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Abstract

In this thesis we study how to characterize nonstationary harmonizable random pro-
cesses simultaneously in time and frequency. Unlike stationary random processes, har-
monizable processes can have a frequency content that changes with time. Rather than
working directly with the process itself, we analyze the second-order moment functions of
the process and characterize the process from these moments. The second-order moments
of a harmonizable process can be represented in the dual-time domain, the dual-frequency
domain, the ambiguity domain and the time-frequency domain, where all domains are
connected through Fourier transforms. The time-frequency domain often offers the most
intuitive descriptions of the process, thus it will be the main focus of this thesis. We
propose estimators of the time-frequency spectra, and we analyze the statistical proper-
ties of the estimators. The proposed estimators enjoy a great freedom in that they have
many parameters that can be adjusted, and different choices of these parameters will be
discussed. We demonstrate the estimator on both simulated complex-valued data and
real-world real-valued data.

The ambiguity domain is connected to the time-frequency domain through a 2-D Fourier
transform. We can relate the support of the second-order moments in the ambiguity do-
main, which again is related to the concept of an underspread processes, to the smoothness
of the time-frequency spectra. We propose an estimation procedure for the second-order
moments in the ambiguity domain based on thresholding of empirical moments, as this will
enable us to determine the support in this domain. The estimator is tested on simulated
data, and we compare the estimated mean square error of our proposed estimator to a
standard estimation approach.

In order to provide objective and dimensionless representations of the time-frequency
behavior of a harmonizable process, we define spectral coherence measures. The spectral
coherences measure the correlation between the time behavior and frequency behavior of
the process (time-frequency coherence) or the correlation across frequencies (dual-frequency
coherence). We show how previously defined coherences may be obtained through a linear
estimation scheme, and we propose alternative spectral coherence measures based on a
widely linear estimation scheme.

The time-frequency representations are applied to a specific stochastic problem, namely
that of stochastic differential equations. By transforming the stochastic differential equa-
tion to the time-frequency domain and thus considering the second-order moments of the
processes involved, we avoid the problems related to stochastic integration. We consider
both random processes in time and random fields in spatial variables. We develop a gen-
eral theory, and we consider both theoretical and simulated examples that corroborate the
theory.
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Chapter 1

Introduction

This thesis deals with random processes and their second-order moment functions, with
representations simultaneously in time and frequency as the main theme. We focus on how
to represent the second-order moments in time-frequency, how to estimate time-frequency
quantities and we will show how time-frequency representations can provide insight into
the field of stochastic differential equations. A random process is a function of time, where
for each time instant t the process is a random variable. The random process is governed
by the probability densities of these random variables, both the marginal distributions at
each time instant, and the joint distributions between different time instants. The analysis
of random processes has traditionally been dominated by the assumption that the random
process is stationary, for which the probability densities governing the process do not change
with time. In recent years there has been an increasing interest in nonstationary processes.
Harmonizable processes, introduced in [Loève, 1945; Loève, 1946], is a very large class of
nonstationary processes that has been widely studied, see e.g., [Rao, 1985; Yaglom, 1987;
Lii and Rosenblatt, 2002; Hanssen and Scharf, 2003; Scharf et al., 2005]. A harmonizable
process is representable as a superposition of random, correlated, infinitesimal complex
harmonic oscillators. The associated infinitesimal complex random amplitude is often
called the increment process [Yaglom, 1987] or the generalized Fourier transform [Thomson,
2000]. We limit ourselves to work within the harmonizable class throughout this thesis.

Although we live in a real-valued world, complex-valued signals and processes find
applications in many different fields. A standard example is communications, where
complex-valued signals are used to improve the efficiency of communications systems, see
e.g., [Proakis and Salehi, 2002]. Complex-valued processes are also encountered when ana-
lyzing blood flow [Olhede and Walden, 2003] or oceanic currents [Lilly and Gascard, 2006],
to name a few specific examples. Traditionally, complex-valued processes have been treated
in a manner similar to that of real-valued processes, modified to include a single complex
conjugation applied in the moment definition [Picinbono, 1993]. However, the conven-
tional conjugation pattern may not exhaust all the statistical information available from
the second-order moments of the complex-valued process, the alternative conjugation pat-
tern may need to be considered as well. We call quantities resulting from the conventional
conjugation pattern Hermitian quantities, while quantities obtained from the alternative
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conjugation pattern are denoted complementary quantities. Important results concerning
the second-order statistics of complex-valued processes can be found in [Picinbono and
Bondon, 1997; Schreier and Scharf, 2003b; Schreier and Scharf, 2003a; Scharf et al., 2005].

Both the Hermitian and the complementary second-order moments of a harmonizable
process can be described in four domains, namely the dual-time domain, the dual-frequency
domain, the ambiguity domain and the time-frequency domain. All four domains are
related through Fourier Transforms (FT) and thus contain the same statistical information,
but they focus on different features of the process. Since nonstationary processes may have
a time-varying frequency content, much effort has been devoted to representing processes
simultaneously in global time and global frequency. The time-frequency domain is the one
of the four which has the most intuitive interpretation. We can compare a time-frequency
representation to a musical score sheet, which tells the musician what tones (frequencies)
to play at which time instants. The time-frequency domain is also the easiest to interpret
results in. This is not to say that some processes may not have a more natural expression
in one of the other domains. Harmonizable cyclostationary processes [Yaglom, 1987], e.g.,
are most naturally described in the dual-frequency domain.

A multitude of different time-frequency representations have been proposed [Cohen,
1995; Hlawatsch, 1998; Flandrin, 1999], and the most popular representations are the mem-
bers of Cohen’s class of bilinear representations [Cohen, 1995]. The Kirkwood-Rihaczek
time-frequency spectrum was introduced in a quantum mechanic context by Kirkwood [Kirk-
wood, 1933], and later by Rihaczek [Rihaczek, 1968] in a deterministic signal theory
context. We prefer to represent the process in the time-frequency domain through the
Kirkwood-Rihaczek spectrum, because it is the only member of Cohen’s class that is a
Hilbert space inner product. Another possible time-frequency descriptor related to the
Kirkwood-Rihaczek spectrum is the time-frequency spectral coherence. Spectral coher-
ences are objective and normalized dimensionless measures of the second-order statistic
of a random processes. The second-order moments may also be expressed by a spectral
coherence in the dual-frequency domain. The spectral coherences, in addition to being
objective and normalized, have the advantage that the Hermitian and the complementary
information may be merged together in one measure.

The ambiguity domain is also a time-frequency domain, but it describes the second-
order moments in local time (time shifts) and local frequency (frequency offsets). The
ambiguity domain has historically been given little attention in connection with random
processes. However, lately there has been some interest in this domain connected to the
concept of underspread processes [Kozek, 1997]. A random process is (strictly) underspread
if its ambiguity function is nonzero only for some small area around the origin in the
ambiguity plane. The ambiguity function relates the degree of smoothness in the other
three domains, because assuming smoothness in global time is equivalent to assuming a
decay in local frequency in the ambiguity domain, and assuming smoothness in the global
frequency is equivalent to assuming a decay in the local time in the ambiguity domain.
The field of global time-frequency analysis have been troubled by the fact that there are
infinitely many possible time-frequency representations. There are no definite rules as
to what properties a time-frequency spectrum must fulfill, even if systematic approaches
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have been attempted [Loynes, 1968]. Thus, many different time-frequency spectra are
defined and all satisfy different sets of conditions, and all spectra are claimed to be the
best in some way. The problem becomes choosing a suitable time-frequency representation,
which may even be process dependent. In [Matz and Hlawatsch, 2006], it was shown that
many different classes of global time-frequency spectra yield approximately equal results for
underspread processes. The behavior in the ambiguity domain is related to the behavior in
time-frequency in this manner, and this behavior is thus interesting from a time-frequency
viewpoint.

