

Abstrat

The Norwegian publi healthare system will not have the manpower to are for the el-

derly at the same level as now, unless tehnologial solutions are found to make the most

of the available manpower. This thesis investigates potential tehnologies for allowing

the Gira�, a telepresene robot, to navigate and patrol an elderare enter autonomously,

thus letting aregivers save time when heking on the are reipients. It desribes the

design and implementation of a platform to interfae with the Gira�'s hardware, and

demonstrates that the developed system is a useful platform for developing suh navi-

gation systems.

3

Aknowledgements

I'd like to thank my advisors, Robert Jenssen (Department of Physis and Tehnology,

University of Tromsø), Per Hasvold, and Stein Olav Skrøvseth (both at Norwegian Cen-

tre for Integrated Care and Telemediine), for the help they've given me despite the

di�ulties of writing this thesis. Also thanks to Lars Ailo Bongo (Department of Com-

puter Siene, University of Tromsø), for the extra assistane. None of us had muh

prior experiene in this partiular �eld of researh, but everyone ontributed what they

ould.

5

Contents

1. Introdution 11

1.1. Motivation . 11

1.2. Objetives . 11

1.3. Contributions . 13

1.4. Chapter list . 13

2. Navigation tehnologies 15

2.1. General . 15

2.2. Feature (landmark) extration . 15

2.2.1. Using a single amera . 17

2.2.2. Using stereo ameras . 18

2.2.3. Using radio beaons . 18

2.2.4. Using eiling landmarks . 18

2.2.5. Using laser range �nders . 18

2.2.6. Using ultrasound sonar . 19

2.3. Position estimation . 19

2.3.1. Dead rekoning . 19

2.3.2. The Kalman �lter . 19

2.3.3. Visual odometry . 20

2.3.4. SLAM . 21

2.3.5. Satellite navigation . 22

2.4. Obstale detetion . 22

2.5. Destination seletion . 23

2.6. Route planning . 23

2.6.1. Reorded route . 23

2.6.2. Providing a �oor plan . 24

2.6.3. Teahing a �oor plan . 24

2.6.4. Obstale avoidane . 24

7

Contents

2.7. Getting there . 24

3. The developed system 27

3.1. General . 27

3.2. The Gira�Motor module . 27

3.2.1. The Motor Controller . 29

3.2.2. The Motor Simulator . 34

3.3. The Gira�Nav module . 35

3.3.1. Implementation details . 35

3.4. The Gira�Camera module . 36

3.4.1. Implementation details . 36

3.5. The DisplayWindow module . 37

3.5.1. Implementation details . 37

3.6. The FeatureExtrat module . 38

3.7. The User Interfae . 38

3.8. Software used . 39

3.8.1. Development environment . 39

3.8.2. OpenCV . 40

4. The Gira� 41

4.1. Introdution . 41

4.2. Design . 43

4.3. Computer Spei�ations . 44

4.4. Camera . 44

4.5. Motor Controller . 45

5. Evaluation 47

5.1. Funtionality . 47

5.2. Extensibility . 47

5.3. Reording and playbak . 47

5.4. Motor ontrol . 49

5.5. Motor simulation . 49

5.6. Disussion . 49

6. Conlusion 51

Bibliography 51

8

Contents

A. The Motor Controller Interfae 59

A.1. Overview . 59

A.2. Movement styles . 60

A.2.1. Straight line motion . 60

A.2.2. Rotating in plae . 60

A.2.3. Curved motion . 60

A.3. Connetion details . 62

A.4. Commands . 63

A.4.1. set v . 63

A.4.2. set r . 63

A.4.3. set a . 63

A.4.4. set p . 64

A.4.5. get ang . 64

A.4.6. get dis . 64

A.4.7. get gvr . 64

A.4.8. set mode . 64

A.4.9. set undok . 65

A.4.10.home . 65

A.4.11.get tilt_homing_state . 65

A.4.12.set tilt_angle_from_home . 66

A.4.13.set vg . 66

A.4.14.set vgr . 66

A.4.15.set dp . 66

A.4.16.get vg . 66

A.4.17.get but0 . 66

A.4.18.get but1 . 66

A.4.19.get dial . 67

A.4.20.get button_data . 67

A.4.21.get bulk_data . 67

B. Soure ode listings 69

B.1. Gira�Motor.hpp . 69

B.2. Gira�Motor.pp . 72

B.3. Gira�Camera.hpp . 105

B.4. Gira�Camera.pp . 106

9

Contents

B.5. DisplayWindow.hpp . 110

B.6. DisplayWindow.pp . 111

B.7. Gira�Nav.pp . 116

B.8. FeatureExtrat.hpp . 121

B.9. FeatureExtrat.pp . 122

C. Contents of the CD-ROM 123

10

1. Introdution

1.1. Motivation

As a onsequene of the inreasing life expetany in Norway, the number of seniors

needing are from the Norwegian publi welfare system will ontinue to grow in the

oming years. It is estimated that in 2025, 16% of the population (900 000 people) will

be above 67 years old, and 250 000 will be above 80 years, while the number of healthy,

young people available to provide that are will derease orrespondingly. To uphold the

urrent standards for elderly are, the healthare setor would have to reruit at least

every 4th youth in the nation in order to satisfy the needs for 2025, and every 3rd in

order to satisfy the needs for 2035. This is neither realisti nor desirable [1℄.

Instead, the healthare system needs to use the manpower it has more e�iently. One

way to do this is by developing new tehnology to assist aregivers. For example, it would

be useful to be able to deploy robots at are enters that an be used to rounds and hek

in on the elderly, without needing a aregiver to always be physially present. Remote-

ontrolled telepresene robots for suh purposes already exist, allowing the aregiver to

make rounds in multiple loations without leaving his/her own o�e, though these an

be tedious to use, as their every move needs to be ontrolled manually. For seniors

living in their own homes, there are also projets underway to provide roboti personal

assistants [2, 3℄, though they are still under heavy development, and not yet ready for

the publi.

1.2. Objetives

For this thesis, I have explored the possibility of relieving aregivers further by automat-

ing the navigation of telepresene robots used at are enters. In partiular, I have

been working with the Gira� telepresene robot, urrently being tested at a loal are

enter (Kroken sykehjem), and exploring ways to make it navigate suh a enter with-

out expliit assistane from the aregiver. This robot was hosen beause it is already

11

1. Introdution

ommerially available for a reasonable prie (while still having su�ient apabilities for

suh use), and a unit was available for researh use at the time of writing.

While other, more powerful roboti platforms exist, suh as the Willow Garage PR2

(http://www.willowgarage.om/), they are expensive, still onsidered experimental, and

usually not designed as telepresene robots. This may possibly make them useful assis-

tants, but they're less useful for health personnel that wishes to talk to patients remotely.

The Gira� may be better for this purpose.

The idea of automating the navigation of a telepresene robot is that the aregiver

should be able to request a partiular room with a single ommand, rather than manually

ommanding every step neessary to get there, thus allowing the aregiver to fous on

more important tasks. Further down the line, the robot should also be able to do

fully autonomous daily or nightly patrols, looking for anomalies, and only alerting the

aregiver if it �nds any.

Creating suh a system is a large undertaking, requiring the use of algorithms and

tehniques that's still subjet to muh researh. A omplete navigation system for a

partiular robot would need at least these omponents:

� A system for getting input from available sensors (in this ase, the amera).

� A system for ontrolling the atuators (in this ase, the wheel motors).

� A system for extrating features (landmarks) from the sensor input.

� A system for estimating the robot's loation using the observed landmarks, in

ombination with the urrent speed of the motors.

� A system for deteting obstales using the sensor input.

� A system for hoosing the robot's destination.

� A system for planning a route to the robot's desired destination.

� A system for following that route, while avoiding obstales.

Other systems (suh as remote ontrol and teleonferening) may also be desirable. The

�rst two listed systems are the ones that are responsible for ommuniating with the

partiular robot's hardware. The remaining systems are of a more general nature and

an implement any appliable tehnique found in the researh literature, though for this

partiular robot, some will be more suitable than others.

12

1.3. Contributions

Various implementations of these more general systems already exist. However, sys-

tems that allow them to ommuniate with the Gira� are not yet available, and the

Gira�'s standard ontroller software is proprietary and di�ult to extend for this pur-

pose. Thus, a ompletely new software stak is needed for supporting autonomous

navigation on the Gira�. The �rst step is to ommuniate with the robot hardware.

1.3. Contributions

This thesis makes the following ontributions:

� The design and implementation of a platform with omponents to ontrol (and

simulate) the Gira�'s motors, and apture frames from its amera (Chapter 3,

Appendix B, and on CD-ROM)

� An investigation of the tehniques and tehnologies that an be used to implement

the remaining systems (Chapter 2)

� Doumentation of low-level details of the Gira� motor ontroller (Appendix A)

The developed platform funtions as a framework with omponents to ontrol (and sim-

ulate) the Gira�'s motors, and apture frames from its amera. For evaluation purposes,

I've also made a proof-of-onept of a feature extrator omponent.

A notable feature of the developed framework is that it an also reord data for

playbak later, so that any omponents built on this platform an be prototyped and

o�ine-tested without the atual Gira�. This is useful if suh units are not permanently

available to developers, and may speed up development and testing.

Detailed knowledge of the motor ontroller is needed for properly operating the on-

troller, but these details were either not doumented, or inorretly doumented, at the

time of writing. Many of these details were learned through reverse engineering, and are

now doumented here.

1.4. Chapter list

This thesis is strutured as follows:

Chapter 1: The introdution.

Chapter 2: Desription of some of the tehniques and tehnologies that may be used

in the Gira�.

13

1. Introdution

Chapter 3: Desription of the atual platform developed for investigating the above

tehnologies,

Chapter 4: Desription of the Gira� robot itself.

Chapter 5: Evaluation of the usefulness of the developed platform.

Chapter 6: Conlusion.

Appendix A: Low-level doumentation of the Gira� motor ontroller.

Appendix B: Listings of the soure ode of the developed platform.

Appendix C: Desription of the ontents of the CD-ROM.

14

2. Navigation tehnologies

This hapter desribes some of the navigation tehniques and tehnologies that may be

used in the Gira� to make it more autonomous. To form a omplete system, they may

be ombined as shown in Figure 2.1. The atual platform I've built to allow exploring

suh tehniques is desribed in Chapter 3.

2.1. General

The Gira� is designed to operate in an indoor environment without signi�ant obstales.

It does not need to funtion everywhere, and making the environment aommodate the

robot is aeptable, if neessary. However, even if the environment is suitable for the

robot, the robot will still need to beome familiar with it, in order to suessfully navigate

it. That is, the robot needs to aquire an internal map of the environment that it an

refer to when trying to �gure out where it is and where it needs to go, and that map

should re�et what the robot's sensors an see.

Ideally, the robot should be able to build the map itself, based on what it sees as it

moves around. This problem, Simultaneous Loalization And Mapping (SLAM), is a

omplex problem and still the subjet of muh researh, but is di�ult to avoid in this

kind of setting. In priniple, it might be possible to enter the building's blueprints into

the robot instead, but this would be tedious, and suh blueprints would probably not

inlude obstales suh as furniture or people. Hene, the robot still needs to be able to

analyze and map out its surroundings, in order to navigate safely.

2.2. Feature (landmark) extration

The �rst step of any SLAM approah is to use sensors to identify and loate landmarks

that an later be used to estimate the urrent position. The method used to identify

landmarks should be as noise-resistant, unambiguous, and aurate as possible, yet not

too omputationally demanding, due to the �nite power of the robot's onboard omputer.

15

2. Navigation tehnologies

Camera

interface

Motor

interface

Feature

Extractor

Route

Search

Odometry

CommandsImages

Extended

Kalman Filter

Feature

Matcher

Other

sensors

Landmark

Mapper

Location

Features

Floor Plan

Obstacle

Detector

Simultaneous Localization And Mapping (SLAM) Route Planner

Figure 2.1.: A possible navigation system

16

2.2. Feature (landmark) extration

Fortunately, it doesn't have to be perfet, as the oasional misidenti�ed landmark an

be rejeted later by a good SLAM algorithm.

Some SLAM implementations are designed to funtion with a partiular type of sensor,

suh as range �nders, while others are more universal. Also, some SLAM implementation

already inlude a feature extrator, and thus don't need a separate omponent to do this,

but many don't.

2.2.1. Using a single amera

This is the only sensing approah whih does not require augmenting the Gira�'s hard-

ware. However, for loalization, it may also be one of the more omputationally de-

manding approahes, sine a single image from the amera is not enough to �nd the

distane to an objet. Instead, as the robot is moving, di�erent images (from di�erent

positions) must be ompared, and visual features mathed. With enough data, the 3D

position of the feature (and of the robot observing it) an be estimated within a reason-

able margin of error. The feature then beomes part of the robot's �map� and an be

used as a landmark later. The estimation of the 3D position is, however, usually left to

the SLAM algorithm, not to the feature extrator. Thus, the hosen SLAM algorithm

must be among those whih an proess monoular input.

Visible landmarks an be extrated from amera images using feature extrators of

the type ommonly used in omputer vision. Typially, they attempt to �nd or-

ners of objets, sine their positions are relatively learly de�ned and they an be

traked fairly reliably. Many orner detetors are available in the OpenCV library's

�Image Proessing� and �2D Features Framework� modules. Various implementations

an also be found in other free and open soure libraries, suh as the CVD library

(http://www.edwardrosten.om/vd/vd/html/index.html).

A ommon hoie of feature extrator is the Harris orner detetor [4℄, but using larger

image pathes may be more reliable in some ases [5℄. There are more powerful extra-

tors, suh as the Sale-Invariant Features Transform (SIFT) [6℄. However, beause of the

limited CPU power of the Gira�, I expet that it's better to stik with a onventional

orner detetor. One that o�ers a very good balane of speed and reliability and has

gained some popularity reently is the FAST orner detetor [7℄.

17

2. Navigation tehnologies

2.2.2. Using stereo ameras

If a robot is equipped with two ameras, separated by a �xed distane and a known an-

gle, and with known alibration parameters, then stereo vision an be used to instantly

�nd the distane to objets in view, muh like humans do it. Sine the relative orienta-

tions of the two ameras are always known exatly, depth information an be extrated

more reliably and with less omputation than with a single amera. This improves the

auray and robustness of SLAM, and redues the number of ambiguities [8℄.

2.2.3. Using radio beaons

A robot ould estimate its position based on reeiving radio signals from beaons in-

stalled at known positions in a building. A sensor that ould reeive suh signals ould

be onneted to one of the Gira�'s USB ports. Unfortunately, GPS-style distane mea-

surements are not pratial with ordinary beaons, but as long as the diretions to the

beaons an be estimated by the sensor, the robot's position ould still be triangulated

using SLAM tehniques [9℄.

2.2.4. Using eiling landmarks

Another amera ould be added to the robot that would be pointed diretly upwards,

traking the eiling. This ould be quite usable for SLAM [10, 11℄, espeially for rooms

with eiling lights. The extra amera ould be onneted to one of the Gira�'s USB

ports. (The Gira�'s primary amera should probably not be used for this purpose, as

it ould then no longer see what's in front of it, whih would defeat the purpose of

patrolling.)

2.2.5. Using laser range �nders

Unlike a regular amera, laser range �nders an measure the distane to an objet

diretly, and thus �nd the 3D position of any visible objet with minimal omputation.

When ameras are used to loate interesting features and range �nders are used to

pinpoint their position, features an be traked quite aurately [12℄.

For robot navigation, LIDARs (Light Detetion and Ranging) are often used. A laser

pulse is emitted, and a mirror de�ets it in a partiular diretion. When the pulse hits

an objet, it is re�eted bak to the LIDAR, whih measures the time between emission

and re�etion, and thus the distane to the objet. By turning the mirror appropriately,

18

2.3. Position estimation

the LIDAR an san everything in front of it pixel by pixel, reating a depth image. Suh

a ranging module ould be onneted to one of the USB ports, and used for SLAM.

A heap alternative is the Mirosoft® Kinet� sensor. An infrared laser illuminates

the sene with random patterns, and the re�etions are aptured with an infrared amera.

The sensor an use the re�eted patterns to estimate distanes [13℄.

2.2.6. Using ultrasound sonar

Like lasers, sonars an measure the distane to objets and �nd the 3D position of

objets diretly. Sonar modules ould be onneted to one of the USB ports, and used

for SLAM [14, 15℄.

2.3. Position estimation

One sensor data from the environment is available, it an be used to estimate the

robot's position in various ways, depending on the type and quality of sensor data.

2.3.1. Dead rekoning

Pure dead rekoning is probably the simplest approah - just use the robot's odometry

diretly. This would probably be ombined with a reorded route, whih the robot

would then follow every time, sine it won't be aware of obstales in the way. However,

while this may work for small apartments, estimates from dead rekoning are prone to

aumulating errors over time and distane. For navigating larger buildings, the position

estimate would need to be regularly orreted using other position estimates, making

dead rekoning unsuitable.

2.3.2. The Kalman �lter

Most position estimation approahes use some variant of the Kalman �lter [16℄ to om-

bine odometry with position estimates alulated from the robot's sensors. The Kalman

�lter an be summarized as follows: Given a hidden multivariate time series (suh as the

true oordinates of a robot over time), with a known but noisy transition model, and

an observable time series that is a linear transformation of the unknown time series plus

noise (suh as measurements from the robot's sensors), the Kalman �lter is a statisti-

ally optimal way of ombining the estimate of the previous hidden state (the previous

19

2. Navigation tehnologies

position) with a new observation (sensor measurements) to produe an estimate of the

urrent hidden state (the urrent position). It is a reursive estimator (it does not need

to realulate previous observations for every new observation), and thus quite suitable

for real-time appliations.

Note that the basi Kalman �lter (KF) is only meaningful when state hanges (position

hanges) an be expressed as a linear transition matrix. For physial systems, this is

often not the ase. However, the nonlinear transition model an be linearized by taking

the Jaobian matrix, evaluate it based on the urrent state, and use this as the transition

matrix [17℄. While this only gives a �rst-order approximation, it often works quite well,

provided the state doesn't hange too muh between updates. To ompensate for the

approximation error, some �stabilizing noise� should also be added to the ovariane

matrix after eah update. This method is alled the Extended Kalman Filter (EKF).

Most of the SLAM papers referened below use the EKF (but this doesn't prelude using

more reent KF variants instead, suh as the Unsented Kalman Filter [18℄).

A ompliation arises from the possibility that the robot might rash into something

and not move in the expeted diretion at all. In this ase, the motor odometry would be

ompletely wrong, but there is no diret way to model suh failure onditions in a basi

(or extended) Kalman �lter. One way of handling this might be to maintain several

Kalman �lters (one for standard operation, and the others for failure onditions) and

assume that the �lter that gives the best preditions is more likely to be orret. That

way, if the sensors report that the robot isn't moving, the robot an dedue that sine

the KF that models a rash mathes the data best, there's a high probability that it has

indeed rashed into something, and should initiate reovery proedures. However, sine

rashing into things is not meant to be part of standard operation proedure, simpler

solution might be aeptable. For example, it might su�e to say that if the robot

is supposed to be moving, but the sensors report less movement than some prede�ned

threshold for some prede�ned time, then initiate emergeny proedures.

For onveniene, OpenCV's Video Analysis ontains an implementation of the Kalman

�lter. By default, its KalmanFilter lass implements only the basi Kalman �lter, but

by modifying the matries it uses, it an also implement the extended Kalman �lter. It

ould be used if a given SLAM implementation doesn't supply its own Kalman �lter.

2.3.3. Visual odometry

Visual odometry improves on the dead rekoning approah by adding a seond soure of

odometry, whih may redue the error of the position estimate. Features from suessive

20

2.3. Position estimation

images from the amera an be ompared, and the apparent motion patterns, the �optial

�ow�, an be estimated.

If the robot is moving forward, everything it sees will seem to move away from the

enter of the image. The speed at whih things move may allow the robot to estimate

how fast it is moving forward. However, ambiguities exist sine this speed is dependent

on how far away the objets are, whih is initially unknown. Fortunately, with enough

observations (and using the speed reported by the motor when neessary), these distanes

an be estimated, and a useful 3D model of what's in front of the robot an be omputed,

whih an then be used to alulate the robot's veloity [19, 20℄.

One visual odometry is available, it an be ombined with the robot's regular odom-

etry through the Kalman �lter or similar. This ould produe good results, but will not

be as powerful or robust as a full SLAM approah, beause one an objet leaves the

robot's �eld of view, the robot forgets about it. Without maintaining a map, the robot

annot use landmarks for more robust loalization.

2.3.4. SLAM

SLAM tehniques are based on building and updating an internal map of the environ-

ment, using statistial methods to minimize unertainly. One landmarks have been

found, they must be heked against the robot's internal map. If they are thought to

be new landmarks, they are added based on the urrent estimated position. If they are

already known, their known position an be used to update the urrent position esti-

mate. In most ases, both the landmark position and the urrent position is unertain,

so that both must be ontinually updated, and preferably as robustly as possible. The

�nal estimate should be based on both the visible landmarks and the motor odometry,

and if no known landmarks are in sight, the odometry might be the only available soure

of position information.

Beause the system should ideally run in real time, the number of traked features

needs to be bounded. Sine no feature is statistially independent of any other feature

(their position estimates are all related through the error of the robot's estimate of its

own position, at the very least), a big ovariane matrix has to be maintained, and

used for updating every traked feature after every new measurement. Some sheme for

keeping the ovariane matrix manageable is required, or at least minimize the e�ort

of updating it [21℄. The number of traked features an be redued by throwing away

unimportant features (e.g., features lose enough to eah other that it isn't useful to trak

all of them), but to be able to handle a large map, the map needs to be broken down

21

2. Navigation tehnologies

into setions. Fortunately, it seems it is possible to maintain onditionally independent

ovariane matries for eah loal map, if eah loal map is onsidered a node in a

Bayesian network [22℄.

Many SLAM implementations an be found on OpenSLAM, http://www.openslam.org/.

OpenSLAM is not a projet in itself, but a hosting and portal site that allows SLAM

researhers to publish their own open soure SLAM implementations. Several interest-

ing projets are listed here, e.g. the RobotVision projet for single-amera SLAM [23℄.

