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Abstract

High blood concentrations of n-6 fatty acids (FAs) relative to n-3 FAs may lead to a ‘‘physiological switch’’ towards
permanent low-grade inflammation, potentially influencing the onset of cardiovascular and inflammatory diseases, as well
as cancer. To explore the potential effects of FA ratios prior to disease onset, we measured blood gene expression profiles
and plasma FA ratios (linoleic acid/alpha-linolenic acid, LA/ALA; arachidonic acid/eicosapentaenoic acid, AA/EPA; and total
n-6/n-3) in a cross-section of middle-aged Norwegian women (n = 227). After arranging samples from the highest values to
the lowest for all three FA ratios (LA/ALA, AA/EPA and total n-6/n-3), the highest and lowest deciles of samples were
compared. Differences in gene expression profiles were assessed by single-gene and pathway-level analyses. The LA/ALA
ratio had the largest impact on gene expression profiles, with 135 differentially expressed genes, followed by the total n-6/
n-3 ratio (125 genes) and the AA/EPA ratio (72 genes). All FA ratios were associated with genes related to immune
processes, with a tendency for increased pro-inflammatory signaling in the highest FA ratio deciles. Lipid metabolism
related to peroxisome proliferator-activated receptor c (PPARc) signaling was modified, with possible implications for foam
cell formation and development of cardiovascular diseases. We identified higher expression levels of several autophagy
marker genes, mainly in the lowest LA/ALA decile. This finding may point to the regulation of autophagy as a novel aspect
of FA biology which warrants further study. Lastly, all FA ratios were associated with gene sets that included targets of
specific microRNAs, and gene sets containing common promoter motifs that did not match any known transcription factors.
We conclude that plasma FA ratios are associated with differences in blood gene expression profiles in this free-living
population, and that affected genes and pathways may influence the onset and progression of disease.
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Introduction

The type and amount of fatty acids (FAs) in a person’s diet

determine the relative amounts of FAs in the tissues of the body,

and may influence the pathogenesis of cardiovascular and

inflammatory diseases, as well as cancer [1–3]. A multitude of

mechanisms have been shown to influence disease pathogenesis,

including lipid metabolism and inflammation. To study the

complex molecular mechanisms involved in the association

between nutritional factors and multifactorial diseases, high-

throughput technologies like transcriptomics are increasingly

being used.

The importance of dietary fat is mirrored in the complexity of

FA metabolism. After ingestion, or following lipolysis in adipose

tissue, FAs enter the blood stream either esterified in lipoproteins

or non-esterified bound to albumin. FAs are transported into cells

throughout the body, where they may be degraded by (per-)

oxidation, stored as triglycerides, or incorporated into the

phospholipids of cellular membranes. Membrane phospholipids

can be modified into lipid mediators such as inositol triphosphate

(IP3), and FAs residing in the cellular membranes can be mobilized

through the action of phospholipases and undergo modifications to

yield a variety of immunoactive eicosanoids. Furthermore, FAs are

potent regulators of gene expression via receptors like the

peroxisome proliferator-activated receptors (PPARs) [4,5]. Collec-

tively, PPARs and their binding partners, retinoid X receptors

(RXR), regulate cellular and physiological processes including FA

metabolism, cellular stress, and inflammation.

A key aspect of FA biology is the specificity inferred by the FA

structure, as well as the fact that dietary sources differ in the FAs

they contain. Two long-chain polyunsaturated FAs (PUFAs) are

essential to humans and must be obtained from the diet: linoleic

acid (LA, 18:2 n-6) and alpha-linolenic acid (ALA, 18:3 n-3), both

of which are derived mainly from plant oils. LA is metabolized to

arachidonic acid (AA, 20:4 n-6), whereas ALA is converted to

eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid

(DHA, 22:6 n-3). This metabolism of PUFAs is extremely limited

in humans [6]. In addition, mammals cannot convert n-6 FAs to n-
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3 FAs [7], making the two classes metabolically distinct. n-6 and n-

3 PUFAs compete for the same enzyme systems, so that the

conversion of ALA to EPA and DHA is further reduced in

individuals who adhere to a Western diet, due to the high intake of

LA. Hence, EPA and DHA are mainly provided from dietary

marine sources.

It has been suggested that n-6 FAs are pro-inflammatory,

whereas n-3 FAs are much less so, and sometimes even anti-

inflammatory. The ratio of n-6/n-3 FAs has been implicated in the

pathogenesis of conditions like inflammatory and cardiovascular

diseases, as well as cancers of the breast, prostate and colon

[1,8,9]. A dietary n-6/n-3 ratio of 1 may be considered healthy,

corresponding to a 50% n-3 FA content in tissues, but the typical

Western diet provides a considerably higher n-6/n-3 ratio [10].

However, a relatively high n-3 intake and low n-6/n-3 ratio is

observed in Norwegians, who consume high amounts of fish, fish

products and fish oil supplements compared to other Western

populations [11,12]. Effects of dietary intervention studies to

reduce the n-6/n-3 ratio in healthy subjects include a reduced

number of platelets and leukocytes [13], and beneficial modulation

of metabolic and inflammatory markers [14,15]. The involvement

of inflammatory mechanisms in the association between n-6/n-3

ratio and disease has led to the hypothesis that a high n-6/n-3 ratio

may cause a ‘‘physiological switch’’ towards a permanent state of

low-grade inflammation, which may be detrimental to several

aspects of human health [1,16].

Despite the overarching hypothesis of a ‘‘physiological inflam-

matory switch’’, genome-wide transcriptomics studies exploring

the potential effects of the n-6/n-3 ratio in the general population

are scarce. However, some intervention studies have used FA

supplementation to investigate the effects on gene expression

levels. One targeted study of healthy adults showed reduced

expression of selected signal transduction genes and pro-inflam-

matory cytokines after a 40% reduction of the n-6/n-3 ratio [17].

