of the approach
discussed in detail in Sec. II B 2. We have now two sets of
modified one-center functions

24 =xt— Peoxt 1< <ma, (37)

AE=xE—-P2xE 1<v<mp. (38)

occ

We diagonalize the overlap matrix generated by the functions
defined in Egs. (37) and (38). Then we select the eigenfunc-
tions corresponding to the (m4 +mp — N2 — NB) largest
eigenvalues. These functions are the spatial parts of the o type
virtual orbitals for the diatomic cluster (A, B). A similar ap-
proach yields the B type virtual spin orbitals.

In order to calculate the diatomic correlation energy, we
have to adopt a size-extensive correlation method. As in the
intra-atomic case, we choose for the first implementation of
the PATMOS model, the energy incremental scheme.

It is convenient to introduce an effective Hamiltonian for
the diatomic cluster (A, B)

NA4NA NA4NA

Someo+ Y - @)
i=1

i<j Y

AB __
Heff -

where the effective one-electron Hamiltonian is given by

Natoms N€

W) =he)+ Y Y dS-K§). (0

C#A.B j=1

In Eq. (40), h(r;) is the one-electron Hamiltonian defined
in Eq. (8), and J§ and K¢ are, respectively, Coulomb and
exchange operators derived from the spin orbital 1/ij of
atom C.

The non-paired spin orbitals of atoms A and B, Eq. (20),
are either of equal spin type, or different spin types. We con-
sider first the case when we have equal type of spin orbitals,

J. Chem. Phys. 139, 094104 (2013)

say « type spin orbitals. The UHF wave function for cluster
(A, B) is then written as

Wit =det{y . ynavl . Vs

W
— UHF Aa A
_det{ | |AA;r WNngl"'wNaA
r=1

Ny
UHF B,«x B,a
X HAB;S Vb U (- (41)
s=1

The UHF geminals are defined in Eq. (21).

The interatom two-electron corrections are calculated as
in the intra-atomic case with appropriate change of Hamilto-
nian and virtual space. The two-electron correction associated
with the occupied orbitals ¥/ and ¥ 7 is denoted €3 5 .

There are four different groups of three-electron correc-
tions to be considered. They are associated with the following

sets of occupied orbitals:

{(wiA,a7 Iﬁj"a, f,a);N/? <i<j< N;;NﬁB <k < Nf},

{(w.A,a’ij,ol’wf,a);Ng <i < N;"Ng < ] <k < Nf}v

{(ATF w i) <r < NSNS <k < NP,

(W, AP NG <i < N1 <5 < N

The procedure for calculating the three-electron correction is
analogous to the one adopted for the intra-atomic case. We
select appropriate NOs based on two-electron FCI wave func-
tions, construct a linear independent set of orbitals, and cal-
culate the relevant FCI eigenvalues. The corresponding cor-
rection terms are denoted, respectively, €4" ). p 1), €415, jk)
ECOFF ecory .

(Ax(gem.r)i(B.5)* €(A.i):(Bi(gem,s))

The interatomic inter-geminal correction are related
to the geminal products{AHﬂFAgﬁF;l <r< Né‘;l <s
<N g}. The procedure for the calculation of these cor-
rections is also in this case analogous to the one used
in the intra-atomic case. The corrections are denoted
(€Cigemnpigem i | S7 S Ngs 1 <5 < Nj).

When the non-paired spin orbitals are of different types,
i.e.,, o type and B type or vice versa, the computational
procedure for the three- and four-electron terms will be
slightly different than the one described for the case of equal
spin type orbitals. We assume for simplicity that Nj' — Nj
> Ng§ — N2 > 0. The UHF wave function for (A, B) can in
this case be written as

vy N
wg = decd (TTar | (TTa%r
r=1 s=1
N
< [ [TAY w;ﬁ%ﬁﬂ...w@“ . (42)

t=1
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The interatomic geminals are constructed for non-paired or-
bitals of atoms A and B, i.e.,

UHF A, B.p
AAB;{ = I/fNﬁAO:_thf+t' (43)

The number of interatomic geminals is Ngph = N§ — N2
The numbering of orbitals is such that we obtain maximum
overlap between the spatial orbitals of a geminal. In a system
like N;, we will then have the familiar picture of a core and
a lone pair geminal on each atom and three bond pair gem-
inals. On the other hand, if we consider the (C, C) group in
C,Hg, we will have four diatomic geminals. However, only
one corresponds to the familiar C—C bond geminal. The three
other geminals include orbitals which are “bonded” to differ-
ent hydrogen atoms. These geminals are introduced only with
the purpose of simplifying the computational procedure, i.e.,
reducing the number of FCI calculations.

The interatomic three-electron corrections are related to
the electron groups comprising a geminal and a spin orbital,
ie., AggFt//f’“. The calculational procedure is similar to one
used when all non-paired orbitals are of the same type, i.e., all
are « type spin orbitals. The corresponding energy correction
is denoted €3 . (gem,s))-

As for the inter-geminal correction there are two types.
The type related to the group A3 AGHF, which are already
considered in the equal spin case, and the type related to
groups AH?FAHEE and AggFAggg. For this last group of cor-
rections, we have to introduce a small modification when we
compare with the intra-atomic case. Let us consider the four-
electron group associated with the orbitals

NSNS, = Ut P o, @)
In Eq. (44), there are three spin orbitals linked with atom
A. The corresponding three-electron correction is an intra-
atomic correction which is already calculated as part of intra-
atomic correlation energy ES”". When we calculate the inter-
geminal correction, we must also perform a calculation of
€(A:(gem,r)): N+t and subtract this term in the appropriate equa-
tion which corresponds to Eq. (33) of the intra-atomic case.

In the case when the UHF function of the cluster (A, B)
is given by Eq. (42), we finally arrive at the following approx-
imation for the interatomic correlation energy:

NS
corr __ corr corr
Exp = Z Z €yt Z Z €(A, j):(B,(gem,5))

i=1 j=1 J=NG+NZE+1 s=1

NA NB N2

A NAB
Ng N,

gem

corr
+ Z Z €(A, (gem, 1) AB, (gem, 1))

r=1 t=1

NB NAB

gem

corr
+ Z Z €(B, (gem,5)):(AB, (gem, )

s=1 t=1
Nj NP
corr
+ Z Z €(A, (gem, 1)i(B,(gem, )" (45)

r=1 s=1

The terms in Eq. (45) represent the dominant contributions
to the interatomic correlation energy for the (A, B) cluster.

J. Chem. Phys. 139, 094104 (2013)

Increased accuracy can be obtained by including some of the
neglected three- and four-electron terms.

