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Abstract: Metaheuristics are probabilistic optimization algorithms which are 
applicable to a wide range of optimization problems. Bio-inspired, also called 
nature-inspired, optimization algorithms are the most widely-known 
metaheuristics. The general scheme of bio-inspired algorithms consists in an 
initial stage of randomly generated solutions which evolve through search 
operations, for several generations, towards an optimal value of the fitness 
function of the optimization problem at hand. Such a scenario requires repeated 
evaluation of the fitness function. While in some applications each evaluation 
will not take more than a fraction of a second, in others, mainly those 
encountered in data mining, each evaluation may take up several minutes, 
hours, or even more. This category of optimization problems is called expensive 
optimization. Such cases require a certain modification of the above scheme. In 
this paper we present a new method for handling expensive optimization 
problems. This method can be applied with different population-based bio-
inspired optimization algorithms. Although the proposed method is independent 
of the application to which it is applied, we experiment it on a data mining task.    

Keywords: Bio-inspired Optimization, Differential Evolution, Expensive 
Optimization, Genetic Algorithms, Metaheuristics, Optimization Applications 
in Data Mining.  

1   Introduction 

Optimization is an important problem that has many applications. In an optimization 
problem we try to find a solution that minimizes or maximizes the value of a function 
that we call the fitness function or the objective function. Optimization problems can 
be discrete/ continuous/hybrid, constrained/unconstrained, single objective/ 
multiobjective, unimodal /multimodal. Optimization algorithms can be classified in 
several ways one of which is whether they are single solution –based algorithms or 
population-based algorithms. The term metaheuristics in the optimization literature 
refers to probabilistic optimization algorithms which are applicable to a large variety 
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of optimization problems. Many of these metaheuristics are inspired by natural 
processes hence the term bio-inspired or nature-inspired optimization algorithms. The 
general scheme used in all these algorithms is the following; an initial stage where a 
population of feasible solutions is randomly generated. The fitness function of these 
solutions is evaluated. The solutions with the highest values of the fitness function are 
favored and are given a higher possibility to survive the optimization process. The 
algorithm repeats for a certain number of generations or cycles, or it is terminated by 
a predefined stopping criterion. 

As we can see from the above scheme, fitness function evaluation is a central part 
of bio-inspired optimization. While in some applications each evaluation will not take 
more than a fraction of a second, in others each evaluation may take up to several 
minutes, hours, or even more. This category of optimization is called expensive 
optimization. Such cases require a certain modification of the above scheme. 

Data mining is a branch of computer science that handles several tasks, most of 
which demand extensive computing. As with other fields of research, different papers 
have proposed applying bio-inspired optimization to process data mining tasks [2], 
[3], [4], [5], [6], [7]. However, most of these applications are expensive optimization 
problems that require certain considerations.  

In this paper we present a new method for handling expensive optimization 
problems. This method can be applied to different population-based bio-inspired 
optimization algorithms. Although the proposed method is independent of the 
application to which it is applied, we test it on a data mining task of setting weights 
for different segments of time series data according to their information content. 

This paper is organized as follows: Section 2 is a background section. In Section 3 
we present the new method. The experiments we conducted are reported in Section 4, 
and we conclude with Section 5. 

2   Background 

Although bio-inspired algorithms use different search strategies, they all share a 
common frame that is a based on the following steps: 

. Initialization: In this step a collection of individuals (called chromosomes, 
particles, or agents, according to the algorithm) that represent a feasible solution to an 
optimization problem is generated randomly. 

. Fitness Function Evaluation: The objective of this step is to rank the different, 
so-far examined, solutions of the problem, to determine their quality. 

. Update: The term “update” here does not refer to the narrow meaning of it as it 
used in Particle Swarm Optimization (PSO), but it refers to a meta operation that 
directs the metaheuristics at iteration t+1 towards the region in the search space where 
a better solution is likely to be found. This update is based on the fitness evaluation at 
iteration t . This step is the abstract form of the selection step used in the Evolutionary 
Algorithms (EA) family.  

. Mutation: This is a random alteration of a certain percentage of chromosomes. 
The objective of this operation is to allow the optimization algorithm to explore new 
regions in the search space. 
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. Iteration: This is not a step by itself, it is the repetition of the last three steps for a 
predefined number of times (generations, cycles, iterations, depending on the 
algorithm) which is usually predefined, or until the algorithm is terminated by a 
stopping criterion.  

