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A B S T R AC T

The use of statistical shape analysis in medical settings has increased during the last decades. This

thesis presents contributions to three major topics of statistical shape analysis. These topics are:

the modeling of shape by a geometrical model, the study of rotational shape deformations and the

comparison of shapes between populations. All methods that are developed in this thesis are applied

to medical problems.

Paper I presents a semiautomatic method for prostate segmentation in radiotherapy treatment

planning. To facilitate the manual delineation of the prostate in medical images, an intuitive ap-

proach is developed for 3D modeling of the prostate by slice-wise best fitting ellipses in each

image. The focus is to estimate a mean shape from a set of training data parametrized by the geo-

metrical model. The proposed estimate is initialized by the definition of a few control points in a

new patient. All results are compared to manual delineations by physicians with an average percent-

volume overlap of 90%. An additional sample study suggests possible time saving effects by the

method and illustrates thereby its potential.

Paper II studies rotational deformations of objects. The rotational deformations such as twisting

or bending have been observed as the major variations in some medical applications, where the

features of the deformed 3D objects are directional data. Models and estimators are proposed for

one or the composition of two simple deformations based on the directional features. The proposed

method uses a generalized small circle fitting on the unit sphere. Two analyses of 3D object data

are presented in detail: one using skeletal representations in medical image analysis as well as one

from biomechanical gait analysis of the knee joint.

Paper III investigates shape differences between two populations of medical objects such as the

hippocampi of first episode schizophrenics and controls. Shape differences can be quantified by

hypothesis tests, as for instance by a permutation test. Several aspects of a sensitive hypothesis test

are elaborated, e.g., geometrical model properties that support accurate statistics of populations. A

permutation test is developed to test mean differences of two populations. The proposed method is

designed for data whose representations include both Euclidean and non-Euclidean elements. By

supporting non-Euclidean components such as directions, the proposed hypothesis test is novel in

the study of morphological shape differences. Both global and local analyses showed statistically

significant differences between the first episode schizophrenics and controls and demonstrated the

sensitivity of the method.
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L I S T O F A B B R E V I AT I O N S

AAM Active appearance model
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1
I N T RO D U C T I O N

Statistical shape analysis has become an important field in medicine. The use of medical imag-

ing techniques has increased during the last decades and so has the workload of physicians

to manually segment target objects in patient data, e.g., in surgery and radiotherapy treatment

planning. Manual image interpretation is a time-consuming and error-prone task (Davies et al.,

2008). Segmentation of objects is one application of statistical shape analysis. In shape analysis,

a shape distribution is often obtained from a training set, i.e., a representative set of examples

from an object class. The shape distribution can be represented by a mean and the main modes

of variation and used in a Bayesian framework as a prior distribution. This allows segmentation

of an object in data with low image information. Cootes et al. (2001) proposed a segmentation

approach, active appearance model (AAM) that combines shape distribution and image intensi-

ties. In addition to segmentation of objects, other applications of shape analysis are: the study of

morphological differences of human organs and body structures (Albertson et al., 2003; Styner

et al., 2004; Ferrarini et al., 2006), the study of drug effects in epidemiology (McClure et al.,

2013) and the study of deformations of anatomical shapes (Joshi et al., 2002; Rivest et al., 2008;

Oualkacha and Rivest, 2012).

Shape analysis of an object Ω ⊂ Rd requires a definition of the term ‘shape’, a geometric

model M that parametrizes Ω and suitable statistics which deal with all components of the

geometric model. This thesis is focused on three-dimensional objects, i.e., d = 3.

Often, the size, location and rotation of an object are not connected to the underlying shape

variation. This thesis will follow Kendall (1984), who defines a shape as the geometrical infor-

mation that remains when the group of similarity transforms (location, scale and rotation) are

removed. However, scaling can be an important feature if the underlying research question is to

find shape differences between two populations. Dryden and Mardia (1998) introduced the term

size-and-shape which defines the geometrical information that remains after removing location

and rotation. It follows that shape comparison is affected by subjectivity.

With increased use of imaging techniques, the number of geometric models has also grown

steadily. The most well-known examples are landmark models (Kendall, 1984; Bookstein, 1986),

boundary point distribution models (PDMs) (Cootes et al., 1992; Kurtek et al., 2011) and the

family of skeletal models (Blum and Nagel, 1978; Siddiqi and Pizer, 2008; Pizer et al., 2013) as

discussed in Section 1.1.

The geometric model M can live in a product of Euclidean space (e.g., R3n), a product of

non-Euclidean spaces (e.g., S2m), or a product of Euclidean and non-Euclidean spaces (e.g.,
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shape space

Figure 1: Idea of a shape space. Each object is represented by a point in the shape space.

R3n× S2m) where n and m depend on the model; Sd := {x ∈ Rd+1 : ‖x‖ = 1} denotes the d-

dimensional unit hyper-sphere where ‖x‖ :=
√

x′x is the Euclidean norm of a column vector

x ∈ Rd+1 with transpose x′. The model representation in these coordinate systems reflects a

parametrization of an underlying object and is not yet location, rotation and scaling invariant.