It has for a long time been recognized that a key to cir-
cumvent the strong basis set dependency in electron corre-
lation models is to use localized orbitals.’’* Such an ap-
proach was introduced as early as in 1964 by Sinanoglu®! and
Nesbet.>> However, the real breakthrough for local correla-
tion models can be attributed to an idea proposed by Pulay,?
and later implemented by Szbg and Pulay**’ for Mgller—
Plessett perturbation theory. Their approach implies that exci-
tations from localized molecular orbitals are restricted to sub-
spaces of projected atomic orbitals which are spatially close
to the localized orbitals. The dimension for the local basis set
for interorbital correlation is chosen equal to 70, indepen-
dent of the size of the system.3® This is to be contrasted with
our approach where all orbitals pertaining to an atom or a pair
of atoms are attributed a common local basis. With large ba-
sis sets, we will then have a somewhat higher accuracy, but at
a higher computational cost. However, these particular local
basis sets will only be used for two-electron corrections. The
truncated virtual basis for three- or four-electron FCI calcula-
tions will be based on natural orbitals, Sec. II G.

D. Triatomic correlation terms

The general approach in this section would be a straight-
forward generalization of the procedure in Sec. II C 1. We
therefore embark directly on the numerical model. The most
important terms are related to the three-electron components.
As in the diatomic case, we have to truncate the virtual space.
Based on two-electron FCI calculations and natural orbital
expansions, we can construct a truncated set of virtual or-
bitals. Let A, B, and C denote three atoms. We then consider
the occupied orbitals {wiA, f , 1/ka }. We recalculate the rele-
vant one- and two-electron corrections based on this truncated
set of orbitals: €%, €, €, €70 p v €X5.cp> aNd €Y 0
By solving the three-electron FCI problem for this particular
electron group, we obtain an energy eigenvalue A5 . ;-
Accordingly, the three-electron correction for this group of
electrons, is simply

corr XFCI

€ . _ EUHF ~COIT __ ~Corr ~COIT
Ai;B,j;C.k — "AisB, jiC.k

€A T€Bj T€Ck
~COIT ~COIT ~COrT
—€xiipj ~ €aiick ~ €Bick (46)
By summing up the contributions from different electron
groups, we obtain

N4 NB NC
corr
Eypc = § § § €Ai:B.jiCk T (47)
i=1 j=1 k=1

E. Symmetry simplification

Since the PATMOS model has an additive structure,
we need to calculate only symmetry independent terms.
For example, when considering the equilibrium structure of
benzene, C¢Hg, there are 12 intra-atomic terms, but only
2 terms are symmetry independent. For the same system,
there are 66 diatomic terms, but only 10 terms are symmetry
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independent. The computation time can be substantially re-
duced by taking this type of symmetry into account.

As for intra-atomic correlation energies, we start by or-
dering the intra-atomic energies {EHHF;I < A < Nyoms} In
different groups. The definition of the symbol EYHF should
be self-explained, but is explicitly defined in Sec. II F. Atoms
belonging to the same group have UHF energies which differ
by less than a certain threshold value. Then we need only to
calculate the intra-atomic correlation energy for one atom of
each group.

For the diatomic terms, we order the Coulomb energies
between pairs of atoms, i.e., an ordering of the set {ES‘I’;”,
1 < A < B < Nyoms}, in different groups according to the
value of the Coulomb energy. As in the intra-atomic case, we
calculate the correlation energy only for one element in each

group.

F. The PATMOS energy

If we write the one-electron Hamiltonian, Eq. (8), in the
following way:

Natoms

1
h(r) = -5V + > Valr), (48)
A=1
Va(r) = —L 49)
T Ry I
1
ha(r) = =5 V2 + Va(r), (50)

and add the electrostatic energy between the nuclei, i.e.,

ZaZg
Vap = ———— D
* 7 IRs = Ry
we obtain the following partitioning of the UHF energy in-
cluding the nuclear electrostatic energy:

Natoms NZI[OIHS Naloms
EUHF + Z VAB — Z EUHF + Z ECOU] szgh) ,
A<B A<B
(52)
where
NA
EX™ = (0 hay)
i=1
NA
+ 3 Alwtvl vty = [l ) 63

i<j

In Eq. (53), we have adopted the Mulliken notation for the
two-electron integrals. The diatomic terms are given as
NA NB
ESH = Vag + > (WM Vv + > (Wl IVay?)
i=1 j=1

N4 NB

+Y Y vl lv!ll, (54)

i=1 j=1

J. Chem. Phys. 139, 094104 (2013)

and
N4 NB
ESh ==Y "> [witvlivtv?] (55)
i=1 j=1

By including electron correlation, we obtain the following ex-
pression for the total energy:

— EUHF + Z VAB + ECOIT
A<B

EPATMOS

Natoms

— Z {EHHF_i_E;:‘orr}

A=1

Natoms

+ Z ECoul

A<B

exch + Ecorr}

Natoms

+ > ESSe+ (56)

A<B<C

If we partition the interaction energies equally among the
atoms involved, we can express the total energy as a sum of
effective atomic energies

Natoms

EPATMOS Z Eeff add (57)
where
Eeff.add _ EUHF + Ecorr
A =

Natoms

+ Z ECoul szgh+E20§r)

B;ﬁA
1 Nﬂ(omb Naloms Nﬂlolﬂs
corr corr corr
+§ E Eqgc + § Egac + § Egca
A<if%c B<A'<C ll'<é<A
b (58)

In a calculation on an extended system, only the effective
energies for the atoms in the unit cell need to be calculated.
This is analogous to the approach adopted by Rgeggen*® in a
study of the face centered cubic and hexagonal close packed
structure of helium.

G. Natural orbitals for poly-electron FCI

The computation time for a FCI calculation depends cru-
cially on the dimension of the orbital space. If m is the number
of orbitals, the computation time for a two-electron FCI cal-
culation is proportional to m*, and for three- and four-electron
FCI calculations, it is proportional to m> and mS, respectively.
The two-electron calculations can be performed with large ba-
sis sets. But similar calculations on three- and four-electron
systems are prohibitively expensive. Hence, it is of paramount
importance to reduce the virtual space for three- and four-
electron FCI calculations. This can be achieved by using nat-
ural orbitals derived from two-electron FCI calculations.

The two-electron FCI calculations are based on either
intra-atomic virtual space, Subsection II B 2, or diatomic vir-
tual space, Subsection II C 2. In both cases, the orbital space
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comprises two occupied orbitals and the virtual space. The
spatial orbitals for o and § spin orbitals are denoted, respec-
tively, {¢/;1 <i <m®} and {1/ff;1 < j < mP}. Two differ-
ent cases must be considered: equal spin for the two electrons
involved or different spin.