The performance of bio-inspired optimization highly depends on running the 
algorithm for a number of iterations sufficient to allow the solutions to evolve, 
otherwise the algorithm will, at best, only reach a local extreme point. The number of 
iterations, in turn, is dependent of the computational cost of fitness function 
evaluation. In general the number of fitness function evaluations can (roughly) be 
given by: 
 

sPop.nItrnEval =                                                     (1) 
 

Where nEval is the number of fitness function evaluations, nItr is the number of 
iterations (generations) and sPop is the population size. We say that relation (1) is an 
approximate one because there are quite a number of variations; for instance, most 
algorithms will add to that relation another term related to the evaluations resulting 
from mutation, others will recycle evaluations from previous generations, etc.  

One of the trivial techniques to handle expensive optimization problems is simply 
to reduce the number of generations nItr. While this may be acceptable to a certain 
degree, it could have serious consequences when nItr is drastically decreased. Bio-
inspired optimization algorithms are supposed to mimic natural phenomena. For 
instance; EA simulate evolution of species as it happens over thousands of 
generations. This is the reason why many applications set nItr to 1000 or 2000 or even 
more. But when in some applications of expensive optimization nItr is set to 10, for 
instance, this changes the whole nature of the bio-inspired algorithm. At best, the 
algorithm in this case can only find a local extreme point, but in other cases the whole 
optimization process becomes meaningless. Besides, it is important to remember that 
the random initialization of the population assumes that the algorithm will be run for a 
certain number of generations enough to “erase” the effect of initialization of the 
population with specific chromosomes. 

3   The Proposed Method  

3.1 The Principle   

One of the techniques that have already been proposed in bio-inspired optimization to 
avoid stagnating in a local extreme point is to run the algorithm several times, with 
different initial populations, and the best result of all these runs is kept. Although this 
approach is completely inappropriate for expensive optimization problems because it 
requires too many fitness function evaluations, our method stems from a similar idea; 
instead of running the algorithm several times, which is not computationally feasible, 
and instead of running the algorithm once for a limited number of iterations for 
expensive optimization problems, as has previously been discussed in Section 2, we 
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propose a new method that runs the algorithm for a limited number of iterations, but 
using an optimally initialized population.  

3.2 Optimization of the Initial Population   

As mentioned earlier, our method is based on running an expensive optimization 
algorithm for a small number of iterations but using an optimally-chosen initial 
population. However, we should keep in mind that this “optimality” of the initial 
population should not be determined by any evaluation of the expensive fitness 
function, otherwise the method would not make sense. The direct result of this 
requirement is that optimization of the initial population will be problem-independent. 
To put it simply; we have two separate and independent optimization problems; one is 
a sub-optimization problem, which is the problem of optimizing the initial population, 
we call this problem the secondary optimization problem and refer to it with 
(SecOptim), and the other is the original optimization problem with the expensive 
fitness function. We call this problem the main optimization problem and we refer to 
it with (MainOptim). MainOptim starts the optimization process with an optimal 
initial population obtained through SecOptim.  

As a fitness function of SecOptim we choose one that gives as much information as 
possible about the search space of MainOptim since this initial population will 
eventually be used to optimize MainOptim. This choice of our fitness function for 
SecOptim originates from one of the rules on which PSO is based, which is the rule of 
separation [8]. According to this rule each particle should avoid getting too close to 
its neighbors. The intuition behind this rule is that when two particles are close it is 
very likely that the value of the fitness function for both of them will not be very 
different. Based on the same intuition, between two different populations we have to 
choose the one whose chromosomes are as scattered as possible because such a 
population will give a better representation of the search space. Thus our choice for 
the fitness function for SecOptim will be the one that maximizes the average distance 
of the chromosomes of the population, i.e.: 
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where secPopSize is the population size of SecOptim , ch is the chromosome. d is a 
distance, which we choose to be the Euclidean distance. Notice that 
( ) ( )ijji ch,chdch,chd =  so we only need to take half of the summation in (2).  
The other component of SecOptim is the search space. As indicated earlier, 

SecOptim is a separate optimization problem from MainOptim with its own search 
space. The search space of SecOptim is a discrete one whose points are feasible 
solutions of MainOptim. In other words, the search space of SecOptim is a pool of 
solutions of MainOptim . The cardinality of this pool is denoted by poolSize.   