However, many of the projets don't support Windows, and thus would not work on the

Gira�. RobotVision is designed to be ross-platform, though, so it may work, though

its authors have only tested it on Linux. Another option is to take some promising Mat-

lab projet, suh as EKFMonoSLAM [24, 25℄, and onvert it to C++ (probably with

the help of some C++ matrix library, e.g. the TooN library also used by RobotVision,

http://www.edwardrosten.om/vd/toon.html).

Not all open soure SLAM implementations of interest are listed on OpenSLAM,

unfortunately. For example, the author of [5℄ (Prof. A. Davison) has reated a SeneLib

that implements many of the tehniques desribed in his papers. (It appears to be

a powerful single-amera SLAM implementation, but unfortunately, it is also only for

Linux.)

2.3.5. Satellite navigation

Traditionally, GPS doesn't work indoors. However, given the reent surge in interest

in indoor positioning by ell phones, hips are apparently now being developed that

an ombine signals from USA's GPS, Russia's GLONASS, China's Compass, and EU's

Galileo, and thus possibly work indoors. (See http://www.omputer.org/portal/web/omputingnow/news/bringing-

loation-and-navigation-tehnology-indoors) If suh a hip is made available as a USB

adapter, it ould be installed in the Gira�'s USB port to provide position estimates.

2.4. Obstale detetion

Obstale detetion needs to use the same sensor data that the position estimation does,

just for a di�erent purpose. The main hallenge is is that deteting solid objets need

more information than the sparse set of features typially traked by SLAM. However,

the extra information does not neessarily need to be expliitly traked in detail, they

just need to be deteted when they are right in front of the robot. Then the robot just

22

2.5. Destination seletion

needs to know that there's something there, maybe add it to its �oor plan, and �nd

some way around it, or some other route to its destination. If the robot has some sort of

range �nder, obstales are typially not too hard to detet. Otherwise, it may need to

use pattern reognition or maybe optial �ow to detet whether it's dangerously lose

to something.

2.5. Destination seletion

Typially, the destination is seleted by the user, either interatively, or by preprogram-

ming some patrol route. Seletion a destination results in a set of target oordinates

being given to the route planner.

2.6. Route planning

One the robot knows where it is and where to go, it must �gure out how to get there.

Sine there may be walls and other obstales in the way, this has hallenges of its own.

Some of the planning approahes that might be possible to implement on the Gira�

are:

2.6.1. Reorded route

This is probably the simplest approah. A human an train the robot by manually

steering it where it needs to go. The robot remembers the route, and replays the reorded

ations of the human whenever the robot needs to. If the robot an have multiple

destinations, the robot ould remember waypoints and the routes between ertain pairs

of then. Then �nding a route to somewhere distant beomes a standard graph searh

problem, with eah edge in the graph being a reorded route. (Even a ost heuristi is

available, sine the waypoint oordinates are known and the Eulidean distane between

them an easily be alulated. Thus, an A* graph searh ould be used if there was any

hane that the number of known routes would be too large for a standard graph searh

to handle e�etively.)

An obvious problem with this approah is that if obstales (inluding people) move

into the robot's path, the robot won't know how to avoid them.

23

2. Navigation tehnologies

2.6.2. Providing a �oor plan

A �oor plan of the building ould be given to the robot, naming eah room and the

available doorways between them. Internally, the robot would store this �oor plan in

graph form, with eah node in the graph being the name and oordinates of a room, and

eah edge being doorways and their oordinates. When the robot is asked to go to a

partiular room, it an use an A* graph searh to �nd whih doors it has to go through

to get there. Between the doors, the robot may try to go the shortest route, but must

try to avoid obstales along the way using other algorithms (see below).

2.6.3. Teahing a �oor plan

The robot ould be steered by a human (or even being instruted to try to follow a

human) between rooms. In eah room, the robot would be told the name of the room

the robot is in. The robot may then assoiate that name with its urrent position, and

try to get there again whenever it is instruted to go to that room again. It an use some

obstale detetion method to �nd walls and other obstales, and use the resulting map to

plan routes. This map an be represented using either vetors or bitmaps (where bitmaps

make for the simplest path planning algorithms, but usually needs more memory).

2.6.4. Obstale avoidane

In the event the robot was instruted to go to a partiular destination unassisted, and it

is trying to �nd the shortest path while mapping obstales along the way, then the robot

should probably use the D* graph searh instead of the A* graph searh to plan the

route, to minimize time wasted replanning the route whenever an obstale is deteted

[26℄. In order to apply D* searh, eah room ould be internally represented as a bitmap

(grid), where eah pixel (grid square) is �olored� aording to whether it is thought to

ontain an obstale, thought to be traversable, or not yet explored. This grid is updated

as the robot moves around, and D* used to replan the route after eah update.

2.7. Getting there

One a route has been deided upon, the robot's motors need to be told where to go.

This may, on its own, involve some algorithms and maths, sine the Gira�'s motors have

ramp-up and ramp-down times that may need to be taken into aount. Turning while

24

2.7. Getting there

moving has some interesting mathematial properties (the urves the robot follow are

apparently lothoid segments [27℄), the parameters of whih need to be omputed before

sending the ommand to the motors.

25

3. The developed system

3.1. General

The developed system has four main modules:

� Gira�Nav, the main program and user interfae. It starts and ontrols the other

systems, and handles user input.

� DisplayWindow, whih displays the urrent amera image (and other information)

on the sreen. It allows monitoring, measuring, and debugging of the other sys-

tems.

� Gira�Camera, whih an apture, reord, and play bak video. The video frames

aptured here an be used for loalization and mapping.

� Gira�Motor, whih an give motor ommands, and apture, reord, play bak,

and simulate their responses. The route planner an send its ommand here for

exeution.

The system is meant as a platform for the development of other navigation modules,

as shown in Figure 3.1. Thus, for testing and evaluation purposes, there's also a �fth

module, FeatureExtrat, whih demonstrates a feature extrator.

3.2. The Gira�Motor module

The Gira�Motor module's primary funtion is to aept ommands for the Gira�'s

various motors and ontrols, and transmit them to the Gira�'s AVR miroontroller for

exeution (or, if not running on a real Gira�, simulate them). It also regularly reads bak

odometry from the miroontroller, whih the navigation modules an use to determine

the robot's movement. For testing and evaluation, a dead-rekoning position estimate

is omputed from this odometry.

27

3. The developed system

AVR

microcontroller

Universal

Serial Bus

RS-232

Serial Interface

Windows

DirectShow API

Windows

Serial Port API

Gira Camera

Module

OpenCV

HighGUI Module

Gira Motor

Module

DisplayWindow

Module

Windows

GUI API

Figure 3.1.: Big-piture view of system (Gira�Nav module not shown)

28

3.2. The Gira�Motor module

The Gira�Motor module ontains two separate motor-related subsystems, one on-

troller (the Gira�Motor lass) and one simulator (the Gira�MotorSim lass). On startup,

the Gira�Motor lass will try to onnet to the miroontroller board, whih is wired to

the main omputer's primary serial port (alled �COM1� in Windows). If the miro-

ontroller is not found, the system will fall bak to using the simulator, allowing various

features to be tested without the atual Gira�. This an be useful for heking whether

navigation ommands make sense before risking trying them on the real Gira�, but more

importantly, it allows muh of the system to be developed without always having aess

to the Gira� (as its limited availability was a major issue during this projet).

3.2.1. The Motor Controller

The Gira�Motor lass handles all ommuniation with the miroontroller (real or sim-

ulated). If a real miroontroller is present, Gira�Motor powers it up and opens a

ommuniation link, sends ommands, and reeives responses.

3.2.1.1. Reording

When reording, all ommands sent to the miroontroller (or simulator), and their

responses, are saved to a text �le, pre�xed by the time elapsed sine the start of reording.

When playing bak a reording, these ommands and their responses are interpreted

as if they were sent. The reorded ommands are not sent to the miroontroller or

simulator, but the reorded responses are interpreted as normal motor odometry, and

used to estimate the urrent position. The reorded time is used to ensure that the

reording is played bak at the same speed as it was reorded at. (This also a�ets video

playbak, sine the amera and motor systems run in the same thread. In order to stay

synhronized, �ags in the motor reord �les are used to mark when to allow a new frame

to be loaded from reorded video.)

3.2.1.2. Handling user movement ommands

The ommands that Gira�Motor is allowed to send to the miroontroller is listed in

Appendix A. These ommands are designed for moving spei� distanes and stopping

at spei� points. However, sine the system hasn't implemented autonomous navigation

yet, urrently the Gira� is primarily moved by pressing the arrow keys on the keyboard,

and in this ase it is not known beforehand how far the user wants the Gira� to move.

To handle this, the Gira�'s ability to preempt previous ommands is used. When a key

29

3. The developed system

Figure 3.2.: Kinematis of turning

is pressed, the movement ommand given spei�es some distane ahead of the urrent

position (spei�ally, the full-speed-to-zero deeleration distane is multiplied by the

AHEAD_FACTOR de�ned at the top of Gira�Motor.pp, and the result is used as the

movement distane). As long as a key is held down, new movement ommands are issued

periodially (spei�ally, whenever the distane left of the previous movement ommand

is less than twie the deeleration distane). When a key is released, a �nal movement

ommand is issued, requesting the minimum distane needed to deelerate from the

urrent speed, plus a 10ms �reation time� margin (i.e., the distane that would be

traveled if the urrent speed was maintained for 10ms), to aount for the time it takes

to transmit the ommand to the miroontroller, and other potential delays.

3.2.1.3. Calulating turns

When setting up and traking turns, some of the alulations require onverting between

wheel speed and angular speed. To �nd the onversion fator, refer to Figure 3.2, whih

shows rotating in plae. Aording to material provided by Gira� Tehnologies, the

distane between the two drive wheels is 499mm. Thus, the radius of the irle followed

by the wheels is R = 499mm/2 = 249.5mm. To onvert from wheel speed to angular

speed in radians, note that ω = vl/R = vr/R. To onvert to degrees, multiply with a

fator 360/2π = 180/π. The �nal fator, 180/(R · π), is in the soure ode denoted the

TURN_FACTOR. The same fator also applies when onverting between wheel distane

30

3.2. The Gira�Motor module

and angular distane.

Atually, this fator also applies to urved motion, not just rotating in plae. Given

a frame of referene that follows the enter of the Gira� (the middle dot in Figure 3.2),

then at any given instant, the wheels an be thought of as moving the same way around

this enter as in the rotating-in-plae ase. It only remains to �nd the wheel speed in

this frame of referene. From the formulas desribed in the Appendix (if orret),

Left Wheel Veloity = Overall Veloity * (1+vg)

Right Wheel Veloity = Overall Veloity * (1-vg)

Denote the overall veloity v and the virtual gear ratio g. Then it is apparent that,

after aneling out the overall veloity, vl = vr = vg. Hene, if the urrent speed v and

the urrent gear ratio g are both known, simply multiply them to get the wheel speed.

Then use TURN_FACTOR to onvert to angular speed in degrees. (Or, if a partiular

angular speed is desired, simply divide by the overall speed and TURN_FACTOR to

get the desired gear ratio.) This an then be used as input for a loation estimation

algorithm.

3.2.1.4. Curved motion issues

Curved motion is the most hallenging kind of motion to get right. Not only beause of

the omputations involved, but also beause of quirks and bugs in the motor ontroller.

The urrent speed of the wheels an be read from the motor ontroller as the �gvr�

parameter. However, aording to the manufaturer, this parameter does not give the

overall veloity, but the veloity of the left wheel. Moreover, testing seems to show that

this veloity is not omputed using the formulas above, but using the inorret formulas

found in the doumentation, i.e. Left Wheel Veloity = Overall Veloity * (1/(1-vg)).

Hene, to �nd the overall veloity, you must ompensate for this by multiplying gvr with

(1-vg). From there, you an then �nd the atual wheel veloities if needed.

Even this kind of ompensation wouldn't be possible if vg=1, sine this would result

in a division by zero, whih probably results in the Gira� returning in�nity for �gvr�

(though I haven't tested this). The simplest way to avoid this singularity is to just

never let the virtual gear ratio be as high as 1. (In the urrent system, it should only

get to 0.51, bugs in the motor ontroller notwithstanding.) But if vg ever beomes 1

anyway, the ode will, just in ase, attempt to fall bak to estimating the urrent speed

by dividing distane travelled by time elapsed sine the last odometry update.

31

3. The developed system

Figure 3.3.: Bottom of hassis. rear swivel aster, and right drive wheel.

Aording to the manufaturer, it's likely that a future version of the Gira�'s software

will hange �gvr�'s behaviour so that it reports overall speed diretly. One this happens,

the system may need to be reompiled to remove the ompensation fator. (This an be

done by ommenting out the GVR_IS_LEFT de�nition at the top of Gira�Motor.pp.)

Another problem, whih I have not found a way to ompensate for, is the way that the

�dp� parameter works, whih is supposed to tell the ontroller when to start dereasing

the virtual gear ratio bak towards zero. In pratie, it's not very useful, as the ramp-

down pro�le used in pratie is based on the distane left, not on the value of �dp�. In

the end, I ould only �nd two ways to exit urved motion: either ome to a full stop, or

fore �vgr� to zero, thus onverting the ramp-down into a �at, horizontal line. This has

the e�et of making the virtual gear ratio instantly zero, whih auses a notieable jerk.

However, sine this behaviour, unfortunate as it is, is at least preditable and makes

it possible to move the Gira� around with the keyboard without too muh trouble, I

deided to use this method until Gira� Tehnologies addresses the problem. Also, some

future autonomous navigation solution (that doesn't rely on input from the keyboard)

might be able to plan its moves in suh a way that it ould avoid this issue.

3.2.1.5. Position estimation issues

Even if the odometry from the motor ontroller were perfet, the motor ontroller only

knows about the two drive wheels on the sides of the Gira�. There are also two swivel

asters (undriven wheels), one in front and one in bak, as seen in Figures 3.3 and

4.2. When the Gira� turns or moves, these asters must turn to follow, and sine the

Gira� needs to move some distane before they've fully aligned themselves, they have a

signi�ant e�et on how the Gira� travels. Worst ase, if you turn in plae for a bit, and

then try to start moving forward, these asters may ause the Gira� to turn up to about

32

3.2. The Gira�Motor module

45 degrees extra before they've �nally reoriented themselves. This e�et isn't known to

the motor ontroller, so for dead rekoning to be aurate, a model of the asters and

their e�et on movement may need to be devised and implemented. Fortunately, the

problem an be mitigated by making sure to never turn in plae, and only allow the

Gira� to turn while also moving forward (assuming urved motion works satisfatorily).

Assuming the diretion estimate is also orreted using the amera, this issue might then

even be something that ould be negleted, though experimentation is the only way to

make sure.

Position estimation also gets omputationally triky when moving in an ar, either

due to expliit urved motion, or due to the e�et of the asters. The motion pro�le

need to be alulated, and integration tehniques be used to determine what the new

position would be. However, given that the resulting position would not be orret even

if I implemented this (beause of the asters and other issues), in my system I've only

approximated it. I �nd the mean speed and the mean turning rate sine the last update,

and use this to alulate a �rst-order approximation of the new position. It is expeted

that a future loalization system would use the amera image to orret this estimate

anyway.

3.2.1.6. Implementation details

For ommuniation through the serial port, the Gira�Motor lass uses standardWindows

API routines. After the serial port devie is opened, SetCommState is used to set the

important parameters (115200bps, 8 data bits, no parity). Sine the miroontroller uses

a line-based protool, ommands and responses do not have a �xed size. To handle this,

SetCommTimeouts is used to set the read timeouts to zero (so that ReadFile always

immediately returns whatever has been reeived, if anything), and the aforementioned

SetCommState is also used to set the event harater to the end-of-line harater. That

way, WaitCommEvent an be used to wait for the end-of-line harater, then ReadFile

an be used to read the omplete line reeived. Some extra bu�ering logi (base on the

C++ string lass) is used for ases where ReadFile happens to read more than one line.

Beause no timeout is applied to WaitCommEvent, there's a hane that this teh-

nique may ause the system to hang inde�nitely if the miroontroller doesn't work,

but this has not been an issue. (It ould be addressed by opening the serial port de-

vie in overlapped I/O mode, whih is less onvenient to program, but would allow

WaitCommEvent to be anelled in response to some timeout or user ation.)

When the Gira�Motor lass needs to measure time, it uses the high-preision timers

33

3. The developed system

known in Windows as performane ounters. These are typially hardware loks built

into CPUs or motherboards. In Windows, QueryPerformaneCounter an be used to

read out the number of tiks sine some arbitrary starting time (typially the time

the omputer was booted up). QueryPerformaneFrequeny tells you how many tiks

are per seond. Thus, taking the di�erene between two QueryPerformaneCounter

readings, and dividing it with the QueryPerformaneFrequeny result, gives you the

number of seonds between the two readings, with auray on the order of miroseonds

or nanoseonds. Timing information is urrently only really needed for reording and

playing bak motor data, however.

3.2.2. The Motor Simulator

The Gira�MotorSim lass attempts to simulate what the real miroontroller is supposed

to do, i.e., it attempts to onform losely to the behaviour desribed in Appendix A,

though only for features atually needed by Gira�Motor. Only the motor odometry

that the miroontroller would report is omputed, not the Gira�'s resulting position in

spae. But sine the simulator does not ontrol anything physial, its simulated motions

are far more preise than the real Gira�'s motion would be.

Curved motion is implemented as doumented in Appendix A, though the real on-

troller may behave di�erently. For example, setting �vg� to zero auses the simulator

to simulate a straight line motion (without turning) no matter what �vgr� is, but this

does not seem to be the ase for the real ontroller. However, I still implemented the

simulator the way things are doumented to work, rather than how they atually seem

to work, in ase suh deviations are just bugs that will be �xed by the manufaturer at

some point. (Also, for some of these deviations, it's just not lear what's going on in

the real ontroller, and it would take too muh time to �gure out.)

3.2.2.1. Implementation details

For timing, Gira�MotorSim uses the same QueryPerformaneCounter tehnique that

Gira�Motor uses, exept when simulating the transmission delay that would our when

sending and reeiving data strings through the serial port. This is done by alling Sleep,

whih only has a milliseond resolution (and often waits longer than requested).

When the simulator is asked to start a motion, the motion pro�le (times, distanes)

is alulated, using the kinemati equations of motion where needed. Care is taken to

handle various orner ases, inluding speed hanges and diretion reversal (handled as

34

3.3. The Gira�Nav module

a ramp-up from negative veloity to the target veloity). The alulated pro�le, along

with the times for transitions (hanges in aeleration) are stored in the lass. Then,

every time a new ommand/request is reeived from Gira�Motor, the urrent time is

ompared with the stored times, and new motor state and odometry is alulated, ready

to be reported bak to Gira�Motor when needed. Straight-line motion pro�les and

rotate-in-plae motion pro�les are kept separate (in retrospet, this would not have

been neessary, though it did make the design slightly leaner).

3.3. The Gira�Nav module

This is the main module, responsible for starting, running, and shutting down the system.

It measures the system's performane, and also interprets keyboard input from the

user. The veloities used when the arrow keys are used are de�ned in this module

(KBD_TURN_SPEED and KBD_MOVE_SPEED).

When the user starts a reording, this module onstruts the �le names based on

the urrent system time, then passes the request on the Gira�Camera and Gira�Motor

modules. When the user requests playbak, this module also hooses the �les to play

bak. Currently, the �le name is spei�ed in the soure ode (the PLAY_PATH and

PLAY_FILE de�nitions) and ompiled in, it annot be hanged at runtime, though

adding a �le seletor for this ould be a useful feature to add at some point.

The default amera resolution is also hosen here (the DEF_WIDTH and DEF_HEIGHT

de�nitions). By default, an 800x600 amera resolution is set, beause the amera ap-

pears to not always work if higher resolutions are used. With 800x600, the amera

appears to be able to deliver about 10 frames per seond.

3.3.1. Implementation details

Currently, the system is mostly single-threaded (though if video reording is enabled,

video enoding is done in a separate thread). The primary reason for running the amera

and motor in the same thread is to get a reliable assoiation between a amera image and

the orresponding motor odometry. As soon as a new image is retrieved from the amera

(typially every 100 ms or so), new motor odometry is almost immediately retrieved from

the Gira�'s ontroller (this typially only takes a ouple of milliseonds). Beause the

time to transfer images from the amera to the main omputer through USB is probably

muh longer than the amera's exposure time, I expet this odometry to most losely

35

3. The developed system

math the next frame rather than the previous one, but I have not investigated this

further.

3.4. The Gira�Camera module

The Gira�Camera module's primary funtion is to ommuniate with the Gira�'s am-

era, and apture video frames in a way that is useful for navigation.

The amera an be aessed like a regular USB webam (for example, through Video

For Windows or DiretShow). In the implemented Gira�Camera lass, OpenCV's High-

GUI module is used. Its apture interfae works as a onvenient wrapper for DiretShow.

In addition to amera aess, HighGUI also provides video deoding and enoding (by

using the open soure FFmpeg library, whih is inluded in the OpenCV distribution),

whih the Gira�Camera lass an use to reord and play bak video. For reording

video, I hose to use the DivX (i.e., MPEG-4 Part 2) format, as testing showed it to

have deent enoding performane, in addition to good ompression.

3.4.1. Implementation details

When reording, video enoding is done in a separate thread (synhronized using stan-

dard Windows primitives, like event and semaphore objets), so that things like retriev-

ing motor odometry don't need to wait for enoding. A bu�ering system is also added

to try to redue lag spikes when saving large amounts of data (I used a USB �ash drive,

and these don't always have onstant write speeds), though this didn't ompletely elim-

inate suh problems. (It's possible the Gira�Motor module would need to do something

similar in order to redue these problem further.)

If no amera is onneted, Gira�Camera an fall bak to playing bak a prede�ned

video (and endlessly repeating it), whih allows the system to be tested on a omputer

without a amera. This is the TEST_INPUT de�nition at the top of Gira�Camera.pp,

and I've just used one of the OpenCV sample videos.

The image grabbed from the amera (or played bak from video) is returned to the

main program as an OpenCV matrix.

36

3.5. The DisplayWindow module

3.5. The DisplayWindow module

The DisplayWindow module displays information from the other modules on the Gira�'s

LCD monitor, so that the system an be monitored, measured, and debugged.

3.5.1. Implementation details

The user interfae display is implemented using a ombination of the standard Windows

API and OpenCV.