In addition, short and long-term effects of FA supplementation on

genome-wide transcription in blood cells has been investigated

[18]. Postprandial gene expression changes were found in

peripheral blood mononuclear cells (PBMCs) after a DHA-rich

meal, including up-regulation of stress genes and down-regulation

of lipid metabolism [19]. After long-term supplementation (26

weeks) with EPA/DHA in an elderly population, PBMC gene

expression levels related to inflammatory and atherogenic

pathways were decreased [5].

Taken together, molecular and epidemiological studies indicate

the importance of the n-6/n-3 ratio in relation to the prevention of

inflammatory and cardiovascular diseases, as well as cancer.

However, the use of the n-6/n-3 ratio to monitor and modify risk

factors related to human disease is not without controversy [20].

One important objection stems from the fact that the total n-6/n-3

ratio, which is often used in epidemiological studies, does not

distinguish between different types of PUFAs, e.g. LA/ALA or

AA/EPA ratios. Furthermore, the extrapolation of the positive

effects of FA ratios on disease, to their potential effects during

disease onset, has not been extensively evaluated. With the aim of

exploring the potential mechanisms of FA ratios in disease

prevention, we used data from the Norwegian Women and

Cancer (NOWAC) Post-genome Cohort [21] to perform a cross-

sectional analysis of middle-aged Norwegian women. We grouped

the study population according to three plasma FA ratios (LA/

ALA, AA/EPA and total n-6/n-3), and identified differences in

blood gene expression profiles by comparing the highest versus the

lowest FA ratio deciles. To our knowledge, the present study is the

first to explore the genome-wide transcriptomic effects of FA ratios

in a representative cohort.

Materials and Methods

Study Population and Materials
The NOWAC Study [22] and the NOWAC Post-genome

Cohort [21] have been described in detail elsewhere. Briefly, the

Post-genome Cohort consists of 50 000 women born between

1943 and 1957. Invited women were asked to visit their general

physician to have blood collected using a kit which they

received by mail, and to answer a two-page questionnaire on

anthropometric and lifestyle parameters (including use of dietary

supplements, medication, and menstrual status). Blood samples

and questionnaires were returned by mail to the NOWAC study

center. A total of 500 women were randomly selected for the

present study, 444 of whom returned blood samples and

questionnaires during 2005 (response rate 89%). All women

included in our study population successfully returned a citrate-

buffered blood sample, and a PAXgene blood RNA collection

tube, which conserves the RNA profile of all circulating cells

(Preanalytix, Qiagen, Hilden, Germany). Blood samples were

required to reach the study center and be frozen no more than

3 days after blood collection. Furthermore, all included women

were required to be postmenopausal according to self-report

and plasma hormone levels (99 excluded) [23]. Medication was

classified into the following categories: diabetes, non-steroidal

anti-inflammatory drugs (NSAIDs), statins, cardiovascular med-

ication (diuretics, adrenergic beta antagonists, calcium channel

blockers, renin-angiotensin system inhibitors (including combi-

nations with diuretics) and other anti-hypertensives), and

immune system-related medication. Based on this classification,

30 women taking diabetes medication, statins, and immune

system-related medication were excluded. In addition, two

women using anti-thrombotics, and one using hydroxychloro-

quine were excluded from the study. Women were not required

to fast before blood collection, but those who had not eaten for

12 h or more were defined as fasting. Women who had smoked

during the week before blood collection were defined as

smokers, and those who had taken n-3 capsules/oils and/or

cod liver oil the week before blood collection were defined as

users of n-3 supplements.

Ethics Statement
The NOWAC Post-genome Cohort study was approved by the

Regional Committee for Medical Research Ethics and the

Norwegian Data Inspectorate. All participants gave written

informed consent.

RNA Extraction and Gene Expression Profiling
Details of experimental procedures have been described

elsewhere [24]. Total RNA was isolated using the PAXgene

Blood RNA Isolation Kit (Preanalytix, Qiagen, Hilden, Germany),

according to the manufacturer’s protocol. RNA quantity, quality

and integrity were assessed using the NanoDrop ND1000

spectrophotometer (Thermo Scientific, Wilmington, Delaware,

USA) and the Experion automated electrophoresis system (BioRad

Laboratories, Hemel Hempstead, UK); 39 samples were excluded

due to low RNA quality or quantity. No globin reduction method

was used, in line with our previous finding that showed no major

benefit from reduction of globin RNA for the microarray platform

employed in the present study [25]. Gene expression levels were

measured using the Human Genome Survey Microarray V2.0

(Applied Biosystems, ABI, Life Technologies, Carlsbad, California,

USA). The microarray contains 32 878 probes for the interroga-

tion of 29 098 transcripts. ABI Expression System software was

used to extract signal intensities and signal/noise ratios, and for
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flagging of spots. Experimental details and required data files were

submitted to Gene Expression Omnibus (ww.ncbi.nlm.nih.gov/

geo), under accession number GSE15289.

Microarray Data Preprocessing and Normalization
The Bioconductor/R statistical package was used for micro-

array data preprocessing (script available upon request). Standard

ABI exclusion criteria were applied, removing probes with a

signal/noise ratio of less than 3, or those that were flagged as

irregular by the scanner. There were 10 784 probes that met the

selection criteria, and these were included in the gene expression

matrix. Missing values were imputed using the k-nearest neighbor

method [26]. Arrays that displayed an irregular intensity pattern in

the built-in controls were removed (n = 3). The gene expression

data set was normalized using a quantile and control-based

normalization approach [27] (script available upon request).

Probes with very low variability (,0.1), or very low average log2

signal (,9.5), were removed.