The thesis is organized as follows. In Chapter 2 we introduce the concept of harmo-
nizable processes and the Hermitian and complementary second-order moments. We also
introduce different concepts used later in the thesis, and give a quick summary of how
the quantities in the dual-time domain and the dual-frequency-spectra may be estimated.
The four following Chapters contain original work, where parts have been published and
parts are under consideration for publishing. The Kirkwood-Rihaczek spectra are dis-
cussed in more detail in Chapter 3. We propose estimators for the spectra, and these
estimators are tested on simulated and real-world data. This work has partially been pub-
lished in [Hindberg et al., 2006]. Chapter 4 deals with the Hermitian ambiguity function,
more specifically how to estimate it when the underlying process is underspread. Our es-
timation procedure allows us to estimate how underspread the process is as well, which is
interesting in connection to the global time-frequency description. This work was partly
presented at a conference [Hindberg et al., 2008] and is currently under review [Hindberg
and Olhede, 2009]. We propose spectral coherence measures in both time-frequency and
dual-frequency in Chapter 5, these measures simultaneously utilize both the Hermitian and
the complementary quantities of complex-valued harmonizable processes. This work was
published in [Hindberg and Hanssen, 2007]. We consider stochastic differential equations
in Chapter 6, and provide additional insight into these type of stochastic equations through
representations in the time-frequency domain. Finally, we provide a summary of the thesis
in Chapter 7.



Chapter 2

Harmonizable Processes

This Chapter will serve as an introduction to harmonizable processes and related concepts.
We consider both continuous and discrete time, and all eight Hermitian and complementary
second-order moments are introduced for each case. In practice, all second-order moment
functions must be estimated from available data. We will focus on estimation in two
of the possible domains in Chapter 3 and 4. For completeness, this Chapter contains
a sketch on how the moments in the other two domains can be estimated. In testing
estimators one needs to be able to simulate data. We propose a method to simulate data
from a nonstationary complex-valued process. Finally, we briefly introduce the concepts
of harmonizable random fields.

2.1 Continuous Time

In this thesis, X(t) will denote a zero-mean, continuous-time, and harmonizable complex-
valued random process. The process has a Cramér-Loève, or spectral representation [Cramér,
1940; Loève, 1978]

X(t) =

∫
ej2πftdX̃(f), (2.1)

where dX̃(f) is the complex-valued increment process of X(t) [Yaglom, 1987]. All integrals
are over the entire real axis unless otherwise specified. From (2.1), we can interpret the
random process X(t) as a superposition of correlated, random, infinitesimal harmonic
oscillators, since the complex-valued weight function dX̃(f) is random, and contributes
by an infinitesimal amount for each frequency f . We are, however, not interested in
the actual values of the increment process dX̃(f), but rather its moments, or correlation
properties. If the process in question is Gaussian, the first and second-order moments of
the process describe the moments of the process to all orders. The first-order moment of
X(t) is assumed to be zero, thus we concentrate on the second-order moments. We note
that many real-world processes are not Gaussian, and for these processes one must also
consider higher-order moment functions.
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MXX∗ (t, τ)

SXX∗ (ν, f)

RXX∗ (t, f)

AXX∗ (ν, τ)

τ ↔ f
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τ ↔ f

(a)

SXX(ν, f)AXX(ν, τ)

MXX(t, τ) RXX(t, f)
τ ↔ f

t↔ ν t↔ ν

τ ↔ f

(b)

Figure 2.1: (a) Relations between the Hermitian second-order moments. (b) Relations
between the complementary second-order moments.

The Hermitian second-order moments of X(t) can be expressed by the Hermitian dual-
time correlation

MXX∗ (t, τ) = E {X(t)X∗(t− τ)} , (2.2)

the Hermitian dual-frequency spectrum

SXX∗ (ν, f)dνdf = E
{

dX̃(f + ν)dX̃∗(f)
}

, (2.3)

the Hermitian Kirkwood-Rihaczek time-frequency spectrum (or HKR-spectrum)

RXX∗ (t, f)df = E
{

X(t)
[
dX̃(f)ej2πft

]∗}
, (2.4)

or the Hermitian ambiguity function

AXX∗ (ν, τ) =

∫
SXX∗ (ν, f)ej2πfτdf =

∫
MXX∗ (t, τ)ej2πνtdt. (2.5)

Here, E {·} is the expectation operator and ∗ denotes complex conjugation. The variables
t and f are global variables of time and frequency, respectively. Likewise, τ is a local
time variable, or time shift, and ν is a local frequency variable, or frequency offset. If
we define the Hilbert space inner product between two random variables Q and Z as
〈Q, Z〉 = E {QZ∗}, we see that SXX∗ (ν, f), MXX∗ (t, τ) and RXX∗ (t, f) are Hilbert space
inner products, while the Hermitian ambiguity function is not.

The four quantities are linked through FTs as shown in Figure 2.1(a), and thus con-
tain the same statistical information. However, each quantity has a different focus. The
Hermitian dual-time correlation tells us how the process at the global time t is corre-
lated to the process at a time instant shifted τ from this time. Similarly, the Hermitian
dual-frequency spectrum relates the increment process at different frequencies. The HKR-
spectrum measures the correlation between the process itself at time t and the modulated
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increment process at frequency f , the latter being the integrand of the spectral repre-
sentation in (2.1). The Hermitian ambiguity function has no simple interpretation as a
correlation. However, we may note that a relatively large value of |AXX∗ (ν, τ)| at a point
(ν0, τ0) in the ambiguity plane tells us that for some time(s) t, the process at time t is
strongly correlated with the process shifted by τ0 from t. Likewise, the increment process
is, for some frequency (or frequencies) f , correlated to the increment process shifted from
f by ν0. It is a function of local variables that describes the correlation lengths of the
process in time and frequency.

A complex-valued process will, in addition to the Hermitian second-order moments,
have complementary second-order moments [Picinbono and Bondon, 1997; Schreier and
Scharf, 2003b]. These are the complementary dual-time correlation

MXX(t, τ) = E {X(t)X(t− τ)} , (2.6)

the complementary dual-frequency spectrum

SXX(ν, f)dνdf = E
{

dX̃(f + ν)dX̃(−f)
}

, (2.7)

the complementary Kirkwood-Rihaczek time-frequency spectrum (or the CKR-spectrum)

RXX(t, f)df = E
{

X(t)dX̃(−f)e−j2πft
}

, (2.8)

and the complementary ambiguity function

AXX(ν, τ) =

∫
SXX(ν, f)ej2πfτdf =

∫
MXX(t, τ)ej2πνtdt. (2.9)

These complementary quantities are also related through FTs, as shown in Figure 2.1(b).
As the Hermitian quantities, the complementary correlations all contain the same sta-

tistical information, but with different focus. The difference between MXX∗ (t, τ) and
MXX(t, τ) is the complex conjugation of X(t − τ) in the former. Thus, for real-valued
processes, these two quantities are identical, and it follows that all complementary quan-
tities are equal to their corresponding Hermitian quantities for real-valued processes. We
note that a real-valued process will have an increment process with the Hermitian sym-
metry dX̃(−f) = dX̃∗(f). The complementary quantities can be interpreted through
correlations similarly as the Hermitian quantities (except for the ambiguity function). The
complementary dual-time correlation is the correlation between the process itself at t and
the complex conjugated of the process at time t − τ , and so on. However, it is not intu-
itively clear what we can infer from a correlation between the process itself and its complex
conjugate. A process that has no complementary correlations, i.e., MXX∗ (t, τ) = 0, ∀ t, τ ,
is denoted a proper process [Neeser and Massey, 1993], and a proper process has to be
complex-valued. For an improper complex-valued harmonizable process we require one of
the four Hermitian quantities and one of the four complementary quantities to completely
describe the second-order moments of the process. Finally, we note that X(t) is a har-
monizable process if and only if the dual-frequency spectra are 2-dimensional FTs of the
dual-time correlations, and both SXX∗ (ν, f) and SXX(ν, f) are absolute integrable over the
entire dual-frequency plane [Yaglom, 1987].
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2.1.1 Cross-moments
It may be of interest to study how two different mutually harmonizable processes X(t)
and Y (t) are correlated. The Hermitian second-order cross-moments of the two mutually
harmonizable processes are defined as

MXY ∗ (t, τ) = E {X(t)Y ∗(t− τ)} (2.10)

SXY ∗ (ν, f)dνdf = E
{

dX̃(f + ν)dỸ ∗(f)
}

(2.11)

RXY ∗ (t, f)df = E
{

X(t)
[
dỸ (f)ej2πft

]∗}
(2.12)

AXY ∗ (ν, τ) =

∫
SXY ∗ (ν, f)ej2πfτdf, (2.13)

and the complementary cross-moments are defined similarly. Here, dX̃(f) and dỸ (f)
are the increment processes of X(t) and Y (t), respectively. The cross-moments have a
similar interpretation as correlation between different time instants and frequencies, but
here as a correlation between two different processes. Note that for general complex-
valued processes, we have MXY ∗ (t, τ) &= MY X∗ (t, τ), and the same applies to the seven
other second-order moments. The moments in (2.2)–(2.9) are sometimes referred to as
autocorrelations, since they only involve a single process X(t).