The shape space S is defined as the space of all possible geometrical configurations of M which

are invariant under global translation, rotation and scaling. Another important notion is the pre-

shape space, the space of all possible configurations of M which are invariant under translation

and scaling. Dryden and Mardia (1998) have shown that models originally defined in R3n, live on

a (3n−4)-dimensional unit hyper-sphere S3n−4 in the pre-shape space. Thus, given a model M,

each shape corresponds to a point in the high-dimensional non-linear shape space S as depicted

in Figure 1. The non-Euclidean data structure requires suitable non-linear statistics.

Multivariate statistics for Euclidean data structures such as principal component analysis

(PCA) have been intensively developed during the last century. PCA reduces the dimension-

ality of data and describes the distribution by a selection of eigenvectors, also known as modes

of variation. Methods for Euclidean data are not easily applicable to non-Euclidean data. Of-

ten, a linear approximation of the non-Euclidean data by an embedding J : S→ RN is applied

in order to use classical statistical methods. Huckemann et al. (2010) pointed out that current

methods of PCA by linear Euclidean approximation are unsuitable if data in non-linear spaces

fall into regions of high curvature, or if they have a large spread. Thus, a generalization of the

methods to non-Euclidean data structures is necessary.

The focus of this thesis is the construction and application of geometric models, the use of

suitable statistical analyses and the development of novel methods to analyze shapes of objects.

In Section 1.1, the most common shape representations will be introduced. Two of these models

are used extensively in Paper I-III. In Section 1.2, important definitions and statistical methods

will be given that are used particularly in Paper II and Paper III of this thesis. In Section 2, all
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three papers are summarized and discussed. The main part of this thesis is Part II which contains

the manuscripts of Paper I, II and III, and the corresponding supplementary materials.

1.1 S H A P E R E P R E S E N TAT I O N

First, a geometric model M is required to parametrize a geometric representation Ω⊂R3 where

M typically lies on a manifold. There exists a rich collection of geometrical models in the

literature. A selection of important geometrical models are categorized in this thesis as follows:

L A N D M A R K M O D E L S A solid object is modeled by the positions of a finite number of mathe-

matical or anatomical landmarks represented by a configuration matrix X = (X1, . . . ,XK)
′

with K landmarks and Xi ∈ R3. The landmark model was introduced by Kendall (1984);

Bookstein (1986) who did pioneering work in the field of shape statistics. A problem

which arises, is the definition of precise landmarks in order to obtain good correspondence

between objects. The definition of landmarks is reasonably intuitive in two-dimensional

objects but becomes challenging in three-dimensional objects such as the prostate.

P D M A solid object is defined by the positions of the sampled surface points (Cootes et al.,

1992; Kurtek et al., 2011). PDMs are also called pseudo-landmarks and the representation

is also given by a configuration matrix X∈R3K where K is the number of boundary points.

A large number of shape models is based on PDMs.

G E O M E T R I C A L T E M P L AT E S The boundary of an object is modeled by a set of parametric

geometrical components, such as line segments, triangles, circles and ellipses (Dryden and

Mardia, 1998). As a result, an object can be described by a list of geometrical parameters.

This approach is used in Paper I of this thesis in order to model the prostate by best-

fitting-ellipses (BFEs). The geometrical model is described by parameters (θ ,α,φ)′ ∈
(R2×R2

+×(−π,π])L where θ l ∈R2 defines the position of the l-ellipse, α l
1,α

l
2 the length

of the first and second principal axis and φ the rotation angle as depicted in Figure 2a.

D E F O R M AT I O N - O F - AT L A S M O D E L S The shape changes of an object in an image are mod-

eled by the deformations of a template image provided by an atlas (Pennec, 2008; Zhang

et al., 2013). The atlas presents a reference of population of shapes obtained from a set

of training shapes. Each template is labeled by a collection of representative features and

geometric attributes, e.g., a set of landmarks and parametric geometrical components as

previously discussed.

S K E L E TA L M O D E L S The idea of skeletal models is based on the medial locus of an object,

first introduced by Blum and Nagel (1978). The medial locus describes the inherent sym-
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Figure 2: Illustration of geometrical models. A geometrical template model of the prostate by slicewise
BFEs is visualized in (a). Each ellipse is defined in a slice l = 1, . . . ,L by a position θ l , the
length α l

1,α
l
2 of the 1st and 2nd principal axis, and a rotation angle φ . (b) Visualization of

points from the medial locus of a two-dimensional object defined by the centers of maximal
circles. (c) Discrete skeletal representation (s-rep) of a flat ellipsoid. The skeletal positions are
depicted as small spheres. On each side of the sheet, there is a spoke, a vector with direction
and length on the top and on the bottom connecting the skeletal sheet to the boundary. Also, for
each edge grid point there is an additional spoke vector connecting the skeletal sheet folded to
the crest of the slab.

metry of an object. There exist different possibilities to define a medial locus of an object

Ω. A formal definition is given by

MAΩ := {q ∈ Rn | |{p ∈ ∂Ω | ||q− p||= d(q,Ω)}|> 1},

where d(q,Ω) := minp∈∂Ω ||q− p|| defines the distance of a point q ∈ Rn to the object

boundary ∂Ω. Figure 2b visualizes points of the medial locus of a two-dimensional object.