FA Measurements
The National Institute of Nutrition and Seafood Research

analyzed 34 unique FAs in citrate-buffered plasma samples, using

rapid gas chromatography [28]. Failed measurements caused eight

samples to be excluded. FA ratios were calculated from the mass of

each FA.

Statistical Analysis
The final number of included women was 227. For this

explorative analysis, gene expression matrices were generated by

arranging samples (columns) from highest to lowest values for the

three FA ratios considered (LA/ALA, AA/EPA and total n-6/n-

3). Within each matrix only the highest and lowest decile of

samples were compared (decile n = 23). Potential confounders

were evaluated by comparing the highest and lowest deciles using

independent sample t-tests with two-tailed p-values, Mann-

Whitney U tests, and Chi square tests (SPSS Statistics 19, IBM,

Armonk, New York), with p,0.01 as the significance threshold.

There was a small, but statistically significant age difference

among women in the highest versus the lowest AA/EPA and total

n-6/n-3 deciles. Changes in lipid metabolism during menopausal

transition have been well characterized, but as of yet, time since

menopause has not been reported to influence lipid profiles [29].

Because all of our study women were postmenopausal, we chose

not to adjust for age in the analyses of gene expression profiles. T-

tests in R, and Benjamini-Hochberg corrected p-values were used

to evaluate differential gene expression between the highest and

the lowest LA/ALA, AA/EPA and total n-6/n-3 deciles.

Functional annotations of single genes were explored using

www.genecards.org and The Database for Annotation, Visualiza-

tion and Integrated Discovery v. 6.7 [30]. Lists of differentially

expressed genes were evaluated for potential overlap with

previously reported gene sets using the Molecular Signatures

Database (MSigDB) v. 3.0 (www.broadinstitute.org/gsea/msigdb)

[31], limited to collections C2 CP (Kyoto Encyclopedia of Genes

and Genomes Pathway Database, KEGG, Biocarta, Reactome),

C3 (microRNA, miRNA, targets, transcription factor targets), and

C5 (Gene Ontology, GO). Gene Set Enrichment Analysis (GSEA)

[31] in R was used for functional interpretation based on gene sets

from KEGG, GO and Panther. False discovery rate (FDR) ,25%

and nominal p,0.05 were used as significance thresholds in

GSEA.

Results

Our study population (n = 227) was slightly overweight, and

one-quarter of them were smokers (Table 1). A majority of the

study women had taken n-3 supplements, in concordance with

previous findings in the Norwegian population [12]. Neverthe-

less, the population mean of all FA ratios was dominated by n-6

FAs. The mean LA/ALA ratio was approximately 50, mean

AA/EPA ratio was approximately 4, and mean total n-6/n-3

ratio was approximately 6. The highest and lowest FA ratio

deciles included 23 women each, and their characteristics are

presented in Table 2 and Supplementary Table S1. There were

no significant differences in body mass index, smoking, fasting

and medication use between comparison groups (p,0.01).

There were no significant differences in main characteristics

between the highest and lowest LA/ALA deciles. When

comparing the highest versus the lowest AA/EPA deciles, the

lowest decile was slightly older and had a higher frequency of

n-3 supplement use. The same pattern of age and supplement

use was present in the comparison of the highest versus the

lowest total n-6/n-3 deciles. In the study population as a whole,

users of n-3 supplements were slightly older than non-users (2

years older, p,0.01, data not shown), but the age difference

was statistically significant. The frequent use of supplements

may be related to the AA/EPA ratio of the lowest AA/EPA

decile and the lowest total n-6/n-3 decile (AA/EPA ratio 1.3

and 1.5, respectively), which may be regarded as balanced

(Table 2). There were no significant differences between any of

the FA ratio deciles regarding technical variables (time elapsed

between blood collection and freezing of the blood sample, date

of RNA extraction, or microarray lot numbers, data not shown).

The LA/ALA ratio was associated with the highest number of

differentially expressed genes (Table 3, t-tests, adjusted p#0.01, 315

genes), followed by the total n-6/n-3 ratio (125 genes), and the AA/

EPA ratio (72 genes). We present the top 10 up- and down-regulated

genes (Table 4–6), and complete gene lists are available (Supple-

Table 1. Characteristics of the 227 women in the study
populationa.

Characteristic Mean or frequency

Age 55.663.5

BMI 25.564.4

Smoking 59 (26%)

Fasting 13 (7%)

Time since meal (h) 2.763.7

n-3 supplements 130 (59%)

NSAIDs 20 (9%)

Cardiovascular medication 30 (13%)

HRT 39 (17%)

LA/ALA 51.9617.8

AA/EPA 4.362.8

n-6/n-3 6.162.0

aFormat for age, BMI, time since meal, and FA ratios: mean (standard deviation).
Format for smoking, fasting, supplements and medication: frequency (percent).
Missing: BMI: 3, smoking: 1, fasting: 27, n-3 supplements: 5.
Abbreviations: AA: arachidonic acid, ALA: alpha-linolenic acid, BMI: body
mass index, EPA: eicosapentaenoic acid, h: hours, HRT: hormone replacement
therapy, LA: linoleic acid, n-3 supplements: any combination of n-3 capsules/
oils, cod liver oil or both, NSAIDs: non-steroidal anti-inflammatory drugs.
doi:10.1371/journal.pone.0067270.t001
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mental Tables S2–S4). All tables contain gene symbols and

