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Abstract

This paper discusses a novel framework to analyse rotational deformations of real

3D objects. The rotational deformations such as twisting or bending have been ob-

served as the major variation in some medical applications, where the features of the

deformed 3D objects are directional data. We propose modelling and estimation of

the global deformations in terms of generalized rotations of directions. The proposed

method can be cast as a generalized small circle fitting on the unit sphere. We also

discuss the estimation of descriptors for more complex deformations composed of two

simple deformations. The proposed method can be used for a number of different 3D

object models. Two analyses of 3D object data are presented in detail: one using

skeletal representations in medical image analysis as well as one from biomechanical

gait analysis of the knee joint. Supplementary Materials are available online.

Keywords: 3D object, axis of rotation, directional statistics, skeletal model, small circle.

1 Introduction

Modeling deformations of a real object is a central issue in computer vision, biomechanics

and medical imaging. In a number of applications, generalized rotations appear to be the

∗This research was funded by the Norwegian Research Council through grant 176872/V30 in the eVita
program and performed as part of Tromsø Telemedicine Laboratory.
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(a) (b) (c)

Figure 1: 3D objects and their models. (a) S-rep of a hippocampus (b) S-rep of a rotationally
deformed ellipsoid. (c) Attached boundary normals on the meshed surface of an ellipsoid.

major forms of deformation. For instance, the major variation of shapes of hippocampi

in the human brain has been shown to be bending of the object (Joshi et al., 2002; Pizer

et al., 2013); Human joint movements, such as the motion of the knee or the elbow, consist

of bending and twisting about the joint (Rivest, 2001; Rivest et al., 2008; Oualkacha and

Rivest, 2012). A direct modeling of such rotational deformations will promote a precise

description of object variation and will be important for surgery or treatment planning.

In this paper, we propose an estimation procedure for descriptors of underlying rotational

deformations from a random sample of objects. Specifically, the descriptors are parameters

of the model we introduce in Section 2; they include rotational axes of a rotational model.

Our model embraces a number of different types of deformations including rigid rotation,

bending, twisting and a mixture of the last two. Although we aim to analyze variations

in sophisticated human organs such as the hippocampus (Fig. 1a), we work with a simpler

object resembling ellipsoids (Fig. 1b) to show the validity of the proposed method.

A major challenge in modeling rotational deformation is that such variations are typically

mixed with translational and scaling effects. We address this issue by only considering

direction vectors, which are invariant to translation and size changes. It will be shown

that the rotational deformation can be sufficiently modeled using directional data. Another

advantage of our approach is that well-studied directional data techniques can be applied

(Fisher et al., 1993; Mardia and Jupp, 2000; Chang and Rivest, 2001; Jung et al., 2011).

Before we introduce our method, we point out several modeling approaches of 3D objects

that are relevant to our framework of directional data, as follows:

Point distribution model A solid object is modeled by the positions of the sampled sur-

face points on which directions normal to the surface can be attached (Cootes et al.,

1992; Dryden and Mardia, 1998; Kurtek et al., 2011). See Fig. 1c.

80



3

(a) A simple 3D object (b) Direction vectors

Figure 2: Toy example. (a) A toy object, to be deformed. (b) Each direction vector is a point on
the surface of the unit sphere.

Large deformations The shape changes of an object in images are modeled by the defor-

mations of a template image (Pennec, 2008; Rohde et al., 2008). The deformation can

be understood as a vector field, where each vector contains the direction.

S-rep In skeletal representations (s-rep), a 3D object is modeled by skeletal positions lying

inside of the object and spoke vectors pointing to the boundary of the object (Siddiqi

and Pizer, 2008; Pizer et al., 2013). See Fig. 1a and Fig. 1b. We describe s-rep data

analysis in more detail in Section 5.

The framework of our analysis can be understood by considering a simple example of a

3D object (Fig. 2). The object is modeled by four surface points (or skeletal positions) with

attached direction vectors µj for 1 ≤ j ≤ 4 (Fig. 2a). Consider random twists of the object,

where the left and right sides are rotated about a common axis by a common angle but in

opposite directions (Fig. 3a). After collecting the directional data (Fig. 3b), our method

finds an estimate of the axis (overlaid in Fig. 3c) as well as the mean directions µj and the

rotation angles. The proposed method provides an simple interpretation of the underlying

rotational deformation and accurate estimation of the parameters. The estimated axis in the

toy example is close to the true axis with relatively small sample size n = 30. See Section 2.3

for detailed discussion of this example.

To the best of our knowledge, this paper is the first attempt to model rotational defor-

mations and to estimate the axis of rotations from directional data. There are, however,

several methods available for the estimation of the axis of rotation based on 3D landmarks,

especially in the area of biomechanics (Halvorsen et al., 1999; Rancourt et al., 2000; Rivest,

2001; Gamage and Lasenby, 2002; Teu and Kim, 2006; Rivest et al., 2008; Ball and Greiner,
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(a) Random twists (b) Random directions (c) Estimated axis

Figure 3: Toy example. (a) n = 30 realizations of random twists. Different colors represent different
observations. (b) Directional features. (c) The estimated axis of the twists (dotted line) is close
to truth. The four concentric circles, discussed in more detail in Section 2.3, are also overlaid.

2012). In the statistical literature, estimation of rotation matrices has been studied in terms

of spherical regression and its generalizations (Chang, 1986, 1988, 1989; Rivest, 1989, 2006;

Chang and Rivest, 2001). In spherical regression both the axis c and the angle θ are es-

timated. In contrast, our model treats θ as a random variable. Hanna and Chang (2000)

used the quaternion representation to model a smooth path of rotations. However, in our

problem of estimation of axes of rotational deformations, it is straightforward to use the

axis–angle representation. As will be pointed out later and may be guessed from Fig. 3c,

the estimation of the axis of rotation based on directional vectors has a close relationship

with the estimation of small circles on the unit sphere, which was studied in various contexts

(Mardia and Gadsden, 1977; Rivest, 1999; Jung et al., 2011).

This paper is a part of a bigger project in modeling and estimation of deformations. We

leave relevant asymptotic theory as future work.

The rest of the paper is organized as follows. We begin with introducing some neces-

sary facts on rotations and their connections to circles on the unit sphere. In Section 2, a

simple rotation model is introduced, and our estimation procedure is discussed. Non-rigid

deformations such as twisting and bending of the object are also discussed in that section.

A hierarchical rotation model is introduced in Section 3, where the object is assumed to be

deformed sequentially by different rotations. In Section 4, simulation results are reported

to show the effectiveness of the estimator. In Section 5 and 6, the merits of the proposed

methods are further illustrated using applications from models that represent organs and

knee motion during gait.
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1.1 Rotations, circles and spheres

In the axis–angle representation of rotations, an axis c is the unit vector that is left fixed

by the rotation and an angle θ gives the amount of rotation. A unit vector lies on the unit

sphere S2 = {x ∈ R3 : ‖x‖ = 1}. The axis–angle pair (c, θ) ∈ S2 × [0, 2π) represents a

rotation in 3-space, where a vector x ∈ R3 is rotated by (c, θ) by applying x 7→ R(c, θ)x with

R(c, θ) = I3 + sin θ[c]× + (1− cos θ)(cc′ − I3), (1)

where c′ denotes the transpose of c, and [c]× is the cross product matrix satisfying [c]×v = c×v
for any v ∈ R3.

A useful observation in our analysis is that the direction vectors follow circles when they

are rotated. In particular, when x ∈ S2 is rotated about an axis c ∈ S2, the trajectory of

such rotation is precisely a circle, centered at c with radius r = arccos(x′c), and is denoted

by δ(c, r) = {x ∈ S2 : x′c = cos(r)} ⊂ S2. Since δ(c, r) = δ(−c, π − r) we may assume that

r ≤ π/2. We call δ(c, r) a great circle if r = π/2 and a small circle if r < π/2.

If a K-tuple of K ≥ 2 direction vectors x = (x1, . . . , xK) ∈ (S2)K are rotated together

about a common axis c, then each of the rotated direction vectors is on a circle with common

center c but with different radii rj = arccos(c′xj), j = 1, . . . , K. Denote the collection of

concentric circles with a common center c and radii tuple r = (r1, . . . , rK) ∈ [0, π/2] ×
[0, π]K−1 by

δ(c, r) = {(x1, . . . , xK) ∈ (S2)K : x′jc = cos(rj), j = 1, . . . , K}.

To work with observations on S2, the geodesic distance function dg : S2 × S2 → [0, π]

is defined by the arc length of the shortest great circle segment joining x, y ∈ S2, and is

dg(x, y) = arccos(x′y). We further define dg(x,A) = infy∈A dg(x, y) for x ∈ S2, A ⊂ S2. For

a random element X whose domain is S2, a sensible notion of mean µ(X) is defined by a

minimizer of mean squared distance,

µ(X) = argmin
x∈S2

E{d2g(x,X)},

often called the geodesic or Fréchet mean (Fréchet, 1948; Karcher, 1977). A useful mea-

sure of dispersion is geodesic variance which is defined as Var(X) = E{d2g(µ(X), X)} =

minx∈S2 E{d2g(x,X)} provided that µ(X) exists.
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2 Single rotational deformations

In this section, an estimation procedure for rotational deformation models is proposed. We

begin with a discussion on the simpler rigid rotation model.

2.1 Rigid rotation model

Suppose we have a K-tuple of random direction vectors X = (X1, . . . , XK). For some

unknown constants c, µj ∈ S2 and a latent random variable θ ∈ [−π/2, π/2), we model

Xj ∈ S2 (j = 1, . . . , K) as noisy observations of rotations of µj by R(c, θ), that is,

Xj = R(c, θ)µj ⊕ εj (j = 1, . . . , K). (2)

Here, the εj are independently distributed random error terms, and the ⊕ sign defines a

specific action of the error distribution as defined in the following.

There are several ways to define random spherical points X ∼ µ⊕ ε ∈ S2. A natural way

is to introduce an S2-valued distribution, e.g., the von Mises–Fisher distribution (Mardia

and Jupp, 2000, p. 36) with the density fvMF(x;µ, κ) ∝ exp(κµ′x) with respect to the

uniform measure on S2 for µ ∈ S2, κ > 0. Alternatively, one can utilize the tangent space at

µ ∈ S2, allowing a distribution on the tangent space to be mapped to S2. Another approach

is to use the embedding of S2 into R3, by scaling a three-dimensional random vector to

unit length. This approach is often called a perturbation model (Goodall, 1991). It is well-

known that a perturbation model introduces a bias in the estimation of the geodesic mean

unless the distribution is isotropic (Kent and Mardia, 1997; Le, 1998; Huckemann, 2011a).

In this paper in Section 4, we use the von Mises–Fisher distribution and in Section 5 the

perturbation model. The latter is justified because we consider only isotropic distributions.

In the following discussion, we do not specify a particular distribution for ε, but require that

the geodesic mean of X ∼ µ⊕ ε is uniquely found at µ, i.e., µ = argminx E{d2g(x,X)}. The

geodesic variance Var(ε) := Var(µ⊕ ε) is then well defined.

In model (2), several different combinations of θ and µj lead to the same model. Specif-

ically, replacing θ and µj by θ∗(a) = θ − a and µ∗j(a) = R(c, a)µj for any a ∈ R gives the

same model as (2). Therefore, we assume

Eθ = 0. (3)

The trajectory of rotated direction vectors forms a small circle (cf. Section 1.1), which
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is approximately true in the presence of the noise. In other words, the collection of Xj in

(2) are distributed along concentric circles with common center at c, as the following lemma

states.

Lemma 1. Let the η-neighborhood of concentric circles δ(c, r) be

δη(c, r) = {(X1, . . . , XK) ∈ (S2)K : dg(δ(c, rj), xj) < η for all j = 1, . . . , K},

for η > 0. If µ ⊕ εj are independent and identically distributed and spherically symmetric

about µ, then

P{X ∈ δη(c, r)} ≥
{

1− Var(ε)

η2

}K
.

The auxiliary parameters rj = arccos(c′µj) represent the radii of the concentric circles,

and are obtained from c and µj, the parameters of (2). A proof of Lemma 1 is given in the

Appendix.