When the main program alls the DisplayWindow's Start() method, a fullsreen win-

dow is reated using the standard Windows API. Sine the Windows API is a C in-

terfae, and DisplayWindow is a C++ lass, usual tehniques for bridging the C and

C++ interfaes are used, inluding storing the C++ instane pointer into the window

struture (using APIs suh as SetWindowLongPtr). The standard Windows message

loop is implemented in the ProessInput() method.

Using the SetInputHandler() method, the main program an provide a allbak for

proessing user input. When Windows alls the window proedure with a keyboard

message, the message is sent on to the input allbak, allowing the main program (the

Gira�Nav module) to proess it.

Other modules an also all the DisplayWindow's SetCameraInfo, SetPositionInfo,

SetPerformaneInfo, PrintLeft, and PrintRight methods when they have information to

show to the user. The DisplayWindow lass then stores these strings internally. PrintLeft

and PrintRight implement a srolling bu�er by using a C++ �deque� ontainer type,

and limiting its size by deleting the topmost strings when its size exeeds a prede�ned

threshold (the BUFFER_SIZE de�nition at the top of DisplayWindow.pp).

Most of the real work happens when DisplayWindow's Show() method is alled to show

a amera image. The image is provided as an OpenCV matrix. This image is opied and

resized to �t the display using OpenCV's resize funtion, and then any stored information

(from SetCameraInfo et) is rendered on top of this using OpenCV's putText funtion.

Using OpenCV is faster than using equivalent Windows funtions. Windows funtions

are only needed for showing the �nished image. This is done by wrapping the image

data in a Windows Devie-Independent Bitmap (DIB) and blitting it onto the fullsreen

window using SetDIBitsToDevie. (Alternatively, DiretDraw ould perhaps be used for

a theoretially more e�ient display solution, but given that the display update only

happens a few times per seond, any improvements would probably be marginal.)

37

3. The developed system

Figure 3.4.: Sreenshot of a playbak on a regular laptop, with UI elements marked

3.6. The FeatureExtrat module

This module is a proof-of-onept to show how features ould be extrated from images

aptured by Gira�Camera. It urrently uses the FAST orner detetor [7℄. For visual-

ization of the deteted orners, it renders pink irles around them on the amera image

shown by DisplayWindow. See Setion 5.2.

3.7. The User Interfae

The view provided by DisplayWindow has several parts, as shown in Figure 3.4. The

urrent amera image is in the bakground, saled to �t the sreen. On the top left, the

38

3.8. Software used

urrent amera resolution is shown. The top right is for keeping trak of the system's

performane. Currently, it shows the rate at whih amera images (frames) are proessed

(milliseonds per frame, and frames per seond). The top enter is for displaying the

urrent estimated position. Currently, it shows a dead rekoning estimate (and typially

not a very aurate one sine, while the motors are modeled, the e�et of the asters

(front and bak swiveled wheels) are not).

On the left is a srolling text area that an be used to show system state. Currently

it mostly shows whether reording or playbak is ative, and what �le is being reorded

to or played from. On the right is a srolling text area that shows ommuniation with

the motor ontroller.

To interat with the system, the following keyboard ommands are available.

Key Ation

Esape Exits program

Left/Right Arrow Makes the Gira� turn as long as the keys are held down

Up/Down Arrow Makes the Gira� move as long as the keys are held down

Numbers (1 to 5) Tries to hange amera resolution

Enter Allows typing in your own ommands for the motor ontroller

A Toggles automati retrieval of motor odometry

B Sends a �get bulk_data� ommand (shows motor state)

H Sends a �home� ommand (starts head homing sequene)

P Toggles playbak

R Toggles reording

T Tilts head to vertial position

U Sends an �undok� ommand (baks and turns 180 degrees)

3.8. Software used

This setion desribes the software used in the developed system.

3.8.1. Development environment

The system is written using C++. As a fully ompiled language, this gives better

performane and needs less memory than interpreted languages like Python or Matlab.

On an embedded system like the Gira�'s onboard omputer, making the most of the

available resoures is often important.

39

3. The developed system

As the base development environment, I hose to use MinGW (www.mingw.org) with

the MSYS option. MinGW is based on the open-soure and ross-platform GNU Com-

piler Colletion (GCC). Sine most open-soure navigation software is written using

GCC (and usually on Linux), it seemed that using GCC for this projet might make it

easier to get suh navigation software working later on. For the IDE (Integrated Devel-

opment Environment), I hose to use Code::Bloks (www.odebloks.org), but this isn't

important, as editors and IDEs are just a matter of taste.

3.8.2. OpenCV

OpenCV (Open Soure Computer Vision Library), at http://www.openv.org/, is an

extensive library of omputer vision and mahine learning algorithms. It implements

both lassi and state-of-the-art algorithms, all highly optimized and easy to use. It is

released under the BSD liense, making it free for all. Some of the modules of interest

are:

� OpenCV's HighGUI library provides easy to use routines for reating GUIs and

apturing images from ameras. This library is used for aessing the Gira�'s

amera.

� OpenCV's Image Proessing library provides a host of image proessing and anal-

ysis routines. Of partiular interest here are the feature extrators.

� OpenCV's Video Analysis library provides routines for motion analysis. Among

other things, it has routines to alulate optial �ow, and even an implementation

of the Kalman �lter.

� OpenCV's 3D Reonstrution library provides routies to alibrate ameras, om-

pare stereo images, and alulate projetions and bakprojetions. It ould be

used to ompensate for the �sheye e�et of the wide angle lens.

� OpenCV's 2D Features Framework library provides more advaned feature extra-

tors and pattern mathers.

� OpenCV's Objet Detetion and Mahine Learning libraries provides many ad-

vaned mahine learning algorithms.

Several books have been written about OpenCV [28, 29, 30℄. This library is the bakbone

of many interesting projets, and so I hose it for this projet as well.

40

4. The Gira�

4.1. Introdution

The Gira� is a mobile telepresene robot developed by Gira� Tehnologies AB, Sweden

(http://www.gira�.org/). It is designed to be remote ontrolled by aregivers, allowing

them to hek up on are reipients without physially being there. Caregivers may use

their own omputers to onnet to any reipient's Gira� robot, move it around using

their omputer's mouse, and see its environment and talk to people through the robot.

The Gira� is already involved in several other researh projets. The unit I've had a-

ess to is operated by NST (Norwegian Centre for Integrated Care and Telemediine) and

primarily involved in the EU's VitoryaHome projet, a projet for putting robots in the

homes of are reipients to at as proxies for human aregivers when they're not present,

automatially alerting them whenever needed. For information about the projet, see, for

example, http://www.itfunk.org/dos/prosjekter/AAL-VitoryaHome.htm. Some more

information about how the Gira�, in partiular, is used in this projet is available at

http://www.robotdalen.se/en/News/Press-releases/2013/Gira�-key-player-in-new-EU-projet-

VitoryaHome-/

It is hoped that the Gira� an be used to �ll roles suh as

� Provide soial interation opportunities for people who live isolated or that don't

get out of their houses muh for health reasons, suh as old age, COPD, or dis-

ability. Caregivers, family, and friends an simply log on to their omputers to

talk, without having to drive there. For aregivers, this saves valuable time and

allows them to e�iently are for more people, whih may live all over a wide

area. Although this an't ompletely replae the human touh, and personal visits

will still be important from time to time, this an supplement them and greatly

inrease the e�etiveness of resoure-starved health are departments, as the need

for health are ontinues to grow faster than the resoures to provide them.

� Allow physiians to hek up on patients under their are that aren't in their

41

4. The Gira�

Figure 4.1.: Photo of the Gira� (from material provided by Gira� Tehnologies)

42

4.2. Design

Figure 4.2.: Drawing of the Gira� (from material provided by Gira� Tehnologies)

hospitals, suh as in elder are enters. To supplement the regular visits to the

are enters, the physiian may use the robot to talk to people and solve simple

problems without needing to drive there every time.

Unfortunately, the Gira�'s standard software provides little automation and an be

tedious to use, beause every movement it an do needs to be expliitly ommanded.

It is hoped that adding more automation and autonomy to the Gira� an make its use

simpler, allowing the users to fous more on the tasks they want to aomplish, and

less on the �ne details of steering the Gira� around. It might even help save lives if it

ould autonomously respond to persons in distress and report the situation to emergeny

personnel.

4.2. Design

As an be seen in Figures 4.1 and 4.2, the Gira� has a base unit, a long nek, and a

head. The base unit houses a omputer, ontrol buttons, and motors for the 4 wheels.

The head is onneted to a tiltable panel with a monitor and a amera. The total height

of the Gira� is a little over 1.6m. When a aregiver is ommuniating with another

person through the robot, this allows omfortable interation. The tiltable panel allows

the aregiver to look up or down as needed. The ontrol buttons on the hassis allow the

are reipient to all the aregiver, aept and disonnet alls, and adjust the volume

level. These funtions are also available through a remote ontrol. When the robot is

not in use, it stays in its doking station, faing the wall.

43

4. The Gira�

4.3. Computer Spei�ations

The exat spei�ations of the Gira�'s main omputer were not available, but by a-

essing the operating system's Control Panel, it was possible to extrat the following

relevant information.

CPU Intel Core 2 T7200, 2 GHz

GPU Intel i945 Express

RAM 1 GB

Storage Type Patriot Memory USB devie

Storage Capaity Primary partition 3.5GB (1.5GB free)

Operating System Mirosoft Windows Embedded Standard

The Gira� also has two USB ports. The rear port is meant to hold a wireless network

adapter, and the front port an be used for onneting input devies like keyboards and

mie, when neessary for administration [27℄.

These spei�ations suggest that the Gira� might be powerful enough to allow reason-

ably advaned appliations to run on the devie itself. A su�iently e�ient navigation

appliation ould run on it diretly; remote-ontrol solutions may not be neessary. This

would be an advantage, as a remote-ontrol solution for autonomous navigation would

require more hardware and be less robust.

4.4. Camera

Aording to Gira� Tehnologies, the sensor hip is a Cynove USB devie with a listed

sensor size of 1/3.2" and a resolution of 1600x1200. It is �tted with a 1.8mm wide

angle lens. For digital image sensors, the listed sensor size is usually about 1.5 times the

atual sensor size, so the atual diagonal of the sensor would be about 5.68mm. Thus,

the diagonal �eld of view is approximately 2 arctan d
2f

= 2 arctan 5.68mm

2·1.8mm
≈ 115◦. The

horizontal �eld of view is approximately 2 arctan 4.54mm

2·1.8mm
≈ 103◦.

Beause of the amera's wide angle, it would seem like a good idea to apture video

at high resolution, in order to detet relatively distant landmarks with reasonable a-

uray, though this may need to be balaned with the slower transfer speed and higher

omputational workload of a higher resolution. Testing suggests that the highest video

resolution the amera is able to deliver at a pratial rate is 800x600, at about 10 frames

per seond.

When using the amera for navigation, it is neessary to orret for the distortion

44

4.5. Motor Controller

(�sheye e�et) aused by the lens. An advantage of the wide angle is that the robot an

more easily keep landmarks and obstales in view while turning and moving.

4.5. Motor Controller

The Gira�'s wheels are ontrolled by an AVR miroontroller running ustom software.

It ommuniates with the main omputer through a RS232-type serial port interfae,

using a line-based ASCII protool [31℄. The ontroller aepts operations like moving a

spei� distane, turning a spei� angle, or a ombination of both (urved motion). In

bu�ered mode, up to four suh operations an be plaed in queue. All operations have

ramp-up and ramp-down times, so that jerky motions annot happen. The miroon-

troller also ontrols the tilt of the Gira�'s head, and gives aess to the buttons on the

hassis.

With some aveats, the miroontroller an help estimating the robot's position by

keeping trak of the distane travelled by its drive wheels. The ontroller an provide

this information to the main omputer on request. For navigational purposes, this is

usually known as odometry, and an be used for dead rekoning, whih is neessary when

no other position estimate is available (i.e., no known landmarks are in sight). However,

testing shows that this is, unfortunately, not reliable enough to be used on its own.

Another issue is that the Gira�'s default remote ontrol software gain exlusive ontrol

over ommuniation with the motor ontroller while it is running. Thus, the default

software would need to be shut down before other navigation software an ontrol the

motor, or some way of multiplexing the motor ontroller port needs to be developed.

One way to do this may be to reate a virtual motor ontroller port that both piees of

software an onnet to. Then the software behind the virtual ontroller ommuniates

with the real ontroller, and routes ommands and responses to whihever piee of

software needs it. Another option might be to make a new navigation system a fully

funtional substitute for the default software, so that running the default software will

just never be neessary.

45

5. Evaluation

5.1. Funtionality

The implemented system works as desribed, and an be used to steer the Gira� through

the are enter, and reord the journey for later playbak, if a keyboard is onneted.

The images in Figures 3.4, 5.1 and 5.2 are from suh a reorded journey.

5.2. Extensibility

Requirement: As the developed system is meant to be a platform on as whih a larger

system ould be built, it should be possible to implement other omponents on top of

it.

Figure 5.1 shows the results of adding an image proessing algorithm (the Canny

edge detetor [32℄, available in OpenCV), as an example of how suh algorithms an be

added. (Also, the ability to detet moving edges might be useful for obstale avoidane.)

Figure 5.2 demonstrates a partiular type of feature extrator (the FAST orner detetor

[7℄, also available in OpenCV) that may be used as part of a navigation system. The

features shown in the �gure (pink irles) ould be mathed with previously known

features, and their oordinates given to a SLAM implementation, whih ould then use

them to determine the robot's urrent position.

5.3. Reording and playbak

Requirement: When playing bak a reording, the resulting visuals and motor odometry

should be idential to what was seen when the reording was �rst reated.

Some sample reords are available on the attahed CD-ROM. While testing shows

that they do appear to be the same, there are still some lag spikes while reording,

meaning that the Gira� does not work fast enough to do a smooth reording. Adding

multithreading to the motor reording omponent might mitigate this. But sine the

47

5. Evaluation

Figure 5.1.: Playbak with Canny edge detetor

Figure 5.2.: Playbak with FAST orner detetor (orners highlighted with pink)

48

5.4. Motor ontrol

aptured video frames have timestamps in the motor reord, this problem does not ause

any drift in the timing of the playbak.

5.4. Motor ontrol

Requirement: Movement ommands from the user should be properly interpreted and

ause the Gira� to move in the desired way.

Commands an urrently only be given using a onneted keyboard, but this should

su�e for evaluation. The sample reords, available on the CD-ROM, shows that moving

the Gira� around this way works. However, beause of the problems with urved motion

desribed in Setion 3.2.1.4, turns are somewhat di�ult to predit, and some movement

jerks often happen when ending them. Possibly a future navigation solution would be

able to plan moves in advane in suh a way that these jerks an be avoided.

5.5. Motor simulation

Requirement: The motor simulator should emulate the atual motor ontroller as faith-

fully as possible.

Testing shows that the simulator is lose to the real thing, with a few aveats. Unlike

the real thing, the simulator does not make errors. For example, for mehanial reasons,

the real motor ontroller is usually not able to hit the exat distane requested. If

you request a ertain distane, it will usually report an odometry that's o� by a few

millimeters. The simulator, however, will always report the exat requested distane in

its odometry. Also, there are ertain bugs in the real ontroller that's not repliated

faithfully in the simulator, suh as the quirky behaviour of the �Clothoid Deeleration

Point� ommand used for urved motion. And some minor features, suh as hanging

the head tilt angle, reporting presses of the hassis buttons, and heking the battery

status, are not simulated at all. These are fairly minor issues, however, and the simulator

works �ne for its intended purpose of simulating the result of navigation ommands.

5.6. Disussion

Clearly, many more things ould have been explored or implemented in this projet. In

partiular, it would have been very interesting to try an atual SLAM implementation

on the Gira�. Unfortunately, beause of the Gira�'s limited availability, and the motor

49

5. Evaluation

ontrol took muh more time than expeted, in part beause the original doumentation

was missing some vital information. However, using the platform desribed in this thesis,

and the doumentation provided in Appendix A, I believe implementing and evaluation

navigation algorithms on the Gira� an now be done more e�iently.

In retrospet, it might have been a good idea to prioritize di�erently. For example,

spending less time on tuning the motor ontroller and simulator would mean more time

for trying out navigation algorithms, and for desribing what has been done. It would

also have been interesting to set up a few experiments, suh as trying to do a simple pre-

programmed patrol using dead rekoning. Sine dead rekoning is unreliable, espeially

given the e�ets of the asters, the Gira� would probably not go exatly where it should,

but it would be a good demonstration of the funtionality of the motor ontroller.

50

6. Conlusion

For this thesis, I've built a platform for developing navigation solutions for the Gira�,

a telepresene robot. I've designed and implemented a system to interfae with its

hardware, and also investigated many of the hallenges involved in making it able to

navigate a large building without human assistane, inluding loalization and route

planning. I examined some of the algorithms and tehnologies that ould be used to

solve those problems � some that require adding more sensors to the Gira�, and some

that don't.

The implemented platform shows amera images and motor odometry on the sreen,

and allows the user use the keyboard to ontrol the Gira�'s motors and move it around.

It an reord and play bak video and motor data, and when run on a regular omputer,

it an simulate the Gira�'s motors. This allows o�ine development and evaluation of

loalization and navigation solutions, failitating future work on the Gira�.

Based on a literature study of loalization approahes, it appears that adding extra

sensors may allow more robust algorithms to be used, but given the ontrolled environ-

ment the Gira� is meant to operate in, adding sensors is by no means neessary. A single-

amera SLAM approah ould work quite well. In partiular, it might be interesting to

try onverting the EKFMonoSLAM soure ode (found on http://www.openslam.org/)

from Matlab to C++ for use on the Gira�. Sine this approah also allows the Gira�

to be used unmodi�ed, whih is heaper and more onvenient for the users, this seems

like the preferred approah. If we were to add a sensor, however, an infrared laser range

�nder would probably be most useful, in order to minimize the risk of rashing into

things.

51

Bibliography

[1℄ Kunnskapsdepartementet, �Meld. St. 13 (2011-2012): Utdanning for velferd,� 17

Feb. 2012.

[2℄ S. S. Srinivasa, D. Ferguson, C. J. Helfrih, D. Berenson, A. Collet, R. Diankov,

G. Gallagher, G. Hollinger, J. Ku�ner, and M. V. Weghe, �HERB: a home exploring

roboti butler,� Autonomous Robots, vol. 28, pp. 5�20, Jan. 2010.

[3℄ K. Yamazaki, R. Ueda, S. Nozawa, M. Kojima, K. Okada, K. Matsumoto,

M. Ishikawa, I. Shimoyama, and M. Inaba, �Home-assistant robot for an aging

soiety,� Proeedings of the IEEE, vol. 100, no. 8, pp. 2429�2441, 2012.

[4℄ M. L. Benmessaoud, A. Lamrani, K. Nemra, and A. Souii, �Single-amera EKF-

vSLAM,� Proeedings of World Aademy of Siene: Engineering & Tehnology,

vol. 42, pp. 924 � 929, June 2008.

[5℄ A. Davison, �Real-time simultaneous loalisation and mapping with a single am-

era,� in Computer Vision, 2003. Proeedings. Ninth IEEE International Conferene

on, pp. 1403 �1410 vol.2, Ot. 2003.

[6℄ A. Ali and M. Nordin, �Sift based monoular slam with multi-louds features for

indoor navigation,� in TENCON 2010 - 2010 IEEE Region 10 Conferene, pp. 2326

�2331, Nov. 2010.

[7℄ E. Rosten and T. Drummond, �Mahine learning for high-speed orner detetion,�

in In European Conferene on Computer Vision, pp. 430�443, 2006.

[8℄ L.-F. Gao, Y.-X. Gai, and S. Fu, �Simultaneous loalization and mapping for au-

tonomous mobile robots using binoular stereo vision system,� in Mehatronis and

Automation, 2007. ICMA 2007. International Conferene on, pp. 326 �330, Aug.

2007.

53

Bibliography

[9℄ X. Kuai, K. Yang, S. Fu, R. Zheng, and G. Yang, �Simultaneous loalization and

mapping (SLAM) for indoor autonomous mobile robot navigation in wireless sen-

sor networks,� in Networking, Sensing and Control (ICNSC), 2010 International

Conferene on, pp. 128 �132, Apr. 2010.

[10℄ W. Jeong and K. M. Lee, �CV-SLAM: a new eiling vision-based SLAM tehnique,�

in Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ Interna-

tional Conferene on, pp. 3195 � 3200, Aug. 2005.

[11℄ C.-J. Wu and W.-H. Tsai, �Loation estimation for indoor autonomous vehile nav-

igation by omni-diretional vision using irular landmarks on eilings,� Robotis

and Autonomous Systems, vol. 57, pp. 546 � 555, May 2009.

[12℄ S. Fu, H. ying Liu, L.-F. Gao, and Y.-X. Gai, �Slam for mobile robots using laser

range �nder and monoular vision,� in Mehatronis and Mahine Vision in Pra-

tie, 2007. M2VIP 2007. 14th International Conferene on, pp. 91 �96, De. 2007.

[13℄ Z. Zalevsky, A. Shpunt, A. Maizels, and J. Garia, �Method and system for objet

reonstrution.� Patent WO2007043036, Apr. 2007.

[14℄ T. Yap and C. Shelton, �SLAM in large indoor environments with low-ost, noisy,

and sparse sonars,� in Robotis and Automation, 2009. ICRA '09. IEEE Interna-

tional Conferene on, pp. 1395 �1401, May 2009.

[15℄ S.-Y. Hwang, J.-T. Park, and J.-B. Song, �Autonomous navigation of a mobile robot

using an upward-looking amera and sonar sensors,� in Advaned Robotis and its

Soial Impats (ARSO), 2010 IEEE Workshop on, pp. 40 �45, Ot. 2010.

[16℄ R. E. Kalman, �A new approah to linear �ltering and predition problems,� Journal

of Basi Engineering, vol. 82, pp. 35�45, Mar. 1960.

[17℄ A. H. Jazwinski, Stohasti Proesses and Filtering Theory. Aademi Press, Apr.

1970.

[18℄ S. J. Julier and J. K. Uhlmann, �Unsented �ltering and nonlinear estimation,�

Proeedings of the IEEE, vol. 92, pp. 401 � 422, Mar. 2004.