corresponding gene names. Gene expression profiles according to

AA/EPA and total n-6/n-3 ratios overlapped slightly more than the

gene expression profile according to LA/ALA ratio, and no genes

were shared across all three ratios (Supplemental Figure S1). As

often seen when studying human complex tissues in a non-

experimental setting, the biological variation between individuals

was large and the magnitude of detectable gene expression changes

was small: no transcripts changed more than approximately 1.4-fold

between groups. Differentially expressed genes resulting from the

comparison of the highest versus the lowest LA/ALA deciles

included inflammatory markers like receptor subunits for IL1 and

IL10 (IL1R2, IL10RB), chemokines (CCL7, CCL24), and TLR8

(Table 4 and Supplemental Table S2). Key FA metabolism

regulators were differentially expressed, including PPARc binding

partners. Interestingly, genes related to autophagy were more highly

expressed in the lowest LA/ALA decile, including KIAA0831 and

OPTN. The list of differentially expressed genes overlapped with 50

gene sets in MSigDB belonging to two major categories (Table 7

and Supplemental Table S5): one category involving immune

processes, with up to 20% overlap (e.g. the IL10 pathway, NO2-

dependent IL12 pathway, and Systemic Lupus Erythematosus

pathway), and one related to function, packaging, maintenance and

repair of DNA and RNA (e.g. Reactome unwinding of DNA, 18%

overlap). A significant overlap with gene sets corresponding to

targets of two miRNAs was identified, as well as with three gene sets

with common promoter motifs. However, neither motif matched

any known transcription factors. According to GSEA (Table 8), the

Jak/STAT pathway was positively enriched in the highest LA/ALA

decile.

When comparing the highest versus the lowest AA/EPA deciles,

differentially expressed genes included the PPARc target ABCG1

(Table 5 and Supplemental Table S3). Very few inflammatory

genes were associated with the AA/EPA ratio. The list of

differentially expressed genes overlapped with 24 gene sets mainly

related to catabolic processes and fat metabolism, including

phospholipid transport (17% overlap), and targets of transcription

factors like LXRA/NR1H3 and RXRB (Table 7 and Supple-

mental Table S6). Seven gene sets that included targets of specific

miRNAs were significant, including MIR-103/107 and MIR-7.

GSEA revealed significant negative enrichment for sulfur metab-

olism in the highest AA/EPA decile (Table 8).

Differentially expressed genes resulting from the comparison of

the highest versus the lowest total n-6/n-3 deciles included

ABCG1, OSBP2 and PLA2, all involved in FA and lipid

metabolism (Table 6 and Supplemental Table S4). The list of

differentially expressed genes overlapped up to 14% with gene sets

related to endoplasmic reticulum and Golgi function, vesicle

transport and protein folding (Table 7 and Supplemental Table

S7). Apoptotic gene sets were identified, as well as two miRNA

target sets: MIR-326 and MIR-296. In addition, differentially

expressed genes overlapped with two gene sets sharing promoter

motifs that did not match any known transcription factors.

According to GSEA, no pathways were significantly enriched

according to total n-6/n-3 ratio.

Discussion

In this explorative analysis, we investigated LA/ALA, AA/EPA

and total n-6/n-3 ratios measured in plasma, and their potential

Table 2. Characteristics of the highest and lowest fatty acid ratio decilesa.

LA/ALA ratio AA/EPA ratio n6/n3 ratio

Highest decile
Lowest
decile p Highest decile Lowest decile p Highest decile Lowest decile p

Age 5563.7 5563.3 0.97 5463.5 5763.0 ,0.01 5363.3 5763.2 ,0.01

BMI 2462.8 2663.6 0.17 2464.0 2362.5 0.4 2363.8 2464.0 0.47

Smoking 8 (35%) 5 (22%) 0.51 8 (36%) 2 (9%) 0.04 8 (36%) 3 (13%) 0.14

Fasting 3 (16%) 1 (5%) 0.33 2 (10%) 0 0.23 0 0 NA

Time since meal (h) 3.765.1 1.962.6 0.24 3.264.1 1.961.7 0.18 1.761.2 2.262.4 0.72

n-3 suppl. 12 (52%) 14 (61%) 0.77 3 (14%) 21 (91%) ,0.01 4 (18%) 22 (96%) ,0.01

NSAIDs 2 (9%) 0 0.49 4 (17%) 1 (4%) 0.35 5 (22%) 3 (13%) 0.70

Cardiovascular
medication

3 (13%) 5 (22%) 0.70 4 (17%) 0 0.11 2 (9%) 1 (4%) 1.00

HRT 5 (22%) 2 (9%) 0.41 9 (17%) 3 (13%) 0.09 8 (35%) 3 (13%) 0.07

LA/ALA 86.8614.2 2665.0 ,0.01 61.0623.9 46.4616.4 0.02 62.1623.9 45.5615.0 0.01

AA/EPA 4.963.1 3.261.9 0.02 10.462.8 1.360.2 ,0.01 9.262.8 1.560.5 ,0.01

n-6/n-3 6.962.3 5.061.6 ,0.01 9.561.8 3.460.8 ,0.01 10.061.4 3.160.5 ,0.01

aDecile n = 23. Subgroups may not total 227 due to missing values.
Abbreviations: AA: arachidonic acid, ALA: alpha-linolenic acid, BMI: body mass index, EPA: eicosapentaenoic acid, h: hours, HRT: hormone replacement therapy, LA:
linoleic acid, n-3 suppl.: any combination of n-3 capsules/oils, cod liver oil or both, NSAIDs: non-steroidal anti-inflammatory drugs.
doi:10.1371/journal.pone.0067270.t002

Table 3. Number of differentially expressed genes (t-tests,
p#0.01).

FA ratio
Differentially
expressed Up-regulated Down-regulated

LA/ALA 315 168 147

AA/EPA 72 35 37

n-6/n-3 125 46 79

Abbreviations: AA: arachidonic acid, ALA: alpha-linolenic acid, EPA:
eicosapentaenoic acid, FA: fatty acid, LA: linoleic acid.
doi:10.1371/journal.pone.0067270.t003
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Table 4. Top 10 up- and down-regulated genes associated with LA/ALA ratio (p#0.01)a.