Lemma 1 suggests that X and δ(c, r) are close with high probability, which motivates to

define the population concentric circles δ(c0, r0) as a minimizer of squared loss. In the view

of this estimation strategy, the capability of identifying parameters as minimizers leads to a

natural estimation strategy, namely the M–estimation or the sample Fréchet mean (Karcher,

1977; Huckemann, 2011b). The rest of this section is devoted to the identification of the

population parameters c, rj and µj as population Fréchet means.

First, the distance function ρ between δ(c, r) and x is defined as the Cartesian product

metric based on dg by

ρ2(δ(c, r),x) =
K∑

j=1

d2g (δ(c, rj), xj) =
K∑

j=1

(
arccos(x′jc)− rj

)2
.

The collection of population concentric circles δ(c0, r0) is defined as the Fréchet ρ-mean set

argmin
c∈S2,r∈[0,π/2]×[0,π]K−1

Eρ2(δ(c, r),X), (4)

where the expectation E is with respect to the random directions X. We assume in the

following that there is a unique minimizer δ(c0, r0). The center c0 of the circles also represents

the axis of rotation.

It should be noted that there is no guarantee for the true axis of rotation č of (2) to be

the same as c0 from (4). Simulation studies, reported in the Supplementary Material, have

suggested that the case c0 = č occurs when Var(rjθj) is large enough compared to the error
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variance Var(εj) for all j. In our simulation studies in Section 4, the effect of this bias is

shown to be small.

While the axis of rotation c is the center of the concentric circles δ(c, r), each base point

µj is also a point on δ(c, rj), j = 1, . . . , K. The assumption of isotropy of εj implies that

µ(Y θ0
j ) = R(c, θ0)µj

for Y θ0
j = R(c, θ0)µj+εj with deterministic angle θ0 ∈ [−π/2, π/2). In particular, µ(Y 0

j ) = µj.

For random θ define

µ(Xj|θ) := R(c, θ)µj .

With the distance function ρδ(c,r)(x, y) which measures the shortest arc-length between x, y ∈
δ(c, r) along the (small) circle via ρδ(c,r)(x, y) = sin(r) arccos[(x′y − cos2(r))/sin2(r)] (Jung

et al., 2012) we have by definition

ψ0 = argmin
ψ∈[−π/2,π/2)

Eρ2δ(c,rj)(µ(Xj|θ), R(c, ψ)µj) = argmin
ψ∈[−π/2,π/2)

E(θ − ψ)2,

which leads to the minimizer ψ0 = 0 due to the assumption (3). Thus,

µj = argmin
µ∈δ(c,rj)

Eρ2δ(c,rj)(µ(Xj|θ), µ). (5)

Finally, we view µ(Xj|θ) as the expectation of Xj conditioned on the unobserved ran-

dom variable θ which represents the amount of rotation. Then, by solving the equation

µ(Xj|θ) = R(c, θ)µj for θ, using the Rodrigues’ rotation formula (Gray, 1980; Altmann,

2005) R(c, θ)µj = µj cos θ + (c× µj) sin θ + 〈c, µj〉c(1− cos θ), we get

θ = atan2[〈µ(Xj|θ), c× µj〉, 〈µ(Xj|θ), µj − c cos(rj)〉], (j = 1, . . . , K), (6)

where the two argument function atan2(x2, x1) ∈ (−π, π] is the signed angle between two

vectors e1 = (1, 0) and (x1, x2) ∈ R2.

2.2 Estimation

Suppose we have n independent observations X1, . . . ,Xn from model (2). Each Xi is a col-

lection of K directions Xi = (Xij)j=1,...,K . The estimates of parameters c, rj, µj are obtained
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as the sample Fréchet means as follows:

(ĉ, r̂) = argmin
c,r1,...,rK

n∑

i=1

K∑

j=1

d2g{δ(c, rj), Xij}, (7)

µ̂j = argmin
µ

n∑

i=1

ρ2δ(ĉ,r̂j)(P(ĉ,r̂j)Xij, µ) (j = 1, . . . , K). (8)

Note that in (8), we have used P(ĉ,r̂j)Xij, the projection of Xij onto δ(ĉ, r̂j), instead of

E(Xij|θi) used in (5). The projection Pδ(c,r)x is a point on δ(c, r) with the minimal geodesic

distance to x, given by (Mardia and Gadsden, 1977, Eq. (3.3))

Pδ(c,r)x = argmin
v∈δ(c,r)

dg(v, x) =
x sin(r) + c sin{dg(x, c)− r}

sin{dg(x, c)}
.

The predicted values of the latent variable θi are obtained using (6) by substituting the

estimates for the parameters. The predictor for θi is θ̂i = K−1
∑K

j=1 θij for each i = 1, . . . , n

with

θij = atan2{〈P(ĉ,r̂j)Xij, ĉ× µ̂j〉, 〈P(ĉ,r̂j)Xij, µ̂j − ĉ cos(r̂j)〉}. (9)

The least squares problems (7-8) do not have closed form solutions. The problem (8) is

simpler and the same as finding the geodesic mean of angles, since both P(ĉ,r̂j)Xij and µ are

on the one-dimensional circle δ(ĉ, r̂j). Solutions to this type of problem are combinatorial

(Moakher, 2002) but also found efficiently by numerical methods (Le, 2001; Fletcher et al.,

2003). The problem (7) is precisely the fitting of concentric (small) circles. Therefore,

numerical algorithms for (7) are generalized algorithms of the well-studied fitting of small

circles (Mardia and Gadsden, 1977; Rivest, 1999; Jung et al., 2011, 2012) and are discussed

in the Appendix.

2.3 Rotational deformations

The single rotation model (2) describes rigid rotations of objects. We extend the model

to more general cases so that the generalized rotational model can explain, for example,

non-rigid twisting or bending.

Suppose two direction vectors x1 and x2 are rotated about the same axis c but by different

angles θ1 and θ2. This allows the underlying object to deform. In general, the assumption of

a single rotation angle θ in (2) is relaxed to possibly different angles θ1, . . . , θK , which may

be either independent or dependent of each other. To incorporate such general situations,
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the single rotation model is generalized to

Xj = R(c, θj)µj ⊕ εj (j = 1, . . . , K). (10)

The relationships among the θj can be specified using prior knowledge about the specific

rotational deformation. As a special case, when a rigid rotation is assumed, it is reasonable to

set θ1 = · · · = θK , which goes back to the model (2). The general model (10) includes other

important physical deformations. The twisting or bending of the object can be modeled

by different rotations with a common axis of rotation. As an example, when an object

(and its attached direction vectors) is twisted, one group of direction vectors is rotated

clockwise, while the other group is rotated counter–clockwise. Let I1 and I2 be a partition of

the indices {1, . . . , K} representing groups of the direction vectors that rotate together. A

simple twisting or bending motion can be obtained by assuming θi = −θj for all i ∈ I1, j ∈ I2.
Another example is the scenario of independent rotations where all directions in the same

group rotate together (θi = θj, i, j ∈ Il) but two angles in different groups are independent

(θi and θj are independent for i ∈ Il, j ∈ Ik, 1 ≤ l 6= k ≤ 2).

In all cases above, we assume that some functions fj are known in advance, so that the

relationships between θj are modeled through known functions, i.e., θj = fj(θ).

In the estimation of the parameters in (10), we use the fact that the estimation procedure

(7) does not depend on specific assumptions of the latent variable θj. Therefore, the same

least squares estimators {ĉ, r̂j, µ̂j} can be used to estimate the parameters of (10). When

fj(θ) is known and invertible, the prediction of the ith sample of θ, θ(i), can be obtained.

Since each θij of (9) is a perturbed version of fj(θi), the prediction of θ(i) is then

θ̂i =
1

K

K∑

j=1

f−1j (θij).

Remark 1. A misspecification of the function fj does not affect the estimation procedure

(7), i.e., the estimation of the rotation axis. Nevertheless, the specification of fj models the

relationships between the rotation angles θj and is therefore crucial for their prediction as

elaborated in Section 4 of the Supplementary Material. The partition I1 and I2 models fj

and is not a parameter of (7).

Example 1. The toy example presented in Fig. 2 is now discussed in more detail. The dataset

consists of n = 30 observations of random twisting. The axis of twist is c = (0, 1, 0)′. The

random angle θ follows N(0, σ2) with σ ≈ 22.5◦ with θ1 = θ2 = θ and θ3 = θ4 = −θ. The

noise is independently added by a perturbation of N3(0, 0.1
2) on both the head and tail of
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the direction vectors and then projected onto S2.

The estimate (ĉ, r̂) was obtained by (7). The corresponding four concentric circles and

the axis estimates ĉ are overlaid in Fig. 3c. The estimate ĉ = (0.007, 0.999,−0.031)′ is only

1.8 degrees away from the truth. The base point estimates µ̂j, predictions of θi, and the

estimate of σ are also obtained, which are close to the truth. For example, σ̂ = 21.5◦.

Despite a relatively small sample size (n = 30), the proposed estimator successfully

estimated the axis of rotation, and leads to a clear visualization of the underlying rotational

deformation, as depicted in Fig. 3.

3 Hierarchical rotations

We now discuss an estimation procedure for rotational deformations that consist of two

independent generalized rotations. Such deformations include twisting and bending of the

objects about different axes.

Suppose a set of base points µj is rotated by R(c1, θj) and then by R(c2, ψj). The rotated

random direction vector Xj is represented by

Xj = R(c2, ψj)R(c1, θj)µj ⊕ εj (j = 1, . . . , K), (11)

with some error εj as seen in (2). The axes c1, c2 and the base points µj are unknown

parameters and θj, ψj are independent latent variables representing rotation angles. The

random direction vectors Xj have the same distribution as in

R′(c2, ψj)Xj = R(c1, θj)µj ⊕ εj (j = 1, . . . , K), (12)

provided that the distribution of µj⊕εj is spherically symmetric about µj. The order of these

rotations is not interchangeable because R(c2, ψj)R(c1, θj) 6= R(c1, θj)R(c2, ψj) in general.

Therefore, call the first rotation operation R(c1, θj) the primary rotation, and R(c2, ψj) the

secondary rotation.

With n observations, we have Xij = R(c2, ψij)R(c1, θij)µj⊕εij (i = 1, . . . , n, j = 1, . . . , K)

and we wish to estimate the axes of rotations c1, c2 and predict the unobserved random

variables ψij and θij. It is required to constrain the relationship among the ψj as a function

of ψ (also for θj). Otherwise, θij and ψij will catch all sample fluctuations, leading to an

overfit of c1 and c2. Let θj = f1j(θ) and ψj = f2j(ψ) for some known functions f1j and

f2j (j = 1, . . . , K). For example, when the deformation is composed of rigid rotation and
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twisting, the two functions can be modeled by f1j(θ) = θ and f2j(ψ) = 1j∈I1ψ−1j∈I2ψ, where

1 denotes the indicator function for a partition I1, I2 of {1, . . . , K}. See also Section 4.

The estimates of the axes of rotation c1, c2 might be obtained as a solution of the least-

squares problem

min
c1,c2

n∑

i=1

K∑

j=1

ρ2g{Xij, R(c2, ψij)R(c1, θij)µj}.

Since the above problem is challenging to solve directly, we divide it into two subproblems,

which can be solved iteratively. In a search for two subproblems, suppose first that (c2,

ψij) of the secondary rotation are known. Then we would de-rotate Xij by the action of

R(c2,−ψij) = R(c2, ψij)
′ so that the unrotated direction vectors X∗ij = R(c2, ψij)

′Xij are

solely expressed by the primary rotation of µj. In other words,

X∗ij = R(c1, θij)µj ⊕ εij. (13)

Noticing the structure of the model is the same as (2), the least squares estimators of c1, µj

and the auxiliary parameters r1j = arccos(c′1µj), for j = 1, . . . , K, are given by

(ĉ1, r̂11, . . . , r̂1K) = argmin
c1,(r11,...,r1K)

n∑

i=1

K∑

j=1

d2g{δ(c1, r1j), X∗ij}, (14)

µ̂j = argmin
µ

n∑

i=1

d2δ(ĉ1,r̂1j)(P(ĉ1,r̂1j)X
∗
ij, µ).