First, two electrons with equal spin, say « spin. The two-
electron FCI wave function

me

cIDFCIomt Zgaa det Vf O“s” 0[}2 Z c;?‘lj"‘ det{w,«o‘awfd},

i<j i,j=1
(59
where
o =0, (60)
and
oo oo 1 ~o o $ o
C;i =—¢j; = —ECI-J» , 1< ]. (61)

Standard definition of the corresponding one-electron density

P, 1) =2 f DI (], a0p)* PP, x)ds,
(62)
where the coordinate x denotes the three spatial coordinates

and the spin coordinate, i.e., x = (r, o). A simple derivation
yields

P (x], x1) = P, ria’(o)e(oy). (63)
where
Z YYD, (64)
i,k=1
and
Qi =43 (ef) iy (65)

The two-electron FCI wave function in the case of differ-
ent spin

PFClaf — ch"ﬂ det {yay’ ). (66)

i=1 j=1
The corresponding one-electron density

p(x, x1) = PY(r, ra*(o)a(o)

+PP (', r)B (a])Bo), (67)
where
Z YD U (r)QE, (68)
i,k=1
mb
Q=" (¢h) e, (69)
j=1
mﬂ
PPE= "yl ayryl Q) (70)

=1

Q=" ()t (71)

i=1

J. Chem. Phys. 139, 094104 (2013)

In order to construct the natural orbitals for the virtual
space, we pick out the part of the density matrix referring to
the virtual space. For both the P** and P## matrices, we have
the same formula (when the orbitals are real)

m virt

P — Z lejlrtwl\”n v/;irl. (72)
i,j=1
In matrix notation,
P = (wvirt)Tﬂvirlwvirt’ (73)
w;/irt
virt
i 2
pr=| | (74)

virt
mVirt

Diagonalization of " gives
ﬂvmlli = )L,'ll,'. (75)

By introducing the transformation matrix

U= (u1u2 N umvm) (76)
and the orbitals
¢Virl — UT 1l,virt (77)
we obtain
P = (,'/’Virt)TﬂVir[,'/,Virt — (U¢Vir1)T QVirt(U¢Virt)
— (¢Virl)TUT SlvirlU¢Virt
— Z ¢1'Virt)‘-i¢i\]irt- (78)

The set {¢}"™; 1 <i < m""} is the NOs of the type considered
(either o or B type). The truncation of the virtual space to a
lower dimension, say, m}’rllﬁlc < m*™, is simply obtained by se-
lecting the my\" - orbitals with the largest occupation numbers
{2}

For a three- or four-electron FCI calculation, we select
the NOs from the appropriate two-electron FCI calculations,
and construct a linear independent set of « and/or 8 type vir-
tual orbitals.

Within the PATMOS framework, there is a considerable
manipulation of two-electron integrals: different virtual space
for each atom and for each pair of atoms, different trun-
cated virtual spaces for each calculation of a poly-electron
FCI calculation. The computation of the relevant two-electron
integrals can be simplified if one utilizes a Cholesky de-
composition of the two-electron integral matrix. The advan-
tage has been discussed in detail in a work by Rgeggen and
Johansen.*’

H. Localization measures

For describing the localized character of orbitals, we
use charge centroids and charge ellipsoids.*® For any spatial



094104-10  |. Reeggen and B. Gao

orbital ¢, we define the charge centroid by the following
relation:

r¢ = (glre). (79)

The extension or spread of an orbital can be described by the
second-order variance matrix

M, = (] (x, —x°) (xy —x5) @), ros €{1,2,3}.  (80)

In Eq. (80), x€ is the rth component of the charge centroid
vector r¢. Diagonalization of the variance matrix yields the
charge ellipsoid. The eigenvalues {a;, a», a3} of the ma-
trix (M,,) correspond to the squares of the half-axes of the
ellipsoid. The standard deviations in three orthogonal di-
rections, i.e., the directions of the half-axes, are therefore
given by

Al =a?, i €{1,2,3). (81)
The quantities {Al;} can then be used as a measure of the
extension of the orbital with respect to the charge centroid
position. We may also use the volume of the ellipsoid as a
single number for the extension

4
V = §NA11A12A13. (82)
The half-axes also define a lower bound for the kinetic

energy associated with a given orbital. From the Heisenberg
uncertainty principle, we derive

Ein = (0l = 3V°9) = [ o+ 0
ki = 2" VTR Lan? T (ALY T (AL

(83)

This inequality expresses neatly that the kinetic energy in-
creases when an orbital becomes more compact.

lll. UHF FOR EXTENDED SYSTEMS

An extended system is in this work modelled by a finite
cluster. However, a “brute force” cutting of the extended sys-
tem yields a cluster with atoms on the surface, which have
surroundings that are different from the surroundings of the
atoms in the interior of the cluster. To avoid this problem, we
construct a specific UHF state for the atoms on the surface,
i.e., the boundary atoms. The orbitals of the boundary atoms
are frozen and closely related to orbitals of an atom in the
interior of the cluster.

Our approach starts with a reference fragment which cor-
responds to the unit cell of the extended systems. This refer-
ence fragment is surrounded by a certain number of partner
fragments. The reference fragment and its partner fragments
are enclosed by a set of boundary fragments. This particular
embedding is illustrated in Fig. 1. The numbers of embedded
atoms and boundary atoms are denoted, respectively, Nm°

atoms

and N5%d A Jocalized spin orbital of an embedded atom A

is denoted ™, and the corresponding spatial ¢/"**™. Sim-

ilarly, we have for a boundary atom A the orbitals ;"™

J. Chem. Phys. 139, 094104 (2013)

partner
fragments

boundary reference boundary
fragment fragment fragment

partner
fragments

FIG. 1. One-dimensional model system for an extended system of identical
fragments. The model system comprises a reference fragment, primary frag-
ments, and boundary fragments.

and ¢/, The spatial orbital basis set for the cluster

{X;L;l =pu= mmodel}

Nemb

atoms

— U {X:;emb;l <pun En,lA;emb}
A=1

bound
Naloms

U U {X;j;bound;l <pu Sn,lA;bound}. (84)
A=1

The spatial part of a spin orbital associated with a boundary
atom is restricted to a one-center set

nAsbound

¢iA;bound — Z X:;boundUﬁgbound' (85)

pu=1

As for the orbital of an embedded atom, the complete orbital
space is used

Mmodel
;emb ;emb
¢ = 3" x UL (86)

n=I1

The determination of the spin orbitals of the model clus-
ter is a double iterative procedure. Each cycle of the procedure
consists of the following steps:

Step 1. For fixed boundary orbitals, the orbitals of the em-
bedded atoms are determined. These orbitals are
orthogonal to the boundary orbitals.
Edmiston-Ruedenberg localization of the spin or-
bitals and definition of the perturbed atoms.
Construction of one-center approximations for the
orbitals of the atoms in the reference fragment.
Let P4*mP denote the orbital projection opera-
tor associated with the one-center set {x :;emb;
l<upu< mA*mb} The one-center approximation
is defined by the equation

Step 2.

Step 3.

¢lA ;one—center — PA ?embqﬁiA;emb . (87)

The projected orbitals associated with an atom is
then orthonormalized by a symmetric orthonor-
malization procedure, i.e., Lowdin orthonormal-
ization.

New boundary orbitals are obtained by translations
of the one-center orbitals of the atoms of reference
fragment, to the boundary fragments.

Step 4.

The steps 1-4 are repeated until the UHF energy of the
embedded atoms has converged.
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TABLE I. Sum of three- and four-electron FCI correlation corrections for
N in the ground state as a function of the number of pair natural orbitals.
Internuclear distance: R = 2.1 bohrs. GTF basis: (17s9p4d3f1g).

intra—atom interatom

€ €

poly—elec poly—elec
o (En) (En)
10 0.005868 0.081709
15 0.005730 0.080602
20 0.005665 0.080229
0.005608* 0.080044%

4Geometrical extrapolation.