In 3D, the medial locus is given by the centers of all maximal spheres. A sphere S⊆Ω is

called maximal if there exists no larger sphere S̃ ⊆ Ω with S ⊂ S̃. In Section 3 of Siddiqi

and Pizer (2008) it is shown that the medial locus can be described by an inward “grassfire”

that starts at the boundary and dies out at a folded version of the medial locus called MΩ.

Given a folded medial locus MΩ, the medial representation of an object Ω is determined

by a set of spoke directions from points of MΩ to the corresponding points of tangency on

the boundary ∂Ω.

Strictly medial representations are limited by the fact that every protruding boundary kink

results in additional medial branches. Thus, two versions of the same object with small

noise can have drastically different medial representations. Skeletal models achieve addi-

tional stability by relaxing the medial constraint. Figure 2c visualizes a discrete version

of the skeletal object representation in R3 composed of a skeletal sheet and spokes which

emanate from a skeletal position pi on the skeletal sheet to the surface. Each spoke is com-

posed of a normal direction ui with length ri. The discrete skeletal representation (s-rep)

is described by a feature vector sss = (p1, . . . , pna ,r1, . . . ,rns ,u1, . . . ,uns)∈R3na×Rns
+×S2ns
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with the number na of skeletal positions and ns of skeletal directions. This model and its

properties will be discussed and used extensively in Paper III of this thesis. Furthermore,

the model is used as an application in Paper II for the study of rotational deformations.

Additional representations are for example implicit models (Leibe et al., 2006) or models using

spherical harmonics (Styner et al., 2006).

The calculation of statistics on a set of shapes requires quantification of shape differences. A

central difficulty is the identification of correspondence between the parameterized shapes. Huf-

nagel et al. (2009) proposed the use of correspondence probabilities for the case of unstructured

point sets such as PDMs. Alternatively, Cates et al. (2007) introduced correspondence by the op-

timization of a dynamic particle system by starting with few initial points on the surface (called

particle) and splitting the particles in each iteration step. The optimal configuration is defined as

one in which the entropy of each shape is balanced against the entropy of the ensemble shapes.

Skeletal models introduce correspondence by a stable branching structure of the skeletal sheet,

in addition to modeling the skeleton as medial as possible (Pizer et al., 2013). This is discussed

in detail in Paper III of this thesis. The geometrical template model used in Paper I introduces

correspondence by the templates themself in addition to constraints between the geometrical

parameters.

Landmark models and PDMs are often analyzed by PCA although Dryden and Mardia (1998)

have shown that these models, originally defined in R3n, live on the unit hyper-sphere S3n−4 after

removing location and scaling. Other models, such as geometrical template and skeletal models

live by definition on a product of Euclidean and non-Euclidean spaces. Therefore, statistics

should incorporate all elements of these models.

1.2 S H A P E S TAT I S T I C S

1.2.1 General definitions

The shape space S of a model M can often be understood as a manifold. A space is called a

d-dimensional manifold if every point of S has a neighborhood to an open subset of Rd , i.e.,

for every point p of the manifold exists a map J : Up→ Rd for an open neighborhood Up of p

(Bronstein et al., 2008). For example, the tangent space TcSd at c∈ Sd , d≥ 2 can be parametrized

by Rd . Without loss of generality, let c be the (d +1)-dimensional vector c = (0, . . . ,0,1)′. The

exponential map Expc : Rd → Sd is defined for v ∈ Rd by

Expc(v) =
(

v
‖v‖ sin‖v‖,cos‖v‖

)
,
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with a convention of Expc(0) = c. The exponential map has an inverse, called the log map, and

is denoted by Logc : Sd → TcSd . Thereby, Sd is a manifold.

In general, there are two views to manifolds. The extrinsic view understands the manifold

embedded in a Euclidean space. Statistics are calculated in the tangent space on an extrinsic

mean. The intrinsic view understands the manifold as a topological space by itself. Shape spaces

are often described by a product of a real space Rn and a d-dimensional unit hyper-sphere Sd as

shown before (e.g., Section 1.1). Elements from R+ can be transformed by the logarithm into R.

Thus, it is important to understand statistics on Sd .

To work with observations on Sd , a distance measure is required. An intrinsic distance mea-

sure is defined by the Riemannian geodesic distance function dg by the arc length of the shortest

great circle segment joining x,y ∈ Sd , and is

dg(x,y) = arccos(x′y). (1)

For a random element X whose domain is Sd , a sensible notion of the mean µ(X) is defined by

a minimizer of the mean squared distance,

µg(X) = argmin
x∈Sd

E{d2
g(x,X)}, (2)

often called the geodesic or Fréchet mean (Fréchet, 1948; Karcher, 1977). A useful measure of

dispersion is the geodesic variance which is defined as

Varg(X) = E{d2
g(µg(X),X)}= min

x∈Sd
E{d2

g(x,X)} (3)

provided that µ(X) exists. Papers II and III use the intrinsic Fréchet mean to analyze components

on Sd . The spherical information in Paper I (the rotation angle of the 1st principal axis of an

ellipse) is analyzed by an extrinsic mean. In all three papers, the understanding of a rotational

motion in the three-dimensional space (3-space) is important.