[19℄ J. Campbell, R. Sukthankar, I. Nourbakhsh, and A. Pahwa, �A robust visual odom-

etry and preipie detetion system using onsumer-grade monoular vision,� in

Robotis and Automation, 2005. ICRA 2005. Proeedings of the 2005 IEEE Inter-

national Conferene on, pp. 3421 � 3427, Apr. 2005.

54

Bibliography

[20℄ D. Nister, O. Naroditsky, and J. Bergen, �Visual odometry,� in Computer Vision and

Pattern Reognition, 2004. CVPR 2004. Proeedings of the 2004 IEEE Computer

Soiety Conferene on, vol. 1, pp. I�652 � I�659 Vol.1, June 2004.

[21℄ A. J. Davison and N. Kita, �Sequential loalisation and map-building for real-time

omputer vision and robotis,� Robotis and Autonomous Systems, vol. 36, pp. 171

� 183, Sept. 2001.

[22℄ P. Pinies and J. Tardos, �Salable SLAM building onditionally independent loal

maps,� in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Interna-

tional Conferene on, pp. 3466 �3471, Ot. 2007.

[23℄ H. Strasdat, J. M. M. Montiel, and A. Davison, �Sale drift-aware large sale mono-

ular slam,� in Proeedings of Robotis: Siene and Systems, (Zaragoza, Spain),

June 2010.

[24℄ J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Montiel, �1-point ransa

for extended kalman �ltering: Appliation to real-time struture from motion and

visual odometry,� J. Field Robot., vol. 27, pp. 609�631, Sept. 2010.

[25℄ J. Civera, A. Davison, and J. Montiel, �Inverse depth parametrization for monoular

slam,� Robotis, IEEE Transations on, vol. 24, no. 5, pp. 932�945, 2008.

[26℄ A. Stentz, �Optimal and e�ient path planning for partially-known environments,�

in Robotis and Automation, 1994. Proeedings., 1994 IEEE International Confer-

ene on, pp. 3310 �3317 vol.4, May 1994.

[27℄ Gira� Tehnologies AB, Advaned Operational Guide For Gira� Version 3.1, June

2011.

[28℄ G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV

Library. O'Reilly Media, Ot. 2008.

[29℄ R. Laganière, OpenCV 2 Computer Vision Appliation Programming Cookbook.

Pakt Publishing, May 2011.

[30℄ D. L. Baggio, S. Emami, D. M. Esrivá, K. Ievgen, N. Mahmood, J. Saragih, and

R. Shilkrot, Mastering OpenCV with Pratial Computer Vision Projets. Pakt

Publishing, De. 2012.

[31℄ Gira� Tehnologies AB, Gira� Motor Controller Board Serial Interfae, May 2012.

55

Bibliography

[32℄ J. Canny, �A omputational approah to edge detetion,� Pattern Analysis and

Mahine Intelligene, IEEE Transations on, vol. 8, pp. 679�698, June 1986.

56

Appendix

57

A. The Motor Controller Interfae

This appendix is intended to expand on the manufaturer's own doumentation, �Gira�

Motor Controller Board Serial Interfae� [31℄. It notes and orrets errors and omissions

in their doumentation, and attempts to explain a few things that may be unlear.

However, you won't need to have the manufaturer's doumentation in order for this

appendix to be useful to you.

A.1. Overview

The Gira�'s motor ontroller is mounted near the bottom of the Gira�'s hassis. Its

brain is an AVR miroontroller. The ontroller's primary funtions are to ontrol the

two side wheels, to ontrol the head's tilt angle, and to report the state of the two

buttons and the dial on the Gira�'s hassis. It an also report the harge level of the

Gira�'s battery, but this is not overed in this appendix.

The ontroller responds to ommands sent to it via a RS232-style serial interfae.

For making the Gira� move, these ommands don't ontrol the wheels diretly, but sets

parameters suh as aeleration, maximum speed, and distane, whih the board then

uses to alulate a motion pro�le. This pro�le is followed until either the motion is

omplete, or another ommand hanges the motion pro�le. Sine instantaneous hanges

in speed aren't physially possible (and trying it may ause damage to the Gira�), a

Figure A.1.: Motion pro�le

59

A. The Motor Controller Interfae

standard motion pro�le has a �ramp-up� with onstant aeleration until the requested

maximum speed is reahed, followed by a period of onstant speed, then a �nal �ramp-

down� with onstant deeleration until the Gira� reahes a full stop at the requested

�nal position (or at least lose to it). This results in a trapezoidal speed pro�le, as seen

in Figure A.1. (If the requested distane is very short, the maximum speed may not be

reahed, resulting in a triangular speed pro�le.)

A.2. Movement styles

Any of the following styles an seleted with the �set r� ommand.

A.2.1. Straight line motion

The Gira� an move forwards or bakwards in straight lines. In this style, �set p� spe-

i�es the distane in meters (whih an be negative to move bakwards), �set v� spei�es

the maximum speed (in meters per seond), and �set a� spei�es the aeleration. The

speed and aeleration should be positive numbers, regardless of diretion. The distane

travelled and urrent speed is reported as �dis� and �gvr�, respetively. �ang� is

always reported as zero.

A.2.2. Rotating in plae

The Gira� an rotate in plae by driving its wheels in opposite diretions. In this style,

the distane given to �set p� is in degrees, not meters. Positive turns right, negative

turns left. The angle travelled and urrent angular speed is reported as �ang� and

�gvr�, respetively, though both of these have the opposite sign of what they should.

Note that, like for straight line motion, the speed taken by �set v� (and aeleration given

to �set a�) is spei�ed in meters, not in degrees. A program must onvert aordingly

if it wants a spei� turning speed. �dis� is always reported as zero.

A.2.3. Curved motion

The Gira� an turn while moving by driving its wheels with di�erent speeds. This style

is a superset of straight line motion, and is built around a onept alled a �virtual gear

ratio�. When starting or ending a turn, the gear ratio is hanged gradually from the

60

A.2. Movement styles

initial to the �nal gear ratio, muh like aeleration does for veloity (though in this

ase the rate of hange is per meter, not per seond).

In addition to the straight-line parameters, �set vg� spei�es the maximum gear ratio

to use, and �set vgr� spei�es the gear ratio rate of hange (per meter). The latter

should be positive or negative depending on whether to turn right or left, respetively.

Due to bugs, I don't know for sure whether the former should also be negative when

turning left, though it seems to work that way. Finally, �set dp� spei�es the position

(in meters) at whih to start hanging the gear ratio bak towards zero, ultimately

ending the turn. The gear ratio will also automatially be reset to zero if the Gira�

ompletes its motion and stops.

In the manufaturer's doumentation [31℄, the wheel speeds are given as

Left Wheel Veloity = Overall Veloity * (1/(1-vg))

Right Wheel Veloity = Overall Veloity * (1/(1+vg))

It also says a gear ratio of 1.0 is the ratio where the Gira� will pivot around its own

wheels. Sine the above formulas don't atually ahieve this (it would ause a division

by zero), or even maintain the overall veloity, I believe the orret formulas to use are

atually

Left Wheel Veloity = Overall Veloity * (1+vg)

Right Wheel Veloity = Overall Veloity * (1-vg)

(This is aknowledged by an engineer at Gira� Tehnologies.)

When exeuting urved motion, �dis� still reports the distane travelled along the

urve, but aording to the manufaturer, �gvr� reports the veloity of the left wheel,

not the overall veloity. Moreover, testing shows that �gvr� is alulated using the

(probably inorret) formulas from the doumentation, so a program needs to take these

things into aount when trying to determine the atual speed. The urrent virtual gear

ratio is reported as �vg�. The angle that has been overed is not reported, as �ang�

is still always zero. A program would need to alulate suh things on its own, based on

distane travelled and suh.

Also note that attempting to preempt a urved motion ommand in the urrent ver-

sion of the miroontroller may ause unexpeted behaviour. Depending on the irum-

stanes, the virtual gear ratio may jump instantly to an undesirably high ratio. The

only way I found to avoid this is to set �vgr� to zero when preempting, but this will

ause the virtual gear ratio to jump instantly to zero instead. This is, of ourse, also

61

A. The Motor Controller Interfae

undesirable due to the physial stress it auses to the Gira�'s hardware. The problem

has been reported to Gira� Tehnologies and will hopefully be �xed in a future revision

of the miroontroller's software.

A.3. Connetion details

The ontroller's serial interfae is wired to the main omputer's serial port. To ommu-

niate with the ontroller, the parameters should be set to

� Baud Rate: 115200

� Data Bits: 8

� Stop Bit: 1

� Parity: None

When a omputer opens the serial port, it is expeted to set the DTR (Data Terminal

Ready) signal high. When the ontroller board detets the DTR signal, it will power up

and identify itself by transmitting a line like the following:

Giraf version,date

(followed by arriage return and line feed haraters). From testing on an atual Gira�,

however, it appears that before this line, another line may appear, saying just Ca>. It

may be an artifat of the board's initialization proess and should probably be ignored.

After the version line, an OK> prompt will appear (followed by arriage return and

line feed) when the board is ready to reeive ommands. Commands should not be sent

before this. When a ommand has been sent to the board (followed by a arriage return

only), the board will generate an appropriate response, followed by a new OK> prompt.

Again, a new ommand should not be sent before the new OK prompt has been seen.

All ommands and responses are made up of regular ASCII strings. In the doumen-

tation, parameters are regular human-readable deimal numbers (in ASCII enoding).

However, testing showed that while ommands an be sent using this format, responses

do not seem to work like this. This was not in the doumentation, but some detetive

work suggested that, depending on the type of the parameter, the responses are enoded

as follows:

Type Transfer format Binary interpretation

Integer I*aabbdd 32-bit two's omplement integer

Floating-point F*aabbdd IEEE 754 single-preision �oating point

62

A.4. Commands

The transfer formats enode the binary value as hexadeimal numbers, in little-endian

byte order. That is, eah pair of hexadeimal digits (i.e., eah 8-bit byte) has the most

signi�ant digit to the left, but on the other hand, the most signi�ant (aka highest

order) byte is to the right (i.e., aa is least signi�ant, and dd is most signi�ant). Thus,

some are needs to be taken to keep things ordered orretly when deoding the value.

Some ommands (�get button_data� and �get bulk_data�) return more than one

parameter. In this ase, the parameters are returned as a omma-separated name-value

list. For example, the response from �get button_data� looks like

but0:value,but1:value,dial:value

where eah individual value is enoded as desribed above.

A.4. Commands

All listed �set� ommands have a orresponding �get� ommand whih returns the last

set value. Commands that start neither with �set� nor �get� do not return any values

(only the OK> prompt).

Where not otherwise spei�ed, ommand parameters are �oating-point values.

A.4.1. set v

Sets the maximum speed (veloity), in meters per seond.

A.4.2. set r

Selets the movement style, aording to the following table.

r mode

r = 0 Rotating in plae

0 < r ≤ 50 Straight line motion

50 < r Curved motion

(The doumentation do not mention the r > 50 requirement for urved motion.)

A.4.3. set a

Sets the aeleration, in meters per seond per seond.

63

A. The Motor Controller Interfae

A.4.4. set p

Starts a move. All other motion parameters must be set before issuing this ommand.

When rotating in plae, spei�es number of degrees to rotate. When moving in a

straight or urved line, spei�es number of meters to move. (See A.2 for details.)

If another move is already in progress, the previous move may be preempted, or the

new move queued until the previous move is omplete, depending on what mode is set

with �set mode�. (See A.4.8.)

A.4.5. get ang

Gets the urrent angle.

When rotating in plae, returns degrees rotated so far. When moving in a straight or

urved line, always zero.

A.4.6. get dis

Gets the urrent distane.

When moving in a straight or urved line, returns distane travelled so far. When

rotating in plae, always zero.

A.4.7. get gvr

Gets the urrent (instantaneous) veloity.

When rotating in plae, returns degrees per seond. When moving in a straight or

urved line, returns meter per seond. If moving in a urved line, speial are must be

taken when interpreting this value. (See A.2.3.)

A.4.8. set mode

An integer. Sets the movement mode. This is a bitmask. The following bits an be set

(but an not be read bak):

Bit Value Desription

0 1 Absolute movement mode

2 4 Bu�er next move

The following bits an be read:

64

A.4. Commands

Bit Value Desription

3 8 ESTOP

7 128 Currently moving

In relative mode, all moves are relative to the urrent position. When absolute mode

is enabled, the Gira� begins traking distanes sine the moment absolute mode is

enabled. All moves, inluding the �set p� parameters and the reported �ang� and

�dis�, beomes relative to this position. Note that this only traks distane travelled,

and is dependent on the urrent movement style. Changing the style will reset the

absolute mode position to the urrent position.

In unbu�ered mode, new moves issued with �set p� preempt the urrent move, and

starts immediately. When bu�ering is enabled, a new move gets queued and only starts

when the previous move ompletes (i.e., when the Gira� omes to a full stop). Up to 4

moves an be bu�ered.

If the ESTOP bit is set, it means something with the wheels is not working orretly.

Details may be available from the manufaturer.

A.4.9. set undok

Starts an undok sequene. Queues two moves: one to bak out the spei�ed distane,

and one to rotate 180 degrees.

A.4.10. home

No parameter. Starts the head homing sequene. The head slowly tilts, searhing for

its �home� position. This is the position the head is in when the Gira� is �sleeping�,

about 45 degrees o� vertial.

Note that the homing sequene appears to start automatially when the miroon-

troller is ativated, so issuing this ommand is usually not needed.

A.4.11. get tilt_homing_state

An integer. Returns the homing status.

65

A. The Motor Controller Interfae

Value Desription

0 Homing not started

1 Homing started

2 Homing failed

3 Homing sueeded

A.4.12. set tilt_angle_from_home

Tilts the head to the given angle, in radians, relative to the home position. (The dou-

mentation says relative to vertial, but that's not the ase.)

If the head homing sequene has not been ompleted, this ommand will preempt the

homing sequene and usually tilt the head to the wrong angle.

A.4.13. set vg

Sets the maximum virtual gear ratio. See A.2.3.

A.4.14. set vgr

Sets the virtual gear ratio rate of hange (per meter). See A.2.3.

A.4.15. set dp

Sets the Clothoid Deeleration Point, the point in the move where the virtual gear ratio

starts deelerating to its �nal value. See A.2.3.

A.4.16. get vg

Gets the urrent virtual gear ratio. See A.2.3.

A.4.17. get but0

Gets number of button 0 presses sine miroontroller startup.

A.4.18. get but1

Gets number of button 1 presses sine miroontroller startup.

66

A.4. Commands

A.4.19. get dial

Gets rotation of dial sine miroontroller startup.

A.4.20. get button_data

Gets �but0�, �but1�, and �dial� with a single ommand. Returns the parameters as a

list.

A.4.21. get bulk_data

Gets �ang�, �dis�, �gvr�, �tilt_angle_from_home�, �imdl�, �imdr�, �vg�, and

�mode� with a single ommand. Returns the parameters as a list. Very useful for

regular retrieval of motor odometry.

67

B. Soure ode listings

This appendix has been added for the onveniene of those reading this thesis, so that

they don't have to get a opy of the CD-ROM to see the soure ode. Instead, they an

peruse it here.

B.1. Gira�Motor.hpp

#ifndef GIRAFFMOTOR_HPP

#define GIRAFFMOTOR_HPP

#include "DisplayWindow.hpp"

#include <windef.h>

#include <fstream>

class GiraffMotorSim;

class GiraffMotor

{

public:

enum ReplyType {

NoReply,

SimpleReply,

BulkReply

};

GiraffMotor(DisplayWindow* win);

~GiraffMotor();

bool Start();

void Stop();

bool Process();

bool StartRecord(const std::string& name);

void StopRecord();

bool StartPlayback(const std::string& name);

void StopPlayback();

// manual/interactive commands triggered by user

void Undock();

void Home();

void SetTilt(double angle);

void GetBulkData();

void SetMotion(double speed);

void SetTurn(double speed);

// special functions

bool SendCommand(const std::string& cmd,

bool silent=false);

void AddReply(const std::string& reply);

std::string GetParameter(const std::string& param,

ReplyType type,

bool silent=false);

std::string SetParameter(const std::string& param,

69

B. Soure ode listings

double value,

bool silent=false);

bool SendUserCommand(const std::string& cmd);

// Hack to check impact of get_bulk_data per-frame,

// should otherwise always be left on.

// This field should be removed, especially if motor

// control is moved into a separate thread

bool m_autoupdate;

private:

static const double turn_factor;

DisplayWindow* m_win;

HANDLE m_port;

LONGLONG m_freq;

std::ofstream m_mrec;

std::ifstream m_mplay;

GiraffMotorSim* m_sim;

bool m_rec, m_play;

LONGLONG m_rectime, m_playtime;

std::string m_readbuf;

bool m_bufchecked;

double m_accel, m_vgaccel;

// current position estimate

double m_curx, m_cury, m_curdir, m_curspd, m_currot;

// current user request

double m_usrmotionspd, m_usrturnspd;

double m_curmotionspd, m_curturnspd;

// current motor command

int m_turnmode;

unsigned m_absmode;

double m_speed, m_gear, m_gearrate, m_gearpos;

double m_nextdis, m_nextpos, m_brkdist;

// current motor status

double m_cang, m_cdis, m_gvr, m_cvg;

double m_lcang, m_lcdis, m_lgvr, m_lcvg;

unsigned m_cmode, m_lmode;

LONGLONG m_cstamp, m_lstamp;

double m_timedelta;

bool m_not_first;

void RecordParameter(const std::string& param,

const std::string& reply,

const std::string& orig,

ReplyType type,

char flag);

bool PlaybackData();

bool InitPort();

bool InitSimulator();

void WaitForLine();

bool ReadLine(std::string& line,

ReplyType type=NoReply,

bool silent=false);

bool ReadReply(std::string& reply,

ReplyType type,

bool silent=false);

std::string WriteCommand(const std::string& out,

ReplyType type,

char flag,

bool silent);

bool ReadVersion();

std::string FormatReply(const std::string& reply,

ReplyType type);

void FormatField(std::ostream& ost,

std::istream& ist);

unsigned ToInt(unsigned u);

float ToFloat(unsigned u);

unsigned ToInt(const std::string& data);

float ToFloat(const std::string& data);

void ParseBulkData(const std::string& data);

void RunMotor();

void CalcMove();

70

B.1. Gira�Motor.hpp

void CalcRotate();

void CalcMoveStep(double dis);

void CalcRotateStep(double ang);

double CalcMoveBrakeDist(double spd);

double CalcRotateBrakeDist(double rot);

void UpdatePosition();

void ShowPosition();

};

#define GIRAFF_BUFFERS 4

class GiraffMotorSim

{

public:

GiraffMotorSim(GiraffMotor* ctl);

~GiraffMotorSim();

void SimulateCommand(const std::string& cmd);

private:

GiraffMotor* m_ctl;

static const double turn_factor;

static const double default_tilt;

struct Move

{

unsigned mode;

// parameters used

double v, r, a, p;

double vg, vgr, cdp;

};

// wheel moves

unsigned m_bufcount;

Move m_buf[GIRAFF_BUFFERS+1];

// head tilts

unsigned m_homing;

double m_tilt;

// for timing

// (c = counter value, equivalent to time)

LONGLONG m_freq, m_lastc;

// Current Giraff state

double m_cang, m_cdis, m_cvg;

double m_vang, m_vdis, m_gvr;

// Current motion profile

LONGLONG m_startc, m_stopc;

// distance part (for moving around)

LONGLONG m_updc, m_downdc;

double m_startdv, m_peakdv, m_rampda;

double m_refdp, m_updp, m_downdp, m_stopdp;

// angular part (for turning)

LONGLONG m_upac, m_downac;

double m_startav, m_peakav, m_rampaa;

double m_refap, m_upap, m_downap, m_stopap;

// gear ratio part

LONGLONG m_upgc, m_downgc, m_stopgc;

double m_startgr, m_peakgr, m_rupgr, m_rdowngr;

double m_stopgr, m_downgd;

void StartStraight(double dist,

double start_pos,

double start_spd,

double cdp,

double start_vg);

void StartRotate(double degrees,

double start_angle,

double start_spd);

double TimeFromPosition(double pos,

double ramp_up_time,

double cruise_time,

double ramp_down_time,

71

B. Soure ode listings

double ramp_up_dist,

double cruise_dist,

double ramp_down_dist,

double accel,

double start_speed,

double peak_speed);

void UpdateMotion();

void StartMotion();

void EndMotion();

bool QueueMotion();

bool QueueUndock(double dist);

void SimulateLag(unsigned bytes);

void SimulateReply(const std::string& reply);

void InputFloat();

void Output(std::ostream& out, double val);

void Output(std::ostream& out, unsigned val);

};

#endif // GIRAFFMOTOR_HPP

B.2. Gira�Motor.pp

#include "GiraffMotor.hpp"

#include <windows.h>

#include <sstream>

#include <iomanip>

#define PORT_NAME "COM1"

using namespace std;

// The acceleration the GiraffMotor class uses by default.

// (Not necessarily the same as what the motor

// controller board itself uses by default.)

#define DEF_ACCEL 0.5

// The virtual gear ratio rate of change the GiraffMotor

// class uses by default.

#define DEF_VGACCEL 1.0

// The distance between the Giraff’s wheels are 499mm,

// so when rotating in place, their turn radius is 249.5mm.

#define TURN_RADIUS 0.2495

// Conversion factor between degrees and

// circle arc covered by wheels.

#define TURN_FACTOR (180 / (TURN_RADIUS * M_PI))

// This is used when the user is controlling the motor

// manually, so the distance to go isn’t known in

// advance. To calculate the distance we tell the

// motor to go, we multiply the "braking distance"

// with this factor. (Every time the distance left falls

// below a factor of 2, a new command is automatically

// sent to the controller in order to make it keep going.

// Hence, this factor must be more than 2.)

#define AHEAD_FACTOR 10

// Use absolute mode, which makes position tracking

// a little more accurate in some cases.

// Unfortunately, curved motion may be troublesome in

// this mode, because of bugs in the controller.

//#define USE_ABSOLUTE_MODE

// Whether the simulated controller will reverse back if

// its braking distance is too long to stop at the requested

72

B.2. Gira�Motor.pp

// position (applicable when the destination position is

// suddenly changed while traveling at full speed).

// The real Giraff seems to do this in absolute mode.

#define SIM_OVERSHOOT_FIX

// Enable simulation of curved motion.