2.1.2 Stationary processes
Stationary processes constitute an important subclass of harmonizable processes, for which
the probability densities governing the process do not change with time. In order to check
for stationarity in the strictest sense, one must consider the joint probability distribution
for the process at different time instants. This is quite complicated, and it is common to
consider weaker types of stationarity instead. A process is said to be wide sense station-
ary [Priestley, 1988; Picinbono and Bondon, 1997] if its second-order moments are of the
form

MXX∗ (t, τ) = MXX∗ (τ) MXX(t, τ) = MXX(τ) (2.14)
SXX∗ (ν, f) = SXX∗ (f)δ(ν) SXX(ν, f) = SXX(f)δ(ν) (2.15)
RXX∗ (t, f) = SXX∗ (f) RXX(t, f) = SXX(f) (2.16)
AXX∗ (ν, τ) = MXX∗ (τ)δ(ν) AXX(ν, τ) = MXX(τ)δ(ν). (2.17)

Here, SXX∗ (f)df = E
{

dX̃(f)dX̃∗(f)
}

is the so-called power spectral density of the pro-
cess, MXX∗ (τ) = E {X(t)X∗(t− τ)} is the conventional autocorrelation function, and
SXX(f) and MXX(τ) are the complementary equivalents. Also, δ(·) is Dirac’s delta func-
tion. We note that for stationary processes, both dual-frequency spectra and both am-
biguity functions are nonzero only for ν = 0. This line ν = 0 is called the stationary
manifold. The time-frequency spectra do not change with time, and the dual-time corre-
lation is independent of the global time, it only depends on the difference between the two
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time instants. In the following we understand that a stationary process is stationary in the
wide sense. Note that strict sense stationary implies the wide sense, but not vice versa.

Motivating example for complementary correlations

To illustrate the importance of the information contained in the complementary quantities,
we consider a simple example. Let Y (t) denote a real-valued, stationary process with power
spectral density SY Y ∗ (f). We define a complex-valued process X(t) as

X(t) = ej2πf0tY (t), (2.18)

where f0 is a constant frequency. In other words, we let the process Y (t) amplitude mod-
ulate the complex carrier exp(j2πf0t). We obtain the Hermitian dual-frequency spectrum
of X(t) as

SXX∗ (ν, f) = SY Y ∗ (f − f0)δ(ν). (2.19)

Since SXX∗ (ν, f) is nonzero only on the stationary manifold ν = 0, the process X(t)
appears to be a stationary process with power spectral density SY Y ∗ (f −f0). However, the
complementary dual-frequency spectrum of X(t) is

SXX(ν, f) = SY Y ∗ (f + f0)δ(ν − 2f0), (2.20)

i.e., it is nonzero only on the line ν = 2f0 parallel to the stationary manifold. The process
X(t) is in fact a harmonizable cyclostationary process. We see that if we only consider the
Hermitian quantities, we would erroneously conclude that the process is stationary.

2.1.3 Analytic processes
Analytic signals have been used in a wide variety of fields, and especially in time-frequency
analysis, because it can reduce the bandwidth of real-valued signals, see e.g., [Flandrin,
1999]). The concept of instantaneous frequency also requires that the signal under consid-
eration is analytic. Simply put, an analytic signal is a signal whose FT is zero for negative
frequencies. Thus, an analytic harmonizable process has the spectral representation (2.1),
but with integration limits from 0 to ∞. Most analytic processes can be thought of as
corresponding to a real-valued process, i.e., we remove the frequency content for f < 0
from the real-valued process to obtain the analytic process (see e.g., [Picinbono, 1993] for
a more detailed treatment of analytic processes). Thus, if X(t) is the analytic process
corresponding to the real-valued harmonizable process Y (t), we have

X(t) =

∞∫

0

ej2πftdX̃(f) = 2

∫
ej2πftu(f)dỸ (f), (2.21)

where

u(f) =

{
1 f ≥ 0

0 f < 0
(2.22)
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is the unit step function. The factor 2 is included such that Re{X(t)} = Y (t), where Re{·}
denotes the real value operator (correspondingly, Im{·} is the imaginary value operator).
Analytic processes are necessarily complex-valued, since they have a one-sided spectral
representation. An analytic process corresponding to a real-valued stationary process is
proper [Picinbono and Bondon, 1997], whereas an analytic process corresponding to a
real-valued harmonizable process is in general improper [Schreier and Scharf, 2003b].

Since dX̃(f) has its support on non-negative frequencies only, the second-order mo-
ments of an analytic process will have limited support. The Hermitian dual-frequency
spectrum is supported on {f ≥ 0, ν ≥ −f}, and the complementary dual-frequency spec-
trum is supported on {f ≤ 0, ν ≥ −f}. The HKR-spectrum is nonzero for f ≥ 0 and
the CKR-spectrum is nonzero for f ≤ 0. In the case where X(t) corresponds to a real-
valued process Y (t), the second-order moments of X(t) can be expressed as functions of
the second-order moments of Y (t), see [Hindberg, 2005] for details.

2.2 Discrete Time

Even though random processes are easy to handle mathematically in continuous time, real-
world data will have to be considered in discrete time. A zero-mean, discrete-time, and
harmonizable complex-valued random process has a spectral representation [Cramér, 1940;
Loève, 1978]

X[n] =

1/2∫

−1/2

ej2πfndX̃(f). (2.23)

In this thesis, we use [·] to denote a discrete variable and (·) to denote a continuous
variable, while (·, ·] and [·, ·) denotes a mixed pair of variables. If X[n] is sampled from
a continuous-time process X(t) with sampling frequency fs, then X[n] has the spectral
representation (2.23) with integration limits going from −fs/2 to fs/2. We assume that
fs = 1 unless otherwise specified. Likewise, X[n] is always assumed to be alias-free, i.e.,
X(t) is bandlimited and the sampling rate satisfies the Nyquist criterion [Shannon, 1949].

The Hermitian moments of a discrete-time harmonizable process are given by

MXX∗ [n, η] = E {X[n]X∗[n− η]} (2.24)

SXX∗ (ν, f)dνdf = E
{

dX̃(f + ν)dX̃∗(f)
}

(2.25)

RXX∗ [n, f)df = E
{

X[n]
[
dX̃(f)ej2πfn

]∗}
(2.26)

AXX∗ (ν, η] =
∞∑

n=−∞
MXX∗ [n, η]ej2πνn, (2.27)
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1−1

Figure 2.2: The dual-frequency spectra for a discrete-time processes are nonzero only
within the parallelogram. The lighter shaded area and darker shaded area are the support
of the Hermitian and complementary dual-frequency spectrum, respectively, for analytic
discrete-time processes.

and the complementary moments are given by

MXX [n, η] = E {X[n]X[n− η]} (2.28)

SXX(ν, f)dνdf = E
{

dX̃(f + ν)dX̃(−f)
}

(2.29)

RXX [n, f)df = E
{

X[n]dX̃(f)e−j2πfn
}

(2.30)

AXX(ν, η] =
∞∑

n=−∞
MXX [n, η]ej2πνn. (2.31)

The ambiguity functions may also be expressed as inverse FTs of the dual-frequency spec-
tra. Note that the form of the dual-frequency spectra are the same as for continuous-time.
However, for a discrete-time process, SXX∗ (ν, f) is nonzero only for −1/2 ≤ f ≤ 1/2 and
−1/2 ≤ f +ν ≤ 1/2, which gives us values of ν between -1 and 1. Figure 2.2 shows the sup-
port of the dual-frequency spectra in this case. Extending the concepts of cross-moments
and stationary processes to discrete-time processes is straightforward. A discrete-time an-
alytic harmonizable process is defined by (2.23) with integration limits from 0 to 1/2. The
support of the dual-frequency spectra for analytic processes is also shown in Figure 2.2.

2.2.1 Estimators of the second-order moments
As we in practice will deal with processes in discrete time, we will have available finite
length realizations of the process, and we aim to learn about the process itself from these
realizations. Thus, we need to be able to estimate the second-order quantities of the process
based on one realization x[n] of the process X[n] (that may be sampled from a continuous-
time process). If more than one realization is available, we estimate the quantity separately
from each realization and average the different estimates. We deal with estimation of the
KR-spectra and the Hermitian ambiguity function in Chapter 3 and Chapter 4, respectively.
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For completeness, we will here briefly sketch how the other second-order quantities can be
estimated.