On the other hand, suppose we know in advance (c1, θij) of the primary rotation as well

as the base points µj. Then we would rotate µj so that the secondary rotation is only needed

to reach for the observations Xij from the rotated base points µ∗ij = R(c1, θij)µj. That is,

Xij = R(c2, ψij)µ
∗
ij ⊕ εij. (15)

The model (15) is different from models (2) and (13) as the base points µ∗ij are different

for different observations and assumed to be known. To estimate c2, we modify (14) to

incorporate the fact that µ∗ij are varying but known, which leads to

ĉ2 = argmin
c2

n∑

i=1

K∑

j=1

d2g{δ(c2, r∗ij(c2)), Xij}, (16)

where r∗ij(c2) = arccos(c′2µ
∗
ij) is a function of c2. For the estimation of c1 and c2 in (11),

90



13

we iteratively update ĉ1 given ĉ2 and then update ĉ2 given ĉ1. With the kth estimates

ĉ
(k)
1 , ĉ

(k)
2 , θ̃

(k)
ij , ψ̃

(k)
ij of c1, c2, θij, ψij and the pre-specified functions f1j(θ), f2j(ψ), the (k+ 1)th

estimate is obtained as follows.

Step 1 Using ĉ
(k)
2 and ψ̂

(k)
ij , obtain the de-rotated observations X

(k)
ij = R(ĉ2,−ψ̂(k)

ij )Xij.

Step 2 Obtain ĉ
(k+1)
1 , r̂

(k+1)
1j , µ̂

(k+1)
j using (14) with X

(k)
ij in place of X∗ij, and also the pre-

dictions θ̃
(k+1)
ij of θij using (9) with X

(k)
ij , ĉ

(k+1)
1 , r̂

(k+1)
1j , µ̂

(k+1)
j in place of Xij, ĉ, r̂j, µ̂j.

Afterwards, use the function f1j to predict θi as θ̂
(k+1)
i = K−1

∑K
j=1 f

−1
1j (θ̃

(k+1)
ij ), so the

predictions for θij are updated as θ̂
(k+1)
ij = f1j(θ̂

(k+1)
i ).

Step 3 Rotate the base points to µ̃
(k+1)
ij = R(ĉ

(k+1)
1 , θ̂

(k+1)
ij )µ̂

(k+1)
j using the partial estimates

ĉ
(k+1)
1 and predictions θ̂

(k+1)
ij .

Step 4 Obtain ĉ
(k+1)
2 as the minimizer of (16) with µ̃

(k+1)
ij in place of µ∗ij, and also the

predictions of rotation angles ψ̃
(k+1)
ij using

ψ̃
(k+1)
ij = atan2(〈Xij, ĉ

(k+1)
2 × µ̃(k+1)

ij 〉, 〈Xij, µ̃
(k+1)
ij − 〈ĉ(k+1)

2 , µ̃
(k+1)
ij 〉ĉ(k+1)

2 〉), (17)

which is similar to (9). Given ψ̃
(k+1)
ij , use the function f2j to predict ψi by ψ̂

(k+1)
i =

K−1
∑K

j=1 f
−1
2j (ψ̃

(k+1)
ij ), leading to updated predictions for ψij as ψ̂

(k+1)
ij = f2j(ψ̂

(k+1)
i ).

Step 5 If both dg(ĉ
(k)
1 , ĉ

(k+1)
1 ) and dg(ĉ

(k)
2 , ĉ

(k+1)
2 ) are negligible, stop. Otherwise, return to

Step 1.

Numerical algorithms to solve the least-squares optimizations (14, 16) are similar to the

problem (7), and are presented in the Appendix. In updating ĉ
(k+1)
1 and ĉ

(k+1)
2 , one can use

ĉ
(k)
1 and ĉ

(k)
2 as initial values for the optimization.

Remark 2. The initial values ĉ
(0)
1 and ĉ

(0)
2 may be suggested by a practitioner or obtained

from an exploratory analysis. A careful choice is important to avoid convergence into local

minima and is a topic of further studies. If the two rotational deformations are uncorrelated,

a principal component analysis (PCA) may be used to find two major components as initial

values. We propose to use the principal arc analysis (PAA) of Jung et al. (2011), which is a

generalized PCA for data lying on (S2)K . Jung et al. (2011) argued that non-linear variation

along small circles is better captured by PAA than by other extensions of PCA including

Fletcher et al. (2004) and Huckemann et al. (2010). PAA is well suited to our problem, since

the Xij are distributed along small circles.

We now discuss how to use PAA to obtain initial values. For Xi = (Xi1, . . . , XiK)′ ∈
(S2)K (i = 1, . . . , n), PAA gives the mean µPAA = (µPAA1 , . . . , µPAAK )′ ∈ (S2)K and the
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projections X̃i(m) = (X̃i1(m), . . . , X̃iK(m))
′ ∈ (S2)K onto the mth component, m ∈ {1, . . . ,M}

and M is the minimum of 2K and n− 1. The first two components will be used to provide

initial values. Which component corresponds to which rotational motion depends on the

variance of θ and ψ. If Var(θ) of the primary rotation is assumed to be larger than Var(ψ) of

the secondary rotation, then the first component will provide an initial value for the primary

rotation. In such a case, the solutions of (7) and (9) with X̃ij(1) in place of Xij are used as

the initial values of ĉ
(0)
1 , θ̃

(0)
ij . Likewise, X̃ij(2) are used to evaluate ĉ

(0)
2 , ψ̃

(0)
ij . On the other

hand, if Var(θ) < Var(ψ), then X̃ij(1) is used for ĉ
(0)
2 , and X̃ij(2) for ĉ

(0)
1 .

Remark 3. In contrast to single rotational deformations the function fj effects the estimation

of the rotation axes by the iterative back-and-forward rotation between two deformations

which depend on the angle predictions. The order of the hierarchical deformation is specified

by the primary and secondary information as well as by the functions f1j, f2j. Simulation

studies, reported in Section 4 of the Supplementary Material, discuss the misspecification of

fj and a misspecified deformation order.

4 Numerical studies

In this section, we turn to the numerical performance of the proposed estimators. As our

modeling approach is novel, there is no competing method to compare with. We study

performance over several different rotational deformation situations.

Two different objects are studied. The first object (body 1), illustrated in Fig. 2, consists

of K = 4 directions, while the second object (body 2) contains K = 8 direction vectors. The

von Mises–Fisher distribution (Mardia and Jupp, 2000, p. 36) with concentration parameter

κ, denoted as vMF(κ), is used for the distribution of errors. Three models (indexed by

equation number) are considered for each object:

• Model (2)–Rigid rotation: c = (1, 0, 0)′, θ ∼ N(0, σ2
θ) and σθ = π/12 ≈ 15◦.

• Model (10)–Twisting : c = (0, 1, 0)′, θj = fj(θ) = 1j∈I1θ − 1j∈I2θ, where θ ∼ N(0, σθ)
2,

σθ = π/8 ≈ 22.5◦. Here, I1 and I2 are the partitions of {1, . . . , K} according to the

right and left sides.

• Model (11)–Hierarchical deformations : c1 = (1, 0, 0)′, c2 = (1/
√

2,−1/
√

2, 0)′, θj = θ

and ψj = fj(ψ) = 1j∈I1ψ−1j∈I2ψ, where θ ∼ N(0, σθ)
2, σθ ≈ 22.5◦ and ψ ∼ N(0, σψ)2,

σψ ≈ 15◦. The I1 and I2 are the same partition used in the twisting model above.
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Table 1: Numerical performance over 1000 replications, for single deformation models.

Rotation Body 1 Body 2
(unit: degrees) dg(ĉ, c) σ̂θ (σθ = 15) dg(ĉ, c) σ̂θ (σθ = 15)

κ = 100
n = 30 4.133 (2.269) 15.248 (1.909) 2.905 (1.602) 15.018 (1.891)
n = 100 2.235 (1.182) 15.365 (1.138) 1.560 (0.836) 15.114 (1.138)

κ = 1000
n = 30 1.166 (0.641) 14.896 (1.974) 0.841 (0.466) 14.881 (1.966)
n = 100 0.655 (0.344) 15.012 (1.040) 0.448 (0.227) 14.982 (1.041)

Twisting Body 1 Body 2
(unit: degrees) dg(ĉ, c) σ̂θ (σθ = 22.5) dg(ĉ, c) σ̂θ (σθ = 22.5)

κ = 100
n = 30 2.761 (1.510) 22.647 (2.820) 4.055 (3.624) 22.785 (2.702)
n = 100 1.482 (0.781) 22.753 (1.687) 1.883 (1.336) 22.705 (1.672)

κ = 1000
n = 30 0.803 (0.439) 22.344 (2.939) 1.017 (0.743) 22.336 (2.935)
n = 100 0.446 (0.234) 22.484 (1.564) 0.536 (0.362) 22.474 (1.561)

In the last model, c1 and c2 are not orthogonal. Recall that we do not require any orthog-

onality of the two axes. The model thus represents hierarchical deformations by a rigid

rotation and oblique twist.

For each model, we generate n = 30, 100 rotationally deformed objects with different

error concentration parameters κ = 100, 1000. The proposed method is then applied to

obtain the estimates ĉ, µ̂j and the predictions θ̂i. These are replicated 1000 times, and the

estimation quality is measured by dg(ĉ, c) and σ̂θ =
∑n

i=1 θ̂
2
i /n because the empirical mean

is zero by equation (3).

Table 1 reports the mean and standard deviations of the measures, for the single defor-

mation models. The quality of estimation is improved upon larger sample size and smaller

error variance (larger κ). In the rigid rotation model, the performance is better for body 2.

A main difference between the two bodies is the number of directions: K = 4 for body

1 and K = 8 for body 2. The higher accuracy observed for body 2, can be explained as

the additional directions yielding more information. On the other hand, the performance in

fitting the twisting model is inferior for body 2. An explanation is the close proximity of the

axis c and the base points µj (to be rotated) in body 2, which is further illustrated in Fig. 4.

Figure 4 compares the estimates ĉ from the single deformation models (2) and (10). Since

ĉ ∈ S2, these points are approximated by their images under the inverse exponential map

(see Appendix) on the tangent plane TcS
2 centered at c. For comparison, the scatter of

vMF(100) is plotted at the top left panel. The rest of the top row shows the scatter of ĉ

from the rigid rotation model. In the bottom row, where the scatter of ĉ from the twist

model is plotted, the estimates of body 2 show a different pattern of scatter compared to

body 1. This is due to a smaller radius rj = dg(c, µj) for some j, where the dispersion of the

error is large compared to small rj. When fitting the concentric circles, the smaller radius
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Figure 4: Scatters under their inverse exponential map of vMF(100) (top left panel) and of estimates
ĉ for the rigid rotation model (top row) and the twisting model (bottom row). The shape of
the empirical covariance of ĉ is different for the body 2–twist pair due to the proximity of the
axis and base points.

dg(c, µj) introduces large variance of the estimate ĉ.

The numerical performance in estimation of the hierarchical deformation model (11) is

comparable to the simpler models. The results can be found in the Supplementary Material.

The asymptotic time complexity of the proposed algorithm is O(nK) if a finite number of

iterations is assumed as elaborated in Section 5 of the Supplementary Material. Furthermore,

it is exemplified that the computation time increases, approximately linear in the number of

samples n and the number of direction vectors K.

5 Analysis of s-rep deformations

In this section, an application of the proposed method to s-rep data is discussed.

5.1 S-reps of deformed ellipsoids

The skeletal representation (s-rep) gives a rich and efficient description of 3D objects (Siddiqi

and Pizer, 2008; Pizer et al., 2013). The s-rep of human organs has been used to study

structural and statistical properties and to promote precise segmentation of the organ from

images. Accurate understanding of the deformations of prostates and hippocampi is crucial
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Figure 5: Fitted s-rep of a plain ellipsoid.

in medical operations. It has been observed that the major variation in the shape of these

organs appears to be rotational deformations (Joshi et al., 2002; Jeong et al., 2008; Pizer

et al., 2013), which motivated our analysis of s-rep data.