Gene symbol Gene name ABI probe ID Entrez gene ID Mean difference

HDC Histidine decarboxylase 194873 3067 1.41

CPA3 Carboxypeptidase A3 (mast cell) 100989 1359 1.36

TCHHL1 Trichohyalin-like 1 (basalin, S100 calcium-binding protein A17) 132590 126637 1.20

MYBPHL Myosin binding protein H-like 201601 343263 1.18

FcER1B FC epsilon receptor I beta-chain (MS4A2) 182643 2206 1.00

ANPEP Alanyl (membrane) aminopeptidase (CD13) 102558 290 0.64

GLT1D1 Glycosyltransferase 1 domain-containing protein 1 185381 144423 0.63

ZNF558 Zinc finger protein 558 124882 148156 0.63

SLC22A9 Solute carrier family 22 (organic anion/cation transporter) 9 206544 114571 0.62

FABP4 Fatty acid binding protein 4, adipocyte 150137 2167 0.61

IFIT1L Interferon-induced protein with tetratricopeptide repeats 1B 112888 439996 20.75

MINPP1 Multiple inositol polyphosphate phosphatase 1 188640 9562 20.70

OR2W3 Olfactory receptor 2W3 702434 343171 20.70

FAM63B Family with sequence similarity 63, member B 161432 54629 20.69

GFI1 Growth factor independent 1 transcription repressor (ZNF163) 121984 2672 20.69

MATR3 Matrin 3 229698 9782 20.66

SNCA Synuclein, alpha (non A4 comp. of amyloid precursor) 170285 6622 20.63

MYBL1 V-myb myeloblastosis viral oncogene homolog (avian)-like 1 207803 4603 20.63

NR2C2AP Nuclear receptor 2C2-associated protein 211955 126382 20.59

KLRG1 Killer cell lectin-like receptor subfamily G, member 1 188801 10219 20.58

aComplete lists of differentially expressed genes (p#0.01) are given in Supplemental Table S2.
Abbreviations: ABI: Applied Biosystems, ALA: alpha-linolenic acid, LA: linoleic acid.
doi:10.1371/journal.pone.0067270.t004

Table 5. Top 10 up- and down-regulated genes associated with AA/EPA ratio (p#0.01)a.

Gene symbol Gene name ABI probe ID Entrez gene ID Mean difference

ABCB9 ATP-binding cassette, sub-family B (MDR/TAP), member 9 155893 23457 0.68

ZNF354A Zinc finger protein eZNF (transcription factor 17) 214609 6940 0.64

ENTPD4 Ectonucleoside triphosphate diphosphohydrolase 4 (LYSAL1) 226738 9583 0.56

ZCCHC2 Zinc finger, CCHC domain-containing protein 2 154456 54877 0.51

RNMTL1 RNA methyltransferase-like protein 1 135382 55178 0.51

GRIN2C Glutamate receptor, ionotropic, N-methyl D-aspartate 2C 194729 2905 0.47

PODNL1 Podocan-like 1 146598 79883 0.47

CCL24 Chemokine (C-C motif) ligand 24 128049 6369 0.44

RNF157 Ring finger protein 157 212544 114804 0.40

C20orf26 Chromosome 20 open reading frame 26 150962 26074 0.35

HLA-DQA1 Major histocompatibility complex, class II, DQ alpha 1 170258 3117 21.04

LMOD2 Leiomodin 2 (cardiac) 187222 442721 20.80

APLP2 Amyloid beta (A4) precursor-like protein 2 223157 334 20.74

GPR97 G protein-coupled receptor 97 112591 222487 20.61

FBXO17 F-box protein 17 163400 115290 20.46

TMEM132B Transmembrane protein 132B 167812 114795 20.44

PTK2 Protein-tyrosine kinase 2 (FAK) 128624 5747 20.44

OSBP2 Oxysterol-binding protein 2 148957 23762 20.43

C4orf22 Chromosome 4 open reading frame 22 164838 255119 20.39

ABCG1 ATP-binding cassette, sub-family G (WHITE), member 1 210662 9619 20.39

aComplete lists of differentially expressed genes (p#0.01) are given in Supplemental Table S3.
Abbreviations: AA: arachidonic acid, ABI: Applied Biosystems, EPA: eicosapentaenoic acid.
doi:10.1371/journal.pone.0067270.t005
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effect on blood gene expression in a cross-section of middle-aged

Norwegian women. Despite the high consumption of fish and n-3-

rich fish oil supplements among Norwegians [11,12], the

population mean of all FA ratios was dominated by n-6 PUFAs.

However, the AA/EPA ratio in the lowest AA/EPA and total n-6/

n-3 deciles may be regarded as ‘‘balanced’’, and reflects the

frequent use of EPA-rich n-3 supplements in these groups.

When comparing the highest versus the lowest FA ratio deciles,

genes and pathways related to inflammation were differentially

expressed in all three considered FA ratios. In addition, the

identification of genes related to lipid metabolism and autophagy

may point to the importance of these processes in elucidating the

molecular mechanism related to the differing health effects of n-6

versus n-3 FAs. In general, FAs may influence gene expression

profiles via several routes. These include direct mechanisms, such

as binding to nuclear transcription factors, but also indirect

mechanisms such as production of IP3 and DAG. These second

messengers lead to modulation of cellular functions and secretion

of signaling molecules including eicosanoids. Eicosanoids and

related compounds act in a paracrine manner, and may influence

the expression profiles of adjacent cells. The gene expression

profiles presented here must be viewed as a combined read-out of

these mechanisms in blood cells.