IV. TEST CALCULATIONS

In order to evaluate the accuracy of the PATMOS model,
we present test calculations on N, and Li,. Some prelimi-
nary test calculations on parallel arrays of hydrogen atoms
demonstrate the convergence property of the UHF procedure
for large systems.

Our integral code requires family type basis sets. The way
we construct these family basis sets is explained in the Ap-
pendix. Only the spherical component subsets of the Cartesian
functions are used. The parameters defining the basis sets, are
given in Table XV.

In this work, we use an integral threshold of 10°% E,
or less, for the Cholesky decomposition of the two-electron
matrix.

A. Nitrogen molecule

The localization of the UHF orbitals by the Edmiston-
Ruedenberg procedure yields three equivalent ‘“banana
shaped” bond pair geminals. We could of course use these
geminals in the calculations. However, we discovered that
this bonding picture changed for longer internuclear distances
mixing the lone pair and bond pair orbitals. To obtain the con-
ventional picture of bonding, for each set of localized atom
type orbitals, we diagonalized the Fock operator with the lo-
calized intra-atomic orbitals as basis. Hence, we obtained an
intra-atomic canonical picture. The bonding picture is then a
o-type bond pair geminal, two equivalent w-type bond pair
geminals, and a lone pair and a core pair geminal for each
atom.

As for the three basis sets adopted for the N, calcu-
lations, the smallest set, i.e., Gaussian-type function (GTF)
(17s9p4d3flg), is constructed according to the recipe de-
scribed in the Appendix. However, when we tried to use the
same procedure for the two largest sets, we ran into numeri-
cal difficulties due to near linear dependency. These two sets

J. Chem. Phys. 139, 094104 (2013)

TABLE III. Equilibrium distance and electronic dissociation energy for the
ground state of N, calculated by the PATMOS model with different basis sets.

R, D,
GTF basis A eV)
1759p4d3flg 1.1033 9.576
17s9p5dAf3g2hli 1.1014 9.746
1759p7d6f5g4h3i2j1k 1.1010 9.755
Expt.* 1.0977 9910

“Reference 56.

are therefore derived from the smallest one by even-tempered
expansions based on the same S-parameter as for the smallest
set. Hence, our basis sets are not fully optimized.

The accuracy of the PATMOS model depends on the di-
mension of the truncated virtual subspaces used for calculat-
ing three- and four-electron corrections. In Table I, we present
the sum of three- and four-electron corrections for N, in the
ground state, as a function of the number, ng;?r, of pair natural
orbitals. For a three-electron correction, the dimension of the
virtual space is 3”1;3’ and for a four-electron correction SnpNa?r.
These numbers might be slightly reduced due to a linear de-
pendency. We notice that both the intra- and interatomic cor-
rections decrease in magnitude with increasing dimension of
the truncated virtual space. A geometrical extrapolation sug-
gests that with npNa?r = 20, the poly-electron corrections are in
error with approximately 1% and 0.3% for, respectively, the
intra- and interatomic corrections. An error of 0.2 mE}, inter-
atomic term, is well below the conventionally requirement of
chemical accuracy of 1 kcal/mol = 1.59 mEj,.

In Table II, we display total energies and correlation cor-
rections for different basis sets. The number of pair natural
orbitals for the poly-electron corrections is nga?r = 20. As ex-
pected, the two-electron corrections have the largest variation
with respect to the quality of the basis set. This result is in
accordance with the fact that the “cusp” — feature in an exact
wave function is essentially a two-electron correlation effect.
As for the poly-electron corrections, we notice a considerably
smaller variation with respect to the basis sets. Our results
suggest that we can obtain very accurate results if we per-
form calculations of two-electron calculations with huge basis
sets while include poly-electron corrections from calculations
with more modest basis sets. For the two-electron corrections,
one could also consider R12 methods**=! to approach the ba-
sis set limit.

In Table III, we display the equilibrium distance and the
electronic dissociation energy for the ground state of N,, cal-
culated with the three chosen basis sets. Since our model is

TABLE II. Total energies and correlation corrections for N» in the ground state for different basis sets. Internu-
clear distance: R = 2.1 bohrs. Number of pair natural orbitals: n\® = 20.

pair

EUHF Z EZU:; ]i)r(lyllr)il—_g‘:cm Z eg.l;teratom li)x:)tleyritéy]rcnc EPATMOS
GTF basis (En) (Ep) (Ep) (En) (Ep) (Ep)
1759p4d3flg —108.989398  —0.156531  0.005665 —0.316353  0.080229 —109.527254
17s9p5d4f3g2hli —108.989561 —0.160668  0.005652  —0.321257 0.080210 —109.540641
17s9p7d6f5g4h3i2j1k  —108.989561 —0.164306  0.005645  —0.323057 0.080187  —109.548857
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TABLE 1IV. Calculated equilibrium distance and electronic dissociation
energy for the ground state of N».

J. Chem. Phys. 139, 094104 (2013)

TABLE VI. Calculated equilibrium distance and electronic dissociation
energy for the ground state of Li,.

R. D, R, D,
Model/basis A) (eV) Model/basis A (eV)
CCSD(T)/aug-cc-pV6Z/Composite® 1.0979 9.865 MCSCFC1/9s5p1d® 2.676 1.00
CCSD(T)/aug-cc-pV7Z/Composite® 1.0977 9.872 EXGEM1/9s5p1d° 2.690 1.024
PATMOS/17s9p7d6f5g4h3i2j1k 1.1010 9.755 OVC/STO(1306 8738)¢ 2.692 1.03
Expt.b 1.0977 9910 CCSD(T)/cc-pwCVQZ4 2.674 1.051

. PATMOS/19s8p7d5/2g1h 2.674 1.052
AReference 52.
bReference 56. Expt.® 2.673 1.04840.006

both size consistent and size extensive, the dissociation en-
ergy can be calculated by either performing separated calcula-
tions on the isolated atoms or performing a molecular calcula-
tion at a very large internuclear distance. In our case, the latter
approach is used. We notice increased accuracy with increas-
ing quality of the basis set. However, even with our largest
basis set there is a discrepancy between the calculated values
and the experimental ones, in particular for the dissociation
energy. In Table IV, we include theoretical results from the
very extensive work by Feller and co-workers.>?> The coupled-
cluster singles, doubles (and triples) (CCSD(T)) calculation
with the largest basis set is in very good agreement with the
experimental results. The quoted work from Feller and co-
workers>? also includes corrections from CCSDTQ/cc-pVTZ
and FCl/cc-pVTZ calculations. But when we compare the
PATMOS model with the coupled-cluster composite model,
one must have in mind that the quoted results of Table IV are
not corrected for the BSSE. As for the PATMOS model, there
is no BSSE at the correlation level. There is a small BSSE
at the UHF level, but this error is negligible with large ba-
sis sets. Even though our largest basis set is not fully opti-
mized, it can be considered to be of a similar quality as the
basis of the CCSD(T) calculation. Hence, we can estimate
the magnitude of the BSSE in the CCSD(T) calculation by
quantities obtained in the PATMOS calculation, i.e., the intra-
atomic FCI two-electron corrections calculated in this work.
In Table V, we consider intra-atomic two-electron pairs re-
lated to the triple bond. They are the electron pairs mostly
affected by the BSSE. By construction, there is no BSSE in
the terms {e’;;}. On the other hand, the terms {€}’};} which
are required for four-electron corrections, are calculated with
a molecular basis derived from natural orbitals. Hence, they
are prone to BSSE. We notice that the BSSE is not negligible.
For the triple bond pairs, it amounts to 0.12 eV for the inter-

“Reference 57.
YReference 58.
“Reference 59.
dReference 60.
¢Reference 61.

nuclear distance R = 2.1 bohrs. This is of course an estimate
of the BSSE in the CCSD(T) calculation. But we do believe
the estimate gives the correct order of magnitude of the BSSE.
If we subtract this estimate from D, = 9.872 eV, we arrive at
a modified value equal to D, = 9.752 eV, a value very close
to the PATMOS result of D, = 9.755 eV.