#define SIM_CURVED

// gvr is (incorrectly) speed of left wheel

// instead of overall speed.

#define GVR_IS_LEFT

// Show the "OK >" prompt on the display.

//#define SHOW_PROMPT

enum ModeBit {

MODE_ABSOLUTE = 1,

MODE_BUFFERED = 4,

MODE_ESTOP = 8,

MODE_MOVING = 128

};

static double fix_degrees(double angle)

{

while (angle < 0)

{

angle += 360;

}

while (angle >= 360)

{

angle -= 360;

}

// returned angle is between 0 and 360

return angle;

}

#if 0

static double ctr_degrees(double angle)

{

// returned angle is between -180 and 180

return fix_degrees(angle+180)-180;

}

#endif

GiraffMotor* motorControl;

const double GiraffMotor::turn_factor = TURN_FACTOR;

GiraffMotor::GiraffMotor(DisplayWindow* win) :

m_autoupdate(true),

m_win(win), m_port(INVALID_HANDLE_VALUE),

m_sim(NULL), m_rec(false), m_play(false),

m_rectime(0), m_playtime(0),

m_bufchecked(false),

m_accel(DEF_ACCEL), m_vgaccel(DEF_VGACCEL),

m_curx(0), m_cury(0), m_curdir(0), m_curspd(0),

m_usrmotionspd(0), m_usrturnspd(0),

m_curmotionspd(0), m_curturnspd(0),

m_turnmode(0), m_absmode(0),

m_cang(0), m_cdis(0), m_gvr(0), m_cvg(0),

m_lcang(0), m_lcdis(0), m_lgvr(0), m_lcvg(0),

m_cmode(0), m_lmode(0),

m_cstamp(0), m_lstamp(0), m_timedelta(0),

m_not_first(true)

{

// get timer frequency

LARGE_INTEGER freq;

QueryPerformanceFrequency(&freq);

m_freq = freq.QuadPart;

}

GiraffMotor::~GiraffMotor()

73

B. Soure ode listings

{

StopRecord();

StopPlayback();

Stop();

}

bool GiraffMotor::Start()

{

if (!InitPort())

{

// Could not initialize serial port

Stop();

return false;

}

if (!ReadVersion())

{

// Did not detect Giraff board

//Stop();

return true;

}

return true;

}

void GiraffMotor::Stop()

{

// Stop any running simulation

if (m_sim)

{

delete m_sim;

m_sim = NULL;

}

// If the serial port is open, close it

if (m_port != INVALID_HANDLE_VALUE)

{

CloseHandle(m_port);

m_port = INVALID_HANDLE_VALUE;

}

}

bool GiraffMotor::Process()

{

std::string line;

// Check for unexpected responses,

// maybe resulting from user commands

while (ReadLine(line))

{

// unexpected

}

if (!m_autoupdate)

{

return true;

}

if (m_play)

{

if (!PlaybackData())

{

return false;

}

UpdatePosition();

}

else

{

// Transfer current motor state

// (this is a few ms of just waiting,

// maybe consider creating a separate

// thread for these things, though that

// may make it harder to synchronize

// readings from the camera and motor)

string data = GetParameter("bulk_data", BulkReply, true);

ParseBulkData(data);

// Send motor commands as needed

RunMotor();

74

B.2. Gira�Motor.pp

}

ShowPosition();

return true;

}

bool GiraffMotor::StartRecord(const string& name)

{

if (m_rec)

{

StopRecord();

}

string fn = name + ".txt";

// start motor recording

m_mrec.open(fn.c_str(), ios_base::out | ios_base::trunc);

if (m_mrec.is_open())

{

// get reference time for recording

LARGE_INTEGER current;

QueryPerformanceCounter(¤t);

m_rectime = current.QuadPart;

// set recording state

m_rec = true;

m_win->PrintLeft("Starting motor record " + fn);

return true;

}

else

{

m_win->PrintLeft("Couldn’t start motor record");

return false;

}

}

void GiraffMotor::StopRecord()

{

if (m_rec)

{

m_mrec.close();

m_rec = false;

m_win->PrintLeft("Motor record stopped");

}

}

bool GiraffMotor::StartPlayback(const string& name)

{

string fn = name + ".txt";

// start motor recording

m_mplay.open(fn.c_str(), ios_base::in);

if (m_mplay.is_open())

{

// get reference time for playback

LARGE_INTEGER current;

QueryPerformanceCounter(¤t);

m_playtime = current.QuadPart;

// set recording state

m_play = true;

m_win->PrintLeft("Starting motor playback " + fn);

return true;

}

else

{

m_win->PrintLeft("Couldn’t start motor playback");

return false;

}

}

void GiraffMotor::StopPlayback()

{

if (m_play)

{

m_mplay.close();

m_play = false;

m_win->PrintLeft("Motor playback stopped");

75

B. Soure ode listings

}

}

void GiraffMotor::RecordParameter(const std::string& param,

const std::string& reply,

const std::string& orig,

ReplyType type,

char flag)

{

if (!m_rec)

{

return;

}

LARGE_INTEGER current;

QueryPerformanceCounter(¤t);

LONGLONG diff = current.QuadPart - m_rectime;

double ofs = (double)diff / m_freq;

m_mrec << setprecision(3) << fixed

<< setw(8) << ofs

<< ":[" << flag << "] "

<< param << ": "

<< FormatReply(reply, type);

if (!orig.empty())

{

m_mrec << " <= " << orig;

}

m_mrec << endl;

}

bool GiraffMotor::PlaybackData()

{

if (m_mplay.eof())

{

// already complete

return false;

}

for (;;)

{

double ofs;

string line;

m_mplay >> ofs;

if (m_mplay.eof())

{

// playback complete

return false;

}

getline(m_mplay, line);

// delay as appropriate to force the

// playback to have about the same speed

// as the original recording did

LARGE_INTEGER current;

QueryPerformanceCounter(¤t);

LONGLONG target = m_playtime + ofs * m_freq;

LONGLONG diff = target - current.QuadPart;

if (diff > 0)

{

unsigned msec = (diff * 1000) / m_freq;

if (msec > 0)

{

Sleep(msec);

}

}

if (line.length() < 4)

{

return false;

}

char flag = line[2];

size_t colpos = line.find(": ", 5);

if (colpos == string::npos)

76

B.2. Gira�Motor.pp

{

return false;

}

string param = line.substr(5, colpos-5);

size_t replypos = colpos+2;

size_t seppos = line.find(" <= ", replypos);

string reply, orig;

if (seppos == string::npos)

{

reply = line.substr(replypos);

}

else

{

reply = line.substr(replypos, seppos-replypos);

orig = line.substr(seppos+4);

}

if (flag == ’ ’ && param == "bulk_data")

{

ParseBulkData(reply);

if (m_brkdist != 0)

{

// update state as needed to estimate

// the original movements

if (!(m_cmode & MODE_MOVING))

{

m_brkdist = 0;

}

}

// this kind of record happens after we get a video frame,

// so exit loop here in order to display the recorded frame

break;

}

if (flag == ’S’)

{

// recorded a SetParameter

string cmd = "set " + param + " " + orig;

m_win->PrintRight(cmd);

m_win->PrintRight(reply);

// parse what we need to estimate

// the original movements

istringstream ist(reply);

if (param == "r")

{

double r;

ist >> r;

m_turnmode = (r > 0) ? 1 : -1;

}

else if (param == "mode")

{

// For mode, the reply is generally incorrect,

// so take the mode from the original request.

istringstream ist2(orig);

unsigned mode;

ist2 >> mode;

m_absmode = mode & MODE_ABSOLUTE;

}

else if (param == "v")

{

ist >> m_speed;

}

else if (param == "vg")

{

ist >> m_gear;

}

else if (param == "vgr")

{

ist >> m_gearrate;

}

else if (param == "p")

{

double pos;

77

B. Soure ode listings

ist >> pos;

if (m_turnmode > 0)

{

double dist = m_absmode ? pos - m_cang : pos;

if (dist != 0)

{

int sign = (dist > 0) ? 1 : -1;

m_brkdist = CalcMoveBrakeDist(sign * m_speed);

}

}

else if (m_turnmode < 0)

{

double dist = m_absmode ? pos - m_cdis : pos;

if (dist != 0)

{

int sign = (dist > 0) ? 1 : -1;

m_brkdist = CalcRotateBrakeDist(sign * m_speed * turn_factor);

}

}

}

}

else if (flag == ’G’)

{

// recorded a GetParameter

string cmd = "get " + param;

m_win->PrintRight(cmd);

m_win->PrintRight(reply);

}

else if (flag == ’C’)

{

// recorded a SendCommand

m_win->PrintRight(param);

}

}

return true;

}

void GiraffMotor::Undock()

{

SetParameter("undock", -0.5);

}

void GiraffMotor::Home()

{

SendCommand("home");

}

void GiraffMotor::SetTilt(double angle)

{

SetParameter("tilt_angle_from_home", angle);

}

void GiraffMotor::GetBulkData()

{

GetParameter("bulk_data", BulkReply);

}

void GiraffMotor::SetMotion(double speed)

{

m_usrmotionspd = speed;

}

void GiraffMotor::SetTurn(double speed)

{

m_usrturnspd = speed;

}

bool GiraffMotor::InitPort()

{

#ifdef PORT_NAME

// Try to open the serial port that is

// connected to the motor control board.

78

B.2. Gira�Motor.pp

m_port = CreateFile(PORT_NAME,

GENERIC_READ | GENERIC_WRITE,

0,

NULL,

OPEN_EXISTING,

0,

NULL);

if (m_port == INVALID_HANDLE_VALUE)

{

// Could not open real serial port,

// initialize simulator instead,

// so the rest of the program

// can still be used.

return InitSimulator();

}

// Get current serial port settings

DCB dcb;

memset(&dcb, 0, sizeof(dcb));

dcb.DCBlength = sizeof(dcb);

if (!GetCommState(m_port, &dcb))

{

// Could not get state from serial port

return false;

}

// Configure serial port

// Set 115200 bps, 8 data bits, no parity, 1 stop bit

dcb.BaudRate = CBR_115200;

dcb.ByteSize = 8;

dcb.Parity = NOPARITY;

dcb.StopBits = ONESTOPBIT;

// Set event char to the end of line character,

// so that we can use WaitCommEvent to wait

// for the arrival of a complete line

dcb.EvtChar = ’\n’;

if (!SetCommState(m_port, &dcb))

{

// Could not configure serial port

return false;

}

// Set the events that WaitCommEvent should wait for.

if (!SetCommMask(m_port, EV_ERR | EV_RXFLAG))

{

// Could not configure serial port

return false;

}

// Set appropriate timeouts to make sure ReadFile

// always returns immediately without waiting

// (possibly returning an error if no data is

// available). This is necessary since we

// don’t know in advance how long a reply is

// going to be. So if we need to wait for one,

// we’d rather use WaitCommEvent, then use

// ReadFile to read whatever we got, without

// waiting any longer than that.

COMMTIMEOUTS tos;

tos.ReadIntervalTimeout = MAXDWORD;

tos.ReadTotalTimeoutMultiplier = 0;

tos.ReadTotalTimeoutConstant = 0;

tos.WriteTotalTimeoutMultiplier = 0;

tos.WriteTotalTimeoutConstant = 0;

if (!SetCommTimeouts(m_port, &tos))

{

// Could not configure serial port

return false;

}

return true;

#else

// No serial port, initialize simulator

return InitSimulator();

#endif

}

79

B. Soure ode listings

bool GiraffMotor::InitSimulator()

{

m_sim = new GiraffMotorSim(this);

return true;

}

void GiraffMotor::WaitForLine()

{

if (!m_port)

{

return;

}

DWORD mask = 0;

// There’s a risk that this could wait forever

// if the motor board is failing, perhaps we

// should use the overlapped I/O mode so that

// we can limit the waiting time.

WaitCommEvent(m_port, &mask, NULL);

}

bool GiraffMotor::ReadLine(string& line,

ReplyType type,

bool silent)

{

// see if there’s already a complete line in the buffer

if (!m_bufchecked &&

!m_readbuf.empty())

{

size_t n = m_readbuf.find(’\n’);

if (n != string::npos)

{

// found one, return it

n++; // end line after the \n

line = m_readbuf.substr(0, n);

m_readbuf.erase(0, n);

if (!silent)

{

m_win->PrintRight(FormatReply(line, type));

}

return true;

}

else

{

m_bufchecked = true;

}

}

// no such luck, try to read more from the serial port

char buf[256];

DWORD bytesRead;

if (!m_port ||

!ReadFile(m_port, buf, sizeof(buf), &bytesRead, NULL))

{

// read failure

return false;

}

// read successful, see if we now have a complete line

char* eol = (char*)memchr(buf, ’\n’, bytesRead);

if (eol)

{

// we have one, return it

eol++; // end line after the \n

line = m_readbuf;

line.append(buf, eol-buf);

// store remainder of buffer for later

m_readbuf.assign(eol, buf+bytesRead-eol);

m_bufchecked = false;

if (!silent)

{

m_win->PrintRight(FormatReply(line, type));

}

return true;

}

80

B.2. Gira�Motor.pp

else

{

// incomplete line, store buffer for later

m_readbuf.append(buf, bytesRead);

m_bufchecked = true;

return false;

}

}

bool GiraffMotor::ReadReply(string& reply,

ReplyType type,

bool silent)

{

string line1, line2;

if (type != NoReply)

{

while (!ReadLine(line1, type, silent))

{

WaitForLine();

}

}

#ifndef SHOW_PROMPT

silent = true;

#endif // SHOW_PROMPT

while (!ReadLine(line2, NoReply, silent))

{

WaitForLine();

}

// Remove the \r\n from the reply.

reply = line1.substr(0, line1.length()-2);

// Ignore line2 for now, it is always supposed

// to be "OK >\r\n", and in the event that it isn’t,

// I’m not yet sure what to do about it.

return true;

}

void GiraffMotor::AddReply(const string& reply)

{

m_readbuf += reply;

m_bufchecked = false;

}

string GiraffMotor::WriteCommand(const string& out,

ReplyType type,

char flag,

bool silent)

{

string reply;

if (!silent)

{

m_win->PrintRight(out);

}

if (m_sim)

{

m_sim->SimulateCommand(out);

ReadReply(reply, type, silent);

return reply;

}

DWORD written = 0;

if (!m_port ||

!WriteFile(m_port, out.data(), out.length(),

&written, NULL) ||

written != out.length() ||

!ReadReply(reply, type, silent))

{

return string();

}

return reply;

}

bool GiraffMotor::SendCommand(const string& cmd,

bool silent)

81

B. Soure ode listings

{

string reply;

reply = WriteCommand(cmd + "\r", NoReply, ’C’, silent);

RecordParameter(cmd, reply, "", NoReply, ’C’);

return true;

}

string GiraffMotor::GetParameter(const string& param,

ReplyType type,

bool silent)

{

string reply;

char flag = silent ? ’ ’ : ’G’;

ostringstream ost;

ost << "get " << param << "\r";

reply = WriteCommand(ost.str(), type,

flag, silent);

RecordParameter(param, reply, "", type, flag);

return reply;

}

string GiraffMotor::SetParameter(const string& param,

double value,

bool silent)

{

string valstr, reply;

ostringstream ost;

ost << value;

valstr = ost.str();

reply = WriteCommand("set " + param +

" " + valstr + "\r", SimpleReply,

’S’, silent);

RecordParameter(param, reply, valstr, SimpleReply, ’S’);

return reply;

}

bool GiraffMotor::SendUserCommand(const string& cmd)

{

string reply;

if (cmd.compare(0, 4, "get ") == 0)

{

if (cmd == "get bulk_data")

{

reply = WriteCommand(cmd + "\r", BulkReply, ’G’, false);

RecordParameter(cmd.substr(4), reply,

"", BulkReply, ’G’);

}

else

{

reply = WriteCommand(cmd + "\r", SimpleReply, ’G’, false);

RecordParameter(cmd.substr(4), reply,

"", SimpleReply, ’G’);

}

}

else if (cmd.compare(0, 4, "set ") == 0)

{

size_t n = cmd.find(’ ’, 4);

reply = WriteCommand(cmd + "\r", SimpleReply, ’S’, false);

if (n != string::npos)

{

RecordParameter(cmd.substr(4, n-4), reply,

cmd.substr(n+1), SimpleReply, ’S’);

}

else

{

RecordParameter(cmd.substr(4), reply,

"", SimpleReply, ’S’);

}

}

else

{

reply = WriteCommand(cmd + "\r", NoReply, ’C’, false);

82

B.2. Gira�Motor.pp

RecordParameter(cmd, reply, "", NoReply, ’C’);

}

return true;

}

bool GiraffMotor::ReadVersion()

{

string line;

// read initial line

while (!ReadLine(line))

{

WaitForLine();

}

if (line.at(0) != ’#’)

{

// Seems the controller might send an extra line

// (saying "Ca>") before it sends the version

// line. If this happens, try reading again.

while (!ReadLine(line))

{

WaitForLine();

}

}

if (line.at(0) != ’#’)

{

// If we still haven’t got a version, give up.

return false;

}

// We have the version line, wait for OK line.

if (!ReadReply(line, NoReply))

{

return false;

}

// All done.

return true;

}

string GiraffMotor::FormatReply(const string& reply,

ReplyType type)

{

istringstream ist(reply);

ostringstream ost;

ost << setfill(’0’) << setprecision(5) << fixed;

if (type == BulkReply)

{

// Format bulk_data, which is a comma-separated

// list of variables, where the name is separated

// from the value by a colon.

int next = ist.get();

while (next != EOF)

{

// copy names and commas verbatim

ost.put(next);

if (next == ’:’)

{

// convert value

FormatField(ost, ist);

}

next = ist.get();

}

}

else if (type == SimpleReply)

{

// Format a normal single-value reply.

FormatField(ost, ist);

}

else

{

// copy reply verbatim

int next = ist.get();

while (next != EOF)

{

83

B. Soure ode listings

ost.put(next);

next = ist.get();

}

}

return ost.str();

}

void GiraffMotor::FormatField(ostream& ost,

istream& ist)

{

int next = ist.peek();

char ch;

unsigned u;

switch (next)

{

case ’I’:

// hex-encoded 32-bit integer

ist.get(ch); // ’I’

ist.get(ch); // ’*’

ist >> hex >> u;

ost << ToInt(u);

break;

case ’F’:

// hex-encoded 32-bit floating point

ist.get(ch); // ’F’

ist.get(ch); // ’*’

ist >> hex >> u;

ost << ToFloat(u);

break;

default:

// assume ASCII-encoded floating point,

// copy unmodified

while (next != EOF &&

next != ’\r’ &&

next != ’,’)

{

ch = ist.get();

ost.put(ch);

next = ist.peek();

}

break;

}

}

unsigned GiraffMotor::ToInt(unsigned u)

{

union {

unsigned val;

unsigned char d[4];

} v;

// convert byte order

v.d[0] = u >> 24;

v.d[1] = u >> 16;

v.d[2] = u >> 8;

v.d[3] = u;

return v.val;

}

float GiraffMotor::ToFloat(unsigned u)

{

union {

float val;

unsigned char d[4];

} v;

// convert byte order

v.d[0] = u >> 24;

v.d[1] = u >> 16;

v.d[2] = u >> 8;

v.d[3] = u;

return v.val;

}

84

B.2. Gira�Motor.pp

unsigned GiraffMotor::ToInt(const string& data)

{

istringstream ist(data);

char ch;

unsigned u, i;

switch (ist.peek())

{

case ’I’:

// hex-encoded 32-bit integer

ist.get(ch); // ’I’

ist.get(ch); // ’*’

ist >> hex >> i;

u = ToInt(i);

break;

case ’F’:

// hex-encoded 32-bit floating point

// (wrong type for this routine,

// shouldn’t happen)

u = 0;

break;

default:

// assume ASCII-encoded integer

ist >> u;

break;

}

return u;

}

float GiraffMotor::ToFloat(const string& data)

{

istringstream ist(data);

char ch;

unsigned u;

float f;

switch (ist.peek())

{

case ’I’:

// hex-encoded 32-bit integer

ist.get(ch); // ’I’

ist.get(ch); // ’*’

ist >> hex >> u;

f = ToInt(u);

break;

case ’F’:

// hex-encoded 32-bit floating point

ist.get(ch); // ’F’

ist.get(ch); // ’*’

ist >> hex >> u;

f = ToFloat(u);

break;

default:

// assume ASCII-encoded floating point

ist >> f;

break;

}

return f;

}

void GiraffMotor::ParseBulkData(const string& data)

{

// save previous state

m_lcang = m_cang;

m_lcdis = m_cdis;

m_lgvr = m_gvr;

m_lcvg = m_cvg;

m_lmode = m_cmode;

m_lstamp = m_cstamp;

// estimate time delta for new state

LARGE_INTEGER current;

85

B. Soure ode listings

QueryPerformanceCounter(¤t);

m_cstamp = current.QuadPart;

if (m_not_first)

{

if (m_cstamp == m_lstamp)

{

// if no time has passed since last update

// for some reason, do not update state yet,

// as doing so could cause problems later

// (should never happen, but just in case)

m_timedelta = 0;

return;

}

m_timedelta = (double)(m_cstamp - m_lstamp) / m_freq;

}

else

{

m_timedelta = 0;

m_not_first = true;

}

// iterate through each name:value combination

size_t cur_pos = 0;

while (cur_pos < data.length())

{

// get the name

size_t colon = data.find(’:’, cur_pos);

if (colon == string::npos)

{

// not a valid entry, abort

break;

}

string name = data.substr(cur_pos, colon-cur_pos);

// get the value

size_t comma = data.find(’,’, colon+1);

if (comma != string::npos)

{

// comma found, more entries follow

cur_pos = comma+1;

}

else

{

// no more commas, this is the last entry

cur_pos = data.length();

comma = data.length();

}

string value = data.substr(colon+1, comma-colon-1);

// parse the entry

if (name == "cang")

{

m_cang = -ToFloat(value);

}

else if (name == "cdis")

{

m_cdis = ToFloat(value);

}

else if (name == "gvr")

{

m_gvr = ToFloat(value);

}

else if (name == "cvg")

{

m_cvg = ToFloat(value);

}

else if (name == "mode")

{

m_cmode = ToInt(value);

}

}

}

void GiraffMotor::RunMotor()

86

B.2. Gira�Motor.pp

{

UpdatePosition();

if (m_turnmode > 0 && m_brkdist != 0)

{

// Motor is currently moving...

if (m_usrmotionspd == 0)

{

// ...and we’re waiting for it to stop...

if (m_cmode & MODE_MOVING)

{

// ...and it hasn’t stopped yet.