FA Ratios and Inflammatory Signaling
Molecular and epidemiological studies have demonstrated the

immunoregulatory effects of dietary FAs. In the present study, the

LA/ALA ratio was associated with the largest number of

differentially expressed genes compared to the other ratios, both

for all genes combined, and regarding genes involved in

inflammatory processes. At the pathway level, GSEA revealed

that the pleiotropic Jak/STAT pathway was enriched in the

highest LA/ALA decile. This pathway is regarded as a principal

signaling cascade for numerous cytokines, and its enrichment in

the highest LA/ALA decile may be related to the higher level of

expression of several cytokines, chemokines, and corresponding

receptors and activators in the same group (including IL1R2,

IL10RB, CCL7, TLR8). Also, several pathways related to

cytokines were among the overlapping gene sets reported in

MSigDB. In line with the present findings in a free-living

population that consumes high amounts of fish and n-3

supplements, several studies have reported that long-term fish oil

supplementation may reduce cytokine production [18], with a

potential benefit for inflammatory disease pathogenesis.

A key pro-inflammatory component of innate and adaptive

immunity, TLR8, was up-regulated in the highest LA/ALA decile.

Studies have shown that dietary n-3 FAs inhibit TLRs, with

positive consequences for inflammatory and immune responses

[32,33]. Furthermore, the expression level of TLR8 correlated

with poor outcome and increased inflammation in ischemic stroke

[34]. TLR8 is highly expressed in peripheral blood leukocytes, and

upon activation leads to NF-kB activation and secretion of

cytokines. In conjunction with the higher expression levels of

cytokines and related factors in the highest LA/ALA decile, TLR8

expression level may be indicative of higher inflammatory status in

this group. In support of this hypothesis, the receptor for the pro-

inflammatory platelet activating factor, PTAFR, was up-regulated

in the highest LA/ALA decile. PTAFR is known to trigger

inflammatory and thrombotic cascades, and is important for

development of cardiovascular disease. In a dietary intervention

study, Ambring et al. [13] found reduced numbers of platelets after

reducing the n-6/n-3 ratio, which may be mirrored in our data as

Table 6. Top 10 up- and down-regulated genes associated with total n-6/n-3 ratio (p#0.01)a.

Gene symbol Gene name ABI probe ID Entrez gene ID Mean difference

SERPINB9 Serpin peptidase inhibitor, clade B (ovalbumin), member 9 (PI9) 113696 5272 0.57

MSMO1 Methylsterol monooxygenase 1 (SC4MOL) 157577 6307 0.56

SNAP23 Synaptosomal-associated protein, 23 kD 188605 8773 0.55

CACNB1 Calcium channel, voltage-dependent, beta 1 subunit 206077 782 0.51

SLC30A5 Solute carrier family 30 (zinc transporter), member 5 209725 64924 0.51

ISLR Immunoglobulin superfamily containing leucine-rich repeat 103786 3671 0.48

CCDC78 Coiled-coil domain containing 78 171388 124093 0.48

ACOT13 Acyl-coenzyme A thioesterase 13 (THEM2) 137024 55856 0.46

C12orf43 Chromosome 12 open reading frame 43 230584 64897 0.46

DHX34 DEAH (Asp-Glu-Ala-His) box polypeptide 34 210135 9704 0.45

PRAC Prostate cancer susceptibility candidate (C17orf92) 177570 84366 20.64

HGS Hepatocyte growth factor-regulated tyrosine kinase substrate 118384 9146 20.62

USP5 Ubiquitin specific protease 5 (isopeptidase T) 195536 8078 20.60

PLA2G6 Phospholipase A2, group VI (cytosolic, calcium-independent) 149260 8398 20.55

MRPL55 Mitochondrial ribosomal protein L55 216047 128308 20.55

SCARF1 Scavenger receptor class F member 1 172281 8578 20.54

OSBP2 Oxysterol-binding protein 2 148957 23762 20.50

ASCC2 Activating signal cointegrator 1 complex subunit 2 (p100) 186213 84164 20.50

NELF Nasal embryonic luteinizing hormone-releasing hormone factor 159936 26012 20.47

ABCG1 ATP-binding cassette, sub-family G (WHITE), member 1 210662 9619 20.47

aComplete lists of differentially expressed genes (p#0.01) are given in Supplemental Table S4.
Abbreviations: ABI: Applied Biosystems.
doi:10.1371/journal.pone.0067270.t006
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lower PTAFR expression levels in the lowest LA/ALA decile. The

Fc receptor fragments FCGRT and FCER1B (also known as

MS4A2), as well as GTF2I, which is necessary for Fc heavy chain

transcription, were up-regulated in the highest LA/ALA decile in

our study. These fragments are part of the receptors for IgG and

IgE, respectively, which are essential mediators of hypersensitive

reactions. Conversely, the lower expression levels in the group with

favorable LA/ALA ratios, may be viewed as an indication of lower

immunological activation associated with lower ratio. The higher

expression level of SRGN in the highest LA/ALA decile may also

be indicative of hypersensitivity, as this protein is secreted from

mast cell granules upon activation. Furthermore, the granzyme B

inhibitor SERPINB9 was more highly expressed in the lowest total

n-6/n-3 decile, fitting with a reduced immunological activity in the

lowest FA ratio deciles.