While our final goal is to analyze s-reps of real human organs, we work here with s-reps of

deformed ellipsoids to validate the proposed method. A number of human organs, including

hippocampi, prostates and bladders, are similar in shape to bent and twisted ellipsoids.

Therefore, in our analysis, the rotationally deformed ellipsoids were used as a surrogate of

real human organs. This enables us to the compare the estimate with the underlying truth.

An s-rep of a 3D object consists of a two-sided sheet of skeletal positions with spokes

connecting the skeletal sheets to the boundary of the object. The skeletal sheet is nearly

medial and the spokes are roughly normal to the boundaries, as defined in Pizer et al. (2013).

We work with discrete s-reps, where the skeletal positions and the corresponding spokes are

evaluated over a finite grid (9 by 3 in our analysis), as shown in Fig. 5.

The raw data are binary images of rotationally deformed ellipsoids, to which s-reps are

fitted using the s-rep fitting procedure described in Pizer et al. (2013). The binary images

are pre-processed by the anti-aliasing method of Niethammer et al. (2013). Figure 5 shows

the fitted s-rep of a plain ellipsoid. The plain ellipsoid is centered at the origin with axes of

lengths 3/4, 1/2 and 1/4, in x, y, z coordinates, and is a template for further deformation.

The s-rep fitting for deformed ellipsoids is an iterative procedure using the s-rep of the plain

ellipsoid as the initial value. The Supplementary Material contains a detailed description of

the plain and deformed ellipsoids.

Three different rotational deformations of ellipsoids are examined: twisting, bending and

a mix of those. In each experiment, n = 30 randomly deformed ellipsoids were obtained,

followed by s-rep fitting. See Fig. 6 for the result of s-rep fitting for randomly deformed

ellipsoids. The K = 74 spoke directions of each s-rep were recorded.
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(a) Twisted ellipsoid (b) Bent ellipsoid. (c) Bent and twisted ellipsoid.

Figure 6: Examples of fitted s-reps for rotationally deformed ellipsoids. The surface of the raw
ellipsoid, to which the s-rep is fitted, is overlaid.

5.2 Results

The first data set consists of fitted s-rep directions of twisted ellipsoids. The twisting was

implemented as the rotation of the plain ellipsoid about the x-axis with angles proportional

to fx(θ) = θx, where x ∈ [−3
4
, 3
4
] is the x-coordinate of the skeletal position of the spokes.

The random angle θ is a zero-mean normal random variable with standard deviation σθ = 0.3.

From the n = 30 samples, we obtained an estimate of the rotation axis ĉ = (0.99, 0.05, 0.12)′,

with dg(ĉ, c) = 7◦. The standard deviation estimate, σ̂θ = 0.29, is close to the truth.

The bending deformation in the second experiment was realized as the rotation about

the y-axis with angles proportional to fx(α) = αx. Here, α follows N(0, σ2
α) with σα =

0.4. Similar to the estimation of twisting, an accurate estimate of the axis of rotation

ĉ = (0.01, 1.00, 0.01)′ with distance 0.7◦ to the true axis was obtained from the sample of

size n = 30. However, the estimate of σα was not consistent with the truth. This is so because

the rotation angle of each direction is not consistent with fx(α) due to the additional swing

of the direction. The additional swing is a consequence of the change in surface curvature.

Dealing with such an issue is beyond the scope of the current paper; it is discussed further

in the Supplementary Material.

Finally, we report the results for bent and twisted ellipsoids. The raw ellipsoids were

sequentially deformed by bending about the y-axis, then twisting about the x-axis. The

initial values chosen by the data-driven method (see Remark 2 in Section 3) are ĉ01 =

(−0.13,−0.99,−0.00)′ and ĉ02 = (−0.07,−0.99, 0.02)′, which are almost the same. A uni-

formly randomly chosen initial value for c2 was used instead. In particular, a uniform ran-

dom direction c̃02 was used, provided that c̃02 is at least 11 degrees away from ĉ01. With this

alternative initial value, the iterative estimation leads to estimates ĉ1 = (0.01,−1,−0.00)′
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and ĉ2 = (−0.99 − 0.05, 0.00)′, both of which are close to their corresponding population

counterparts. A simulation study, the report of which is omitted, confirms that the estimates

are stable with respect to different choices of initial value c̃02.

As we have pointed out in the introduction, the ellipsoid considered here can be under-

stood as a template for many real human organs. The accurate estimation of the parameters

of rotational deformations of ellipsoids indicates the potential of this type of analysis of de-

formed objects in real 3D images obtained from, e.g., magnetic resonance imaging. Further

experiments cover surface point distribution models and a more general deformation; they

are discussed in the Supplementary Material.

6 Application to knee motion during gait

In order to further support the validity of the proposed estimation procedure, this section

presents findings from experimentally collected biomechanical data as a part of a larger

project.

The estimation of two rotation axes of the knee joint is a well-studied problem in biome-

chanics (e.g., Ball and Greiner (2012)). The two estimated rotation axes model the primary

and secondary rotation axes of the upper and lower leg relative to each other. The dominant

rotation axis defines the flexion-extension motion at the knee. This axis is approximately

directed right-to-left (lateral-to-medial). The secondary rotation axis defines the internal-

external motion of the lower leg relative to the upper leg. This axis is approximately directed

down-to-up (distal-to-proximal) along the long axis of the tibia (ankle-to-knee joint centers).

The motion of 25 markers placed on the right lower extremity of one healthy male vol-

unteer was collected following informed consent. The volunteer consented to have two 6 mm

pins surgically inserted into his femur and tibia. Insertion sites were selected to minimize

neuro-muscular effects that could influence natural knee motion. Three and four markers

were then attached to these rigid pins which allowed us to measure the true motion of the

hidden femur and tibia bones. Additional markers were also placed on the surface of the

thigh (10 skin markers) and lower leg (8 skin markers). In each of the four segments (femur,

tibia, thigh, lower leg) one marker was chosen as a basis point and directions were derived

between the basis point and the remaining markers of that segment. The coordinate system

for this experiment was defined when the volunteer stood at attention and faced forwards.

The XYZ axes were in the directions Forward, Inward, Upward (FIU).

The volunteer walked at 2.5 mph on a motor driven treadmill. After a familiarization
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(a) bone (b) skin

Figure 7: Estimation of first (flexion-extension) and second (internal-external) rotation axes of
the knee from bone and skin marker directions on the upper (femur; thigh) and lower (tibia;
lower leg) extremity. In addition, the path of each marker direction is depicted. (a) Estimated
rotation axes of directions derived from bone markers. (b) Estimated rotation axes of directions
derived from skin markers.

time period, the motion of the markers were collected for approximately 20 seconds at 50

Hz. Within this data collection period, 16 complete gait cycles were identified. A gait cycle

is defined from right foot contact with the floor to the next right foot contact. In total 976

time points were used within the following analyses.

Figure 7 shows the path of K = 5 bone directions and K = 16 skin directions of all 16

walking cycles. In addition to the least square estimations of (c1, c2), the rotation axes c1j and

c2j were estimated for each marker j = 1 . . . , K. Therewith, we can quantify the variation in

the estimations by the dispersion measure σdg(ĉ1,ĉ1j) of the geodesic distance dg(ĉ1, ĉ1j) and

σdg(ĉ2,ĉ2j) respectively. The estimates are obtained by the least squares estimator (7) and the

procedure is described in detail in Section 6 of the Supplementary Material.

The estimated rotation axes from the bone directions are ĉ1 = (−0.00,−1.00, 0.06) with

dispersion σdg(ĉ1,ĉ1j) = 9.41 degrees and ĉ2 = (0.06,−0.06,−1.00) with σdg(ĉ2,ĉ2j) = 12.30

degrees. The unsigned directions of these two axes correspond to the anatomically expected

flexion-extension and internal-external knee rotation axes (Grood and Suntay, 1983, Figure

6, page 142).

The two rotation axes estimated from the skin marker directions are very similar to the

bone marker direction estimates. Quantitatively these were, ĉ1 = (0.01,−1.00, 0.07) with

σdg(ĉ1,ĉ1j) = 12.80 degrees and ĉ2 = (0.01, 0.03,−1.00) with σdg(ĉ2,ĉ2j) = 25.82 degrees. In

both cases, the higher dispersion of the second rotation axis can be explained by the smaller

range of rotation angles. As expected, we observe more dispersion of the rotation axes using

98



21

the skin data because of the complex deformation of the skin surface. Estimation results

of the rotation angles can be found in the Supplementary Material. Future work should

improve the estimations and reduce the dispersion by a more careful time modelling of knee

motions such as that proposed by Rivest (2001) who examined elbow motion.

7 Discussions

The paper proposes a novel method to estimate rotational deformations from directional data

by concentric small circles. The estimation procedure is independent of the latent variable θj

for single rotational deformations. In addition, the paper proposed an estimation procedure

for hierarchical deformations depending on functions f1j, f2j and the ordering of the initial

estimation. An interesting topic for future research is improvement of the prediction of θj,

which includes the automatic classification of directions into a partition I1 and I2 as well

as the development of methods to predict fj from the data. The geometry of composing

deformations has to be studied in further detail in order to extend the estimation method to

more than two rotational deformations. A first step in decreasing the relevance of the order

of deformations would be the implementation of an expectation maximization (EM) based

optimization procedure.

Appendix

Proof of Lemma 1

Let Aj = {vj ∈ δη(c, rj)}, where δη(c, r) = {x ∈ S2 : dg(δ(c, r), x) < η}. For R = R(c, θ),

P (Aj) = P [dg{Rµj ⊕ εj, δ(c, rj)} < η] = P [dg{RT (Rµj ⊕ εj), RT δ(c, rj)} < η]

= P [dg{µj ⊕ ε, δ(c, rj)} < η] ≥ P [dg(µj ⊕ ε, µj) < η] ≥ 1− Var(ε)/η2,

where µj ⊕ ε has the same distribution as RT (Rµj ⊕ εj) because of the spherical symmetry.

A Markov inequality is used. Since the Ajs are independent, P (
⋂K
j=1Aj) =

∏K
j=1 P (Aj) ≥

{1− Var(ε)/η2}K .
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Numerical Algorithms for (7), (14), and (16)

The optimization problems (7) and (14) are identical and can be understood as fitting con-

centric circles on the unit sphere. The problem (16) is a more general nonlinear least squares

problem, which however can be solved in a similar manner to the former two problems. We

propose a variant of the doubly iterative algorithm used in fitting small circles in Sm (Jung

et al., 2011, 2012).

We first introduce some notation. For m ≥ 2, the tangent space at c ∈ Sm is denoted

by TcS
m, which can be parametrized by Rm. Let c = em+1 without loss of generality. The

exponential map Expc : Rm → Sm is defined for v1 ∈ Rm by

Expc(v1) =

(
v1
‖v1‖

sin ‖v1‖, cos ‖v1‖
)
,

with a convention of Expc(0) = c. The exponential map has an inverse, called the log map,

and is denoted by Logc : Sm → TcS
m.

For problems (7) and (14), the following iterative algorithm can be used. The algorithm

finds a suitable point of tangency ĉ0, which is also the center of the fitted concentric circles.

Given the candidate ĉ0, the data xij are mapped to the tangent space Tĉ0S
2 by the Log map.

Let x†ij = Logĉ0(xij). Since the Log map preserves distance, we have arccos(ĉ′0xij) = ‖x†ij‖.
Then we solve a non-linear least-squares problem

min
c†,rj

n∑

i=1

K∑

j=1

(‖x†ij − c†‖ − rj)2. (18)

Since the optimization problem (18) does not have any constraint, it can be numerically

solved by, e.g., the Levenberg–Marquardt algorithm (Scales, 1985). The solution c† is then

mapped to S2 by the exponential map at c and becomes ĉ1. This procedure is repeated until

ĉ converges.

