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A B S T R AC T

The use of statistical shape analysis in medical settings has increased during the last decades. This

thesis presents contributions to three major topics of statistical shape analysis. These topics are:

the modeling of shape by a geometrical model, the study of rotational shape deformations and the

comparison of shapes between populations. All methods that are developed in this thesis are applied

to medical problems.

Paper I presents a semiautomatic method for prostate segmentation in radiotherapy treatment

planning. To facilitate the manual delineation of the prostate in medical images, an intuitive ap-

proach is developed for 3D modeling of the prostate by slice-wise best fitting ellipses in each

image. The focus is to estimate a mean shape from a set of training data parametrized by the geo-

metrical model. The proposed estimate is initialized by the definition of a few control points in a

new patient. All results are compared to manual delineations by physicians with an average percent-

volume overlap of 90%. An additional sample study suggests possible time saving effects by the

method and illustrates thereby its potential.

Paper II studies rotational deformations of objects. The rotational deformations such as twisting

or bending have been observed as the major variations in some medical applications, where the

features of the deformed 3D objects are directional data. Models and estimators are proposed for

one or the composition of two simple deformations based on the directional features. The proposed

method uses a generalized small circle fitting on the unit sphere. Two analyses of 3D object data

are presented in detail: one using skeletal representations in medical image analysis as well as one

from biomechanical gait analysis of the knee joint.

Paper III investigates shape differences between two populations of medical objects such as the

hippocampi of first episode schizophrenics and controls. Shape differences can be quantified by

hypothesis tests, as for instance by a permutation test. Several aspects of a sensitive hypothesis test

are elaborated, e.g., geometrical model properties that support accurate statistics of populations. A

permutation test is developed to test mean differences of two populations. The proposed method is

designed for data whose representations include both Euclidean and non-Euclidean elements. By

supporting non-Euclidean components such as directions, the proposed hypothesis test is novel in

the study of morphological shape differences. Both global and local analyses showed statistically

significant differences between the first episode schizophrenics and controls and demonstrated the

sensitivity of the method.
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L I S T O F A B B R E V I AT I O N S

AAM Active appearance model
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1
I N T RO D U C T I O N

Statistical shape analysis has become an important field in medicine. The use of medical imag-

ing techniques has increased during the last decades and so has the workload of physicians

to manually segment target objects in patient data, e.g., in surgery and radiotherapy treatment

planning. Manual image interpretation is a time-consuming and error-prone task (Davies et al.,

2008). Segmentation of objects is one application of statistical shape analysis. In shape analysis,

a shape distribution is often obtained from a training set, i.e., a representative set of examples

from an object class. The shape distribution can be represented by a mean and the main modes

of variation and used in a Bayesian framework as a prior distribution. This allows segmentation

of an object in data with low image information. Cootes et al. (2001) proposed a segmentation

approach, active appearance model (AAM) that combines shape distribution and image intensi-

ties. In addition to segmentation of objects, other applications of shape analysis are: the study of

morphological differences of human organs and body structures (Albertson et al., 2003; Styner

et al., 2004; Ferrarini et al., 2006), the study of drug effects in epidemiology (McClure et al.,

2013) and the study of deformations of anatomical shapes (Joshi et al., 2002; Rivest et al., 2008;

Oualkacha and Rivest, 2012).

Shape analysis of an object Ω ⊂ Rd requires a definition of the term ‘shape’, a geometric

model M that parametrizes Ω and suitable statistics which deal with all components of the

geometric model. This thesis is focused on three-dimensional objects, i.e., d = 3.

Often, the size, location and rotation of an object are not connected to the underlying shape

variation. This thesis will follow Kendall (1984), who defines a shape as the geometrical infor-

mation that remains when the group of similarity transforms (location, scale and rotation) are

removed. However, scaling can be an important feature if the underlying research question is to

find shape differences between two populations. Dryden and Mardia (1998) introduced the term

size-and-shape which defines the geometrical information that remains after removing location

and rotation. It follows that shape comparison is affected by subjectivity.

With increased use of imaging techniques, the number of geometric models has also grown

steadily. The most well-known examples are landmark models (Kendall, 1984; Bookstein, 1986),

boundary point distribution models (PDMs) (Cootes et al., 1992; Kurtek et al., 2011) and the

family of skeletal models (Blum and Nagel, 1978; Siddiqi and Pizer, 2008; Pizer et al., 2013) as

discussed in Section 1.1.

The geometric model M can live in a product of Euclidean space (e.g., R3n), a product of

non-Euclidean spaces (e.g., S2m), or a product of Euclidean and non-Euclidean spaces (e.g.,
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shape space

Figure 1: Idea of a shape space. Each object is represented by a point in the shape space.

R3n× S2m) where n and m depend on the model; Sd := {x ∈ Rd+1 : ‖x‖ = 1} denotes the d-

dimensional unit hyper-sphere where ‖x‖ :=
√

x′x is the Euclidean norm of a column vector

x ∈ Rd+1 with transpose x′. The model representation in these coordinate systems reflects a

parametrization of an underlying object and is not yet location, rotation and scaling invariant.

The shape space S is defined as the space of all possible geometrical configurations of M which

are invariant under global translation, rotation and scaling. Another important notion is the pre-

shape space, the space of all possible configurations of M which are invariant under translation

and scaling. Dryden and Mardia (1998) have shown that models originally defined in R3n, live on

a (3n−4)-dimensional unit hyper-sphere S3n−4 in the pre-shape space. Thus, given a model M,

each shape corresponds to a point in the high-dimensional non-linear shape space S as depicted

in Figure 1. The non-Euclidean data structure requires suitable non-linear statistics.

Multivariate statistics for Euclidean data structures such as principal component analysis

(PCA) have been intensively developed during the last century. PCA reduces the dimension-

ality of data and describes the distribution by a selection of eigenvectors, also known as modes

of variation. Methods for Euclidean data are not easily applicable to non-Euclidean data. Of-

ten, a linear approximation of the non-Euclidean data by an embedding J : S→ RN is applied

in order to use classical statistical methods. Huckemann et al. (2010) pointed out that current

methods of PCA by linear Euclidean approximation are unsuitable if data in non-linear spaces

fall into regions of high curvature, or if they have a large spread. Thus, a generalization of the

methods to non-Euclidean data structures is necessary.

The focus of this thesis is the construction and application of geometric models, the use of

suitable statistical analyses and the development of novel methods to analyze shapes of objects.

In Section 1.1, the most common shape representations will be introduced. Two of these models

are used extensively in Paper I-III. In Section 1.2, important definitions and statistical methods

will be given that are used particularly in Paper II and Paper III of this thesis. In Section 2, all
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three papers are summarized and discussed. The main part of this thesis is Part II which contains

the manuscripts of Paper I, II and III, and the corresponding supplementary materials.

1.1 S H A P E R E P R E S E N TAT I O N

First, a geometric model M is required to parametrize a geometric representation Ω⊂R3 where

M typically lies on a manifold. There exists a rich collection of geometrical models in the

literature. A selection of important geometrical models are categorized in this thesis as follows:

L A N D M A R K M O D E L S A solid object is modeled by the positions of a finite number of mathe-

matical or anatomical landmarks represented by a configuration matrix X = (X1, . . . ,XK)
′

with K landmarks and Xi ∈ R3. The landmark model was introduced by Kendall (1984);

Bookstein (1986) who did pioneering work in the field of shape statistics. A problem

which arises, is the definition of precise landmarks in order to obtain good correspondence

between objects. The definition of landmarks is reasonably intuitive in two-dimensional

objects but becomes challenging in three-dimensional objects such as the prostate.

P D M A solid object is defined by the positions of the sampled surface points (Cootes et al.,

1992; Kurtek et al., 2011). PDMs are also called pseudo-landmarks and the representation

is also given by a configuration matrix X∈R3K where K is the number of boundary points.

A large number of shape models is based on PDMs.

G E O M E T R I C A L T E M P L AT E S The boundary of an object is modeled by a set of parametric

geometrical components, such as line segments, triangles, circles and ellipses (Dryden and

Mardia, 1998). As a result, an object can be described by a list of geometrical parameters.

This approach is used in Paper I of this thesis in order to model the prostate by best-

fitting-ellipses (BFEs). The geometrical model is described by parameters (θ ,α,φ)′ ∈
(R2×R2

+×(−π,π])L where θ l ∈R2 defines the position of the l-ellipse, α l
1,α

l
2 the length

of the first and second principal axis and φ the rotation angle as depicted in Figure 2a.

D E F O R M AT I O N - O F - AT L A S M O D E L S The shape changes of an object in an image are mod-

eled by the deformations of a template image provided by an atlas (Pennec, 2008; Zhang

et al., 2013). The atlas presents a reference of population of shapes obtained from a set

of training shapes. Each template is labeled by a collection of representative features and

geometric attributes, e.g., a set of landmarks and parametric geometrical components as

previously discussed.

S K E L E TA L M O D E L S The idea of skeletal models is based on the medial locus of an object,

first introduced by Blum and Nagel (1978). The medial locus describes the inherent sym-
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Figure 2: Illustration of geometrical models. A geometrical template model of the prostate by slicewise
BFEs is visualized in (a). Each ellipse is defined in a slice l = 1, . . . ,L by a position θ l , the
length α l

1,α
l
2 of the 1st and 2nd principal axis, and a rotation angle φ . (b) Visualization of

points from the medial locus of a two-dimensional object defined by the centers of maximal
circles. (c) Discrete skeletal representation (s-rep) of a flat ellipsoid. The skeletal positions are
depicted as small spheres. On each side of the sheet, there is a spoke, a vector with direction
and length on the top and on the bottom connecting the skeletal sheet to the boundary. Also, for
each edge grid point there is an additional spoke vector connecting the skeletal sheet folded to
the crest of the slab.

metry of an object. There exist different possibilities to define a medial locus of an object

Ω. A formal definition is given by

MAΩ := {q ∈ Rn | |{p ∈ ∂Ω | ||q− p||= d(q,Ω)}|> 1},

where d(q,Ω) := minp∈∂Ω ||q− p|| defines the distance of a point q ∈ Rn to the object

boundary ∂Ω. Figure 2b visualizes points of the medial locus of a two-dimensional object.

In 3D, the medial locus is given by the centers of all maximal spheres. A sphere S⊆Ω is

called maximal if there exists no larger sphere S̃ ⊆ Ω with S ⊂ S̃. In Section 3 of Siddiqi

and Pizer (2008) it is shown that the medial locus can be described by an inward “grassfire”

that starts at the boundary and dies out at a folded version of the medial locus called MΩ.

Given a folded medial locus MΩ, the medial representation of an object Ω is determined

by a set of spoke directions from points of MΩ to the corresponding points of tangency on

the boundary ∂Ω.

Strictly medial representations are limited by the fact that every protruding boundary kink

results in additional medial branches. Thus, two versions of the same object with small

noise can have drastically different medial representations. Skeletal models achieve addi-

tional stability by relaxing the medial constraint. Figure 2c visualizes a discrete version

of the skeletal object representation in R3 composed of a skeletal sheet and spokes which

emanate from a skeletal position pi on the skeletal sheet to the surface. Each spoke is com-

posed of a normal direction ui with length ri. The discrete skeletal representation (s-rep)

is described by a feature vector sss = (p1, . . . , pna ,r1, . . . ,rns ,u1, . . . ,uns)∈R3na×Rns
+×S2ns
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with the number na of skeletal positions and ns of skeletal directions. This model and its

properties will be discussed and used extensively in Paper III of this thesis. Furthermore,

the model is used as an application in Paper II for the study of rotational deformations.

Additional representations are for example implicit models (Leibe et al., 2006) or models using

spherical harmonics (Styner et al., 2006).

The calculation of statistics on a set of shapes requires quantification of shape differences. A

central difficulty is the identification of correspondence between the parameterized shapes. Huf-

nagel et al. (2009) proposed the use of correspondence probabilities for the case of unstructured

point sets such as PDMs. Alternatively, Cates et al. (2007) introduced correspondence by the op-

timization of a dynamic particle system by starting with few initial points on the surface (called

particle) and splitting the particles in each iteration step. The optimal configuration is defined as

one in which the entropy of each shape is balanced against the entropy of the ensemble shapes.

Skeletal models introduce correspondence by a stable branching structure of the skeletal sheet,

in addition to modeling the skeleton as medial as possible (Pizer et al., 2013). This is discussed

in detail in Paper III of this thesis. The geometrical template model used in Paper I introduces

correspondence by the templates themself in addition to constraints between the geometrical

parameters.

Landmark models and PDMs are often analyzed by PCA although Dryden and Mardia (1998)

have shown that these models, originally defined in R3n, live on the unit hyper-sphere S3n−4 after

removing location and scaling. Other models, such as geometrical template and skeletal models

live by definition on a product of Euclidean and non-Euclidean spaces. Therefore, statistics

should incorporate all elements of these models.

1.2 S H A P E S TAT I S T I C S

1.2.1 General definitions

The shape space S of a model M can often be understood as a manifold. A space is called a

d-dimensional manifold if every point of S has a neighborhood to an open subset of Rd , i.e.,

for every point p of the manifold exists a map J : Up→ Rd for an open neighborhood Up of p

(Bronstein et al., 2008). For example, the tangent space TcSd at c∈ Sd , d≥ 2 can be parametrized

by Rd . Without loss of generality, let c be the (d +1)-dimensional vector c = (0, . . . ,0,1)′. The

exponential map Expc : Rd → Sd is defined for v ∈ Rd by

Expc(v) =
(

v
‖v‖ sin‖v‖,cos‖v‖

)
,
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with a convention of Expc(0) = c. The exponential map has an inverse, called the log map, and

is denoted by Logc : Sd → TcSd . Thereby, Sd is a manifold.

In general, there are two views to manifolds. The extrinsic view understands the manifold

embedded in a Euclidean space. Statistics are calculated in the tangent space on an extrinsic

mean. The intrinsic view understands the manifold as a topological space by itself. Shape spaces

are often described by a product of a real space Rn and a d-dimensional unit hyper-sphere Sd as

shown before (e.g., Section 1.1). Elements from R+ can be transformed by the logarithm into R.

Thus, it is important to understand statistics on Sd .

To work with observations on Sd , a distance measure is required. An intrinsic distance mea-

sure is defined by the Riemannian geodesic distance function dg by the arc length of the shortest

great circle segment joining x,y ∈ Sd , and is

dg(x,y) = arccos(x′y). (1)

For a random element X whose domain is Sd , a sensible notion of the mean µ(X) is defined by

a minimizer of the mean squared distance,

µg(X) = argmin
x∈Sd

E{d2
g(x,X)}, (2)

often called the geodesic or Fréchet mean (Fréchet, 1948; Karcher, 1977). A useful measure of

dispersion is the geodesic variance which is defined as

Varg(X) = E{d2
g(µg(X),X)}= min

x∈Sd
E{d2

g(x,X)} (3)

provided that µ(X) exists. Papers II and III use the intrinsic Fréchet mean to analyze components

on Sd . The spherical information in Paper I (the rotation angle of the 1st principal axis of an

ellipse) is analyzed by an extrinsic mean. In all three papers, the understanding of a rotational

motion in the three-dimensional space (3-space) is important.

The axis–angle pair (c,φ) ∈ S2 × [0,2π) represents a rotation in 3-space, where a vector

x ∈ R3 is rotated by (c,φ) by applying x 7→ R(c,φ)x with the matrix

R(c,φ) = I3 + sinφ [c]×+(1− cosφ)(cc′− I3). (4)

Here, I3 is the the three-dimensional unit matrix, and the 3×3 matrix [c]× is the cross product

matrix satisfying [c]×v = c× v for any v ∈ R3. The group of rotations is denoted by SO(3) with

R′R = I3 for R ∈ SO(3).

Thereby, a configuration matrix X = (X1, . . . ,XK)
′ with Xi ∈ R3, i = 1, . . . ,K can be aligned

by X→ sR(c,φ)(X− t) with a translation vector t ∈ R3, a scaling factor s ∈ R+ and a rotation
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matrix R ∈ SO(3). The trajectory of a rotation of a direction vector x ∈ S2 about an axis c ∈ S2

is a circle, centered at c with radius r = arccos(x′c), and is denoted by

δ (c,r) = {x ∈ S2 : x′c = cos(r)} ⊂ S2. (5)

Since δ (c,r) = δ (−c,π − r), we may assume that r ≤ π/2. A circle δ (c,r) is called a great

circle or geodesic if r = π/2, and a small circle if r < π/2. These observations are important

for the analysis of rotational motion in Paper II, such as global rotation, rotational bending and

rotational twisting.

1.2.2 Estimation of shape distributions

An important aspect of shape analysis is to describe the variability of a set of objects which

are parametrized by a model M. Another aspect is to find a subspace that best represents the

variability of the high-dimensional data (dimension reduction). The geometrical parameters of

the BFEs in Paper I are modeled by Gaussian distributions as described in Dryden and Mardia

(1998). Another powerful method is PCA for Euclidean data or the generalization of PCA to

non-Euclidean data.

PCA describes each data point by a mean and a sum of weighted eigenmodes. It is also a di-

mension reduction method when retaining only the main modes of variation in a data set. PCA of

d-dimensional data can be calculated by a forward or backward approach corresponding to the

order in which the dimensions are considered. In a traditional forward approach the mean is es-

timated as the 0-dimensional affine space (a point), which is the best fitting subspace to the data.

Then, PCA is described by increasing the dimension of the best fitting subspace successively

0→ 1→ ··· → d−1.

Starting with fitting the best subspace of dimension d− 1 to the data, PCA can also be carried

out in the reverse order by

0← 1← ··· ← d−1.

In non-Euclidean spaces, such as the d-dimensional unit sphere Sd , generalizations of PCA

depend on this forward or backward direction. Damon and Marron (2013) have studied this

across a variety of contexts, and have shown that backwards subspace fitting is generally more

amenable to analysis, because it is equivalent to a simple adding of constraints. Generalizations

of PCA for data on Sd are discussed in the following.

Fletcher et al. (2004) proposed a forward generalization of PCA to manifolds called principal

geodesic analysis (PGA). The first step of PGA is to find a center point of the data by a forward

Fréchet mean. Given the Fréchet mean, the next step is to find the best fitting geodesic passing
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Figure 3: Illustration of point mapping from S2 to R2 with PAA. The coordinates vi ∈ S2 are mapped to
xi ∈R2, i∈{1, . . . ,n} by a projection h. The coordinate system is defined by the principal circles
(δ1,δ2). The first principal circle δ1 is defined by the center c1 and the radius r1 = dg(c,µ)
between the center and the principal circle mean µ . The second principal circle δ2 is defined by
the geodesic passing through the coordinates (c1,µ)

T . The second principle circle is orthogonal
to the first principle circle.

through the mean and afterwards the best fitting geodesic orthogonal to this geodesic. The ap-

proach leads to undesirable results if the data are uniformly distributed on a geodesic (e.g., the

equator), because the mean would be located at the north or south pole. Huckemann et al. (2010)

proposed an important modification to solve this problem by a backward step during the first

dimension reduction. Instead of finding the best fitting 0-space (a point), Huckemann proposed

to find the best fitting geodesic in the first step. Afterwards, the mean is found on this geodesic,

followed by the forward approach of finding the best fitting geodesics through the mean, orthog-

onal to each other for all dimension d > 2. Neither of the methods are suitable for data which

are distributed along small circles. This motivates principal arc analysis (PAA) by Jung et al.

(2011), a generalization of PCA on S2 by finding the best fit of any circle (small or great) to the

data. This approach is illustrated in Figure 3. The first approach discussed above is a classical

forward approach, whereas the last two methods contain a backward view to the data in the first

step followed by the classical forward view.

Principal nested sphere (PNS) is a fully backward approach that fits the best lower dimen-

sional subsphere in each dimension starting with Sd (Jung et al., 2012). The subspheres can be

great or small and thereby, the method includes variation along small and great circles. PNS is

described in more detail in Paper III where it is used extensively in order to produce suitable

means of shape populations.
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2
R E S U LT S A N D D I S C U S S I O N

All three papers in this thesis are motivated by medical applications. Paper I presents a semiauto-

matic method for prostate segmentation in radiotherapy treatment planning. Paper II presents a

novel framework to analyze the biomechanical gait analysis of the knee joint. Paper III presents

a novel approach to analyze anatomical shape differences between hippocampi of first episode

schizophrenics and controls. Thus, the work in this thesis has demonstrated that statistical shape

analysis is an essential approach in medical applications.

2.1 PA P E R I - P RO S TAT E S E G M E N TAT I O N

This paper is focused on the development of an intuitively appealing method for the 3D model-

ing and segmentation of the prostate in radiotherapy treatment (RT) planning of prostate cancer.

Prostate cancer is the second most diagnosed cancer worldwide (Jemal et al., 2011). The de-

lineation of the target volume is a time-consuming task that is often performed manually by a

physician, slice by slice in a set of computed tomography (CT) or magnetic resonance (MR)

images. The proposed semiautomatic method for prostate delineation reduces the workload of

physicians and offers comparable accuracy. The method is based on the statistical shape analy-

sis of a training set of prostates that can be understood as the prior information in a Bayesian

framework.

The developed geometric model M of the prostate follows the object parametrization by geo-

metrical templates as proposed in Dryden and Mardia (1998). The prostate has an ellipsoid-like

and smooth shape. This motivates modeling the prostate by slicewise BFEs. The BFEs are found

by a least-square minimizer as described in Ahn et al. (2001). Suppose the training set consists

of N data sets and the prostate is manually outlined in Ln slices in each data set n = 1, . . . ,N; the

stacked ellipses are parametrized by

BFEnl := (θ nl,αnl,φ nl)T ∈ R2×R2
+× (−π

2
,
π

2
], l = 1, . . . ,Ln,n = 1, . . . ,N (6)

with positions θ nl , lengths αnl
1 ,α

nl
2 of the first and second principal axes, and rotation angles

φ nl as depicted in Figure 2a. The number of slices Ln usually varies between the data sets

n = 1. . . . ,N. Therefore, either an interpolation of the model parameters or an interpolation of

the image intensities is necessary. Because the image information of the prostate is low, an in-

terpolation of the image intensities should be avoided. The implemented method assumes to set

13



manual control points on the boundary which are used to make the BFEs comparable by the

transformation of the parametrized ellipses model to a common position, scale and orientation.

Control points are assumed in the first, last and center slice. Moreover, the first and second

principal axes are reordered, the rotation parameter φ nl is relaxed in case of circularity and

smoothing is performed between neighboring slices to avoid large forward and backwards rota-

tions. Thereby, correspondence is introduced in the proposed geometric model in Paper I. The

normalized parameters result in a mean shape and shape distribution based on the training set.

The mean shape is deformed and registered in a new data set based on the control points.

Several approaches are proposed in the literature to segment the prostate. A collection of meth-

ods available for prostate segmentation is reviewed by Ghose et al. (2012). The works of Saroul

et al. (2008) and Mahdavi et al. (2011) are related to the parametrization method by BFEs as

used in Paper I. In contrast to the work of those authors, the approach of slice-wise BFEs intro-

duces more flexibility into the model. Moreover, the method has similarities to a tubular medial

representation (Saboo et al., 2009). The proposed approach is very intuitive for physicians; the

registration of the mean shape has resulted in fairly accurate estimates in a set of test data with

an average volume overlap of 90% compared to the manual segmentations. Moreover, a time

saving effect of 30% could be achieved. Thus, the proposed method can provide the physicians

with a good initialization of the prostate contour in RT planning. The model fitting procedure for

a training data set and the calculation of a mean shape is easy to understand compared to more

sophisticated geometric models such as s-reps (Pizer et al., 2013) which support more accurate

statistics.

In addition to the deformation and registration of the obtained mean shape in a new data set,

the prior was used in a Bayesian framework in order to estimate the posterior shape model in a

new data set using a Markov chain Monte Carlo (MCMC) method. Only small improvements

in the volume overlap could be achieved with large computational costs. This demonstrated the

high performance of the mean shape model based on stacked ellipses.

Future work

The small improvements of the segmentation results using MCMC motivates the implementa-

tion of an alternative approach, e.g., an active shape model (ASM) or an AAM (Cootes et al.,

2001; Davies et al., 2008; Heimann, 2008). ASM and AAM model the image intensity variation

in addition to the shape variation derived from a training data set. Both shape and image inten-

sity variation are combined in a single statistical model. The image intensity is sampled near the

model edges in ASM whereas all image intensity information which is covered by the target ob-

ject is used in AAM. Both approaches find the final shape model parameters by a minimization

procedure. The implementation of these methods may also reduce manual interaction such as

the definition of control points.
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Further improvements may be achieved by the incorporation of additional constraint and reg-

ularization terms such as the surface curvature. Around the center slice of the prostate, a low

surface curvature can be expected and smaller changes of model parameters between neighbor

slices. Towards the outer slices of the prostate, larger surface curvature can be expected and also

larger changes of model parameters between neighbor slices. Thus, the surface curvature could

be used as a weight parameter for the implemented regularization terms.

A larger study would be an important step for the implementation of the proposed method

into the clinical praxis. This includes a full integration of the method into the work-flow of

physicians during the RT planning.

2.2 PA P E R I I - E S T I M AT I O N O F ROTAT I O N A L D E F O R M AT I O N S

Segmentation of 3D objects in medical imaging is one application in statistical shape analysis,

another is the study of deformations. The deformations of objects such as organs and anatom-

ical structures can appear in several variants, simple and complex types. An important class is

rotational deformations including rigid rotation, bending and twisting of an object. The analy-

sis and understanding of such rotational deformations can be important for an accurate medical

treatment and diagnosis. For example, the analysis of biomechanical deformations are crucial

for the construction of biomechanical models and the treatment of orthopedic problems (Rivest

et al., 2008; Ball and Greiner, 2012). Paper II of this thesis studies the rotational deformations

and proposes models and estimators based on the directional features x ∈ S2 of the deformed

objects.

If a K-tuple of K ≥ 2 direction vectors x = (x1, . . . ,xK) ∈ (S2)K is rotated together about

a common axis c, then each of the rotated direction vectors is on a circle δ (c,r j) as defined

in (5) with common center c but with different radii r j = arccos(c′x j), j = 1, . . . ,K. As a results,

a collection of concentric circles with a common center c and radii tuple r = (r1, . . . ,rK) ∈
[0,π/2]× [0,π]K−1 is obtained by

δ (c,r) = {(x1, . . . ,xK) ∈ (S2)K : x′jc = cos(r j), j = 1, . . . ,K}. (7)

The proposed method in Paper II uses the concentric small circles to analyze the rotational

deformations of an object. Based on this idea, a rotation model is proposed by

X j = R(c,θ j)µ j⊕ ε j ( j = 1, . . . ,K) (8)

for a K-tuple of random direction vectors X = (X1, . . . ,XK), unknown constants c,µ j ∈ S2 and

latent random variables θ j ∈ [−π/2,π/2). The error terms ε j are assumed to be independently

distributed, and the ⊕ sign defines a suitable action of the error distribution for observations
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on S2. Estimators are developed for c,r,µ j and the latent variable θ j. Moreover, this model is

extended to hierarchical rotations to model and estimate rotational deformations which consist

of two independent deformations, e.g., bending and twisting. The numerical performance of the

proposed estimator is demonstrated by a simulation study for different situations. Furthermore,

the methods are applied to rotationally deformed ellipsoids represented by s-reps as discussed

in Section 1.1. This is of interest because several organs have an ellipsoid-like shape such as the

prostate. Finally, an analysis of biomechanical data of the knee joint is presented and demon-

strates the quality of the method.

Future work

The method introduced in Paper II is an initial work in the analysis of rotational deformations

from directional data and opens several potential work directions. The extension of the pro-

posed models to time series models can be investigated in the future. Time series models such

as autoregressive-moving-average models could model more accurate rotational deformations

observed over time. Furthermore, an improvement of the prediction of θ j is of interest. The esti-

mations of rotational deformations from s-reps have indicated that it is necessary to incorporate

the surface curvature into the model in order to obtain accurate predictions. The Gaussian curva-

ture, mean curvature and shape operator may be useful descriptors (Gray, 1998; Kühnel, 2006).

Other research topics would be the extension of the hierarchical deformations to more than two

rotational deformations in addition to the incorporation of locational information to the analysis

of directional data.

The next two sections present an alternative approach to estimate rotational deformations and

an exploratory tool to discriminate rotational deformations. The methodologies presented here,

are suggestions for future research.

Analysis of rotational deformations by intersecting geodesics

In Paper II, the estimation of a rotation axis c ∈ S2 is based on the Fréchet mean of the rotation

axes of a set of small circles. Instead of using small circles, an alternative estimator could be

based on intersecting geodesics (large circles). Suppose, we have K direction vectors xi j ∈ S2 at

time points i = 1,2 with j = 1, . . . ,K. An estimation of the rotation axis can be obtained from

the intersection of geodesics defined by the pairs (vi,ci) with

v j =
x1 j + x2 j

||x1 j + x2 j||
⊥ c j =

x1 j× x2 j

||x1 j× x2 j||
, j = 1, . . . ,K. (9)

Here, v j is the bisector of the pair (x1 j,x2 j). Notice, that the intersection points of two geodesics

are perpendicular on S2. Figure 4 visualizes the intersecting geodesics of 8 directions which are
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bent and rigidly rotated around the common rotation axis c = (1,0,0)′. It can be observed that

the intersection points cluster around the true rotation axis.

(a) i = 1 (b) i = 1,2

Figure 4: Toy example. (a) Visualization of 8 observed direction vectors on S2. (b) Visualization of the
directions before and after the rotational deformation. Each color belongs to a direction j =
1, . . . ,8, i.e., each color appears three times (two points and the corresponding geodesic). The
intersecting geodesics clustering around the true rotation axis c = (1,0,0)′.

This idea is an interesting alternative to the proposed approach in Paper II. However, simu-

lations have shown more accurate and robust results using concentric small circles because in

certain situations undesirable side-clusters were observed using intersecting geodesics, e.g., in

case of observations close to the underlying rotation axis.

An exploratory discrimination tool for rotational deformations

In the following section, a representation called rotation twisting folding (RTF) is proposed.

RTF compares pairwise directions between different observations to discriminate rotational

deformations in rigid rotation, bending and twisting. The RTF representation is designed to

capture rotation, bending and twisting by a set of parameters. Thereby, the representation al-

lows to distinguish between the three different types of rotational motions. In particular, specific

patterns in the scatterplots of the RTF parameters can be observed.

Suppose, we observe a tuple of directions before rotation (x11,x12) and after rotation (x21,x22),

i.e., directions xi j ∈ S2 with j = 1,2 number of directions at time points i = 1,2. The RTF

representation of (xi1,xi2) is defined by a triple (ψ,θ ,τ) ∈ S2×S1×R+ where ψ indicates the

amount of rigid rotation, θ indicates the amount of twisting and τ the amount of bending as

visualized in Figure 5 and explained in more detail in the following.

The bisector between the tuple (xi1,xi2) is given by

ci =
xi1 + xi2

||xi1 + xi2||
, i = 1,2.
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Figure 5: Parameter definition in the RTF representation. (a) Definition of ψ ∈ S2 which defines the
rotation direction and rotation angle of bisector c1 to c2. (b) Location of the tuple (x11,x12)
after rotation corresponding to ψ with rotation angle γ = arccos(ψ3). (c) Definition of θ by
the signed cosinus between the vectors Logc2

(R̃(c1,c2)x11) and Logc2
(x21) in the tangential

plane Tc2S2. (d) Definition of τ by the ratio of the geodesic distances of the tuples (x11,x12) and
(x21,x22). Here, (x̃11, x̃12) is the tuple (x11,x12) after transformation by ψ and θ .

For convenience, denote by R̃(a,b) ∈ SO(3) a rotation matrix that moves a ∈ S2 to b ∈ S2, and

~n = (0,0,1) defines the north pole on S2. Thereby, the direction vector ψ = (ψx,ψy,ψz) ∈ S2 is

defined by

ψ := R̃(c1,~n)c2 (10)

which rotates the bisector c1 to c2 with rotation angle γ = arccos(ψz). The direction ψ ∈ S2

indicates the amount of rigid rotation. The ratio of the two pairs of directional vectors is defined

by

τ :=
dg(x21,x22)

dg(x11,x12)
(11)

with the geodesic distance dg as defined in (1). The ratio τ indicates the amount of bending

between the observations with τ = 1 in case of no bending. Finally, x11 is mapped to κ1 ∈R2 by

κ1 = Logc2
(R̃(c1,c2)x11); and x21 is mapped to κ2 ∈R2 by κ2 = Logc2

(x21). The vectors κ1 and

κ2 are elements of the tangent space Tc2S2. Thereby, the parameter θ is defined by

θ := sign(κ1×κ2)arccos
(

κ ′1κ2

||κ1||||κ2||

)
, (12)

where sign(κ1×κ2) is the sign of the cross product of κ1 and κ2. The parameter θ indicates the

amount of twisting with θ = 0 in case of no twisting.

The decomposition by the RTF representation can be understood by considering a simple

example, see Figure 6. Suppose, an object is modeled by four surface points with attached direc-

tions x0 j, j = 1, . . . ,4. Moreover, consider 30 random observations after rigid rotation, bending
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(a) Direction vectors (b) Rigid rotation (c) Bending (d) Twisting

Figure 6: Toy example for the RTF representation. (a) Each direction vector x0 j is a point on S2,
j = 1, . . . ,4. (b-d) 30 realizations of random rotational deformations. Different colors represent
different observations. (b) Rigid rotation about (1,0,0)′. (c) Bending reflected by a rotation of
the directions on the left and right side of the sphere about the common axis (1,0,0)′ by com-
mon angle but in opposite directions. (d) Twisting reflected by a rotation of directions on the
left and right side about the common axis (0,1,0)′ by common angle but in opposite directions.

and twisting of the object as described in Figure 6 where each rotational deformation was gen-

erated by

Xi j = R(ω,φ)x0 j⊕ ε or Xi j = R(ω,−φ)x0 j⊕ ε

with i= 1, . . . ,30, j = 1, . . . ,4, φ ∼N(0,η2) and a rotation axis ω ∈ S2. The RTF parametrization

is calculated between all pairwise combinations (x0k1 ,x0k2 ,Xik1 ,Xik2) with

{k1,k2} ∈ {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}},

represented by the tuples (Xik1 ,Xik2).

The RTF representation for each rotational deformation is visualized in Figure 7. Observa-

tions obtained by rigid rotation (Figure 6b) result in a small spread of the parameters θ and τ

(Figures 7d and 7g) but in a wide spread of ψ around the underlying rotation axis (Figure 7a).

Observations obtained by a bending deformation (Figure 6c) result in a small spread of the pa-

rameter θ but in a wide spread of τ (Figures 7e and 7h). The parameter ψ indicates a rigid

rotation for the tuples (Xi1,Xi2) and (Xi3,Xi4) about (1,0,0)′, no rotation for the tuples (Xi1,Xi4)

and (Xi2,Xi3), and a minor rotation for the tuples (Xi1,Xi3) and (Xi2,Xi4) about (0,0,1)′ (Fig-

ure 7b). Observations obtained by twisting (Figure 6d) result in a small spread of the parameter

τ but in a wide spread of θ (Figures 7f and 7i). The parameter ψ indicates only rigid rotation

for the tuples (Xi1,Xi2) and (Xi3,Xi4) (Figure 7c).

The presented results reveal the potential of the RTF representation as an exploratory tool for

the discrimination analysis of rotational deformations from directional data. However, further

simulations and research is required on the basis of more complex objects and real data examples.

19



(a) ψ after rigid rotation (b) ψ after bending (c) ψ after twisting

(d) θ after rigid rotation (e) θ after bending (f) θ after twisting

(g) τ after rigid rotation (h) τ after bending (i) τ after twisting

Figure 7: RTF representation of rigid rotated, bent and twisted directions. (a-c) Parameter ψ , (d-f) pa-
rameter θ (g-i) parameter τ of the RTF representation. In each plot 180 realizations (points)
are depicted of the corresponding RTF parameter. Different colors represent different direction
tuples, e.g., (1-2) for the tuple (Xi1,Xi2) with i = 1, . . . ,30.

The proposed method may be useful for a classification of rotational deformations into rigid

rotation, bending and twisting. Such a classification is left for future research.

2.3 PA P E R I I I - N O N L I N E A R H Y P OT H E S I S T E S T I N G

Another application of statistical shape analysis is presented in Paper III by exploring shape

differences between hippocampi of first episode schizophrenics and controls. The study of mor-
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phological changes of human organs and body structures is of general interest in medical analy-

sis, e.g., the understanding of neuroanatomical structures of the human brain (Gerig et al., 2001;

Styner et al., 2004; Ferrarini et al., 2006).

Paper III proposes a novel method to test mean differences of populations on data whose rep-

resentations include both Euclidean and non-Euclidean elements. Several aspects of a sensitive

hypothesis test are elaborated such as important geometrical model properties which support

accurate statistics of populations. The s-rep model (Pizer et al., 2013) is presented as a suitable

model that includes Euclidean components and components which live on spheres. A statistical

method based on PNS (Jung et al., 2012) is proposed to calculate means and to analyze the Eu-

clidean and non-Euclidean components of the models. Finally, a permutation test is presented

based on Pesarin (2001); Terriberry et al. (2005), in order to test for mean differences. A permu-

tation test is a non-parametric approach that uses the data to estimate the sampling distribution

of the test statistic under the null-hypothesis of equal distributions. Because of the assumption

that populations have equal distributions, it is valid to permute the data between the populations

without affecting the distribution of the test statistic. The test statistic is defined by a difference

measure. An appropriate difference measure is presented for the analysis of s-reps. The differ-

ence measure quantify the mean difference of geometrical object properties (GOP) which are

single or a collection of s-rep features. A global and local test based on the GOP differences are

proposed taking into account the problem of multiple comparison correction.

The analysis of first episode schizophrenics compared to controls demonstrated the power of

the permutation test, both globally as well as locally. Several statistically significant findings

could be made. The global test established a significant shape difference of the hippocampi be-

tween schizophrenics and controls. The local test showed a significant loss of hippocampal vol-

ume for schizophrenics. The significant volume difference was observed in the x and y-directions

but not in the z-direction for the aligned hippocampi. Moreover, several spoke directions were

found as statistically significant by the local test. These findings may be of high interest in neu-

roscience. In addition, Paper III is a novel study that analyzes morphological differences using

non-Euclidean data components such as directional information using s-reps. Moreover, a bias

for the test results was observed depending on the shape distribution used for the model fitting.

The choice of an appropriate shape distribution of a population is discussed in more detail in the

paper. Furthermore, the impact of a chosen data pre-processing was discovered.

Future work

Several open questions have been raised during the implementation of the proposed nonlinear

hypothesis test. A possible extension of the study is to investigate hippocampal changes of

schizophrenics and controls in longitudinal data. Studies such as Narr et al. (2004); Mamah

et al. (2012); McClure et al. (2013) have indicated the need for a more sensitive hypothesis test
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in order to examine shape differences inside a treatment group over time. A detailed power study

on the basis of simulated data and investigation of alternative combining functions for the global

test are also left open. Moreover, potential improvements can be made in the data modeling. This

includes the incorporation of image intensities in addition to morphological features in order to

test for population differences. Furthermore, the fitting procedure of s-reps to the data could be

improved in the future, e.g., by an automatic parameter choice for the fitting procedure and an

adaptive grid size choice of the skeletal sheet.
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Abstract

Background: Delineation of the target volume is a time-consuming task in radiotherapy treatment planning, yet

essential for a successful treatment of cancers such as prostate cancer. To facilitate the delineation procedure,

the paper proposes an intuitive approach for 3D modeling of the prostate by slice-wise best fitting ellipses.