A general estimator of the Hermitian dual-time correlation is [Martin and Flandrin,
1985]

M̂XX∗ [n, η] =
∞∑

m=−∞
x[n + m]Φ[m, η]x∗[n− η + m]. (2.32)

The complementary dual-time correlation can likewise be estimated by [Hindberg, 2005]

M̂XX [n, η] =
∞∑

m=−∞
x[n + m]Φ[m, η]x[n− η + m]. (2.33)

Here, Φ[u, κ] is a data window that corresponds to a smoothing in the global time direc-
tion. [Larsen, 2003] states that for white processes, the dual-time correlation is restricted
to the line η = 0. For broadband processes, the dual-time correlation is expected to decay
rapidly as a function of η. We therefore seek to avoid smoothing in the local time direc-
tion. A white process is characterized by that it is completely uncorrelated in time, i.e.,
MXX∗ [n, η] = E

{
|X[n]|2

}
δ[η] and, if the process is improper, MXX [n, η] = E {X2[n]} δ[η],

where δ[η] is the Kronecker delta.
The multitaper approach to spectral estimation was introduced in [Thomson, 1982]. Us-

ing the multitaper formalism, the Hermitian and complementary dual-frequency spectrum
can be estimated by [Larsen, 2003; Hindberg, 2005]

ŜXX∗ (ν, f) =
1

M

M−1∑

m=0

Zm(f + ν)Z∗
m(f)

λm
, (2.34)

and

ŜXX(ν, f) =
1

M

M−1∑

m=0

Zm(f + ν)Zm(−f)

λm
, (2.35)

where

Zm(f) =
N−1∑

n=0

x[n]vm[n]e−j2πfn. (2.36)

Here, {vm[n]}M
m=1 is a set of M orthogonal data tapers, and {λm} is a set of associated eigen-

values. We produce M estimates of the increment process through M tapered Discrete-
Time FTs (DTFT) of the data with the M orthogonal tapers. For each taper vm, the
estimate Zm(f) replaces dX̃(f) in the definitions of the dual-frequency spectra and the ex-
pectation operator is ignored. The M obtained estimates of the spectra are then averaged
to produce the final estimates.

The Discrete Prolate Spheroidal Sequences (DPSSs) [Slepian, 1978] are a preferred
choice for the data tapers in this procedure, but other choices are possible. The DPSSs
are optimal data tapers in the following sense. Out of all data tapers of length N , the zero
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order DPSS with time-bandwidth product NW is the taper that has most of its energy in
the frequency domain concentrated in the frequency band [−W,W ]. We next consider the
set of all data tapers of length N that are orthogonal to the zero order DPSS. The first
order DPSS is the data taper in this set that has most of its energy concentrated in the
frequency band [−W,W ]. The second-order DPSS is likewise determined by considering
the set of all tapers that are orthogonal to both the zero order and the first order DPSS, and
so on. Because the DPSSs are designed to have most of their energy inside their main lobe
[−W,W ], they have low sidelobe levels that will reduce spectral leakage. Averaging over
multiple orthogonal windows reduces the variance of the estimator as well. When we work
with DPSS, we must specify the length of the taper N and the time-bandwidth product
NW , which corresponds to specifying the bandwidth for the chosen length. See [Larsen,
2003] and [Hindberg, 2005] for further details on these estimators.

2.2.2 Simulation of improper processes

In order to test estimators, we often want to employ the estimators to simulated data sets
for which we know the true form of the second-order moments. A method for simulat-
ing from a specified improper stationary process Y [n] was proposed in [Rubin-Delanchy
and Walden, 2007]. One specifies the wanted SY Y ∗ (f) and SY Y (f) of the process Y [n],
and simulate realizations of the process by a manipulation of white noise. The improper
stationary process is given by

Y [n] =
∞∑

m=−∞
g[m]ε[n−m] +

∞∑

m=−∞
h[m]ε∗[n−m]. (2.37)

Here, g[n] and h[n] are filters derived from SY Y ∗ (f) and SY Y (f), and ε[n] is proper
white noise. To simulate from this process, we limit the summation to some interval
m = −M, . . . ,M that include the significant filter coefficients of the filters and generate a
realization of ε[n], see [Rubin-Delanchy and Walden, 2007] for further details.

Inspired by this, we propose to specify a nonstationary improper process from Y [n] by
applying a time-varying variance, σ2[n], to the proper white noise in (2.37),

X[n] =
∞∑

m=−∞
g[m]σ[n−m]ε[n−m] +

∞∑

m=−∞
h[m]σ[n−m]ε∗[n−m]. (2.38)

The process X[n] is ensured to be harmonizable if the DTFT of σ2[n],

Σ(f) =
∞∑

n=−∞
σ2[n]e−j2πnf , (2.39)

is absolutely integrable. We find the second-order moments of this harmonizable process
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as

MXX∗ [n, η] =
∞∑

m=−∞
σ2[n−m] (Mgg∗ [m, η] + Mhh∗ [m, η]) (2.40)

SXX∗ (ν, f) = Σ(ν) (Sgg∗(ν, f) + Shh∗(ν, f)) (2.41)

RXX∗ [n, f) =
∞∑

m=−∞
σ2[n−m]

(
Rgg∗ [m, f) + Rhh∗ [m, f)

)
(2.42)

AXX∗ (ν, η] = Σ(ν)
∞∑

m=−∞
(Mgg∗ [m, η] + Mhh∗ [m, η]) e−j2πνm (2.43)

and

MXX [n, η] =
∞∑

m=−∞
σ2[n−m] (Mgh[m, η] + Mhg[m, η]) (2.44)

SXX(ν, f) = Σ(ν) ((Sgh(ν, f) + Shg(ν, f)) (2.45)

RXX [n, f) =
∞∑

m=−∞
σ2[n−m] (Rgh[m, f) + Rhg[m, f)) (2.46)

AXX(ν, η] = Σ(ν)
∞∑

m=−∞
(Mgh[m, η] + Mhg[m, η]) e−j2πνm. (2.47)

Here, we have implicitly defined second-order auto and cross-functions for the deterministic
filters g[n] and h[n] corresponding to the second-order moments of harmonizable processes.
Thus, the Hermitian quantities of X[n] depend on the corresponding Hermitian quantities
of the deterministic filters. The complementary quantities of X[n], however, depends
on the corresponding complementary cross-moments of g[n] and h[n]. This is caused by
the fact that the noise is proper, thus eliminating all terms where two noise terms have
equal conjugation. We note that this is only one of many possible ways of extending the
simulation process to include nonstationary processes.

2.3 Random Fields
We consider random functions of time and space, so-called random fields [Yaglom, 1987].
Let X(r, t) be an inhomogeneous, harmonizable random field at time t and at a scalar
spatial variable r. We will only consider one-dimensional space, but the extension to higher-
dimensional space is straightforward. The spectral representation of X(r, t) is [Larsen,
2003; Hanssen, 2009]

X(r, t) =

∫∫
ej2π(qr+ft)dX̃(q, f), (2.48)

where q is related to the wavenumber k by k = 2πq, and the increment field dX̃(q, f) is
now two-dimensional. The Hermitian second-order moments of a random field are given
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by the Hermitian spatio-temporal correlation

MXX∗ (r, ρ, t, τ) = E {X(r, t)X∗(r − ρ, t− τ)} , (2.49)

the Hermitian dual-frequency dual-wavenumber spectrum

SXX∗ (κ, q, ν, f)dκdqdνdf = E
{

dX̃(q + κ, f + ν)dX̃∗(q, f)
}

, (2.50)

the HKR time-frequency space-wavenumber spectrum

RXX∗ (r, q, t, f)dfdq = E
{

X(r, t)
(
dX̃(q, f)ej2π(tf+qr)

)∗}
(2.51)

and the Hermitian spatio-temporal ambiguity function

AXX∗ (κ, ρ, ν, τ) =

∫∫
SXX∗ (κ, q, ν, f)ej2π(fτ+qρ)dqdf. (2.52)

We define the complementary second-order moments of random fields in a straightfor-
ward similar manner. Cross-moments of random fields are also easily defined from these
expressions.