The axis–angle pair (c,φ) ∈ S2 × [0,2π) represents a rotation in 3-space, where a vector

x ∈ R3 is rotated by (c,φ) by applying x 7→ R(c,φ)x with the matrix

R(c,φ) = I3 + sinφ [c]×+(1− cosφ)(cc′− I3). (4)

Here, I3 is the the three-dimensional unit matrix, and the 3×3 matrix [c]× is the cross product

matrix satisfying [c]×v = c× v for any v ∈ R3. The group of rotations is denoted by SO(3) with

R′R = I3 for R ∈ SO(3).

Thereby, a configuration matrix X = (X1, . . . ,XK)
′ with Xi ∈ R3, i = 1, . . . ,K can be aligned

by X→ sR(c,φ)(X− t) with a translation vector t ∈ R3, a scaling factor s ∈ R+ and a rotation
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matrix R ∈ SO(3). The trajectory of a rotation of a direction vector x ∈ S2 about an axis c ∈ S2

is a circle, centered at c with radius r = arccos(x′c), and is denoted by

δ (c,r) = {x ∈ S2 : x′c = cos(r)} ⊂ S2. (5)

Since δ (c,r) = δ (−c,π − r), we may assume that r ≤ π/2. A circle δ (c,r) is called a great

circle or geodesic if r = π/2, and a small circle if r < π/2. These observations are important

for the analysis of rotational motion in Paper II, such as global rotation, rotational bending and

rotational twisting.

1.2.2 Estimation of shape distributions

An important aspect of shape analysis is to describe the variability of a set of objects which

are parametrized by a model M. Another aspect is to find a subspace that best represents the

variability of the high-dimensional data (dimension reduction). The geometrical parameters of

the BFEs in Paper I are modeled by Gaussian distributions as described in Dryden and Mardia

(1998). Another powerful method is PCA for Euclidean data or the generalization of PCA to

non-Euclidean data.

PCA describes each data point by a mean and a sum of weighted eigenmodes. It is also a di-

mension reduction method when retaining only the main modes of variation in a data set. PCA of

d-dimensional data can be calculated by a forward or backward approach corresponding to the

order in which the dimensions are considered. In a traditional forward approach the mean is es-

timated as the 0-dimensional affine space (a point), which is the best fitting subspace to the data.

Then, PCA is described by increasing the dimension of the best fitting subspace successively

0→ 1→ ··· → d−1.

Starting with fitting the best subspace of dimension d− 1 to the data, PCA can also be carried

out in the reverse order by

0← 1← ··· ← d−1.

In non-Euclidean spaces, such as the d-dimensional unit sphere Sd , generalizations of PCA

depend on this forward or backward direction. Damon and Marron (2013) have studied this

across a variety of contexts, and have shown that backwards subspace fitting is generally more

amenable to analysis, because it is equivalent to a simple adding of constraints. Generalizations

of PCA for data on Sd are discussed in the following.

Fletcher et al. (2004) proposed a forward generalization of PCA to manifolds called principal

geodesic analysis (PGA). The first step of PGA is to find a center point of the data by a forward

Fréchet mean. Given the Fréchet mean, the next step is to find the best fitting geodesic passing
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Figure 3: Illustration of point mapping from S2 to R2 with PAA. The coordinates vi ∈ S2 are mapped to
xi ∈R2, i∈{1, . . . ,n} by a projection h. The coordinate system is defined by the principal circles
(δ1,δ2). The first principal circle δ1 is defined by the center c1 and the radius r1 = dg(c,µ)
between the center and the principal circle mean µ . The second principal circle δ2 is defined by
the geodesic passing through the coordinates (c1,µ)

T . The second principle circle is orthogonal
to the first principle circle.

through the mean and afterwards the best fitting geodesic orthogonal to this geodesic. The ap-

proach leads to undesirable results if the data are uniformly distributed on a geodesic (e.g., the

equator), because the mean would be located at the north or south pole. Huckemann et al. (2010)

proposed an important modification to solve this problem by a backward step during the first

dimension reduction. Instead of finding the best fitting 0-space (a point), Huckemann proposed

to find the best fitting geodesic in the first step. Afterwards, the mean is found on this geodesic,

followed by the forward approach of finding the best fitting geodesics through the mean, orthog-

onal to each other for all dimension d > 2. Neither of the methods are suitable for data which

are distributed along small circles. This motivates principal arc analysis (PAA) by Jung et al.

(2011), a generalization of PCA on S2 by finding the best fit of any circle (small or great) to the

data. This approach is illustrated in Figure 3. The first approach discussed above is a classical

forward approach, whereas the last two methods contain a backward view to the data in the first

step followed by the classical forward view.