Now all the elements of SecOptim are defined. poolSize is a new element that is 
particular to our method. In the experimental section we discuss this element further.   
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3.3 The Algorithm    

Briefly, our method as described in Section 3.1 and 3.2, adds to the original 
optimization problem MainOptim another optimization problem SecOptim the 
outcome of which is the initial population of MainOptim . The aim of this process is 
to reduce the number of fitness function evaluations of MainOptim by starting the 
optimization process with an optimal initial population.    

4   Application - Experiments  

In this section we show how our algorithm is applied through an example of an 
optimization problem with an expensive fitness function. First we will present the 
problem and then we will discuss how our method is applied to it, and in the final part 
of this section we will conduct experiments to test our method.   

4.1 The Problem    

A time series is a collection of observations at intervals of time points. One key to 
mining time series data is to reduce their dimensionality so that they can be handled 
efficiently and effectively. Most time series data mining tasks require calculating the 
similarity between the time series. This similarity is quantified using a similarity 
measure or a distance metric. In [7] we presented a new distance of time series data, 
WPAAD, which is defined as: 
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            (3) 

 
Where n is the length of the time series, N is the number of frames in the reduced 
space, and where the time series are segmented into equal-sized frames, is  ( ir ) is the 
mean of the data points S (R) that lie within that frame. The weights in (3) are set 
using the differential evolution (DE) which we present later in this paper. We called 
the dimensionality reduction technique based on this distance the Differential 
Evolutionary Weighted Piecewise Aggregate Approximation (DEWPAA) 

4.2 Our Proposed Algorithm 

The problem we presented in Section 4.1 is an example of expensive optimization 
problems, so we will use our algorithm, which we call the PreInitialAlgo to show that 
by starting the optimization process of DEWPAA with an optimized population 
resulting from our method, we can get the same results of DEWPAA but by a much 
smaller number of generations, thus with much fewer fitness function evaluations. In 
the language of our PreInitialAlgo, the optimization process of DEWPAA is 
MainOptim, and SecOptim is the optimization process that yields an optimal initial 
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population for DEWPAA. Since MainOptim and SecOptim are independent, we can 
use two different optimization algorithms if we wish to, so for our experiments we 
apply the Genetic Algorithms for SecOptim and the differential evolution for 
MainOptim. Figure 1 illustrates how PreInitialAlgo is applied. But let us first give a 
brief description of the Genetic Algorithms and the Differential Evolution. 

The Genetic Algorithms (GAs): GAs are widely-known bio-inspired optimization 
algorithms. GA starts by randomly generating a number of chromosomes. This step is 
called initialization. The fitness function of each chromosome is evaluated. The next 
step is selection. The purpose of this procedure is to determine which chromosomes 
are fit enough to survive. Crossover is the next step in which offspring of two parents 
are produced to enrich the population with fitter chromosomes. The last element is 
Mutation of a certain percentage of chromosomes.  

 
The Differential Evolution (DE): In 

DE for each individual, which we call 
the target vector iT

r
, of the population 

we randomly choose three mutually 
distinct individuals; 1rV

r
, 2rV
r

, 3rV
r

which 
combine to form the donor vector 

( )321 rrr VVFVD
rrrr

−+= . F is called the 
mutation factor . Then a trial vector 
R
r

is formed from elements of iT
r

and 

D
r

. This includes utilizing another 
control parameter rC called the 

crossover constant. In the next step R
r

is 
compared with iT

r
to decide which one 

of them will survive in the next 
generation.   

4.3 Experiments  

We conducted our experiments on the datasets available at [1] to compare 
PreInitialAlgo with DEWPAA. For each tested data set we ran PreInitialAlgo for 20 
generations to get the weights iw  in relation (3) that minimize the classification error 
of the training datasets, and then we used these optimal values iw  to classify the 
corresponding testing datasets to get the classification error. We repeated this process 
for three compression ratios 1:8, 1:12, and 1:16. We then ran DEWPAA for 100 
generations to get iw , also for the same compression ratios. The experiments were 
conducted on Intel Core 2 Duo CPU with 3G memory. We present in Table 1 the 
results of our experiments. As we can see in Table 1 the classification error of 
PreInitialAlgo is equal to, or even better than, that of DEWPAA even though the 
former is run only for 20 generations while the latter is run for 100 generations, which 

  Optimal Solution of Main Problem 

Main Fitness Function Evaluation

Main Problem Initialization  
Secondary Problem Initialization 

Stopping 
Criteria?  
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Pool Initialization 

Secondary Fitness Function 
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Mutation 
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Evaluation