If a random field is homogeneous, the increment field is orthogonal in wavenumber q,
and the probability densities governing the field does not depend on the spatial coordinate.
This is similar to the stationary case, for which the increment process is orthogonal in
frequency. A homogeneous and stationary random field has a Hermitian dual-frequency
dual-wavenumber spectrum of the form

SXX∗ (κ, q, ν, f) = SXX∗ (q, f)δ(ν)δ(κ), (2.53)

and a HKR time-frequency space-wavenumber spectrum

RXX∗ (r, q, t, f) = SXX∗ (q, f). (2.54)

Thus, SXX∗ (κ, q, ν, f) is restricted to {(κ, q, ν, f)|κ = 0, q ∈ R, ν = 0, f ∈ R}, which
is denoted the stationary and homogeneous manifold for random fields. We note that
RXX∗ (r, q, t, f) for homogeneous and stationary fields does not change with time t or with
the spatial coordinate r.

The formalism for random fields is very similar to that of random processes, with what
appears as only a simple expansion to a bivariate random function instead of a univariate
random function. Mathematically, the extension is simple, but physically a random field
will have inherent constraints related to the physical medium that the field exists in.
One of the main challenges is that a spatial medium can be dispersive, such that different
frequencies propagate through the medium at different speeds [Cohen, 1995]. See [Hanssen,
2009] for a detailed treatment of random fields in dispersive media.



Chapter 3

The Kirkwood-Rihaczek
Time-Frequency Spectra

Time-frequency analysis is an important tool for analyzing nonstationary random pro-
cesses. Cohen’s class [Cohen, 1966] consists of the time-frequency spectra that are bilinear
(or quadratic) functions of the signal, and that are covariant to shifts in time and frequency.
The spectrogram and the Wigner-Ville spectrum [Wigner, 1932; Ville, 1948] are perhaps
the most popular members of this class. A common misconception is that these are dis-
tributions of power or energy over time and frequency. This is not correct, and we quote
Wigner’s theorem [Wigner, 1971] from [Flandrin, 1999] “There exists no time-frequency
representation that is bilinear, has correct marginal distributions, and is nonnegative ev-
erywhere.” Energy/power is a nonnegative quadratic quantity of the process, such that
any distribution of energy/power has to be a bilinear function of the process. Also, a
joint distribution of energy/power in time-frequency should, analogous to joint distribu-
tions of random variables, have marginal distributions equal to the energy/power marginal
distributions in time and frequency separately. Wigner’s theorem states that there are no
distributions that fulfill all three demands. Thus, no time-frequency spectrum is a joint
distribution of energy/power over time and frequency.

However, the HKR-spectrum can unambiguously be interpreted as a distribution of
correlation, or a complex Hilbert space inner product between the process and its infinites-
imal stochastic Fourier generator, as discussed in [Scharf et al., 2005]. It is related to the
Wigner-Ville distribution and the spectrogram through a general time-frequency distribu-
tion [Claasen and Mecklenbräuker, 1980]. Unlike the Wigner-Ville and the spectrogram,
the Hermitian Kirkwood-Rihaczek distribution is a complex-valued quantity. It is very im-
portant to understand the uniqueness of the fact that the HKR time-frequency spectrum
is a Hilbert space inner product. In fact, no other members of the time-frequency spec-
tra contained in Cohen’s class are inner products. This is a very significant result, which
renders the interpretation of HKR-spectrum attractive from a fundamental and practical
point of view.

Among its other attractive properties, we mention that the time marginal and the
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frequency marginal of the HKR-spectrum are the instantaneous power of the process
∫

RXX∗ (t, f)df = MXX∗ (t, 0) = E
{
|X(t)|2

}
(3.1)

and the power spectral density

df

∫
RXX∗ (t, f)dt = SXX∗ (0, f)df, (3.2)

respectively (see [Hanssen and Scharf, 2003; Scharf et al., 2005] for further details). We
also note that the CKR-spectrum has a time marginal

∫
RXX(t, f)df = MXX(t, 0) = E

{
X2(t)

}
, (3.3)

and a frequency marginal

df

∫
RXX(t, f)dt = SXX(0, f)df (3.4)

which corresponds to the complementary spectral density of a stationary processes. Cor-
rect marginals is one of the most sought after properties of time-frequency representations,
one needs correct marginals for the time-frequency spectrum to be a distribution of en-
ergy/power. As we have argued, from Wigner’s theorem we know that it is impossible
to define such a distribution. Also, the KR-spectra are obviously not distributions of
energy/power, since they are complex-valued quantities. However, the KR-spectra have
an interpretation as a joint distribution of correlations in time and frequency, and the
marginals are the marginal distribution of correlations in time and the marginal distribu-
tion of correlations in frequency.

3.1 Estimation
We will now propose useful estimators for the various KR-spectra. Any member of Cohen’s
class can be estimated by [Martin and Flandrin, 1985]

R̂XX∗ [n, f) =
∞∑

m,µ=−∞
x[n + m]φ[m, µ]x∗[n + m− µ]e−j2πµf , (3.5)

where the kernel φ[m, µ] determines which time-frequency spectrum is estimated. Estima-
tion of the KR-spectra was discussed in [Scharf et al., 2005], and the kernel φ′[m, µ] =
w1[m]w2[µ]w3[m − µ] was proposed, where w1[m], w2[µ], and w3[m] are three window
functions chosen by the user (all windows are assumed to be real-valued and symmet-
ric). The CKR-spectrum is not a member of Cohen’s class as it is not covariant under
frequency shifts. If X(t) has the CKR-spectrum RXX(t, f), then X(t)ej2πf0t will have a
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CKR-spectrum ej4πf0tRXX(t, f + f0). The significance of this is not clear, and we still pro-
pose an estimator for the CKR-spectrum which is theoretically equivalent with the class
of estimators in (3.5). Even if this class of estimators was specified in order to estimate
time-frequency spectra in Cohen’s class, there is no obvious reason why it cannot be ex-
tended to estimate the CKR-spectrum. This estimator is easily implemented, but a direct
implementation will be computationally intensive. It is also not obvious how the windows
in this estimator should be chosen. Instead, we will use the inner product formulation of
the KR-spectra directly, which will result in an alternative, direct, and intuitive estimator
which provides additional insight into the geometry of the KR-spectra.

3.1.1 Estimation based on the inner product formulation
We have N samples of a realization x[n], n = 0, 1, . . . , N − 1, of the random process
X[n]. In order to estimate dX̃(f), we calculate a tapered DTFT of a local segment of the
realization centered at sample n,

ẑ[n, µ; f) =
NF∑

m=−NF

x[n + m]vF [m]vB[µ−m]e−j2πmf , (3.6)

for the time instants µ = −NT , . . . , NT . This is a standard short-time FT, but where one of
the data tapers depends on the time variable µ. We approximate the expectation operator
in (2.4) and (2.8) with a weighted time-average and use ẑ[n, µ; f)df as a local estimate of
dX̃(f). This gives us an estimator of the HKR-spectrum as

R̂XX∗ [n, f) =
NT∑

µ=−NT

x[n + µ]vT [µ]
(
ẑ[n, µ; f)ej2πµf

)∗ (3.7)

and the CKR-spectrum as

R̂XX [n, f) =
NT∑

µ=−NT

x[n + µ]vT [µ] ẑ[n, µ;−f)e−j2πµf . (3.8)

Here, NT and NF determines the length of the segment used in the time average and the
DTFT, respectively. The estimators proposed in (3.7) and (3.8) will be less computationally
intensive than a direct implementation of (3.5). Roughly, for each time-frequency pair, the
estimator in (3.5) requires two sums of length, say, L which results in L2 operations,
while (3.7) can be implemented with one sum and a Fast FT, i.e., in L log(L) operations.
By inserting (3.6) in (3.7) and (3.8) and letting NT , NF →∞, we see that our estimators
are theoretically equivalent to the estimators proposed in [Scharf et al., 2005], with vT [n] =
w1[n], vB[n] = w2[n] and vF [n] = w3[n].

The use of three different data windows leads to a very general estimator, and some
considerations about which window types to be applied was presented in [Scharf and Fried-
lander, 2001]. The weighting window vT [µ] can be chosen with the desired time resolution
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for our estimate, normally with a typical bell shaped or Gaussian shaped amplitude. Like-
wise, since vB[m] and vF [m] will determine the frequency resolution, they should be chosen
to have a narrow bandwidth and low sidelobe levels. We will see how the windows affect
the marginals, resolution and cross-terms in the following. Note that the segment lengths
NT and NF do not need to be chosen equally, in fact a choice of NF > NT may improve
the time-frequency resolution of the estimator.