Principal nested sphere (PNS) is a fully backward approach that fits the best lower dimen-

sional subsphere in each dimension starting with Sd (Jung et al., 2012). The subspheres can be

great or small and thereby, the method includes variation along small and great circles. PNS is

described in more detail in Paper III where it is used extensively in order to produce suitable

means of shape populations.
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2
R E S U LT S A N D D I S C U S S I O N

All three papers in this thesis are motivated by medical applications. Paper I presents a semiauto-

matic method for prostate segmentation in radiotherapy treatment planning. Paper II presents a

novel framework to analyze the biomechanical gait analysis of the knee joint. Paper III presents

a novel approach to analyze anatomical shape differences between hippocampi of first episode

schizophrenics and controls. Thus, the work in this thesis has demonstrated that statistical shape

analysis is an essential approach in medical applications.

2.1 PA P E R I - P RO S TAT E S E G M E N TAT I O N

This paper is focused on the development of an intuitively appealing method for the 3D model-

ing and segmentation of the prostate in radiotherapy treatment (RT) planning of prostate cancer.

Prostate cancer is the second most diagnosed cancer worldwide (Jemal et al., 2011). The de-

lineation of the target volume is a time-consuming task that is often performed manually by a

physician, slice by slice in a set of computed tomography (CT) or magnetic resonance (MR)

images. The proposed semiautomatic method for prostate delineation reduces the workload of

physicians and offers comparable accuracy. The method is based on the statistical shape analy-

sis of a training set of prostates that can be understood as the prior information in a Bayesian

framework.

The developed geometric model M of the prostate follows the object parametrization by geo-

metrical templates as proposed in Dryden and Mardia (1998). The prostate has an ellipsoid-like

and smooth shape. This motivates modeling the prostate by slicewise BFEs. The BFEs are found

by a least-square minimizer as described in Ahn et al. (2001). Suppose the training set consists

of N data sets and the prostate is manually outlined in Ln slices in each data set n = 1, . . . ,N; the

stacked ellipses are parametrized by

BFEnl := (θ nl,αnl,φ nl)T ∈ R2×R2
+× (−π

2
,
π

2
], l = 1, . . . ,Ln,n = 1, . . . ,N (6)

with positions θ nl , lengths αnl
1 ,α

nl
2 of the first and second principal axes, and rotation angles

φ nl as depicted in Figure 2a. The number of slices Ln usually varies between the data sets

n = 1. . . . ,N. Therefore, either an interpolation of the model parameters or an interpolation of

the image intensities is necessary. Because the image information of the prostate is low, an in-

terpolation of the image intensities should be avoided. The implemented method assumes to set
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manual control points on the boundary which are used to make the BFEs comparable by the

transformation of the parametrized ellipses model to a common position, scale and orientation.

Control points are assumed in the first, last and center slice. Moreover, the first and second

principal axes are reordered, the rotation parameter φ nl is relaxed in case of circularity and

smoothing is performed between neighboring slices to avoid large forward and backwards rota-

tions. Thereby, correspondence is introduced in the proposed geometric model in Paper I. The

normalized parameters result in a mean shape and shape distribution based on the training set.

The mean shape is deformed and registered in a new data set based on the control points.

Several approaches are proposed in the literature to segment the prostate. A collection of meth-

ods available for prostate segmentation is reviewed by Ghose et al. (2012). The works of Saroul

et al. (2008) and Mahdavi et al. (2011) are related to the parametrization method by BFEs as

used in Paper I. In contrast to the work of those authors, the approach of slice-wise BFEs intro-

duces more flexibility into the model. Moreover, the method has similarities to a tubular medial

representation (Saboo et al., 2009). The proposed approach is very intuitive for physicians; the

registration of the mean shape has resulted in fairly accurate estimates in a set of test data with

an average volume overlap of 90% compared to the manual segmentations. Moreover, a time

saving effect of 30% could be achieved. Thus, the proposed method can provide the physicians

with a good initialization of the prostate contour in RT planning. The model fitting procedure for

a training data set and the calculation of a mean shape is easy to understand compared to more

sophisticated geometric models such as s-reps (Pizer et al., 2013) which support more accurate

statistics.

In addition to the deformation and registration of the obtained mean shape in a new data set,

the prior was used in a Bayesian framework in order to estimate the posterior shape model in a

new data set using a Markov chain Monte Carlo (MCMC) method. Only small improvements

in the volume overlap could be achieved with large computational costs. This demonstrated the

high performance of the mean shape model based on stacked ellipses.

Future work

The small improvements of the segmentation results using MCMC motivates the implementa-

tion of an alternative approach, e.g., an active shape model (ASM) or an AAM (Cootes et al.,

2001; Davies et al., 2008; Heimann, 2008). ASM and AAM model the image intensity variation

in addition to the shape variation derived from a training data set. Both shape and image inten-

sity variation are combined in a single statistical model. The image intensity is sampled near the

model edges in ASM whereas all image intensity information which is covered by the target ob-

ject is used in AAM. Both approaches find the final shape model parameters by a minimization

procedure. The implementation of these methods may also reduce manual interaction such as

the definition of control points.