// Calculate braking distance from current speed,

// plus 0.01s "reaction time" for sending

// commands to the controller.

double brake_dist = CalcMoveBrakeDist(m_curspd) +

m_curspd * 0.01;

if ((m_nextdis > 0 &&

m_nextpos > (m_cdis + brake_dist)) ||

(m_nextdis < 0 &&

m_nextpos < (m_cdis + brake_dist)))

{

// The last command asked the controller

// to move too far. Preempt last command

// to make it stop ASAP.

CalcMoveStep(brake_dist);

SetParameter("p", m_nextpos);

}

return;

}

else

{

// ...and it has stopped.

m_brkdist = 0;

}

}

else

{

// ...and we want it to keep moving.

if (m_nextdis == 0 ||

m_usrmotionspd != m_curmotionspd ||

m_usrturnspd != m_curturnspd)

{

// Got new command from user.

CalcMove();

}

else if ((m_nextdis > 0 &&

m_nextpos < m_cdis + 2*m_brkdist) ||

(m_nextdis < 0 &&

m_nextpos > m_cdis + 2*m_brkdist))

{

// Renew move command to keep moving.

CalcMoveStep(AHEAD_FACTOR*m_brkdist);

}

else

{

return;

}

SetParameter("cdp", m_gearpos);

SetParameter("vgr", m_gearrate);

SetParameter("vg", m_gear);

SetParameter("p", m_nextpos);

return;

}

}

else if (m_turnmode < 0 && m_brkdist != 0)

{

// Motor is currently turning in place...

if (m_usrturnspd == 0 ||

m_usrmotionspd != 0)

{

// ...and we’re waiting for it to stop.

87

B. Soure ode listings

if (m_cmode & MODE_MOVING)

{

// ...and it hasn’t stopped yet.

// Calculate braking distance from current speed,

// plus 0.01s "reaction time" for sending

// commands to the controller.

double brake_dist = CalcRotateBrakeDist(m_currot) +

m_currot * 0.01;

if ((m_nextdis > 0 &&

m_nextpos > (m_cang + brake_dist)) ||

(m_nextdis < 0 &&

m_nextpos < (m_cang + brake_dist)))

{

// The last command asked the controller

// to move too far. Preempt last command

// to make it stop ASAP.

CalcRotateStep(brake_dist);

SetParameter("p", m_nextpos);

}

return;

}

else

{

// The motor has stopped.

m_brkdist = 0;

}

}

else

{

// ...and we want it to keep turning.

if (m_nextdis == 0 ||

m_usrturnspd != m_curturnspd)

{

// Got new command from user.

CalcRotate();

}

else if ((m_nextdis > 0 &&

(m_nextpos - (m_cang + 2*m_brkdist)) < 0) ||

(m_nextdis < 0 &&

(m_nextpos - (m_cang + 2*m_brkdist)) > 0))

{

// Renew turn command to keep moving.

CalcRotateStep(AHEAD_FACTOR*m_brkdist);

}

else

{

return;

}

SetParameter("p", m_nextpos);

return;

}

}

// If we get here, then the motor is idle.

if (m_usrmotionspd != 0)

{

// Request to move.

CalcMove();

SetParameter("r", 1000);

SetParameter("mode", m_absmode);

SetParameter("a", m_accel);

SetParameter("v", m_speed);

SetParameter("cdp", m_gearpos);

SetParameter("vgr", m_gearrate);

SetParameter("vg", m_gear);

SetParameter("p", m_nextpos);

}

else if (m_usrturnspd != 0)

{

// Request to turn in place.

CalcRotate();

88

B.2. Gira�Motor.pp

SetParameter("r", 0);

SetParameter("mode", m_absmode);

SetParameter("a", m_accel);

SetParameter("v", m_speed);

SetParameter("p", m_nextpos);

}

}

void GiraffMotor::CalcMove()

{

m_curmotionspd = m_usrmotionspd;

m_curturnspd = m_usrturnspd;

// Set wheel speed

m_speed = fabs(m_curmotionspd);

if (m_speed == 0 || m_curturnspd == 0)

{

// Moving straight ahead.

m_gear = 0;

// Due to bugs in the motor controller,

// just suddenly telling the controller to

// take the gear ratio to zero using "cdp"

// is problematic (the gear ratio jumps

// and causes the motor to turn faster for

// a while). Setting "vg" to zero makes no

// appreciable difference. Setting "vgr" to

// zero forces the ratio to zero instantenously,

// with a horrible jerk that’s probably not

// good for the motors.

m_gearrate = 0;

}

else

{

// Calculate the virtual gear ratio needed to

// turn with the requested angular speed,

// if we’ll also be traveling forward

// at the requrested overall speed.

m_gear = m_curturnspd / (m_speed * turn_factor);

if (m_gear < 0)

{

m_gearrate = -m_vgaccel;

}

else if (m_gear > 0)

{

m_gearrate = m_vgaccel;

}

else

{

m_gearrate = 0;

}

}

// Calculate braking distance.

m_brkdist = CalcMoveBrakeDist(m_curmotionspd);

// Initiate motion.

m_turnmode = 1;

#ifdef USE_ABSOLUTE_MODE

m_absmode = MODE_ABSOLUTE;

#else

m_absmode = 0;

#endif // USE_ABSOLUTE_MODE

CalcMoveStep(AHEAD_FACTOR*m_brkdist);

}

double GiraffMotor::CalcMoveBrakeDist(double spd)

{

double brake_time = fabs(spd) / m_accel;

return spd * brake_time / 2;

}

void GiraffMotor::CalcMoveStep(double dis)

89

B. Soure ode listings

{

m_nextdis = dis;

if (m_absmode)

{

m_nextpos = m_cdis + m_nextdis;

}

else

{

m_nextpos = m_nextdis;

m_cdis = 0;

}

#if 0

if (m_gear != 0)

{

m_gearpos = m_nextpos;

}

else

{

//m_gearpos = m_cdis + m_curspd * 0.1;

}

#else

m_gearpos = m_nextpos;

#endif

}

void GiraffMotor::CalcRotate()

{

m_curmotionspd = m_usrmotionspd;

m_curturnspd = m_usrturnspd;

// Calculate wheel speed.

m_speed = fabs(m_curturnspd) / turn_factor;

// Calculate braking distance.

m_brkdist = CalcRotateBrakeDist(m_curturnspd);

// Initiate motion.

m_turnmode = -1;

#ifdef USE_ABSOLUTE_MODE

m_absmode = MODE_ABSOLUTE;

#else

m_absmode = 0;

#endif // USE_ABSOLUTE_MODE

CalcRotateStep(AHEAD_FACTOR*m_brkdist);

}

double GiraffMotor::CalcRotateBrakeDist(double rot)

{

double brake_time = fabs(rot) / (m_accel * turn_factor);

return rot * brake_time / 2;

}

void GiraffMotor::CalcRotateStep(double ang)

{

m_nextdis = ang;

if (m_absmode)

{

m_nextpos = m_cang + m_nextdis;

}

else

{

m_nextpos = m_nextdis;

m_cang = 0;

}

}

void GiraffMotor::UpdatePosition()

{

if (m_turnmode == 0 ||

m_brkdist == 0)

{

// standing still

return;

}

90

B.2. Gira�Motor.pp

if (m_turnmode < 0)

{

// turning in place

double turndelta = m_cang - m_lcang;

m_currot = -m_gvr;

m_curdir += turndelta;

return;

}

if (m_timedelta == 0)

{

// no time has passed since last update

return;

}

// moving in a straight or curved line

double distdelta = m_cdis - m_lcdis;

#ifdef GVR_IS_LEFT

if (m_cvg == 0)

{

// straight ahead

m_curspd = m_gvr;

}

else if (m_cvg != 1)

{

// if gvr is the speed of the left wheel,

// calculate the overall speed given the

// current gear ratio

m_curspd = m_gvr * (1 - m_cvg);

}

else

{

// ideally we should never let the gear

// ratio become as large as 1 or -1,

// but if it happens, make an estimate

m_curspd = distdelta / m_timedelta;

}

#else

m_curspd = m_gvr;

#endif // GVR_IS_LEFT

m_currot = m_cvg * turn_factor;

// In principle, we should use integration techniques

// to calculate the current position, given the motor

// feedback and the known behaviour of our commands,

// including the expected motion envelope.

// However, even then the results would probably not

// match physical reality very well, so these

// approximations are probably good enough, as long

// as the motor state is updated often enough.

double avgvg = (m_cvg + m_lcvg) / 2;

double avgrot = avgvg * turn_factor;

double turndelta = avgrot * distdelta;

double avgdir = m_curdir + (turndelta / 2);

m_curdir += turndelta;

m_curx += distdelta * cos(avgdir * M_PI / 180);

m_cury += distdelta * sin(avgdir * M_PI / 180);

}

void GiraffMotor::ShowPosition()

{

ostringstream ost;

ost << fixed << setprecision(2)

<< internal << setfill(’0’);

ost << "X=" << setw(6) << m_curx

<< ",Y=" << setw(6) << m_cury

<< ",H=" << setw(6) << fix_degrees(m_curdir);

m_win->SetPositionInfo(ost.str());

}

91

B. Soure ode listings

const double GiraffMotorSim::turn_factor = TURN_FACTOR;

// The standard tilt angle returned to when homing the head.

const double GiraffMotorSim::default_tilt = 0.0872664;

GiraffMotorSim::GiraffMotorSim(GiraffMotor* ctl) :

m_ctl(ctl), m_bufcount(0),

m_homing(0), m_tilt(default_tilt),

m_cang(0.0), m_cdis(0.0), m_cvg(0.0),

m_vang(0.0), m_vdis(0.0), m_gvr(0.0),

m_startc(0), m_stopc(0),

m_updc(0), m_downdc(0),

m_startdv(0.0), m_peakdv(0.0), m_rampda(0.0),

m_refdp(0.0), m_updp(0.0), m_downdp(0.0), m_stopdp(0.0),

m_refap(0.0), m_upap(0.0), m_downap(0.0), m_stopap(0.0),

m_upgc(0), m_downgc(0), m_stopgc(0),

m_startgr(0.0), m_peakgr(0.0), m_rupgr(0.0), m_rdowngr(0.0),

m_stopgr(0.0), m_downgd(0.0)

{

// clear states

memset(&m_buf, 0, sizeof(m_buf));

// set defaults

m_buf[0].v = 0.6; // 0.6 m/s

m_buf[0].a = 0.6; // 0.6 m/s^2

m_buf[0].vg = 1;

m_buf[0].vgr = 0.4; // FIXME, what’s the actual default?

// get timer frequency

LARGE_INTEGER freq;

QueryPerformanceFrequency(&freq);

m_freq = freq.QuadPart;

// signal readiness

SimulateReply("# Giraf Simulator");

}

GiraffMotorSim::~GiraffMotorSim()

{

}

void GiraffMotorSim::StartStraight(double dist,

double start_pos,

double start_spd,

double cdp,

double start_vg)

{

Move& cur = m_buf[0];

if (cur.mode & MODE_ABSOLUTE)

{

dist -= start_pos;

cdp -= start_pos;

}

else

{

start_pos = 0;

m_cdis = 0;

m_cang = 0;

}

if (start_spd == 0)

{

// when starting from a full stop, assume the initial

// virtual gear ratio to be zero

start_vg = 0;

}

// Get the sign of the desired motion here,

// so we can calculate the motion profile

// using positive numbers, then apply the

// proper sign afterwards.

// (Interpret dist == 0 as "stop ASAP",

// taking sign from current velocity instead.)

int sign = (dist != 0) ?

((dist >= 0) ? 1 : -1) :

((start_spd >= 0) ? 1 : -1);

// but let start_speed be negative if we’re

// initially moving in the wrong direction.

92

B.2. Gira�Motor.pp

double start_speed = sign * start_spd;

double total_dist = fabs(dist);

double peak_speed = cur.v;

double accel = cur.a;

double ramp_up_time = (peak_speed - start_speed) / accel;

double ramp_up_dist = (peak_speed + start_speed) * ramp_up_time / 2;

double ramp_down_time = peak_speed / accel;

double ramp_down_dist = peak_speed * ramp_down_time / 2;

double cruise_dist = total_dist - ramp_up_dist - ramp_down_dist;

double cruise_time = cruise_dist / peak_speed;

bool overshoot = false;

if (cruise_dist < 0)

{

// Short move, won’t get to maximum speed.

// In case we’re already moving, calculate the

// ramp-up distance we would have needed to get

// up to the current velocity from standing still.

double prev_dist = start_speed * start_speed / accel / 2;

// Since the total ramp-up and ramp-down must

// be of equal lengths, find how long the ramps

// must be to cover the required distance

ramp_down_dist = (prev_dist + total_dist) / 2;

if (ramp_down_dist >= total_dist &&

start_speed >= 0)

{

// Current speed is too high to stop within

// the specified distance.

#ifdef SIM_OVERSHOOT_FIX

// We’ll try to stop as soon as possible

// and reverse back. Find how long the ramps

// need to be in this case. Also invert

// signs since we want to reverse.

ramp_down_dist = (total_dist - prev_dist) / 2;

accel = -accel;

// The ramp-up includes the reversal of direction.

peak_speed = -sqrt(2*accel*ramp_down_dist);

ramp_up_dist = total_dist - ramp_down_dist;

ramp_up_time = (peak_speed - start_speed) / accel;

ramp_down_time = peak_speed / accel;

#else

// Alternatively, just stop as soon as possible,

// don’t bother to reverse back.

peak_speed = start_speed;

ramp_up_dist = 0;

ramp_up_time = 0;

ramp_down_dist = prev_dist;

ramp_down_time = peak_speed / accel;

overshoot = true;

#endif // SIM_OVERSHOOT_FIX

}

else

{

// If start_speed is negative, the ramp-up

// will include the reversal of direction.

peak_speed = sqrt(2*accel*ramp_down_dist);

ramp_up_dist = total_dist - ramp_down_dist;

ramp_up_time = (peak_speed - start_speed) / accel;

ramp_down_time = peak_speed / accel;

}

cruise_dist = 0;

cruise_time = 0;

}

// set velocities and accelerations

m_startdv = sign * start_speed;

m_peakdv = sign * peak_speed;

m_rampda = sign * accel;

// calculate timestamps for velocity envelope

double time_step = ramp_up_time;

m_startc = m_lastc;

m_updc = m_startc + time_step * m_freq;

time_step += cruise_time;

m_downdc = m_startc + time_step * m_freq;

93

B. Soure ode listings

time_step += ramp_down_time;

m_stopc = m_startc + time_step * m_freq;

// calculate positions for velocity envelope

m_refdp = start_pos;

m_updp = sign * ramp_up_dist;

m_downdp = m_updp + sign * cruise_dist;

m_stopdp = (!overshoot) ? dist : (m_downdp + sign * ramp_down_dist);

// zero out angle envelope

m_upac = m_startc;

m_downac = m_stopc;

m_startav = 0;

m_peakav = 0;

m_rampaa = 0;

m_refap = 0; // m_cang?

m_upap = 0;

m_downap = 0;

m_stopap = 0;

// Calculate virtual gear ratio envelope

// (This calculates the "ideal" envelope, the way it’s

// documented. However, the real controller doesn’t seem

// to be quite as ideal, due to bugs.)

#ifdef SIM_CURVED

if ((cur.r >= 50 && cdp != 0 && cur.vg != 0) ||

start_vg != 0)

{

double ramp_down_start = ramp_up_time + cruise_time;

double total_time = ramp_down_start + ramp_down_time;

int vg_sign = (cur.vgr != 0) ?

((cur.vgr >= 0) ? 1 : -1) :

((start_vg >= 0) ? 1 : -1);

double vg_start = vg_sign * sign * start_vg;

double vg_peak = vg_sign * cur.vg;

double vg_accel = vg_sign * cur.vgr;

int vg_up_sign = 1, vg_down_sign = -1;

double vg_ramp_down_pos = sign * cdp;

if (vg_ramp_down_pos > total_dist)

{

vg_ramp_down_pos = total_dist;

}

double vg_ramp_up_dist;

if (vg_ramp_down_pos <= 0 ||

vg_peak == 0 ||

accel < 0)

{

// No ramp-up, start ramping down immediately.

vg_ramp_up_dist = 0;

vg_peak = vg_start;

vg_ramp_down_pos = 0;

}

else if (vg_peak < vg_start)

{

// Ramp-up is actually a ramp-down

// to a lower gear ratio.

vg_ramp_up_dist = (vg_start - vg_peak) / vg_accel;

vg_up_sign = -1;

}

else

{

// Normal ramp-up.

vg_ramp_up_dist = (vg_peak - vg_start) / vg_accel;

}

if (vg_ramp_up_dist > vg_ramp_down_pos)

{

// Short move, won’t get to maximum gear ratio.

// Calculate how far we would get.

vg_ramp_up_dist = vg_ramp_down_pos;

vg_peak = vg_start + vg_up_sign * vg_ramp_down_pos * vg_accel;

}

// Calculate ramp-up time

double vg_ramp_up_time;

94

B.2. Gira�Motor.pp

if (vg_ramp_up_dist > total_dist)

{

// won’t reach peak gear ratio in this move

vg_ramp_up_time = total_time;

vg_peak = vg_start + vg_up_sign * total_dist * vg_accel;

}

else

{

vg_ramp_up_time = TimeFromPosition(vg_ramp_up_dist,

ramp_up_time,

cruise_time,

ramp_down_time,

ramp_up_dist,

cruise_dist,

ramp_down_dist,

accel,

start_speed,

peak_speed);

}

// Calculate ramp-down start time

double vg_ramp_down_start;

vg_ramp_down_start = TimeFromPosition(vg_ramp_down_pos,

ramp_up_time,

cruise_time,

ramp_down_time,

ramp_up_dist,

cruise_dist,

ramp_down_dist,

accel,

start_speed,

peak_speed);

// Calculate ramp-down time

double vg_ramp_down_dist;

if (vg_peak < 0)

{

// Ramp-down is actually a ramp-up

// from a negative gear ratio.

vg_ramp_down_dist = -vg_peak / vg_accel;

vg_down_sign = 1;

}

else

{

// Normal ramp-down.

vg_ramp_down_dist = vg_peak / vg_accel;

}

double vg_stop = 0, vg_stop_pos;

vg_stop_pos = vg_ramp_down_pos + vg_ramp_down_dist;

double vg_ramp_down_time;

if (accel < 0)

{

// there’s a momentary stop during reversal

double prev_dist = total_dist - 2 * ramp_up_dist;

double stop_dist = vg_stop_pos - vg_ramp_down_pos;

if (prev_dist < stop_dist)

{

// force gear ratio to zero when we reverse

vg_ramp_down_dist = -prev_dist;

vg_ramp_down_time = -start_speed / accel;

vg_stop_pos = vg_ramp_down_pos + vg_ramp_down_dist;

}

else

{

// gear ratio reaches zero before the stop

double speed = sqrt(start_speed*start_speed +

2*accel*vg_ramp_down_dist);

vg_ramp_down_time = (speed - start_speed) / accel;

}

}

else if (vg_ramp_up_dist >= total_dist)

{

// won’t start ramp-down while moving

vg_ramp_down_dist = 0;

95

B. Soure ode listings

vg_ramp_down_time = 0;

vg_stop_pos = total_dist;

}

else if (vg_stop_pos > total_dist)

{

// won’t reach zero gear ratio while moving

vg_ramp_down_dist = total_dist - vg_ramp_down_pos;

vg_ramp_down_time = total_time - vg_ramp_down_start;

vg_stop_pos = total_dist;

}

else

{

vg_ramp_down_time = TimeFromPosition(vg_stop_pos,

ramp_up_time,

cruise_time,

ramp_down_time,

ramp_up_dist,

cruise_dist,

ramp_down_dist,

accel,

start_speed,

peak_speed)

- vg_ramp_down_start;

}

// calculate timestamps for gear ratio envelope

double vg_ramp_stop = vg_ramp_down_start + vg_ramp_down_time;

m_upgc = m_startc + vg_ramp_up_time * m_freq;

m_downgc = m_startc + vg_ramp_down_start * m_freq;

m_stopgc = m_startc + vg_ramp_stop * m_freq;

// calculate gear ratios

m_startgr = start_vg;

m_peakgr = vg_sign * sign * vg_peak;

m_rupgr = vg_up_sign * vg_sign * sign * vg_accel;

m_rdowngr = vg_down_sign * vg_sign * sign * vg_accel;

m_stopgr = vg_sign * sign * vg_stop;

m_downgd = vg_ramp_down_pos;

}

else

#endif // SIM_CURVED

{

m_upgc = m_startc;

m_downgc = m_startc;

m_stopgc = m_startc;

m_startgr = 0;

m_peakgr = 0;

m_rupgr = 0;

m_rdowngr = 0;

m_stopgr = 0;

m_downgd = 0;

}

}

void GiraffMotorSim::StartRotate(double degrees,

double start_angle,

double start_spd)

{

Move& cur = m_buf[0];

if (cur.mode & MODE_ABSOLUTE)

{

degrees -= start_angle;

}

else

{

start_angle = 0;

m_cdis = 0;

m_cang = 0;

}

// Calculate the distance the wheels must travel.

double dist = degrees / turn_factor;

// The wheels accelerate using the same parameters

// as in a straight-line move. Calculate motion.