3.2 Statistical Properties
Our direct estimator is theoretically equivalent to the kernel based estimator proposed
in [Scharf et al., 2005], and will thus have the same asymptotic mean and variance. For a
finite sample size, the expected value of the estimator for the HKR-spectrum is

E
{

R̂XX∗ [n, f)
}

=
NT∑

µ=−NT

1/2∫

−1/2

RXX∗ [n + µ, ξ)Φ[µ, f − ξ)dξ. (3.9)

The expected value of the CKR-spectrum is obtained by replacing RXX∗ [n + µ, ξ) with
RXX [n + µ, ξ) in (3.9). We define Φ[µ, f) as the DTFT of the modulated kernel

φ̃[µ, m] = e−j2πµfvT [µ]vF [m]vB[µ−m] (3.10)

with respect to m,

Φ[µ, f) =
∞∑

m=−∞
φ̃[µ, m]e−j2πmf = vT [µ]

1/2∫

−1/2

VB(λ)V ∗
F (f − λ)e−j2πµ(f−λ)dλ. (3.11)

Likewise, VF (f), VB(f) and VT (f) are the DTFTs of vF [m], vB[m] and vT [η], respectively.
Thus, the expected value of the estimator is the true spectrum smoothed in time and fre-
quency by the function Φ[µ, f), and this function controls the time and frequency resolution
of the estimate.

Because the KR-spectra are quadratic functions of the process, the variance of the
estimators will depend on the fourth order moments of the process. If we assume that the
process is Gaussian, we can use Isserlis’ theorem [Isserlis, 1918] which relates the fourth-
order moments of the process to the second-order moments. The variance of the estimators
is given by

Var
{

R̂
XX

(∗) [n, f)
}

=

1/2∫∫

−1/2

NT∑

m=−NT
µ=−NT

ej2π[µ(f1−f)+m(f−f2)]

[
RXX∗ [n + µ, f1)Ψ(f1 + f2 − 2f, f − f2)φ[µ, m]R(∗)

XX∗ [n + m, (−)f2)

+ R
XX

(∗) [n + µ, f1)Φ
∗[µ, f + f2)Φ[m, f + f1)R

∗
XX

(∗) [n + m, f2)e
j2π[m(f+f1)−µ(f+f2)]

]
df1df2
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where

Ψ(f ′, f) =

1/2∫

−1/2

VB(λ)V ∗
F (f − λ)VT (f ′ + f − λ)dλ (3.12)

is the DTFT of Φ[µ, f) with respect to µ. We have assumed that NT = NF for convenience.
Here, replacing (−) = 1 and (∗) = 1 yields the variance of the Hermitian estimator and
(−) = −1 and (∗) = ∗ yields the variance of the complementary estimator. The form of
the variance of the estimators is not very informative, but we note that the variance of the
Hermitian estimator depends on the true Hermitian spectrum and the true complementary
spectrum. However, the variance of the complementary estimator depends only on the true
Hermitian spectrum. Thus, if a process is proper, the expected value of the complementary
estimator will be zero, while the variance will be determined by the HKR-spectrum. In this
case, the complementary estimator can have larger variance than the Hermitian estimator.

3.2.1 Marginals
The time marginal and frequency marginal of the HKR-spectrum are the instantaneous
power of the process and the power spectral density of the process, respectively. We can
thus obtain estimates of these two quantities by a simple integration (approximated with
a Riemann sum) of the estimated HKR-spectrum over all frequencies (time marginal) and
over all time instants (frequency marginal). In practice, the integration across frequencies
are estimated with Monte Carlo integration (see e.g. [Robert and Casella, 2004]). For
further insight into how the estimator and its windows work, we consider the expected
value of these estimated marginals. The expected time marginal of the estimator is

PXX∗ [n] = E






1/2∫

−1/2

R̂XX∗ [n, f)df





= vB[0]

NT∑

µ=−NT

MXX∗ [n + µ, 0]vT [µ]v∗F [µ]. (3.13)

Note that the window vB[m] only contributes to a constant bias in the estimated marginal,
it does not affect the smoothing in time. The smoothing is controlled by the product of
the two windows vF [µ] and vT [µ]. If vT [µ] is supposed to control the resolution in time,
we would typically chose it to be narrow in time. Also, vF [µ] is related to the frequency
resolution, which means it should be broad in time (narrow in frequency). If this is the
case, we can approximate the time marginal with

PXX∗ [n] ≈ vB[0]vF [0]
NT∑

µ=−NT

MXX∗ [n + µ, 0]vT [µ]. (3.14)

Thus, the resolution in time will be determined mainly by the width of vT [µ].
We find the expected frequency marginal to be

SM
XX∗ (f) = E

{
N−1∑

n=0

R̂XX∗ [n, f)

}
= SXX∗ (0, f) - VB(f) - [VT (f)V ∗

F (f)] , (3.15)
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where - denotes convolution. In the frequency domain, VF (f) will be narrow and VT (f)
broad, such that we can approximate

SM
XX∗ (f) ≈ SXX∗ (0, f) - VB(f) - V ∗

F (f). (3.16)

The collective bandwidth of the two windows vB[m] and vF [m] approximately controls the
degree of smoothing experienced by the frequency marginal. The estimator of the CKR-
spectrum will have marginals with similar form, only depending on the complementary
dual-time correlation and dual-frequency spectrum. The form of the expected marginals
thus further support our understanding of how the three windows should be chosen.

3.2.2 Choice of parameters
The estimators of the KR-spectra have five main parameters that need to be chosen, the
three windows and the two segment lengths. One can argue that the segment lengths are
actually parameters of the windows themselves, but we chose to consider these as separate
choices. We will consider how to choose the parameters in order to address the resolution,
cross-terms and normalization properties of the estimator.

Resolution and cross-terms

When we talk about resolution (or localization) in connection to time-frequency analy-
sis, we mean the ability of the estimators to separate different components in time and
frequency, and how the estimator smears out impulses in time and frequency. For our esti-
mator, an impulse at time n = n0 will be smoothed out over the 2NT + 1 nearby samples,
n = n0 − NT , . . . , n0 + NT . Likewise, a pure tone at frequency f = f0 will be smoothed
out over the band f0 − (WF + WB) ≤ f ≤ f0 + WF + WB, where WF and WB are the
bandwidths of vF [n] and vB[n], respectively.

All members of Cohen’s class suffer from what is called cross-terms or interference
terms [Flandrin, 1999], which relates to the fact that the time-frequency spectra are bilin-
ear functions of the process. For a multicomponent process, say X[n] = X1[n] +X2[n], the
HKR-spectrum will be RXX∗ [n, f) = RX1X

∗
1
[n, f)+RX2X

∗
2
[n, f)+RX1X

∗
2
[n, f)+RX2X

∗
1
[n, f).

This depends on the HKR-spectrum of each of the components, and the two cross-spectra
between them. It is the cross-spectra that are denoted cross-terms. Cross-terms are
generally unwanted in time-frequency estimates, even if they theoretically are bound to
be present. If X1[n] = δ[n1] and X2[n] = δ[n2], we are guaranteed no cross-terms if
n2 − n1 > NT + NF . Likewise, if we have two frequency components, one at f = f1 and
the other at f = f2, the cross-terms are completely eliminated if f2 − f1 > WT + WF .
We know that if a signal has limited support in time, it is not bandlimited in frequency.
However, if the FT of a time limited signal is mainly concentrated in a frequency band, the
correct choice of WF and WT will suppress the cross-terms such that they are negligible
even if they are not completely removed. Note the inherent trade-off between resolution
and cross-term suppression, as increasing NF will improve the resolution in frequency, but
at the same time it will increase the cross-terms between components separated in time.
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Likewise, decreasing NT will improve the time resolution, while WT will increase and thus
impair the cross-term suppression ability (see [Flandrin et al., 2003] for a discussion on
this trade-off).