The optimization problem (16) can be solved in a similar way. We use the fact that

ρ2g(δ(c, r
∗(c)), x) = (arccos(c′x)− arccos(c′µ∗))2 = (‖Logcx‖ − ‖Logcµ

∗‖)2. Thus for fixed c,

ρ2g(δ(c, r
∗(c)), x) ≥ miny(‖Logcx − y‖ − ‖Logcµ

∗ − y‖)2. The minimizer y leads to a better

candidate for c through the exponential map. The algorithm to solve (16) follows the same

lines as the algorithm to solve (7), except instead of (18) we minimize

min
c†

n∑

i=1

K∑

j=1

(‖Logĉx− c†‖ − ‖Logĉµ− c†‖)2.
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Supplementary Materials

Additional discussions and data analyses: Article containing i.) additional data anal-

ysis results, ii.) simulation results for the hierarchical deformation model described in

Section 4, iii.) further discussion of the model bias, brought up in Section 2.1, iv.)

study of the estimator behaviour using misspecified parameters, v.) a computational

complexity study of the algorithm and vi.) the estimation procedure for knee motion

analysis during gait as discussed in Section 6. (SupplementaryMaterialSJ.pdf)

Matlab code: A set of Matlab code for application of the proposed method. The code also

contains all datasets used as examples in the article. (estRotDeformation.zip)
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1 Additional data analysis

In this section, some additional data analyses are discussed, in particular using datasets from

point distribution models.

1.1 Rotationally deformed ellipsoids

We first discuss the procedures of obtaining the raw ellipsoid data. To avoid notational con-

fusion, we denote a random vector by Xij and their observed values by χij, i = 1, . . . , n, j =

1, . . . , K. A point in R3 is described by (x, y, z) ∈ R3 in a fixed Cartesian coordinate system.

The surface of an ellipsoid can be parameterized by

s(u, v) =



x(u, v)

y(u, v)

z(u, v)


 =




ra sin(v)

rb sin(u) cos(v)

rc cos(u) cos(v)


 , u ∈ [−π, π) , v ∈

[
−π

2
,
π

2

]
(1.1)

∗This research was funded by the Norwegian Research Council through grant 176872/V30 in the eVita
program and performed as part of Tromsø Telemedicine Laboratory.
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(a) Original (b) Bent (c) Twisted

Figure 1.1: Tube views of meshed surfaces of (a) an original ellipsoid with ra = 0.75, rb = 0.5 and
rc = 0.25, (b) bent ellipsoid with α = 0.6, (c) twisted ellipsoid with θ = 0.6.

where ra ≥ rb ≥ rc > 0 are the length of the axes. We assume a default ellipsoid of ra = 0.75,

rb = 0.5 and rc = 0.25. For a parameter space Ω = [−π, π) × [−π
2
, π
2
] ⊂ R2, s : Ω → R3 is

a surface map in R3 with (u, v)
s−→ (x(u, v), y(u, v), z(u, v)). Without loss of generality, we

assume that the first to third principal axes are x, y, z-axis in R3, respectively. The centroid

of the ellipsoid is at origin (0, 0, 0)′.

Rotational bending around the y-axis (cb = (0, 1, 0)′) is given by

B(s) = R(cb, fb(x))s(u, v), (1.2)

and twisting around the x-axis (ct = (1, 0, 0)′) is given by

T (s) = R(ct, ft(x))s(u, v), (1.3)

where

R(cb, fb(x)) =




cos(fb(x)) 0 − sin(fb(x))

0 1 0

sin(fb(x)) 0 cos(fb(x))


 ,

R(ct, ft(x)) =




1 0 0

0 cos(ft(x)) − sin(ft(x))

0 sin(ft(x)) cos(ft(x))


 .

Here, fb(x) = αx and ft(x) = θx for some α, θ ∈ [−π/2, π/2] representing the overall size

of the deformation. The amount of bending and twisting depends on the location on the

x-axis. In addition to the rotational bending, we also consider quadratic bending around the
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Figure 1.2: Visualization of a standard ellipsoid with attached boundary normals.

y-axis which is defined by

Bq(s) = (x, y, z + αx2)′, x, y, z,∈ R (1.4)

using the ellipsoid parametrization (1.1). In the following, the term bending is used for

rotational bending, and quadratic bending will be specified explicitly.

Figure 1.1 shows an example of an original ellipsoid, bent ellipsoid with α = 0.6 and

twisted ellipsoid with θ = 0.6.

1.2 Point distribution and boundary normals

We now discuss a parameterization of ellipsoids by a point distribution model. In particular,

a mesh grid and attached boundary normals of the surface s(u, v) will be used. See Fig. 1.2.

The size of surface mesh we used is 37× 33. We chose K = 9× 8 = 72 vertices to attach

normal direction vectors χk1k2 ∈ S2, k1 = 1, . . . , 9, k2 = 1, . . . , 8. For each k1, the vertices

where χk1k2 are attached have common x-coordinates

{−0.738,−0.649,−0.482,−0.256, 0, 0.256, 0.482, 0.649, 0.738},

the values of which influence the amount of deformation. Note that there are some directions

that will not vary when the object is deformed. For example, the normals χ5k2 (1 ≤ k2 ≤ 8),

which are attached to vertices with zero x-coordinate, will stay still when the object is twisted

or bent.

In the following we report four sets of experiments on the boundary normal ellipsoid

data. As opposed to the s-rep data analysis, we are working with the raw data directly.

The noise in the data is from the von Mises–Fisher distribution (Mardia and Jupp, 2000)
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(a) without noise (b) κ = 1000 (c) κ = 100

Figure 1.3: (Twisting) Boundary normals using different concentration parameter κ. The rotation
around the x-axis is clearly visible in (a). Different colors represent different amounts of
twisting parameter θ.

with concentration parameter κ > 0. For each experiment, two levels of noise are used:

κ = 100, 1000. The four sets of models are

• Twisting by (1.3), with ct = (1, 0, 0)′, θ ∼ N(0, σ2
θ), σθ = 0.3 ≈ 17.2◦. See Fig. 1.3.

• Bending by (1.2) with cb = (0, 1, 0)′, α ∼ N(0, σ2
α), σα = 0.4 ≈ 22.9◦. See Fig. 1.4.

• Quadratic bending by (1.4) with above cb and σα. See Fig. 1.5.

• Hierarchical deformation by bending (primary) and twisting (secondary) with the same

set of parameters above. See Fig. 1.7.

From each model a random sample of size n = 30 or 100 is obtained, from which the estimate

ĉ of the axis and σ̂ are obtained. This is repeated for 1000 times.

Twisting

Figure 1.3 shows 30 samples of 72 different normal directions from sets of twisted ellipsoids

with different noise levels. Different colors represent different amounts of twisting parameter

θ. Therefore, the number of colors correspond to the sample size.

Table 1.1 shows the performance of our estimator based on 1000 simulations. The per-

formance is measured by the mean and standard deviation of the absolute error dg(ĉ, c) and

those of the estimated twisting parameter σ̂θ. The accuracy is increased for larger n or κ.

In general, we observe quite accurate estimates even for a larger noise level (κ = 100).
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Table 1.1: Twisting: Mean absolute error for ĉ, and the estimates σ̂θ

Twisting (unit: degrees)

κ n dg(ĉ, c) σ̂θ(σθ = 17.189)

100 30 3.174 (2.294) 17.209 (2.152)
100 100 1.563 (0.890) 17.324 (1.250)

1000 30 0.561 (0.317) 17.045 (2.133)
1000 100 0.289 (0.164) 17.173 (1.235)

(a) without noise (b) κ = 1000 (c) κ = 100

Figure 1.4: (Rotational bending) Boundary normals using different concentration parameter κ.
Different colors represent different amounts of bending parameter α.

Bending

Figure 1.4 shows 30 samples of 72 different normal directions after rotational bending using

different noise levels. The case of quadratic bending is illustrated in Fig. 1.5. Different colors

represent different amounts of bending parameter α. The different effects of rotational and

quadratic bending to the boundary normals can be compared by examination of Fig. 1.4a

and Fig. 1.5a. Rotationally bent directions are at concentric small circles (Fig. 1.4a) while

quadratically bent directions are at circles with different centers (Fig. 1.5a). Despite the

major violation of our assumption of concentric circles, the proposed method surprisingly

works well for quadratic bending models, as Table 1.2 summarizes.

Table 1.2 shows the performance of our estimator for the rotational and quadratic bend-

ing models. The absolute errors between the true axis c and the estimated rotation axis ĉ

are virtually small for both models. The performance of the estimator is enhanced for larger

κ and n. Moreover, as expected, the empirical errors are smaller for rotational bending than

quadratic bending. Note that the estimates σ̂α of rotational bending model are biased up-

wards, which we discuss in section 1.2.1. The parameter σα affects the quality of estimators.

109



S6

(a) without noise (b) κ = 1000 (c) κ = 100

Figure 1.5: (Quadratic bending) Boundary normals using different concentration parameter κ. Dif-
ferent colors represent different amounts of bending parameter α.

Table 1.2: Rotational bending: Mean absolute error for ĉ, and the estimates σ̂α

(unit: degrees) Rotational bending Quadratic bending
κ n dg(ĉ, c) σ̂α(σα = 22.918) dg(ĉ, c) σ̂α(σα = 22.918)

100 30 0.898 (0.492) 34.133 (4.429) 1.494 (0.871) 23.277 (3.389)
100 100 0.467 (0.261) 34.179 (2.592) 0.789 (0.470) 22.880 (2.454)

1000 30 0.242 (0.127) 33.739 (4.448) 0.359 (0.213) 22.203 (3.184)
1000 100 0.127 (0.069) 33.973 (2.581) 0.193 (0.112) 22.276 (1.891)

In particular, larger σα leads to a greater bias of σ̂α, meanwhile it yields a better estimate

of ĉ (Fig. 1.6).

Hierarchical motion

Figure 1.7 shows 30 samples of 64 different normal directions using different concentration

parameters κ, twistings σθ and a fixed bending parameter σα = 0.4. We have excluded 8

normal directions attached at x = 0. Different colors represent different amounts of absolute

rotation, which are |αj| + |θj|. In Fig. 1.7a we see rotations of normals along small circles

around the y-axis. The clear motion pattern disappeared after an increase of σθ and κ in

Figure 1.7b and Figure 1.7c.

Table 1.3 shows the performance of our estimator based on 1000 simulations under hier-

archical rotational bending and twisting. As expected, the rotation axis estimates are less

accurate than for single motions. Moreover, the estimate of the secondary rotation axis is

less accurate than the estimate of the primary axis, particularly for κ = 100. The bias in

the estimates of the rotation angle will be further discussed shortly.
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(a) (b)

Figure 1.6: (a) Mean absolute error dg(ĉ, c) after quadratic and rotational bending for different σα
values. (b) Mean of estimated bending parameter σ̂α after quadratic and rotational bending
for different σα values. The green dashed line marks the first diagonal.

(a) εj = 0, σθ = 0.1 (b) εj = 0, σθ = 0.3 (c) κ = 1000, σθ = 0.3

Figure 1.7: (Hierarchical deformation) Boundary normals using σα = 0.4, different concentration
parameter κ and twisting σθ.

Two initial value choices (from Principal Arc Analysis and random directions) are applied.

In contrast to the s-rep analysis in the main article, the results in Table 1.3 are very similar

for both choices.

In the four sets of analyses, we have shown accurate estimation results of the proposed

method for the boundary normal data. In particular, the estimation from the quadratic

bending model is surprisingly accurate despite the misspecified model. We believe that the

proposed method will lead to robust estimates in other deformation models, which are similar

to a rotational deformation.
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Table 1.3: (Rotational bending and twisting) Mean absolute error for ĉ1, ĉ2, and the estimates σ̂α,
σ̂θ.

(unit: degrees) 1st rotation axis 2nd rotation axis
κ n dg(ĉ1, c1) σ̂α(σα = 22.918) dg(ĉ2, c2) σ̂θ(σθ = 17.189)

initialization by 1st and 2nd principal component

100 30 3.526 (2.775) 18.125 (2.370) 20.047 (16.717) 9.232 (1.598)
100 100 1.902 (1.444) 18.268 (1.337) 11.081 (13.477) 9.239 (1.143)

1000 30 2.683 (2.272) 17.785 (2.377) 8.570 (9.031) 9.119 (1.323)
1000 100 1.637 (1.126) 18.101 (1.349) 3.901 (2.459) 9.367 (0.691)

initialization by 1st principal component and a random direction

100 30 3.496 (2.762) 18.125 (2.367) 19.133 (15.445) 9.295 (1.498)
100 100 1.866 (1.390) 18.260 (1.342) 8.944 (6.753) 9.390 (0.798)

1000 30 2.678 (2.272) 17.785 (2.377) 8.479 (8.702) 9.125 (1.299)
1000 100 1.635 (1.127) 18.102 (1.349) 3.892 (2.451) 9.367 (0.691)

1.2.1 Estimation of σα

A precise estimation of σα under the bending model is an interesting open problem. We have

observed that the amount of swing is nonlinear, and conjecture that the change of the surface

curvature in the object is responsible for the additional swing of the directions. Figure 1.8

exemplifies such a non-linear relationship.