14



Further improvements may be achieved by the incorporation of additional constraint and reg-

ularization terms such as the surface curvature. Around the center slice of the prostate, a low

surface curvature can be expected and smaller changes of model parameters between neighbor

slices. Towards the outer slices of the prostate, larger surface curvature can be expected and also

larger changes of model parameters between neighbor slices. Thus, the surface curvature could

be used as a weight parameter for the implemented regularization terms.

A larger study would be an important step for the implementation of the proposed method

into the clinical praxis. This includes a full integration of the method into the work-flow of

physicians during the RT planning.

2.2 PA P E R I I - E S T I M AT I O N O F ROTAT I O N A L D E F O R M AT I O N S

Segmentation of 3D objects in medical imaging is one application in statistical shape analysis,

another is the study of deformations. The deformations of objects such as organs and anatom-

ical structures can appear in several variants, simple and complex types. An important class is

rotational deformations including rigid rotation, bending and twisting of an object. The analy-

sis and understanding of such rotational deformations can be important for an accurate medical

treatment and diagnosis. For example, the analysis of biomechanical deformations are crucial

for the construction of biomechanical models and the treatment of orthopedic problems (Rivest

et al., 2008; Ball and Greiner, 2012). Paper II of this thesis studies the rotational deformations

and proposes models and estimators based on the directional features x ∈ S2 of the deformed

objects.

If a K-tuple of K ≥ 2 direction vectors x = (x1, . . . ,xK) ∈ (S2)K is rotated together about

a common axis c, then each of the rotated direction vectors is on a circle δ (c,r j) as defined

in (5) with common center c but with different radii r j = arccos(c′x j), j = 1, . . . ,K. As a results,

a collection of concentric circles with a common center c and radii tuple r = (r1, . . . ,rK) ∈
[0,π/2]× [0,π]K−1 is obtained by

δ (c,r) = {(x1, . . . ,xK) ∈ (S2)K : x′jc = cos(r j), j = 1, . . . ,K}. (7)

The proposed method in Paper II uses the concentric small circles to analyze the rotational

deformations of an object. Based on this idea, a rotation model is proposed by

X j = R(c,θ j)µ j⊕ ε j ( j = 1, . . . ,K) (8)

for a K-tuple of random direction vectors X = (X1, . . . ,XK), unknown constants c,µ j ∈ S2 and

latent random variables θ j ∈ [−π/2,π/2). The error terms ε j are assumed to be independently

distributed, and the ⊕ sign defines a suitable action of the error distribution for observations
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on S2. Estimators are developed for c,r,µ j and the latent variable θ j. Moreover, this model is

extended to hierarchical rotations to model and estimate rotational deformations which consist

of two independent deformations, e.g., bending and twisting. The numerical performance of the

proposed estimator is demonstrated by a simulation study for different situations. Furthermore,

the methods are applied to rotationally deformed ellipsoids represented by s-reps as discussed

in Section 1.1. This is of interest because several organs have an ellipsoid-like shape such as the

prostate. Finally, an analysis of biomechanical data of the knee joint is presented and demon-

strates the quality of the method.

Future work

The method introduced in Paper II is an initial work in the analysis of rotational deformations

from directional data and opens several potential work directions. The extension of the pro-

posed models to time series models can be investigated in the future. Time series models such

as autoregressive-moving-average models could model more accurate rotational deformations

observed over time. Furthermore, an improvement of the prediction of θ j is of interest. The esti-

mations of rotational deformations from s-reps have indicated that it is necessary to incorporate

the surface curvature into the model in order to obtain accurate predictions. The Gaussian curva-

ture, mean curvature and shape operator may be useful descriptors (Gray, 1998; Kühnel, 2006).

Other research topics would be the extension of the hierarchical deformations to more than two

rotational deformations in addition to the incorporation of locational information to the analysis

of directional data.

The next two sections present an alternative approach to estimate rotational deformations and

an exploratory tool to discriminate rotational deformations. The methodologies presented here,

are suggestions for future research.

Analysis of rotational deformations by intersecting geodesics

In Paper II, the estimation of a rotation axis c ∈ S2 is based on the Fréchet mean of the rotation

axes of a set of small circles. Instead of using small circles, an alternative estimator could be

based on intersecting geodesics (large circles). Suppose, we have K direction vectors xi j ∈ S2 at

time points i = 1,2 with j = 1, . . . ,K. An estimation of the rotation axis can be obtained from

the intersection of geodesics defined by the pairs (vi,ci) with

v j =
x1 j + x2 j

||x1 j + x2 j||
⊥ c j =

x1 j× x2 j

||x1 j× x2 j||
, j = 1, . . . ,K. (9)

Here, v j is the bisector of the pair (x1 j,x2 j). Notice, that the intersection points of two geodesics

are perpendicular on S2. Figure 4 visualizes the intersecting geodesics of 8 directions which are
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bent and rigidly rotated around the common rotation axis c = (1,0,0)′. It can be observed that

the intersection points cluster around the true rotation axis.

(a) i = 1 (b) i = 1,2

Figure 4: Toy example. (a) Visualization of 8 observed direction vectors on S2. (b) Visualization of the
directions before and after the rotational deformation. Each color belongs to a direction j =
1, . . . ,8, i.e., each color appears three times (two points and the corresponding geodesic). The
intersecting geodesics clustering around the true rotation axis c = (1,0,0)′.