The estimator enjoys a great degree of freedom, as we chose three windows and two
segment lengths whenever using it. However, this freedom can turn into a very time-
consuming search for good choices of the parameters. Of course, the “best” choices will
be different for different signals. We often found that sacrificing some time resolution by
choosing vT to be broader in time in order to facilitate cross-term reduction in frequency
was a sensible approach. We also prefer the DPSSs because they reduce spectral leakage.
In our experience, choosing all windows as zero-order DPSSs with small time-bandwidth
products (around 3-6) and varying the segment lengths NT and NF provides an effective
manner of using the estimators. This is reflected in the numerical examples throughout
this thesis, where the window shapes themselves does not differ much, but the segment
lengths vary. We denote NWT , NWF and NWB as the time-bandwidth product of vT , vF

and vB, respectively, when the windows are specified to be zero-order DPSSs.
We note that some work has been performed on constructing windows that are optimally

concentrated in the time-frequency domain, see e.g., [Daubechies, 1988], and it has been
shown that the Hermite windows are optimal for the Wigner-Ville distribution [Bayram
and Baraniuk, 2000]. The Hermite windows are a set of orthogonal windows, which may
be employed in time-frequency multitaper estimation. [Thomson, 2000] has defined time-
frequency multitaper estimation using the DPSSs, while [Aviyente and Williams, 2006]
proposed multitaper estimates that are designed to optimize the frequency marginal of the
estimate, and [Lilly and Park, 1995] employed mulitwavelets in the estimation. The first
step in our estimator in (3.6) may potentially be expanded to include a multitaper step to
further decrease the variance of the estimate, but care must be taken to ensure that the
orthogonality of the windows is utilized. This will of course also decrease the resolution of
the estimate. [Wahlberg and Hansson, 2007] shows how a kernel estimator of the Wigner-
Ville spectrum may be done numerically as a multitaper estimation. In [Wahlberg and
Hansson, 2007], the kernel was chosen based on the ambiguity domain behavior of the
process, and for a special class of locally stationary processes the optimal tapers were
shown to be (approximately) equal to dilated Hermite functions.

Window normalization

We have seen how the windows can be chosen with different lengths and shapes to obtain
the desired resolution in the estimate of the KR-spectra. There has been a lot of interest
in finding windows that obey certain optimality criteria when it comes to resolution either
in time or frequency, such as the already mentioned DPSSs and the Hermite windows.
However, window normalization has not been given much attention. A correct normal-
ization of the windows gives estimates of the KR-spectra whose magnitude values will be
in the correct range. If one needs to compare the KR-spectra of two different processes,
where different windows have been used in the estimation procedure, a correct normal-
ization will allow us to compare the magnitudes of the estimated KR-spectra. We also
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need correct normalization to be able to estimate the instantaneous power and the power
spectral density of the process from the estimated HKR-spectrum.

We consider the expected values of the time marginal in (3.13) to define a usable
normalization. To reduce the bias in the marginal, we have to choose vB[0] = 1 and∑
µ

vT [µ]v∗F [µ] = 1. If ṽT [µ], ṽB[m], and ṽF [m] are the non-normalized windows, we define

the normalized windows by

vT [µ] =
ṽT [µ]∑

µ
ṽT [µ]

, vF [m] = ṽF [m]

∑
µ

ṽT [µ]

∑
µ

ṽT [µ]ṽF [µ]
, vB[m] =

ṽB[m]

ṽB[0]
. (3.17)

The normalization of vT and vF can be chosen differently, as long as the sum over the
product of these two windows is unity. In the frequency domain, this normalization leads
to

1/2∫

−1/2

VT (f)V ∗
F (f) df =

1/2∫

−1/2

VB(f) df = 1. (3.18)

Thus, the proposed normalization reduces the bias in the frequency marginal as well.
Scaling the windows does not affect the estimators resolution or cross-term suppression,
but it ensures that the KR-spectra have magnitudes in the correct range. Windows are
commonly normalized such that they have unity energy, but this does not make sense for
our estimator. We base our normalization on reducing the bias in the time marginal of the
estimated KR-spectra. The fact that this normalization scheme also reduces the bias in the
frequency marginal speaks in favor of this approach. Finally, the proposed normalization
also leads to the sum over µ and integral over f of the kernel in (3.11) equaling one, further
supporting our chosen normalization.

3.3 Numerical Examples
We consider numerical examples in order to test our proposed estimators. The estimators
are tested on improper simulated data to show the importance of the CKR-spectrum for
complex-valued data and to demonstrate how the estimators work for both the spectra and
the marginals. We next apply the estimators to three real-valued real-world data sets, a
bat localization recording and two guitar recordings.

3.3.1 Improper piecewise stationary process
In order to illustrate how the complementary quantities can yield important information
about random processes and simultaneous check our estimator, we will now consider a
piecewise stationary process. Let

X[n] =

{
X1[n] 0 ≤ n < N/2

X2[n] N/2 ≤ n < N,
(3.19)
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Figure 3.1: For the improper piecewise stationary process. (a) SXX∗ (f) (black) and∣∣∣R̂XX∗ [400, f)
∣∣∣ (red). (b) |SXX(f)| (black) and

∣∣∣R̂XX [400, f)
∣∣∣ (red).
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Figure 3.2: (a) Real part and (b) imaginary part of one realization of the improper piecewise
stationary process.
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Figure 3.3: Estimated (a) HKR-spectrum and (b) CKR-spectrum of the improper piecewise
stationary process.

where X1[n] is a proper stationary process and X2[n] is an improper stationary process. We
let both processes have the same SXX∗ (f) specified in Figure 3.1(a), and X2[n] will have the
SXX(f) with an absolute value given in Figure 3.1(b), and a phase π/6. We choose N = 512
and simulate 500 realizations of the process using the method from Section 2.2.2, ignoring
the filter coefficients for |m| > 15. For the KR-estimators, we use NF = 40, NT = 30, and
the windows are all zero-order DPSSs with NWT = 6 and NWF = NWB = 3. Figure 3.2
shows one realization of the process. One cannot tell from a visual inspection that the
underlying process changed at n = N/2.

We estimate the KR-spectra from each realization, and averaged over the 500 real-
izations, an approach known as Monte Carlo simulation (see e.g., [Robert and Casella,
2004] for an introduction). The resulting spectra are shown in Figure 3.3. The estimated
HKR-spectrum is approximately equal to SXX∗ (f) for all time instants, as we expected.
Likewise, the CKR-spectrum is approximately zero for n = 0, . . . , N/2− 1 and then equal
to SXX(f) for the remaining time instants. The fact that the estimated KR-spectra are
approximately equal to SXX∗ (f) and SXX(f) is also reflected in Figure 3.1, where the es-
timated KR-spectra for a fixed time instant n = 400 is shown with the theoretical spectra.
Thus, the estimated KR-spectra are approximately equal to the theoretical KR-spectra,
the estimators work well for this case. We also note that, as for the realization itself,
the HRK-spectrum does not show any change occurring at n = N/2. The CKR-spectrum,
however, changes drastically at this time. This simple example serves to show how ignoring
the complementary correlations may lead to erroneous conclusions.
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Figure 3.4: The absolute value of (a) the HKR-spectrum estimated from 200 realizations
and (b) the theoretical HKR-spectrum of the improper process with time-varying variance.

3.3.2 Improper process with time-varying variance
We illustrate that both estimators give correctly shaped and normalized KR-spectra and
marginals by considering a nonstationary improper random process. Realizations of the
process was created using the method proposed in Section 2.2.2, and we kept the filter
coefficients for |m| ≤ 20. The stationary process Y [n] is a complex-valued autoregressive
process

Y [n] =
L∑

m=1

amY [n−m] + ε[n], (3.20)

where ε[n] is improper white noise with Mεε∗ [n, η] = δ[η] and Mεε∗ [n, η] = 0.6ejπ/6δ[η].
From Y [n], we create the harmonizable process given in (2.38). Let n = 0, . . . , N − 1
with N = 512, and we chose the coefficients {am} such that the polynomial A(z) =
1− a1z − · · · − aLzL has the roots

p =





p1

p2

p3

p4



 =





1
−2
−1.2
1.8



−





2.3
0.4
−3.1
0.7



 j. (3.21)

The time varying standard deviation is given by

σ[n] =






0 n ∈ [0, 49] and n ∈ [450, 511]

v[n− 50] n ∈ [50, 299]

1 n ∈ [300, 449]

(3.22)
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Figure 3.5: The absolute value of (a) the CKR-spectrum estimated from 200 realizations
and (b) the theoretical CKR-spectrum of the improper process with time-varying variance.

where v[n], n = 0, . . . , 499, is a Hanning window. For the estimator, we use NT = 30
samples, NF = 60 samples, and the windows are zero-order DPSSs with NWT = 6 and
NWF = NWB = 3. The theoretical KR-spectra for this process was given in (2.42)
and (2.46). We generate K = 200 realizations of the process X[n], and estimate the
KR-spectra from these. The averaged spectra are shown in Figure 3.4 and Figure 3.5
together with the theoretical spectra. We see that the estimated spectra resemble the
theoretical ones, and if we were to increase the number of realizations the likeness will
increase. Note that the two pairs of spectra have the same range of magnitude, which
supports our normalization scheme.