Methods: The proposed estimate is initialized by the definition of a few control points in a new patient. The

method is not restricted to particular image modalities but assumes a smooth shape with elliptic cross sections of

the object. A training data set of 23 patients was used to calculate a prior shape model. The mean shape model

was evaluated based on the manual contour of 10 test patients. The patient records of training and test data

are based on axial T1-weigthed 3D fast-field echo (FFE) sequences. The manual contours were considered as

the reference model. Volume overlap (Vo), accuracy (Ac) (both ratio, range 0-1, optimal value 1) and Hausdorff

distance (HD) (mm, optimal value 0) were calculated as evaluation parameters.

Results: The median and median absolute deviation (MAD) between manual delineation and deformed Mean

Best Fitting Ellipses (MBFE) was Vo (0.9± 0.02), Ac (0.81± 0.03) and HD (4.05± 1.3)mm and between manual

delineation and Best Fitting Ellipses (BFE) was Vo (0.96 ± 0.01), Ac (0.92 ± 0.01) and HD (1.6 ± 0.27)mm.

Supplementary Materials are available and show a moderate improvement of the MBFE results after Monte Carlo

Markov Chain (MCMC) method.
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Conclusions: The results emphasize the potential of the proposed method of modeling the prostate by best fitting

ellipses. It shows the robustness and reproducibility of the model. A small sample test on 8 patients suggest

possible time saving using the model.

Keywords: Delineation, Ellipse model, Empirical Bayes, Prostate, Radiotherapy treatment planning, Statistical

shape analysis

Background

Prostate cancer is the second most diagnosed cancer accounting for 14 percent of all cancers diagnosed

worldwide [1]. It is most common in males over the age of 50, and has the highest incidence rate in the

developed countries. Aggressive tumors are usually treated with extern radiotherapy or brachytherapy

which requires a precise treatment plan for the target volume. In any type of radiotherapy treatment,

radiation of healthy tissue should be minimized while maintaining the desired dose to the target volume.

Therefore, a successful treatment of prostate cancer relies on an accurate segmentation of the prostate from

the surrounding tissue, by image-based description of the shape and location of the target volume. The

volume of interest is characterized by a smooth shape, and for this reason an algorithmic description of the

volume is feasible.

Transrectal ultrasound (TRUS), magnetic resonance (MR) and computed tomography (CT) images are

the three main imaging techniques used in diagnosis, treatment planning and follow-up examination of

prostate cancer. Smith et al. [2] investigated the effects of these imaging techniques on the properties of

the prostate volume. A collection of methods available for prostate segmentation is reviewed by Ghose et

al. [3]. In addition to the methods presented by Ghose et al., alternative approaches are available in the

literature, such as the medial or skeleton representation of the prostate [4–8]. The present work proposes a

segmentation method which falls into the category of deformable meshes in Ghose et al. [3], but refers to the

term geometrical parametrization as described in Dryden and Mardia [9]. The main focus of this paper is

the development of a statistical shape model for the prostate. An overview about this type of models in 3D

medical image segmentation is presented for example by Davies et al. [10] and Heimann and Meinzer [11].

The works of Saroul et al. [12] and Mahdavi et al. [13] are related to the stacked ellipses parametrization

32



3

(a) slice 6 (b) slice 9 (c) slice 12 (d) slice 15 (e) slice 17

(f) slice 6 (g) slice 9 (h) slice 12 (i) slice 15 (j) slice 17

Figure 1: Selected slices of MR data set 3 from the test data set. (a)-(e) Manual delineation of the prostate
(dashed line) and best fitting ellipse (solid line). (f)-(j) Manual delineation of the prostate (dashed line),
deformed mean shape (solid line) and defined control points in the first, center and last slice.

method used in this paper. In contrast to them, we focus on slice-wise best fitting ellipses which will introduce

more flexibility into the model. The approach of slice-wise best fitting ellipses has similarities to a tubular

medial representation [14].

Beside the single segmentation of the prostate, several attempts have been tried out for a joint segmen-

tation of neighbor organ and structure to gain improved segmentation results [15–17].

To our knowledge, despite the substantial effort in this area, no widely implemented algorithm exists.

In oncology departments this means that the physician has to delineate the prostate slice by slice. This is

time-consuming and inefficient. We propose a less ambitious approach in that we use a method that gives a

useful starting point for the physician after the definition of few control points. Given the initial estimate

of the volume of interest, the physician can adjust the estimate according to their evaluation of the image

rather than starting from scratch. By this approach, we obtain the same accuracy with less effort. The

main points in our approach are as follows: First, we accept that the algorithm cannot give a fully precise

description of the volume. Our main aim is therefore to give a good estimate which can be used as a starting

point for the physician. Second, we use a simple ellipse model that is easy to interpret and understand. Our

hypothesis is that a more efficient use of physicians in Radiotherapy Treatment Planning (RTP) of patients

with prostate cancer can be obtained by an easy-to-interpret semiautomatic tool.

Figure 1 shows an example of the initial estimate we typically obtain for a single image slice. The dashed
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line in (a) to (e) describes the manual contour while the solid line shows the best fitting ellipse including

the the two principal axes for the observed data of this slice. Note that the fitted model is very much in

agreement with the manual line, indicating that the stacked ellipses model gives a good description of the

object of interest. The solid lines in (f)-(j) shows the outcome from our model in this situation together with

few defined control points. This result shows a typical performance of the method, and that the estimate is

close to the best fit we can obtain with the ellipse model. The full processing demands little computational

resources, such that the suggested delineation can be presented immediately. The example is discussed

further in the Methods and Results and discussion section.

The rest of the paper is organized as follows. In the Method section, we introduce the data sources and

the proposed stacked ellipses model, and discuss the shape space and statistics along with constraints and

parameters. Results are presented in the Results and discussion section using a test data set to show the

potential of the mean shape model, followed by a Conclusion section. Supplementary Materials with further

detailed discussion are available online.

Methods
Preliminaries

Each prostate must be described by a shape model in order to calculate statistics, e.g., by stacked ellipses

as a parametric shape model. The parameters of a parametric shape model can be estimated from a

training set. The training set models also the geometric variability of anatomical structures by a shape

probability distribution. The training set contains volume and contour information of segmented prostates

from N patients. The volume information describes the image modalities (e.g., CT or MR) and the contour

information the volume of interest as defined in the following.

The volume information of each training set n = 1, . . . , N is defined by a 3-dimensional matrix Vn where

Vn(i, h) contains the observed gray level in voxel (i, h), i = (i1, i2) ∈ {1, . . . , I1} × {1, . . . , I2} are the pixel

indices in a slice, where typically I1 = I2, and h ∈ {1, . . . , H} is the number of slices per data set. The

number of slices H is not necessarily the same for all patients in the training data sets. Therefore, we indicate

H by Hn and in the same manner I1 by In1 and I2 by In2, but for simplicity we use H , I1 and I2 if the

meaning is clear.

In addition to the volume information, each training set n = 1, . . . , N consists of contour information

of the prostate, manually drawn by a physician. The contour information can be modeled by a (M ×Kn)

configuration matrix Xn := (Xn1, . . . , XnKn) with Xnk = (xn
1k, x

n
2k, x

n
3k)

T ∈ R3, k = 1, . . . ,Kn, where Kn
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PCS
e.g. manual contour

de-rotated PCS
e.g. {dBFEnl, dCPn}

ICS
e.g. volume data

sample space
e.g. {BFEnl, CPn}, mean shape

Λn
dCP

Figure 2: Different coordinate systems with example data. PCS: Patient based coordinate system (manual
delineation line). ICS: Image coordinate system (volume data). de-rotated PCS: de-rotated patient based
coordinate system with same scale and origin as PCS but same orientation as ICS (de-rotated best fitting
ellipse dBFEnl, de-rotated control points dCPn). sample space: The transformation matrix Λn

dCP maps the
de-rotated data {dBFEn, dCPn} to {BFEn, CPn} in the sample space.

defines the total number of available contour information points in a data set and M = 3 defines the

dimension. We assume the contour information for an object is defined in a sequentially sorted number

Ln of equidistant slices whereas each contour slice contains K̃nl contour points, l = 1, . . . , Ln. Hence it

follows Kn =
∑

l K̃nl and Xn = (X̃n1, . . . , X̃nLn). The image information in slice l is denoted by Snl and

Sn = {Sn1, . . . , SnLn} ⊆ Vn and X̃nl defines the configuration matrix in slice Snl.

In summary, the training population is given by the set {V,X}, with a set of volume information V =

{V1, . . . , VN} and configuration matrices X = {X1, . . . , XN}. We assume Xn defines the configuration matrix

for the corresponding data set Vn and matches the volume information Vn exactly.

The contour information is often defined in a Patient based Coordinate System (PCS) whereas the volume

information is defined in an Image based Coordinate System (ICS). The ICS can be transformed to PCS by a

transformation matrix ΛDCM , which transform an image coordinate pim = (i1, i2, h)
T to patient coordinate

pp = (x, y, z)T . The definition of ΛDCM and the relation between PCS and ICS (see Figure 2) is discussed

in detail in the Supplementary Material. In addition, we introduce a de-rotated PCS where volume and

contour information are aligned to each other.

Modeling

The prior information inferred from the training set is incorporated into a shape model. We assume a stacked

ellipse model as a shape prior for the prostate. Specifically, the prostate outline in slice Snl, l = 1, . . . , Ln,

n = 1, . . . , N is modeled by a slicewise best-fitting ellipse, as visualized in Figure 3. An ellipse in slice Snl

can be uniquely described by ρnl = (θnl, αnl, φnl)T ∈ R2 × R2
+ × (−π

2 ,
π
2 ] with
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Figure 3: An illustration of the prostate model by slicewise best-fitting ellipses.

• position θnl = (θnl1 , θnl2 )T ∈ R2 defines the center in slice Snl,

• length of principle axes αnl = (αnl
1 , αnl

2 )T ∈ R2
+ and

• rotation angle φnl ∈ (−π
2 ,

π
2 ] in slice Snl.

The rotation parameter φnl is defined corresponding to the ICS with origin θnl in slice Snl. The boundary

of an ellipse ρnl centered at θnl ∈ R2 in slice Snl is defined by

C(ρnl) =

{
Rx+ θnl :

x2
1

(αnl
1 )2

+
x2
2

(αnl
2 )2

= 1, x ∈ R2

}
(1)

and R =

(
cosφnl − sinφnl

sinφnl cosφnl

)

is a rotation matrix in R2 with rotation angle φnl and x = (x1, x2)
T .

The shape model described in this section requires the best fit of an ellipse C(ρnl) to the contour

information X̃nl in each slice, i.e., we model X̃nl = C(ρnl)+ ǫ where ǫ is an error with mean zero. The best-

fitting ellipses provide us with a slice-by-slice parametrization of the prostate for all slices in each training

shape.

The problem of fitting an ellipse to geometric features like the contour is discussed widely in the literature

(e.g., [18, 19]). This work follows Ahn et al. [18], who proposed a least-square minimizer for X̃nl. The

nonlinear estimate of parameters ρnl = (θnl1 , θnl2 , αnl
1 , αnl

2 , φnl)T given X̃nl must minimize the error

g(ρ̂nl) =
(
X̃nl − C̃(ρ̂nl)

)T (
X̃nl − C̃(ρ̂nl)

)
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where C̃(ρ̂nl) is a set of nearest orthogonal points of X̃nl to C(ρ̂nl).

Definition 1 (Best Fitting Ellipse (BFE)). A best fitting ellipse for slice Snl is defined by the set BFEnl :=

(θnl, αnl, φnl)T ∈ R2 × R2
+ × (−π

2 ,
π
2 ], l = 1, . . . , Ln, n = 1, . . . , N and minimizes the error function g, i.e.,

BFEnl = ρ̂nl with

g(ρ̂nl) = min
ρnl∈R2×R2

+×(−π
2 ,π2 ]

g(ρnl). (2)

The first and second principal axes must be reordered after calculation of BFEn =

{BFEn1, . . . , BFEnLn} in order to establish correspondence between parameters of adjacent slices and

across the population. Improved correspondence will support accurate statistics. The basic idea in our re-

ordering procedure is to carry out the reordering corresponding to the lowest rotation angle of both principal

axes to the first principal axis of the neighbor slice where the center slice is chosen as the basis. The rotation

between the center slice M and an arbitrary slice is constrained by max(|φi − φM |) = π, i ∈ {1, . . . , L} after

reordering. Therefore, the set BFEn of reordered best-fitting ellipses is an element of (R2×R2
+×(−π, π])Ln .

A further improvement of correspondence is achieved by the introduction of two additional constraints

in the parameter model. First, we relax the rotation parameter φnl in case of circularity. If both principal

axes have the same length, the orientation of an ellipse is undefined. Therefore we penalize φnl in the case

of high circularity by taking φnl′ from the neighboring slices into account. Second, smoothing is performed

between neighboring slices to avoid large forward and backwards rotations between φn(l−1), φnl and φn(l+1).

The reordering algorithm and implementation of constraints are described in detail in the Supplementary

Material.

The current implementation assumes the definition of control points CPn in the training data set

{Vn, Xn, BFEn}, where BFEn ∈ (R2×R2
+×(−π, π])Ln is a reordered set of best fitting ellipses, n = 1, ..., N .

Furthermore, the control points have to be defined manually by a physician in a new patient data set. The

control points are used to make the best fitting ellipses BFEn comparable and to transform the parametrized

ellipses model to a common position, scale and orientation by a transformation matrix Λn
dCP . The trans-

formation matrix Λn
dCP maps the de-rotated prior data {dBFEn, dCPn} to {BFEn, CPn} in the sample

space, as depicted in Figure 2. In this article, we assume 6 control points in the first, center and last slice

at the boundary of the prostate, i.e.,

CPn = {An
1 , . . . , A

n
6 , P

n
1 , . . . , P

n
6 , B

n
1 , . . . , B

n
6 }

as visualized in Figure 3. In addition, we have tested alternative control point configurations. They are

described together with the construction of Λn
dCP in the Supplementary Material.
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After transformation we have obtained a reordered and comparable set of best fitting ellipses

BFEn = {BFEn1, . . . , BFEnLn}

with BFEnl = (θ
nl
, αnl, φ

nl
)T , n = 1, . . . , N , l = 1, . . . , Ln. The statistical analysis of the training data

requires an equal number L1 = . . . = LN to establish correspondence between the parameters of the best

fitting ellipses. Therefore, we interpolate the set BFEnl to a common number L. When L is chosen,

interpolation is done by independent cubic interpolation in each dimension, i.e., we find points of a one-

dimensional function that underlies the data θ
nl

1 , θ
nl

2 , θ
nl

3 , αnl
1 , αnl

1 and φ
nl
. The final interpolated best fitting

ellipses are denoted by

iBFEn = {iBFEn1, . . . , iBFEnL}. (3)

These ellipses are used for the statistical analysis and computation of a mean shape model. To keep things

simple, we denote such a reordered, transformed and interpolated set of best-fitting ellipses by BFEnl =

(θnl, αnl, φnl)T for the number L of contour slices with l = 1, . . . , L and n = 1, . . . , N . The comparable set

of best fitting ellipses BFEn is an element of the shape space (R2 × R2
+ × (−π, π])L.

Statistical analyses

After reconstruction of our shape space we estimate the expectation and variance of the parameters of a

mean shape model µBFE = {µ1
BFE , . . . , µ

L
BFE} with µl

BFE = (µl
θ, µ

l
α, µ

l
φ) from the training set BFEnl,

l = 1, . . . , L. We denote the mean shape Mean Best Fitting Ellipses (MBFE). In addition to the described

ellipse parameters we define the position θnl = (θnl1 , θnl2 , θnl3 )T in terms of a distance vector ηnl of θnl to a

center curve defined by the control points. We model θl = ξl + ηl, where ξl is analytically defined by L

intersection points of the curve within each slice. Thereby, we are describing the mean shape which is closest

to the control points. This approach is reasonable under the assumption that the control points are well

defined. In the Supplementary Material we explore various ways of describing the position parameter for

different control point methods.

The mean curve of the expected location is given by

µl
θj =

1

N

N∑

i=1

θilj , j ∈ {1, 2, 3}, (4)
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where µl
θ = (µl

θ1
, µl

θ2
, µl

θ3
)T , l = 1, . . . , L. The variance and covariance are estimated by

(σl
θj )

2 =
1

N − 1

N∑

i=1

(θilj − µl
θj )

2, j ∈ {1, 2, 3}, and (5)

Σl
θ =

1

N − 1

N∑

i=1

(θil − µl
θ)(θ

il − µl
θ)

T . (6)

The length parameter is modeled by a log-normal distribution because α ∈ R2
+. Thus we estimate the

mean and variance of a = log(α) ∈ R2. The estimation of means and variances of the remaining parameters

a, φ, η is according to (4-5). Following Dryden and Mardia [9] we suggest a prior distribution for a new data

set as

θl1 ∼ N
(
µl
θ1 , (σ

l
θ1)

2
)
, θl2 ∼ N

(
µl
θ2 , (σ

l
θ2)

2
)
,

al1 ∼ N
(
µl
a1
, (σl

a1
)2
)
⇐⇒ αl

1 ∼ log-N
(
µl
a1
, (σl

a1
)2
)
with al1 = log(αl

1),

al2 ∼ N
(
µl
a2
, (σl

a2
)2
)
⇐⇒ αl

2 ∼ log-N
(
µl
a2
, (σl

a2
)2
)
with al2 = log(αl

2),

φl ∼ N
(
µl
φ, (σ

l
φ)

2
)
,

l = 1, . . . , L. If θl is defined according to the center curve given by the control points as described above, we

model ηli ∼ N
(
µl
ηi
, (σl

ηi
)2
)
, i = 1, 2. Since the rotational parameter is expected to have small variance it is

not necessary to apply a circular distribution, and we assume normality.

After constructing the shape model we estimate the best fitting ellipse BFEl parametrized by ρl =

(θl, αl, φl)T , l = l, . . . , L in a new data set given the control points CP . This is obtained through the

posterior π(ρ | S) where sil ∈ S ⊆ V is the volume information and i = (i1, i2) ∈ I(ρ) is a set of indices

within the ellipses ρ. The control points CP are used to deform the prior model π(ρ). Therefore we model

the posterior by an empirical Bayes approach [20]. The posterior

π(ρ | S,CP ) ∝ L(S | ρ) ∗ π(ρ | CP ) (7)

defines the posterior density of the deformed template π(ρ | CP ) given the the observed image. The

Likelihood or image model L(S | ρ) is the joint probability density function of the gray levels given the

parametrized object ρ|CP , while ρ|CP defines the ellipses ρ deformed by the control points CP . The prior

π(ρ | CP ) models realistic variations from our mean shape µBFE ∈ (R2 × R2
+ × (−π, π])L given the control

points. We are estimating the posterior distribution using a Markov chain Monte Carlo (MCMC) approach.

The method and results are discussed in detail in the Supplementary Material.
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Evaluation

We have evaluated the proposed method using 33 patient case studies. The training data set consists of

N = 23 T1-weigthed Fast Field Echo (FFE) 3D Magnetic Resonance (MR) data. The mean shape model and

variance is calculated from the training data set and applied to a test data set of 10 MR FFE case studies.

The splitting in test and training data is done according to the sequence of data acquisition. Each data

set consists of Hn Digital Imaging and Communications in Medicine (DICOM) image files and one DICOM

region structure file, while the contour information of the prostate is stored in the header of a DICOM file

without any image information. The voxel size (lx, ly, lz) is (0.559mm, 0.559mm, 3mm) with a slice distance

of 3.3mm of the data sets Vn. Each slice consists of 288 × 288 voxels. The number of slices containing

prostate information is 10.478± 2.626 (mean±standard deviation) in the training set and 10.5± 2.799 in the

test set. Figure 1 illustrates test patient 3, whose image set consists of 24 MR FFE slices whereas 12 slices

contain contour information. Slice 6 is the first slice where contour information of the prostate is available

and the last slice is 17.

Three metrics are used to compare the manual and the semi-automatic contours. In the axial slices,

where the expert manual delineations are present, we calculate the Hausdorff distance (HD) by

dhd(X,Y ) = max{max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y)}. (8)

The Hausdorff distance measures the maximum distance of a point in a set X to the nearest point in Y

or vice versa. Generalization to 3D uses mean or median over all slices. The measure indicates how much

manual corrections are required. An ideal value of HD equal to zero reflects complete agreement of the

contours. A second criteria is the volume overlap (or Dice similarity coefficient) defined by

dvol(X,Y ) = 2
|X ∩ Y |
|X |+ |Y | , (9)

where | · | is the number of voxels contained in a region. Finally, accuracy is defined as

dacc(X,Y ) = 1− |FP |+ |FN |
|TP |+ |FN | (10)

with TP = X ∩ Y volume included in both X and Y (true positive), FN = X ∩ (¬Y ) volume of X not

included in Y (false negative) and FP = (¬X) ∩ Y volume of Y not included by X (false positive). Both

values range from 0 to 1, with optimal value 1. Volume overlap indicates how much of the prostate has

been detected by the approach while accuracy shows how incapable the method is to select the true prostate

pixels.

40



11

Table 1: Evaluation metrics comparing Best Fitting Ellipses (BFE) to manual delineations, and comparing
deformed Mean Best Fitting Ellipses (MBFE) to manual delineations (unit: HD mean in mm, dice 3D and
accuracy in percentage).

Test set 1 2 3 4 5 6 7 8 9 10

Best Fitting Ellipses
HD mean 1.32 1.09 2.24 1.34 1.94 1.61 1.41 1.65 1.59 2.49
Dice 3D 0.96 0.97 0.95 0.96 0.94 0.94 0.96 0.96 0.97 0.93
Accuracy 0.93 0.94 0.91 0.91 0.88 0.88 0.92 0.93 0.94 0.85

Mean Best Fitting Ellipses
HD mean 2.38 2.58 6.12 2.76 3.79 4.32 2.73 5.59 4.88 4.63
Dice 3D 0.92 0.93 0.90 0.91 0.88 0.84 0.92 0.88 0.89 0.88
Accuracy 0.84 0.84 0.81 0.82 0.74 0.70 0.84 0.73 0.80 0.74

In addition to the quantitative metrics, we have performed a small pilot test on 8 new patients comparing

time expenditure using the proposed method and manual delineation. The time expenditure for the proposed

method includes the definition of control points and the correction of the contour obtained by the method

for each patient. The used mean shape model and variance was calculated from the training data as decribed

above. Time measurements were obtained by two independent physicians for each case. Manual delineations,

definition of control points and corrections were performed using the treatment planning system EclipseTM.

Results and Discussion

The evaluation is performed on the deformed mean best fitting ellipses, i.e., on π(ρ | CP ) in formula (7).

Additional evaluations are done in the Supplementary Material for π(ρ | S,CP ).

Table 1 contains the distance metrics defined in (8) - (10) comparing the manual delineation and BFE for

each test data set, and comparing the manual delineation and the deformed MBFE described by π(ρ | CP ).

The high Dice similarity coefficient and accuracy values and small Hausdorff distances between manual

delineations and BFE confirm the stacked ellipses model. The values show the best possible description of

the test cases by the proposed model. The distance metrics between manual delineation and the deformed

MBFE are fairly accurate. The values indicate that the estimates used as initial contours for final delineations

will lower the time expenditure of the delineation procedure. Figures 1a to 1e illustrate 5 slices of the BFE

evaluation of test patient 3 from Table 1. Figures 1f to 1j illustrate 5 slices of the deformed MBFE evaluation

of test patient 3 from Table 1 with a volume overlap of the manual delineation line and the deformed mean

shape of 0.90 and accuracy 0.81.

Table 2 shows the median and median absolute deviation (MAD) for the data groups “test data”, “training

data” and “all data”. A BFE volume overlap for all data of 0.954± 0.010 (median±MAD) and accuracy of
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Table 2: Evaluation metrics comparing BFE/MBFE and manual delineations for different data groups.

data group test data training data all data
BFE MBFE BFE MBFE BFE MBFE

HD mean [mm]
median 1.604 4.052 1.840 3.806 1.810 3.806
MAD 0.274 1.305 0.286 0.427 0.289 0.538

Dice 3D [pct]
median 0.959 0.899 0.954 0.903 0.954 0.903
MAD 0.008 0.021 0.007 0.013 0.010 0.019

Accuracy [pct]
median 0.918 0.807 0.908 0.800 0.908 0.800
MAD 0.015 0.035 0.014 0.031 0.020 0.036

(a) Hausdorff (b) Dice 3D (c) Accuracy

Figure 4: Evaluation results between MBFE and manual delineations for 10 random permutations in training
and test sets consisting of 23 and 10 patients, respectively.

0.908± 0.020 confirm the model further (ref. Table 2). Similar values in the subset of test data and training

data are indicating model robustness. In addition to the BFE results, Table 2 summarizes the results by

median and MAD of the distances between manual delineation and the deformed MBFE. A median volume

overlap of 0.899± 0.021 and accuracy of 0.807± 0.035 of the test data show further the power of the prior.

The deformation of the prior is done by the control points and can be computed directly since there is no

sampling or estimation involved at this point.

To evaluate the robustness of the model, we randomly split 10-times the set of 33 patients into a training

set with 23 cases and a test set with 10 cases. Figure 4 shows the evaluation distances between the manual

delineation and the deformed MBFE. The central mark is the median, the edges of the box are the 25th and

75th percentiles and the whiskers extend to the extreme data points. The figure shows only small variation

between the different permutations, thereby demonstrating robustness of the stacked ellipses model.

Results from using MCMC to further optimize the delineation, as described in the Method section,

are only presented in the Supplementary Material since a slight improvement comes at the cost of large

computation time.
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The time comparisons indicated an average of 30% time saving using the proposed method compared

to manual delineation. The time measurement of the proposed method includes the definition of controls

points as well as the correction of the estimated contour by the physician.

Conclusions

The presented results demonstrate the potential of the proposed method in modeling the prostate by slicewise

best fitting ellipses. Deformation of the mean shape using control points gives very good results with little

computational cost. Hence we believe that providing physicians with a good initial contour is beneficial in

the clinical praxis of radiotherapy treatment.

The corrections of generated delineations based on few control points were not streamlined in the workflow

of the physicians, and the task of correcting contours is not part of their everyday activity. Furthermore,

corrections were not done directly after the definition of the control points and sometimes by different

physicians, and physicians had to deal with a different orientation of the data set in the treatment planning

system than in the diagnostic MRI. These issues must and can be solved for a well designed system. Therefore,

a time saving of 30% likely represent a lower limit, and has to be validated in a well designed and properly

powered study. Furthermore, we expect larger time savings in data sets where the prostate is imaged in a

higher number of slices. In the extreme case, if the prostate is visible in only three slices, the BFE approach

would not give any benefit using the current control point method.

In addition, the results show a precise description of the prostate by the BFE model with an average

volume overlap of 95%. The high performance of the deformed mean shape model using the control points

explains the small improvement by applying MCMC. Nevertheless, an improvement of the likelihood in the

posterior distribution or by an active appearance model [21] is a field of further research as elaborated in the

Supplementary Material. A clear disadvantage of an additional method like MCMC is the extra computation

time.

Further improvements can be achieved in the constraint and regularization terms, e.g., by considering the

surface curvature versus changes of the ellipses parameters. We do not expect abrupt changes between neigh-

boring slices around the central slice, but larger changes between slices towards the ends can be permitted,

particularly in the length of the first and second principal axis. Also, the reduction of manual interaction in

the proposed method is left for future work.
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Additional file 1 — Supplementary Materials

Article containing i.) a detailed description of the relative coordinates systems (e.g. ICS, PCS) on the basis

of the DICOM file structure, ii.) post-processing procedures as for example reordering and introduction

of constraints, iii.) a discussion of different control point method with construction of the transformation

matrix Λn
dCP and the parameter ηnl, iv.) elaboration of the posterior distribution, and v.) a section with

additional data analysis. (SupplementaryMaterial.pdf)
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1 Data and relative coordinate systems

In this section, the volume data, particular on the basis of the DICOM data structure and the

corresponding relative coordinate systems are discussed.

1.1 Basic principles

Rotations in the three dimensional space can be represented by the axis–angle representation [1]

where an axis c ∈ S2 is a direction that is left fixed by the rotation and angle θ is the amount

of rotation. The pair (c, θ) represents a rotation in 3-space. As a convention, the orientation of

the angle is determined by the right-hand rule, and a vector is a column vector. A vector v ∈ R3

rotated by (c, θ) can be obtained by pre-multiplication of the corresponding rotation matrix

R(c, θ) = I3 + sin θ[c]× + (1− cos θ)(cc′ − I3), (1)

where [c]× is the cross product matrix, so that [c]×x = c× x for any x ∈ R3.

Definition 1 (Extended map). The map ext maps a vector v ∈ Rn from a Cartesian coordinate

system to a vector (v, τ)T ∈ Rn×{0, 1} in an extended coordinate system. Furthermore we denote

with ext−1 the related inverse map.
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1.2 Volume information

We obtain from Magnetic Resonance (MR) tomography a discrete volume information of a continu-

ous part of the lower male abdomen which contains the prostate. The discrete volume information

of a patient data set is given by I1× I2×H voxels on a regular grid in three dimensional space. We

describe a voxel by a cube with middle point (x, y, z) and length lx, width ly and height lz. Other

approaches are possible too. An easy model is to assume the value of a voxel is given by the mean

intensity about the volume with an overlap in x-y-direction and small gaps in z-direction, i.e., we

assume

V (i, h) = µ+ εih where εih ∼ N(0, σ2) iid

and i = (i1, i2) ∈ {1, . . . , I1}×{1, . . . , I2}, h ∈ {1, . . . ,H}. A more complex approach could up-rate

the central areas of a voxel. The value of a voxel (i.e. the mean intensity) may describe different

properties.

1.3 DICOM files and coordinate system

The Digital Imaging and Communications in Medicine (DICOM) file is a common standard con-

tainer file used particularly in medical image processing. The file structure consists of a header part

containing general data information and an image information part which contains mean intensities

of the voxels. DICOM files uses a right handed Left-Posterior-Head (LPH) coordinate system. In

a right handed coordinate system the x-axis is defined by the the thumb, the y-axis by the first

finger and the z-axis by the second finger of the right hand. The coordinate system is related to

the patient and not to the scanner. In a DICOM data set usually one file is defined per slice. This

is the case in our data sets too. In terms of image processing, the most important variables in each

file are

Rows (scalar) defines the number I1 of voxels in row direction.

Columns (scalar) defines the number I2 of voxels in column direction.

ImagePositionPatient (IPP) (3× 1 vector) defines the coordinate of center of top left voxel in

a slice.
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ImageOrientationPatient (IOP) (6× 1 vector) defines the unit vector along an image row and

the unit vector along a column.

PixelSpacing (2 × 1 vector) which determine at first row spacing then column spacing, i.e.

PixelSpacing = (lx, ly)
T .

These five variables define uniquely a slice in R3. Figure 1 visualizes some key parameters for a

slice. The two variables PixelSpacing and IPP are defined in millimeter whereas IOP defines two

unit vectors. Note, the variable SliceThickness defined in the DICOM file header may not be equal

to the slice distance between two neighbor slices given by ImagePositionPatient because of small

gaps in the z-direction as mentioned in the model description above.

bc
IPP

PixelSpa
ing(1)

PixelSpa
ing(2)

IOP(1:3)

IOP(4:6)

Figure 1: DICOM parameter definitions for a slice.

We have two different kinds of coordinate information, namely a patient based coordinate

system (PCS) and an image based coordinate system (ICS). The ICS defines the discrete volume

information V (i1, i2, h) on a regular grid in the three dimensional space with grid points (x, y, z).

Therefore, we can also write V (x, y, z) instead of V (i1, i2, h) and allocate the voxel indices (i1, i2, h)

to volume coordinates (x, y, z) ∈ R3. V (x, y, z) defines a voxel in PCS.

The PCS is defined by the above 5 variables, where IOP gives the directional cosines. We want to

find a transformation matrix M between the two coordinate systems ICS and PCS. Without loss of

generality we describe the transformation in an extended coordinate system (see Definition 1). The

transformation matrix consists of rotation, translation and scaling whereas rotation is given by IOP,

translation by IPP and scaling by PixelSpacing and IPP. We assume that IOP and PixelSpacing

are equal between all slices H in a training data set. Furthermore we assume that the slices are
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sorted and choose our global IPP candidate from the first slice.

The rotation matrix is defined by

RDCM =

(
dr dc ds 03
0 0 0 1

)
(2)

where 03 = (0, 0, 0)T , dr = (drx, dry, drz)
T = IOP (1 : 3) defines the directional cosines in row

direction, dc = (dcx, dcy, dcz)
T = IOP (4 : 6) the directional cosines in column direction and

ds = (dsx, dsy, dsz)
T = dr × dc the directional cosines in slice direction whereas ds is defined by

the cross product of dr and dc.

The scaling matrix is defined by

SDCM =

(
scxe1 scye2 scze3 03

0 0 0 1

)
(3)

with sc = (scx, scy, scz)
T = ext−1(diag(SDCM )) and ei is the 3×1 column vector with all elements

being zeros except that the ith element is one. As mentioned above scx = 1
lx

and scy = 1
ly

are

defined by PixelSpacing whereas scz is defined by the distance of IPP between two neighbor slices,

e.g. the first and the second slice. Remember, we have assumed equidistant slices in a data set.

The translation matrix is defined by

Tt =

(
e1 e2 e3 t
0 0 0 1

)
(4)

where t = (tx, ty, tz)
T defines the translation vector.

The rotation, scaling and translation matrix provide us to transform between ICS and PCS.

Definition 2 (DICOM transformation matrix). The DICOM transformation matrix is defined by

ΛDCM = TIPPRDCMSDCMT0 (5)

and transform an image coordinate pim = (i1, i2, h)T to patient coordinate pp = (x, y, z)T by

ext(pp) = ΛDCMext(p
im). T0 is the translation which shift the slice to make top left voxel centered

at (0, 0, 0), i.e. T0 := Tt with t = (−1,−1,−1)T . RDCM and SDCM are defined by (2) and (3) and

TIPP translate the top left voxel from the first slice at IPP.

Remark 1 (Inverse DICOM transformation matrix). The inverse of ΛDCM exist and transform a

patient coordinate into an image coordinate by ext(pim) = Λ−1DCMext(p
p).
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Proof. The inverse of the rotation matrix is given by R−1DCM = RTDCM , the inverse of the translation

matrix by T−1t = T−t and the inverse of scaling matrix by using sc−1 = ( 1
scx
, 1
scy
, 1
scz

).

Definition 3 (De-rotated patient coordinate system). Corresponding to the PCS and the ICS

we define a derotated patient coordinate system by pdp ∈ R3 with ext(pdp) = RTDCMext(p
p) =

TIPPSDCMT0ext(p
im). IOP = (1, 0, 0, 0, 1, 0)T in a derotated PCS.

The are no rotational differences between the de-rotated PCS and the ICS. Furthermore, the

volume and contour information are aligned to each other in the de-rotated PCS. Therefore, it is

used for the statistical analysis.

2 Post-processing of BFE

This section discusses the reordering algorithm and introduce constraint and regularization param-

eters into our shape model. Let n ∈ {1, . . . , N} be fixed in the following section and l = 1, . . . , L

the number of contour slices. We assume equidistant slice distances, well defined and sorted slices.

Calculation are carried out inside ICS.

2.1 Reordering of the first and second principal axis

After the computation of BFEl ∈ R2 × R2
+ × (−π

2 ,
π
2 ] we have to reorder the first and second

principal axis to establish correspondence between the parameter of adjacent slices. The reordering

algorithm is visualized in Figure 2 and given by the the following steps:

1. Transformation of the orientation parameter φl to directional cosines ψl = (cosφl, sinφl)T to

avoid computational non-uniqueness by the direction of the rotation.

2. Computation of the position of the basis slice by M = round(θ13 + 1
2(θL3 − θ13)) where round

means rounding to the closest integer.

3. Initialization of reordering for the basis slice SM . The first principal axis is chosen to be

closest to [1, 0] by determination of the distance of the x-axis to the first and second principal

axis. The coordinate origin is defined by θM and the direction of x and y-axis are given by

(1, 0)T and (0, 1)T in the ICS. Note that each principal axis can be defined in the opposite
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Figure 2: Visualization of the reordering procedure. Left image: Initialization of the reordering
step for slice M . Right image: Reodering of slice M − 1.

direction, i.e. the four possible directions are ψ̂l1 = ψl, ψ̂l2 = −ψl, ψ̂l3 = (−sinφl, cosφl)T and

ψ̂l4 = −ψ̂l3. We obtain the reordered best fit BFEl := (θl, α̃l, ψ̃l)T by

arccos((1, 0)ψ̃l) = min
i∈{1,...,4}

arccos((1, 0)ψ̂li) (6)

where ψ̂li is a normal vector by definition and l = M .

4. Reordering from the basis slice to first slice, i.e. l = M − 1, . . . , 1. The first principal axis

ψ̃l is chosen to be closest to ψ̃l+1 of the 4 axes defined by BFEl, i.e., BFEl is chosen to

minimize arccos((ψ̃l+1)T ψ̂li), l = M − 1, . . . , 1.

5. Reordering from the basis slice to last slice, i.e., l = M + 1, . . . , L. The first principal axis

ψ̃l is chosen to be closest to ψ̃l−1 of the 4 axes defined by BFEl, i.e., BFEl is chosen to

minimize arccos((ψ̃l−1)T ψ̂li), l = M + 1, . . . , L.

Note, that BFEl ∈ R2 × R2
+ × (−π, π] compared to BFEl ∈ R2 × R2

+ × (−π
2 ,

π
2 ]. In fact, the

rotation angle is not restricted by the above reordering procedure but we assume the maximal

rotation between the basis and an arbitrary slice is max(|φi − φM |) = π, i ∈ {1, . . . , L} after

reordering. This allows a full twist of the prostate which we do not expect. In the following, we do

not distinguish between BFEl and BFEl. For the sake of convenience, we assume a reordered set

of best-fitting ellipses and denote it simply by BFEl := (θl, αl, φl)T ∈ R2 × R2
+ × (−π, π].
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2.2 Constraint and relaxation

We introduce two additional constraints in the parameter model BFEl, l = 1, . . . , L, which are re-

laxations of the rotation parameter φ in case of circularity and between large forward and backwards

movings between neighbor slices.

Circularity: We define a cubic function λl = cpl where cl = minl α
l

maxl αl
is a measure of the circularity

of the ellipse in slice l = 1, . . . , L and p is a parameter which defines the power of the cubic

function. The circularity is 1 if both axes have the same length. Simulations have shown that

a choice of p = 12 leads to reasonable results in our model. The orientation parameter φl is

relaxed by

φ̃l =





(1− λl)φl, l = M,
λlφ

l+1 + (1− λl)φl, l < M,
λlφ

l−1 + (1− λl)φl, l > M.