This idea is an interesting alternative to the proposed approach in Paper II. However, simu-

lations have shown more accurate and robust results using concentric small circles because in

certain situations undesirable side-clusters were observed using intersecting geodesics, e.g., in

case of observations close to the underlying rotation axis.

An exploratory discrimination tool for rotational deformations

In the following section, a representation called rotation twisting folding (RTF) is proposed.

RTF compares pairwise directions between different observations to discriminate rotational

deformations in rigid rotation, bending and twisting. The RTF representation is designed to

capture rotation, bending and twisting by a set of parameters. Thereby, the representation al-

lows to distinguish between the three different types of rotational motions. In particular, specific

patterns in the scatterplots of the RTF parameters can be observed.

Suppose, we observe a tuple of directions before rotation (x11,x12) and after rotation (x21,x22),

i.e., directions xi j ∈ S2 with j = 1,2 number of directions at time points i = 1,2. The RTF

representation of (xi1,xi2) is defined by a triple (ψ,θ ,τ) ∈ S2×S1×R+ where ψ indicates the

amount of rigid rotation, θ indicates the amount of twisting and τ the amount of bending as

visualized in Figure 5 and explained in more detail in the following.

The bisector between the tuple (xi1,xi2) is given by

ci =
xi1 + xi2

||xi1 + xi2||
, i = 1,2.
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Figure 5: Parameter definition in the RTF representation. (a) Definition of ψ ∈ S2 which defines the
rotation direction and rotation angle of bisector c1 to c2. (b) Location of the tuple (x11,x12)
after rotation corresponding to ψ with rotation angle γ = arccos(ψ3). (c) Definition of θ by
the signed cosinus between the vectors Logc2

(R̃(c1,c2)x11) and Logc2
(x21) in the tangential

plane Tc2S2. (d) Definition of τ by the ratio of the geodesic distances of the tuples (x11,x12) and
(x21,x22). Here, (x̃11, x̃12) is the tuple (x11,x12) after transformation by ψ and θ .

For convenience, denote by R̃(a,b) ∈ SO(3) a rotation matrix that moves a ∈ S2 to b ∈ S2, and

~n = (0,0,1) defines the north pole on S2. Thereby, the direction vector ψ = (ψx,ψy,ψz) ∈ S2 is

defined by

ψ := R̃(c1,~n)c2 (10)

which rotates the bisector c1 to c2 with rotation angle γ = arccos(ψz). The direction ψ ∈ S2

indicates the amount of rigid rotation. The ratio of the two pairs of directional vectors is defined

by

τ :=
dg(x21,x22)

dg(x11,x12)
(11)

with the geodesic distance dg as defined in (1). The ratio τ indicates the amount of bending

between the observations with τ = 1 in case of no bending. Finally, x11 is mapped to κ1 ∈R2 by

κ1 = Logc2
(R̃(c1,c2)x11); and x21 is mapped to κ2 ∈R2 by κ2 = Logc2

(x21). The vectors κ1 and

κ2 are elements of the tangent space Tc2S2. Thereby, the parameter θ is defined by

θ := sign(κ1×κ2)arccos
(

κ ′1κ2

||κ1||||κ2||

)
, (12)

where sign(κ1×κ2) is the sign of the cross product of κ1 and κ2. The parameter θ indicates the

amount of twisting with θ = 0 in case of no twisting.

The decomposition by the RTF representation can be understood by considering a simple

example, see Figure 6. Suppose, an object is modeled by four surface points with attached direc-

tions x0 j, j = 1, . . . ,4. Moreover, consider 30 random observations after rigid rotation, bending
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(a) Direction vectors (b) Rigid rotation (c) Bending (d) Twisting

Figure 6: Toy example for the RTF representation. (a) Each direction vector x0 j is a point on S2,
j = 1, . . . ,4. (b-d) 30 realizations of random rotational deformations. Different colors represent
different observations. (b) Rigid rotation about (1,0,0)′. (c) Bending reflected by a rotation of
the directions on the left and right side of the sphere about the common axis (1,0,0)′ by com-
mon angle but in opposite directions. (d) Twisting reflected by a rotation of directions on the
left and right side about the common axis (0,1,0)′ by common angle but in opposite directions.

and twisting of the object as described in Figure 6 where each rotational deformation was gen-

erated by

Xi j = R(ω,φ)x0 j⊕ ε or Xi j = R(ω,−φ)x0 j⊕ ε

with i= 1, . . . ,30, j = 1, . . . ,4, φ ∼N(0,η2) and a rotation axis ω ∈ S2. The RTF parametrization

is calculated between all pairwise combinations (x0k1 ,x0k2 ,Xik1 ,Xik2) with

{k1,k2} ∈ {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}},

represented by the tuples (Xik1 ,Xik2).

The RTF representation for each rotational deformation is visualized in Figure 7. Observa-

tions obtained by rigid rotation (Figure 6b) result in a small spread of the parameters θ and τ

(Figures 7d and 7g) but in a wide spread of ψ around the underlying rotation axis (Figure 7a).