The BSSE also affects the calculated geometrical struc-
ture. Without correcting for the BSSE, calculations yield equi-
librium distances shorter than the BSSE corrected distances.
We estimate that correction for BSSE might increase the equi-
librium distance by roughly 0.003 A. By adding this esti-
mate to R, = 1.0977 A, we obtain the value 1.1007 A. The
PATMOS value and the experimental value are, respectively,
1.1010 A and 1.0977 A.

To conclude this subsection, the calculations on N, sug-
gest that the PATMOS model and the coupled-cluster com-
posite model, when correcting for BSSE, yield results which
are very similar.

B. Lithium molecule

When comparing different computational models, the
lithium molecule is an interesting test case since for this
molecule there is no intra-atomic valence correlation energy.
Hence, the intrinsic BSSE in standard models is negligible. In
Table VI, we display the internuclear distance and electronic
dissociation energy for the ground state of Li, obtained by
different models. We notice in particular the almost identical
results for CCSD(T) and the PATMOS model, and the very
good agreement with the experimental values. Hence, the Li,

TABLE V. Intra-atomic two-electron corrections for Ny in the ground state calculated with different basis sets:
intra-atomic basis and truncated virtual space used for four-electron corrections.”

Internuclear Orbital pairs € e Aij = &80 — €xuy

distance (bohr) (En) (En)

2.1 Qprd, 2pat) —0.005672 —0.006303 —0.000631
@prt, 2pat) —0.005672 —0.006303 —0.000631
@prl. 2pm) —0.020157 —0.021065 —0.000908

*Basis: (17s9p7d6f5g4h3i2j1k).
"Dimension of virtual space: 294.
“Dimension of virtual space: 100.
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TABLE VII. Total energies and correlation corrections for Lip in the ground state as a function of selected
internuclear distances. GTF basis: (19s8p7d5f2g1h). Number of pair natural orbitals: nNO = 20.

pair

R EUHF Z Eiﬁ; ]l)lylr;:eall:cm Z eli;lteralom Ii;:)tleyrgtg]rgc EPATMOS

(bohr) (Ep) (En) (En) (En) (Ep) (En)
5.00 —14.871638 —0.044026 0.000060 —0.032420 —0.000836 — 14.992827
5.05 —14.871914 —0.044037 0.000061 —0.032158 —0.000819 —14.992843
5.10 —14.872152 —0.044046 0.000061 —0.031901 —0.000807 —14.992830

50.0 — 14.865489 —0.044420 0.000071 0.0 0.0 —14.954187

calculations give support to the conjecture presented in Sub-
section IV A concerning the relation between the PATMOS
model and the coupled-cluster composite model.

In Table VII, we present total energies and correlation
corrections for selected internuclear distances. The electronic
dissociation energy is D, = 0.038656 E;,. The contributions
to D, from the UHF model, two-electron FCI corrections,
and poly-electron correction are, respectively, 0.006425 Ej,
0.031392 Ej, and 0.000839 E},. The two-electron corrections
dominate. The contribution from the UHF term is approx-
imately 17%, and the poly-electron correction is approxi-
mately 2% of the dissociation energy.

We have calculated the potential energy curve for the
ground state of the lithium molecule. A detailed account of
the work will be presented elsewhere.

C. Arrays of hydrogen atoms

Arrays of hydrogen atoms are used as test systems for the
convergence properties with respect to size, of the advocated
UHF model for extended systems. The basis used is an un-
contracted (10s2p1d) set of Gaussian type functions. A linear
array is defined as (H;),+1, and where the neighbouring nu-
clei are separated by a distance » = 2.63 bohrs. The chosen
distance is obtained by minimizing the UHF energy of the
primary cluster for three parallel arrays, (H)g, in xy-plane.
Boundary fragments are added only at the end of the par-
allel arrays. Localization of the UHF orbitals yields orbitals
with charge centroids close to the positions of the nuclei. In
Table VIII, we consider charge centroid and half-axes of the
a-type orbital of the central H, fragment of (H;),,+;. We no-
tice a nice convergence as the number of H, fragments in-

TABLE VIII. Charge centroid x, half axes, and volume of the a-type or-
bital of the central H, fragment of (H2)2,+1. The cluster (Hz)2,41 is a one-
dimensional array along the x-axis with equal distance, r = 2.63 bohrs, be-
tween nearest neighbour atoms. Position of the nucleus associated with the
orbital: (0.0, 0.0, 0.0) bohr.

Xc Aly Al Al Vv
n (bohr) (bohr) (bohr) (bohr) (bohr)?
1 —0.000493 1.3574 0.9625 0.9625 5.2680
2 —0.001753 1.3752 0.9636 0.9636 5.3496
3 —0.001077 1.3786 0.9640 0.9640 5.3661
4 —0.000592 1.3791 0.9641 0.9641 5.3695
5 —0.000327 1.3791 0.9642 0.9642 5.3703
6 —0.000187 1.3791 0.9642 0.9642 5.3705

creases. The bonding in such an array is characterized by
atomic like orbitals which elongate along the direction of the
array and contracts slightly in the two orthogonal directions to
the array axis. The length of the half-axis in isolated hydrogen
is 0.9716 bohr calculated with the adopted basis set (a large
basis set yields 1.0000 bohr). By considering parallel arrays,
Table IX, we get a qualitative picture of the bonding in an in-
finite two-dimensional lattice of equidistant hydrogen atoms.
The charge centroid of a localized orbital coincides with the
position of a hydrogen nucleus and there will be two equal
half-axes in the lattice plane. These two half-axes are length-
ened compared with a half-axis of the orbital of an isolated
atom. There will be a contraction of the half-axis orthogonal
to the lattice plane. No delocalization, i.e., metallic character
is to be expected.

To our knowledge, the bonding character of hydrogen un-
der high pressure, is an unresolved problem. In the future,
when we have optimized our code, we shall use the PATMOS
model to address this problem.

V. THE CHARACTER OF THE PERTURBED ATOMS

In this section, we will illustrate the character of per-
turbed atoms by considering the bonding in three molecules:
hydrogen molecule, methane, and benzene.