That means, in case of high circularity cl we do not trust the orientation in the current slice

l.

Relaxation between neighbor slices: Penalizing of large changes of the rotation between

neighbor slices, i.e., between the parameters φ(l−1), φl and φ(l+1). At first, we note that

the largest possible change between two slices is maximal π
4 after reordering as mentioned

above. A simple quadratic function is used for the relaxation by

φ̃l =

{
λlφ

l+1 + (1− λl)φl with λl =
(
4
π |φl+1 − φl|) 1

2 , l < M

λlφ
l−1 + (1− λl)φl with λl =

(
4
π |φl−1 − φl|)

1
2 , l > M.

3 Control point methods

In this section, we present three Control Point (CP) methods with construction of the transfor-

mation matrix ΛndCP and the parameter ηnl. The control point method used in the main article is

described by CP3 in Section 3.3 (page S13). In addition, two alternatives are presented by method

CP1 in Section 3.1 (page S8) and CP2 in Section 3.2 (page S11). Both sections can be skipped if

the reader is only interested in CP3.

Before we construct a transformation matrix ΛndCP between the derotated PCS and the sample

space from the control points (see Figure 2 in the main article), we have to transform the control
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points CPn and ellipses parametrization BFEnl from the ICS to the derotated PCS by ext(pdp) =

Ξext(pim) with

Ξ = TIPPSDCMT0

using Definition 3 in Section 1.3. Therewith, all data sets have the same origin and rotation of the

underlying coordinate system between different data sets and same distances between points. Note,

the voxel size can be different between different data sets. Therefore, distances between coordinates

in the ICS might be different for different data sets. For reasons of simplicity, the mapping between

the normal and the extended coordinate system is not mentioned explicit in the following section.

In general, we have to carry out this step if we convert with the transformation matrix Ξ. The

derotated prior data are given by the set {dBFEnl, dCPn} with

dCPn = Ξ(CPn) and (7)

dBFEposnl = (Ξ(pnl1 ),Ξ(pnl2 ),Ξ(pnl3 ))T (8)

whereas BFEposnl = (pnl1 , p
nl
2 , p

nl
3 )T ∈ R9 is the positional description of a best-fitting ellipse as

described in the following remark.

Remark 2 (Positional BFE). An alternative representation for a best fitting ellipse is given by the

set BFEposnl := (pnl1 , p
nl
2 , p

nl
3 )T ∈ R9 with

pnl1 = θnl,
pnl2 = θnl +R(αnl1 , 0)T ,
pnl3 = θnl +R(0, αnl2 )T ,

and R =

(
cosφnl − sinφnl

sinφnl cosφnl

)

is a rotation matrix. We call this representation the positional best fitting ellipse. Both represen-

tations are isomorph to each other.

3.1 CP method 1

In the first approach, called CP1, we assume the definition of three control points CPn :=

(An, Bn, Pn1 ) ∈ R3×3. See Figure 3 for a visualization of the parameters which are defined as

follow:

An centroid point of the prostate in the first contour slice of the prostate,
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Bn centroid point of the prostate in the last contour slice of the prostate,

Pn1 point at the boundary of the prostate in posterior direction and in the base slice M (center

slice, see Appendix 2.1).

(a) An (b) Pn
1 (c) Bn

Figure 3: Definition of control points using method CP1. The dashed line defines the manual
delineation of the prostate. (a) Definition of An (first visible contour slice). (b) Definition of Pn1
in basis slice M . (c) Definition of Bn (last visible contour slice).

x

z

b

dAn

b
dBn

b
MdCP

s

(a)

x

y

z

ζ

dPn
1

(b)

Figure 4: (a) Visualization of translation point MCP and the scaling s from the control points dA
and dB by a cross section in slice direction z. (b) Rotation of dP1 around the z-axis to a point
with x-coordinate zero.

Given the derotated prior data we construct the transformation matrix ΛndCP to a set of com-

parable best fitting ellipses for fixed n by the following steps (see Figure 4):
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1. Translation of MdCPn = 1
2(dBn − dAn) to (0, 0, 0) where dCPn := (dAn, dBn, dPn1 ). This

results in the translation matrix T−MdCPn
using formula (4) on page S4.

2. Rotation of the point dPn1 around the z-axis with angle ζ given by the angle between the

two vectors dPn1 and (0, 1, dPn1 (z))T . The rotation matrix RdCPn is given by formula (1) on

page S1 using v = (0, 0, 1)T and ζ as described before.

3. Scaling of the data by s = |dBn(z) − dAn(z)|. The scaling matrix is given by SdCPn with

sc = (L−1s , L−1s , L−1s )T using formula (3) on page S4 where L is defined as the common number

of interpolated best fitting ellipses as described in section 2 of the main article. Note, we do

not scale the length of the prostate by ‖dBn−dAn‖ because we want to have the same length

in z-direction. Figure 5 shows close correlation between both values for the training data set.

Finally, the transformation of the derotated prior data {dBFEnl, dCPn} to {BFEnl, CPn} is given

by

BFE
pos
nl =

(
ΛnCP (dpnl1 ),ΛnCP (dpnl2 ),ΛnCP (dpnl3 )

)T

and CPn = ΛnCP (dCPn) with

ΛndCP = SdCPnRdCPnT−MdCPn
. (9)

Figure 5: Comparison of the distance between the control points dA and dB in z-direction and
‖dB − dA‖ (in mm). The dotted line shows equal values.
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3.2 CP method 2

An alternative second approach, called CP2, assumes the definition of the control points CPn =

(An, Bn, Pn1 , . . . , P
n
12) ∈ R3×14, n = 1, . . . , N with

An centroid point of the prostate in the first contour slice of the prostate,

Bn centroid point of the prostate in the last contour slice of the prostate,

Pn1 , . . . , P
n
12 points at the boundary of the prostate in the base slice M whereas M is defined as

described in Appendix 2.1.

Figure 6 visualizes the corresponding parameters plus the underlying manual delineation line which

is not available in a new data set.

(a) An (b) Pn
m (c) Bn

Figure 6: Definition of control points using method CP2. The dashed line defines the manual
delineation of the prostate. (a) Definition of An in the first visible contour slice. (b) Definition of
Pnm in basis slice M , m = 1, . . . , 12. (c) Definition of Bn in the last visible contour slice.

Given the derotated prior data {dBFEnl, dCPn}, l = 1, . . . , Ln and n = 1, . . . , N, we construct

the transformation matrix ΛndCP to a set of comparable best fitting ellipses for fixed n by the

following steps:

1. Computation of the best fitting ellipse CPBFEn = (θCPn , αCPn , φCPn)T ∈ R2×R2
+×(−π

2 ,
π
2 ]

for the set {Pn1 , . . . , Pn12}.

2. Transformation of CPBFEn to dCPBFEn = (θdCPn , αdCPn , φdCPn)T in a derotated PCS.
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3. The center slice is given by sn = Ln+1
2 for each training data set n. If Ln is an odd number the

center slice with the best-fitting ellipse is clearly defined. Otherwise, the best-fitting ellipses

have to be interpolated to a number Ln + 1 before.

4. Estimation of the mean of the derotated best fitting ellipses in the center slice sn from the

training data, i.e.,

µdBFE := (µdBFEθ , µdBFEα , µdBFEφ )T =
1

N

∑

n

dBFEnsn . (10)

Furthermore, we estimate the mean length by

µdBFEL =
1

N

∑

n

‖θdBFEnLn − θdBFEn1‖

.

5. If Ln is an odd number then MdCPn = θdCPn . Otherwise MdCPn is determined from a cubic

interpolation of the curve with support points in dAn, θdCPn and dBn. The translation of

dCPBFEn to the origin (0, 0, 0) is given by the translation matrix T−MdCPn
using formula (4)

on page S4.

6. The rotation matrix RdCPn is given by formula (1) on page S1 using v = (0, 0, 1)T and

ζ = −φdCPn , i.e., we rotate the first principal axis of dCPBFEn to the direction of the

x-axis.

7. Scaling of the data in x-direction by sc1 =
µdBFEα1

αdCPn1

, y-direction by sc2 =
µdBFEα2

αdCPn2

and z-

direction by sc3 =
µdBFEL

|dBn(z)−dAn(z)| . Thereby, the scaling matrix is given by SdCPn with

sc = (sc1, sc2, sc3)
T using formula (3) on page S4. Note again, we do not scale the length

of the prostate because we want to have the same length in z-direction.Figure 5 shows close

correlation between both values for the training data set. Furthermore, Figure 7 illustrate

the scaling parameters for our training data set and indicates correlations between them.

Finally, using CP method 2, the transformation of the derotated prior data {dBFEnl, dCPn} to

{BFEnl, CPn} is given by

BFE
pos
nl =

(
ΛndCP (dpnl1 ),ΛndCP (dpnl2 ),ΛndCP (dpnl3 )

)T

58



S13

and CPn = ΛndCP (dCPn) with

ΛndCP = SdCPnRdCPnT−MdCPn
. (11)

An alternative to the above mentioned approach for computation of MdCPn is given by setting

MdCPn = θCPn for even and odd numbers Ln. Table 1 shows the average of the standard L1 and

L2 norm of the distance vector between MdCPn and the interpolated center ellipse position from

the corresponding training data. We argue for the implemented version using cubic interpolation

due to a smaller error.

(a) sc1 versus sc2 (b) sc1 versus sc3 (c) sc2 versus sc3

Figure 7: Scaling parameters using transformation method 2 for the training data set.

Table 1: Average error of center ellipse position derived from control points versus center ellipse
position derived from training data (unit: mm).

center ellipse position alternative version implemented version

L1 norm 0.5612 0.5470

L2 norm 0.4707 0.4568

3.3 CP method 3

The third approach, called CP3, is the primary used approach in this paper and assumes the

definition of control points CPn = (Anm1
, Bn

m2
, Pnm3

) ∈ R3×(m1+m2+m3),mi ∈ N with

Anm1
points at the boundary of the prostate in the first contour slice of the prostate,
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Bn
m2

points at the boundary of the prostate in the last contour slice of the prostate,

Pnm3
points at the boundary of the prostate in the base slice M (see subsection 2.1).

We have to assume mi ≥ 3 to be able to fit ellipses to the first, base and last slice. In the current

work m1 = m2 = m3 = 6 is chosen to achieve robust fits of best-fitting ellipses. See Figure 8 for a

visualization of the parameters.

(a) An
m1

(b) Pn
m3

(c) Bn
m2

Figure 8: Definition of control points at the boundary of the prostate using method CP3 with
m1 = m2 = m3 = 6. (a) Definition of {An1 , . . . , Anm1

} (first visible contour slice). (b) Definition of
{Pn1 , . . . , Pnm3

} in basis slice M . (c) Definition of {Bn
1 , . . . , B

n
m2
} (last visible contour slice).

Given the derotated prior data {dBFEnl, dCPn}, we construct the transformation matrix ΛndCP

similar to Section 3.2. The main difference is the additional deformation of the ellipsoid by the

control point information in the first and last slice. Let n ∈ {1, . . . , N} be fixed. ΛndCP is derived

by the following steps:

1. Computation of the best fitting ellipses CPBFEn,i = (θi,CPn , αi,CPn , φi,CPn)T ∈ R2 ×
R2
+ × (−π

2 ,
π
2 ], i = 1, 2, 3 from the set {An1 , . . . , Anm1

} if i = 1, {Bn
1 , . . . , B

n
m2
} if i = 2 and

{Pn1 , . . . , Pnm3
} if i = 3.

2. Transformation of CPBFEn,i to dCPBFEn,i in a derotated PCS with dCPBFEn,i =

(θi,dCPn , αi,dCPn , φi,dCPn)T .

3. The center slice is given by sn = Ln+1
2 for each training data set n. We assume that Ln is an

odd number where the center slice with the best-fitting ellipse is clearly defined. Otherwise,
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the set of derotated best-fitting ellipses dBFEn has to be interpolated to an odd number

Ln + 1 before.

4. Estimation of mean µi,dBFE , i = 1, 2, 3, from the derotated best-fitting ellipses in the first,

last and center slice sn from the training data by

µ1,dBFE := (µ1,dBFEθ , µ1,dBFEα , µ1,dBFEφ )T =
1

N

∑

n

dBFEn1,

µ2,dBFE := (µ2,dBFEθ , µ2,dBFEα , µ2,dBFEφ )T =
1

N

∑

n

dBFEnLn ,

µ3,dBFE := (µ3,dBFEθ , µ3,dBFEα , µ3,dBFEφ )T =
1

N

∑

n

dBFEnsn .

Furthermore, we estimate the mean length by

µdBFEL =
1

N

∑

n

‖θdBFEnLn − θdBFEn1‖

.

5. If Ln is an odd number then MdCPn = θ3,dCPn . Otherwise MdCPn is determined from a

cubic interpolation of the curve with support points in θ1,dCPn , θ3,dCPn and θ2,dCPn . The

translation of dCPBFEn to the origin (0, 0, 0) is given by the translation matrix T−MdCPn

using formula (4) on page S4.

6. The rotation matrix RdCPn is given by formula (1) on page S1 using v = (0, 0, 1)T and

ζ = −φ3,dCPn , i.e., we rotate the first principal axis of dCPBFEn,3 to the direction of the

x-axis.

7. Determination of scaling values sc1l and sc2l of the first and second principal axis for slices

l = 1, . . . , Ln. At first, the scaling values in the first, center and last slice are calculated,

i.e., sc11 =
µ1,dBFEα1

α1,dCPn
1

, sc21 =
µ1,dBFEα2

α1,dCPn
2

, sc1Ln =
µ2,dBFEα1

α2,dCPn
1

, sc2Ln =
µ2,dBFEα2

α2,dCPn
2

, sc1sn =
µ3,dBFEα1

α3,dCPn
1

and sc2sn =
µ3,dBFEα2

α3,dCPn
2

. Afterwards, the remaining scaling values sc1l and sc2l are interpolated

from (sc11, sc1sn , sc1Ln) and (sc21, sc2sn , sc2Ln). In addition, the scaling value in z-direction

is determine by sc3 =
µdBFEL

|θ2,dCPn3 −θ1,dCPn3 | . Thereby, the scaling matrices are given by Sl,dCPn , l =

1, . . . , Ln, with sc = (sc1l, sc2l, sc3)
T using formula (3) on page S4. We do not scale the length

of the prostate because we want to have the same length in z-direction. Figure 5 shows close

correlation between both values for the training data set.
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The primary used CP method 3 in this paper transforms the derotated prior data {dBFEnl, dCPn}
to {BFEnl, CPn} by

BFE
pos
nl =

(
ΛndCP (dpnl1 ),ΛndCP (dpnl2 ),ΛndCP (dpnl3 )

)T

and CPn = ΛndCP (dCPn) with

ΛndCP := Sl,dCPnRdCPnT−MdCPn
. (12)

3.4 Description of θnl in relation to the control points

In addition to the position θnl = (θnl1 , θ
nl
2 , θ

nl
3 )T of each best-fitting ellipse, we describe the parameter

in terms of a distance vector ηnl of θnl to a line or a curve, defined by the control points. Thereby, we

are describing the mean shape which is closest to the control points. Corresponding to the different

control point methods, see sections before, there are different ways of describing the positional

parameter via ηnl. Let n = 1, . . . , N be fixed in this section.

3.4.1 Determination of ηnl using CP method 1

Given dCPn := (dAn, dBn, dPn1 ) the two control points dAn and dBn define a line
−−−−−→
dAndBn ⊂

R3 that cross each slice l = 1, . . . , Ln with prostate contour information. Now, κnl defines the

intersection point of the line
−−−−−→
dAndBn with each slice l. It is given by κnl = dAn + l̃

Ln−1v
n with

l̃ = l − 1, vn = dBn − dAn and l ∈ {0, . . . , Ln}. Thereby, the distance vector ηnl to θnl is defined

by

ηnl = θnl − κnl,

with l ∈ {0, . . . , Ln}. Simulations have shown that statistical inference of ηnl result in a much

smaller variance than for θnl.

3.4.2 Determination of ηnl using CP method 2 and 3

Instead of construction a line
−−−−−→
dAndBn as described before, we construct a cubic curve that connect

three slices with contour points, i.e., the first, the basis and the last slice. Using CP method 2,

dCPn is defined by

dCPn := (dAn, dBn, dPn1 , . . . , dP
n
12)
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and dCPBFEn = (θdCPn , αdCPn , φdCPn). The three points dAn, θdCPn and dBn define a curve

gdCP (z). Similar, in case of CP method 3, CPn := (dAn1 , . . . , dA
n
m1
, dBn

1 , . . . , dB
n
m2
, dPn1 , . . . , dP

n
m3

)

results in the three best fitting ellipses dCPBFEn,i = (θi,dCPn , αi,dCPn , φi,dCPn), i = 1, 2, 3. There-

with, the three points θi,dCPn define a cubic curve gdCP (z). The final curve is calculated by

cubic interpolation with supporting points {An, θdCPn , Bn} for CP2 or {θ1,dCPn , θ3,dCPn , θ2,dCPn}
for CP3. Therewith, gdCP (z) cross each slice, whereas each slice is defined by an (x, y, z)-plane

with z = θnl3 , l = 1, . . . , Ln. Let gCP (θnl) define the intersection points of the curve gCP (z) with

each slice. The distance vector ηnl to θnl is calculated by

ηnl = θnl − gCP (θnl)

with l ∈ {0, . . . , Ln}.

Figure 9 and 10 show µlθ, µ
l
η, θ

nl and ηnl of the training data set in the sample space using

CP3 with l = 1, . . . , 23. The covariance matrices are visualized by 90% confidence ellipses. We can

clearly decrease the variance using the alternative approach with identical variance for the base

slice because of κnl = 0 ∀n = 1, . . . , N for l = M .

4 Posterior distribution

In addition to construct a shape model and the corresponding shape space, we aim to estimate the

best fitting ellipses BFEl parametrized by ρl = (θl, αl, φl)T , l = l, . . . , L in a new observed data set

given a set of control points CP . In general, this can be obtained through the posterior π(ρ | S)

where sil ∈ S ⊆ V is the volume information and i = (i1, i2) ∈ I(ρ) is a set of indices within the

ellipses ρ. The control points CP are used to deform the prior model π(ρ) as described in Section 3.

Therefore, we model the posterior by an empirical Bayes approach [2]. The posterior

π(ρ | S,CP ) ∝ L(S | ρ) ∗ π(ρ | CP )

defines the posterior density of the deformed template π(ρ | CP ) given the the observed image.

The likelihood or image model L(S | ρ) is the joint probability density function of the gray levels

given the parametrized object ρ|CP , whereas ρ|CP defines the ellipses ρ deformed by the control

points CP . The prior π(ρ | CP ) models realistic variations from our mean shape µBFE ∈ (R2 ×
R2
+ × (−π, π])L given the control points.
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Figure 9: Slice S = −11, . . . , 0 where 0 mark the base-slice (i.e. −L−1
2 , . . . , 0). Each plot contains

23 red and blue circles representing θnl (Position) and ηnl (Dist. Pos2CP-line) respectively, where
N = 23 is the number of training cases and n = 1, . . . , N . The means µlθ and µlη are depicted by
small crosses. The corresponding covariance matrices are depicted by 90% confidence ellipses.
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Figure 10: Slice S = 0, . . . , 11 where 0 mark the base-slice (i.e. 0, . . . , L−12 ). Each plot contains
23 red and blue circles representing θnl (Position) and ηnl (Dist. Pos2CP-line) respectively, where
N = 23 is the number of training cases and n = 1, . . . , N . The means µlθ and µlη are depicted by
small crosses. The corresponding covariance matrices are depicted by 90% confidence ellipses.
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We assume different mean image gray values ν0 inside and ν1 outside of the object and constant

variance τ2 as proposed in Dryden and Mardia [3]. Therewith, the likelihood can be modeled by

L(S | ρ, CP ) ∝ exp


− 1

2τ2

L∑

l=1

∑

i∈I(ρl|CP )
(sil − ν0)2

− 1

2τ2

L∑

l=1

∑

i/∈I(ρl|CP )
(sil − ν1)2




with si = ν0 + εi if i ∈ I(ρ|CP ) and si = ν1 + εi if i /∈ I(ρ|CP ) and an error distribution of

εi
iid∼ N(0, τ2).

Using the suggest prior distribution from section 2 in the main article, the prior π(ρ | CP ) =

π(θ, α, φ | CP ) is given by

π(ρ | CP ) ∝ exp

(
−β
∑

l

1

2(σlθ1)2
(θl1 − µlθ1)2 − β

∑

l

1

2(σlθ2)2
(θl2 − µlθ2)2

)

∗ exp

(
−β
∑

l

µlα1

2(σlα1
)2

(αl1 − ln(µlα1
))2

)

∗ exp

(
−β
∑

l

µlα2

2(σlα2
)2

(αl2 − ln(µlα2
))2

)

∗ exp

(
−β
∑

l

1

2(σlφ)2
(φl − µlφ)2

)∣∣∣∣∣
CP

with θli = ξli + ηli, i = 1, 2 (see section 3.4). The weight parameter β ∈ R+ describes the importance

of the prior compared to the likelihood. In addition, we extend the prior by taking into account

the variation between neighbor slices by

π1(ρ | CP ) ∝ π(ρ | CP )

∗ exp


−β̃1

∑

i=1,2

∑

l

(θl−1i − θli)2 + (θl+1
i − θli)2




∗ exp


−β̃2

∑

i=1,2

∑

l

(αl−1i − αli)2 + (αl+1
i − αli)2




∗ exp

(
−β̃3

∑

l

(φl−1 − φl)2 + (φl+1 − φl)2
)∣∣∣∣∣

CP

,

where β̃1 = ββ1, β̃2 = ββ2, β̃3 = ββ3 and β1, β2, β3 ∈ R+ are regularization parameters which have

to be chosen. Therewith, we introduce a constraint that small changes between neighbor slices are
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more likely than jumps. An alternative approach is to take into account neighbor relations by the

second derivatives, i.e.,

π2(ρ | CP ) ∝ π(ρ | CP )

∗ exp

(
−β̃1

∑

l

(θl+1
1 − 2θl1 + θl−11 )2 + (θl+1

2 − 2θl2 + θl−12 )2

)

∗ exp

(
−β̃2

∑

l

(αl+1
1 − 2αl1 + αl−11 )2 + (αl+1

2 − 2αl2 + αl−12 )2

)

∗ exp

(
−β̃3

∑

l

(φl+1 − 2φl + φl−1)2
)∣∣∣∣∣

CP

with β̃1, β̃2, β̃3 as before. Hence, the posterior becomes

π(ρ | S,CP ) ∝ L(S | ρ) ∗ πi(ρ | CP ), i ∈ {1, 2}. (13)

Estimation of π(ρ | S,CP ) can be done by Markov chain Monte Carlo (MCMC) method using the

Metropolis-Hastings algorithm [4]. The MCMC approach avoids the computation of the unknown

normalization constant in the posterior π(ρ | S,CP ) by drawing independent samples from a

proposal distribution and the generation of a Markov chain. The MCMC method is implemented

as follows:

1. Choosing of an arbitrary initial estimate of ρ|CP , e.g, by the prior model.

2. Generation of a random permutation Ip = {i1, . . . , iL} from the index set {1, . . . , L} whereas

L is the number of slices. Therewith, we update the slices in a random order.

3. Generation of a new random realization from the proposal distribution g(ρnew,ik | ρold,ik), e.g.,

by ρnew,ik = (θnew,ik , anew,ik , φnew,ik)T ∼ N(ρold,ik , χ
2
ik

) where χ2
ik

can be chosen depending

on the prior distribution by χik = diag(λ1σ
ik
θ1
, λ2σ

ik
θ2
, λ3σ

ik
a1 , λ4σ

ik
a2 , λ5σ

ik
φ ), k = 1, . . . , L where
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λi, i = 1, . . . , 5 are weights that must be chosen. We assume a density

g(ρnew,ik | ρold,ik) ∝ exp


−1

2

2∑

j=1

1

(σikθj )
2
(θnew,ikj − θold,ikj )2

− 1

2

2∑

j=1

1

(σikaj )
2
(anew,ikj − aold,ikj )2

−1

2

2∑

j=1

1

(σikφj )
2
(φnew,ikj − φold,ikj )2


 .

4. Calculation of the Hastings-ratio

p =
π(ρnew | S,CP )g(ρold | ρnew)

π(ρold | S,CP )g(ρnew | ρold)

using the derived formula 13 for the posterior density. Note, the used proposal density is

symmetric and therefore

p =
π(ρnew | S,CP )

π(ρold,k | S,CP )
.

5. Accept ρik = ρnew,ik with probability min(1, p) otherwise keep ρik = ρold,ik .

6. Repeat steps 3 to 5 L-times until each slice is updated.

Typically the MCMC method consist of a burn-in and a sample period by an iteration of steps 2 to

6. The final ρ|CP is calculated by the average of the sample period. In our simulations we used a

burn-in and sample period of 500 samples each. Furthermore, calculations are done inside a mask

around the registered prior shape to decrease computation time and to avoid additional variance

by other structures in the lower male pelvis.

5 Additional data analysis

This section reports additional results for the prior as well as for the MCMC method described in

Section 4 before.

5.1 Prior results

In Section 3 different approaches of control points are discussed. We obtain a different mean shape

as a prior corresponding to the used method. The results in Section 3 in the main article assume
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the control point method CP3. Alternatively, Table 2 shows the the evaluation results between the

manual delineation and the deformed MBFE to the manual contours for each test data set using

CP2. All evaluation criterias in Table 3 (in the main article) show a better performance than in

Table 2. We do not show the results of control point method CP1 here because the results are even

less accurate than for CP2. Even if we observe a less accurate performance of CP2 compared to

CP3, the method has the advantage of fewer control points in the outer slices where the definition

of the delineation is more challenging. Therefore, this method is an object of further studies.

Table 2: CP2: Evaluation metrics between Mean Best Fitting Ellipse and manual delineations
given by the physician. HD mean is given in mm, Dice 3D and Accuracy in percentage.

Test set 1 2 3 4 5 6 7 8 9 10 µ

HD mean 4.58 2.77 6.32 3.61 4.12 4.66 3.43 6.82 4.03 4.04 4.44
Dice 3D 0.83 0.90 0.85 0.87 0.87 0.83 0.89 0.84 0.92 0.89 0.87
Accuracy 0.69 0.81 0.74 0.76 0.73 0.63 0.80 0.64 0.84 0.78 0.74

5.2 MCMC results

In this section we discuss results after MCMC as described in Section 4 with π2(ρ | CP ) as the

prior distribution whereas we assume control points method CP3 as described in Section 3.3. In

the case of CP3, we do not update the first, center and last slice because the underlying contour is

described reasonable well by the control point.

The weight β and regularization parameters β1, β2 and β3 of the prior distribution have to be

chosen in practice. A simulation study (reported below) motivates, e.g., a choice of β = 40 and

(β1, β2, β3) = (2, 180, 10).

Figures 11 and 12 depict the influence of different β, β1, β2 and β3 in formula (13) by a

comparison of the distances (7)-(9) as described in the main article. β = 0 means that the posterior

is only driven by the likelihood. On the other hand, β → ∞ means we ignore the likelihood and

the posterior is only determined by the prior. We can observe the volume overlap and accuracy

converged against the prior for increasing weights β. The regularization parameters β1, β2 and β3

control the speed of the convergence to the prior (MBFE) and stabilize the results.

Based on initial simulations with several parameter combinations, we replicated 200 times the

MCMC step for 3 different patients from the test data set with β ∼ U(0, 100), β1 ∼ U(0, 20),
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(a) test data set 5 (b) test data set 6

Figure 11: Volume overlap after MCMC using different (β, β1, β2, β3) settings for two different test
data sets compared to the volume overlap of BFE and MBFE with manual delineation line.

(a) test data set 5 (b) test data set 6

Figure 12: Accuracy after MCMC using different (β, β1, β2, β3) settings for two different test data
sets compared to the accuracy of BFE and MBFE with manual delineation line.

β2 ∼ U(0, 200) and β3 ∼ U(0, 30) where U(a, b) denote the standard uniform distribution on the

open interval (a, b). The results with the two highest dice coefficients (volume overlap) are shown

in Table 3.

On the basis of the simulation results we have chosen five different MCMC parameter settings

Mi = {β, β1, β2, β3} by M1 = {94, 6, 181, 28}, M2 = {32, 1.6, 173, 1}, M3 = {53, 1.1, 140, 12},
M4 = {40, 2, 180, 10} and M5 = {80, 10, 180, 20}. Tables 4, 5 and 6 illustrate the distances between
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Table 3: Prior distribution parameters ranked by the two highest dice 3D coefficients after 200
simulations for 3 different test data sets.

Test Weights for the prior distribution
Dice 3D Accuracy

data set β β̃1 β̃2 β̃3

5
94.08 15.95 181.13 27.92 0.89 0.77
92.17 13.22 118.95 10.91 0.89 0.76

6
53.64 1.14 138.84 12.48 0.87 0.74
47.42 1.10 27.69 5.27 0.86 0.73

8
32.36 1.62 173.12 0.95 0.90 0.80
28.31 1.75 181.46 19.35 0.90 0.80

the manual delineation and the MCMC result for each test data set and the five different parameter

sets. For comparison M0 shows the results from the registered mean shape without applying MCMC

as we have seen in Table 2 and 3 in the main article. A comparison with the results indicate that

we do not gain large improvement by MCMC compared to the registered mean shape using the

control points. In fact, the 10 test data result in a median volume overlap and accuracy of 0.90,

0.81 for M0 (MBFE) compared to 0.91, 0.82 for the parameter set M4 (MCMC), with a median

absolute deviation (MAD) of 0.021, 0.035 compared to 0.021, 0.040. The values show a slight overall

improvement after MCMC. Particularly, there is an improvement of the accuracy in Table 6 for all

patients in case of parameter set M5. Furthermore, test data set 9 in Table 5 shows a significant

improvement of the volume overlap after MCMC. The slices of this patient are depicted in Figure 13

together with the manual contour information, contour line from deformed mean shape and contour

line after MCMC. Nevertheless, we believe the MCMC procedure is a too time consuming step in

the praxis compared to the deformation of the mean shape given control points.

Table 4: HD mean between MCMC results and manual delineations given by the physician using
different parameter sets Mi = {β, β̃1, β̃2, β̃3} (in mm).

Test data set
1 2 3 4 5 6 7 8 9 10 md MAD

M0 2.51 2.17 4.24 2.83 3.75 4.63 1.95 4.67 4.27 4.42 4.00 0.655
M1 2.26 1.95 4.38 2.96 4.02 4.63 1.93 4.58 2.91 4.47 3.49 1.034
M2 2.18 1.96 4.63 2.88 4.65 4.63 1.89 4.34 3.88 5.00 4.11 0.719
M3 2.26 2.05 4.81 2.99 4.09 4.63 1.90 4.75 3.68 4.59 3.88 0.883
M4 2.17 2.15 4.43 3.07 4.36 4.63 1.71 4.33 4.01 4.53 4.17 0.413
M5 2.19 1.92 4.12 2.75 4.03 4.63 1.93 4.67 2.58 4.46 3.39 1.136

To verify further the proposed posterior distribution in formula (13), we compare the volume
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Table 5: Dice 3D between MCMC results and manual delineations given by the physician using
different parameter sets Mi = {β, β1, β2, β3} (in percentage).

Test data set
1 2 3 4 5 6 7 8 9 10 md MAD

M0 0.92 0.93 0.90 0.91 0.88 0.84 0.92 0.88 0.89 0.88 0.90 0.021
M1 0.93 0.93 0.91 0.90 0.88 0.84 0.91 0.88 0.92 0.88 0.91 0.023
M2 0.93 0.93 0.90 0.91 0.84 0.85 0.91 0.90 0.92 0.87 0.90 0.026
M3 0.93 0.93 0.91 0.91 0.88 0.86 0.90 0.89 0.92 0.88 0.90 0.023
M4 0.93 0.93 0.91 0.90 0.87 0.85 0.91 0.89 0.92 0.88 0.91 0.021
M5 0.93 0.93 0.91 0.90 0.88 0.84 0.91 0.88 0.93 0.89 0.90 0.021

Table 6: Accuracy between MCMC results and manual delineations given by the physician using
different parameter sets Mi = {β, β1, β2, β3} (in percentage).

Test data set
1 2 3 4 5 6 7 8 9 10 md MAD

M0 0.84 0.84 0.81 0.82 0.74 0.70 0.84 0.73 0.80 0.74 0.81 0.035
M1 0.86 0.86 0.82 0.81 0.75 0.70 0.83 0.74 0.85 0.75 0.82 0.047
M2 0.87 0.86 0.80 0.83 0.64 0.72 0.82 0.80 0.85 0.71 0.81 0.046
M3 0.86 0.85 0.81 0.83 0.73 0.74 0.81 0.79 0.85 0.74 0.81 0.042
M4 0.87 0.86 0.82 0.82 0.71 0.73 0.84 0.78 0.85 0.75 0.82 0.040
M5 0.86 0.86 0.82 0.82 0.75 0.71 0.84 0.76 0.86 0.76 0.82 0.047

overlap and accuracy in Figure 14 between MCMC results and MBFE result based on different vol-

ume information. The MCMC results are calculated for different β, fixed (β1, β2, β3) = (2, 180, 10)

and on the basis of:

1. the original volume information,

2. a derived volume from the original by setting all gray values inside the manual delineation

line to 100 and outside to 130 added by some error with the same variance inside and outside,

3. a derived volume from the original by setting all gray values inside the best fitting ellipse to

100 and outside to 130 added by some error with the same variance inside and outside,

4. a derived volume from the original by setting all gray values inside the manual delineation

line to 80 and outside to 150 added by some error with the same variance inside and outside,

5. a derived volume from the original by setting all gray values inside the best fitting ellipse to

80 and outside to 150 added by some error with the same variance inside and outside.
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(a) slice 3 (b) slice 4 (c) slice 5 (d) slice 6 (e) slice 8

(f) slice 10 (g) slice 12 (h) slice 13 (i) slice 14 (j) slice 15

Figure 13: Selected MR slices of test data set 9 in Table 5 and 6. Slice 3 is the first slice and slice 15
the last slice with prostate information in the data set. The control point of the first and last slice
are depicted in (a) and (j). Depicted are manual delineation line (yellow dashed line), deformed
mean shape (magenta solid line) and result after MCMC (green dashed dotted line). Slices 7, 9
and 11 are not depitecd in the Figure.

The standard deviation of the error is chosen to be 50, i.e., ε ∼ N(0, σ2) with σ = 50.

In general, we can note the MCMC procedure works well in case of an ideal underlying image

information. We do not need prior information if we use volume 2 to 5. The true underlying

delineation can be found by the likelihood. Volume overlap and accuracy are close to the results

obtained by the BFE for β = 0 which indicate the best possible values using the proposed model.

Furthermore, we observe a decline of the volume overlap and accuracy for larger β using volume 2

to 5, and a convergence to the prior for β → ∞. The convergence rate is different between both

test data set which which can be explained by a less or more complex structure of the prostate. In

addition, the convergence to the prior is faster using volume 2 and 3 compared to volume 4 and 5

due to the lower contrast in inside and outside of the object in volume 2 and 3. In case of the the

original volume information (volume 1), the prior contains the most valuable information about

the prostate contour. We can observe the largest improvement after MCMC for both data set in

the range of β = 20, 40 and 60.

In Figure 14 is shown low information in the MR volumes is a limitation for the MCMC
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(a) test data set 6 (b) test data set 8

(c) test data set 6 (d) test data set 8

Figure 14: Volume overlap ((a),(b)) and accuracy ((c),(d)) of the MCMC results with the manual
delineation using different background images and for different β for test data sets 6 and 8. (volume
1): Using the original volume information. (volume 2): Derived volume by setting all gray values
inside the best fitting ellipse to 100 and outside to 130 plus an error. (volume 3): Derived volume
by setting all gray values inside the manual delineation line to 100 and outside to 130, plus an
error. (volume 4): Derived volume by setting all gray values inside the best fitting ellipse to 80
and outside to 150, plus an error. (volume 5): Derived volume by setting all gray values inside the
best fitting ellipse to 80 and outside to 150 plus an error.

approach. In addition, a careful choice of β, β1, β2 and β3 is a difficult task. Several attempts to

improve the MCMC results were carried out, e.g., different models for the likelihood, calculation of

the Hastings ratio per slice instead of taking into account the entire volume and using the median

instead of the mean to calculate the average of the gray values inside and outside the contour for

the likelihood. Another idea was to select slices with a significant difference of the histogram inside
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and outside of the deformed mean shape, e.g., by a Kolmogorv Smirnov test, a Andersson Darling

test or by calculation of the earth mover’s distance. All our attempts did not significantly improve

the MCMC results for all test data sets so far.

Nevertheless, a potential improvement by a different likelihood model is a topic of further reaseach.

Such a likelihood should model the underlying volume structure more carefully. Further possible

directions are to use the MCMC method to sample from probability distributions on the space of

curves as suggested by Fan et al. [5], to derive additional constraints from the training data set or

to create an appearance model as suggested by Cootes and Taylor [6].
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Abstract

This paper discusses a novel framework to analyse rotational deformations of real

3D objects. The rotational deformations such as twisting or bending have been ob-

served as the major variation in some medical applications, where the features of the

deformed 3D objects are directional data. We propose modelling and estimation of

the global deformations in terms of generalized rotations of directions. The proposed

method can be cast as a generalized small circle fitting on the unit sphere. We also

discuss the estimation of descriptors for more complex deformations composed of two

simple deformations. The proposed method can be used for a number of different 3D

object models. Two analyses of 3D object data are presented in detail: one using

skeletal representations in medical image analysis as well as one from biomechanical

gait analysis of the knee joint. Supplementary Materials are available online.

Keywords: 3D object, axis of rotation, directional statistics, skeletal model, small circle.

1 Introduction

Modeling deformations of a real object is a central issue in computer vision, biomechanics

and medical imaging. In a number of applications, generalized rotations appear to be the

∗This research was funded by the Norwegian Research Council through grant 176872/V30 in the eVita
program and performed as part of Tromsø Telemedicine Laboratory.
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(a) (b) (c)

Figure 1: 3D objects and their models. (a) S-rep of a hippocampus (b) S-rep of a rotationally
deformed ellipsoid. (c) Attached boundary normals on the meshed surface of an ellipsoid.

major forms of deformation. For instance, the major variation of shapes of hippocampi

in the human brain has been shown to be bending of the object (Joshi et al., 2002; Pizer

et al., 2013); Human joint movements, such as the motion of the knee or the elbow, consist

of bending and twisting about the joint (Rivest, 2001; Rivest et al., 2008; Oualkacha and

Rivest, 2012). A direct modeling of such rotational deformations will promote a precise

description of object variation and will be important for surgery or treatment planning.

In this paper, we propose an estimation procedure for descriptors of underlying rotational

deformations from a random sample of objects. Specifically, the descriptors are parameters

of the model we introduce in Section 2; they include rotational axes of a rotational model.

Our model embraces a number of different types of deformations including rigid rotation,

bending, twisting and a mixture of the last two. Although we aim to analyze variations

in sophisticated human organs such as the hippocampus (Fig. 1a), we work with a simpler

object resembling ellipsoids (Fig. 1b) to show the validity of the proposed method.