96

B.2. Gira�Motor.pp

StartStraight(dist, 0, start_spd / turn_factor, 0, 0);

if (cur.r < 0)

{

// If r is negative, the motion don’t seem to

// get converted back to angles, but are reported

// to the app as distances traveled by the wheels.

return;

}

bool overshoot = (m_stopdp != dist);

// Convert calculated positions to angles.

m_upac = m_updc;

m_downac = m_downdc;

m_startav = m_startdv * turn_factor;

m_peakav = m_peakdv * turn_factor;

m_rampaa = m_rampda * turn_factor;

m_refap = start_angle;

m_upap = m_updp * turn_factor;

m_downap = m_downdp * turn_factor;

m_stopap = (!overshoot) ? degrees : (m_stopdp * turn_factor);

// Clear positions and velocities,

// since we’re staying in place.

m_updc = m_startc;

m_downdc = m_stopc;

m_startdv = 0;

m_peakdv = 0;

m_rampda = 0;

m_refdp = 0; // m_cdis?

m_updp = 0;

m_downdp = 0;

m_stopdp = 0;

}

double GiraffMotorSim::TimeFromPosition(double pos,

double ramp_up_time,

double cruise_time,

double ramp_down_time,

double ramp_up_dist,

double cruise_dist,

double ramp_down_dist,

double accel,

double start_speed,

double peak_speed)

{

double cruise_start = ramp_up_time;

double ramp_down_start = cruise_start + cruise_time;

double total_time = ramp_down_start + ramp_down_time;

double cruise_pos = ramp_up_dist;

double ramp_down_pos = cruise_pos + cruise_dist;

double stop_pos = ramp_down_pos + ramp_down_dist;

if (pos <= 0)

{

// immediately

return 0;

}

else if (pos < cruise_pos)

{

// during ramp-up

double dist = pos;

double speed = sqrt(start_speed*start_speed +

2*accel*dist);

return (speed - start_speed) / accel;

}

else if (pos < ramp_down_pos)

{

// during cruise

double dist = pos - cruise_pos;

return cruise_start + dist / peak_speed;

}

else if (pos < stop_pos)

{

// during ramp-down

double dist = pos - ramp_down_pos;

97

B. Soure ode listings

double speed = sqrt(peak_speed*peak_speed -

2*accel*dist);

return ramp_down_start + (peak_speed - speed) / accel;

}

else

{

// never

return total_time;

}

}

void GiraffMotorSim::UpdateMotion()

{

LARGE_INTEGER current;

QueryPerformanceCounter(¤t);

LONGLONG now = current.QuadPart;

while (m_bufcount != 0)

{

if (now >= m_stopc)

{

// Move complete.

m_cdis = m_refdp + m_stopdp;

m_cang = m_refap + m_stopap;

m_cvg = m_stopgr;

m_vdis = 0;

m_vang = 0;

m_gvr = 0;

m_lastc = m_stopc;

EndMotion();

continue;

}

// Interpolate distance part of profile

if (now >= m_downdc)

{

// ramping down.

double time_delta = (double)(now - m_downdc) / m_freq;

double velocity = m_peakdv - m_rampda * time_delta;

double dist = (m_peakdv + velocity) * time_delta / 2;

m_cdis = m_refdp + m_downdp + dist;

m_vdis = velocity;

}

else if (now >= m_updc)

{

// cruising.

double time_delta = (double)(now - m_updc) / m_freq;

double velocity = m_peakdv;

double dist = m_peakdv * time_delta;

m_cdis = m_refdp + m_updp + dist;

m_vdis = velocity;

}

else

{

// ramping up.

double time_delta = (double)(now - m_startc) / m_freq;

double velocity = m_startdv + m_rampda * time_delta;

double dist = (m_startdv + velocity) * time_delta / 2;

m_cdis = m_refdp + dist;

m_vdis = velocity;

}

// Interpolate gear ratio part of profile

if (now >= m_stopgc)

{

m_cvg = m_stopgr;

}

else if (now >= m_downgc)

{

// ramping down.

double dist_delta = abs(m_cdis - m_refdp) - m_downgd;

m_cvg = m_peakgr + m_rdowngr * dist_delta;

}

else if (now >= m_upgc)

{

98

B.2. Gira�Motor.pp

// cruising.

m_cvg = m_peakgr;

}

else

{

// ramping up.

double dist_delta = abs(m_cdis - m_refdp);

m_cvg = m_startgr + m_rupgr * dist_delta;

}

// Interpolate angular part of profile

if (now >= m_downac)

{

// ramping down.

double time_delta = (double)(now - m_downac) / m_freq;

double velocity = m_peakav - m_rampaa * time_delta;

double dist = (m_peakav + velocity) * time_delta / 2;

m_cang = m_refap + m_downap + dist;

m_vang = velocity;

}

else if (now >= m_upac)

{

// cruising.

double time_delta = (double)(now - m_upac) / m_freq;

double velocity = m_peakav;

double dist = m_peakav * time_delta;

m_cang = m_refap + m_upap + dist;

m_vang = velocity;

}

else

{

// ramping up.

double time_delta = (double)(now - m_startc) / m_freq;

double velocity = m_startav + m_rampaa * time_delta;

double dist = (m_startav + velocity) * time_delta / 2;

m_cang = m_refap + dist;

m_vang = velocity;

}

if (m_buf[0].r != 0)

{

#ifdef GVR_IS_LEFT

m_gvr = m_vdis / (1 - m_cvg);

#else

m_gvr = m_vdis;

#endif // GVR_IS_LEFT

}

else

{

m_gvr = -m_vang;

}

break;

}

m_lastc = now;

}

void GiraffMotorSim::StartMotion()

{

if (m_bufcount == 0)

{

// nothing to do

return;

}

Move& cur = m_buf[0];

if (cur.mode & MODE_MOVING)

{

// already started

return;

}

cur.mode |= MODE_MOVING;

if (cur.r > 0)

{

StartStraight(cur.p, m_cdis, m_vdis,

99

B. Soure ode listings

cur.cdp, m_cvg);

}

else

{

StartRotate(cur.p, m_cang, m_vang);

}

}

void GiraffMotorSim::EndMotion()

{

unsigned n;

if (m_bufcount == 0)

{

// nothing to do

return;

}

// shift next requests into place,

// replacing completed request

for (n=0; n<m_bufcount; n++)

{

m_buf[n] = m_buf[n+1];

}

m_bufcount--;

// start next request, if any

StartMotion();

}

bool GiraffMotorSim::QueueMotion()

{

if (m_bufcount >= GIRAFF_BUFFERS)

{

// out of buffers

return false;

}

unsigned mask = MODE_ABSOLUTE;

unsigned mode = m_buf[m_bufcount].mode;

m_buf[m_bufcount].mode = mode & mask;

if ((m_bufcount == 0) ||

(mode & MODE_BUFFERED))

{

// initial state for next request

m_buf[m_bufcount+1] = m_buf[m_bufcount];

// start current request

m_bufcount++;

}

else

{

// remove buffered requests

if (m_bufcount > 1)

{

// initial state for next request

m_buf[1] = m_buf[m_bufcount];

m_bufcount = 1;

}

// preempt current move

m_buf[0] = m_buf[m_bufcount];

}

// start sequence

StartMotion();

return true;

}

bool GiraffMotorSim::QueueUndock(double dist)

{

if (m_bufcount >= GIRAFF_BUFFERS-1)

{

// out of buffers

return false;

}

// initial state for next request

m_buf[m_bufcount+1] = m_buf[m_bufcount];

m_buf[m_bufcount+2] = m_buf[m_bufcount];

100

B.2. Gira�Motor.pp

// request reversing (in straight line)

m_buf[m_bufcount].mode = 0;

m_buf[m_bufcount].r = 1;

m_buf[m_bufcount].p = -dist;

m_buf[m_bufcount].vg = 0;

m_buf[m_bufcount].vgr = 0;

m_buf[m_bufcount].cdp = 0;

m_bufcount++;

// request rotating in-place

m_buf[m_bufcount].mode = 0;

m_buf[m_bufcount].r = 0;

m_buf[m_bufcount].p = 180;

m_buf[m_bufcount].vg = 0;

m_buf[m_bufcount].vgr = 0;

m_buf[m_bufcount].cdp = 0;

m_bufcount++;

// start sequence

StartMotion();

return true;

}

void GiraffMotorSim::SimulateLag(unsigned bytes)

{

// Since the serial port is configured for

// 115200 bps, and each character takes 10 bits

// (1 start bit, 8 data bits, and 1 stop bit),

// it can only transfer 11520 characters/second.

// Since each command transfers something like

// 30-40 characters, this lag could affect timing

// by several milliseconds, so we’ll simulate it

// here, just in case.

// Calculate microsecond wait.

DWORD us = (bytes * 1000000) / 11520;

// Convert to milliseconds.

DWORD ms = us / 1000;

// Round up.

if ((us % 1000) >= 500)

{

ms++;

}

// Do the wait.

if (ms)

{

Sleep(ms);

}

}

void GiraffMotorSim::SimulateReply(const string& reply)

{

string out;

if (!reply.empty())

{

out = reply + "\r\nOK >\r\n";

}

else

{

out = "OK >\r\n";

}

// wait the milliseconds it would take to

// receive the reply (including the "OK" line)

SimulateLag(out.length());

// simulate the reply

m_ctl->AddReply(out);

}

void GiraffMotorSim::SimulateCommand(const string& cmd)

{

ostringstream rst;

istringstream ist(cmd);

string op;

// wait the milliseconds it would take to

101

B. Soure ode listings

// transmit the command

//SimulateLag(cmd.length());

// update simulation state

UpdateMotion();

// set default reply format

rst << setfill(’0’) << setprecision(5) << fixed;

// parse command

ist >> op;

if (op == "set")

{

// parse Set command

Move& next = m_buf[m_bufcount];

string par;

ist >> par;

if (par == "v")

{

ist >> next.v;

Output(rst, next.v);

}

else if (par == "r")

{

ist >> next.r;

Output(rst, next.r);

}

else if (par == "a")

{

ist >> next.a;

Output(rst, next.a);

}

else if (par == "p")

{

ist >> next.p;

if (QueueMotion())

{

Output(rst, next.p);

}

else

{

rst << "ERROR: Queue rollover";

}

}

else if (par == "vg")

{

ist >> next.vg;

Output(rst, next.vg);

}

else if (par == "vgr")

{

ist >> next.vgr;

Output(rst, next.vgr);

}

else if (par == "cdp")

{

ist >> next.cdp;

Output(rst, next.cdp);

}

else if (par == "mode")

{

// Only the lower 4 bits can be set.

unsigned mask = 0xf;

unsigned mode;

ist >> mode;

next.mode = (next.mode & ~mask) |

(mode & mask);

Output(rst, next.mode);

}

else if (par == "undock")

{

double dist;

ist >> dist;

if (QueueUndock(dist))

102

B.2. Gira�Motor.pp

{

Output(rst, dist);

}

else

{

rst << "ERROR: Queue rollover";

}

}

else if (par == "tilt_angle_from_home")

{

ist >> m_tilt;

Output(rst, m_tilt);

}

else

{

rst << "Unknown name: " << par;

}

}

else if (op == "get")

{

// parse Get command

Move& cur = m_buf[0];

Move& next = m_buf[m_bufcount];

string par;

ist >> par;

if (par == "v")

{

Output(rst, next.v);

}

else if (par == "r")

{

Output(rst, next.r);

}

else if (par == "a")

{

Output(rst, next.a);

}

else if (par == "p")

{

Output(rst, next.p);

}

else if (par == "vg")

{

Output(rst, next.vg);

}

else if (par == "vgr")

{

Output(rst, next.vgr);

}

else if (par == "cdp")

{

Output(rst, next.cdp);

}

else if (par == "cvg")

{

Output(rst, m_cvg);

}

else if (par == "mode")

{

unsigned c_mask = MODE_ESTOP | MODE_MOVING;

unsigned n_mask = MODE_ABSOLUTE;

unsigned mode = (cur.mode & c_mask) |

(next.mode & n_mask);

Output(rst, mode);

}

else if (par == "tilt_homing_state")

{

Output(rst, m_homing);

}

else if (par == "tilt_angle_from_home")

{

Output(rst, m_tilt);

103

B. Soure ode listings

}

else if (par == "but0")

{

rst << "0";

}

else if (par == "but1")

{

rst << "0";

}

else if (par == "dial")

{

rst << "0";

}

else if (par == "button_data")

{

rst << "but0:0,but1:0,dial:0";

}

else if (par == "bulk_data")

{

rst << "cang:";

Output(rst, -m_cang);

rst << ",cdis:";

Output(rst, m_cdis);

rst << ",gvr:";

Output(rst, m_gvr);

// << ",tilt_angle_from_home:" << m_tilt

// << ",imdl:0"

// << ",imdr:0"

rst << ",cvg:";

Output(rst, m_cvg);

rst << ",mode:";

Output(rst, cur.mode);

}

else

{

rst << "Unknown name: " << par;

}

}

else if (op == "home")

{

// no reply

}

else

{

rst << "Unknown name: " << op;

}

SimulateReply(rst.str());

}

void GiraffMotorSim::Output(ostream& out, double val)

{

#if 1

// The controller seems to send floats using a hex

// encoding of the binary representation of a 32-bit

// floating-point register. Reproduce it here.

union {

float val;

unsigned char d[4];

} v;

v.val = val;

out << "F*" << hex;

for (unsigned n=0; n<4; n++)

{

unsigned u = v.d[n];

out << setw(2) << u;

}

#else

out << val;

#endif

}

void GiraffMotorSim::Output(ostream& out, unsigned val)

104

B.3. Gira�Camera.hpp

{

#if 1

// The controller seems to send integers using a hex

// encoding that has the least-significant byte first.

// Reproduce it here.

union {

unsigned val;

unsigned char d[4];

} v;

v.val = val;

out << "I*" << hex;

for (unsigned n=0; n<4; n++)

{

unsigned u = v.d[n];

out << setw(2) << u;

}

#else

out << val;

#endif

}

B.3. Gira�Camera.hpp

#ifndef GIRAFFCAMERA_HPP

#define GIRAFFCAMERA_HPP

#include "DisplayWindow.hpp"

#include <opencv2/highgui/highgui.hpp>

#define CAM_REC_BUFFERS 8

class GiraffCamera

{

public:

GiraffCamera(DisplayWindow* win);

~GiraffCamera();

bool Start(int width=0, int height=0);

void Stop();

bool Grab(cv::Mat& frame);

bool StartRecord(const std::string& name);

void StopRecord();

bool StartPlayback(const std::string& name);

void StopPlayback();

private:

DisplayWindow* m_win;

cv::VideoWriter m_vrec;

cv::VideoCapture m_vplay;

bool m_sim, m_rec, m_play, m_eof;

cv::Mat m_frame;

// for recording thread

cv::VideoCapture m_vcap;

HANDLE m_recthread;

HANDLE m_recfstart, m_recfdone;

#ifdef CAM_REC_BUFFERS

cv::Mat m_recbuf[CAM_REC_BUFFERS];

unsigned m_recpos;

#endif

void SetCameraInfo();

static DWORD WINAPI RecThread(LPVOID param);

};

#endif // GIRAFFCAMERA_HPP

105

B. Soure ode listings

B.4. Gira�Camera.pp

#include "GiraffCamera.hpp"

#include <windows.h>

#include <sstream>

#include <iomanip>

#define CAM_DEVICE 0

#define TEST_INPUT "D:/Giraff/OpenCV/Source/samples/gpu/768x576.avi"

using namespace std;

using namespace cv;

GiraffCamera::GiraffCamera(DisplayWindow* win) :

m_win(win), m_sim(false), m_rec(false),

m_play(false), m_eof(false)

{

}

GiraffCamera::~GiraffCamera()

{

StopRecord();

StopPlayback();

Stop();

}

bool GiraffCamera::Start(int width, int height)

{

#ifdef CAM_DEVICE

m_vcap.open(CAM_DEVICE);

if (!m_vcap.isOpened())

#endif

{

// Could not open real camera,

// load prerecorded video instead,

// so the rest of the program

// can still be used.

m_vcap.open(TEST_INPUT);

if (!m_vcap.isOpened())

{

return false;

}

if (!m_sim)

{

m_win->PrintLeft("Loaded test video");

m_sim = true;

}

}

// request resolution

if (!m_sim && width && height)

{

m_vcap.set(CV_CAP_PROP_FRAME_WIDTH, width);

m_vcap.set(CV_CAP_PROP_FRAME_HEIGHT, height);

}

// show actual resolution on display

SetCameraInfo();

return true;

}

void GiraffCamera::Stop()

{

m_vcap.release();

}

bool GiraffCamera::Grab(Mat& frame)

106

B.4. Gira�Camera.pp

{

if (m_rec)

{

// if we’re recording, wait for recording

// thread to finish encoding previous frame

WaitForSingleObject(m_recfdone, INFINITE);

}

if (m_play)

{

if (m_eof)

{

// playback already complete

return false;

}

// get next frame from playback

else if (!m_vplay.read(m_frame))

{

// playback complete

m_eof = true;

return false;

}

}

// get next frame from camera or video

else if (!m_vcap.read(m_frame))

{

if (!m_sim)

{

// camera failure

return false;

}

// end of video, rewind

Stop();

Start();

if (!m_vcap.read(m_frame))

{

// give up

return false;

}

}

if (m_rec)

{

// if we’re recording, tell the recording

// thread that we have a new frame

#ifdef CAM_REC_BUFFERS

m_recbuf[m_recpos] = m_frame.clone();

m_recpos = (m_recpos + 1) % CAM_REC_BUFFERS;

LONG sem_count = CAM_REC_BUFFERS;

// clear event before ReleaseSemaphore

// to avoid race conditions (we can

// set it again afterwards)

ResetEvent(m_recfdone);

if (ReleaseSemaphore(m_recfstart, 1, &sem_count))

{

sem_count += 1;

if (sem_count < CAM_REC_BUFFERS)

{

// still room for more frames,

// so set event again

SetEvent(m_recfdone);

}

}

else

{

// if the synchronization stuff works,

// we should never get here

m_win->PrintLeft("Semaphore release failed");

}

#else

SetEvent(m_recfstart);

#endif

}

// could display frame here,

107

B. Soure ode listings

// but we’ll leave it to GiraffNav

//m_win->Show(m_frame);

// return captured frame

frame = m_frame;

return true;

}

bool GiraffCamera::StartRecord(const string& name)

{

if (m_rec)

{

StopRecord();

}

//int fourcc = CV_FOURCC_PROMPT;

// Lossy codecs listed at

// http://opencv.willowgarage.com/wiki/documentation/cpp/highgui/VideoWriter

//int fourcc = CV_FOURCC(’P’,’I’,’M’,’1’); // 22 fps

//int fourcc = CV_FOURCC(’M’,’J’,’P’,’G’); // 20 fps

//int fourcc = CV_FOURCC(’M’,’P’,’4’,’2’); // 25 fps

//int fourcc = CV_FOURCC(’D’,’I’,’V’,’3’); // 20 fps

int fourcc = CV_FOURCC(’D’,’I’,’V’,’X’); // 26 fps

//int fourcc = CV_FOURCC(’U’,’2’,’6’,’3’); // 26 fps

//int fourcc = CV_FOURCC(’F’,’L’,’V’,’1’); // 26 fps

// Uncompressed

//int fourcc = CV_FOURCC(’I’,’4’,’2’,’0’); // 32 fps

double fps = 10;

string fn = name + ".avi";

// initialize video recording

Size sz(m_vcap.get(CV_CAP_PROP_FRAME_WIDTH),

m_vcap.get(CV_CAP_PROP_FRAME_HEIGHT));

m_vrec.open(fn, fourcc, fps, sz, true);

if (m_vrec.isOpened())

{

// turn on recording

m_rec = true;

#ifdef CAM_REC_BUFFERS

m_recpos = 0;

#endif

m_win->PrintLeft("Recording to " + fn);

// start recording thread

#ifdef CAM_REC_BUFFERS

m_recfstart = CreateSemaphore(NULL, 0, CAM_REC_BUFFERS, NULL);

m_recfdone = CreateEvent(NULL, TRUE, TRUE, NULL);

#else

m_recfstart = CreateEvent(NULL, FALSE, FALSE, NULL);

m_recfdone = CreateEvent(NULL, FALSE, TRUE, NULL);

#endif

m_recthread = CreateThread(NULL, 0, RecThread,

this, 0, NULL);

return true;

}

else

{

m_win->PrintLeft("Couldn’t start recording");

return false;

}

}

void GiraffCamera::StopRecord()

{

if (m_rec)

{

// turn off recording

m_rec = false;

// wake recording thread, so it notices

// that m_rec is now false

#ifdef CAM_REC_BUFFERS

// no need to check if ReleaseSemaphore

// fails here, since if it does, the

// recording thread is already awake

ReleaseSemaphore(m_recfstart, 1, NULL);

108

B.4. Gira�Camera.pp

#else

SetEvent(m_recfstart);

#endif

// wait for it to complete

WaitForSingleObject(m_recthread, INFINITE);

// shut down

CloseHandle(m_recthread);

CloseHandle(m_recfdone);

CloseHandle(m_recfstart);

m_vrec.release();

m_win->PrintLeft("Recording stopped");

}

}

bool GiraffCamera::StartPlayback(const string& name)

{

string fn = name + ".avi";

m_vplay.open(fn);

if (m_vplay.isOpened())

{

// turn on playback

m_play = true;

m_eof = false;

m_win->PrintLeft("Playback from " + fn);

// show playback resolution on display

// (don’t bother showing fps, as we don’t

// put the real fps into our recordings)

ostringstream ost;

ost << m_vplay.get(CV_CAP_PROP_FRAME_WIDTH) << "x"

<< m_vplay.get(CV_CAP_PROP_FRAME_HEIGHT);

m_win->SetCameraInfo(ost.str());

return true;

}

else

{

m_win->PrintLeft("Couldn’t start playback");

return false;

}

}

void GiraffCamera::StopPlayback()

{

if (m_play)

{

// turn off playback

m_play = false;

m_eof = false;

m_vplay.release();

m_win->PrintLeft("Playback stopped");

// restore original camera resolution

SetCameraInfo();

}

}

void GiraffCamera::SetCameraInfo()

{

// show camera resolution on display

ostringstream ost;

ost << m_vcap.get(CV_CAP_PROP_FRAME_WIDTH) << "x"

<< m_vcap.get(CV_CAP_PROP_FRAME_HEIGHT);

double fps = m_vcap.get(CV_CAP_PROP_FPS);

if (fps)

{

// if FPS is available, show it too

ost << ", "

<< m_vcap.get(CV_CAP_PROP_FPS) << "fps";

}

m_win->SetCameraInfo(ost.str());

}

DWORD WINAPI GiraffCamera::RecThread(LPVOID param)

{

109

B. Soure ode listings

GiraffCamera *obj = (GiraffCamera*)param;

unsigned nextpos = 0;

while (true)

{

// wait for captured frame

WaitForSingleObject(obj->m_recfstart, INFINITE);

if (!obj->m_rec)

{

// recording has been turned off, exit

break;