A. Hydrogen molecule

The hydrogen molecule is undoubtedly the most thor-
oughly studied molecule in quantum chemistry. Even so, we
believe that our approach can throw some new light on the
question of bonding in the hydrogen molecule. This molecule
is particularly simple in our approach. No localization is re-
quired. The « spin orbital is associated with one nucleus, and

TABLE IX. Charge centroid x., half axes, and volumes of the «-type orbital
of the central H, fragment of (Hy)s5 parallel arrays. The central (Hz)s cluster
is a one-dimensional array along the x-axis with equal distance, r = 2.63
bohrs, between nearest atoms. The distance between neighbouring parallel
arrays: 2.63 bohrs. Position of the nucleus associated with the orbital: (0.0,
0.0, 0.0) bohr.

Xe Al Al, Al Vv
(bohr) (bohr)  (bohr)  (bohr)  (bohr)?
One array —0.001753  1.3752  0.9636 0.9636 5.3496
Three parallel arrays  —0.001134  1.2628 1.1334  0.9025 54113
Five parallel arrays —0.000901 1.2251 1.1868 0.9024  5.4962
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R = 4.0 bohr

R = 2.4 bohr

R = 2.2 bohr

R = 1.4 bohr

FIG. 2. Intersection between the xy-plane and the charge ellipsoid of the
hydrogen molecule for four different internuclear distances. Half-axes and
distances in scale.

the B spin orbital with the other. Hence, a perturbed atom
comprises a spin orbital and a nucleus. This definition of per-
turbed atoms is valid for any internuclear distance.

The basis set adopted in this study is an uncontracted
(12s,4p,3d,1f) set of GTFs. In this case, the PATMOS energy
is identical to the FCI energy.

The results of our calculations are displayed in Figures 2
and 3, and Tables X and XI. Figure 2 and Table X give a pic-
ture of bonding based on charge centroids and charge ellip-
soids of orbitals. In Figure 2, we present charge centroids and

TABLE X. Charge centroid, distance between charge centroids, half-axes of
charge ellipsoid, volume of charge ellipsoid, and the overlap matrix element
between the spatial orbitals of the hydrogen molecule as a function of the
internuclear distance R. Nuclear position: (0, 0, 0) and (R, 0, 0).

R A A AR Ay

(bohr) (bohr) ~ (bohr)  (bohr)  (bohr)  (bohr®) [(yf" 2]
0.5 02500 00000 07217 07032 14946  1.0000
14 07000  0.0000 1.0108 08811 32870  1.0000
22 11000 00000 13095  1.0076  5.5688  1.0000
23 10397 02206 1.3457  1.0204  5.8694  0.9964
24 06791 10417 13135 10194 57178 09211
25 05243 14513 12820 10179 55643  0.8498
30 02019 25961 11617 10111 49752 05714
40 00412 39175 10477 10036  4.4203  0.2628

100 0.0000 10.0000  1.0000  1.0000  4.1895  0.0022

J. Chem. Phys. 139, 094104 (2013)
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FIG. 3. Energy components of the PATMOS energy of the hydrogen
molecule as a function of the internuclear distance.

charge ellipsoids for four different distances. For the largest
internuclear distance, R = 4.0 bohrs, the charge ellipsoids are
slightly distorted compared with the case of isolated atoms.
There is a small elongation along the internuclear axis, and
the volume of the ellipsoid has increased. If we look at the
overlap matrix element of the two orbitals involved, Table X,
we notice a value of 0.262796. Hence, the bonding process
is well underway. There is a smooth shift and expansion of
the ellipsoids until the internuclear distance is reduced to ap-
proximately 2.4 bohrs. Then there is a drastic change in bond-
ing character with reduced internuclear distance. At the dis-
tance, R = 2.2 bohrs, the two spatial UHF orbitals overlap
completely. A further reduction of the internuclear distance
implies an overall contraction of the orbital density. At the
distance, R = 1.4 bohrs, close to the calculated equilibrium
distance of R.q = 1.407 bohrs, the volume of the charge el-
lipsoid is 3.287 bohrs®. This can be compared with 5.7178
bohrs® and 5.5688 bohrs® for the volumes at the distances R
= 2.4 bohrs and R = 2.2 bohrs, respectively.

In Figure 3, we display the energy components of PAT-
MOS energy as functions of the internuclear distance. We
notice immediately that the Coulombic interaction between
the perturbed atoms, is the driving force of the bonding. But
there is more to come. As the orbitals are shifted into the in-
ternuclear region, with accompanying increase of volume of
the charge ellipsoids, the kinetic energy is reduced. Further-
more, the intra-atomic Coulomb energy increases at first due
to this orbital shift into the internuclear region. As noticed in
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TABLE XI. Decomposition of the PATMOS energy of the hydrogen
molecule as a function of the internuclear distance.

R E}lfllln Eg?ul Eg(])uéz Elglolr,[Hz EPATMOS

(bohr)  (Ep) (Ep) (Ep) (Ep) (Ep)
0.5 1.0132 —1.3508 0.1886 —0.0394 —0.5260
0.7  0.8650 —1.2170 —0.1785 —0.0390 —0.9215
0.9  0.7502 —1.1066 —0.3316 —0.0389 —1.0832
1.1 0.6614 —1.0159 —0.4015 —0.0392 —1.1497
1.3 0.5920 —0.9408 —0.4343 —0.0400 —1.1720
1.4 0.5630 —0.9081 —0.4434 —0.0405 —1.1741
1.5 0.5372 —0.8782 —0.4494 —0.0411 —1.1725
1.7 0.4936 —0.8254 —0.4556 —0.0428 —1.1621
1.9 0.4585 —0.7806 —0.4574 —0.0449 —1.1465
2.1 0.4302 —0.7423 —0.4571 —0.0476 —1.1288
22 04182 —0.7252 —0.4566 —0.0492 —1.1198
2.3 0.4083 —0.7370 —0.4025 —0.0509 —1.1108
235 0.4129 —0.7966 —0.2876 —0.0516 —1.1064
240 0.4180 —0.8273 —0.2316 —0.0519 —1.1021
245 0.4229 —0.8491 —0.1935 —0.0519 —1.0978
250 0.4275 —0.8662 —0.1647 —0.0516 —1.0936
26 04361 —0.8921 —0.1232 —0.0503 —1.0854
2.8 0.4509 —0.9263 —0.0737 —0.0457 —1.0703
3.0 04625 —0.9480 —0.0462 —0.0397 —1.0569
4.0 04911 —0.9897 —0.0057 —0.0132 —1.0160
5.0 0.4981 —0.9979 —0.0008 —0.0031 —1.0036
6.0  0.499600 —0.999577 —0.000122 —0.000672 —1.000749
7.0  0.499917 —0.999913 —0.000019 —0.000150 —1.000160
8.0  0.499980 —0.999978 —0.000003 —0.000032 —1.000031
9.0  0.499992 —0.999990 0.000000 —0.000010 — 1.000006

10.0  0.499994 —0.999992 0.000000 —0.000005 —1.000001

Figure 2, there is an overall contraction of the charge density
when the internuclear distance is reduced from 2.2 bohrs to
1.4 bohrs. With this contraction there is a small change in in-
teratomic Coulomb energy, an increase in kinetic energy, and
an increase in magnitude of the intra-atomic Coulomb energy
due to the orbitals coming closer to the nuclei. A further re-
duction of the internuclear distance implies a large increase
in the nuclear-nuclear interaction and an increase in kinetic
energy. These two terms are the main origin of the repulsive
part of the interatomic potential.