A major challenge in modeling rotational deformation is that such variations are typically

mixed with translational and scaling effects. We address this issue by only considering

direction vectors, which are invariant to translation and size changes. It will be shown

that the rotational deformation can be sufficiently modeled using directional data. Another

advantage of our approach is that well-studied directional data techniques can be applied

(Fisher et al., 1993; Mardia and Jupp, 2000; Chang and Rivest, 2001; Jung et al., 2011).

Before we introduce our method, we point out several modeling approaches of 3D objects

that are relevant to our framework of directional data, as follows:

Point distribution model A solid object is modeled by the positions of the sampled sur-

face points on which directions normal to the surface can be attached (Cootes et al.,

1992; Dryden and Mardia, 1998; Kurtek et al., 2011). See Fig. 1c.
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(a) A simple 3D object (b) Direction vectors

Figure 2: Toy example. (a) A toy object, to be deformed. (b) Each direction vector is a point on
the surface of the unit sphere.

Large deformations The shape changes of an object in images are modeled by the defor-

mations of a template image (Pennec, 2008; Rohde et al., 2008). The deformation can

be understood as a vector field, where each vector contains the direction.

S-rep In skeletal representations (s-rep), a 3D object is modeled by skeletal positions lying

inside of the object and spoke vectors pointing to the boundary of the object (Siddiqi

and Pizer, 2008; Pizer et al., 2013). See Fig. 1a and Fig. 1b. We describe s-rep data

analysis in more detail in Section 5.

The framework of our analysis can be understood by considering a simple example of a

3D object (Fig. 2). The object is modeled by four surface points (or skeletal positions) with

attached direction vectors µj for 1 ≤ j ≤ 4 (Fig. 2a). Consider random twists of the object,

where the left and right sides are rotated about a common axis by a common angle but in

opposite directions (Fig. 3a). After collecting the directional data (Fig. 3b), our method

finds an estimate of the axis (overlaid in Fig. 3c) as well as the mean directions µj and the

rotation angles. The proposed method provides an simple interpretation of the underlying

rotational deformation and accurate estimation of the parameters. The estimated axis in the

toy example is close to the true axis with relatively small sample size n = 30. See Section 2.3

for detailed discussion of this example.

To the best of our knowledge, this paper is the first attempt to model rotational defor-

mations and to estimate the axis of rotations from directional data. There are, however,

several methods available for the estimation of the axis of rotation based on 3D landmarks,

especially in the area of biomechanics (Halvorsen et al., 1999; Rancourt et al., 2000; Rivest,

2001; Gamage and Lasenby, 2002; Teu and Kim, 2006; Rivest et al., 2008; Ball and Greiner,
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(a) Random twists (b) Random directions (c) Estimated axis

Figure 3: Toy example. (a) n = 30 realizations of random twists. Different colors represent different
observations. (b) Directional features. (c) The estimated axis of the twists (dotted line) is close
to truth. The four concentric circles, discussed in more detail in Section 2.3, are also overlaid.

2012). In the statistical literature, estimation of rotation matrices has been studied in terms

of spherical regression and its generalizations (Chang, 1986, 1988, 1989; Rivest, 1989, 2006;

Chang and Rivest, 2001). In spherical regression both the axis c and the angle θ are es-

timated. In contrast, our model treats θ as a random variable. Hanna and Chang (2000)

used the quaternion representation to model a smooth path of rotations. However, in our

problem of estimation of axes of rotational deformations, it is straightforward to use the

axis–angle representation. As will be pointed out later and may be guessed from Fig. 3c,

the estimation of the axis of rotation based on directional vectors has a close relationship

with the estimation of small circles on the unit sphere, which was studied in various contexts

(Mardia and Gadsden, 1977; Rivest, 1999; Jung et al., 2011).

This paper is a part of a bigger project in modeling and estimation of deformations. We

leave relevant asymptotic theory as future work.

The rest of the paper is organized as follows. We begin with introducing some neces-

sary facts on rotations and their connections to circles on the unit sphere. In Section 2, a

simple rotation model is introduced, and our estimation procedure is discussed. Non-rigid

deformations such as twisting and bending of the object are also discussed in that section.

A hierarchical rotation model is introduced in Section 3, where the object is assumed to be

deformed sequentially by different rotations. In Section 4, simulation results are reported

to show the effectiveness of the estimator. In Section 5 and 6, the merits of the proposed

methods are further illustrated using applications from models that represent organs and

knee motion during gait.
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1.1 Rotations, circles and spheres

In the axis–angle representation of rotations, an axis c is the unit vector that is left fixed

by the rotation and an angle θ gives the amount of rotation. A unit vector lies on the unit

sphere S2 = {x ∈ R3 : ‖x‖ = 1}. The axis–angle pair (c, θ) ∈ S2 × [0, 2π) represents a

rotation in 3-space, where a vector x ∈ R3 is rotated by (c, θ) by applying x 7→ R(c, θ)x with

R(c, θ) = I3 + sin θ[c]× + (1− cos θ)(cc′ − I3), (1)

where c′ denotes the transpose of c, and [c]× is the cross product matrix satisfying [c]×v = c×v
for any v ∈ R3.

A useful observation in our analysis is that the direction vectors follow circles when they

are rotated. In particular, when x ∈ S2 is rotated about an axis c ∈ S2, the trajectory of

such rotation is precisely a circle, centered at c with radius r = arccos(x′c), and is denoted

by δ(c, r) = {x ∈ S2 : x′c = cos(r)} ⊂ S2. Since δ(c, r) = δ(−c, π − r) we may assume that

r ≤ π/2. We call δ(c, r) a great circle if r = π/2 and a small circle if r < π/2.

If a K-tuple of K ≥ 2 direction vectors x = (x1, . . . , xK) ∈ (S2)K are rotated together

about a common axis c, then each of the rotated direction vectors is on a circle with common

center c but with different radii rj = arccos(c′xj), j = 1, . . . , K. Denote the collection of

concentric circles with a common center c and radii tuple r = (r1, . . . , rK) ∈ [0, π/2] ×
[0, π]K−1 by

δ(c, r) = {(x1, . . . , xK) ∈ (S2)K : x′jc = cos(rj), j = 1, . . . , K}.

To work with observations on S2, the geodesic distance function dg : S2 × S2 → [0, π]

is defined by the arc length of the shortest great circle segment joining x, y ∈ S2, and is

dg(x, y) = arccos(x′y). We further define dg(x,A) = infy∈A dg(x, y) for x ∈ S2, A ⊂ S2. For

a random element X whose domain is S2, a sensible notion of mean µ(X) is defined by a

minimizer of mean squared distance,

µ(X) = argmin
x∈S2

E{d2g(x,X)},

often called the geodesic or Fréchet mean (Fréchet, 1948; Karcher, 1977). A useful mea-

sure of dispersion is geodesic variance which is defined as Var(X) = E{d2g(µ(X), X)} =

minx∈S2 E{d2g(x,X)} provided that µ(X) exists.
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2 Single rotational deformations

In this section, an estimation procedure for rotational deformation models is proposed. We

begin with a discussion on the simpler rigid rotation model.

2.1 Rigid rotation model

Suppose we have a K-tuple of random direction vectors X = (X1, . . . , XK). For some

unknown constants c, µj ∈ S2 and a latent random variable θ ∈ [−π/2, π/2), we model

Xj ∈ S2 (j = 1, . . . , K) as noisy observations of rotations of µj by R(c, θ), that is,

Xj = R(c, θ)µj ⊕ εj (j = 1, . . . , K). (2)

Here, the εj are independently distributed random error terms, and the ⊕ sign defines a

specific action of the error distribution as defined in the following.

There are several ways to define random spherical points X ∼ µ⊕ ε ∈ S2. A natural way

is to introduce an S2-valued distribution, e.g., the von Mises–Fisher distribution (Mardia

and Jupp, 2000, p. 36) with the density fvMF(x;µ, κ) ∝ exp(κµ′x) with respect to the

uniform measure on S2 for µ ∈ S2, κ > 0. Alternatively, one can utilize the tangent space at

µ ∈ S2, allowing a distribution on the tangent space to be mapped to S2. Another approach

is to use the embedding of S2 into R3, by scaling a three-dimensional random vector to

unit length. This approach is often called a perturbation model (Goodall, 1991). It is well-

known that a perturbation model introduces a bias in the estimation of the geodesic mean

unless the distribution is isotropic (Kent and Mardia, 1997; Le, 1998; Huckemann, 2011a).

In this paper in Section 4, we use the von Mises–Fisher distribution and in Section 5 the

perturbation model. The latter is justified because we consider only isotropic distributions.

In the following discussion, we do not specify a particular distribution for ε, but require that

the geodesic mean of X ∼ µ⊕ ε is uniquely found at µ, i.e., µ = argminx E{d2g(x,X)}. The

geodesic variance Var(ε) := Var(µ⊕ ε) is then well defined.

In model (2), several different combinations of θ and µj lead to the same model. Specif-

ically, replacing θ and µj by θ∗(a) = θ − a and µ∗j(a) = R(c, a)µj for any a ∈ R gives the

same model as (2). Therefore, we assume

Eθ = 0. (3)

The trajectory of rotated direction vectors forms a small circle (cf. Section 1.1), which
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is approximately true in the presence of the noise. In other words, the collection of Xj in

(2) are distributed along concentric circles with common center at c, as the following lemma

states.

Lemma 1. Let the η-neighborhood of concentric circles δ(c, r) be

δη(c, r) = {(X1, . . . , XK) ∈ (S2)K : dg(δ(c, rj), xj) < η for all j = 1, . . . , K},

for η > 0. If µ ⊕ εj are independent and identically distributed and spherically symmetric

about µ, then

P{X ∈ δη(c, r)} ≥
{

1− Var(ε)

η2

}K
.

The auxiliary parameters rj = arccos(c′µj) represent the radii of the concentric circles,

and are obtained from c and µj, the parameters of (2). A proof of Lemma 1 is given in the

Appendix.

Lemma 1 suggests that X and δ(c, r) are close with high probability, which motivates to

define the population concentric circles δ(c0, r0) as a minimizer of squared loss. In the view

of this estimation strategy, the capability of identifying parameters as minimizers leads to a

natural estimation strategy, namely the M–estimation or the sample Fréchet mean (Karcher,

1977; Huckemann, 2011b). The rest of this section is devoted to the identification of the

population parameters c, rj and µj as population Fréchet means.

First, the distance function ρ between δ(c, r) and x is defined as the Cartesian product

metric based on dg by

ρ2(δ(c, r),x) =
K∑

j=1

d2g (δ(c, rj), xj) =
K∑

j=1

(
arccos(x′jc)− rj

)2
.

The collection of population concentric circles δ(c0, r0) is defined as the Fréchet ρ-mean set

argmin
c∈S2,r∈[0,π/2]×[0,π]K−1

Eρ2(δ(c, r),X), (4)

where the expectation E is with respect to the random directions X. We assume in the

following that there is a unique minimizer δ(c0, r0). The center c0 of the circles also represents

the axis of rotation.

It should be noted that there is no guarantee for the true axis of rotation č of (2) to be

the same as c0 from (4). Simulation studies, reported in the Supplementary Material, have

suggested that the case c0 = č occurs when Var(rjθj) is large enough compared to the error
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variance Var(εj) for all j. In our simulation studies in Section 4, the effect of this bias is

shown to be small.

While the axis of rotation c is the center of the concentric circles δ(c, r), each base point

µj is also a point on δ(c, rj), j = 1, . . . , K. The assumption of isotropy of εj implies that

µ(Y θ0
j ) = R(c, θ0)µj

for Y θ0
j = R(c, θ0)µj+εj with deterministic angle θ0 ∈ [−π/2, π/2). In particular, µ(Y 0

j ) = µj.

For random θ define

µ(Xj|θ) := R(c, θ)µj .

With the distance function ρδ(c,r)(x, y) which measures the shortest arc-length between x, y ∈
δ(c, r) along the (small) circle via ρδ(c,r)(x, y) = sin(r) arccos[(x′y − cos2(r))/sin2(r)] (Jung

et al., 2012) we have by definition

ψ0 = argmin
ψ∈[−π/2,π/2)

Eρ2δ(c,rj)(µ(Xj|θ), R(c, ψ)µj) = argmin
ψ∈[−π/2,π/2)

E(θ − ψ)2,

which leads to the minimizer ψ0 = 0 due to the assumption (3). Thus,

µj = argmin
µ∈δ(c,rj)

Eρ2δ(c,rj)(µ(Xj|θ), µ). (5)

Finally, we view µ(Xj|θ) as the expectation of Xj conditioned on the unobserved ran-

dom variable θ which represents the amount of rotation. Then, by solving the equation

µ(Xj|θ) = R(c, θ)µj for θ, using the Rodrigues’ rotation formula (Gray, 1980; Altmann,

2005) R(c, θ)µj = µj cos θ + (c× µj) sin θ + 〈c, µj〉c(1− cos θ), we get

θ = atan2[〈µ(Xj|θ), c× µj〉, 〈µ(Xj|θ), µj − c cos(rj)〉], (j = 1, . . . , K), (6)

where the two argument function atan2(x2, x1) ∈ (−π, π] is the signed angle between two

vectors e1 = (1, 0) and (x1, x2) ∈ R2.

2.2 Estimation

Suppose we have n independent observations X1, . . . ,Xn from model (2). Each Xi is a col-

lection of K directions Xi = (Xij)j=1,...,K . The estimates of parameters c, rj, µj are obtained
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as the sample Fréchet means as follows:

(ĉ, r̂) = argmin
c,r1,...,rK

n∑

i=1

K∑

j=1

d2g{δ(c, rj), Xij}, (7)

µ̂j = argmin
µ

n∑

i=1

ρ2δ(ĉ,r̂j)(P(ĉ,r̂j)Xij, µ) (j = 1, . . . , K). (8)

Note that in (8), we have used P(ĉ,r̂j)Xij, the projection of Xij onto δ(ĉ, r̂j), instead of

E(Xij|θi) used in (5). The projection Pδ(c,r)x is a point on δ(c, r) with the minimal geodesic

distance to x, given by (Mardia and Gadsden, 1977, Eq. (3.3))

Pδ(c,r)x = argmin
v∈δ(c,r)

dg(v, x) =
x sin(r) + c sin{dg(x, c)− r}

sin{dg(x, c)}
.

The predicted values of the latent variable θi are obtained using (6) by substituting the

estimates for the parameters. The predictor for θi is θ̂i = K−1
∑K

j=1 θij for each i = 1, . . . , n

with

θij = atan2{〈P(ĉ,r̂j)Xij, ĉ× µ̂j〉, 〈P(ĉ,r̂j)Xij, µ̂j − ĉ cos(r̂j)〉}. (9)

The least squares problems (7-8) do not have closed form solutions. The problem (8) is

simpler and the same as finding the geodesic mean of angles, since both P(ĉ,r̂j)Xij and µ are

on the one-dimensional circle δ(ĉ, r̂j). Solutions to this type of problem are combinatorial

(Moakher, 2002) but also found efficiently by numerical methods (Le, 2001; Fletcher et al.,

2003). The problem (7) is precisely the fitting of concentric (small) circles. Therefore,

numerical algorithms for (7) are generalized algorithms of the well-studied fitting of small

circles (Mardia and Gadsden, 1977; Rivest, 1999; Jung et al., 2011, 2012) and are discussed

in the Appendix.

2.3 Rotational deformations

The single rotation model (2) describes rigid rotations of objects. We extend the model

to more general cases so that the generalized rotational model can explain, for example,

non-rigid twisting or bending.

Suppose two direction vectors x1 and x2 are rotated about the same axis c but by different

angles θ1 and θ2. This allows the underlying object to deform. In general, the assumption of

a single rotation angle θ in (2) is relaxed to possibly different angles θ1, . . . , θK , which may

be either independent or dependent of each other. To incorporate such general situations,
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the single rotation model is generalized to

Xj = R(c, θj)µj ⊕ εj (j = 1, . . . , K). (10)

The relationships among the θj can be specified using prior knowledge about the specific

rotational deformation. As a special case, when a rigid rotation is assumed, it is reasonable to

set θ1 = · · · = θK , which goes back to the model (2). The general model (10) includes other

important physical deformations. The twisting or bending of the object can be modeled

by different rotations with a common axis of rotation. As an example, when an object

(and its attached direction vectors) is twisted, one group of direction vectors is rotated

clockwise, while the other group is rotated counter–clockwise. Let I1 and I2 be a partition of

the indices {1, . . . , K} representing groups of the direction vectors that rotate together. A

simple twisting or bending motion can be obtained by assuming θi = −θj for all i ∈ I1, j ∈ I2.
Another example is the scenario of independent rotations where all directions in the same

group rotate together (θi = θj, i, j ∈ Il) but two angles in different groups are independent

(θi and θj are independent for i ∈ Il, j ∈ Ik, 1 ≤ l 6= k ≤ 2).

In all cases above, we assume that some functions fj are known in advance, so that the

relationships between θj are modeled through known functions, i.e., θj = fj(θ).

In the estimation of the parameters in (10), we use the fact that the estimation procedure

(7) does not depend on specific assumptions of the latent variable θj. Therefore, the same

least squares estimators {ĉ, r̂j, µ̂j} can be used to estimate the parameters of (10). When

fj(θ) is known and invertible, the prediction of the ith sample of θ, θ(i), can be obtained.

Since each θij of (9) is a perturbed version of fj(θi), the prediction of θ(i) is then

θ̂i =
1

K

K∑

j=1

f−1j (θij).

Remark 1. A misspecification of the function fj does not affect the estimation procedure

(7), i.e., the estimation of the rotation axis. Nevertheless, the specification of fj models the

relationships between the rotation angles θj and is therefore crucial for their prediction as

elaborated in Section 4 of the Supplementary Material. The partition I1 and I2 models fj

and is not a parameter of (7).

Example 1. The toy example presented in Fig. 2 is now discussed in more detail. The dataset

consists of n = 30 observations of random twisting. The axis of twist is c = (0, 1, 0)′. The

random angle θ follows N(0, σ2) with σ ≈ 22.5◦ with θ1 = θ2 = θ and θ3 = θ4 = −θ. The

noise is independently added by a perturbation of N3(0, 0.1
2) on both the head and tail of
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the direction vectors and then projected onto S2.

The estimate (ĉ, r̂) was obtained by (7). The corresponding four concentric circles and

the axis estimates ĉ are overlaid in Fig. 3c. The estimate ĉ = (0.007, 0.999,−0.031)′ is only

1.8 degrees away from the truth. The base point estimates µ̂j, predictions of θi, and the

estimate of σ are also obtained, which are close to the truth. For example, σ̂ = 21.5◦.

Despite a relatively small sample size (n = 30), the proposed estimator successfully

estimated the axis of rotation, and leads to a clear visualization of the underlying rotational

deformation, as depicted in Fig. 3.

3 Hierarchical rotations

We now discuss an estimation procedure for rotational deformations that consist of two

independent generalized rotations. Such deformations include twisting and bending of the

objects about different axes.

Suppose a set of base points µj is rotated by R(c1, θj) and then by R(c2, ψj). The rotated

random direction vector Xj is represented by

Xj = R(c2, ψj)R(c1, θj)µj ⊕ εj (j = 1, . . . , K), (11)

with some error εj as seen in (2). The axes c1, c2 and the base points µj are unknown

parameters and θj, ψj are independent latent variables representing rotation angles. The

random direction vectors Xj have the same distribution as in

R′(c2, ψj)Xj = R(c1, θj)µj ⊕ εj (j = 1, . . . , K), (12)

provided that the distribution of µj⊕εj is spherically symmetric about µj. The order of these

rotations is not interchangeable because R(c2, ψj)R(c1, θj) 6= R(c1, θj)R(c2, ψj) in general.

Therefore, call the first rotation operation R(c1, θj) the primary rotation, and R(c2, ψj) the

secondary rotation.

With n observations, we have Xij = R(c2, ψij)R(c1, θij)µj⊕εij (i = 1, . . . , n, j = 1, . . . , K)

and we wish to estimate the axes of rotations c1, c2 and predict the unobserved random

variables ψij and θij. It is required to constrain the relationship among the ψj as a function

of ψ (also for θj). Otherwise, θij and ψij will catch all sample fluctuations, leading to an

overfit of c1 and c2. Let θj = f1j(θ) and ψj = f2j(ψ) for some known functions f1j and

f2j (j = 1, . . . , K). For example, when the deformation is composed of rigid rotation and
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twisting, the two functions can be modeled by f1j(θ) = θ and f2j(ψ) = 1j∈I1ψ−1j∈I2ψ, where

1 denotes the indicator function for a partition I1, I2 of {1, . . . , K}. See also Section 4.

The estimates of the axes of rotation c1, c2 might be obtained as a solution of the least-

squares problem

min
c1,c2

n∑

i=1

K∑

j=1

ρ2g{Xij, R(c2, ψij)R(c1, θij)µj}.

Since the above problem is challenging to solve directly, we divide it into two subproblems,

which can be solved iteratively. In a search for two subproblems, suppose first that (c2,

ψij) of the secondary rotation are known. Then we would de-rotate Xij by the action of

R(c2,−ψij) = R(c2, ψij)
′ so that the unrotated direction vectors X∗ij = R(c2, ψij)

′Xij are

solely expressed by the primary rotation of µj. In other words,

X∗ij = R(c1, θij)µj ⊕ εij. (13)

Noticing the structure of the model is the same as (2), the least squares estimators of c1, µj

and the auxiliary parameters r1j = arccos(c′1µj), for j = 1, . . . , K, are given by

(ĉ1, r̂11, . . . , r̂1K) = argmin
c1,(r11,...,r1K)

n∑

i=1

K∑

j=1

d2g{δ(c1, r1j), X∗ij}, (14)

µ̂j = argmin
µ

n∑

i=1

d2δ(ĉ1,r̂1j)(P(ĉ1,r̂1j)X
∗
ij, µ).

On the other hand, suppose we know in advance (c1, θij) of the primary rotation as well

as the base points µj. Then we would rotate µj so that the secondary rotation is only needed

to reach for the observations Xij from the rotated base points µ∗ij = R(c1, θij)µj. That is,

Xij = R(c2, ψij)µ
∗
ij ⊕ εij. (15)

The model (15) is different from models (2) and (13) as the base points µ∗ij are different

for different observations and assumed to be known. To estimate c2, we modify (14) to

incorporate the fact that µ∗ij are varying but known, which leads to

ĉ2 = argmin
c2

n∑

i=1

K∑

j=1

d2g{δ(c2, r∗ij(c2)), Xij}, (16)

where r∗ij(c2) = arccos(c′2µ
∗
ij) is a function of c2. For the estimation of c1 and c2 in (11),
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we iteratively update ĉ1 given ĉ2 and then update ĉ2 given ĉ1. With the kth estimates

ĉ
(k)
1 , ĉ

(k)
2 , θ̃

(k)
ij , ψ̃

(k)
ij of c1, c2, θij, ψij and the pre-specified functions f1j(θ), f2j(ψ), the (k+ 1)th

estimate is obtained as follows.

Step 1 Using ĉ
(k)
2 and ψ̂

(k)
ij , obtain the de-rotated observations X

(k)
ij = R(ĉ2,−ψ̂(k)

ij )Xij.

Step 2 Obtain ĉ
(k+1)
1 , r̂

(k+1)
1j , µ̂

(k+1)
j using (14) with X

(k)
ij in place of X∗ij, and also the pre-

dictions θ̃
(k+1)
ij of θij using (9) with X

(k)
ij , ĉ

(k+1)
1 , r̂

(k+1)
1j , µ̂

(k+1)
j in place of Xij, ĉ, r̂j, µ̂j.

Afterwards, use the function f1j to predict θi as θ̂
(k+1)
i = K−1

∑K
j=1 f

−1
1j (θ̃

(k+1)
ij ), so the

predictions for θij are updated as θ̂
(k+1)
ij = f1j(θ̂

(k+1)
i ).

Step 3 Rotate the base points to µ̃
(k+1)
ij = R(ĉ

(k+1)
1 , θ̂

(k+1)
ij )µ̂

(k+1)
j using the partial estimates

ĉ
(k+1)
1 and predictions θ̂

(k+1)
ij .

Step 4 Obtain ĉ
(k+1)
2 as the minimizer of (16) with µ̃

(k+1)
ij in place of µ∗ij, and also the

predictions of rotation angles ψ̃
(k+1)
ij using

ψ̃
(k+1)
ij = atan2(〈Xij, ĉ

(k+1)
2 × µ̃(k+1)

ij 〉, 〈Xij, µ̃
(k+1)
ij − 〈ĉ(k+1)

2 , µ̃
(k+1)
ij 〉ĉ(k+1)

2 〉), (17)

which is similar to (9). Given ψ̃
(k+1)
ij , use the function f2j to predict ψi by ψ̂

(k+1)
i =

K−1
∑K

j=1 f
−1
2j (ψ̃

(k+1)
ij ), leading to updated predictions for ψij as ψ̂

(k+1)
ij = f2j(ψ̂

(k+1)
i ).

Step 5 If both dg(ĉ
(k)
1 , ĉ

(k+1)
1 ) and dg(ĉ

(k)
2 , ĉ

(k+1)
2 ) are negligible, stop. Otherwise, return to

Step 1.

Numerical algorithms to solve the least-squares optimizations (14, 16) are similar to the

problem (7), and are presented in the Appendix. In updating ĉ
(k+1)
1 and ĉ

(k+1)
2 , one can use

ĉ
(k)
1 and ĉ

(k)
2 as initial values for the optimization.

Remark 2. The initial values ĉ
(0)
1 and ĉ

(0)
2 may be suggested by a practitioner or obtained

from an exploratory analysis. A careful choice is important to avoid convergence into local

minima and is a topic of further studies. If the two rotational deformations are uncorrelated,

a principal component analysis (PCA) may be used to find two major components as initial

values. We propose to use the principal arc analysis (PAA) of Jung et al. (2011), which is a

generalized PCA for data lying on (S2)K . Jung et al. (2011) argued that non-linear variation

along small circles is better captured by PAA than by other extensions of PCA including

Fletcher et al. (2004) and Huckemann et al. (2010). PAA is well suited to our problem, since

the Xij are distributed along small circles.

We now discuss how to use PAA to obtain initial values. For Xi = (Xi1, . . . , XiK)′ ∈
(S2)K (i = 1, . . . , n), PAA gives the mean µPAA = (µPAA1 , . . . , µPAAK )′ ∈ (S2)K and the
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projections X̃i(m) = (X̃i1(m), . . . , X̃iK(m))
′ ∈ (S2)K onto the mth component, m ∈ {1, . . . ,M}

and M is the minimum of 2K and n− 1. The first two components will be used to provide

initial values. Which component corresponds to which rotational motion depends on the

variance of θ and ψ. If Var(θ) of the primary rotation is assumed to be larger than Var(ψ) of

the secondary rotation, then the first component will provide an initial value for the primary

rotation. In such a case, the solutions of (7) and (9) with X̃ij(1) in place of Xij are used as

the initial values of ĉ
(0)
1 , θ̃

(0)
ij . Likewise, X̃ij(2) are used to evaluate ĉ

(0)
2 , ψ̃

(0)
ij . On the other

hand, if Var(θ) < Var(ψ), then X̃ij(1) is used for ĉ
(0)
2 , and X̃ij(2) for ĉ

(0)
1 .

Remark 3. In contrast to single rotational deformations the function fj effects the estimation

of the rotation axes by the iterative back-and-forward rotation between two deformations

which depend on the angle predictions. The order of the hierarchical deformation is specified

by the primary and secondary information as well as by the functions f1j, f2j. Simulation

studies, reported in Section 4 of the Supplementary Material, discuss the misspecification of

fj and a misspecified deformation order.

4 Numerical studies

In this section, we turn to the numerical performance of the proposed estimators. As our

modeling approach is novel, there is no competing method to compare with. We study

performance over several different rotational deformation situations.

Two different objects are studied. The first object (body 1), illustrated in Fig. 2, consists

of K = 4 directions, while the second object (body 2) contains K = 8 direction vectors. The

von Mises–Fisher distribution (Mardia and Jupp, 2000, p. 36) with concentration parameter

κ, denoted as vMF(κ), is used for the distribution of errors. Three models (indexed by

equation number) are considered for each object:

• Model (2)–Rigid rotation: c = (1, 0, 0)′, θ ∼ N(0, σ2
θ) and σθ = π/12 ≈ 15◦.

• Model (10)–Twisting : c = (0, 1, 0)′, θj = fj(θ) = 1j∈I1θ − 1j∈I2θ, where θ ∼ N(0, σθ)
2,

σθ = π/8 ≈ 22.5◦. Here, I1 and I2 are the partitions of {1, . . . , K} according to the

right and left sides.

• Model (11)–Hierarchical deformations : c1 = (1, 0, 0)′, c2 = (1/
√

2,−1/
√

2, 0)′, θj = θ

and ψj = fj(ψ) = 1j∈I1ψ−1j∈I2ψ, where θ ∼ N(0, σθ)
2, σθ ≈ 22.5◦ and ψ ∼ N(0, σψ)2,

σψ ≈ 15◦. The I1 and I2 are the same partition used in the twisting model above.
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Table 1: Numerical performance over 1000 replications, for single deformation models.

Rotation Body 1 Body 2
(unit: degrees) dg(ĉ, c) σ̂θ (σθ = 15) dg(ĉ, c) σ̂θ (σθ = 15)

κ = 100
n = 30 4.133 (2.269) 15.248 (1.909) 2.905 (1.602) 15.018 (1.891)
n = 100 2.235 (1.182) 15.365 (1.138) 1.560 (0.836) 15.114 (1.138)

κ = 1000
n = 30 1.166 (0.641) 14.896 (1.974) 0.841 (0.466) 14.881 (1.966)
n = 100 0.655 (0.344) 15.012 (1.040) 0.448 (0.227) 14.982 (1.041)

Twisting Body 1 Body 2
(unit: degrees) dg(ĉ, c) σ̂θ (σθ = 22.5) dg(ĉ, c) σ̂θ (σθ = 22.5)

κ = 100
n = 30 2.761 (1.510) 22.647 (2.820) 4.055 (3.624) 22.785 (2.702)
n = 100 1.482 (0.781) 22.753 (1.687) 1.883 (1.336) 22.705 (1.672)

κ = 1000
n = 30 0.803 (0.439) 22.344 (2.939) 1.017 (0.743) 22.336 (2.935)
n = 100 0.446 (0.234) 22.484 (1.564) 0.536 (0.362) 22.474 (1.561)

In the last model, c1 and c2 are not orthogonal. Recall that we do not require any orthog-

onality of the two axes. The model thus represents hierarchical deformations by a rigid

rotation and oblique twist.

For each model, we generate n = 30, 100 rotationally deformed objects with different

error concentration parameters κ = 100, 1000. The proposed method is then applied to

obtain the estimates ĉ, µ̂j and the predictions θ̂i. These are replicated 1000 times, and the

estimation quality is measured by dg(ĉ, c) and σ̂θ =
∑n

i=1 θ̂
2
i /n because the empirical mean

is zero by equation (3).

Table 1 reports the mean and standard deviations of the measures, for the single defor-

mation models. The quality of estimation is improved upon larger sample size and smaller

error variance (larger κ). In the rigid rotation model, the performance is better for body 2.

A main difference between the two bodies is the number of directions: K = 4 for body

1 and K = 8 for body 2. The higher accuracy observed for body 2, can be explained as

the additional directions yielding more information. On the other hand, the performance in

fitting the twisting model is inferior for body 2. An explanation is the close proximity of the

axis c and the base points µj (to be rotated) in body 2, which is further illustrated in Fig. 4.

Figure 4 compares the estimates ĉ from the single deformation models (2) and (10). Since

ĉ ∈ S2, these points are approximated by their images under the inverse exponential map

(see Appendix) on the tangent plane TcS
2 centered at c. For comparison, the scatter of

vMF(100) is plotted at the top left panel. The rest of the top row shows the scatter of ĉ

from the rigid rotation model. In the bottom row, where the scatter of ĉ from the twist

model is plotted, the estimates of body 2 show a different pattern of scatter compared to

body 1. This is due to a smaller radius rj = dg(c, µj) for some j, where the dispersion of the

error is large compared to small rj. When fitting the concentric circles, the smaller radius
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Figure 4: Scatters under their inverse exponential map of vMF(100) (top left panel) and of estimates
ĉ for the rigid rotation model (top row) and the twisting model (bottom row). The shape of
the empirical covariance of ĉ is different for the body 2–twist pair due to the proximity of the
axis and base points.

dg(c, µj) introduces large variance of the estimate ĉ.

The numerical performance in estimation of the hierarchical deformation model (11) is

comparable to the simpler models. The results can be found in the Supplementary Material.

The asymptotic time complexity of the proposed algorithm is O(nK) if a finite number of

iterations is assumed as elaborated in Section 5 of the Supplementary Material. Furthermore,

it is exemplified that the computation time increases, approximately linear in the number of

samples n and the number of direction vectors K.

5 Analysis of s-rep deformations

In this section, an application of the proposed method to s-rep data is discussed.

5.1 S-reps of deformed ellipsoids

The skeletal representation (s-rep) gives a rich and efficient description of 3D objects (Siddiqi

and Pizer, 2008; Pizer et al., 2013). The s-rep of human organs has been used to study

structural and statistical properties and to promote precise segmentation of the organ from

images. Accurate understanding of the deformations of prostates and hippocampi is crucial
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Figure 5: Fitted s-rep of a plain ellipsoid.

in medical operations. It has been observed that the major variation in the shape of these

organs appears to be rotational deformations (Joshi et al., 2002; Jeong et al., 2008; Pizer

et al., 2013), which motivated our analysis of s-rep data.

While our final goal is to analyze s-reps of real human organs, we work here with s-reps of

deformed ellipsoids to validate the proposed method. A number of human organs, including

hippocampi, prostates and bladders, are similar in shape to bent and twisted ellipsoids.

Therefore, in our analysis, the rotationally deformed ellipsoids were used as a surrogate of

real human organs. This enables us to the compare the estimate with the underlying truth.

An s-rep of a 3D object consists of a two-sided sheet of skeletal positions with spokes

connecting the skeletal sheets to the boundary of the object. The skeletal sheet is nearly

medial and the spokes are roughly normal to the boundaries, as defined in Pizer et al. (2013).

We work with discrete s-reps, where the skeletal positions and the corresponding spokes are

evaluated over a finite grid (9 by 3 in our analysis), as shown in Fig. 5.

The raw data are binary images of rotationally deformed ellipsoids, to which s-reps are

fitted using the s-rep fitting procedure described in Pizer et al. (2013). The binary images

are pre-processed by the anti-aliasing method of Niethammer et al. (2013). Figure 5 shows

the fitted s-rep of a plain ellipsoid. The plain ellipsoid is centered at the origin with axes of

lengths 3/4, 1/2 and 1/4, in x, y, z coordinates, and is a template for further deformation.

The s-rep fitting for deformed ellipsoids is an iterative procedure using the s-rep of the plain

ellipsoid as the initial value. The Supplementary Material contains a detailed description of

the plain and deformed ellipsoids.

Three different rotational deformations of ellipsoids are examined: twisting, bending and

a mix of those. In each experiment, n = 30 randomly deformed ellipsoids were obtained,

followed by s-rep fitting. See Fig. 6 for the result of s-rep fitting for randomly deformed

ellipsoids. The K = 74 spoke directions of each s-rep were recorded.
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(a) Twisted ellipsoid (b) Bent ellipsoid. (c) Bent and twisted ellipsoid.

Figure 6: Examples of fitted s-reps for rotationally deformed ellipsoids. The surface of the raw
ellipsoid, to which the s-rep is fitted, is overlaid.

5.2 Results

The first data set consists of fitted s-rep directions of twisted ellipsoids. The twisting was

implemented as the rotation of the plain ellipsoid about the x-axis with angles proportional

to fx(θ) = θx, where x ∈ [−3
4
, 3
4
] is the x-coordinate of the skeletal position of the spokes.

The random angle θ is a zero-mean normal random variable with standard deviation σθ = 0.3.

From the n = 30 samples, we obtained an estimate of the rotation axis ĉ = (0.99, 0.05, 0.12)′,

with dg(ĉ, c) = 7◦. The standard deviation estimate, σ̂θ = 0.29, is close to the truth.

The bending deformation in the second experiment was realized as the rotation about

the y-axis with angles proportional to fx(α) = αx. Here, α follows N(0, σ2
α) with σα =

0.4. Similar to the estimation of twisting, an accurate estimate of the axis of rotation

ĉ = (0.01, 1.00, 0.01)′ with distance 0.7◦ to the true axis was obtained from the sample of

size n = 30. However, the estimate of σα was not consistent with the truth. This is so because

the rotation angle of each direction is not consistent with fx(α) due to the additional swing

of the direction. The additional swing is a consequence of the change in surface curvature.

Dealing with such an issue is beyond the scope of the current paper; it is discussed further

in the Supplementary Material.

Finally, we report the results for bent and twisted ellipsoids. The raw ellipsoids were

sequentially deformed by bending about the y-axis, then twisting about the x-axis. The

initial values chosen by the data-driven method (see Remark 2 in Section 3) are ĉ01 =

(−0.13,−0.99,−0.00)′ and ĉ02 = (−0.07,−0.99, 0.02)′, which are almost the same. A uni-

formly randomly chosen initial value for c2 was used instead. In particular, a uniform ran-

dom direction c̃02 was used, provided that c̃02 is at least 11 degrees away from ĉ01. With this

alternative initial value, the iterative estimation leads to estimates ĉ1 = (0.01,−1,−0.00)′

96



19

and ĉ2 = (−0.99 − 0.05, 0.00)′, both of which are close to their corresponding population

counterparts. A simulation study, the report of which is omitted, confirms that the estimates

are stable with respect to different choices of initial value c̃02.

As we have pointed out in the introduction, the ellipsoid considered here can be under-

stood as a template for many real human organs. The accurate estimation of the parameters

of rotational deformations of ellipsoids indicates the potential of this type of analysis of de-

formed objects in real 3D images obtained from, e.g., magnetic resonance imaging. Further

experiments cover surface point distribution models and a more general deformation; they

are discussed in the Supplementary Material.

6 Application to knee motion during gait

In order to further support the validity of the proposed estimation procedure, this section

presents findings from experimentally collected biomechanical data as a part of a larger

project.

The estimation of two rotation axes of the knee joint is a well-studied problem in biome-

chanics (e.g., Ball and Greiner (2012)). The two estimated rotation axes model the primary

and secondary rotation axes of the upper and lower leg relative to each other. The dominant

rotation axis defines the flexion-extension motion at the knee. This axis is approximately

directed right-to-left (lateral-to-medial). The secondary rotation axis defines the internal-

external motion of the lower leg relative to the upper leg. This axis is approximately directed

down-to-up (distal-to-proximal) along the long axis of the tibia (ankle-to-knee joint centers).

The motion of 25 markers placed on the right lower extremity of one healthy male vol-

unteer was collected following informed consent. The volunteer consented to have two 6 mm

pins surgically inserted into his femur and tibia. Insertion sites were selected to minimize

neuro-muscular effects that could influence natural knee motion. Three and four markers

were then attached to these rigid pins which allowed us to measure the true motion of the

hidden femur and tibia bones. Additional markers were also placed on the surface of the

thigh (10 skin markers) and lower leg (8 skin markers). In each of the four segments (femur,

tibia, thigh, lower leg) one marker was chosen as a basis point and directions were derived

between the basis point and the remaining markers of that segment. The coordinate system

for this experiment was defined when the volunteer stood at attention and faced forwards.