Observations obtained by a bending deformation (Figure 6c) result in a small spread of the pa-

rameter θ but in a wide spread of τ (Figures 7e and 7h). The parameter ψ indicates a rigid

rotation for the tuples (Xi1,Xi2) and (Xi3,Xi4) about (1,0,0)′, no rotation for the tuples (Xi1,Xi4)

and (Xi2,Xi3), and a minor rotation for the tuples (Xi1,Xi3) and (Xi2,Xi4) about (0,0,1)′ (Fig-

ure 7b). Observations obtained by twisting (Figure 6d) result in a small spread of the parameter

τ but in a wide spread of θ (Figures 7f and 7i). The parameter ψ indicates only rigid rotation

for the tuples (Xi1,Xi2) and (Xi3,Xi4) (Figure 7c).

The presented results reveal the potential of the RTF representation as an exploratory tool for

the discrimination analysis of rotational deformations from directional data. However, further

simulations and research is required on the basis of more complex objects and real data examples.
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(a) ψ after rigid rotation (b) ψ after bending (c) ψ after twisting

(d) θ after rigid rotation (e) θ after bending (f) θ after twisting

(g) τ after rigid rotation (h) τ after bending (i) τ after twisting

Figure 7: RTF representation of rigid rotated, bent and twisted directions. (a-c) Parameter ψ , (d-f) pa-
rameter θ (g-i) parameter τ of the RTF representation. In each plot 180 realizations (points)
are depicted of the corresponding RTF parameter. Different colors represent different direction
tuples, e.g., (1-2) for the tuple (Xi1,Xi2) with i = 1, . . . ,30.

The proposed method may be useful for a classification of rotational deformations into rigid

rotation, bending and twisting. Such a classification is left for future research.

2.3 PA P E R I I I - N O N L I N E A R H Y P OT H E S I S T E S T I N G

Another application of statistical shape analysis is presented in Paper III by exploring shape

differences between hippocampi of first episode schizophrenics and controls. The study of mor-
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phological changes of human organs and body structures is of general interest in medical analy-

sis, e.g., the understanding of neuroanatomical structures of the human brain (Gerig et al., 2001;

Styner et al., 2004; Ferrarini et al., 2006).

Paper III proposes a novel method to test mean differences of populations on data whose rep-

resentations include both Euclidean and non-Euclidean elements. Several aspects of a sensitive

hypothesis test are elaborated such as important geometrical model properties which support

accurate statistics of populations. The s-rep model (Pizer et al., 2013) is presented as a suitable

model that includes Euclidean components and components which live on spheres. A statistical

method based on PNS (Jung et al., 2012) is proposed to calculate means and to analyze the Eu-

clidean and non-Euclidean components of the models. Finally, a permutation test is presented

based on Pesarin (2001); Terriberry et al. (2005), in order to test for mean differences. A permu-

tation test is a non-parametric approach that uses the data to estimate the sampling distribution

of the test statistic under the null-hypothesis of equal distributions. Because of the assumption

that populations have equal distributions, it is valid to permute the data between the populations

without affecting the distribution of the test statistic. The test statistic is defined by a difference

measure. An appropriate difference measure is presented for the analysis of s-reps. The differ-

ence measure quantify the mean difference of geometrical object properties (GOP) which are

single or a collection of s-rep features. A global and local test based on the GOP differences are

proposed taking into account the problem of multiple comparison correction.

The analysis of first episode schizophrenics compared to controls demonstrated the power of

the permutation test, both globally as well as locally. Several statistically significant findings

could be made. The global test established a significant shape difference of the hippocampi be-

tween schizophrenics and controls. The local test showed a significant loss of hippocampal vol-

ume for schizophrenics. The significant volume difference was observed in the x and y-directions

but not in the z-direction for the aligned hippocampi. Moreover, several spoke directions were

found as statistically significant by the local test. These findings may be of high interest in neu-

roscience. In addition, Paper III is a novel study that analyzes morphological differences using

non-Euclidean data components such as directional information using s-reps. Moreover, a bias

for the test results was observed depending on the shape distribution used for the model fitting.

The choice of an appropriate shape distribution of a population is discussed in more detail in the

paper. Furthermore, the impact of a chosen data pre-processing was discovered.

Future work

Several open questions have been raised during the implementation of the proposed nonlinear

hypothesis test. A possible extension of the study is to investigate hippocampal changes of

schizophrenics and controls in longitudinal data. Studies such as Narr et al. (2004); Mamah

et al. (2012); McClure et al. (2013) have indicated the need for a more sensitive hypothesis test
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in order to examine shape differences inside a treatment group over time. A detailed power study

on the basis of simulated data and investigation of alternative combining functions for the global

test are also left open. Moreover, potential improvements can be made in the data modeling. This

includes the incorporation of image intensities in addition to morphological features in order to

test for population differences. Furthermore, the fitting procedure of s-reps to the data could be

improved in the future, e.g., by an automatic parameter choice for the fitting procedure and an

adaptive grid size choice of the skeletal sheet.
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