In the case of rotational bending, we may assume that our estimate σ̂α and the parameter

σα are related through a quadratic function as Fig.1.8a suggests. If such a quadratic function

f(σα) = p0 + p1σα + p2σ
2
α = σ̂α is known or can be estimated efficiently by a least square

quadratic polynomial, one can correct the estimate of σα for fixed ra, rb and rc by

σ̂new
α = − 1

2p2
±
√

1

4p22
(p21 − 4p0p2 + 4p2σ̂α),

with f ′′(σ̂new
α ) ≥ 0. A similar modification can be made for quadratic bending (Fig.1.8b).

In general, we believe that modeling based on the curvatures will improve our current

estimator. Such a modeling is beyond the scope of this paper, and we list a few important

notions of curvature that have potential in modeling.

Most common curvature measures are the principal curvatures (κ1, κ2) with κ1 ≥ κ2,

Gaussian curvature, and mean curvature. These measures are calculated from the first and
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(a) Rotational bending (b) Quadratic bending

Figure 1.8: Relationship between α̂ and α for various (ra, rb, rc).

second fundamental form (see Gray (1998) and Kühnel (2006)). Koenderink (1990) indicated

that Gaussian curvature and mean curvature are not representatives of local shapes because

Gaussian curvature is identical for all local approximations for which the ratio of the principal

curvatures (κ1, κ2) is equal. Therefore, he introduced the two alternative quantities: shape

index S and curvedness C,

S =
2

π
tan−1

(
κ2 + κ1
κ2 − κ1

)
, (κ1 ≥ κ2) (1.5)

C =
2

π
ln

(√
1

2
(κ21 + κ22)

)
. (1.6)

1.3 Quadratic bending of s-reps

The proposed method is also applied to the fitted s-reps of quadratically bent ellipsoids.

After fitting s-reps to the raw images discussed in Section 1.2, we obtained the estimated

axis of rotation of ĉb = (−0.026, 0.999, 0.002) with a distance of 1.517◦ to the true y-axis

cb = (0, 1, 0). Similar to mesh ellipsoid surfaces, the distance of the rotation axis estimate

to the true axis is lower in case of rotational bending compared to quadratic bending.

113



S10

Table 2.1: Numerical performance over 1000 replications, for hierarchical deformations.

Hierarchical rotations
dg(ĉ1, c1) dg(ĉ2, c2) σ̂θ(σθ = 22.5) σ̂ψ(σψ = 15)

(unit: degrees)

Body 1
κ = 100

n = 30 4.527 (3.591) 4.929 (3.007) 22.693 (3.031) 15.890 (2.096)
n = 100 2.201 (1.206) 2.944 (1.550) 22.698 (1.589) 15.844 (1.126)

κ = 1000
n = 30 2.084 (1.364) 1.275 (0.701) 22.385 (2.984) 14.940 (1.941)
n = 100 1.123 (0.741) 0.652 (0.338) 22.492 (1.542) 15.030 (1.110)

Body 2
κ = 100

n = 30 2.617 (1.762) 3.066 (3.099) 22.440 (2.959) 15.094 (2.011)
n = 100 1.366 (0.746) 1.682 (0.870) 22.542 (1.562) 15.219 (1.073)

κ = 1000
n = 30 1.099 (1.171) 0.921 (2.349) 22.339 (2.983) 14.872 (1.945)
n = 100 0.568 (0.354) 0.438 (0.236) 22.470 (1.543) 14.981 (1.099)

2 Simulation results for the hierarchical deformation

model

Table 2.1 summarizes the numerical performance of estimation of the hierarchical deforma-

tion model (11) as discussed in Section 4 of the main article. We have used the data-driven

method to choose the initial values as described in Section 3 of the main article. The results

are comparable to those from the simpler models in Section 4 and are fairly successful.

3 Discussion of model bias

A possibly important issue that is left unanswered is whether the parameters c0 and r =

dg(c0, µ) of the model

X = R(c0, θ)µ⊕ ε (3.1)

are the minimizer (c̃, r̃) of the least squares problem

min
c,r

Eρ2{δ(c, r), X} = min
c,r

E{dg(c,X)− r}2. (3.2)

Rivest (1999) has shown that when c0 is known, the minimizer r̃ = argminr E{dg(c0, X)−
r}2 is biased towards π/2, i.e. r̃ > r = dg(c0, µ) if r < π/2. In fact, given any c for

the axis of rotation, r̃c = E{dg(c,X)} minimizes E{dg(c,X) − r}2. Now to focus on c,

minc,r E{dg(c,X)− r}2 = minc E{dg(c,X)− r̃c}2 = minc Var{dg(c,X)}. Therefore c0 of (3.1)

is the minimizer of (3.2) if for all c ∈ S2,

Var{dg(c0, X)} ≤ Var{dg(c,X)}. (3.3)
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Table 3.1: Distance to true axis (measured in degrees)

σθ
r 0.01 0.1 0.2 0.5 1

π/16 = 11.25 11.25 11.19 10.99 9.10 2.29
π/8 = 22.50 22.50 22.36 21.89 2.55 0.20
π/4 = 45.00 44.98 44.81 42.73 0.22 0.00
π/3 = 60.00 59.97 59.79 3.72 0.16 0.00
π/2 = 90.00 90.00 90.00 0.49 0.02 0.02

This inequality may be satisfied when rσθ is large compared to the standard deviation of the

error ε. If σθ or r is 0, there is no variation due to the rotation of R(c0, θ), which makes the

model unidentifiable. Heuristically, small σθ makes the estimation difficult. Likewise, the

variation due to rotation is small if the rotation radius r = dg(c, µ) is small. The standard

deviation of the length rθ of the arc on δ(c, r) is rσθ. Hence, the hypothesis:

(H) If (3.3) is not satisfied, the least-squares estimator may be biased.

While we have not succeeded in finding analytic forms of conditions that satisfy (3.3), a

simulation study has been carried out to support our hypothesis (H). For c0 = e3 = (0, 0, 1)′,

µr = µ(r) = cos(r)c0 + sin(r)e1, and θ
iid∼ N(0, σ2

θ), X is distributed as the von Mises–

Fisher distribution with center R(c, θ)µr and the concentration parameter κ = 100. We

then evaluated the minimizer c̃ of Var{dg(c,X)} based on 5 × 105 Monte-Carlo random

observations of X, for different combinations of r ∈ {π/16, π/8, π/4, π/3, π/2} and σθ ∈
{0.1, 0.2, 0.5, 1} in radian. The result of the experiment is summarized as the distance

between c̃ and c0 in Table 3.1.

It can be checked from Table 3.1 that the distance between c̃ and c0 is smaller for larger

values of σθ and r. Moreover, for sufficiently large σθ and r, dg(c̃, c0) = 0, which leads to

c0 from the model (3.1) satisfying (3.3). On the other hand, when σθ and r are small with

respect to the variance of the error, the rotation (3.1) becomes unidentifiable. This is further

illustrated at Figure 3.1, which shows the scatter of 100 random observations from model

(3.1), with (r, σθ) = (π/16, 0.2) on the left and (π/4, 0.5) on the right panel. The left panel

suggests that when (r, σθ) are small, the rotation about the axis c0 is not distinguished and

the optimal c̃ is near µ and dg(c̃, c0) is large (cf. Table 3.1). The right panel illustrates that

the rotation is visually identified for large values of (r, σθ), and for such a case, the parameter

c0 is the solution of the least squared problem (3.2).
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Figure 3.1: The scatter of 100 random observations from the model (3.1), with (r, σθ) = (π/16, 0.2)
on the left and (π/4, 0.5) on the right panel. The north pole, depicted as c in the figure, is
the true axis of rotation c0. The blue x visualizes µ.

4 Numerical studies with misspecified parameters

In this section, we study the impact of parameter misspecification of the estimator, particu-

larly of the function fj that model the relationships between the rotation angles θj. We study

parameter misspecification over different rotational deformation situations as described in

Section 4 in the main article.

Recall, Section 4 in the main article reports studies for two different objects. The first

object (Body 1) consists of K = 4 directions, while the second object (Body 2) contains

K = 8 directions. The von Mises–Fisher distribution is used for the distribution of errors.

Three rotation models (indexed by equation number in the main article) are considered for

each object:

• Model (2)–Rigid rotation: c = (1, 0, 0)′, θj = fj(θ) = θ, where θ ∼ N(0, σ2
θ) and

σθ = π/12 ≈ 15◦.

• Model (10)–Twisting : c = (0, 1, 0)′, θj = fj(θ) = 1j∈I1θ − 1j∈I2θ, where θ ∼ N(0, σθ)
2,

σθ = π/8 ≈ 22.5◦. Here, I1 and I2 are the partitions of {1, . . . , K} according to the

right and left sides whereas I1 = {1, 2} and I2 = {3, 4} for Body 1 and I1 = {1, . . . , 4}
and I2 = {5, . . . , 8} for Body 2.

• Model (11)–Hierarchical deformations : c1 = (1, 0, 0)′, c2 = (1/
√

2,−1/
√

2, 0)′, θj = θ

and ψj = fj(ψ) = 1j∈I1ψ−1j∈I2ψ, where θ ∼ N(0, σθ)
2, σθ ≈ 22.5◦ and ψ ∼ N(0, σψ)2,

σψ ≈ 15◦. The I1 and I2 are the same partition used in the twisting model above.

The hierarchical model represents deformations by a rigid rotation and oblique twist. For

each model, we generate n = 30, 100 rotationally deformed objects with different error

concentration parameters κ = 100, 1000. These are replicated 1000 times, and the estimation

quality is measured by dg(ĉ, c) and σ̂θ =
∑n

i=1 θ̂
2
i /n.
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Table 4.1: Numerical performance over 1000 replications, for single deformation models.

Rotation Body 1 Body 2
(unit: degrees) dg(ĉ, c) σ̂θ (σθ = 15) dg(ĉ, c) σ̂θ (σθ = 15)

κ = 100
n = 30 4.133 (2.26) 3.314 (0.44) 2.905 (1.60) 6.771 (0.85)
n = 100 2.235 (1.18) 3.308 (0.24) 1.560 (0.83) 6.816 (0.51)

κ = 1000
n = 30 1.166 (0.64) 1.037 (0.13) 0.841 (0.46) 6.698 (0.88)
n = 100 0.656 (0.34) 1.039 (0.07) 0.448 (0.22) 6.744 (0.46)

Twisting Body 1 Body 2
(unit: degrees) dg(ĉ, c) σ̂θ (σθ = 22.5) dg(ĉ, c) σ̂θ (σθ = 22.5)

κ = 100
n = 30 2.761 (1.51) 3.669 (0.48) 4.062 (3.67) 17.150 (2.12)
n = 100 1.482 (0.78) 3.658 (0.25) 1.889 (1.35) 17.055 (1.27)

κ = 1000
n = 30 0.803 (0.43) 1.139 (0.15) 1.017 (0.74) 16.760 (2.19)
n = 100 0.446 (0.23) 1.147 (0.08) 0.536 (0.36) 16.857 (1.17)

The estimation results using correct parameters are reported for the single deformation

models in Table 1 in the main article and for the hierarchical deformation model in Table 2.1

above.

4.1 Parameter fj

The modelling of the function fj can be challenging as discussed in Section 1.2.1 or for the

s-rep model in case of bent, and bent and twisted ellipsoids in chapter 5 in the main article.

Therefore, it is crucial to study the impact of misspecification of fj.