The XYZ axes were in the directions Forward, Inward, Upward (FIU).

The volunteer walked at 2.5 mph on a motor driven treadmill. After a familiarization
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(a) bone (b) skin

Figure 7: Estimation of first (flexion-extension) and second (internal-external) rotation axes of
the knee from bone and skin marker directions on the upper (femur; thigh) and lower (tibia;
lower leg) extremity. In addition, the path of each marker direction is depicted. (a) Estimated
rotation axes of directions derived from bone markers. (b) Estimated rotation axes of directions
derived from skin markers.

time period, the motion of the markers were collected for approximately 20 seconds at 50

Hz. Within this data collection period, 16 complete gait cycles were identified. A gait cycle

is defined from right foot contact with the floor to the next right foot contact. In total 976

time points were used within the following analyses.

Figure 7 shows the path of K = 5 bone directions and K = 16 skin directions of all 16

walking cycles. In addition to the least square estimations of (c1, c2), the rotation axes c1j and

c2j were estimated for each marker j = 1 . . . , K. Therewith, we can quantify the variation in

the estimations by the dispersion measure σdg(ĉ1,ĉ1j) of the geodesic distance dg(ĉ1, ĉ1j) and

σdg(ĉ2,ĉ2j) respectively. The estimates are obtained by the least squares estimator (7) and the

procedure is described in detail in Section 6 of the Supplementary Material.

The estimated rotation axes from the bone directions are ĉ1 = (−0.00,−1.00, 0.06) with

dispersion σdg(ĉ1,ĉ1j) = 9.41 degrees and ĉ2 = (0.06,−0.06,−1.00) with σdg(ĉ2,ĉ2j) = 12.30

degrees. The unsigned directions of these two axes correspond to the anatomically expected

flexion-extension and internal-external knee rotation axes (Grood and Suntay, 1983, Figure

6, page 142).

The two rotation axes estimated from the skin marker directions are very similar to the

bone marker direction estimates. Quantitatively these were, ĉ1 = (0.01,−1.00, 0.07) with

σdg(ĉ1,ĉ1j) = 12.80 degrees and ĉ2 = (0.01, 0.03,−1.00) with σdg(ĉ2,ĉ2j) = 25.82 degrees. In

both cases, the higher dispersion of the second rotation axis can be explained by the smaller

range of rotation angles. As expected, we observe more dispersion of the rotation axes using

98



21

the skin data because of the complex deformation of the skin surface. Estimation results

of the rotation angles can be found in the Supplementary Material. Future work should

improve the estimations and reduce the dispersion by a more careful time modelling of knee

motions such as that proposed by Rivest (2001) who examined elbow motion.

7 Discussions

The paper proposes a novel method to estimate rotational deformations from directional data

by concentric small circles. The estimation procedure is independent of the latent variable θj

for single rotational deformations. In addition, the paper proposed an estimation procedure

for hierarchical deformations depending on functions f1j, f2j and the ordering of the initial

estimation. An interesting topic for future research is improvement of the prediction of θj,

which includes the automatic classification of directions into a partition I1 and I2 as well

as the development of methods to predict fj from the data. The geometry of composing

deformations has to be studied in further detail in order to extend the estimation method to

more than two rotational deformations. A first step in decreasing the relevance of the order

of deformations would be the implementation of an expectation maximization (EM) based

optimization procedure.

Appendix

Proof of Lemma 1

Let Aj = {vj ∈ δη(c, rj)}, where δη(c, r) = {x ∈ S2 : dg(δ(c, r), x) < η}. For R = R(c, θ),

P (Aj) = P [dg{Rµj ⊕ εj, δ(c, rj)} < η] = P [dg{RT (Rµj ⊕ εj), RT δ(c, rj)} < η]

= P [dg{µj ⊕ ε, δ(c, rj)} < η] ≥ P [dg(µj ⊕ ε, µj) < η] ≥ 1− Var(ε)/η2,

where µj ⊕ ε has the same distribution as RT (Rµj ⊕ εj) because of the spherical symmetry.

A Markov inequality is used. Since the Ajs are independent, P (
⋂K
j=1Aj) =

∏K
j=1 P (Aj) ≥

{1− Var(ε)/η2}K .
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Numerical Algorithms for (7), (14), and (16)

The optimization problems (7) and (14) are identical and can be understood as fitting con-

centric circles on the unit sphere. The problem (16) is a more general nonlinear least squares

problem, which however can be solved in a similar manner to the former two problems. We

propose a variant of the doubly iterative algorithm used in fitting small circles in Sm (Jung

et al., 2011, 2012).

We first introduce some notation. For m ≥ 2, the tangent space at c ∈ Sm is denoted

by TcS
m, which can be parametrized by Rm. Let c = em+1 without loss of generality. The

exponential map Expc : Rm → Sm is defined for v1 ∈ Rm by

Expc(v1) =

(
v1
‖v1‖

sin ‖v1‖, cos ‖v1‖
)
,

with a convention of Expc(0) = c. The exponential map has an inverse, called the log map,

and is denoted by Logc : Sm → TcS
m.

For problems (7) and (14), the following iterative algorithm can be used. The algorithm

finds a suitable point of tangency ĉ0, which is also the center of the fitted concentric circles.

Given the candidate ĉ0, the data xij are mapped to the tangent space Tĉ0S
2 by the Log map.

Let x†ij = Logĉ0(xij). Since the Log map preserves distance, we have arccos(ĉ′0xij) = ‖x†ij‖.
Then we solve a non-linear least-squares problem

min
c†,rj

n∑

i=1

K∑

j=1

(‖x†ij − c†‖ − rj)2. (18)

Since the optimization problem (18) does not have any constraint, it can be numerically

solved by, e.g., the Levenberg–Marquardt algorithm (Scales, 1985). The solution c† is then

mapped to S2 by the exponential map at c and becomes ĉ1. This procedure is repeated until

ĉ converges.

The optimization problem (16) can be solved in a similar way. We use the fact that

ρ2g(δ(c, r
∗(c)), x) = (arccos(c′x)− arccos(c′µ∗))2 = (‖Logcx‖ − ‖Logcµ

∗‖)2. Thus for fixed c,

ρ2g(δ(c, r
∗(c)), x) ≥ miny(‖Logcx − y‖ − ‖Logcµ

∗ − y‖)2. The minimizer y leads to a better

candidate for c through the exponential map. The algorithm to solve (16) follows the same

lines as the algorithm to solve (7), except instead of (18) we minimize

min
c†

n∑

i=1

K∑

j=1

(‖Logĉx− c†‖ − ‖Logĉµ− c†‖)2.
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Supplementary Materials

Additional discussions and data analyses: Article containing i.) additional data anal-

ysis results, ii.) simulation results for the hierarchical deformation model described in

Section 4, iii.) further discussion of the model bias, brought up in Section 2.1, iv.)

study of the estimator behaviour using misspecified parameters, v.) a computational

complexity study of the algorithm and vi.) the estimation procedure for knee motion

analysis during gait as discussed in Section 6. (SupplementaryMaterialSJ.pdf)

Matlab code: A set of Matlab code for application of the proposed method. The code also

contains all datasets used as examples in the article. (estRotDeformation.zip)
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1 Additional data analysis

In this section, some additional data analyses are discussed, in particular using datasets from

point distribution models.

1.1 Rotationally deformed ellipsoids

We first discuss the procedures of obtaining the raw ellipsoid data. To avoid notational con-

fusion, we denote a random vector by Xij and their observed values by χij, i = 1, . . . , n, j =

1, . . . , K. A point in R3 is described by (x, y, z) ∈ R3 in a fixed Cartesian coordinate system.

The surface of an ellipsoid can be parameterized by

s(u, v) =



x(u, v)

y(u, v)

z(u, v)


 =




ra sin(v)

rb sin(u) cos(v)

rc cos(u) cos(v)


 , u ∈ [−π, π) , v ∈

[
−π

2
,
π

2

]
(1.1)

∗This research was funded by the Norwegian Research Council through grant 176872/V30 in the eVita
program and performed as part of Tromsø Telemedicine Laboratory.

105



S2

(a) Original (b) Bent (c) Twisted

Figure 1.1: Tube views of meshed surfaces of (a) an original ellipsoid with ra = 0.75, rb = 0.5 and
rc = 0.25, (b) bent ellipsoid with α = 0.6, (c) twisted ellipsoid with θ = 0.6.

where ra ≥ rb ≥ rc > 0 are the length of the axes. We assume a default ellipsoid of ra = 0.75,

rb = 0.5 and rc = 0.25. For a parameter space Ω = [−π, π) × [−π
2
, π
2
] ⊂ R2, s : Ω → R3 is

a surface map in R3 with (u, v)
s−→ (x(u, v), y(u, v), z(u, v)). Without loss of generality, we

assume that the first to third principal axes are x, y, z-axis in R3, respectively. The centroid

of the ellipsoid is at origin (0, 0, 0)′.

Rotational bending around the y-axis (cb = (0, 1, 0)′) is given by

B(s) = R(cb, fb(x))s(u, v), (1.2)

and twisting around the x-axis (ct = (1, 0, 0)′) is given by

T (s) = R(ct, ft(x))s(u, v), (1.3)

where

R(cb, fb(x)) =




cos(fb(x)) 0 − sin(fb(x))

0 1 0

sin(fb(x)) 0 cos(fb(x))


 ,

R(ct, ft(x)) =




1 0 0

0 cos(ft(x)) − sin(ft(x))

0 sin(ft(x)) cos(ft(x))


 .

Here, fb(x) = αx and ft(x) = θx for some α, θ ∈ [−π/2, π/2] representing the overall size

of the deformation. The amount of bending and twisting depends on the location on the

x-axis. In addition to the rotational bending, we also consider quadratic bending around the
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Figure 1.2: Visualization of a standard ellipsoid with attached boundary normals.

y-axis which is defined by

Bq(s) = (x, y, z + αx2)′, x, y, z,∈ R (1.4)

using the ellipsoid parametrization (1.1). In the following, the term bending is used for

rotational bending, and quadratic bending will be specified explicitly.

Figure 1.1 shows an example of an original ellipsoid, bent ellipsoid with α = 0.6 and

twisted ellipsoid with θ = 0.6.

1.2 Point distribution and boundary normals

We now discuss a parameterization of ellipsoids by a point distribution model. In particular,

a mesh grid and attached boundary normals of the surface s(u, v) will be used. See Fig. 1.2.

The size of surface mesh we used is 37× 33. We chose K = 9× 8 = 72 vertices to attach

normal direction vectors χk1k2 ∈ S2, k1 = 1, . . . , 9, k2 = 1, . . . , 8. For each k1, the vertices

where χk1k2 are attached have common x-coordinates

{−0.738,−0.649,−0.482,−0.256, 0, 0.256, 0.482, 0.649, 0.738},

the values of which influence the amount of deformation. Note that there are some directions

that will not vary when the object is deformed. For example, the normals χ5k2 (1 ≤ k2 ≤ 8),

which are attached to vertices with zero x-coordinate, will stay still when the object is twisted

or bent.

In the following we report four sets of experiments on the boundary normal ellipsoid

data. As opposed to the s-rep data analysis, we are working with the raw data directly.

The noise in the data is from the von Mises–Fisher distribution (Mardia and Jupp, 2000)
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(a) without noise (b) κ = 1000 (c) κ = 100

Figure 1.3: (Twisting) Boundary normals using different concentration parameter κ. The rotation
around the x-axis is clearly visible in (a). Different colors represent different amounts of
twisting parameter θ.

with concentration parameter κ > 0. For each experiment, two levels of noise are used:

κ = 100, 1000. The four sets of models are

• Twisting by (1.3), with ct = (1, 0, 0)′, θ ∼ N(0, σ2
θ), σθ = 0.3 ≈ 17.2◦. See Fig. 1.3.

• Bending by (1.2) with cb = (0, 1, 0)′, α ∼ N(0, σ2
α), σα = 0.4 ≈ 22.9◦. See Fig. 1.4.

• Quadratic bending by (1.4) with above cb and σα. See Fig. 1.5.

• Hierarchical deformation by bending (primary) and twisting (secondary) with the same

set of parameters above. See Fig. 1.7.

From each model a random sample of size n = 30 or 100 is obtained, from which the estimate

ĉ of the axis and σ̂ are obtained. This is repeated for 1000 times.

Twisting

Figure 1.3 shows 30 samples of 72 different normal directions from sets of twisted ellipsoids

with different noise levels. Different colors represent different amounts of twisting parameter

θ. Therefore, the number of colors correspond to the sample size.

Table 1.1 shows the performance of our estimator based on 1000 simulations. The per-

formance is measured by the mean and standard deviation of the absolute error dg(ĉ, c) and

those of the estimated twisting parameter σ̂θ. The accuracy is increased for larger n or κ.

In general, we observe quite accurate estimates even for a larger noise level (κ = 100).

108



S5

Table 1.1: Twisting: Mean absolute error for ĉ, and the estimates σ̂θ

Twisting (unit: degrees)

κ n dg(ĉ, c) σ̂θ(σθ = 17.189)

100 30 3.174 (2.294) 17.209 (2.152)
100 100 1.563 (0.890) 17.324 (1.250)

1000 30 0.561 (0.317) 17.045 (2.133)
1000 100 0.289 (0.164) 17.173 (1.235)

(a) without noise (b) κ = 1000 (c) κ = 100

Figure 1.4: (Rotational bending) Boundary normals using different concentration parameter κ.
Different colors represent different amounts of bending parameter α.

Bending

Figure 1.4 shows 30 samples of 72 different normal directions after rotational bending using

different noise levels. The case of quadratic bending is illustrated in Fig. 1.5. Different colors

represent different amounts of bending parameter α. The different effects of rotational and

quadratic bending to the boundary normals can be compared by examination of Fig. 1.4a

and Fig. 1.5a. Rotationally bent directions are at concentric small circles (Fig. 1.4a) while

quadratically bent directions are at circles with different centers (Fig. 1.5a). Despite the

major violation of our assumption of concentric circles, the proposed method surprisingly

works well for quadratic bending models, as Table 1.2 summarizes.

Table 1.2 shows the performance of our estimator for the rotational and quadratic bend-

ing models. The absolute errors between the true axis c and the estimated rotation axis ĉ

are virtually small for both models. The performance of the estimator is enhanced for larger

κ and n. Moreover, as expected, the empirical errors are smaller for rotational bending than

quadratic bending. Note that the estimates σ̂α of rotational bending model are biased up-

wards, which we discuss in section 1.2.1. The parameter σα affects the quality of estimators.
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(a) without noise (b) κ = 1000 (c) κ = 100

Figure 1.5: (Quadratic bending) Boundary normals using different concentration parameter κ. Dif-
ferent colors represent different amounts of bending parameter α.

Table 1.2: Rotational bending: Mean absolute error for ĉ, and the estimates σ̂α

(unit: degrees) Rotational bending Quadratic bending
κ n dg(ĉ, c) σ̂α(σα = 22.918) dg(ĉ, c) σ̂α(σα = 22.918)

100 30 0.898 (0.492) 34.133 (4.429) 1.494 (0.871) 23.277 (3.389)
100 100 0.467 (0.261) 34.179 (2.592) 0.789 (0.470) 22.880 (2.454)

1000 30 0.242 (0.127) 33.739 (4.448) 0.359 (0.213) 22.203 (3.184)
1000 100 0.127 (0.069) 33.973 (2.581) 0.193 (0.112) 22.276 (1.891)

In particular, larger σα leads to a greater bias of σ̂α, meanwhile it yields a better estimate

of ĉ (Fig. 1.6).

Hierarchical motion

Figure 1.7 shows 30 samples of 64 different normal directions using different concentration

parameters κ, twistings σθ and a fixed bending parameter σα = 0.4. We have excluded 8

normal directions attached at x = 0. Different colors represent different amounts of absolute

rotation, which are |αj| + |θj|. In Fig. 1.7a we see rotations of normals along small circles

around the y-axis. The clear motion pattern disappeared after an increase of σθ and κ in

Figure 1.7b and Figure 1.7c.

Table 1.3 shows the performance of our estimator based on 1000 simulations under hier-

archical rotational bending and twisting. As expected, the rotation axis estimates are less

accurate than for single motions. Moreover, the estimate of the secondary rotation axis is

less accurate than the estimate of the primary axis, particularly for κ = 100. The bias in

the estimates of the rotation angle will be further discussed shortly.
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(a) (b)

Figure 1.6: (a) Mean absolute error dg(ĉ, c) after quadratic and rotational bending for different σα
values. (b) Mean of estimated bending parameter σ̂α after quadratic and rotational bending
for different σα values. The green dashed line marks the first diagonal.

(a) εj = 0, σθ = 0.1 (b) εj = 0, σθ = 0.3 (c) κ = 1000, σθ = 0.3

Figure 1.7: (Hierarchical deformation) Boundary normals using σα = 0.4, different concentration
parameter κ and twisting σθ.

Two initial value choices (from Principal Arc Analysis and random directions) are applied.

In contrast to the s-rep analysis in the main article, the results in Table 1.3 are very similar

for both choices.

In the four sets of analyses, we have shown accurate estimation results of the proposed

method for the boundary normal data. In particular, the estimation from the quadratic

bending model is surprisingly accurate despite the misspecified model. We believe that the

proposed method will lead to robust estimates in other deformation models, which are similar

to a rotational deformation.
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Table 1.3: (Rotational bending and twisting) Mean absolute error for ĉ1, ĉ2, and the estimates σ̂α,
σ̂θ.

(unit: degrees) 1st rotation axis 2nd rotation axis
κ n dg(ĉ1, c1) σ̂α(σα = 22.918) dg(ĉ2, c2) σ̂θ(σθ = 17.189)

initialization by 1st and 2nd principal component

100 30 3.526 (2.775) 18.125 (2.370) 20.047 (16.717) 9.232 (1.598)
100 100 1.902 (1.444) 18.268 (1.337) 11.081 (13.477) 9.239 (1.143)

1000 30 2.683 (2.272) 17.785 (2.377) 8.570 (9.031) 9.119 (1.323)
1000 100 1.637 (1.126) 18.101 (1.349) 3.901 (2.459) 9.367 (0.691)

initialization by 1st principal component and a random direction

100 30 3.496 (2.762) 18.125 (2.367) 19.133 (15.445) 9.295 (1.498)
100 100 1.866 (1.390) 18.260 (1.342) 8.944 (6.753) 9.390 (0.798)

1000 30 2.678 (2.272) 17.785 (2.377) 8.479 (8.702) 9.125 (1.299)
1000 100 1.635 (1.127) 18.102 (1.349) 3.892 (2.451) 9.367 (0.691)

1.2.1 Estimation of σα

A precise estimation of σα under the bending model is an interesting open problem. We have

observed that the amount of swing is nonlinear, and conjecture that the change of the surface

curvature in the object is responsible for the additional swing of the directions. Figure 1.8

exemplifies such a non-linear relationship.

In the case of rotational bending, we may assume that our estimate σ̂α and the parameter

σα are related through a quadratic function as Fig.1.8a suggests. If such a quadratic function

f(σα) = p0 + p1σα + p2σ
2
α = σ̂α is known or can be estimated efficiently by a least square

quadratic polynomial, one can correct the estimate of σα for fixed ra, rb and rc by

σ̂new
α = − 1

2p2
±
√

1

4p22
(p21 − 4p0p2 + 4p2σ̂α),

with f ′′(σ̂new
α ) ≥ 0. A similar modification can be made for quadratic bending (Fig.1.8b).

In general, we believe that modeling based on the curvatures will improve our current

estimator. Such a modeling is beyond the scope of this paper, and we list a few important

notions of curvature that have potential in modeling.

Most common curvature measures are the principal curvatures (κ1, κ2) with κ1 ≥ κ2,

Gaussian curvature, and mean curvature. These measures are calculated from the first and

112



S9

(a) Rotational bending (b) Quadratic bending

Figure 1.8: Relationship between α̂ and α for various (ra, rb, rc).

second fundamental form (see Gray (1998) and Kühnel (2006)). Koenderink (1990) indicated

that Gaussian curvature and mean curvature are not representatives of local shapes because

Gaussian curvature is identical for all local approximations for which the ratio of the principal

curvatures (κ1, κ2) is equal. Therefore, he introduced the two alternative quantities: shape

index S and curvedness C,

S =
2

π
tan−1

(
κ2 + κ1
κ2 − κ1

)
, (κ1 ≥ κ2) (1.5)

C =
2

π
ln

(√
1

2
(κ21 + κ22)

)
. (1.6)

1.3 Quadratic bending of s-reps

The proposed method is also applied to the fitted s-reps of quadratically bent ellipsoids.

After fitting s-reps to the raw images discussed in Section 1.2, we obtained the estimated

axis of rotation of ĉb = (−0.026, 0.999, 0.002) with a distance of 1.517◦ to the true y-axis

cb = (0, 1, 0). Similar to mesh ellipsoid surfaces, the distance of the rotation axis estimate

to the true axis is lower in case of rotational bending compared to quadratic bending.
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Table 2.1: Numerical performance over 1000 replications, for hierarchical deformations.

Hierarchical rotations
dg(ĉ1, c1) dg(ĉ2, c2) σ̂θ(σθ = 22.5) σ̂ψ(σψ = 15)

(unit: degrees)

Body 1
κ = 100

n = 30 4.527 (3.591) 4.929 (3.007) 22.693 (3.031) 15.890 (2.096)
n = 100 2.201 (1.206) 2.944 (1.550) 22.698 (1.589) 15.844 (1.126)

κ = 1000
n = 30 2.084 (1.364) 1.275 (0.701) 22.385 (2.984) 14.940 (1.941)
n = 100 1.123 (0.741) 0.652 (0.338) 22.492 (1.542) 15.030 (1.110)

Body 2
κ = 100

n = 30 2.617 (1.762) 3.066 (3.099) 22.440 (2.959) 15.094 (2.011)
n = 100 1.366 (0.746) 1.682 (0.870) 22.542 (1.562) 15.219 (1.073)

κ = 1000
n = 30 1.099 (1.171) 0.921 (2.349) 22.339 (2.983) 14.872 (1.945)
n = 100 0.568 (0.354) 0.438 (0.236) 22.470 (1.543) 14.981 (1.099)

2 Simulation results for the hierarchical deformation

model

Table 2.1 summarizes the numerical performance of estimation of the hierarchical deforma-

tion model (11) as discussed in Section 4 of the main article. We have used the data-driven

method to choose the initial values as described in Section 3 of the main article. The results

are comparable to those from the simpler models in Section 4 and are fairly successful.

3 Discussion of model bias

A possibly important issue that is left unanswered is whether the parameters c0 and r =

dg(c0, µ) of the model

X = R(c0, θ)µ⊕ ε (3.1)

are the minimizer (c̃, r̃) of the least squares problem

min
c,r

Eρ2{δ(c, r), X} = min
c,r

E{dg(c,X)− r}2. (3.2)

Rivest (1999) has shown that when c0 is known, the minimizer r̃ = argminr E{dg(c0, X)−
r}2 is biased towards π/2, i.e. r̃ > r = dg(c0, µ) if r < π/2. In fact, given any c for

the axis of rotation, r̃c = E{dg(c,X)} minimizes E{dg(c,X) − r}2. Now to focus on c,

minc,r E{dg(c,X)− r}2 = minc E{dg(c,X)− r̃c}2 = minc Var{dg(c,X)}. Therefore c0 of (3.1)

is the minimizer of (3.2) if for all c ∈ S2,

Var{dg(c0, X)} ≤ Var{dg(c,X)}. (3.3)
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Table 3.1: Distance to true axis (measured in degrees)

σθ
r 0.01 0.1 0.2 0.5 1

π/16 = 11.25 11.25 11.19 10.99 9.10 2.29
π/8 = 22.50 22.50 22.36 21.89 2.55 0.20
π/4 = 45.00 44.98 44.81 42.73 0.22 0.00
π/3 = 60.00 59.97 59.79 3.72 0.16 0.00
π/2 = 90.00 90.00 90.00 0.49 0.02 0.02

This inequality may be satisfied when rσθ is large compared to the standard deviation of the

error ε. If σθ or r is 0, there is no variation due to the rotation of R(c0, θ), which makes the

model unidentifiable. Heuristically, small σθ makes the estimation difficult. Likewise, the

variation due to rotation is small if the rotation radius r = dg(c, µ) is small. The standard

deviation of the length rθ of the arc on δ(c, r) is rσθ. Hence, the hypothesis:

(H) If (3.3) is not satisfied, the least-squares estimator may be biased.

While we have not succeeded in finding analytic forms of conditions that satisfy (3.3), a

simulation study has been carried out to support our hypothesis (H). For c0 = e3 = (0, 0, 1)′,

µr = µ(r) = cos(r)c0 + sin(r)e1, and θ
iid∼ N(0, σ2

θ), X is distributed as the von Mises–

Fisher distribution with center R(c, θ)µr and the concentration parameter κ = 100. We

then evaluated the minimizer c̃ of Var{dg(c,X)} based on 5 × 105 Monte-Carlo random

observations of X, for different combinations of r ∈ {π/16, π/8, π/4, π/3, π/2} and σθ ∈
{0.1, 0.2, 0.5, 1} in radian. The result of the experiment is summarized as the distance

between c̃ and c0 in Table 3.1.

It can be checked from Table 3.1 that the distance between c̃ and c0 is smaller for larger

values of σθ and r. Moreover, for sufficiently large σθ and r, dg(c̃, c0) = 0, which leads to

c0 from the model (3.1) satisfying (3.3). On the other hand, when σθ and r are small with

respect to the variance of the error, the rotation (3.1) becomes unidentifiable. This is further

illustrated at Figure 3.1, which shows the scatter of 100 random observations from model

(3.1), with (r, σθ) = (π/16, 0.2) on the left and (π/4, 0.5) on the right panel. The left panel

suggests that when (r, σθ) are small, the rotation about the axis c0 is not distinguished and

the optimal c̃ is near µ and dg(c̃, c0) is large (cf. Table 3.1). The right panel illustrates that

the rotation is visually identified for large values of (r, σθ), and for such a case, the parameter

c0 is the solution of the least squared problem (3.2).
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Figure 3.1: The scatter of 100 random observations from the model (3.1), with (r, σθ) = (π/16, 0.2)
on the left and (π/4, 0.5) on the right panel. The north pole, depicted as c in the figure, is
the true axis of rotation c0. The blue x visualizes µ.

4 Numerical studies with misspecified parameters

In this section, we study the impact of parameter misspecification of the estimator, particu-

larly of the function fj that model the relationships between the rotation angles θj. We study

parameter misspecification over different rotational deformation situations as described in

Section 4 in the main article.

Recall, Section 4 in the main article reports studies for two different objects. The first

object (Body 1) consists of K = 4 directions, while the second object (Body 2) contains

K = 8 directions. The von Mises–Fisher distribution is used for the distribution of errors.

Three rotation models (indexed by equation number in the main article) are considered for

each object:

• Model (2)–Rigid rotation: c = (1, 0, 0)′, θj = fj(θ) = θ, where θ ∼ N(0, σ2
θ) and

σθ = π/12 ≈ 15◦.

• Model (10)–Twisting : c = (0, 1, 0)′, θj = fj(θ) = 1j∈I1θ − 1j∈I2θ, where θ ∼ N(0, σθ)
2,

σθ = π/8 ≈ 22.5◦. Here, I1 and I2 are the partitions of {1, . . . , K} according to the

right and left sides whereas I1 = {1, 2} and I2 = {3, 4} for Body 1 and I1 = {1, . . . , 4}
and I2 = {5, . . . , 8} for Body 2.

• Model (11)–Hierarchical deformations : c1 = (1, 0, 0)′, c2 = (1/
√

2,−1/
√

2, 0)′, θj = θ

and ψj = fj(ψ) = 1j∈I1ψ−1j∈I2ψ, where θ ∼ N(0, σθ)
2, σθ ≈ 22.5◦ and ψ ∼ N(0, σψ)2,

σψ ≈ 15◦. The I1 and I2 are the same partition used in the twisting model above.

The hierarchical model represents deformations by a rigid rotation and oblique twist. For

each model, we generate n = 30, 100 rotationally deformed objects with different error

concentration parameters κ = 100, 1000. These are replicated 1000 times, and the estimation

quality is measured by dg(ĉ, c) and σ̂θ =
∑n

i=1 θ̂
2
i /n.
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Table 4.1: Numerical performance over 1000 replications, for single deformation models.

Rotation Body 1 Body 2
(unit: degrees) dg(ĉ, c) σ̂θ (σθ = 15) dg(ĉ, c) σ̂θ (σθ = 15)

κ = 100
n = 30 4.133 (2.26) 3.314 (0.44) 2.905 (1.60) 6.771 (0.85)
n = 100 2.235 (1.18) 3.308 (0.24) 1.560 (0.83) 6.816 (0.51)

κ = 1000
n = 30 1.166 (0.64) 1.037 (0.13) 0.841 (0.46) 6.698 (0.88)
n = 100 0.656 (0.34) 1.039 (0.07) 0.448 (0.22) 6.744 (0.46)

Twisting Body 1 Body 2
(unit: degrees) dg(ĉ, c) σ̂θ (σθ = 22.5) dg(ĉ, c) σ̂θ (σθ = 22.5)

κ = 100
n = 30 2.761 (1.51) 3.669 (0.48) 4.062 (3.67) 17.150 (2.12)
n = 100 1.482 (0.78) 3.658 (0.25) 1.889 (1.35) 17.055 (1.27)

κ = 1000
n = 30 0.803 (0.43) 1.139 (0.15) 1.017 (0.74) 16.760 (2.19)
n = 100 0.446 (0.23) 1.147 (0.08) 0.536 (0.36) 16.857 (1.17)

The estimation results using correct parameters are reported for the single deformation

models in Table 1 in the main article and for the hierarchical deformation model in Table 2.1

above.

4.1 Parameter fj

The modelling of the function fj can be challenging as discussed in Section 1.2.1 or for the

s-rep model in case of bent, and bent and twisted ellipsoids in chapter 5 in the main article.

Therefore, it is crucial to study the impact of misspecification of fj.

Table 4.1 reports mean and standard deviations of the measures for the single deformation

models. The true underlying rigid rotation deformation is indicated by fj(θ) = θ, j = 1, . . . , 4

for Body 1 and is misspecified by fj(θ) = θ, j = 1, 2 and fj(θ) = −θ, j = 3, 4. Body 2 is

misspecified by fj(θ) = (j/10)θ instead of fj(θ) = θ for j = 1, . . . , 8. In both cases the

misspecification does not effect the estimated rotation axis ĉ but leads to a poor prediction of

σ̂θ. The true underlying twisting motion of model (10) is given by fj(θ) = θ, j = 1, 2, fj(θ) =

−θ, j = 3, 4 for Body 1 and is misspecified by fj(θ) = θ, j = 1, 4, fj(θ) = −θ, j = 2, 3.

Body 2 is misspecified by fj(θ) = θ, fl(θ) = −0.5θ whereas the true parameter is given

by fj(θ) = θ, fl(θ) = −θ for j = 1, . . . , 4 and k = 5, . . . , 8. The comparison of Table 4.1

to Table 1 in the main article shows that a misspecification of the parameter fj does not

effect the rotation axis estimation of a single deformation by fitting concentric small circles

whereas the predicted rotation angle is biased by misspecification of fj. The specification of

fj models the relationships between the rotation angles θj and is therefore crucial for their

prediction.

On the other hand, the partition I1 and I2 is not explicitly used in the estimation proce-
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Table 4.2: True and misspecified parameter fj for Body 1 in the hierarchical deformation
model (11).

f11(θ) f12(θ) f13(θ) f14(θ) f21(ψ) f22(ψ) f23(ψ) f24(ψ)

True θ θ θ θ ψ ψ −ψ −ψ
Table 4.4 θ θ −θ −θ ψ ψ ψ ψ
Table 4.5 θ −θ −θ θ −ψ ψ ψ −ψ

Table 4.3: True and misspecified parameter fj for Body 2 in the hierarchical deformation
model (11).

Hierarchical rotations
j

1 2 3 4 5 6 7 8

True
f1j(θ) θ θ θ θ θ θ θ θ
f2j(ψ) ψ ψ ψ ψ −ψ −ψ −ψ −ψ

Table 4.4
f1j(θ) 0.5θ 0.5θ 0.5θ 0.5θ 0.5θ 0.5θ 0.5θ 0.5θ
f2j(ψ) ψ ψ ψ ψ −ψ −ψ −ψ −ψ

Table 4.5
f1jθ) 0.1θ 0.2θ 0.3θ 0.4θ θ θ θ θ
f2j(ψ) ψ ψ 0.7ψ 0.7ψ −0.2ψ −0.2ψ −0.3ψ −0.3ψ

dure of the rotation axis. The partition I1 and I2 is implied by the function fj. A partition

I1 and I2 of indices {1, . . . , K} represents sets of direction vectors that rotate together, i.e.,

the partition models the deformation type. In the simulated examples, the partitions are

chosen to model the bending and twisting deformation accordingly. The specification of fj

gives the possibility to incorporate additional prior knowledge about the statistical model of

the rotation angle θj, e.g., linear or quadratic relation by the distance of the direction to the

rotation axis. Nevertheless, the modelling of the function fj can be challenging as discussed

before. There are real data applications where the definition of a partition is naturally mo-

tivated, e.g., by the physical structure of the body. An example is to estimate the rotational

deformation between the upper and lower leg as studied in Section 6 in the main article.

This example can be extended to all joints inside the human body and to all objects which

are connected by a joint. On the other hand, there is a group of data sets where such a

partition is not obvious, e.g., in the s-rep model of the hippocampus. A first approach could

be to define the partition on the basis of an observation of a medical expert. An automatic

detection of partitions and clusters is an interesting future research direction.

In contrast to the single deformation model, a misspecification of fj has an impact in

the hierarchical deformation model by the iterative back-and-forward deformations of the

random direction vectors. Therefore, a misspecification of the parameter might guide the

iterative estimation procedure to fall in a local minimum, and leads to a poor estimation

of the rotation axes and angles. Table 4.2 and Table 4.3 report the true and misspecified

fj for the simulation studies whereas the estimation results are summarized in Table 4.4
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Table 4.4: Numerical performance over 1000 replications, for hierarchical deformations using mod-
erate misspecified parameters.

Hierarchical rotations
dg(ĉ1, c1) dg(ĉ2, c2) σ̂θ(σθ = 22.5) σ̂ψ(σψ = 15)

(unit: degrees)

Body 1
κ = 100

n = 30 45.223 (3.61) 44.792 (3.69) 15.013 (2.00) 22.725 (3.01)
n = 100 45.188 (1.73) 44.423 (1.79) 14.992 (1.06) 22.731 (1.58)

κ = 1000
n = 30 43.648 (1.29) 44.257 (2.67) 14.454 (1.89) 22.442 (2.99)
n = 100 43.705 (0.72) 43.981 (1.42) 14.482 (1.06) 22.510 (1.54)

Body 2
κ = 100

n = 30 2.617 (1.76) 3.066 (3.09) 22.440 (2.96) 15.094 (2.01)
n = 100 1.100 (1.17) 0.921 (2.35) 22.339 (2.98) 14.872 (1.94)

κ = 1000
n = 30 1.366 (0.74) 1.683 (0.87) 22.542 (1.56) 15.219 (1.07)
n = 100 0.569 (0.35) 0.438 (0.23) 22.470 (1.54) 14.981 (1.09)

Table 4.5: Numerical performance over 1000 replications, for hierarchical deformations using dras-
tically misspecified parameters..

Hierarchical rotations
dg(ĉ1, c1) dg(ĉ2, c2) σ̂θ(σθ = 22.5) σ̂ψ(σψ = 15)

(unit: degrees)

Body 1
κ = 100

n = 30 11.576 (4.66) 33.737 (4.94) 5.423 (2.58) 2.619 (3.45)
n = 100 11.272 (2.38) 33.372 (2.48) 4.749 (1.02) 0.966 (1.44)

κ = 1000
n = 30 11.228 (3.91) 33.586 (4.06) 3.597 (1.98) 1.186 (2.34)
n = 100 11.183 (2.19) 33.445 (2.25) 3.295 (0.32) 0.413 (0.26)

Body 2
κ = 100

n = 30 12.204 (5.01) 33.456 (5.11) 15.917 (1.88) 214.219 (20.16)
n = 100 11.337 (2.46) 33.959 (2.47) 16.180 (1.15) 214.553 (10.75)

κ = 1000
n = 30 11.838 (4.40) 33.787 (4.46) 15.727 (2.01) 219.414 (20.99)
n = 100 11.289 (2.30) 33.978 (2.34) 16.316 (1.20) 219.587 (10.45)

and Table 4.5. At first we have changed the order of the original parameters f1, f2 for

Body 1 in Table 4.4. The first estimated rotation axis ĉ1 is around (1/
√

2,−1/
√

2, 0)′ and

the second estimated rotation axis ĉ2 is around (1, 0, 0)′, i.e., the estimator has interchanged

the true underlying deformations which results in a distance of approximately 45 degree of

ĉ1 to c1 and ĉ2 to c2. Nevertheless, the order of generalized rotational deformations are not

interchangeable in general, and a misspecification might bias the results. In a second set, we

have misspecified f1j globally by a factor of 0.5 and kept the original f2j for Body 2. The

means and standard deviations in Table 4.4 show only small changes compared to Table 2.1

and are very accurate. A global scale change does not change the relationships between

the rotation angles. Both cases demonstrate the performance of the hierarchical estimation

procedure in case of a moderate misspecification by reasonable estimates.

In addition, two cases with drastically misspecified parameters are reported. In a third

scenario, f1 and f2 are misspecified so as to generate different deformations for Body 1 in

Table 4.5. Both the means and the standard deviations show poor estimation results. In

a last set we modified f1 and f2 by keeping the underlying deformation direction of each
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Table 4.6: Numerical performance over 1000 replications, for hierarchical deformations with mis-
specified order of primary and secondary rotation axis.

Hierarchical rotations
dg(ĉ1, c1) dg(ĉ2, c2) σ̂θ(σθ = 22.5) σ̂ψ(σψ = 15)

(unit: degrees)

Body 1
κ = 100

n = 30 4.624 (2.66) 4.876 (2.85) 22.720 (3.00) 15.896 (2.10)
n = 100 2.258 (1.30) 2.949 (1.54) 22.701 (1.58) 15.847 (1.12)

κ = 1000
n = 30 2.044 (1.27) 1.279 (0.70) 22.382 (2.98) 14.947 (1.94)
n = 100 1.124 (0.72) 0.656 (0.33) 22.492 (1.54) 15.033 (1.11)

Body 2
κ = 100

n = 30 2.590 (1.47) 2.992 (1.75) 22.439 (2.96) 15.094 (2.01)
n = 100 1.323 (0.72) 1.688 (0.87) 22.541 (1.56) 15.220 (1.07)

κ = 1000
n = 30 1.063 (0.67) 0.849 (0.47) 22.336 (2.98) 14.873 (1.94)
n = 100 0.567 (0.35) 0.438 (0.23) 22.470 (1.54) 14.982 (1.09)

direction vector for Body 2 but changing the amount of deformation locally. Also in this

scenario the hierarchical estimator shows poor estimation results in Table 4.5.