In Table XI, we have displayed a partitioning of the total
electronic energy into intra-atomic components E[]jl‘l" (kinetic
energy component) and Eﬁ?“l (intra-atomic Coulombic), and
the interatomic components E™}y and E{", . for internu-
clear distances up to R = 10.0 bohrs. We notice that for dis-
tances larger than R = 7.0 bohrs, the correlation energy is
the dominant attractive term. It is also important in the in-
termediate region even if the interatomic Coulomb energy is
in magnitude approximately 10 times larger. Due to different
signs of attractive and repulsive terms, the correlation energy
contributes approximately 24% to the binding energy.

Pertaining to Table X, we would also like to empha-
size the overlap property of the spatial parts of the two spin
orbitals. For the inter-nuclear distance R &~ 2.2 bohrs and
smaller distances, the overlap matrix element is equal to one.
In this region, restricted Hartree-Fock (RHF) and UHF give
equal results. Let us ask the question: at what distance is the

J. Chem. Phys. 139, 094104 (2013)

chemical bond between the two atoms being fully formed? Or
equivalently: at what distance starts the two-electron bond to
break? If we look at the potential energy curve, we can hardly
answer. However, the UHF suggests an answer: the distance
for which the RHF method and UHF model starts to give dif-
ferent results, is the bond breaking point.

Our interpretation of the bonding in H, differs from the
common notion of bonding derived from valence bond theory.
In that case, bonding in Hj is essentially due to an “exchange”
interaction between different atomic like orbitals. However,
our approach has some resemblance with the more recent
analysis of Ruedenberg and Schmidt.>® They analyse bonding
in terms of two components: the kinetic energy and the total
Coulombic energy. The difference between their work and the
present one is essentially that we partition the Coulombic en-
ergy into intra- and interatomic terms.

It is important to have in mind that different computa-
tional models with different concepts lead to different inter-
pretations. The interpretation based on the PATMOS model
accords closely with the intuitive idea that a chemical bond is
due to the attraction between the electrons of one atom with
the nucleus of a second atom and vice versa.

To conclude, an analysis based on perturbed atoms yields
a simple, intuitive, consistent, and accurate description of the
bonding in the hydrogen molecule.

B. Methane

The basis for the calculation on methane is uncontracted
(18s,10p,3d,1£/10s,3p,1d) set of Gaussian type functions. The
C—H bond length is 2.05 bohrs, and hydrogen nuclei are in
tetrahedral arrangement around the carbon nucleus. In the
three-electron FCI calculations of the intra-atomic correla-
tion energy of the carbon atom, 20 NOs from each pair are
adopted.

The calculation yields identical sets of spatial orbitals for
the o and B type spin orbitals. Localization of the spatial or-
bitals gives four equivalent valence orbitals. Each orbital is
located in the region between the carbon nucleus and a hy-
drogen nucleus. The longest half-axis of the corresponding
charge ellipsoid is directed along the C—H axis. The values
of the half-axes are, respectively, 1.0605 bohrs, 0.8238 bohr,
and 0.8238 bohr. The spatial position of the charge centroid
is on the C—H axis, and 0.6608 bohr away from the hydrogen
nucleus.

In Table XII, we present intra- and interatomic energy
components of the PATMOS energy of methane. We notice
that for the C—H interaction energy, the Coulomb energy

TABLE XII. Intra- and interatomic energy components of the PATMOS
energy of methane. Bond length is 2.05 bohrs.

Kinetic Coulombic Exchange Correlation Total
Fragment(s)  (Ej) (En) (En) (En) (En)
C 36.7004 —73.3928 —0.1353 —0.0672 —36.8948
H 0.8740  —0.9494 —0.0754
(CH) —0.7550 —0.0084 —0.0492 —0.8126
(H;,Hy) 0.0113 —0.0170  —0.0026 —0.0083
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002

Ce

FIG. 4. Intersection between the xy-plane and selected charge ellipsoids of a
fragment of benzene. Bond lengths: /(C — C) = 2.65 bohrs, /(C — H) = 2.04
bohrs.

dominates. It is in magnitude, respectively, 90 and 15 times
larger than the exchange and correlation terms. As for the in-
teraction energy between two hydrogen atoms, the Coulomb,
exchange, and correlation terms are of the same magnitude.
The interaction energy between the carbon atom and a hy-
drogen atom is two orders of magnitude larger than the inter-
action energy between two hydrogen atoms. Hence, our en-
ergy component analysis yields strong support for the familiar
bond structure in methane.

C. Benzene

Conjugated or aromatic molecules are usually considered
to be systems where an effective localization of the orbitals is
impossible. The benzene molecule is an important member of
this class of molecules. It will undoubtedly represent a chal-
lenge to define a perturbed atom in this molecule.

The basis set adopted for the study is the same as
the one used in the methane calculation. The geometry of
the molecule is the experimental one, i.e., 2.65 bohrs and
2.04 bohrs for the C—C and C—H bond lengths, respectively.
The correlation energy is approximated by two-electron FCI
calculations.

In Figure 4, we display charge centroids and charge ellip-
soids for a fragment of the molecule. We notice the conven-

TABLE XIII. Half axes and volumes of charge ellipsoids of orbitals of ben-
zene. Bond lengths: /(C — C) = 2.65 bohrs, /(C — H) = 2.04 bohrs.

Al Ab Als %4
Orbital (bohr) (bohr) (bohr) (bohr?)
Is 0.2109 0.2086 0.1910 0.0352
ac,-c, 0.9245 0.7787 0.7743 23349
oc,—H, 0.9572 0.8201 0.8137 2.6753
7C 1.5611 1.3739 1.2817 11.5155

J. Chem. Phys. 139, 094104 (2013)

TABLE XIV. Intra- and interatomic energy components of the PATMOS
energy of benzene. Bond lengths: /(C — C) = 2.65 bohrs, /(C — H) = 2.04
bohrs. Numbering of atoms given in Fig. 4.