Table 4.1 reports mean and standard deviations of the measures for the single deformation

models. The true underlying rigid rotation deformation is indicated by fj(θ) = θ, j = 1, . . . , 4

for Body 1 and is misspecified by fj(θ) = θ, j = 1, 2 and fj(θ) = −θ, j = 3, 4. Body 2 is

misspecified by fj(θ) = (j/10)θ instead of fj(θ) = θ for j = 1, . . . , 8. In both cases the

misspecification does not effect the estimated rotation axis ĉ but leads to a poor prediction of

σ̂θ. The true underlying twisting motion of model (10) is given by fj(θ) = θ, j = 1, 2, fj(θ) =

−θ, j = 3, 4 for Body 1 and is misspecified by fj(θ) = θ, j = 1, 4, fj(θ) = −θ, j = 2, 3.

Body 2 is misspecified by fj(θ) = θ, fl(θ) = −0.5θ whereas the true parameter is given

by fj(θ) = θ, fl(θ) = −θ for j = 1, . . . , 4 and k = 5, . . . , 8. The comparison of Table 4.1

to Table 1 in the main article shows that a misspecification of the parameter fj does not

effect the rotation axis estimation of a single deformation by fitting concentric small circles

whereas the predicted rotation angle is biased by misspecification of fj. The specification of

fj models the relationships between the rotation angles θj and is therefore crucial for their

prediction.

On the other hand, the partition I1 and I2 is not explicitly used in the estimation proce-
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Table 4.2: True and misspecified parameter fj for Body 1 in the hierarchical deformation
model (11).

f11(θ) f12(θ) f13(θ) f14(θ) f21(ψ) f22(ψ) f23(ψ) f24(ψ)

True θ θ θ θ ψ ψ −ψ −ψ
Table 4.4 θ θ −θ −θ ψ ψ ψ ψ
Table 4.5 θ −θ −θ θ −ψ ψ ψ −ψ

Table 4.3: True and misspecified parameter fj for Body 2 in the hierarchical deformation
model (11).

Hierarchical rotations
j

1 2 3 4 5 6 7 8

True
f1j(θ) θ θ θ θ θ θ θ θ
f2j(ψ) ψ ψ ψ ψ −ψ −ψ −ψ −ψ

Table 4.4
f1j(θ) 0.5θ 0.5θ 0.5θ 0.5θ 0.5θ 0.5θ 0.5θ 0.5θ
f2j(ψ) ψ ψ ψ ψ −ψ −ψ −ψ −ψ

Table 4.5
f1jθ) 0.1θ 0.2θ 0.3θ 0.4θ θ θ θ θ
f2j(ψ) ψ ψ 0.7ψ 0.7ψ −0.2ψ −0.2ψ −0.3ψ −0.3ψ

dure of the rotation axis. The partition I1 and I2 is implied by the function fj. A partition

I1 and I2 of indices {1, . . . , K} represents sets of direction vectors that rotate together, i.e.,

the partition models the deformation type. In the simulated examples, the partitions are

chosen to model the bending and twisting deformation accordingly. The specification of fj

gives the possibility to incorporate additional prior knowledge about the statistical model of

the rotation angle θj, e.g., linear or quadratic relation by the distance of the direction to the

rotation axis. Nevertheless, the modelling of the function fj can be challenging as discussed

before. There are real data applications where the definition of a partition is naturally mo-

tivated, e.g., by the physical structure of the body. An example is to estimate the rotational

deformation between the upper and lower leg as studied in Section 6 in the main article.

This example can be extended to all joints inside the human body and to all objects which

are connected by a joint. On the other hand, there is a group of data sets where such a

partition is not obvious, e.g., in the s-rep model of the hippocampus. A first approach could

be to define the partition on the basis of an observation of a medical expert. An automatic

detection of partitions and clusters is an interesting future research direction.

In contrast to the single deformation model, a misspecification of fj has an impact in

the hierarchical deformation model by the iterative back-and-forward deformations of the

random direction vectors. Therefore, a misspecification of the parameter might guide the

iterative estimation procedure to fall in a local minimum, and leads to a poor estimation

of the rotation axes and angles. Table 4.2 and Table 4.3 report the true and misspecified

fj for the simulation studies whereas the estimation results are summarized in Table 4.4
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Table 4.4: Numerical performance over 1000 replications, for hierarchical deformations using mod-
erate misspecified parameters.

Hierarchical rotations
dg(ĉ1, c1) dg(ĉ2, c2) σ̂θ(σθ = 22.5) σ̂ψ(σψ = 15)

(unit: degrees)

Body 1
κ = 100

n = 30 45.223 (3.61) 44.792 (3.69) 15.013 (2.00) 22.725 (3.01)
n = 100 45.188 (1.73) 44.423 (1.79) 14.992 (1.06) 22.731 (1.58)

κ = 1000
n = 30 43.648 (1.29) 44.257 (2.67) 14.454 (1.89) 22.442 (2.99)
n = 100 43.705 (0.72) 43.981 (1.42) 14.482 (1.06) 22.510 (1.54)

Body 2
κ = 100

n = 30 2.617 (1.76) 3.066 (3.09) 22.440 (2.96) 15.094 (2.01)
n = 100 1.100 (1.17) 0.921 (2.35) 22.339 (2.98) 14.872 (1.94)

κ = 1000
n = 30 1.366 (0.74) 1.683 (0.87) 22.542 (1.56) 15.219 (1.07)
n = 100 0.569 (0.35) 0.438 (0.23) 22.470 (1.54) 14.981 (1.09)

Table 4.5: Numerical performance over 1000 replications, for hierarchical deformations using dras-
tically misspecified parameters..

Hierarchical rotations
dg(ĉ1, c1) dg(ĉ2, c2) σ̂θ(σθ = 22.5) σ̂ψ(σψ = 15)

(unit: degrees)

Body 1
κ = 100

n = 30 11.576 (4.66) 33.737 (4.94) 5.423 (2.58) 2.619 (3.45)
n = 100 11.272 (2.38) 33.372 (2.48) 4.749 (1.02) 0.966 (1.44)

κ = 1000
n = 30 11.228 (3.91) 33.586 (4.06) 3.597 (1.98) 1.186 (2.34)
n = 100 11.183 (2.19) 33.445 (2.25) 3.295 (0.32) 0.413 (0.26)

Body 2
κ = 100

n = 30 12.204 (5.01) 33.456 (5.11) 15.917 (1.88) 214.219 (20.16)
n = 100 11.337 (2.46) 33.959 (2.47) 16.180 (1.15) 214.553 (10.75)

κ = 1000
n = 30 11.838 (4.40) 33.787 (4.46) 15.727 (2.01) 219.414 (20.99)
n = 100 11.289 (2.30) 33.978 (2.34) 16.316 (1.20) 219.587 (10.45)

and Table 4.5. At first we have changed the order of the original parameters f1, f2 for

Body 1 in Table 4.4. The first estimated rotation axis ĉ1 is around (1/
√

2,−1/
√

2, 0)′ and

the second estimated rotation axis ĉ2 is around (1, 0, 0)′, i.e., the estimator has interchanged

the true underlying deformations which results in a distance of approximately 45 degree of

ĉ1 to c1 and ĉ2 to c2. Nevertheless, the order of generalized rotational deformations are not

interchangeable in general, and a misspecification might bias the results. In a second set, we

have misspecified f1j globally by a factor of 0.5 and kept the original f2j for Body 2. The

means and standard deviations in Table 4.4 show only small changes compared to Table 2.1

and are very accurate. A global scale change does not change the relationships between

the rotation angles. Both cases demonstrate the performance of the hierarchical estimation

procedure in case of a moderate misspecification by reasonable estimates.

In addition, two cases with drastically misspecified parameters are reported. In a third

scenario, f1 and f2 are misspecified so as to generate different deformations for Body 1 in

Table 4.5. Both the means and the standard deviations show poor estimation results. In

a last set we modified f1 and f2 by keeping the underlying deformation direction of each
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Table 4.6: Numerical performance over 1000 replications, for hierarchical deformations with mis-
specified order of primary and secondary rotation axis.

Hierarchical rotations
dg(ĉ1, c1) dg(ĉ2, c2) σ̂θ(σθ = 22.5) σ̂ψ(σψ = 15)

(unit: degrees)

Body 1
κ = 100

n = 30 4.624 (2.66) 4.876 (2.85) 22.720 (3.00) 15.896 (2.10)
n = 100 2.258 (1.30) 2.949 (1.54) 22.701 (1.58) 15.847 (1.12)

κ = 1000
n = 30 2.044 (1.27) 1.279 (0.70) 22.382 (2.98) 14.947 (1.94)
n = 100 1.124 (0.72) 0.656 (0.33) 22.492 (1.54) 15.033 (1.11)

Body 2
κ = 100

n = 30 2.590 (1.47) 2.992 (1.75) 22.439 (2.96) 15.094 (2.01)
n = 100 1.323 (0.72) 1.688 (0.87) 22.541 (1.56) 15.220 (1.07)

κ = 1000
n = 30 1.063 (0.67) 0.849 (0.47) 22.336 (2.98) 14.873 (1.94)
n = 100 0.567 (0.35) 0.438 (0.23) 22.470 (1.54) 14.982 (1.09)

direction vector for Body 2 but changing the amount of deformation locally. Also in this

scenario the hierarchical estimator shows poor estimation results in Table 4.5.

4.2 Primary and secondary rotation

The hierarchical model is a first attempt to model and estimate more then one rotational

deformation. The order of two rotations is not interchangeable and is considered as a part

of the statistical model which attempts to describe the nature as well as possible. Therefore,

we assume a primary rotation R(c1, θj) and a secondary rotation R(c2, θj) in our hierarchical

model. The order of rotation can be misspecified in two different ways in the proposed

approach. At first, we might interchange f1 and f2 as discussed in Section 4.1 above for

Body 1 in Table 4.4. In addition, the primary and secondary rotation has to be specified for

the initialization.

Table 4.6 summarizes the results in estimation of the hierarchical deformation model (11)

with interchanged primary and secondary rotation for the initialization. The results are simi-

lar to Table 2.1. The estimator converges to the same results in this example. Nevertheless, a

misspecification might increase the risk that the estimation procedure converges in a different

local minimum.

4.3 Discussion

The introduction of fj in our model has advantages and disadvantages. We study generalized

rotational deformations on the basis of directional data, and the rotation of a direction from

one to another place on the sphere is not uniquely defined in the hierarchical case. Therefore,

different functions fj can describe different rotational deformations. Prior knowledge is nec-
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essary in order to restrict the rotational directions to avoid the convergence of the optimizer

into a different local minimum and to avoid an overfit of c1 and c2 as mentioned Section 4

in the main article.

The development of a method to predict the function fj from a given data set is an inter-

esting open research question. Furthermore, an automatic classification of spoke directions

into a partition I1 and I2 and a final classification of the deformation type into rigid rotation,

bending or twisting are of future interest.

5 Computational complexity of the algorithm

The computational complexity of the proposed estimation procedure is now reported in two

forms: the asymptotic time complexity and finite sample time measurements.

The asymptotic time complexity of the proposed algorithm depends on the number of

samples n and the number of direction vectors K. In particular the optimization problem,

(ĉ, r̂) = argmin
c,r1,...,rK

n∑

i=1

K∑

j=1

d2g{δ(c, rj), Xij},

is the dominant part of the algorithm. Our algorithm to solve this nonlinear least squares

problem is doubly iterative. The outer loop consists of applications of the exponential

and inverse exponential maps whose time complexity is O(nK). The inner loop iteratively

updates c† ∈ R3 and r†j ∈ (0, π/2) by the Levenberg–Marquardt algorithm, where each

iteration requires the asymptotic time complexity of O(nK) mainly due to the computation

of Jacobian matrix. Notice, that the computation time for inverting a 3 × 3 matrix is

dominated by other terms and is ignored. Overall, if a finite number of iterations is assumed,

then the asymptotic time complexity of the proposed algorithm is O(nK).

We now turn to our attention to the complexity of the algorithm in real time, which we

believe is more useful for practitioners. Computation times were measured by a personal

computer with a Intel(R) Xeon(TM) 3.73GHz processor.