4.2 Primary and secondary rotation

The hierarchical model is a first attempt to model and estimate more then one rotational

deformation. The order of two rotations is not interchangeable and is considered as a part

of the statistical model which attempts to describe the nature as well as possible. Therefore,

we assume a primary rotation R(c1, θj) and a secondary rotation R(c2, θj) in our hierarchical

model. The order of rotation can be misspecified in two different ways in the proposed

approach. At first, we might interchange f1 and f2 as discussed in Section 4.1 above for

Body 1 in Table 4.4. In addition, the primary and secondary rotation has to be specified for

the initialization.

Table 4.6 summarizes the results in estimation of the hierarchical deformation model (11)

with interchanged primary and secondary rotation for the initialization. The results are simi-

lar to Table 2.1. The estimator converges to the same results in this example. Nevertheless, a

misspecification might increase the risk that the estimation procedure converges in a different

local minimum.

4.3 Discussion

The introduction of fj in our model has advantages and disadvantages. We study generalized

rotational deformations on the basis of directional data, and the rotation of a direction from

one to another place on the sphere is not uniquely defined in the hierarchical case. Therefore,

different functions fj can describe different rotational deformations. Prior knowledge is nec-
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essary in order to restrict the rotational directions to avoid the convergence of the optimizer

into a different local minimum and to avoid an overfit of c1 and c2 as mentioned Section 4

in the main article.

The development of a method to predict the function fj from a given data set is an inter-

esting open research question. Furthermore, an automatic classification of spoke directions

into a partition I1 and I2 and a final classification of the deformation type into rigid rotation,

bending or twisting are of future interest.

5 Computational complexity of the algorithm

The computational complexity of the proposed estimation procedure is now reported in two

forms: the asymptotic time complexity and finite sample time measurements.

The asymptotic time complexity of the proposed algorithm depends on the number of

samples n and the number of direction vectors K. In particular the optimization problem,

(ĉ, r̂) = argmin
c,r1,...,rK

n∑

i=1

K∑

j=1

d2g{δ(c, rj), Xij},

is the dominant part of the algorithm. Our algorithm to solve this nonlinear least squares

problem is doubly iterative. The outer loop consists of applications of the exponential

and inverse exponential maps whose time complexity is O(nK). The inner loop iteratively

updates c† ∈ R3 and r†j ∈ (0, π/2) by the Levenberg–Marquardt algorithm, where each

iteration requires the asymptotic time complexity of O(nK) mainly due to the computation

of Jacobian matrix. Notice, that the computation time for inverting a 3 × 3 matrix is

dominated by other terms and is ignored. Overall, if a finite number of iterations is assumed,

then the asymptotic time complexity of the proposed algorithm is O(nK).

We now turn to our attention to the complexity of the algorithm in real time, which we

believe is more useful for practitioners. Computation times were measured by a personal

computer with a Intel(R) Xeon(TM) 3.73GHz processor.

We have tested the estimations of three different rotational deformations

• Model (2) - Rigid rotation,

• Model (10) - Twisting and

• Model (11) - Hierarchical deformations
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Table 5.1: Median time measurements in seconds over 100 replications.

n Model
K

4 8 16 32 64 128

30
(2) 0.04 0.07 0.13 0.26 0.61 1.81
(10) 0.11 0.16 0.26 0.40 0.79 2.00
(11) 0.54 0.84 1.61 3.17 6.91 19.23

60
(2) 0.04 0.07 0.13 0.28 0.68 2.03
(10) 0.10 0.18 0.29 0.42 0.85 2.18
(11) 0.75 1.39 2.72 6.55 13.84 30.80

120
(2) 0.04 0.07 0.13 0.29 0.76 2.34
(10) 0.12 0.18 0.27 0.44 0.92 2.50
(11) 1.29 2.50 4.90 10.03 20.37 53.91

Table 5.2: Minimal time measurements in seconds over 100 replications..

n Model
K

4 8 16 32 64 128

30
(2) 0.02 0.05 0.08 0.19 0.48 1.59
(10) 0.03 0.07 0.12 0.25 0.61 1.75
(11) 0.23 0.40 0.74 1.50 3.21 7.71

60
(2) 0.02 0.04 0.08 0.18 0.54 1.78
(10) 0.03 0.05 0.14 0.27 0.68 1.89
(11) 0.37 0.68 1.32 2.61 5.52 12.37

120
(2) 0.02 0.04 0.09 0.22 0.63 2.12
(10) 0.03 0.09 0.15 0.33 0.79 2.38
(11) 0.64 1.21 2.39 4.85 9.99 21.61

as described in Section 4 (the numbers correspond to the equation number in the main

article), with two different types of objects to be deformed.

We first examined the computation times for a set of well-controlled objects. Using

the Body 1 (as plotted in Fig. 2 of the main article) consisting of the original K = 4

directions, we duplicated the same direction vectors to increase the number of directions

(K = 8, 16, 32, 64, 128) so that the effect on computation time of the different locations of

direction vectors is minimized. For each sample size n = 30, 60, 120, we have repeated the

estimation R = 100 times to measure the computation time required to obtain the estimates

ĉ. Note that we have used von Mises-Fisher distribution with κ = 1000 for the i.i.d. errors.

Tables 5.1 and 5.2 report the median computation time and the minimal computation

time among the R repetitions, respectively. With large numbers of sample and directions,

the computation requires less than a minute on average, while it takes less than a second for

moderate sizes of sample and directions.

From an inspection of Table 5.1, there is a trend for the computation time increasing
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Table 5.3: Quality of the repeated rotation axis estimations for the time measurements by dg(ĉ, c)
in degree.

n Model
rotation K

axis 4 8 16 32 64 128

30

(2) 1 1.18 0.92 0.63 0.40 0.33 0.22
(10) 1 0.88 0.61 0.40 0.29 0.20 0.14
(11) 1 2.18 2.10 1.99 1.89 1.86 1.81
(11) 2 1.43 1.09 0.77 0.60 0.48 0.43

60

(2) 1 0.74 0.63 0.42 0.30 0.21 0.16
(10) 1 0.59 0.42 0.29 0.18 0.14 0.10
(11) 1 1.42 1.28 1.24 1.20 1.16 1.17
(11) 2 0.88 0.64 0.49 0.35 0.28 0.21

120

(2) 1 0.60 0.39 0.30 0.20 0.15 0.10
(10) 1 0.37 0.30 0.20 0.14 0.10 0.07
(11) 1 1.09 0.97 0.99 0.90 0.89 0.89
(11) 2 0.61 0.44 0.29 0.22 0.18 0.12

approximately linear with K and also with n for all models.

By comparing the minimal time (Table 5.2) and the median time (Table 5.1), we have

noticed that the computation time varies by a large amount. See for example model (11)

with n = 60, K = 128; The median time is over 30 seconds while the shortest time is only

12 seconds. This is due to the slow convergence of the iterative algorithm for a particular

choice of observations.

Finally, Table 5.3 reports the quality of the repeated rotation axis estimations by the

mean distance of dg(ĉ, c), which shows higher accuracy for larger K and n as discussed in

Section 4 of the article.

We also have examined the computation times with another set of objects whose base

direction vectors are determined randomly. As shown in the following, the additional ran-

domness leads to more variation in the computation times. Nevertheless, the computation

time exhibits again the approximate linear increase for K and n.

The second set of objects to be deformed has K = 8, 16, 32, 64, 128 directions vectors,

each of which is obtained from uniform distribution on a hemisphere. With n = 30, 60, 120

samples, we also report the time measurements from R = 100 replications.

Table 5.4 and 5.5 report the median and the minimum computation time in seconds,

respectively. As expected, the time increases with larger K and larger n. Due to the uncon-

trolled model complexity (originated from the random base directions) the time difference

between the median and the minimum time is larger than the previous controlled case. We

conjecture that the computation times are heavily dependent on the convergence of the
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Table 5.4: Median time measurements in seconds over 100 replications.

n Model
K

8 16 32 64 128

30
(2) 0.08 0.14 0.26 0.63 1.83
(10) 0.18 0.29 0.49 0.94 2.10
(11) 1.99 6.39 17.18 51.44 130.85

60
(2) 0.08 0.14 0.28 0.70 2.04
(10) 0.22 0.32 0.51 0.96 2.27
(11) 2.74 6.75 24.25 63.20 265.95

120
(2) 0.08 0.14 0.30 0.77 2.40
(10) 0.22 0.32 0.48 0.98 2.54
(11) 9.79 18.86 42.81 129.75 305.54

Table 5.5: Minimal time measurements in seconds over 100 replications..

n Model
K

8 16 32 64 128

30
(2) 0.05 0.08 0.20 0.58 1.78
(10) 0.07 0.12 0.25 0.59 1.84
(11) 0.42 0.84 2.30 3.45 8.03

60
(2) 0.05 0.10 0.23 0.59 1.80
(10) 0.07 0.16 0.31 0.72 1.99
(11) 0.72 1.36 2.75 5.99 18.78

120
(2) 0.04 0.10 0.24 0.63 2.23
(10) 0.06 0.17 0.32 0.71 2.31
(11) 1.25 2.43 4.91 15.24 33.16

Table 5.6: Quality of the repeated rotation axis estimations for the time measurements by dg(ĉ, c)
in degree.

n Model
rotation K

axis 8 16 32 64 128

30
(2) 1 0.92 0.64 0.45 0.33 0.21
(10) 1 0.67 0.44 0.30 0.22 0.15
(11) 1 1.20 0.59 0.40 0.23 0.16
(11) 2 2.57 0.73 0.55 0.37 0.25

60
(2) 1 0.64 0.53 0.31 0.23 0.15
(10) 1 0.43 0.26 0.22 0.14 0.10
(11) 1 1.05 0.37 0.25 0.18 0.11
(11) 2 2.67 0.60 0.35 0.23 0.17

60
(2) 1 0.42 0.33 0.23 0.14 0.11
(10) 1 0.31 0.21 0.15 0.10 0.07
(11) 1 0.86 0.27 0.17 0.11 0.07
(11) 2 2.39 0.37 0.25 0.17 0.12
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Levenberg–Marquardt algorithm.

In addition to the computation time, Table 5.6 reports the quality of the repeated rotation

axis estimations by the mean distance of dg(ĉ, c), which again shows higher accuracy for larger

K and n as discussed in Section 4 of the article.

6 Estimation procedure for knee motion during gait

In section 6 in the main article we have studied a real data example: the deformation of the

upper and lower leg by two potentially non-orthogonal rotations at the knee joint during

gait. These two rotations are flexion-extension about a right-to-left (medial-lateral) axis and

the internal-external rotation of the lower-leg relative to the upper leg about an axis directed

along the long axis of the lower leg. The data set consists of T time dependent observations

M1, . . . ,MT whereas each Mi is a collection of markers Mi = (Mi1, . . . ,MiK̃) on the upper

and lower leg with Mij ∈ R3, j = 1, . . . , K̃. Let Ĩ1 and Ĩ2 be a partition of indices {1, . . . , K̃}
representing groups of K̃1 markers Ĩ1 on the upper leg and K̃2 markers Ĩ2 on the lower leg.

Two markers Mι1 , ι1 ∈ Ĩ1 and Mι2 , ι2 ∈ Ĩ2 are chosen as basis points at the upper and lower

leg. Set I1 = Ĩ1 \ {ι1}, I2 = Ĩ2 \ {ι2}, K = K̃ − 2, K1 = K̃1 − 1 and K2 = K̃2 − 1 then

directions Xi = (Xi1, . . . , XiK) are derived by

Xij =
Mij −Miι1

‖Mij −Miι1‖
, j ∈ I1, Xij =

Mij −Miι2

‖Mij −Miι2‖
, j ∈ I2

for i = 1, . . . , T , which are invariant to translation and size changes.

For the sake of convenience, we assume the observations X1, . . . ,XT are independent and

modify the single rotation model (10) in the main article to

Xij = R(c, θij)X1j ⊕ εij (j = 1, . . . , K). (6.1)

A more careful modelling of the time dependencies is left for future work, e.g., by an autore-

gressive model as suggested by (Rivest, 2001, Section 4.1).

The first (flexion-extension) rotation axis c1 is estimated by the estimation procedure (7)

in the main article and describes a bending deformation of the upper and lower leg around

the knee. The lower leg rotates relative to the upper leg whereas the upper leg rotates

relative to the pelvis. At first, we estimate the rotation angles θui of the upper leg in order to

estimate the rotation angles θli of the lower leg relative to the upper leg. The least squares
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(a) bone (b) skin

Figure 6.1: Predicted rotation angles (θ1, ψ1) = (θ̂u, ψ̂u) of directions on the upper leg and angles
(θ2, ψ2) = (θ̂l, ψ̂l) of directions on the lower leg for the first 200 time points. (a) Estimated
rotation angles of directions derived from bone markers. (b) Estimated rotation angles of
directions derived from skin markers. (angle units in radian)

estimators (ĉ1, r̂1) can be used to estimate the parameters of (6.1) with

θij = atan2{〈P(ĉ1,r̂1j)Xij, ĉ1 ×X1j〉, 〈P(ĉ1,r̂1j)Xij, X1j − ĉ1 cos(r̂j)〉}. (6.2)

The predictor of θui , i = 1, . . . , T is

θ̂ui =
1

K1

K1∑

j=1

θij, j ∈ I1.

Next, the directions are de-rotated by X̃ij = R(ĉ1,−θ̂ui )Xij for j = 1 . . . , K and i = 1, . . . , T .

The directions X̃ij, j ∈ I1 are directions on the upper leg and do not rotate about ĉ1 after

the inverse deformation. The remaining rotation of the lower leg relative to the upper leg is

then

θ̂li =
1

K2

K2∑

j=1

θ̃ij, j ∈ I2 with

θ̃ij = atan2{〈P(ĉ1,r̂1j)X̃ij, ĉ1 × X̃1j〉, 〈P(ĉ1,r̂1j)X̃ij, X̃1j − ĉ1 cos(r̂j)〉}.

Finally, we obtain a set of de-rotated directions Z by Zij = X̃ij, j ∈ I1 and Zij =

R(ĉ1,−θ̂li)X̃ij, j ∈ I2 for i = 1, . . . , T .

The estimation of the second (internal-external) rotation axis (ĉ2, r̂2) and ψ̂u, ψ̂l follows

the same steps of the above paragraph using using Zi instead of Xi for i = 1, . . . , T .

In addition to the estimates ĉ1 and ĉ2, we estimate the rotation axes ĉ1j and ĉ2j for each
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marker j = 1 . . . , K. Therewith, we can quantify the estimations by the dispersion σdg(ĉ1,ĉ1j)

of the geodesic distance dg(ĉ1, ĉ1j) and σdg(ĉ2,ĉ2j) respectively.

Figure 6.1 reports the predicted rotation angles (θ̂ui , ψ̂
u
i ) of the upper leg relative to the

laboratory reference frame and (θ̂li, ψ̂
l
i) of the lower leg relative to the upper leg for the first

200 time points. The larger observed rotation angles around the second rotation axis for the

skin data is due to the well-known deformation of the skin surface.
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Properties of Shapes Applied to Hippocampi
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Abstract This paper presents a novel method to test
mean differences of geometrical object properties

(GOPs). The method is designed for data whose repre-

sentations include both Euclidean and non-Euclidean

elements. It is based on advanced statistical analysis
methods such as backward means on spheres. We de-

velop a suitable permutation test to find global and lo-

cal morphological differences between two populations

based on the GOPs. To demonstrate the sensitivity of

the method, an analysis exploring differences between
hippocampi of first episode schizophrenics and con-

trols is presented. Each hippocampus is represented

by a discrete skeletal representation (s-rep). We inves-

tigate important model properties using the statistics
of populations. These properties are highlighted by the

s-rep model that allows accurate capture of the object

interior and boundary while, by design, being suit-

able for statistical analysis of populations of objects.

By supporting non-Euclidean GOPs such as direction
vectors, the proposed hypothesis test is novel in the

study of morphological shape differences. Suitable dif-

ference measures are proposed for each GOP. Both

global and local analyses showed statistically signifi-
cant differences between the first episode schizophren-

ics and controls.
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1 Introduction

Statistical analysis of anatomical shape differences has

been broadly reported in the literature (e.g., [2,5,10,

15]). In medical settings, the study of morphological
changes of human organs and body structures is of

great interest. An important subfield in medical imag-

ing is to understand neuroanatomical structures of the

human brain (e.g., [12,14,42]). Morphological changes
of brain structures can provide the physician with

information about neuropsychiatric diseases such as

Alzheimer’s and schizophrenia. A common interest of

medical shape analysis is to test for morphological dif-

ferences between healthy and diseased populations. In
addition, the study of drug effects is of high interest

in epidemiology. Volumetric measurements often can

not distinguish between brain structure differences of

two populations [45]. Therefore, sophisticated mathe-
matical shape models with properties that support an

accurate statistical analysis are required.

Shape differences can be quantified by hypothe-

sis tests. A statistical hypothesis test requires a null
hypothesis H0 and an alternative hypothesis H1; a

standard null hypothesis assumes no differences be-

tween the populations. In this paper, we propose a

novel approach for a hypothesis test on geometrical

object properties (GOPs) of shapes with application
to the hippocampus of the human brain.

Such a hypothesis test of populations of medical

shapes depends on 1) the type of medical data, 2) ex-

traction of the object and the following shape repre-
sentation by a model, 3) selecting object properties

for the shape model, 4) statistics necessary to per-

form population comparison of the models and, 5) a
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method for constructing a hypothesis test based on

given difference measures.

We use a discrete skeletal representation, abbrevi-

ated as s-rep [36] as a shape model. The amenities of

s-reps relative to other shape representations are de-

scribed in Section 3. The s-reps are fit to a set of binary
images of the hippocampus extracted from a mag-

netic resonance imaging (MRI) data set. All skeletal

shape models have Euclidean as well as non-Euclidean

components. Thus, a hypothesis test based on skeletal
models must support the two different types of fea-

tures. The approach presented in this paper allows a

sensitive hypothesis test between the components of

s-reps. By using this approach, local and global shape

differences of the hippocampi between schizophrenia
and control populations are investigated.

The hypothesis test requires i) fair correspondence

between all skeletal models within a population and
across populations, ii) a method to compute means

of populations of skeletal models, iii) a test statistic

with appropriate distance measures for the Euclidean

and non-Euclidean components of the means, iv) a
method to calculate a test statistic and the empirical

distribution of the test statistic, and v) a procedure

to correct for multiple comparison of local and global

testing of GOPs.

The paper is presented as follows. The data set for

the schizophrenia study describing two shape popu-

lations is presented in Section 2. The skeletal model

is discussed in Section 3 in addition to required sta-
tistical properties for shape analysis of populations.

Section 4 introduces the method composite principal

nested great spheres (CPNG), which allows statisti-

cal analysis of the Euclidean and non-Euclidean com-
ponents of skeletal models such as the calculation of

means. Section 5 describes the model fitting proce-

dure for the two shape populations, which produces

the statistical properties required for each model. A

permutation test is introduced in Section 6 and spec-
ified for skeletal models together with required statis-

tics. Finally in Section 7, hypothesis test results of the

hippocampus study are reported.

2 Schizophrenia study data set

The data consist of MRI assessments of hippocampi

from patients with schizophrenia and a similar set

from a healthy control group as described in [28,40]. In
the original study, 238 first-episode schizophrenics and

56 controls were enrolled. First-episode schizophrenia

patients have not received medical treatment prior to

the MRI assessment. The hippocampi were segmented
from the aligned MRI scans with an automated atlas

based segmentation tool developed at the University

of North Carolina [16,28].

Statistical analysis must be performed on either

the left or right hippocampus as a combined analysis

could bias the result. Accordingly, the left hippocam-
pus is evaluated in this paper. Records of the the left

hippocampus were not available for 17 patients from

the schizophrenia group. Therewith, the data set con-

sists of 221 first-episode schizophrenia cases (SG) and
56 control cases (CG) and is represented by binary

files which reflect the segmented hippocampi. In the

data provided, the hippocampi have been normalized

in volume but the original volumes were reported as

separate scaling features.

3 Object representation

The representation by a shape model allows calcula-
tion of shape statistics of the hippocampus. The type

of model, chosen to compare two shape populations,

should capture a rich collection of GOPs presented in

the data. In addition, small deformations in objects

should be reflected by small deformations in the mod-
els. Finally, the model should not introduce artificial

variation across a population which is not present in

the objects themselves.

As discussed by [36], a model that fulfills these

three properties is an interior-filling s-rep as depicted

in Figure 1. Starting with the continuous case, this

model and its properties will be discussed in the fol-
lowing.

The desired GOPs of the model can be catego-

rized into three groups. The first group (G1) should
capture locational information of the object bound-

ary. The second group (G2) should reflect the local

surface curvature by incorporating directional infor-

mation into the shape model. The shape model should

accurately depict the local orientation of the object.
The third group (G3) should describe how the object

boundary is connected by the interior in order to re-

flect the relationship across the interior of the object.

The thickness of an object is one property of the in-
terior among others. Skeletal models are designed to

obtain these geometric properties.

The family of skeletal models has been widely stud-
ied in computer vision and medical image analysis. In

Section 3 of [41] it is shown that the medial locus [4]

of an object Ω ⊆ Rn can be described by an inward

“grassfire” that starts at the boundary and dies out at

a folded version of the medial locus called MΩ. Given
a folded medial locus MΩ, the medial representation

of an object Ω is determined by a set of spoke direc-

tions from points of MΩ to the corresponding points

of tangency on the boundary ∂Ω. The collection of
spoke end points capture locational information of the

object boundary as postulated in (G1). The second

group (G2) is captured by the directional information
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(a) skeletal representation (b) ellipsoid (c) hippocampus

Fig. 1: Continuous skeletal representation and fitted s-reps. (a) Sectional view of a two-sided skeletal 3D object
representation. Colored spokes emanate from the skeletal sheet (which is not medial) to the surface. In the

continuous form there is a spoke on each point on the skeletal sheet. (b) Discrete s-rep of a non-deformed 3D

ellipsoid. (c) Discrete s-rep of a hippocampus.

of the spokes. The points of MΩ describe the inherent

symmetry of an object and therewith (G3) above.

Strictly medial representations are limited by the

fact that every protruding boundary kink results in

additional medial branches. Thus, two versions of the
same object with small noise can have drastically dif-

ferent medial representations. Skeletal models achieve

additional stability by relaxing the medial constraint.

Figure 1a visualizes a sectional view of a two-sided

skeletal object representation in R3 composed of a

skeletal sheet and spokes which emanate from a skele-
tal position on the skeletal sheet to the surface. The

skeletal sheet is close to midway but is not medial. An

exactly medial representation of this object would re-

quire the setMΩ to include an additional long branch.
Elimination of such branches in MΩ is the goal of the

skeletal representation. Figures 1b and 1c will be dis-

cussed later.

Stability in the branching structure and stability in

the skeletal sheet ensure structural case-by-case stabil-

ity of the model and thus good correspondence across
the samples in the full data set. The branching con-

straint can be tightened for specific classes of objects

where the shape is known. For an ellipsoid-like ob-

ject shape, such as the hippocampus, the constraint
of no branching is reasonable and is adopted. Yet, we

want to retain as much as possible the medial prop-

erties, such as orthogonal spokes to the boundary, as

equal as possible skeletal positions and approximately

equal spoke length on both sides of the skeletal sheet.
Therefore, the family of skeletal models is restricted

by the class of interior-filling s-reps that are modeled

as medial as possible [36].

In addition to the case-by-case stability, we require

population stability to avoid artificial variance across
a population that is solely an artifact of the individual

s-rep fittings; such variance is not connected to the ob-

jects themselves. Population stability can be achieved

by a re-fitting step of the s-rep to the object using an

estimated shape probability distribution of the popu-

lation. The re-fitting step reduces the variance of the

s-rep population as described in Section 5. Both case-
by-case stability and population stability ensure that

the shape models have improved correspondence of

both the spokes and the skeletal locations between

objects, which will support accurate statistics across
a population.

A discrete s-rep, as required for the numerical anal-
ysis of slab-shaped objects, consists of a two-sided

(folded) sheet of skeletal positions sampled as a grid of

atoms, whose skeletal positions are depicted as small

spheres in Figures 1b and 1c. On each side of the sheet,

there is a spoke, a vector with direction and length
on the top and on the bottom connecting the skele-

tal sheet to the boundary. Also, for each edge grid

point there is an additional spoke vector connecting

the skeletal sheet folded to the crest of the slab. The
sheet is close to midway consistent to the fixed branch-

ing constraint between the two sides of the slab, and

the spokes are approximately orthogonal to the object

boundary. Each discrete s-rep is described by a feature

vector

s = (p1, . . . , pna , r1, . . . , rns , u1, . . . , uns) (1)

with na = next
a + nint

a the number of atoms and ns =

3next
a + 2nint

a is the number of radii and spoke direc-

tions. A slabular s-rep consists of next
a exterior (edge

grid points) and nint
a interior atoms. An interior atom

consists of a skeletal position p ∈ R3, two spoke di-
rections u ∈ S2 and two spoke lengths r ∈ R+ (top,

bottom) where S2 = {x ∈ R3 | ‖x‖ = 1} is the unit

sphere. An exterior atom consists of a skeletal position

p ∈ R3, three spoke directions u ∈ S2 and three spoke
lengths r ∈ R+ (top, crest, bottom). As a result, the

shape space of s ∈ R3na ×Rns
+ × (S2)ns is a product of

Euclidean and non-Euclidean spaces. Each s-rep can
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also be described in the space Rns+1×S3na−4×(S2)ns

together with a scaling factor γ ∈ R+. This representa-

tion is derived from a pre-shape space [22] as discussed
in Section 4.

Another popular class of modeling 3D objects is

a boundary point distribution model (PDM) where a
solid object is defined by the positions of the sampled

surface points [8,10,24]. In general, normal directions

can be attached on the surface points of a PDM but

to the best of our knowledge, it has not been used in
practice. In addition, deformation-of-atlas models are

well known, wherein the shape changes of an object in

images are modeled by the deformations of a template

image [34,38]. Such models can capture the local ori-

entation of an object. Nevertheless, both approaches
are less suitable for shape statistics of populations by

the lack of the interior description of an object.

We restrict our analysis to discrete slabular s-reps
which are organized into a (3×8) grid of skeletal posi-

tions, i.e., each s-rep consists of 24 atoms. The choice

of the grid size defines how exactly the binary images

can be described by the s-rep model. We have chosen
a grid of 3 × 8 atoms as a trade-off between captur-

ing important object features, avoiding an overfitting

and keeping the dimension of the shape space low. A

hippocampus example with bumps that are not tightly

described by a (3×8) grid is visualized in Section 1.1 of
the Supplementary Material. However, we do not look

at individual s-reps that may not be perfectly correct

but rather at differences between groups which are not

biased versus the other.

4 CPNG analysis

A hypothesis test on mean differences requires a me-
thod to calculate means from populations of shape

models. The method should incorporate all geomet-

rical components of such models. We have presented

in Section 3 an s-rep as a suitable model with Eu-
clidean components and components which live on

spheres. This section will discuss an approach to pro-

duce means, in addition to shape distributions of pop-

ulations of s-reps.

First of all, we need to understand the shape space

of a discrete s-rep to apply a proper statistical analy-

sis. Each discrete s-rep is described by a feature vector

s ∈ R3na×Rns
+ ×(S2)ns as defined in (1), and lives in a

product of Euclidean and non-Euclidean spaces. Each

element of s corresponds across the population. The

points Xp = (p1, . . . , pna)
′ ∈ R3na form an (na × 3)

matrix and a PDM that can be centered and normal-
ized at the origin by ZH = HXp/‖HXp‖ with H a

Helmert sub-matrix which removes the origin [10,22].

H is an ((na − 1)× na) matrix with row i− 1 defined

by the vector

(H)i−1 = (di, . . . , di,−idi, 0, . . . , 0)

with di = (i(i + 1))−
1
2 , i = 2, . . . , na where di is re-

peated i-times. ZH is called a pre-shape with infor-

mation of location and scale removed. Therewith, the

Cartesian product of pi ∈ R3, i = 1, . . . , na can be de-

scribed by the pre-shape ZH and by a scaling term
γ = ‖HXp‖. The pre-shape ZH lives on the (3na − 4)

dimensional unit sphere S3na−4 ⊂ R3na−3. Each spoke

direction ui, i = 1, . . . , ns of s lives on the unit sphere

S2. The radii ri ∈ R+, i = 1, . . . , ns and scale factor

γ ∈ R+ are log-transformed to the Euclidean space
R. Thus, a discrete s-rep s can be described in the

shape space Rns+1 × S3na−4 × (S2)ns composed of

several spheres and a real space. Jung et al. [20] and

Pizer et al. [36] have proposed a method to analyze
a population of s-reps that are living in such an ab-

stract space. This method is called composite principal

nested spheres (CPNS) and will be discussed in the

following.

Suppose we have a population of N s-reps. In order
to analyze the covariance structure of such a popula-

tion, we have to find a common coordinate system.

CPNS consists of two main parts. First, the spherical

parts are analyzed by principal nested spheres (PNS)
[18,19], which analyzes data on spheres in decreas-

ing dimension, i.e., using a backward view. Therewith,

the pre-shape ZHj and each uij can be mapped to a

Euclidean space with j = 1, . . . , N . Second, the Eu-

clideanized variables are concatenated with the log ri
and log γ to give a matrix Zcomp and an array of scale

factors to make all variables commensurate as dis-

cussed in detail in [36]. Finally, the structure of the co-

variance is investigated from the scaled matrix Zcomp.
PNS is a novel method to estimate the joint probabil-

ity distribution of data on a d-dimensional sphere Sd

by a backward view along the dimensions. The back-

ward view allows dealing with one dimension at a time

and thus produces better probability distributions.
In Euclidean space, the forward and backward ap-

proaches to principal component analysis (PCA) are

equivalent, which is not true in general non-Euclidean

spaces, such as the d-dimensional unit sphere Sd. Da-
mon and Marron [9] have studied generalizations (e.g.,

PNS) of PCA across a variety of contexts, and have

shown that backwards is generally more amenable to

analysis, because it is equivalent to a simple adding of

constraints.
PNS is a fully backward approach that fits the best

lower dimensional subsphere in each dimension start-

ing with Sd. The subsphere can be great (a sphere

with radius 1) or small (less than 1). Figure 2 visu-
alizes the method which takes into account variation

along small circles (non-geodesic variations) as well

as variation along geodesics. Thus, the decomposition
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Fig. 2: Backwards PNS by computation of the nearest lower dimensional subsphere. In addition, the projection

P (p1) of a data point p1 with score Zd,1 on the subsphere A(w1, psi1) is depicted.

is non-geodesic. Each subsphere A(wl, ψl) of S
d−l+1 is

defined by an axis (polar position) wl with latitude an-

gle ψl, l = 1, . . . , d. The lowest principal nested sphere

A(wd, ψd) is a circle. The Fréchet mean [13,21] on the

remaining 1-dimensional subsphere can be seen as the
best-fitting 0-dimensional subsphere (a point) of the

data. Finally, this mean is projected back to Sd result-

ing in a backward Fréchet mean.

CPNS has been shown to be powerful in the anal-
ysis of a single s-rep population. In this study, our

hypothesis test of local or global shape differences in-

volves the comparison of two or more CPNS statistics,

which is facilitated by stable statistics and correspon-
dence between populations, using a common coordi-

nate system. In fact, PNS is a non-geodesic method

which fits small and great subspheres. The fitting of

small spheres has advantages in describing the amount

of data variation inside a population with fewer princi-
pal components but two or more populations can have

different decompositions into small and great spheres,

which introduce additional variation across the popu-

lations, e.g., reflected by a larger variation between
CPNS means of several populations. Therefore, all

CPNS analyses in this paper are constrained by fit-

ting principal nested great spheres, called PNG and

CPNG respectively. Therewith, we avoid additional

variation, ensure correspondence and a common coor-
dinate system across several populations. A prelimi-

nary simulation study on permuted populations of s-

reps confirmed the improvements of CPNG compared

to CPNS. Notice, CPNG is identical to [17] in the
two dimensional case. We are leaving a commensurate

CPNS analysis for populations using small spheres for

future work and discuss a possible approach in Sec-

tion 1.2 of the Supplementary Material.

5 Model fitting

The application of the proposed hypothesis test to the

hippocampi study, introduced in Section 2, requires

a procedure to generate s-rep fittings with statistical

object and population properties as discussed in Sec-

tion 3. This section will introduce such a procedure.

Assume we have a set of binary images and a set

of corresponding signed distance images. The distance

images are used during the fitting process as the tar-
get data to which reference models are fitted. Follow-

ing [36], the fitting procedure can be described with 5

consecutive steps: initial alignment, atom stage, spoke

stage, CPNG stage and the final spoke stage.

Initial alignment: A reference s-rep is translated, ro-

tated and scaled into the space of distance images by
matching of moments to the boundary.

Atom stage: The atom stage defines the geometry

of the object and accordingly, the case-by-case stabil-
ity. Each atom, i.e., each skeletal grid point and its

set of spokes are fit one by one with multiple itera-

tions through these atoms. For each atom, an objec-

tive function is optimized [36]. The objective function

reflects the goodness of the fit and is calculated by a
weighted sum of different optimization criteria. The

function penalizes factors which are making the s-rep

structurally improper, such as irregularity in the grid

and crossing of adjacent spokes. In addition, it penal-
izes the spoke ends deviating from the object bound-

ary and their directions deviating from the boundary

normal (both implied by the input distance image).

The spokes are further penalized from failing to match

the geometry of the crest implied by the distance im-
age. The penalties are summed over spokes which are

interpolated from the original s-rep.

Spoke stage: The spoke stage optimizes the spoke
lengths to match the object boundary more closely.

The skeletal grid points and the resulting geometry of

the s-rep will not be changed during this stage. The

atom and spoke stage provide appropriate s-rep fit-
tings to the data with case-by-case stability.

CPNG stage: The CPNG stage is designed to pro-

vide improved correspondence across a population of
s-reps. The fits of the spoke stage are used to calculate

CPNG statistics as described in Section 4. Improved

correspondence is achieved by restricting the fits to a
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shape space which results from the CPNG analysis.

CPNG estimates a mean s-rep from the population

but also yields eigenmodes and modes of variation [18].
Consequently, any s-rep can be expressed by the score

of the eigenmodes in the CPNG space. Hence, corre-

spondence across a population is achieved by initial-

ization of each fitting with the CPNG mean s-rep and
by restricting the shape space to the CPNG space. In

addition, s-rep candidates from the CPNG space are

penalized by the Mahalanobis distance between the

candidate and the CPNG mean. As a result improved

correspondence is achieved.

Final spoke stage: The final spoke stage adjusts the

spokes of the CPNG stage fits to match closely the ob-

ject boundary. Consequently, s-reps can be generated

which are not an element of the CPNG space.

The first three stages form a preliminary stage in
the fitting procedure. The fitting stages are imple-

mented in a software called Pablo, developed at the

University of North Carolina. The program is avail-

able at [32].

6 Multiple hypothesis testing

A sensitive hypothesis test is useful for the quantifica-

tion of shape differences, both to compare populations
globally and locally. The introduction of a suitable

shape model in Section 3, a method to calculate means

from populations in Section 4 and a procedure to gen-

erate s-rep fittings in Section 5 provide us with tools
to generate models and means that contain the desired

properties for a sensitive hypothesis test. An impor-

tant challenge is that the geometric object elements

of each model are spatially correlated. Furthermore,

a suitable hypothesis test should correct for multiple
comparisons.

6.1 An overview of multiple comparison corrections

The problem of false positives with multiple statistical

tests is well recognized. Statistical shape analysis must

deal with a large number of hypotheses, each derived

from a GOP element, for example of the s-rep. Two
common categories of multiple comparison correction

are familywise error rate (FWER) and false discovery

rate (FDR) [3]. Let V be the number of rejected hy-

potheses when the null is true (type 1 error), and S

the number rejected hypotheses when the null is false.
The FWER is defined as the probability of at least

one type 1 error by P(V ≥ 1). The FDR is defined as

the expected proportion of type 1 errors among the

total number of rejected hypotheses by E(V/(S + V )
with V/(S + V ) = 0 if (S + V ) = 0. There are sev-

eral approaches to control FWER and FDR. A com-

monly used one is the Bonferroni correction. Another

approach is using typical wavelet coefficient selection

methods [1,6,44]. In addition, variable selection based

on threshold random field theory (RFT) have been
used [7,23,33]. Permutation tests allow multiple com-

parison correction by estimating the empirical null-

distribution and the covariance structure of the test

statistics [30,35,43]. This paper uses multiple compar-
ison correction by FWER.

The Bonferroni correction has several major draw-

backs; the Bonferroni threshold can be conservative
if the GOPs are dependent of each other. In partic-

ular, spatial autocorrelations result in fewer effective

variables. Spatial correlation can be expected between

neighbor spokes and skeletal positions of an s-rep. In

addition, the Bonferroni correction reduces the power
of a test as the probability of false negatives increases,

because it controls only the probability of false pos-

itives. RFT requires strong assumptions such as the

same parametric distribution at each spatial location
(e.g., multivariate Gaussian), sufficient smoothness as

well as stationarity. The assumption of a parametric

distribution can not be fulfilled in case of an s-rep

model and the assumption of stationarity can also be

doubtful.

Permutation tests have advantages over the ap-

proaches above that make them particularly suitable

for s-reps. S-reps are defined on a product of Euclidean
and non-Euclidean spaces with unknown probability

distributions of the geometric object elements. In con-

trast to standard parametric methods such as Bonfer-

roni and RFT, a permutation test is a non-parametric
approach using the data to estimate the sampling dis-

tribution of the test statistic under the null-hypothesis

H0. Permutation tests are also adaptive to underlying

correlation patterns in the data.

A minimal assumption of permutation testing is

the exchangeability under H0 such as identical distri-

butions of populations 1 and 2. The underlying idea

of a permutation test is that any permutation of the
observations has the same probability to occur under

the assumption H0. Given the permuted populations,

a common test statistic measures differences between

population means. The test statistic may calculate fea-
ture by feature differences or combine features to mea-

sure differences between GOPs. The permuted pop-

ulations can be used to estimate the distribution of

the test statistic as well as to estimate the correlation

structure.

6.2 A permutation test for s-reps

Suppose we have two populations of s-reps described
by a set Ã1 = {s̃11, . . . , s̃1N1} of N1 s-reps and a set

Ã2 = {s̃21, . . . , s̃2N2} of N2 s-reps with s̃il as defined

in (1). We assume without loss of generality N1 ≥ N2.
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The permutation test for populations of s-reps can be

divided into four steps.

First, observed and permuted population CPNG
means are generated as described in Section 6.2.2.

Second, appropriate Euclidean or non-Euclidean GOP

differences are calculated between the means of the

observed populations Ã1 and Ã2, and between the
means of corresponding permuted populations as de-

scribed in Sections 6.2.3 and 6.2.4. Third, p-values

are calculated for each GOP difference as described

in Section 6.2.5. Each of these p-value is uniformly

distributed and mapped by probability integral trans-
formations to standard normal distributed variables.