}

// encode frame

#ifdef CAM_REC_BUFFERS

obj->m_vrec.write(obj->m_recbuf[nextpos]);

obj->m_recbuf[nextpos].release();

nextpos = (nextpos + 1) % CAM_REC_BUFFERS;

#else

obj->m_vrec.write(obj->m_frame);

#endif

// signal completion

SetEvent(obj->m_recfdone);

}

return 0;

}

B.5. DisplayWindow.hpp

#ifndef DISPLAYWINDOW_HPP

#define DISPLAYWINDOW_HPP

#include <opencv2/core/core.hpp>

#include <windef.h>

#include <string>

#include <deque>

typedef void (*InputProc)(int code, int type);

typedef std::deque<std::string> DisplayBuffer;

class DisplayWindow

{

public:

DisplayWindow(HINSTANCE hInst,

HINSTANCE hPrevInst);

~DisplayWindow();

void SetInputHandler(InputProc proc);

bool Start();

void Stop();

void ShowError(LPCSTR pMsg);

void ShowError(LPCSTR pMsg, DWORD code);

void Show(const cv::Mat& frame);

bool ProcessInput();

void SetCameraInfo(const std::string& info);

void SetPositionInfo(const std::string& info);

void SetPerformanceInfo(const std::string& info);

void PrintLeft(const std::string& info);

void PrintRight(const std::string& info);

void InputLeft(const std::string& info);

void InputRight(const std::string& info);

private:

HINSTANCE m_hinst;

HWND m_hwnd;

InputProc m_proc;

std::string m_caminfo, m_posinfo, m_perfinfo;

DisplayBuffer m_leftbuf, m_rightbuf;

std::string m_leftinput, m_rightinput;

110

B.6. DisplayWindow.pp

bool InitApp();

bool InitWindow();

void CloseWindow();

LRESULT WndProc(HWND hwnd,

UINT uMsg,

WPARAM wParam,

LPARAM lParam);

static

LRESULT CALLBACK CWndProc(HWND hwnd,

UINT uMsg,

WPARAM wParam,

LPARAM lParam);

};

#endif // DISPLAYWINDOW_HPP

B.6. DisplayWindow.pp

#include "DisplayWindow.hpp"

#include <opencv2/imgproc/imgproc.hpp>

#include <windows.h>

#include <sstream>

#define BUFFER_SIZE 32

using namespace std;

using namespace cv;

static const char *app_name = "GiraffNav";

DisplayWindow::DisplayWindow(HINSTANCE hInst,

HINSTANCE hPrevInst) :

m_hinst(hInst), m_hwnd(NULL)

{

if (!hPrevInst)

{

if (!InitApp())

{

// couldn’t register window class

ShowError("Couldn’t register window class: ",

GetLastError());

return;

}

}

}

DisplayWindow::~DisplayWindow()

{

Stop();

}

void DisplayWindow::SetInputHandler(InputProc proc)

{

m_proc = proc;

}

bool DisplayWindow::Start()

{

if (!InitWindow())

{

ShowError("Couldn’t create window: ",

GetLastError());

return false;

}

// show the resolution of the Giraff’s monitor

ostringstream ost;

111

B. Soure ode listings

ost << "Display resolution: "

<< GetSystemMetrics(SM_CXSCREEN) << "x"

<< GetSystemMetrics(SM_CYSCREEN);

PrintLeft(ost.str());

return true;

}

void DisplayWindow::Stop()

{

CloseWindow();

}

void DisplayWindow::ShowError(LPCSTR pMsg)

{

MessageBox(m_hwnd, pMsg, app_name,

MB_OK | MB_ICONERROR);

}

void DisplayWindow::ShowError(LPCSTR pMsg, DWORD code)

{

ostringstream ost;

ost << pMsg << code;

ShowError(ost.str().c_str());

}

// This function is a bridge between the Win32 API

// (which is plain C) and the C++ class DisplayWindow.

LRESULT CALLBACK DisplayWindow::CWndProc(HWND hwnd,

UINT uMsg,

WPARAM wParam,

LPARAM lParam)

{

DisplayWindow *win;

if (uMsg == WM_NCCREATE)

{

CREATESTRUCT* cs = (CREATESTRUCT*)lParam;

// This is supposed to be the first message the

// window receives. (In reality, it isn’t,

// but it’s close enough for our purposes.)

// lpCreateParams is the DisplayWindow pointer provided

// to CreateWindowEx.

win = (DisplayWindow*)cs->lpCreateParams;

// Save it in the window structure.

SetWindowLongPtr(hwnd, 0, (LONG_PTR) win);

}

else

{

// Get the DisplayWindow pointer previously stored

// in the window structure.

win = (DisplayWindow*)GetWindowLongPtr(hwnd, 0);

}

if (win)

{

// Dispatch message to DisplayWindow, if possible.

return win->WndProc(hwnd, uMsg, wParam, lParam);

}

else

{

// Otherwise (i.e., it’s one of the messages that

// arrive before WM_NCCREATE), do default processing.

return DefWindowProc(hwnd, uMsg, wParam, lParam);

}

}

// Register window class for main window

bool DisplayWindow::InitApp()

{

WNDCLASSEX wcx;

wcx.cbSize = sizeof(wcx);

wcx.style = CS_HREDRAW | CS_VREDRAW;

wcx.lpfnWndProc = CWndProc;

112

B.6. DisplayWindow.pp

wcx.cbClsExtra = 0;

wcx.cbWndExtra = sizeof(DisplayWindow*);

wcx.hInstance = m_hinst;

wcx.hIcon = NULL; // no icon yet

wcx.hCursor = LoadCursor(NULL, IDC_ARROW);

wcx.hbrBackground = (HBRUSH) GetStockObject(BLACK_BRUSH);

wcx.lpszMenuName = NULL;

wcx.lpszClassName = "GiraffNavClass";

wcx.hIconSm = NULL;

return RegisterClassEx(&wcx);

}

// Create main window

bool DisplayWindow::InitWindow()

{

m_hwnd = CreateWindowEx(

0,

"GiraffNavClass",

app_name,

//WS_OVERLAPPEDWINDOW, // regular window

WS_POPUP, // fullscreen (no caption or border)

CW_USEDEFAULT,

CW_USEDEFAULT,

CW_USEDEFAULT,

CW_USEDEFAULT,

(HWND) NULL,

(HMENU) NULL,

m_hinst,

this);

if (!m_hwnd)

{

return false;

}

ShowWindow(m_hwnd, SW_SHOWMAXIMIZED);

return true;

}

// Destroy main window

void DisplayWindow::CloseWindow()

{

if (m_hwnd)

{

DestroyWindow(m_hwnd);

}

}

bool DisplayWindow::ProcessInput()

{

MSG msg;

while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))

{

if (msg.message == WM_QUIT)

{

// Terminate application

return false;

}

TranslateMessage(&msg);

DispatchMessage(&msg);

}

return true;

}

static int RenderInfo(Mat& out, int x, int y, const string& info,

int align=-1)

{

const Scalar color(128,255,255); // yellow

int fontFace = FONT_HERSHEY_PLAIN;

double fontScale = 1;

int thickness = 1;

int baseLine = 0;

Size sz = getTextSize(info, fontFace, fontScale,

113

B. Soure ode listings

thickness, &baseLine);

Point org(x, y + sz.height);

if (align > 0)

{

org.x -= sz.width;

}

else if (align == 0)

{

org.x -= sz.width/2;

}

putText(out, info, org, fontFace, fontScale,

color, thickness);

return sz.height + baseLine;

}

static void RenderBuffer(Mat& out, int x, int y,

DisplayBuffer& buf,

string& input)

{

DisplayBuffer::iterator it = buf.begin();

while (it != buf.end())

{

y += RenderInfo(out, x, y, *it) + 5;

it++;

}

if (!input.empty())

{

RenderInfo(out, x, y, input);

}

}

// Show camera image in main window

void DisplayWindow::Show(const Mat& frame)

{

// Get size of window drawing area,

// so we can scale the image to fit it.

RECT rect;

GetClientRect(m_hwnd, &rect);

int width = rect.right;

int height = rect.bottom;

// To enforce the alignment required by

// SetDIBitsToDevice, round the width

// down to the nearest multiple of 4.

width = width&~3;

// Scale image (without interpolation,

// in order to save CPU).

Mat out;

resize(frame, out, Size(width, height),

0, 0, INTER_LINEAR);

// Overlay some information from the subsystems

RenderInfo(out, 0, 0, m_caminfo, -1);

RenderInfo(out, width/2, 0, m_posinfo, 0);

RenderInfo(out, width, 0, m_perfinfo, 1);

RenderBuffer(out, 0, 20, m_leftbuf, m_leftinput);

RenderBuffer(out, width*3/5, 20, m_rightbuf, m_rightinput);

// Create bitmap info needed by SetDIBitsToDevice

BITMAPINFOHEADER bmih;

bmih.biSize = sizeof(bmih);

bmih.biWidth = out.cols;

bmih.biHeight = -out.rows; // negative = top-down DIB

bmih.biPlanes = 1;

bmih.biBitCount = 24;

bmih.biCompression = BI_RGB;

bmih.biSizeImage = 0;

bmih.biXPelsPerMeter = 0;

bmih.biYPelsPerMeter = 0;

bmih.biClrUsed = 0;

bmih.biClrImportant = 0;

// Draw video frame in window

HDC hdc = GetDC(m_hwnd);

SetDIBitsToDevice(hdc, 0, 0,

width, height,

114

B.6. DisplayWindow.pp

0, 0,

0, out.rows,

out.data,

(BITMAPINFO*)&bmih,

DIB_RGB_COLORS);

ReleaseDC(m_hwnd, hdc);

}

LRESULT DisplayWindow::WndProc(HWND hwnd,

UINT uMsg,

WPARAM wParam,

LPARAM lParam)

{

switch (uMsg)

{

case WM_NCCREATE:

// The window now exists.

m_hwnd = hwnd;

return TRUE;

case WM_NCDESTROY:

// The window no longer exists.

m_hwnd = NULL;

return 0;

case WM_KEYDOWN:

case WM_KEYUP:

case WM_CHAR:

if (m_proc)

{

m_proc(wParam, uMsg);

}

return 0;

case WM_CLOSE:

// The user pressed the Close button

// (or its keyboard shortcut, Alt-F4).

DestroyWindow(hwnd);

return 0;

case WM_DESTROY:

// The main window is being closed, so make

// sure the app itself also terminates.

PostQuitMessage(0);

return 0;

default:

return DefWindowProc(hwnd, uMsg, wParam, lParam);

}

}

void DisplayWindow::SetCameraInfo(const std::string& info)

{

m_caminfo = info;

}

void DisplayWindow::SetPositionInfo(const std::string& info)

{

m_posinfo = info;

}

void DisplayWindow::SetPerformanceInfo(const std::string& info)

{

m_perfinfo = info;

}

// to remove end-of-line characters from end of string

static size_t chomped(const string& info)

{

size_t n = info.find_last_not_of("\r\n");

if (n != string::npos)

{

return n+1;

}

else

{

return 0;

115

B. Soure ode listings

}

}

static string chomp(const string& info)

{

size_t n = chomped(info);

return info.substr(0, n);

}

// add line to left pane

void DisplayWindow::PrintLeft(const string& info)

{

m_leftbuf.push_back(chomp(info));

while (m_leftbuf.size() > BUFFER_SIZE)

{

m_leftbuf.pop_front();

}

}

// add line to right pane

void DisplayWindow::PrintRight(const string& info)

{

unsigned span = 32;

size_t len = chomped(info);

// split string into lines of 32 characters each

for (size_t n=0; n<len; n+=span)

{

size_t end = n+span;

if (end > len)

{

end = len;

}

m_rightbuf.push_back(info.substr(n,end-n));

}

// if buffer is now full, scroll up by removing

// lines from the top

while (m_rightbuf.size() > BUFFER_SIZE)

{

m_rightbuf.pop_front();

}

}

// show user input for left pane

void DisplayWindow::InputLeft(const string& info)

{

m_leftinput = info;

}

// show user input for right pane

void DisplayWindow::InputRight(const string& info)

{

m_rightinput = info;

}

B.7. Gira�Nav.pp

#include "DisplayWindow.hpp"

#include "GiraffCamera.hpp"

#include "GiraffMotor.hpp"

#include "FeatureExtract.hpp"

#include <opencv2/highgui/highgui.hpp>

#include <windows.h>

#include <sstream>

#include <iomanip>

#define DEF_WIDTH 800

116

B.7. Gira�Nav.pp

#define DEF_HEIGHT 600

#define KBD_TURN_SPEED 45

#define KBD_MOVE_SPEED 0.4

// Disp. res. 800x1280

// ca 10fps at 800x600 capture

// Notes from testing:

// Default tilt angle #bab8b23d = 0.0872664005

#define PLAY_PATH "C:/GiraffRec/"

#define PLAY_FILE "20130515_135355"

using namespace std;

using namespace cv;

static DisplayWindow* mainWindow;

static GiraffCamera* mainCamera;

static GiraffMotor* mainMotor;

static FeatureExtractor* extractor;

enum InputMode

{

INPUT_NONE = 0,

INPUT_LEFT = 1,

INPUT_RIGHT = 2

};

static InputMode inputMode = INPUT_NONE;

static bool returnPressed = false;

static string inputLine;

static bool isRecording = false;

static bool isPlaying = false;

void SetResolution(int width, int height)

{

mainCamera->Stop();

mainCamera->Start(width, height);

}

void ToggleRecording()

{

if (!isRecording)

{

// decide on a file name

SYSTEMTIME tm;

GetLocalTime(&tm);

ostringstream ost;

ost << tm.wYear

<< setfill(’0’)

<< setw(2) << tm.wMonth

<< setw(2) << tm.wDay

<< "_"

<< setw(2) << tm.wHour

<< setw(2) << tm.wMinute

<< setw(2) << tm.wSecond;

string name = ost.str();

if (!mainCamera->StartRecord("/GiraffRec/cam_" + name))

{

return;

}

if (!mainMotor->StartRecord("/GiraffRec/ctl_" + name))

{

mainCamera->StopRecord();

return;

}

isRecording = true;

}

else

{

mainMotor->StopRecord();

117

B. Soure ode listings

mainCamera->StopRecord();

isRecording = false;

}

}

void TogglePlayback()

{

if (!isPlaying)

{

string name = PLAY_FILE;

if (!mainCamera->StartPlayback(PLAY_PATH "cam_" + name))

{

return;

}

if (!mainMotor->StartPlayback(PLAY_PATH "ctl_" + name))

{

mainCamera->StopPlayback();

return;

}

isPlaying = true;

}

else

{

mainMotor->StopPlayback();

mainCamera->StopPlayback();

isPlaying = false;

}

}

void InputHandler(int code, int type)

{

if (type == WM_KEYUP &&

code == VK_RETURN)

{

returnPressed = false;

}

if (inputMode)

{

if (type != WM_CHAR)

{

return;

}

switch (code)

{

case ’\b’: // Backspace

if (!inputLine.empty())

{

inputLine.erase(inputLine.length()-1);

}

break;

case ’\e’: // Esc

inputMode = INPUT_NONE;

inputLine.clear();

mainWindow->InputRight(inputLine);

return;

case ’\r’: // Enter

if (returnPressed)

{

// keypress already handled separately

return;

}

if (!inputLine.empty())

{

mainMotor->SendUserCommand(inputLine);

}

inputMode = INPUT_NONE;

inputLine.clear();

mainWindow->InputRight(inputLine);

return;

default:

if (code >= 32 && code <= 126)

118

B.7. Gira�Nav.pp

{

// Regular ASCII character

inputLine.push_back(code);

}

break;

}

mainWindow->InputRight(inputLine + "_");

return;

}

if (type == WM_KEYUP)

{

switch (code)

{

case VK_DOWN:

case VK_UP:

mainMotor->SetMotion(0);

break;

case VK_LEFT:

case VK_RIGHT:

mainMotor->SetTurn(0);

break;

}

}

if (type != WM_KEYDOWN)

{

return;

}

switch (code)

{

case VK_ESCAPE:

// Initiate system shutdown

mainWindow->Stop();

break;

// Manual movement

case VK_LEFT:

mainMotor->SetTurn(-KBD_TURN_SPEED);

break;

case VK_RIGHT:

mainMotor->SetTurn(KBD_TURN_SPEED);

break;

case VK_UP:

mainMotor->SetMotion(KBD_MOVE_SPEED);

break;

case VK_DOWN:

mainMotor->SetMotion(-KBD_MOVE_SPEED);

break;

// Keys to try out various resolutions.

case ’1’:

SetResolution(1600, 1200);

break;

case ’2’:

SetResolution(1280, 960);

break;

case ’3’:

SetResolution(1024, 768);

break;

case ’4’:

SetResolution(800, 600);

break;

case ’5’:

SetResolution(640, 480);

break;

// Misc keys

case VK_RETURN:

// input motor command

inputMode = INPUT_RIGHT;

returnPressed = true;

mainWindow->InputRight("_");

break;

case ’A’:

119

B. Soure ode listings

// this is a hack to check

mainMotor->m_autoupdate = !mainMotor->m_autoupdate;

if (mainMotor->m_autoupdate)

{

mainWindow->PrintLeft("Motor autoupdate on");

}

else

{

mainWindow->PrintLeft("Motor autoupdate off");

}

break;

case ’B’:

mainMotor->GetBulkData();

break;

case ’H’:

mainMotor->Home();

break;

case ’P’:

TogglePlayback();

break;

case ’R’:

ToggleRecording();

break;

case ’T’:

mainMotor->SetTilt(1);

break;

case ’U’:

mainMotor->Undock();

break;

}

}

void MainLoop()

{

LARGE_INTEGER freq, period;

LARGE_INTEGER last_count;

DWORD frame_count = 0;

DWORD fms = 0;

DWORD fps = 0;

Mat frame;

QueryPerformanceFrequency(&freq);

// recalculate performance data every 250ms.

period.QuadPart = freq.QuadPart / 4;

QueryPerformanceCounter(&last_count);

while (mainWindow->ProcessInput())

{

bool ok = mainMotor->Process();

if (!ok && isPlaying)

{

TogglePlayback();

mainMotor->Process();

}

mainCamera->Grab(frame);

extractor->Process(frame);

mainWindow->Show(frame);

frame_count++;

// check performance measures

LARGE_INTEGER cur_count, diff_count;

QueryPerformanceCounter(&cur_count);

diff_count.QuadPart = cur_count.QuadPart - last_count.QuadPart;

if (diff_count.QuadPart >= period.QuadPart)

{

// recalculate performance data

LONGLONG factor = frame_count * freq.QuadPart;

fms = (diff_count.QuadPart*1000) / factor;

fps = factor / diff_count.QuadPart;

frame_count = 0;

last_count.QuadPart = cur_count.QuadPart;

}

120

B.8. FeatureExtrat.hpp

ostringstream ost;

ost << fms << "ms, "

<< setw(2) << fps << "fps";

mainWindow->SetPerformanceInfo(ost.str());

}

}

int WINAPI WinMain(HINSTANCE hInst,

HINSTANCE hPrevInst,

LPSTR pCmdLine,

int nCmdShow)

{

mainWindow = new DisplayWindow(hInst, hPrevInst);

mainWindow->SetInputHandler(InputHandler);

if (!mainWindow->Start())

{

return 0;

}

mainCamera = new GiraffCamera(mainWindow);

if (!mainCamera->Start(DEF_WIDTH, DEF_HEIGHT))

{

mainWindow->ShowError("Could not connect to camera!");

return 0;

}

mainMotor = new GiraffMotor(mainWindow);

if (!mainMotor->Start())

{

mainWindow->ShowError("Could not connect to motor controller!");

return 0;

}

extractor = new FeatureExtractor(mainWindow);

MainLoop();

delete extractor;

delete mainMotor;

delete mainCamera;

delete mainWindow;

return 0;

}

B.8. FeatureExtrat.hpp

#ifndef FEATUREEXTRACT_HPP

#define FEATUREEXTRACT_HPP

#include "DisplayWindow.hpp"

#include <opencv2/highgui/highgui.hpp>

#define CAM_REC_BUFFERS 8

class FeatureExtractor

{

public:

FeatureExtractor(DisplayWindow* win);

~FeatureExtractor();

void Process(cv::Mat& frame);

private:

DisplayWindow* m_win;

};

#endif // FEATUREEXTRACT_HPP

121

B. Soure ode listings

B.9. FeatureExtrat.pp

#include "FeatureExtract.hpp"

// Sample feature extractor

#include <opencv2/imgproc/imgproc.hpp>

#include <opencv2/features2d/features2d.hpp>

using namespace std;

using namespace cv;

FeatureExtractor::FeatureExtractor(DisplayWindow* win) :

m_win(win)

{

}

FeatureExtractor::~FeatureExtractor()

{

}

void FeatureExtractor::Process(cv::Mat& frame)

{

Mat grayframe;

// Convert to grayscale

cvtColor(frame, grayframe, CV_BGR2GRAY);

#if 0 // Canny edge detector (just for demonstration)

Mat cannyframe(grayframe.size(), grayframe.type());

Canny(grayframe, cannyframe, 20, 50);

cvtColor(cannyframe, frame, CV_GRAY2BGR);

#endif // 1

#if 1 // "FAST" corner detector

vector<KeyPoint> keypoints;

FAST(grayframe, keypoints, 50);

// draw pink circles around detected corners

drawKeypoints(frame, keypoints, frame,

Scalar(128,0,255),

DrawMatchesFlags::DRAW_OVER_OUTIMG);

// These eypoints could be given to some

// SLAM implementation.

#endif

}

122

C. Contents of the CD-ROM

The CD-ROM ontains these diretories:

� Bin: This diretory ontains the binaries needed to run the system. They an be

opied to a USB memory stik, whih an then be inserted into one of the Gira�'s

USB ports, along with a omputer mouse. When browsing the ontents of the

memory stik, doublelik GiraffNav.exe. (If you plan to do any reording,

make sure that a GiraffRec diretory exists on the memory stik, otherwise

reording may fail.)

� GiraffNav: This is the soure ode of the developed system, along with the

Code::Bloks projet �le, and MinGW-ompiled binaries.

� OpenCV: This is the soure ode of OpenCV version 2.4.9, and MinGW-ompiled

binaries of it. These binaries are needed for building Gira�Nav.

� GiraffRec: This diretory ontains a ouple of reordings of the Gira� moving

around the are enter using the developed system.

123