We have tested the estimations of three different rotational deformations

• Model (2) - Rigid rotation,

• Model (10) - Twisting and

• Model (11) - Hierarchical deformations
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Table 5.1: Median time measurements in seconds over 100 replications.

n Model
K

4 8 16 32 64 128

30
(2) 0.04 0.07 0.13 0.26 0.61 1.81
(10) 0.11 0.16 0.26 0.40 0.79 2.00
(11) 0.54 0.84 1.61 3.17 6.91 19.23

60
(2) 0.04 0.07 0.13 0.28 0.68 2.03
(10) 0.10 0.18 0.29 0.42 0.85 2.18
(11) 0.75 1.39 2.72 6.55 13.84 30.80

120
(2) 0.04 0.07 0.13 0.29 0.76 2.34
(10) 0.12 0.18 0.27 0.44 0.92 2.50
(11) 1.29 2.50 4.90 10.03 20.37 53.91

Table 5.2: Minimal time measurements in seconds over 100 replications..

n Model
K

4 8 16 32 64 128

30
(2) 0.02 0.05 0.08 0.19 0.48 1.59
(10) 0.03 0.07 0.12 0.25 0.61 1.75
(11) 0.23 0.40 0.74 1.50 3.21 7.71

60
(2) 0.02 0.04 0.08 0.18 0.54 1.78
(10) 0.03 0.05 0.14 0.27 0.68 1.89
(11) 0.37 0.68 1.32 2.61 5.52 12.37

120
(2) 0.02 0.04 0.09 0.22 0.63 2.12
(10) 0.03 0.09 0.15 0.33 0.79 2.38
(11) 0.64 1.21 2.39 4.85 9.99 21.61

as described in Section 4 (the numbers correspond to the equation number in the main

article), with two different types of objects to be deformed.

We first examined the computation times for a set of well-controlled objects. Using

the Body 1 (as plotted in Fig. 2 of the main article) consisting of the original K = 4

directions, we duplicated the same direction vectors to increase the number of directions

(K = 8, 16, 32, 64, 128) so that the effect on computation time of the different locations of

direction vectors is minimized. For each sample size n = 30, 60, 120, we have repeated the

estimation R = 100 times to measure the computation time required to obtain the estimates

ĉ. Note that we have used von Mises-Fisher distribution with κ = 1000 for the i.i.d. errors.

Tables 5.1 and 5.2 report the median computation time and the minimal computation

time among the R repetitions, respectively. With large numbers of sample and directions,

the computation requires less than a minute on average, while it takes less than a second for

moderate sizes of sample and directions.

From an inspection of Table 5.1, there is a trend for the computation time increasing
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Table 5.3: Quality of the repeated rotation axis estimations for the time measurements by dg(ĉ, c)
in degree.

n Model
rotation K

axis 4 8 16 32 64 128

30

(2) 1 1.18 0.92 0.63 0.40 0.33 0.22
(10) 1 0.88 0.61 0.40 0.29 0.20 0.14
(11) 1 2.18 2.10 1.99 1.89 1.86 1.81
(11) 2 1.43 1.09 0.77 0.60 0.48 0.43

60

(2) 1 0.74 0.63 0.42 0.30 0.21 0.16
(10) 1 0.59 0.42 0.29 0.18 0.14 0.10
(11) 1 1.42 1.28 1.24 1.20 1.16 1.17
(11) 2 0.88 0.64 0.49 0.35 0.28 0.21

120

(2) 1 0.60 0.39 0.30 0.20 0.15 0.10
(10) 1 0.37 0.30 0.20 0.14 0.10 0.07
(11) 1 1.09 0.97 0.99 0.90 0.89 0.89
(11) 2 0.61 0.44 0.29 0.22 0.18 0.12

approximately linear with K and also with n for all models.

By comparing the minimal time (Table 5.2) and the median time (Table 5.1), we have

noticed that the computation time varies by a large amount. See for example model (11)

with n = 60, K = 128; The median time is over 30 seconds while the shortest time is only

12 seconds. This is due to the slow convergence of the iterative algorithm for a particular

choice of observations.

Finally, Table 5.3 reports the quality of the repeated rotation axis estimations by the

mean distance of dg(ĉ, c), which shows higher accuracy for larger K and n as discussed in

Section 4 of the article.

We also have examined the computation times with another set of objects whose base

direction vectors are determined randomly. As shown in the following, the additional ran-

domness leads to more variation in the computation times. Nevertheless, the computation

time exhibits again the approximate linear increase for K and n.

The second set of objects to be deformed has K = 8, 16, 32, 64, 128 directions vectors,

each of which is obtained from uniform distribution on a hemisphere. With n = 30, 60, 120

samples, we also report the time measurements from R = 100 replications.

Table 5.4 and 5.5 report the median and the minimum computation time in seconds,

respectively. As expected, the time increases with larger K and larger n. Due to the uncon-

trolled model complexity (originated from the random base directions) the time difference

between the median and the minimum time is larger than the previous controlled case. We

conjecture that the computation times are heavily dependent on the convergence of the
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Table 5.4: Median time measurements in seconds over 100 replications.

n Model
K

8 16 32 64 128

30
(2) 0.08 0.14 0.26 0.63 1.83
(10) 0.18 0.29 0.49 0.94 2.10
(11) 1.99 6.39 17.18 51.44 130.85

60
(2) 0.08 0.14 0.28 0.70 2.04
(10) 0.22 0.32 0.51 0.96 2.27
(11) 2.74 6.75 24.25 63.20 265.95

120
(2) 0.08 0.14 0.30 0.77 2.40
(10) 0.22 0.32 0.48 0.98 2.54
(11) 9.79 18.86 42.81 129.75 305.54

Table 5.5: Minimal time measurements in seconds over 100 replications..

n Model
K

8 16 32 64 128

30
(2) 0.05 0.08 0.20 0.58 1.78
(10) 0.07 0.12 0.25 0.59 1.84
(11) 0.42 0.84 2.30 3.45 8.03

60
(2) 0.05 0.10 0.23 0.59 1.80
(10) 0.07 0.16 0.31 0.72 1.99
(11) 0.72 1.36 2.75 5.99 18.78

120
(2) 0.04 0.10 0.24 0.63 2.23
(10) 0.06 0.17 0.32 0.71 2.31
(11) 1.25 2.43 4.91 15.24 33.16

Table 5.6: Quality of the repeated rotation axis estimations for the time measurements by dg(ĉ, c)
in degree.

n Model
rotation K

axis 8 16 32 64 128

30
(2) 1 0.92 0.64 0.45 0.33 0.21
(10) 1 0.67 0.44 0.30 0.22 0.15
(11) 1 1.20 0.59 0.40 0.23 0.16
(11) 2 2.57 0.73 0.55 0.37 0.25

60
(2) 1 0.64 0.53 0.31 0.23 0.15
(10) 1 0.43 0.26 0.22 0.14 0.10
(11) 1 1.05 0.37 0.25 0.18 0.11
(11) 2 2.67 0.60 0.35 0.23 0.17

60
(2) 1 0.42 0.33 0.23 0.14 0.11
(10) 1 0.31 0.21 0.15 0.10 0.07
(11) 1 0.86 0.27 0.17 0.11 0.07
(11) 2 2.39 0.37 0.25 0.17 0.12
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Levenberg–Marquardt algorithm.

In addition to the computation time, Table 5.6 reports the quality of the repeated rotation

axis estimations by the mean distance of dg(ĉ, c), which again shows higher accuracy for larger

K and n as discussed in Section 4 of the article.

6 Estimation procedure for knee motion during gait

In section 6 in the main article we have studied a real data example: the deformation of the

upper and lower leg by two potentially non-orthogonal rotations at the knee joint during

gait. These two rotations are flexion-extension about a right-to-left (medial-lateral) axis and

the internal-external rotation of the lower-leg relative to the upper leg about an axis directed

along the long axis of the lower leg. The data set consists of T time dependent observations

M1, . . . ,MT whereas each Mi is a collection of markers Mi = (Mi1, . . . ,MiK̃) on the upper

and lower leg with Mij ∈ R3, j = 1, . . . , K̃. Let Ĩ1 and Ĩ2 be a partition of indices {1, . . . , K̃}
representing groups of K̃1 markers Ĩ1 on the upper leg and K̃2 markers Ĩ2 on the lower leg.

Two markers Mι1 , ι1 ∈ Ĩ1 and Mι2 , ι2 ∈ Ĩ2 are chosen as basis points at the upper and lower

leg. Set I1 = Ĩ1 \ {ι1}, I2 = Ĩ2 \ {ι2}, K = K̃ − 2, K1 = K̃1 − 1 and K2 = K̃2 − 1 then

directions Xi = (Xi1, . . . , XiK) are derived by

Xij =
Mij −Miι1

‖Mij −Miι1‖
, j ∈ I1, Xij =

Mij −Miι2

‖Mij −Miι2‖
, j ∈ I2

for i = 1, . . . , T , which are invariant to translation and size changes.

For the sake of convenience, we assume the observations X1, . . . ,XT are independent and

modify the single rotation model (10) in the main article to

Xij = R(c, θij)X1j ⊕ εij (j = 1, . . . , K). (6.1)

A more careful modelling of the time dependencies is left for future work, e.g., by an autore-

gressive model as suggested by (Rivest, 2001, Section 4.1).

The first (flexion-extension) rotation axis c1 is estimated by the estimation procedure (7)

in the main article and describes a bending deformation of the upper and lower leg around

the knee. The lower leg rotates relative to the upper leg whereas the upper leg rotates

relative to the pelvis. At first, we estimate the rotation angles θui of the upper leg in order to

estimate the rotation angles θli of the lower leg relative to the upper leg. The least squares

125



S22

(a) bone (b) skin

Figure 6.1: Predicted rotation angles (θ1, ψ1) = (θ̂u, ψ̂u) of directions on the upper leg and angles
(θ2, ψ2) = (θ̂l, ψ̂l) of directions on the lower leg for the first 200 time points. (a) Estimated
rotation angles of directions derived from bone markers. (b) Estimated rotation angles of
directions derived from skin markers. (angle units in radian)

estimators (ĉ1, r̂1) can be used to estimate the parameters of (6.1) with

θij = atan2{〈P(ĉ1,r̂1j)Xij, ĉ1 ×X1j〉, 〈P(ĉ1,r̂1j)Xij, X1j − ĉ1 cos(r̂j)〉}. (6.2)

The predictor of θui , i = 1, . . . , T is

θ̂ui =
1

K1

K1∑

j=1

θij, j ∈ I1.

Next, the directions are de-rotated by X̃ij = R(ĉ1,−θ̂ui )Xij for j = 1 . . . , K and i = 1, . . . , T .

The directions X̃ij, j ∈ I1 are directions on the upper leg and do not rotate about ĉ1 after

the inverse deformation. The remaining rotation of the lower leg relative to the upper leg is

then

θ̂li =
1

K2

K2∑

j=1

θ̃ij, j ∈ I2 with

θ̃ij = atan2{〈P(ĉ1,r̂1j)X̃ij, ĉ1 × X̃1j〉, 〈P(ĉ1,r̂1j)X̃ij, X̃1j − ĉ1 cos(r̂j)〉}.

Finally, we obtain a set of de-rotated directions Z by Zij = X̃ij, j ∈ I1 and Zij =

R(ĉ1,−θ̂li)X̃ij, j ∈ I2 for i = 1, . . . , T .

The estimation of the second (internal-external) rotation axis (ĉ2, r̂2) and ψ̂u, ψ̂l follows

the same steps of the above paragraph using using Zi instead of Xi for i = 1, . . . , T .

In addition to the estimates ĉ1 and ĉ2, we estimate the rotation axes ĉ1j and ĉ2j for each
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marker j = 1 . . . , K. Therewith, we can quantify the estimations by the dispersion σdg(ĉ1,ĉ1j)

of the geodesic distance dg(ĉ1, ĉ1j) and σdg(ĉ2,ĉ2j) respectively.

Figure 6.1 reports the predicted rotation angles (θ̂ui , ψ̂
u
i ) of the upper leg relative to the

laboratory reference frame and (θ̂li, ψ̂
l
i) of the lower leg relative to the upper leg for the first

200 time points. The larger observed rotation angles around the second rotation axis for the

skin data is due to the well-known deformation of the skin surface.
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