Hence, the GOPs can be mapped from a non-linear

to a linear space with the same coordinate system

for each GOP. Finally, the covariance matrix of these
standard normal distributed variables is estimated, in

order to incorporate the true multivariate nature of

the data and the correlation between the GOPs as de-

scribed in Section 6.2.6. As a result, the partial tests

of the GOPs can be combined into a single summary
statistic by the Mahalanobis distance. In addition, a

feature-by-feature test can be constructed as described

in Section 6.2.7.

6.2.1 Pre-processing

In a first pre-processing step, global translational and

rotational variations should be removed from all s-reps
in order to analyze only shape variations. To make the

alignment unbiased with respect to the population, the

overall backwards CPNG mean µ̃ is estimated from

the set union

Ã = Ã1

⋃
Ã2 = {s̃11, . . . , s̃1N1 , s̃21, . . . , s̃2N2}.

The CPNG mean µ̃ is translationally aligned by the

subtraction of the mean of the locational components.

In addition, the eigenvectors of the second moments

about the center of the skeletal positions yields a ro-

tational alignment to the x, y and z-axis. The trans-
lationally and rotationally aligned CPNG mean µ̃ is

called µ. Afterwards, each s-rep s̃ ∈ Ã is translated,

rotated and scaled to µ by standard Procrustes align-

ment (see [10]) based on the hub-positions of each s-
rep. For each aligned s-rep s, the scaling factor τ ∈ R+

is kept as a variable. The global translation and rota-

tion information is not considered of interest in the

shape analysis of hippocampi. Moreover, we have cho-

sen to use features which can be understood by the
user (e.g., physicians). Therefore, the skeletal posi-

tions are considered in R3na instead on S3na−4 as in

Section 4. Thus, each aligned s-rep is described by

a feature vector t = (τ, s), where t contains n =
1 + na + 2ns features and is an element of the shape

space R3na×Rns+1
+ ×(S2)ns . Set A1 = {t11, . . . , t1N1},

A2 = {t21, . . . , t2N2} and A = A1

⋃
A2.

6.2.2 Generation of observed and permuted sample

means

First, a method to calculate means for the observed

and permuted samples of the two populations is re-
quired in order to create a hypothesis test of mean

differences.

Observed sample means. For each set Ai, i = 1, 2

the observed sample mean is µ̂i = (τ̄i, µ̄i) ∈ R3na ×
Rns+1

+ × (S2)ns . The component µ̄i is a CPNG back-

wards mean as described in Section 4. The mean scal-

ing factor τ̄i ∈ R+ is computed as a geometric mean

(which is natural for scaling factors) by

τ̄i = exp


 1

Ni

Ni∑

j=1

log(τij)


 , i = 1, 2. (2)

In fact, the CPNG backwards mean µ̄i consists of ns+

1 PNG backwards means, one for the skeletal position
and ns for the spoke directions, and ns means for the

spoke lengths respective to (2).

Permuted sample means. The number of all possi-

ble permutations of the index set I = {1, . . . , N1+N2}
is
(
N1 +N2

N1

)
=

(N1 +N2)!

N1!N2!
.

Random sample sets Il, l = 1, . . . , P of P = 30, 000

permutations of the index set I were generated, a

number comparable to the suggested number in [11]

and [26]. Larger numbers of permutations increase the
accuracy of the p-values but require more computa-

tion time. The permutation group A1l ⊂ A contains

all s-reps indexed by the first N1 indices of Il. The

group A2l = A \ A1l contains the remaining N2 s-
reps. For each permutation Il the means ν̂il, i = 1, 2

are estimated by ν̂1l = (κ̄1l, ν̄1l) for the group A1,

ν̂2l = (κ̄2l, ν̄2l) for the group A2. ν̄il is estimated by

the CPNG backwards mean and κ̄il is the mean scal-

ing factor of the corresponding permutation respective
to (2).

6.2.3 Test statistics

Equality of distributions between populations A1 and

A2 can be tested by a nonparametric combination of
a finite number of dependent partial tests as proposed

in Pesarin [35]. The global null hypothesis is given by

H0 : {A1
d
= A2}, where d

= denotes the equality in dis-

tribution. Let H1 be the global alternative hypothesis.

In general, the test requires the definition of a statistic
T in testing a null hypothesis. A natural test statistic

is

T (A1, A2) = d(µ̂1, µ̂2), (3)
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where µ̂1 and µ̂2 are the observed sample means as

defined in Section 6.2.2 and d is a difference measure

on the nonlinear manifold describing the GOPs. The
test statistic T consists of K different partial tests de-

pending on the difference measure. Thus, the global

null hypothesis can be written in terms of K sub-

hypotheses H0 : {⋂K
k=1H0k} and the alternative as

H1 : {⋃K
k=1H1k}. Usually, the dependence relation

among partial tests are unknown even though they

are functions of the same data. Pesarin [35] has shown

that a suitable combining function (described in Sec-
tion 6.2.6) will produce an unbiased test for the global

hypothesis H0 against H1 if all partial tests are as-

sumed to be marginally unbiased, consistent and sig-

nificant for large values. The partial tests Tk, k =

1, . . . ,K are defined by the partial difference mea-
sures. Therewith, a hypothesis test for identical sta-

tistical distribution of two s-rep populations is given

by mean differences,

H0 : {µ1 = µ2} versus H1 : {µ1 > µ2} (4)

for a one-sided test in case the difference measures are

unsigned and

H0 : {µ1 = µ2} versus H1 : {µ1 6= µ2} (5)

for a two-sided test in case of signed differences.

The hypothesis H0 will be rejected if the probabil-

ity of observing T (A1, A2) under H0 from the empir-

ical distribution is smaller than a chosen significance

level α; otherwise we do not reject. The significance
level describes the probability of type 1 error, i.e., H0

is wrongly rejected. Alternatively, the type 2 error oc-

curs when H0 is not rejected but it is in fact false.

6.2.4 Difference measures

This section defines a signed difference measure d2 for

the test statistic (3). An alternative unsigned differ-

ence measure d1 is defined in Section 1.3 of the Sup-
plementary Material. Suppose we have two s-reps

ti = (τi, pi1, . . . , pina , ri1, . . . , rins , ui1, . . . , uins)
′,

i = 1, 2 with the skeletal positions pij ,∈ R3 and the
scale factors log(τi), log(rij) ∈ R as Euclidean GOPs

and the spoke directions uij ∈ S2 as non-Euclidean

GOPs. Thus, a suitable difference measure is required

as defined in the following.

The measure d2 is a vector of differences

d2(t1, t2) := (d1(τ1, τ2),

d2(p11, p21), . . . , d2(p1na , p2na),

d3(r11, r21), . . . , d3(r1ns , r2ns),

d4(u11, u21), . . . , d4(u1ns , u2ns))
′ (6)

with appropriate partial difference measures: d1 for

the scaling factors τi, d2 for the positions pik, d3 for

the spoke lengths rij and d4 for the spoke directions
uij with i = 1, 2, k = 1, . . . , na and j = 1, . . . , ns by

d1(τ1, τ2) = log(τ2)− log(τ1),

d2(p1k, p2k) = p2k − p1k,

d3(r1j , r2j) = log(r2j)− log(r1j),

d4(u1j , u2j) = dgs(u1j , u2j).

The partial difference measure dgs is defined by longi-

tude and latitude differences of the spoke directions

(u1j , u2j) using a normalization by the shift of the

geodesic mean as explained in the next paragraph. The
components of

d2 : (R3na × Rns+1
+ × (S2)ns)×

(R3na × Rns+1
+ × (S2)ns) −→ R3na+3ns+1

are not metrics because they can take on negative val-

ues.

Shift by the geodesic mean. The spoke directions

(u1j , u2j) ∈ S2×S2 can be mapped by spherical para-
metrization to latitudes φ1j , φ2j and longitudes θ1j , θ2j
in the base coordinate system of all aligned hippo-

campi. The spherical mapping can be defined by

φij(uij) = atan2(uij3,
√
u2ij1 + u2ij2),

θij(uij) = atan2(u2ij2, u
2
ij1),

with φij ∈ [−π/2, π/2] and θij ∈ (−π, π]; the two-

argument function atan2(x2, x1) ∈ (−π, π] is the sign-
ed angle between two vectors e1 = (1, 0)′ and (x1, x2)

′

∈ R2. The longitude φ is measured from the x-y plane.

The spherical mapping is not uniquely defined in

general. Furthermore, it does not establish an appro-

priate correspondence. Two points close to the equator

with identical geodesic distance as two points close
to the north pole have different latitude and longi-

tude differences, and are therefore not commensurate.

For that reason, longitude and latitude pair differ-

ences will be normalized by shifting the geodesic mean
of (u1j , u2j) along its meridian to the equator by a

rotation about an axis c ∈ S2 with rotation angle

ψ ∈ [0, π/2). Then, the directions (u1j , u2j) are ro-

tated along small circles on the sphere about the same

axis c with the same rotation angle ψ towards the
equator.

In more detail, consider a pair (u1j , u2j) of spoke

directions on S2 with northpole Np = (0, 0, 1)′. At

first, find its geodesic mean by

µg(u1j , u2j) =
u1j + u2j

‖u1j + u2j‖
.

We assume acos(|µ′
gNp|)) > 1e − 3; otherwise choose

a different northpole. Given a rotation matrix R1 :=
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R1(c, ψ), the rotation of µg along its meridian to the

equator is µ̃g = R1µg with

R1(c, ψ) = I3 + sinψ[c]× + (1− cosψ)(cc′ − I3), (7)

where I3 is the three-dimensional unit matrix and [c]×
is the cross product matrix satisfying [c]×v = c×v for

any v ∈ R3. To avoid discontinuity problems between
−π and π for θij , let R2 be the rotation matrix as

defined by (7) that rotates µ̃g towards (1, 0, 0)′, i.e.,
R2µ̃g = (1, 0, 0)′. Now, shift each pair (u1j , u2j) by

applying ũ1j = R2R1u1j and ũ2j = R2R1u2j . Finally,

we calculate the latitudes φ1j(ũ1j), φ2j(ũ2j) and lon-
gitudes θ1j(ũ1j), θ2j(ũ2j) and define the differences of

the transported spoke directions by the delta latitude

∆φj = φ2j − φ1j and delta longitude ∆θj = θ2j − θ1j .

Therewith, the difference measure dgs is defined by

dgs(u1j , u2j) := (∆φj , ∆θj).

6.2.5 Mapping of GOP differences to standard

normally distributed variables

Suppose we have the test statistic T0 := T (A1, A2)

of the underlying observed sample. The idea is to esti-

mate the sampling distribution of the statistic T0 from
test statistics of the permuted samples

Tl := T (A1l, A2l), l = 1, . . . , P.

The test statistic measures the GOP differences in dif-

ferent units. The vector Tl = (Tl1, . . . , TlK) containsK
partial tests, where K is the number of components of

the difference measure d2. The elements of the vector

Tl are not commensurate as required for the estima-

tion of the covariance structure. Thus, the GOP differ-
ences must be normalized and mapped to a common

coordinate system in a way that preserves the multi-

variate dependence structure between the GOPs. The

procedure is explained in the following and depicted

in Figure 3 on the basis of a selected GOP using dis-
tance measure d2. The figure is discussed further in

the text.

Calculating p-values for GOP differences. Af-

ter the calculation of Tl, we estimate for each GOP

difference k = 1, . . . ,K the empirical cumulative dis-
tribution function (CDF) by

Ck(Tlk) =
1

P

P∑

l′=1

I(Tl′k, Tlk)

with I(Tl′k, Tlk) =

{
1 : Tl′k ≤ Tlk,
0 : otherwise.

Respectively, we can calculate Ck(T0k).

Mapping of p-values to N (0, 1). By construction

the p-values have a uniform distribution. Thus, the

GOP differences can be represented as

Ulk = Φ−1
(
C̃k(Tlk)

)
, (8)

where Φ−1 is the inverse standard Gaussian CDF,

C̃k(Tlk) =
sc− 2

sc
Ck(Tlk) +

1

sc

and k = 1, . . . ,K, l = 1, . . . , P . The inverse standard
Gaussian CDF requires values greater than 0 or less

than 1; otherwise Ulk = ±∞. Therefore, all p-values

are scaled by C̃k(Tlk) with sc = 10000. Simulations

have shown numerical instabilities for larger values of
sc. The marginal distribution of Ulk is standard Gaus-

sian for every k, i.e, Ulk ∼ N (0, 1).

Using the estimated inverse empirical CDF Ck, the

observed GOP differences T0k are mapped to U0k, re-

spectively.

6.2.6 Global test with multivariate comparisons

correction

Given Ulk ∼ N (0, 1), the K × K covariance matrix
ΣU of the P ×K matrix U = (U1, . . . , UP )

′ with Ul =

(Ul1, . . . , UlK), l = 1, . . . , P is estimated by

Σ̂U =
1

K − 1
U ′U.

A corrected test statistic is then given by the Maha-
lanobis distances

M0 = U ′
0Σ̂

−1
U U0, Ml = U ′

l Σ̂
−1
U Ul, l = 1, . . . , P,

which defines a suitable combining function [35, Sec-

tion 6.2.4] that includes the GOP correlation struc-
ture. The sampling distribution of the final test statis-

tic under the null-hypothesis H0 can be estimated

from Ml by an empirical CDF. The probability of ob-

servingM0 under H0 from the empirical null-distribu-

tion is given by

p(M0) =
1

P

P∑

l=1

H(Ml,M0), (9)

with H(Ml,M0) =

{
1 : Ml ≥M0,

0 : Ml < M0.

Equation (9) defines the p-value of the final global test

by rejecting H0 if p(M0) < α.
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Fig. 3: Mapping of GOP differences to standard normally distributed variables using the example of a skeletal

z-position (k = 3) with distance measure d2. The 2.5% and 97.5% quantiles are visualized in each plot. (a) GOP

differences Tlk of the permuted samples with l = 1, . . . , 30, 000 and T0k of the underlying observed sample.
(b) Calculated p-values Ck(Tlk) and Ck(T0k) using the empirical cumulative distribution function. (c) Standard

normal distributed variables Ulk and U0k. The dotted-dashed line depict the corrected threshold λ for the GOP

as described in Section 6.2.7.

6.2.7 Feature-by-feature test with multivariate

comparisons correction

The global shape analysis in the previous section can

not indicate local shape differences which motivates

the introduction of an FWER threshold correction for
a feature-by-feature test. The permutation test ap-

proach on each variable Tlk yields an empirical dis-

tribution Ck, dependent standard Gaussian variables

Ulk and the empirical covariance matrix Σ̂U . As a re-
sult, Ul = (Ul1, . . . , UlK) is approximately distributed

as NK(0, Σ̂U ), where NK is a multivariate Gaussian

distribution with mean 0, covariance Σ̂U and density

function ψ such that each marginal is Ulk ∼ N (0, 1).

Because each random variable Ulk is standard Gaus-
sian, the threshold for each standard Gaussian variable

should be the same. Thus, given a significance level α,

we wish to find the threshold λ such that

P (Ul1 < λ, . . . , UlK < λ) = 1− α

2
.

The function P is a multiple integral from −∞ to λ

in each variable of Ul ∼ NK(0, Σ̂U ) and can be under-
stood as a function g(λ) of the single variable λ. The

function g(λ) is monotonic increasing with asymptotes

at 0 and 1. The numerical calculation of the p-values

is based on the approximation over an appropriate in-
terval of λ. Recall that λ ≥ λcorr with

λcorr = Φ−1
(
1− α

2

)

is the threshold for a single standard Gaussian vari-

able. Let l ∈ {1, . . . , P} be fixed, the threshold λcorr is
applicable if all U·k are perfectly correlated. Further-

more, we know that λ ≤ λindep with

λindep = Φ−1

((
1− α

2

)1/K
)

because the threshold λindep is applicable if all U·k are

independent. The desired level 1 − α/2 will be rather

near 1. Thus, the function g(λ) will be concave down-
ward in the interval [λcorr, λindep].

The values g(λcorr) and g(λindep) can be estimated

from a large number NSamp of random samples Yn ∼
NK(0, Σ̂U ) with n = 1, . . . , NSamp by

ĝ(λ) =

∑NSamp

n=1 Iλ(ψ(yn1, . . . , ynK))
∑NSamp

n=1 ψ(yn1, . . . , ynK)

with Iλ(ψ(yn)) =

{
ψ(yn) : ψ(yn) < λ,

0 : otherwise,

and yn = (yn1, . . . , ynK). We have chosen a number of

NSamp = 200, 000 samples.

The computation of g(λindep) requires the compar-

ison of yn values only for those identified as not in the

accepted subset for the smaller value λcorr and adding

into the accumulated sum for the newly accepted sam-

ples. Finally, the standard regula falsi method can be
used to iteratively solve the equation g(λ) = 1 − α/2

with initial evaluations g(λcorr) and g(λindep).

The dashed-dotted line in Figure 3c shows the cor-
rected threshold λ for a selected GOP.

7 Results

7.1 Fitting of s-reps to hippocampi

The hippocampus data set consists of binary images

of 221 first-episode schizophrenia cases and 56 con-

trol cases as described in Section 2. Antialiased dis-
tance images were generated from the binary images

according to [31]. Based on the distance images, ap-

propriate preliminary fits by an initial alignment and
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an atom and spoke stage are produced as described in

Section 5. This preliminary stage is described in detail

in Section 1.4 of the Supplementary Material. In or-
der to control the manual work during the preliminary

stage, we considered only the first 96 of 221 cases of

SG as discussed in the Supplementary Material. Let

Ã1 be the set of 96 preliminary fits for SG and Ã2 be
the set of 56 preliminary fits for CG. All preliminary

fits were translated and rotated to the CPNG mean of

the set union Ã1 ∪ Ã2 by standard Procrustes align-

ment [10] in order to remove global variation from the

preliminary fits. Let Ā1 be the set of 96 aligned SG
preliminary fits and Ā2 the set of 56 aligned CG pre-

liminary fits. Finally, CPNG statistics were calculated

for the s-rep populations as described in Sections 4

and 5.

A challenging question is the appropriate estima-

tion of the shape distributions of both populations (SG

and CG) during the CPNG stage. An option, is to cal-

culate the CPNG statistic of each population (Ā1 and
Ā2) resulting in two means and shape distributions.

Another option, is to calculate the CPNG statistic of

the pooled population (Ā1 ∪ Ā2) resulting in a single

mean and shape distribution. The use of two individ-
ual shape distributions result in independent fittings

between the two populations. On the other hand, the

fittings should not be biased and have good correspon-

dence between the populations, which is provided by

a pooled shape distribution. A pooled CPNG statistic
also removes possible bias from the manual adjust-

ments during the preliminary stage.

The final fitting results obtained from two separate
shape distributions showed extraordinary high separa-

tion properties and indicated a large bias. Thus, the

main focus was the analysis of fittings using a pooled

CPNG statistic from Ā1 ∪ Ā2. In addition, we have
generated a second group of final fittings derived from

CPNG stages using a pooled shape distribution, two

individual shape distributions and two individual in-

terchanged shape distributions. The second group is a

compromise between independence and a small bias,
and is discussed in Section 3 of the Supplementary

Material.

Each CPNG statistic contains a backward mean,
the eigenmodes and the corresponding CPNG scores.

Figure 4 shows the explained amount of variation by

the first 25 eigenmodes for the aligned preliminary

fittings after atom and spokes stages (1st fittings),

i.e., for Ā1 (subset of SG), Ā2 (CG) and Ā1 ∪ Ā2.
The number of eigenmodes was selected to describe

more than 75% of the total cumulative variance. This

number compromises on capturing enough shape vari-

ation while limiting the shape space in order to avoid
overfitting. Accordingly, the first 21 eigenmodes of the

pooled shape distribution were selected for the CPNG

stage describing 75.2% total variance. 18 eigenmodes

are required to describe 75.3% of the total cumulative

variance of Ā1, and 15 eigenmodes to describe 75.7%

for Ā2.

In the CPNG stage, the obtained backward mean
of Ā1∪Ā2 was translationally and rotationally aligned

to the 221 SG cases and the 56 CG cases. An ad-

ditional scaling of the means would bias the CPNG

statistic because the principal components already con-
tain size information. Afterwards, the aligned means

were optimized inside the CPNG shape space and un-

der the penalty of a Mahalanobis distance match term.

A high penalty term leads to better correspondence

between cases but to less accurate fits. An appropri-
ate penalty term was chosen by a simulation study,

the report of which is omitted. At the end, the final

spoke stage was performed to ensure that the spoke

directions match the boundary.

Figure 4 also shows CPNG analyses for the ob-

tained 2nd fittings of the corresponding cases to Ā1,
Ā2 and Ā1∪ Ā2 using a pooled shape space during the

CPNG stage. The respective numbers of eigenmodes

explain an increased amount of variation compared to

the first fittings as a result of improved correspondence
across the populations. Now, 18 eigenmodes describe

94.9% of the total variance for the subset of SG, 15

eigenmodes describe 93.5% for CG and 21 eigenmodes

describe 95.3% for the pooled group.

The final fittings were re-scaled into a world coor-

dinate system (units of mm) with the stored scaling
factor from the normalization step described in Sec-

tion 2. We denote the re-scaled sets of final fittings

by the set A1 of 221 s-reps for SG and the set A2 of

56 s-reps for CG. The total cumulative variance of the
CPNG analysis of A1 (SG) and A2 (CG) is depicted in

Figure 4 (final). Now, 18 eigenmodes describe 94.8%

of the total variance of SG and 15 eigenmodes describe

94.5% for CG. More than 75% of the total cumulative

variance of CPNG shape space is now described by
using only 5 eigenmodes compared to 18 and 15 as

shown previously.

The average volume in mm3 (and standard de-

viation) of the final fittings was 3, 036 (343) for SG

and 3, 137 (295) for CG. The observed hippocampal
volume reduction for schizophrenia patients is consis-

tent with previous studies (e.g., [25]). The average

volume overlap between fittings and binary images

was 94% for SG and CG (depicted in Section 3 of

the Supplementary Material) which is fairly accurate.
The percent-volume overlap was measured by the Dice

coefficient as defined in the Supplementary Material.

The variance of the Dice coefficient is small for both

groups. Nevertheless, a larger variance inside SG is ob-
served. Schizophrenia is a heterogeneous disease and

also contains hippocampi variations between healthy

patients.
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Fig. 4: CPNG analysis of s-reps before the CPNG stage (1st fittings), after CPNG and final spoke stage (2nd

fittings) and after scaling into the world coordinate system (final). The variance contribution of the first 25

eigenmodes are depicted together with the cumulative variance for the CPNG analysis of the (a) SG group,
(b) CG group and (c) joint group. The set of 1st and 2nd fittings consist of 96 s-reps for SG, 56 s-reps for CG

and 152 s-reps for the pooled group. The set of final fittings consist of 221 s-reps for SG and 56 s-reps for CG.

The dotted vertical line in (c) depicts the number 21 of used eigenmodes for the description of the shape space

during the CPNG stage.

In Figure 5, the distributions of the SG and CG

fittings are visualized by the projections of the scaled

CPNG scores matrix ZComp (see Section 4) onto the
distance weighted discrimination (DWD) direction.

DWD is a discrimination method which avoids the

data piling problems of support vector machine [27,

37]. The projected distributions of SG and CG fit-
tings for the pooled class are estimated by kernel den-

sity estimates (KDEs). The different areas under the

CG and SG curves are due to unbalanced population

sizes (56 for CG compared to 221 for SG). A differ-

ence between the populations is visible but not very
strong. Thus, it is an interesting question whether the

proposed hypothesis test in Section 6.2 will be able

to find significant differences between SG and CG for

both fittings classes.

7.2 Global test results

The obtained final fittings were used to test the hy-

pothesis (5) by the proposed procedure in Section 6.2

with a significance level of α = 0.05. An alternative

pre-processing step (called PP2) is applied in addi-
tion to the pre-processing described in Section 6.2.1

(called PP1 in the following). PP2 translates and ro-

tates each s-rep s̃ ∈ Ã to an overall CPNG backward

mean µ without scaling. Thus, each aligned s-rep is de-

scribed by a feature vector t = s. The global scaling
information was previously described by the feature τ

in PP1. In contrast, this is captured by the skeletal

positions and spoke length using PP2.

Figure 6 shows the global test results for the dif-

ference measure d2 using PP1 and PP2. The global

hypothesis of equal sample means is rejected and a
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Fig. 5: Jitterplot and KDEs showing the distributions

of final SG and CG fittings projected onto the DWD

direction. Additionally, the KDE of the pooled dis-

tribution of SG and CG is shown (all). A difference
between the populations is visible but not very strong.

statistically significant difference between the shape

distribution of SG and CG is established (p = 0.0109

for PP1 and p = 0.0029 for PP2 with p = P (M0|H0)).

The smaller p-value for PP2 seems to be due to the

volume information being spread into the 24 skeletal
positions instead of into a single feature. The feature-

by-feature test will highlight this fact in the next sec-

tion. Intermediate results of the proposed hypothesis

test procedure are shown in Figure 3 on the basis of a
selected GOP. Further visualizations of the procedure

can be found in the Supplementary Material.

A detailed power and simulation study is beyond

the scope of this paper and left for future work. How-

ever, the power of the proposed hypothesis test is
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Fig. 6: Global test results using PP1 in (a) and
PP2 in (b). The empirical distribution of Ml, l =

1, . . . , 30, 000 is shown together with M0 and the 95%

quantile of the empirical distribution.

demonstrated on the basis of a real data example. Fur-

thermore, the results are compared with a direction

projection permutation (DiProPerm) based mean hy-

pothesis test [46]. The DiProPerm test is based on the
evaluation of the scaled CPNG scores matrix ZComp

(see Section 4). The CPNG scores matrix is calculated

for SG and CG using both pre-processing methods.

Thus, the DiProPerm test is calculated in Euclidean

space using standard Euclidean statistics in contrast
to the proposed hypothesis test, which is performed in

the non-Euclidean s-rep space using the CPNG back-

ward means. An interesting open problem is to ex-

tend a method such as DiProPerm in an intrinsic way:
in other words to perform DiProPerm using Manifold

geodesic distances.

Table 1 summarizes all global test results. We used

30, 000 permutations in all settings to be consistent

with Section 6.2.2. The DiProPerm test does not re-
quire such a high number of permutations in contrast

to the proposed global test. Simulations, reported in

the Supplementary Material, reveals that a large per-

Table 1: Empirical p-value results using difference
measure d2 for the proposed global hypothesis test in

comparison with results obtained by DiProPerm. Two

different pre-processing steps were applied: (PP1) Full

Procrustes alignment with scaling. (PP2) Full Pro-

crustes alignment without scaling. Three different pro-
jection directions were used for DiProPerm.

method
empirical p-value
PP1 PP2

Mahalanobis distance
difference measure d2 0.0109 0.0029

DiProPerm using MD-statistic
DWD direction vector 0.0074 0.0038
SVM direction vector 0.0119 0.0136

mutation size is needed to obtain stable results be-

cause of the Mahalanobis distance. DiProPerm was

carried out using a mean difference (MD) test statistic
as recommended in [46]. The DWD-DiProPerm per-

formance was comparable to the Mahalanobis distance

results. The support vector machine (SVM) results of

DiProPerm were less powerful, probably due to data
pilling effects. All results are statistically significant at

the level of α = 0.05.

7.3 Single GOP test results

The global shape analysis of hippocampi in the pre-

vious section can not indicate local shape differences.

Interesting structural changes of the surface are often

reflected by a few GOPs, e.g., the local bending of
an area. Therefore, the proposed threshold correction

for a feature-by-feature test in Section 6.2.7 is useful.

Such a feature-by-feature test is not available from

DiProPerm.

As our feature-by-feature test approach is novel for

nonlinear hypotheses, there is no competing method to

compare with. However, a method to evaluate the test

is needed. The performance of the feature-by-feature
test was evaluated using Receiver Operating Charac-

teristic (ROC) curves. Selected examples of this anal-

ysis are reported in Section 2.4 of the Supplementary

Material. For each permutation, an ROC curve was

generated from the cumulative histograms of the two
permuted samples which results in an envelope under

the null distribution. In addition, an ROC curve be-

tween the two true observed samples was obtained. A

significant feature is indicated if the ROC curve of the
observed data is close to the boundary or outside the

envelope, otherwise not. A comparison of the hypoth-

esis test results to this reveals the high quality of the

proposed method.

Figures 7 and 8 visualize the feature-by-feature

test results for PP1. Test results are shown on the

basis of the skeletal grid given by the CPNG back-

143



14 Jörn Schulz et al.

−15

−10

−5

0

5

10

15

20

−5

0

5

−2
0
2
4

x

y

z

(a) x-position

−15

−10

−5

0

5

10

15

20

−5

0

5

−2
0
2
4

x

y

z

(b) y-position

−15

−10

−5

0

5

10

15

20

−5

0

5

−2
0
2
4

x

y

z

(c) z-position

−15

−10

−5

0

5

10

15

20

−5

0

5

−2
0
2
4

x

y

z

(d) latitude direction

−15

−10

−5

0

5

10

15

20

−5

0

5

−2
0
2
4

x

y

z

(e) longitude direction

−15

−10

−5

0

5

10

15

20

−5

0

5

−2
0
2
4

x

y

z

(f) spoke length

Fig. 7: Significant GOPs using PP1 based on the 3 × 8 skeletal sheet of the SG CPNG mean. Test results

are shown in (a)-(c) for the skeletal x, y and z-positions, in (d) for the latitude spoke directions, in (e) for

the longitude spoke directions and in (f) for the spoke lengths. Non-significant skeletal positions are marked

by small blue points and significant skeletal positions are marked by large red points. Similar, non-significant

spoke directions and lengths are marked by small blue lines whereas significant spoke directions and lengths are
marked by wide red lines.

ward mean of SG. Recall that each discrete slabular

s-rep is organized into 24 atoms in a 3 × 8 grid (see

Section 3). This results in 271 GOPs with 72 GOPs

corresponding to the skeletal positions of the s-rep (x,

y and z-positions), 66 GOPs for the latitude spoke
directions (bottom, crest and top), 66 GOPs for the

longitude spoke directions (bottom, crest and top), 66

GOPs for the spoke lengths (bottom, crest and top)

and 1 GOP for the global scaling factor. The corrected
threshold is λ = 2.2917 as defined in Section 6.2.7.

Figure 7 indicates local shape changes by highlight-

ing local parts of the s-rep. Red points mark signifi-
cant skeletal x, y and z-positions in the Figures (a)-(c).

Non-significant skeletal positions are marked by smal-

ler blue points in these figures. Five significant skeletal

positions can be observed at the crest of the sheet, one

in the x and y-direction and three in the z-direction.
Moreover, significant spoke directions and lengths are

marked by wide red lines and non-significant by thin-

ner blue lines in the Figures (d)-(f). Several latitude

and longitude spoke directions indicate locally signifi-
cant deformations between the two groups in the Fig-

ures (d)-(e). The most latitude differences are statis-

tically significant on the bottom side of the skeletal

sheet whereas more longitude differences are signifi-

cant on the top side. Furthermore, we observe no spoke

direction with simultaneously significant latitude and

longitude. This behavior should be investigated in fu-

ture studies. The latitude and longitude differences
could indicate local bending around the y and z-axis,

respectively. Figure (f) highlights one significant spoke

length on the front bottom side of the skeletal sheet.

In addition to the results presented in Figures 7,

the global scaling factor τ between SG and CG was

found statistically significant. The GOP |U0K | was
2.7627 where the index K corresponds to the global

scale factor.

These observations and results are also emphasized

by Figure 8 which shows the magnitude of signifi-

cance of all GOPs except the scaling factor. In order

to simplify the visualization all standard normal val-
ues U0k, k = 1, . . . ,K − 1 are presented in absolute

values. The color map is non-linear defined from blue

to white to red. The corrected threshold λ defines the

color white. Blue and red visualize non-significant and
significant values, respectively. The blue small circle

inside a block marks whether a U0k is less than or

equal to the threshold λ. Red small circles mark if a
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Fig. 8: Colored significant map of U0k with a corrected threshold λ = 2.2917 using PP1. Each box represents a

GOP which correspond to a skeletal atom. The color map on the left side is non-linear and has a range from

blue (not significant) to white (λ) to red (significant). The circle inside each box marks whether an U0k is less
or equal than the threshold λ (symbolized by blue) or if an U0k is greater than the threshold λ (symbolized by

red).

U0k is greater than the threshold λ and thus statisti-

cally significant, showing up as red in Figure 7. Partic-

ularly, several latitude and longitude spoke directions

show a highly significant magnitude in Figure 8.

Figures 9 and 10 are identical to the two previ-

ous figures except for the use of PP2 instead of PP1.

Several skeletal x and y-positions are statistically sig-
nificant in contrast to Figures 7 and 8 with only one

significant skeletal x and y-position. The volume dif-

ference between the two populations is reflected by the

skeletal x and y-positions using PP2. Thus, the signif-

icant skeletal x and y-positions show rather significant
differences from a global deformation than from local

deformations. However, we observe only one statisti-

cally significant skeletal z-position because the skeletal

sheet of the hippocampus is rather flat, as medial as
possible and therefore located close to the x-y plane,

where z = 0. As a result, several skeletal z-coordinates

are scaling invariant.

Nevertheless, the observation of only one signif-

icant skeletal z-position in addition to no observed

statistically significant spoke length in Figure 9f im-

plies that we only observe statistically significant vol-

ume differences in the x-y direction but not in the

z-direction. Skeletal x and y-positions equal to x =

0 and y = 0 are scaling invariant in the x and y-
directions respectively. As a result, no statistically sig-

nificant x-positions can be observed close to x = 0 in

Figure 9a. Moreover, Figures 10c and 10d show only

small differences compared to Figures 8c and 8d. Sim-

ilar results between spoke directions are expected be-
cause of the scaling invariance of uij ∈ S2. The slightly

different color scheme is also due to a different thresh-

old.

Additional computations and results are shown in

the Supplementary Material. Section 2.5 of the Sup-

plementary Material presents results using an alterna-
tive measure d1 defined by a vector of unsigned partial

differences such as the Euclidean distance between two

skeletal positions. That difference measure changes the

GOPs, i.e., how the single s-rep features are combined
to GOPs. The difference measure d2 closely reflects

each s-rep feature. The choice of an appropriate dif-

ference measure depends on the nature of the medical

145



16 Jörn Schulz et al.

−15

−10

−5

0

5

10

15

20

−5

0

5

−2
0
2
4

x

y

z

(a) x-position

−15

−10

−5

0

5

10

15

20

−5

0

5

−2
0
2
4

x

y

z

(b) y-position

−15

−10

−5

0

5

10

15

20

−5

0

5

−2
0
2
4

x

y

z

(c) z-position

−15

−10

−5

0

5

10

15

20

−5

0

5

−2
0
2
4

x

y

z

(d) latitude direction

−15

−10

−5

0

5

10

15

20

−5

0

5

−2
0
2
4

x

y

z

(e) longitude direction

−15

−10

−5

0

5

10

15

20

−5

0

5

−2
0
2
4

x

y

z

(f) spoke length

Fig. 9: As Figure 7, now based on PP2.
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Fig. 10: As Figure 8, now based on PP2 with a corrected threshold λ = 2.4837.
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research question. In addition, hypothesis test results

using a second group of final fittings are presented,

derived from 5 independent CPNG stages in Section 5
by using a pooled shape distribution, two individual

shape distributions and two individual interchanged

shape distributions. The second group of final fittings

is described in detail in Section 3 of the Supplemen-
tary Material.

8 Discussion

This paper proposes a novel method to test global and

local hypotheses on Euclidean and non-Euclidean data.
Important requirements of shape models are pointed

out in order to test for population differences. Fur-

thermore, suitable statistical methods are proposed to

analyze the Euclidean and non-Euclidean elements of

the models. In addition, the estimation of appropri-
ate shape distributions of populations is worked out.

Finally, the analysis of first episode schizophrenia pa-

tients compared to controls demonstrated the power

of the hypothesis test given a proper pre-processing.
The effect of different pre-processings of the data are

highlighted. The developed feature-by-feature test is

novel and important for physicians in order to under-

stand local shape changes. The method can easily be

adapted for desired GOPs depending on underlying
research questions. A difference measure for the anal-

ysis of s-reps is proposed. The visualization of local

shape changes is of great interest for the study of lo-

cal rotational deformations [39] which is a subject of
future studies.

The s-rep model, statistics and the fitting proce-

dure resulted in accurate fittings with a high concen-

tration of variance in relatively few eigenmodes. This
reflects the high correspondence between the s-reps.

The introduced test found significant differences be-

tween the two populations. First, a statistically sig-

nificant loss of hippocampal volume was observed by
the global scaling factor which is in agreement with

[25,28,29]. Second, a significant volume difference was

observed in the x and y-directions but not in the z-

direction for the aligned hippocampi. Third, several

spoke directions were found as statistically significant.

This study is the first study that examines direc-

tional information using s-reps. The significant differ-

ences of several spoke directions confirm the impor-
tance of our contribution in the research of morpho-

logical shape changes and encourages further research.

Later studies should more deeply investigate if spoke

direction differences are due to independent local de-
formation of GOPs or due to local rotational defor-

mation. Styner et al. [42] indicated a potential local

bending of the hippocampi between the two groups.

Furthermore, this study is the first study that could

identify directions driving the volume change.

In general, results are challenging to compare be-

tween studies of brain morphology because of different
models, features and metrics. Narr et al. [29] calcu-

lated a radial distance measure in addition to a mea-

sure that examined the signal intensity on the basis of

a surface based mesh modelling method. Also, Mamah
et al. [25] used a triangulated graph representation of

the hippocampi. Such models are limited compared

to s-reps because the interior of an object is not de-

scribed by the model itself. The model representation

in McClure et al. [28] is a skeleton type which leads
to less correspondence between populations and con-

tains further disadvantages, e.g., all spoke length are

identical on each atom. Furthermore, McClure et al.

[28] applied an FDR based test approach in contrast
to the FWER based approach proposed in this paper.

The FDR is a less strict multiple testing criteria than

the FWER. However, the discussed results are consis-

tent between the studies. The s-rep model provides a

relatively rich description of an object. Moreover, the
proposed test procedure offers global and local non-

linear hypothesis tests based on Euclidean and non-

Euclidean GOPs. Thus, the test supports more con-

sistent and sensitive interpretations of morphological
changes.

This paper motivates several areas of further re-

search. 1) A simplification of the s-rep fitting pro-

cedure is desirable that depends on correct choice of

several fitting parameters. The choice of a large num-

ber of parameters might be an avoidable difficulty in
the use of s-reps in clinical practice. 2) The defini-

tion of an adaptive s-rep model that finds an opti-

mal skeletal grid could be of relevance for the future.