A common denominator for the processes described above is the

relation to hypersensitive reactions in people with conditions like

asthma and allergies. Allergen binding to IgE and interaction with

the Fc receptor ultimately leads to a release of eicosanoids, platelet

activating factor, and cytokines like IL1. Collectively these

mediators lead to activation and recruitment of inflammatory

cells, which may be related to the increased expression of the

chemotactic CCL7 (in the highest LA/ALA decile) and CCL24 (in

the highest AA/EPA decile), and the cell migration-related

PLAUR (in the highest LA/ALA decile). Several of the identified

pathway-level results support this hypothesis. In contrast, we found

that a subunit of the antigen presenting MHC II complex, HLA-

DQA1, was down-regulated in the highest AA/EPA decile. The

molecular mechanisms described here in relation to immunor-

egluation by FAs, may be a part of the etiology of chronic

inflammatory diseases, as suggested by others [35]. Recently,

attention has been drawn to asthma and other atopic conditions as

risk factors for chronic inflammatory diseases like diabetes and

coronary heart disease [36]. The mechanisms of this association

remain unclear, but immunological dysregulation is emerging as a

potential link between atopy and chronic diseases [37]. Diet is a

modifiable risk factor for several chronic diseases, and the gene

expression patterns described here may constitute part of the

complex and multifactorial links between diet, chronic inflamma-

tory diseases, and atopic conditions.

Contrary to our prior hypothesis, few genes related to

inflammatory signaling pathways were differentially expressed

according to AA/EPA ratio. AA and EPA are precursors of a

variety of inflammatory signaling molecules, and are fundamental

to the implication of dietary PUFAs in inflammation [1].

However, in line with our results on gene expression in circulating

blood cells, a recent review could make no firm conclusions about

marine n-3 PUFAs and circulating inflammatory markers in

healthy individuals, or in individuals with risk factors for

cardiovascular disease [38].

The PPARc Pathway may be Modulated by FA Ratios
Several genes related to lipid metabolism were differentially

expressed according to FA ratios, and this was reflected in the

pathway level analysis as well. Significant overlaps with reported

gene sets from MSigDB included phospholipid transporter activity

and Kegg ABC transporters (associated with the AA/EPA ratio),

as well as post Golgi vesicle mediated transport and intracellular

transport (associated with the total n-6/n-3 ratio). According to

LA/ALA ratio, no pathway level processes were significant, but

key FA metabolism regulators like RXRA, FABP4 (both binding

partners for PPARc), and ADIPOR1 were differentially expressed.

These key regulators have been implicated in the pathogenesis of

atherosclerosis, diabetes and metabolic diseases [39–41]. The

PPARc target ABCG1 was one of very few genes that were

significantly associated with more than one FA ratio: it was

expressed at lower levels in the highest AA/EPA and n-6/n-3

deciles. ABCG1 promotes cholesterol efflux from macrophages,

and reduced expression in diabetics was related to increased foam

cell formation [42]. The association of low ABCG1 levels with

higher FA ratios in our dataset may provide hints to important

Table 7. Significant overlaps between differentially expressed
genes and reported gene sets in MSigDBa.

FA ratio Gene Set Name K k k/K

LA/ALA

KRCTCNNNNMANAGC Unknown 60 6 10%

Immune response 232 11 5%

Reactome Packaging of telomere
ends

49 5 10%

Reactome Telomere maintenance 77 6 8%

Immune system process 326 12 4%

Kegg nitrogen emtabolism 23 3 13%

RYTAAWNNNTGAY Unknown 53 4 8%

Locomotory behavior 91 5 5%

Positive regulation of defence
response

10 2 20%

Response to external stimulus 306 10 3%

Reactome RNA Pol I promoter
opening

59 4 7%

Reactome DNA strand elongation 31 3 10%

Hydrolase activity acting on ester
bonds

264 9 3%

Reactome Unwinding of DNA 11 2 18%

Cofactor transport 11 2 18%

Reactome Signal attenuation 11 2 18%

AA/EPA

Phospholipid transporter activity 12 2 17%

Lipid transporter activity 27 2 7%

Nuclear body 33 2 6%

TCTAGAG, MIR-517 37 2 5%

Kegg ABC Transporters 44 2 5%

Total n-6/n-
3

Biocarta Mitochondria pathway 21 2 14%

Reactome Intrinsic pathway for
apoptosis

29 3 4%

Apoptotic program 60 2 10%

CCCAGAG,MIR-326 135 4 3%

SCGGAAGY_V$ELK1_02 822 6 2%

Post Golgi vesicle mediated
transport

14 2 7%

Intracellular transport 271 5 2%

aThe table is sorted by p-values with the lowest first, all p-values,0.01. Number
of genes submitted for comparison was 184 for LA/ALA, 36 for AA/EPA, and 65
for n-6/n-3. Gene sets significant at p,0.05 are provided in Supplemental
Tables S5–S7.
Abbreviations: AA: arachidonic acid, ALA: alpha-linolenic acid, EPA:
eicosapentaenoic acid, FA: fatty acid, K: number of genes in gene set, k: number
of genes in overlap, LA: linoleic acid.
doi:10.1371/journal.pone.0067270.t007
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atherogenic consequences of ratios dominated by n-6 FAs. Taken

together, one may speculate that the PPARc pathway is

modulated by differing FA ratios, and that possible health gains

may be achieved via this pathway, by lowering FA ratios that are

dominated by n-6 FAs.

FA Ratios may Influence Autophagy
Unexpectedly, several genes related to autophagy were expressed

at higher levels in the lowest deciles of all FA ratios. Key genes

included the positive regulator KIAA0831 (also known as Barkor/

Atg14, up-regulated in lowest LA/ALA) and OPTN (also known as

FIP2, up-regulated in the lowest LA/ALA and total n-6/n-3

deciles). Autophagy is emerging as a highly specific and diverse

mechanism for lysosomal degradation of intracellular material, with

numerous implications for cellular homeostasis, nutrient sensing,

insulin regulation, and cholesterol metabolism [43]. Data is

accumulating that demonstrates the close link between lipid

metabolism and autophagy: lipid droplets may be degraded by

autophagy, modulation of membrane lipids is essential for the

process, and lipid modifying proteins have important regulatory

roles [44]. Related processes include the inositol phosphate

signaling system, endoplasmic reticulum stress, and oxysterol

metabolism, all of which were reflected in our gene expression

data. In line with our findings related to lipid metabolism and

autophagy markers, a very recent cell line study showed induction of

autophagy after n-3 FA supplementation, via the PPARc pathway

[45]. The potential influence of FA ratios on autophagy, and the

impact of autophagy on health and disease, warrants further study.

miRNAs and unknown Transcription Factor Motifs
Differentially expressed genes derived from all FA ratios

significantly overlapped with one or more gene sets that included

targets of specific miRNAs. For example, miRNAs related to AA/

EPA ratio included MIR-103/2107 and MIR-7, both shown to

be involved in insulin and insulin-like growth factor signaling

[46,47]. Total n-6/n-3 ratio was associated with MIR-326, which

is involved in autoimmune diseases [48], and MIR-296, which is

involved in regulation of angiogenesis [49] and lipoapoptosis [50].