Kinetic Coulombic Exchange Correlation Total
Fragment(s)  (En) (En) (En) (En) (En)
C 37.5393 —73.5901 —0.1978 —0.0691 —36.3177
H 0.8868 —0.9637 —0.0769
(C1,C) —1.2502 —0.0208 —0.0901 —1.3611
(C1,C3) —0.0154 —0.0364 —0.0066 —0.0585
(C1,Cy) —0.0361 —0.0006 —0.0051 —0.0418
(C1,Hy) —0.7560 —0.0084 —0.0518 —0.8162
(C1,Hy) —0.0015 —0.0193 —0.0032 —0.0240
(C1,Hz) —0.0002 0.0000  —0.0003 —0.0006
(C1,Hy) 0.0010 —0.0010 —0.0001 —0.0001
(Hy,Hy) 0.0048 0.0 —0.0002 0.0046
(Hy,H3) 0.0018 —0.0001 0.0000 0.0016
(H;,Hy) 0.0014 0.0 0.0000 0.0014

tional picture of three o-type orbitals and a localized w-type
orbital. The spatial part of an «-type spin orbital can in prin-
ciple have a non-zero overlap matrix element with the spa-
tial part of any B-type orbital. As for the o-type geminal, the
overlap matrix element for the orbitals of the oc,_c, gemi-
nal and o¢,_y, geminal are, respectively, 0.9993 and 0.9996.
Overlap matrix elements between orbitals belonging to dif-
ferent o-type geminals are typically of the order 0.001 or
smaller. Regarding the m orbitals, the m-orbitals have alter-
nate spin along the ring structure, the overlap matrix elements
are 0.6216 and 0.2674, respectively, for the nearest neighbour
carbon atoms and the third nearest neighbour atoms. As is evi-
dent from Figure 4 and Table XIII, the volume of a 7 -ellipsoid
is considerably larger, i.e., 4.3 times larger than the volume of
oc_y-ellipsoid.

In Table XIV, we present intra- and interatomic energy
components of the PATMOS energy of benzene. The num-
bering of atoms is a sequential numbering along the ring of
the molecule in such a way that there is o bond between car-
bon atom Cp and hydrogen atom Hp. In the table, we dis-
play only symmetry independent terms. We observe that a
carbon atom is strongly bounded to its two nearest neighbour
carbon atoms, and also strongly bonded to its partner hydro-
gen atoms. As in the methane case, the dominant component
of the interaction energy is the Coulombic term. A carbon
atom is weakly bounded to its second and third nearest neigh-
bour atoms. There are weak interactions between a carbon
atom and the hydrogen atoms which are not a nearest neigh-
bour atom. As for interactions between the hydrogen atoms,
they are all repulsive and dominated by the Coulombic term.

To conclude, it is possible to define perturbed atoms in a
system like benzene and obtain a meaningful energy compo-
nent analysis.

VI. CONCLUDING REMARKS

A well-known disadvantage of the UHF wave func-
tion, when UHF is different from restricted Hartree-Fock, is
spin contamination. However, this contamination is reduced
or perhaps eliminated by the partial FCI corrections in the
PATMOS model. In our calculations, we monitor this
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TABLE XV. Lowest exponents of the GTF-family basis sets used in this work.

J. Chem. Phys. 139, 094104 (2013)

Atom/basis Reference basis>? K )4 d f g h i j k
H/(10s,2p,1d) cc-pVTZ 0.144717 0.391109 1.057000

H/(10s,3p,1d) cc-pVTZ 0.067640 0.422800 1.057000

H/(125,5p,3d) cc-pVTZ 0.010823 0.067640 0.169100

H/(12s,4p,3d,1f) cc-pVQZ 0.035763 0.223520 0.558800 1.397000

C/(185,9p,3d,1f) cc-pVTZ 0.044364 0.044364 0.295076 0.761000

N/(1759p,4d,31,1g) cc-pVQZ 0.032554 0.083764 0.215533 0.554586 1.427

N/(17s,9p,5d,41,3g,2h,1i) cc-pVQZ 0.032554 0.083764 0.215533 0.215533 0.554586 1.427 3.671799
N/(17s.9p,7d,6f.58,4h,3i,2j,1k) cc-pVQZ 0.032554 0.083764 0.215533 0.215533 0.554586 1.427 3.671799 9.447870 24.310220
Li/(19s5,8p,7d,5f,2g,1h) cc-pV5SZ 0.003801 0.054000 0.054000 0.131000 0.131000 0.320000

contamination in the FCI two-electron wave functions for the
(e, B) clusters. The final wave function is expressed in terms
of a singlet (S = 0) and a triplet (S = 1) component. Consider
the H, molecule which has a singlet ground state. For inter-
nuclear distances greater than R & 2.2 bohrs, there is a spin
contamination in the UHF wave function. At infinite internu-
clear distance, there is a complete mixture of the singlet and
triplet states in UHF wave function. On the other hand, this
is not the case for the FCI wave function. Fully converged,
the FCI wave function is a singlet state for any internuclear
distance. But in approaching the infinite distance, great care
must be taken to ensure that the wave function is converged.
Due to the very small energy difference between the singlet
and triplet states, the energy converges much faster than the
wave function.

In the Introduction, we have suggested that the PATMOS
model has both conceptual and computation advantages. The
decomposition of the total electronic energy into intra- and
interatomic components opens up for a new type of analy-
sis of chemical bonding. This interpretative feature has been
demonstrated in this work by a study on different groups
of molecules. The computational advantage of the model is
partly due to a well-defined procedure for reducing the virtual
space in electron correlation calculations, and the use of sym-
metry in reducing the number of calculated intra- and inter-
atomic correlation terms. The structure of the model, i.e., in-
dependent calculations of intra- and interatomic terms, makes
it ideally suited for parallel processor computers. The model
should be particularly useful for large systems since it allows
for focusing on the relevant part of the correlation energy.

One of the most difficult problem in electronic structure
theory, is the basis set problem: how to approach the basis set
limit. The usual procedure is one or another type of extrap-
olation technique. However, mathematically, extrapolation is
subjected to uncertainties. An alternative procedure can be
based on R12 methods. As argued in Sec. IV A, the PATMOS
model is ideally suited for such an approach. In the future, we
shall contemplate to include R12 procedure in the PATMOS
model.
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APPENDIX: A CONSTRUCTION OF FAMILY TYPE
BASIS SET

Our computer code is based on family type basis sets.
The arguments for using this type of basis set are given by
Rgeggen and Johansen*’ in an article on the Cholesky decom-
position of two-electron integral matrix. A family type basis
is a basis of GTFs constructed as a union of families

(X1 < <m}= U Fr(a, A),

A,a,L

(AL)

where the L-family, Fy(a, A), comprises a set of GTFs lo-
cated on the same center A, all functions have the same expo-
nent a, and with angular momenta ranging from O to L. The
exponent are chosen from an even-tempered sequence

m=af k=1,2,.... (A2)

The parameter § is defined by a set of s-type GTFs, say by
the optimized set of exponents in the work of Schmidt and
Ruedenberg,> or as the ratio of the exponents of the two most
diffuse s-type functions in a conventional set of basis func-
tions. The exponent of the family with the highest angular
momentum quantum number, i.e., L,y , is chosen from a ref-
erence basis set. The upper and lower exponents of L-families,
L < Ly, are such that these two values bracket the exponents
in the reference set. Since the 8-parameter is deduced from a
set of s-type exponents, the family basis will usually contain
a larger set of functions than the reference set. Our reference
sets are all from the EMSL database.>

In Table XV, we give the lowest exponents of the GTF-
family basis sets used in this work. The S-parameter can be
derived from the exponents included in the table. Hence, the
basis sets are completely specified.
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