The grid need not to be rectangular but must corre-
spond across cases of a population. 3) The hypothesis

test might be extended by including image intensities

in addition to morphological features. An interesting

research question is the study of correlation between

morphological changes and intensities. 4) An alterna-
tive combining function might decrease the required

large number of permutations for a global test. 5) A

power study on the basis of simulated data to elab-

orate further the proposed method. 6) A comparison
of hippocampi between two treatment groups of first

episode schizophrenia. 7) Extension of the method to

hippocampi from longitudinal data. In addition, a sim-

ilar hypothesis test based on the sample variance in-

stead of the sample mean could be of future interest.
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Supplementary Material

Nonlinear Hypothesis Testing of Geometrical Object Properties of Shapes Applied
to Hippocampi

Jörn Schulz · Stephen M. Pizer · J.S. Marron ·
Fred Godtliebsen

1 Model fitting and statistics

1.1 Limitation of a 3× 8 grid of skeletal positions

A hippocampus example with bumps which are not tightly described by a (3 × 8) grid is visualized in
Figure 1. An s-rep model with a larger number of skeletal positions, i.e., with a finer grid could solve such
problems. The example depicts a limitation only in specific cases since the shape of the hippocampus differs
from person to person. Furthermore, we do not look at individual s-reps that may not be perfectly correct
but rather at differences between groups which are not biased versus the other.

1.2 Discussion on CPNS analysis across populations

In Section 4 in the main article, we have pointed out the difference between CPNS and CPNG. CPNG uses
only great subsphere fittings whereas the best fitting subspheres can be small or great in CPNS. We have
observed an increased variance of the CPNS means across several populations, e.g., for a large number of
permutation sets as used in the proposed hypothesis test. Jung et al. [2] pointed out a potential overfitting
of the data because PNS tends to find smaller spheres than great spheres. Therefore, a sequential test was
proposed in [2, Section 3]. This section will propose a modification of the test in [2] and refers to the paper
for detailed descriptions. The sequential test procedure consists of a likelihood ratio test and a parametric
bootstrap test in order to test the significance of a “small” subsphere fitting as explained in the following.

1. Test H0a : r = π/2 versus H1a : r < π/2 by the likelihood ratio test where r = π/2 indicates a great
sphere and r < π/2 a small sphere. If H0a is accepted, then fit a great sphere with r = π/2 and proceed
to the next layer.

2. IfH0a is rejected, then test the isotropy of the distribution by the parametric bootstrap test with H0b : FX

is an isotropic distribution with a single mode, versusH0b : not H0b (i.e., anisotropic) given a distribution
function FX , X ∈ Sd. If H0b is accepted, then use great spheres for all further subsphere fittings.

In calculation of CPNS statistics for several populations, the sequential test will be carried out independently
for each population leading to potential different decompositions. Thus, the test must be modified, because
the analysis of CPNS means across populations requires commensurate coordinate systems. Suppose we
have two populations G1 and G2 with samples on Sd and P permutations of the set union G1

⋃
G2. Each

permuted set union can be split into two subgroups G1l and G2l with the same number of elements as G1
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(a) (b)

(c) (d)

Fig. 1: Final fit of a hippocampus with bumps that are not well described by an s-rep based on a (3 × 8)
grid. (a) Entire 3D view to the s-rep with corresponding coordinate system. (b) Bump on the side located
between two hub positions. (c-d) Bump on the top located between four hub positions.

and G2, l = 1, . . . , P . In order to analyze mean difference, the CPNS mean must be calculated for each
permutation group Gil, i = 1, 2. We propose a modified sequential test by the following procedure.

1. Test H0a :
⋂

i

⋂
l H

i,l
0a versus H1a :

⋃
i

⋃
l H

i,l
1a by the likelihood ratio test with i = 1, 2 and l = 1, . . . , P ,

whereas Hi,l
0a is the sub-hypothesis for the lth permutation of group i. If H0a is accepted, then fit a great

sphere with r = π/2 and proceed to the next layer.
2. If H0a is rejected, then test the isotropy of the distribution by the parametric bootstrap test. If H0b :⋂

i

⋂
l H

i,l
0b is accepted, then use great spheres for all further subsphere fittings.

The implementation of such a test is left for future work. In this article we have used CPNG to analyze
populations of s-reps.

1.3 An alternative unsigned difference measure d1

This section introduce an alternative difference measure d1 in addition to d2 as described in Section 6.2.4
in the main article. The measure d2 is defined by signed differences whereas the measure d1 is defined by
unsigned differences which turning each GOP into a single non-negative value. Suppose we have two s-reps

ti = (τi, pi1, . . . , pina , ri1, . . . , rins , ui1, . . . , uins)
′,
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i = 1, 2 with the skeletal positions pij ,∈ R3 and the scale factors log(τi), log(rij) ∈ R as Euclidean GOPs
and the spoke directions uij ∈ S2 as non-Euclidean GOPs. The vector d1 of differences is defined by

d1(t1, t2) := (d1(τ1, τ2), d2(p11, p21), . . . , d2(p1na , p2na), d3(r11, r21), . . . , d3(r1ns , r2ns),

d4(u11, u21), . . . , d4(u1ns , u2ns))
′ (1)

with appropriate partial difference measures: d1 for the scaling factors τi, d2 for the positions pik, d3 for the
spoke lengths rij and d4 for the spoke directions uij with i = 1, 2, k = 1, . . . , na and j = 1, . . . , ns by

d1(τ1, τ2) = | log(τ2)− log(τ1)|,

d2(p1k, p2k) =

(
3∑

m=1

(p2km − p1km)2

)1/2

,

d3(r1j , r2j) = | log(r2j)− log(r1j)|,
d4(u1j , u2j) = dg(u1j , u2j) = arccos(u′

1ju2j).

The geodesic distance function dg : S2 × S2 → [0, π] is defined by the arc length of the shortest great circle
segment joining u1j, u2j ∈ S2 and is invariant to rotation. The Euclidean metric d2 : R3 × R3 → R+ is
invariant to translation and d1, d3 : R+ × R+ → R+ are invariant to scale. All GOP differences of

d1 : (R3na × Rns+1
+ × S2ns)× (R3na × Rns+1

+ × S2ns) −→ Rna+ns+1
+ × [0, π]ns

are single non-negative values. Therewith, the hypothesis test of identical statistical distributions of two
s-rep populations is given by an one-sided test,

H0 : {µ1 = µ2} versus H1 : {µ1 > µ2}. (2)

Given d1, we can calculate the p-values Ck(Tlk) as described in Section 6.2.5 in the main article. In the
case of a one-sided test by using difference measure d1, we map the p-values Ck(Tlk) to the positive half of
a standard Gaussian CDF by

Ũlk = Φ−1
(
0.5 + 0.5C̃k(Tlk)

)
, (3)

where Φ−1 is the inverse standard Gaussian CDF,

C̃k(Tlk) =
sc− 2

sc
Ck(Tlk) +

1

sc

and sc = 10000, k = 1, . . . ,K, l = 1, . . . , P similar to Section 6.2.5 in the main article.
An open problem is a sensitive mapping of Ũlk to a full multivariate distribution that preserve the

correlation structure of the variables. Given an appropriate mapping, the global and feature-by-feature test
can be applied as described in Section 6.2.6 and 6.2.7 of the main article.

The results presented in Section 2.5 below use random signs τlk ∈ {−1, 1} that are generated for each

permutation and GOP in order to map C̃k(Tlk) to a full multivariate distribution by Ulk = τlkŨlk with
standard normal marginals. Thereby, we dot not preserve the correlation structure between the GOPs which
results in a conservative test.

1.4 Preliminary fitting stage of s-reps to hippocampi

The hippocampus data set consists of binary images of 221 first-episode schizophrenia cases and 56 control
cases as described in Section 2 in the main article. Antialiased distance images were generated from the
binary images according to [4]. We selected the first 96 of the 221 SG cases to control manual work as
described in the following. Based on the distance images, we used the 96 cases of SG and all cases of CG to
produce appropriate preliminary fits.

Two different models were used as initializations of the fitting procedure. The first initial model m1 was
a CPNG backwards mean of 62 hippocampus fits presented in [6]. In addition, the second initial model m2

was derived from the CPNG backwards mean of manually adjusted fits of the control group. The initial
models m1 and m2 were pre-aligned by translation and rotation, and fit to the hippocampi of CG and SG
followed by an atom and spoke stage. As a results, two fittings corresponding to m1 and m2 are obtained
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for each hippocampus. The fitting with the lowest objective function were selected for further processing.
The objective function value is provided by the fitting software Pablo [5] and measures the goodness-of-fit
of each s-rep model to the binary data.

The 96 SG and 56 CG fits were manually evaluated and adjusted when necessary. The adjusted fittings
were refit by the second atom and spoke stage in order to minimize influence of the manual adjustment on
the final fittings and to ensure that all spokes match the object boundary. Let Ã1 be the set of 96 fits for
SG and Ã2 be the set of 56 fits for CG.

Correspondence across population is achieved by calculation of CPNG statistics. As a pre-processing step
the obtained fittings must be aligned, otherwise the CPNG statistics would reflect undesirable rotational
variations of the data. Therefore, the CPNG mean of the set union Ã1 ∪ Ã2 was calculated. Afterwards, all
fittings were translated and rotated to the mean by standard Procrustes alignment [1]. The alignment was
based on the skeletal positions and not on the spoke ends, due to the CPNG analysis of the skeletal positions
in a pre-shape space as described in Section 4 in the main article. Let Ā1 be the set of 96 aligned SG fits
and Ā2 the set of 56 aligned CG fits. Finally, CPNG statistics were calculated for the s-rep populations Ā1,
Ā2 and the pooled population Ā1 ∪ Ā2.

2 Additional data analysis on fittings using a pooled shape distribution

The presented results in the main article are based on fittings obtained by the use of a pooled shape
distribution during the CPNG stage (see Sections 7.1 in the main article). This section will present additional
analyses and plots based on the same data.

2.1 Procrustes alignment of final fittings

Let Ã be the obtained fittings of s-reps after the CPNG stage, final spoke stage and re-scaling into a world
coordinate system as described in Section 7.1 in the main article. Figure 2 visualizes the skeletal positions
and the spoke tail ends of Ã. Each spoke tail end is defined by the corresponding skeletal position, spoke
direction and length.
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Fig. 2: Final obtained s-rep fittings after the final spoke stage and re-scaling into a world coordinate system.
Skeletal positions are depicted in (a). Bottom, crest and top spoke directions and lengths are depicted in
(b-d) by the spoke tail ends based on the corresponding skeletal positions. The 277 fittings are represented
by individual colors.

As discussed in Section 6.2.1 in the main article, an appropriate pre-processing of the data is required
for a reasonable interpretation of the differences, e.g., between the latitude, longitude, x, y and z-coordinate
using d2. Let µ̃ the overall backwards CPNG mean, estimated from the set union Ã of obtained final fittings
with

Ã = Ã1

⋃
Ã2 = {s̃11, . . . , s̃1N1 , s̃21, . . . , s̃2N2}.
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The CPNG mean µ̃ is translationally aligned by the subtraction of the mean of the locational components. In
addition, the eigenvectors of the second moments about the center of the skeletal positions yields a rotational
alignment to the x, y and z-axis. The translationally and rotationally aligned CPNG mean µ̃ is called µ.
Figure 3 depicts the translated, rotated and scaled s-reps of Ã to µ using a standard Procrustes alignment
[1], based on the skeletal positions of each s-rep s̃ ∈ Ã. The pre-processing removed undesirable variation
from the data and enabled a meaningful interpretation for later analysis. This is highlighted by Figure 3
which shows considerable reduced variation compared to Figure 2.
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Fig. 3: S-reps fittings are visualized after standard Procrustes alignment with translation, rotation and scaling
based on the skeletal positions. The aligned skeletal positions are depicted in (a). Bottom, crest and top
spoke directions and lengths are depicted in (b-d) by the spoke tail ends based on the corresponding skeletal
positions. The 277 fittings are represented by individual colors.

2.2 Visualization of generated permutations

The distribution of P = 1000 permuted sample means ν̂1l for SG and ν̂2l for CG (see Section 6.2.2 in the main
article) is visualized in Figure 4, l = 1, . . . , P . The permuted sample means are depicted by the projections
of the scaled CPNG scores matrix ZComp of {ν̂1l, ν̂2l | l = 1, . . . , P} (see Section 4 in the main article) onto
the distance-weighted discrimination (DWD) direction and the first three orthogonal directions to the DWD
direction as described in Marron et al. [3] and Qiao et al. [7]. Red circles depict permuted SG means and blue
circles permuted CG means. The larger variance of CG is due to the unbalanced group size (SG contains
221 cases and CG 56 cases). The observed Gaussian distributions indicate appropriate permutation sets.
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Fig. 4: Scatter plots and jitterplots (diagonal) with KDE are showing the distribution of permuted sample
means projected on the DWD direction and the first three orthogonal directions to the DWD direction.
Additionally, the KDE of the pooled distribution of SG and CG is shown in the jitterplots. Red circles
depict permuted SG means and blue circles permuted CG means.

2.3 DiProPerm results using a MD test statistic and a DWD projection direction

Figure 5 visualizes the DiProPerm test reported in Table 1 in Section 7.2 in the main article using a mean
difference (MD) test statistic and DWD as the projection direction. The DiProPerm test is based on the
evaluation of the scaled CPNG scores matrix ZComp as described in Section 4 in the main article. The
DiProPerm test is a global test and the hypothesis of identical mean between the two populations was
rejected given a significance level α = 0.05.

2.4 ROC analysis compared to feature-by-feature test results using distance measure

d2 and PP1

This section evaluates the performance of the feature-by-feature test by Receiver Operating Characteristic
(ROC) curves. The ROC analysis gives a curve lying in [0, 1]×[0, 1], which quantifies the amount of “overlap”
of each GOP between the samples of the two populations. The ROC curve resulting from the observed data
is visualized by a red line in the following plots. In addition, for each permutation a ROC curve is generated,
represented by a blue line, which results in an envelope under the null distribution. In the following, each
envelope is visualized by the first 1, 000 of the 30, 000 permutations. A ROC curve of the observed data close
to the boundary of this envelope indicates a significant feature. The comparison is done using the distance
measure d2 and the standard pre-processing of the data as described in Section 6.2.1 in the main article.
The GOPs that represent latitude and longitude of the spoke direction are normalized corresponding to the
mean shift as explained in Section 6.2.4 in the main article.

The feature-by-feature test results are reported in Figures 7 and 8 in Section 7.3 in the main article.
Several GOPs were tested as statistically significant including the global scaling factor |U0K | = 2.7627 given
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Fig. 5: The DiProPerm hypothesis test of mean differences based on the scaled CPNG scores matrix ZComp

of the final fittings after pre-processing by PP1. DiProPerm is a two sample mean hypothesis test. The left
plot shows a jitterplot by the projection of the data on the DWD direction together with the kernel density
estimates (KDEs) of the distribution of SG (red circles), CG (blue circles) and the set union SG∪CG. The
right plot shows a jitterplot of the mean differences of the 30, 000 permutations, a KDE of the distribution
of the MD test statistic in addition to the MD between the observed population SG and CG (green line).

a corrected threshold λ = 2.2917. Figure 6 depicts the ROC curve for the global scaling factor (red) together
with the envelope (blue) obtained from the permutations. A major part of the red curve is located close to
the boundary of the envelope. Thus, Figure 6 indicates a significant GOP in agreement with the obtained
feature-by-feature test result.

The area under the curve (AUC) value is a simple numerical summary which is useful for a comparison
of several ROC curves, e.g., a comparison of the ROC curves between the figures below.
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Fig. 6: The ROC curve of the global scaling factor (red) is visualized together with the envelope (blue)
obtained from the permutations.
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Figure 7 below is identical to Figure 8 in the main article and shows the magnitude of significance of
each GOP using the difference measure d2. In order to simplify the visualization all standard normal values
U0k, k = 1, . . . ,K are presented in absolute values. The color map is non-linear defined from blue to white to
red. The corrected threshold λ = 2.2917 defines the color white, blue and red visualize non-significant and
significant values, respectively. Blocks which show a white color have U0k around the threshold λ. The blue
small circles inside each block mark whether a U0k is less than or equal to the threshold λ. Red small circles
mark if an U0k is greater than the threshold λ and therewith statistical significant.

x y z

(a) skeletal position

bottom crest top

 

 

no
rm

al
 d

is
tr

ib
ut

ed
 v

al
ue

s

0.5

1

1.5

2

2.5

3

3.5

(b) spoke length

bottom crest top

(c) latitude spoke direction

bottom crest top

 

 

no
rm

al
 d

is
tr

ib
ut

ed
 v

al
ue

s

0.5

1

1.5

2

2.5

3

3.5

(d) longitude spoke direction

Fig. 7: Colored significant map of U0k using difference measure d2 with a corrected threshold λ = 2.2917.
Each box corresponds to a GOP. The color map on the left side is non-linear and has a range from blue (not
significant) to white (λ) to red (significant). The circle inside each box marks whether an U0k is less or equal
than the threshold λ (symbolized by blue) or if an U0k is greater than the threshold λ (symbolized by red).

The results are presented on the basis of the 3 × 8 skeletal sheet such as the 24 skeletal x-positions in
Figure 7a. The skeletal sheet is numbered from bottom to top and from left to right, i.e., atom 1 correspond
to the the left bottom block, atom 8 to the left top block, atom 9 to the middle bottom block, atom 16 to
the middle top block, atom 17 to the right bottom block and finally, atom 24 correspond to the right top
block. In the following, we compare results for selected GOPs from Figure 7 with the ROC analysis.

Figure 8 visualizes the ROC curve of the skeletal x, y and z-position of atom 22. Figure 7a indicates the
z-position of atom 22 as statistically significant. The x and y-position are not statistically significant whereas
the x-position shows a lower value than the y-position of atom 22. These results are reflected in Figure 8 by
the ROC analysis. The ROC curve for the x-position of atom 22 is located close to the center of the envelope,
the ROC curve for the y-position is located closer to the boundary of the envelope in some regions whereas
the ROC curve for the z-position is close to the boundary in major parts of the envelope.

Figure 9 visualizes the ROC curve of the bottom spoke lengths of atom 8, 16 and 24. Figure 7b indicates
the bottom spoke length of atom 8 as statistically significant whereas the bottom lengths of atom 16 and 24
are not significant. Furthermore, atom 24 shows a lower value than atom 16. These observations are reflected
in the ROC analysis and the AUC values in Figure 9. The ROC curve in Figure 9a is located closer to
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Fig. 8: ROC curves are visualized for (a) the x-position, (b) the y-position and (c) the z-position of atom
22 from the skeletal 3× 8 sheet. The blue lines depict the ROC curves from the permutations and define an
envelope. The red line depicts the ROC curve between the observed samples of two populations.

the boundary of the envelope than the ROC curve in Figure 9b, and again more than the ROC curve in
Figure 9c.
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Fig. 9: ROC curves are visualized for the spoke lengths for (a) atom 8, (b) atom 16 and (c) atom 24 on the
bottom side of the skeletal 3 × 8 sheet. The blue lines depict the ROC curves from the permutations and
define an envelope. The red line depicts the ROC curve between the observed samples of two populations.

Figure 10 visualizes the ROC curve of the latitude spoke directions of atom 3 on the bottom, crest and
top of skeletal sheet. Figure 7c indicates the latitude spoke direction of atom 3 on the bottom of the skeletal
sheet as statistically significant whereas the latitude spoke direction on the crest and top are not significant.
The box color of the top latitude spoke direction of atom 3 reflects a smaller value than the crest latitude
spoke direction of atom 3. As above, all observations are reflected by the corresponding ROC curves in
Figure 10.

Finally, Figure 11 visualizes the ROC curve of the longitude spoke direction on the crest of atom 8, 16
and 24. Figure 7d indicates a statistically significant longitude spoke direction of atom 8 on the crest of
the skeletal sheet whereas the longitude spoke direction on the crest of atom 16 and 24 are not significant.
The color for atom 24 reflects a considerably smaller value than for atom 16. A comparison with Figure 11
confirms these observations. The ROC curve in Figure 11a is mostly located outside or close to the boundary
of the envelope wheres the ROC curve of Figure 11c is close to the center of the envelope.

The observations described in this section verify the correctness of the feature-by-feature test results on
the basis of selected GOPs. The ROC visualization of all 271 GOPs described by the distance measure d2

was omitted for the purpose of clarity of this article .
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Fig. 10: ROC curves are visualized for the spoke latitude directions for atom 3 on (a) the bottom, (b) the
crest and (c) the top of the skeletal 3× 8 sheet. The blue lines depict the ROC curves from the permutations
and define an envelope. The red line depicts the ROC curve between the observed samples of two populations.
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(b) atom 16 (crest)
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Fig. 11: ROC curves are visualized for the spoke longitude directions for (a) atom 8, (b) atom 16 and (c) atom
24 on the crest of the skeletal 3× 8 sheet. The blue lines depict the ROC curves from the permutations and
define an envelope. The red line depicts the ROC curve between the observed samples of two populations.

2.5 Test results for the unsigned difference measure d1

This section reports hypothesis test results using distances measure d1 as described in Section 1.3. Results
are based on the pre-processing methods PP1 and PP2 as described in Section 7.2 in the main article.

2.5.1 Global test results using d1

Figure 12 shows the global test results for difference measures d1 using PP1 and PP2. The global hypothesis
of equal sample means is rejected and a statistical significant difference between the shape distribution of
SG and CG is established (p = 0.0274 for PP1 and p = 0.0051 for PP2 with p = P (M0|H0)). These results
correspond to the results using d2 (p = 0.0109 for PP1 and p = 0.0029 for PP2) as presented in Section 7.2
in the main article. The larger p-values for d1 are due to less information is being used for the unsigned
differences, because the correlation structure between the GOPs was removed after the applied mapping
to a full multivariate Gaussian as described in Section 1.3. Thus, results presented in the main article are
quantified by the conservative test results in this section.

2.5.2 Single GOP test results using d1

Figures 13 and 14 visualize the feature-by-feature test results for the difference measure d1 using PP1. Recall
that each discrete slabular s-rep is organized into 24 atoms by a 3 × 8 grid. Thereby, the measure d1 (see
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Fig. 12: Global test results using PP1 in (a) and PP2 in (b). The empirical distribution of Ml, l =
1, . . . , 30, 000 is shown together with M0 and the 95% quantile of the empirical distribution.

Section 1.3) results in 157 GOPs with 24 GOPs corresponding to the skeletal position of each atom, 66 GOPs
for the spoke directions (bottom, crest and top), 66 GOPs for the spoke lengths (bottom, crest and top) and
1 GOP for the global scaling factor. Figure 14 shows the magnitude of significance as described for Figure 7
in Section 2.4. The corrected threshold from the feature-by-feature test is λ = 2.5532.
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Fig. 13: Significant GOPs using PP1 and difference measure d1 based on the 3 × 8 skeletal sheet of the
SG CPNG mean. Test results are shown in (a) for the skeletal positions, in (b) for the spoke directions
and in (c) for the spoke lengths. No skeletal position is statistically significant where non-significant skeletal
positions are marked by small blue circles and significant skeletal positions are marked by large red circles.
Similar, non-significant spoke directions and lengths are marked by small blue lines whereas significant spoke
directions and lengths are marked by wide red lines.

Figures 13 and 14 show several statistically significant GOPs. No skeletal position but one spoke length
and 10 spoke directions are statistically significant. Moreover, the global scaling factor τ between SG and
CG was found statistically significant by the GOP |U0K | = 2.7704.

Figures 15 and 16 are identical to both previous figures except for the use of PP2 instead of PP1. Several
skeletal positions are statistically significant in contrast to Figures 13a and 14a with no statistically significant
skeletal position. The volume difference between the two populations is reflected by the skeletal positions
using d1 and PP2. Thus, Figures 15a and 16a show rather significant differences from a global deformation
than from local deformations. Figures 14c and 16c show only small differences, which reveals that the global
volume information is described by scaling of the skeletal grid. The spoke lengths are designed to capture
only local differences whereas the skeletal position captures global scale differences. Similar results between
spoke directions are expected because of the scaling invariance of uij ∈ S2.
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Fig. 14: Colored significant map of U0k with a corrected threshold λ = 2.5532 using PP1 and difference
measure d1. Each box represents a GOP which correspond to a skeletal atom. The color map on the left side
is non-linear and has a range from blue (not significant) to white (λ) to red (significant). The circle inside
each box marks whether an U0k is less or equal than the threshold λ (symbolized by blue) or if an U0k is
greater than the threshold λ (symbolized by red).
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Fig. 15: As Figure 13, now based on PP2 and difference measure d1.
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Fig. 16: As Figure 14, now based on PP2 and difference measure d1 with a corrected threshold λ = 2.6368.

A comparison of the results in this section with Section 7.3 in the main article leads to very similar
observations and conclusions. Thereby, the results in the main article are quantified by the conservative test
results presented in this section which not use the correlation structure between the GOPs (see Section 1.3).
This is reflected by less significant GOPs, in particular for the spoke directions.

Using difference measure d2 a significant volume difference was observed in the x and y-directions but
not in the z-direction for the aligned hippocampi. Thus, we could obtain additional information using d2

compared to d1.
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2.6 Asymptotic behavior of the global test for the two difference measures d1 and d2

This section will study the asymptotic behavior of the global test (described in Section 6.2 in the main
article) for an increasing permutation size using PP1. The reported empirical p-values are 0.0274 for d1 and
0.0109 for d2 using 30, 000 permutations and given a significance level of α = 0.05.

We have randomly selected subsets of P = 500, 1000, 1500, 2000, 2500, . . . , 29500 from the set of 30000
permutations and applied the proposed testing procedure of Section 6.2 in the main article. Figure 17
visualizes the results and indicates a stabilization of the p-value from the global test after around 10, 000
permutations. Surprisingly, we observe a p-value equal to zero for a very small permutation size. This section
will show the Mahalanobis space as the cause on the basis of distance measure d1.
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Fig. 17: The p-values are plotted against the number of permutations using difference measures d1 and d2.
30000 permutation were generated. The hypothesis test was calculated on randomly chosen subsets with
500, 1000, 1500, 2000, 2500, . . . , 29500 permutations.

In order to elaborate the convergence behavior of d1, we have generated 30 random permutation sets
with 500, 1000 and 5000 permutations for each permutation set. Afterwards, we applied the proposed testing
procedure of Section 6.2 in the main article.

First, we calculated the difference measure Tl = d1(t1l, t2l) (see Section 6.2.5 in the main article) between
the s-reps t1l and t2l, l = 1, . . . , P where P is the number of permutations. Each blue line in Figure 18 shows
the cumulative empirical distribution for the chosen element k = 22 from the 157 dimensional GOP d1-
difference vector Tl. The selected element describes the atom position 22 from the 3× 8 skeletal grid. Each
plot contains 30 cumulative empirical distributions (blue lines) corresponding to each permutation set. We
observe a higher variance of the envelope for a smaller permutation set size. T0 = d1(t1, t2) is identical for
all 30 permutation sets.

Afterwards, we estimated the empirical cumulative functions Ck for k = 1, . . . ,K partial tests following
to Section 6.2.5 in the main article. As a result, we obtained for each GOP difference a p-value Ck(Tlk),
and Ck(T0k) respectively. The cumulative empirical distribution of the calculated p-values are depicted in
Figure 19. The p-values of the 30 permutations sets have by construction a uniform distribution. Therefore,
no variance is visible between the blue line in Figures 19a-19c. However, we observe a larger variance of the
red line for smaller permutation set size. The cumulative function Ck bases on the empirical distribution
which shows larger variation for a smaller permutation set size in Figure 18. Therefore, the observed larger
variance between Ck(T0k) (red line) can be expected.

Subsequently, we calculated standard normal distributed variables from the uniformly distributed p-values
by the inverse cumulative normal distribution function as described in the previous Section 1.3. Figure 20
visualizes the calculated standard normal distributed variables Ulk (blue) and U0k (red). The blue and red
lines show a larger variance for smaller permutation set size. However, the mean of T0k, Ck(T0k) and U0k is
similar for different permutation set size.
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Fig. 18: The cumulative empirical distributions of GOP differences are depicted for a selected GOP us-
ing difference measure d1. Each plot visualizes 30 random permutation sets of sizes 500, 1000 and 5000
(corresponding to 30 blue lines in each plot). The selected GOP is the atom position 22.
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Fig. 19: The cumulative empirical distributions of the p-values Ck(Tlk) (blue) are depicted together with
Ck(T0k) (red) using difference measure d1. Each plot visualizes 30 random permutation sets of sizes 500,
1000 and 5000. The selected GOP is the atom position 22.
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Fig. 20: The cumulative empirical distributions of the standard normal variables Ulk (blue) are visualized
together with U0k (red) using difference measure d1. Each plot visualizes 30 random permutation sets of
sizes 500, 1000 and 5000. The selected GOP is the atom position 22.

Finally, the p-values of the global tests were obtained by the estimation of the covariance matrix Σ̂U

from Ulk and the Mahalanobis distance as a combining function (see Section 6.2.6 in the main article). For
each permutation l = 1, . . . , P , we obtained the Mahalanobis distance Ml in addition to M0 between the
two populations SG and CG. Figure 21 shows the Mahalanobis distance for the three different permutation
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set sizes. A smaller permutation set size strongly increase the variance of M0. In addition, the blue curves
indicate a smaller slope for higher permutation set size. In contrast to the previous figures, we observe a
change in the mean value of M0 with a larger value for smaller permutation set size. As a result, p(M0) is 0
(see equation (9) in the main article) using a small permutation set size such as 500 because H(Ml,M0) = 0
for all l = 1, . . . , P .
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Fig. 21: Cumulative empirical distributions of Mahalanobis distances Ml (blue) are visualized together with
M0 (red) using difference measure d1. Each plot visualizes 30 random permutation sets of sizes 500, 1000
and 5000. The selected GOP is the atom position 22.

Figures 18 to 21 and additional simulations on the covariance matrix found the covariance matrix as
the reason for the convergence behavior in Figure 17. The Mahalanobis distance combines all GOPs to a
corrected global test by the covariance matrix Σ̂U . A smaller permutation set size increases the magnitude
of the elements of the covariance matrix, i.e., leads to a larger variance between the matrix elements of Σ̂U .
As a result, the covariance matrix assigns different weights to the GOPs by the Mahalanobis distance.

Therefore, we recommend a permutation set size greater than 10, 000 for the proposed global hypothesis
test. The study of an alternative combining functions for the global hypothesis test is left for future research.

3 Data analysis on an alternative group of final fittings

Besides the obtained final fittings using a joint shape distribution during the CPNG stage as described
in Section 7.1 in the main article, we have generated a second group of final fittings derived from CPNG
stages using a pooled shape distribution (FG1), two individual shape distributions (FG2) and two individual
interchanged shape distributions (FG3). Interchanged shape distributions means the use of the estimated
individual CG shape distribution for the re-fitting of the SG population during the CPNG stage, and the
individual SG shape distribution for the re-fitting of the CG population. In each CPNG stage, the obtained
backward mean was translational and rotational aligned to the data, i.e, the alignment of the CPNG backward
mean of

1. Ā1 ∪ Ā2 to the 221 and 56 CG cases for FG1,
2. Ā1 to the 221 SG cases and of Ā2 to the 56 CG cases for FG2,
3. Ā2 to the 221 SG cases and of Ā1 to the 56 CG cases for FG3.

Afterwards, the means were optimized inside the CPNG shape space with an additional final spoke stage
(see Section 5 in the main article). As a result, we obtained three fittings for each hippocampus. We chose
the fitting with the largest Dice similarity coefficient. The Dice coefficient is a measure of the volume and
was calculated between the original binary image B1 and the binary image B2 generated from each fitting.
The coefficient is defined by

dvol(B1, B2) = 2
|B1 ∩B2|
|B1|+ |B2|

(4)

where |·| denotes the number of voxels that describe hippocampal tissue. Figure 22 shows the Dice coefficients
of SG and CG for all three fitting types. Accordingly, the second group of final SG fittings consist of 84
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fittings from FG1, 107 fittings from FG2 and 30 fittings from FG3. The second group of final CG fittings
consist of 18 fittings from FG1, 21 fittings from FG2 and 17 fittings from FG3.

Figure 22 shows also an average volume overlap of 94% for both groups which indicates accurate fittings.
We observe an outlier for case 73 of SG for FG3 due to a poor fitting result. The variance of the Dice
coefficient is small for both groups. Nevertheless, a larger variance inside SG can be observed. Moreover,
we can observe that FG1 and FG2 leads to a comparable Dice coefficient. The Dice coefficient of FG3 is
inferior to FG1 and FG2 for SG but comparable for CG. There are two reasons for this observation. First,
schizophrenia is a heterogeneous disease and also contains hippocampi variations between healthy patients.
Therefore, the interchanged shape distribution from the schizophrenia cases can also describe the control
cases. Second, both populations have an unbalanced size with a higher number of schizophrenics.
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Fig. 22: Dice coefficient between the final fittings for (a-b) SG and (c) CG. The coefficient is depicted for
the three types of obtained fittings by using a pooled shape distribution (FG1), two individual distributions
(FG2) and two interchanged individual distributions (FG3) during the CPNG stage. The maximal Dice
coefficient is depicted by a circle for each case colored by the corresponding class. The solid and dashed lines
connect all points of the corresponding classes and depict the variance. SG shows larger variance than CG
in correspondence with the heterogeneous character of the schizophrenia disease.

In addition to Figure 5 in the main article, Figure 23 shows the distribution of of SG and CG fittings
obtained from (a) two individual distributions during the CPNG stage, (b) two interchanged individual
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distributions and (c) of SG and CG fittings selected by the Dice criteria. The distributions are visualized by
the projections of the CPNG score matrix ZComp on the DWD direction. Figures 23a and 23b show high
separation properties between SG and CG. In contrast, a difference between the populations is not very
strongly visible in Figure 23c which visualizes the second group of final fittings. The group is a compromise
between independent fittings and a small bias as discussed in Section 7.1 in the main article.
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Fig. 23: Jitterplot and KDEs show the distribution of SG and CG fittings projected onto the DWD direction.
SG and CG fittings are obtained by using (a) two individual distributions during the CPNG stage, (b) two
interchanged individual distributions during the CPNG stage and (c) by a selection of the final fittings using
the Dice criteria. Additionally, the KDE of the pooled distribution of SG and CG is shown (all). A difference
between the populations is visible for (a) and (b) but not very strong in (c).

The obtained second group of final fittings were used to test each of the hypotheses

H0 : {µ1 = µ2} versus H1 : {µ1 > µ2} (one-sided) (5)

for a one-sided test in case the difference measure is unsigned (e.g., d1) and

H0 : {µ1 = µ2} versus H1 : {µ1 6= µ2} (two-sided) (6)

for a two-sided test in case the difference measure is signed (e.g., d2). The hypotheses are tested by the
proposed global and feature-by-feature test in Section 6.2 in the main article at a significance level of
α = 0.05.

3.1 Global test results

Table 1 shows the global test results for the difference measures d1 and d2 for the two different pre-processing
methods. Both difference measures rejected the hypothesis of equal population means and established a
statistical significant difference between the two populations. In addition, DiProPerm results are reported
in Table 1. All reported values are consistent with the results obtained from fittings using a pooled shape
distribution, see Table 1 in the main article and Section 2.5 above. We observe an overall improved p-value
in Table 1, particularly for the difference measure d2. Thus, the second group of final fittings reveals an
improved separation of the two populations, schizophrenics and controls.

3.2 Single GOP test results

This section presents feature-by-feature test results for the two distance measures d1 and d2 using PP1. We
have left out additional results for PP2 because neither additional informations nor conclusions would be
added to this section.

Figures 24 and 25 visualize the feature-by-feature test results for the difference measure d1 and correspond
to Figures 13 and 14 above. The corrected threshold is λ = 2.5632. The measure d1 results in 157 GOPs with

167



S18 Jörn Schulz et al.

Table 1: Empirical p-value results using difference measures d1 and d2 for the proposed global hypothesis test
in comparison with results obtained by DiProPerm. Two different pre-processing steps were applied: (PP1)
Full Procrustes alignment with scaling. (PP2) Full Procrustes alignment without scaling. Three different
projection directions were used for DiProPerm.

method
empirical p-value
PP1 PP2

Mahalanobis distance
difference measure d1 0.0245 0.0043
difference measure d2 0.0013 0.0009

DiProPerm using MD-statistic
DWD direction vector 0.0018 0.0011
SVM direction vector 0.0039 0.0051

24 GOPs corresponding to the skeletal position of each atom, 66 GOPs for the spoke directions (bottom,
crest and top), 66 GOPs for the spoke lengths (bottom, crest and top) and one GOP for the global scaling
factor. Figure 24 and 25 show statistically significant GOPs. One skeletal position, two spoke lengths and
7 spoke directions are statistically significant compared to Figure 13 above where no skeletal position but
one spoke length and 10 spoke directions are statistically significant. Moreover, the global scaling factor τ
between SG and CG was found statistically significant.
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Fig. 24: As Figure 13, now based on PP1, difference measure d1 and the alternative group final fittings.
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Fig. 25: As Figure 14, now based on PP1, difference measure d1 and the alternative group final fittings with
a corrected threshold λ = 2.5632.

Figure 25 shows the magnitude of significance as described for Figure 7 in the previous Section 2.4. The
corrected threshold from the feature-by-feature test is λ = 2.5632. The GOP |U0K | = 2.7388 is statistically
significant where the index K corresponds to the global scale factor τ . A comparison of Figure 25 with
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Figure 14 above shows a very similar pattern between the colored significant maps except the pattern
between the bottom spoke directions. In the previous Figure 14, we observe two significant atoms 7 and 8
(top right of the skeletal sheet) and two significant atoms 12 and 13 (center middle) which are not significant
in Figure 25. A detailed interpretation of this observation is left as an open question for the future. However,
the second group of the final s-reps reflects tighter fittings based on the Dice coefficient. Therefore, the two
populations are better separated, which decreases noise artifacts and yields a larger threshold λ = 2.5632
compared to λ = 2.5532 in Section 2.5.2.

Figures 26 and 27 visualize the feature-by-feature test results for the difference measure d2 and correspond
to Figures 7 and 8 in the main article. The measure d2 results in 271 GOPs with 72 GOPs corresponding to the
skeletal position of each atom (x, y and z-position), 66 GOPs for the latitude spoke directions (bottom, crest
and top), 66 GOPs for the longitude spoke directions (bottom, crest and top), 66 GOPs for the spoke lengths
(bottom, crest and top) and one GOP for the global scaling factor. The corrected threshold is λ = 2.5214.
Figure 26 and 27 show statistically significant GOPs. Two skeletal x-positions, no y-position, 4 z-positions,
one bottom, no crest and one top spoke lengths, 7 bottom, one crest and three top latitude spoke directions,
5 bottom, two crest and 9 top latitude spoke directions are statistically significant. Moreover, the GOP |U0K |
is 2.7198 and is statistically significant where the index K corresponds to the global scale factor τ .
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Fig. 26: As Figure 13, now based on PP1, difference measure d2 and the alternative group final fittings.

As before, a comparison of Figure 27 with Figure 8 in the main article shows a very similar pattern
between the colored significant maps. The lower color intensity for several boxes in Figure 27 is due to a
larger threshold λ = 2.5214 compared to λ = 2.2917 in the main article.

3.3 Conclusion

The additional data analysis by the second group of final fittings in this section confirms the results and con-
clusions of the main article and Section 2 above. The global test results establish smaller p-values compared
to the results from the first group of final fittings. This indicates a better separation of the two populations
by the second group of final fittings. The feature-by-feature test show similar patterns between the colored
significant maps and demonstrate therewith the sensitivity of the proposed test in the case of less separated
fittings.
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Fig. 27: As Figure 14, now based on PP1, difference measure d2 and the alternative group final fittings with
a corrected threshold λ = 2.5214.
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