  No 
 Yes

Target 
Donor 
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Fig. 1. A scheme of PreInitialAlgo using GA 
and DE
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Table 1. Comparison of classification accuracy between PreInitialAlgo and DEWPAA on 
different datasets for compression ratios 1:8, 1:12, and 1:16 
 

Compression Ratios   Dataset     Method 
1:8 1:12 1:16 

PreInitialAlgo 0.397 0.260 0.479 Lighting7 
DEWPAA 0.438 0.384 0.479 

PreInitialAlgo 0.378 0.337 0.387 MedicalImages 
DEWPAA 0.379 0.353 0.378 

PreInitialAlgo 0.213 0.180 0.131 Lighting2 
DEWPAA 0.213 0.197 0.197 

PreInitialAlgo 0.095 0.077 0.082 MALLAT     
DEWPAA 0.094 0.094 0.094 

PreInitialAlgo 0.240 0.302 0.364 FaceUCR  
DEWPAA 0.238 0.316 0.366 

PreInitialAlgo 0.194 0.246 0.200 FISH 
DEWPAA 0.194 0.240 0.229 

PreInitialAlgo 0.063 0.110 0.147 synthetic_control 
DEWPAA 0.053 0.113 0.160 

 
means that DEWPAA requires 5 times more fitness function evaluations than 
PreInitialAlgo, yet its performance is the same, or even not as good, as that of 
PreInitialAlgo. 

The experiments we conducted also included wall clock time comparison. We 
present in Table 2 the run time of the experiments presented in Table 1. As we can see 
from the results presented in Table 2, PreInitialAlgo is on average 5 times faster than 
DEWPAA, yet the classification errors of both methods are the same in general, which 
proves the effectiveness of PreInitialAlgo.   

The results presented in Table 1 and Table 2 were those for poolSize =1000. We 
conducted other experiments for different values of poolSize higher than that, and the 
results were similar. 

An interesting thing to mention is that we computed the wall clock time of 
SecOptim; it took only between 7-12 seconds, which is very small compared to the 
optimization process of MainOptim, so this additional secondary optimization 
problem we added did not require but a very small additional computational cost, yet 
the gain was high. (The wall clock time of SecOptim is independent of the dataset, 
since, as we mentioned earlier, SecOptim is independent of MainOptim)  
 
Table 2. Run time comparison between PreInitialAlgo and DEWPAA for the experiments 
presented in Table 1 
 

Compression Ratios   Dataset     Method 
1:8 1:12 1:16 

PreInitialAlgo 00h 19m 59s 00h 13m 20s 00h 09m 34s Lighting7 
DEWPAA 01h 36m 29s 01h 11m 20s 00h 51m 08s 

PreInitialAlgo 03h 09m 23s 02h 03m 36s 01h 39m 58s MedicalImages 
DEWPAA 16h 35m 59s 11h 25m 40s 08h 48m 33s 

PreInitialAlgo 00h 32m 12s 00h 21m 56s 00h 17m 00s Lighting2 
DEWPAA 02h 30m 13s 01h 31m 27s 01h 16m 06s 

PreInitialAlgo 00h 43m 19s 00h 29m 30s 00h 18m 42s MALLAT     
DEWPAA 03h 30m 42s 02h 08m 55s 01h 37m 23s 

PreInitialAlgo 01h 04m 04s 00h 41m 55s 00h 32m 33s FaceUCR  
DEWPAA 05h 31m 19s 03h 27m 50s 02h 49m 21s 

PreInitialAlgo 02h 57m 03s 02h 47m 01s 01h 53m 45s FISH 
DEWPAA 16h 12m 54s 11h 23m 10s 07h 23m 10s 

PreInitialAlgo 01h 04m 47s 00h 58m 27s 00h 30m 11s synthetic_control 
DEWPAA 05h 56m 10s 04h 01m 09s 03h 12m 27s 
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5   Conclusion  

We presented in this paper a new method, PreInitialAlgo, for handling expensive 
optimization problems such as those encountered in data mining. The new method is 
applied to population-based bio-inspired algorithms. The basis of our method is to 
start the optimization process using an optimal initial population. This optimal 
population is the outcome of another, secondary optimization problem, which is 
independent of the original problem. We showed experimentally how our new method 
can substantially improve the performance of the optimization algorithm in terms of 
speed. 

In this paper we used DE and GA as optimizers for the main and secondary 
optimization problems, respectively. As future work, we would like to test different 
combinations of bio-inspired algorithms to see which two methods can work best 
together to yield the best results.  
  Another direction of future work is to apply the secondary problem using a different 
fitness function, which could give better results yet.  
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