Transcriptional regulation by miRNAs may emerge as a

mechanism for fine-tuning cellular and physiological responses

to FAs. Furthermore, gene expression profiles according to LA/

ALA and total n-6/n-3 ratios overlapped with gene sets containing

common promoter motifs matching unknown transcription

factors. One could speculate that transcription factors as yet

unidentified may play a role in the complex transcriptional

regulation in response to dietary lipids.

Strengths and Limitations
Because the Norwegian population consumes comparably high

amounts of n-3 PUFAs, they constitute a ‘‘natural experiment’’ for

exploring the potential effects of FA ratios. However, several issues

arise in the interface between epidemiologic and molecular

research. First, as this is an explorative, cross-sectional study, no

conclusions can be made regarding causal mechanisms. Impor-

tantly, residual bias may be present in the data set, for example

related to age, ongoing infections, or the variation in time since

previous meal before blood sample collection.

There was a small, but statistically significant age difference

between women in the highest versus lowest AA/EPA and total n-

6/n-3 deciles. This was likely related to the finding that n-3

supplement users were slightly older than non-users in the study

population. Age is known to influence metabolism of n-3 PUFAs,

particularly during menopause. However, due to the use of

supplements, the small age differences (3 years for AA/EPA ratio,

and 4 years for total n-6/n-3 ratio), and our confirmed data on

menopausal status, we chose not to adjust for age. This may have

introduced bias in the data. Additional bias may have been

introduced by confounders on which we had either limited or no

information. For example, disease status could only be inferred

from self-reported medication use, and no data on the distribution

of blood cell subtypes were available. Because the PAXgene Blood

RNA kit preserves RNA from all circulating cells, fluctuating levels

of blood cell subtypes related to an infection may influence gene

expression profiles. The use of medication was not statistically

different between comparison groups, but sub-clinical infections

could still introduce differences in blood cell subtypes, and in turn,

in the gene expression profiles.

In our study design, study women were not asked to fast before

blood collection. Humans spend the majority of the day in a non-

fasted, postprandial state, with a continuous fluctuation in the

degree of lipemia [51]. Our biomarker of exposure, plasma total

FAs, includes both the highly variable triglycerides (varies within

hours and reflects FA content of the previous meal [52]), the

cholesterol esters and phospholipids (varies within days) and the

more stable non-esterified (free) FAs [53]. Thus, this biomarker

may be said to reflect both intake and metabolism, and has been

judged a valid biomarker, particularly for the exogenously derived

long-chain PUFAs [53]. However, this biomarker renders us

Table 8. Gene Set Enrichment Analysis.

FA ratioa
Gene
set Size Title NES NOM p FDR q

LA/ALA

BP00117 26 Jak-STAT cascade 1.79 0.01 0.23

GO_0006913 30 Nucleocytoplasmic transport 21.80 0.01 0.16

GO_0051169 30 Nuclear transport 21.80 0.01 0.16

GO_0051188 25 Cofactor biosynthetic process 21.61 0.03 0.22

GO_0051168 17 Nuclear export 21.61 0.03 0.24

AA/EPA

BP00101 19 Sulfur metabolism 22.07 ,0.01 ,0.01

aThere were no significantly enriched gene sets related to n-6/n-3.
Abbreviations: AA: arachidonic acid, ALA: alpha-linolenic acid, EPA: eicosapentaenoic acid, FA: fatty acid, FDR: false discovery rate, LA: linoleic acid, NES: normalized
enrichment score, NOM p: nominal p-value.
doi:10.1371/journal.pone.0067270.t008
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unable to differentiate between short- versus long-term exposure to

FAs. Studies have shown differing gene expression profiles after

short (postprandial) and long-term exposure to n-3 FAs.

Postprandially, genes involved in lipid metabolism were regulated

[19], and after long-term exposure inflammatory signaling was

regulated [5]. In line with the properties of plasma FA ratios as a

biomarker of exposure, we identified gene expression differences

related to both lipid metabolism and inflammation.

Regarding the data analysis, GSEA can only identify gene sets

that are being used as input, in this case pathways from KEGG,

GO, and Panther. Recently characterized pathways like autoph-

agy may be reported to involve somewhat non-overlapping sets of

genes according to different databases, which poses difficulties for

GSEA and overlap analysis. Lastly, we did not validate gene

expression levels using other methods like quantitative real-time

polymerase chain reaction or independent data sets, and our

results must be interpreted accordingly.

Conclusions
We conclude that the plasma ratios of LA/ALA, AA/EPA and

total n-6/n-3 may have differential impacts on blood gene

expression in this cross-section of Norwegian middle-aged women.

Genes and pathways associated with differing FA ratios may

provide links to potential health consequences related to the

balance of n-6 and n-3 PUFAs. Increased knowledge and

awareness of the metabolic actions of dietary PUFAs is warranted,

in order to form a sound basis on which to deliver evidence-based

nutritional advice to the public.
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