We estimate the time and frequency marginals by summing along each dimension of
the averaged spectra. The theoretical marginals are easily obtained from (2.42) and (2.46).
Figure 3.6 and Figure 3.7 shows the estimated and theoretical marginals of the HKR-
spectrum and CKR-spectrum, respectively. The estimators give both the correct shape
and the correct magnitude to the marginals, and the estimated and theoretical quantities
are quite similar. These results support that the proposed window normalization correctly
scales the estimates of the KR-spectra. This also shows that the marginals obtained from
the estimated KR-spectra can be used as estimates for the instantaneous power, the power
spectral density and the complementary equivalents.

3.3.3 Bat recording

We consider a real-valued data set consisting of a recorded digitized signal of the echolo-
cation of large brown bats containing N = 400 samples, with sampling period ∆t = 7µs,
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Figure 3.6: For the improper process with time-varying variance. (a) The time marginal
and (b) frequency marginal of the HKR-spectrum. The estimated marginals are shown in
red and the theoretical marginals are shown in black.

the data is courtesy of C. Condon, K. White, and A. Feng (Beckman Center, University
of Illinois). This data set was also considered in [Hlawatsch and Boudreaux-Bartels, 1992;
Cohen, 1995; Bayram and Baraniuk, 2000], where it was used to compare different mem-
bers of Cohen’s class. [Hlawatsch and Boudreaux-Bartels, 1992] found that the data consist
of three nonlinear frequency modulation components (nonlinear chirps). We estimate the
HKR-spectrum of the signal using NF = 50 samples, NT = 30 samples, and the windows
are all zero-order DPSSs with NWT = 6 and NWF = NWB = 3.

Figure 3.8 shows the result of the estimation for positive frequencies (the HKR-spectrum
has a Hermitian symmetry in f for real-valued signals). We clearly see the three main
components in both plots, and there are almost no cross-terms, even on a logarithmic
scale. The nonlinear chirps have been smoothed out, which is not ideal, but unavoidable.
If better localization is needed, methods such as reassignment can be employed [Auger and
Flandrin, 1995; Xiao and Flandrin, 2007]. Our estimate seems to indicate the presence of a
fourth chirp component in the signal. The logarithmic plot suggests that the data was not
sampled fast enough, since the third and fourth chirp component seem to be cut off at the
maximum frequency. We get a contribution at zero frequency for the time instants that
are dominated by these two components, these low frequency contributions may be due to
aliasing. These considerations were also made in [Bayram and Baraniuk, 2000], using a
different time-frequency analysis tool.
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Figure 3.7: For the improper process with time-varying variance. (a) The real part and
(b) imaginary part of the time marginal and (c) the real part and (d) imaginary part of
the frequency marginal of the CKR-spectrum. The estimated marginals are shown in red
and the theoretical marginals are shown in black.
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Figure 3.8: (a) 102 ·
∣∣∣R̂XX∗ [t, f)

∣∣∣ and (b) 10 log10

∣∣∣R̂XX∗ [t, f)
∣∣∣ of the bat recording.

3.3.4 Guitar recording I

To further assess the performance of our estimator for a nonstationary real-world data set,
we carefully prepared an experiment as follows. We recorded the electrical output signal
from the bridge Suhr SSV humbucker pickup on a Suhr Pro S2 electric guitar equipped with
a spring loaded Gotoh variable (vibrato) tailpiece. By continuously varying the tailpiece
with its vibrato bar, we produced a continuously pitch-varying signal with very interesting
harmonic structure. The analog signal was sampled at 44.1 kHz/16 bits, and it was recorded
straight to a MacBook Pro without any equalization or filtering. The analog-to-digital
converter was an Apogee Duet audio interface.

First, the open low E-string (fundamental frequency of fE = 82.5 Hz) was plucked
with a stiff plectrum and the variable tailpiece was used to produce a deep and rather fast
downbend to about 60 Hz (close to the tone B1), followed by a fast release to the original
tone in one single continuous controlled movement. Second, the open E and the open
A-string (fundamental frequency of fA = 110 Hz) were plucked simultaneously. This two-
string chord, consisting of the musical interval called a perfect fourth or a diatessaron, also
underwent a similar downbend followed by a release to the original equilibrium position.
We thus understand that the harmonic structure of the single E-string pluck should be
simpler than the multi-pitch harmonic structure of the dual-string perfect fourth.

The original data were downsampled by a factor of 10 prior to the analysis, giving
us an effective Nyquist frequency of 2.2 kHz. The KR-spectrum was estimated using
segment lengths of NT = 200 and NF = 500, and the three data windows were all chosen
to be a zero-order DPSS with time-bandwidth product 3. In Figure 3.9 we show the
magnitude of the estimated KR-spectrum for the guitar signal. The left panel shows the
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10 log10 ŜM

XX∗ (f) (left panel).

corresponding estimated frequency marginal, and the top panel shows the estimated time
marginal. We see that while the frequency marginal has a spiky structure, it cannot reveal
the real time-frequency variation of the signal, even when paired with the time marginal.
The full KR-spectrum shows that for the single-string pluck, a harmonic structure with
frequency components at fn(t) = nfE(t) for integers n, with fE(t) being the time-varying
fundamental frequency induced by the tailpiece motion. For the two-string part of the
signal, the KR-spectrum no longer exhibits equidistant harmonic components, since two
separate source oscillators exist. Some harmonics will overlap for the two strings, which
shows up as an enhancement of these particular frequency components. In equilibrium,
the perfect fourth interval is such that kfA - nfE for (k, n) = (3, 4), (6, 8), (9, 12), . . .,
which is also readily identified from Figure 3.9. As demonstrated by this example, the
estimated KR-spectrum has good resolution properties in both time and frequency, and
we can discern the time-varying spectral components with great accuracy.

3.3.5 Guitar recording II

We conducted a two-channel experiment where one channel was the directly recorded out-
put from an electric guitar, and the second channel was the same signal passed simultane-
ously through an analog envelope controlled lowpass filter (Moog Moogerfooger MF-101).
The rest of the equipment used and the recording procedure are identical to those described
in Section 3.3.4. The open low E-string was plucked with a stiff plectrum, and it was left
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Figure 3.10: Guitar recording II. (a) Unfiltered guitar signal with estimated envelope (red
line). (b) Filtered guitar signal with estimated envelope (red line). (c) Estimated envelope
of unfiltered signal (blue line) and filtered signal (red line).

to develop for a while until it was mechanically damped with the plucking hand. The filter
was used with a cutoff frequency of 250 Hz, a resonance parameter of 7, an amount of
10, and the filter was set to use smoothing. The manual for the filter is available for free
download at http://www.moogmusic.com/manuals/mf-101.pdf.

Figure 3.10 shows the unfiltered and the filtered signal. The data was downsampled
by a factor of 10 prior to the analysis, giving us an effective Nyquist frequency of 2.2 kHz.
The HKR-spectrum of both the unfiltered and the filtered signal was estimated using the
same parameters as for the first guitar recording, and the estimated spectra are shown in
Figure 3.11. From the estimated HKR-spectrum of the unfiltered signal, we see how the
estimator can express both the periodic components (pure tones) and impulses in time
clearly. Three impulses occur towards the end of the time interval, we see this as lines
in the time-frequency spectra for fixed t where all frequencies are present. The two first
impulses are probably do to the guitarist touching other strings on the guitar, while the
last impulse is the mechanically dampening of the E-string.

The filter is a lowpass filter, it will attenuate frequencies in the signal that are above
the cutoff frequency. This particular filter employs an envelope follower, where the cutoff
frequency of the filter increases with the envelope of the signal. The envelope is related
to the magnitude of the signal, and we show the estimated envelope of both signals in
Figure 3.10. The input to the filter consists of a pluck of a guitar string, which will have
high magnitude when the string is plucked and the magnitude will decrease with time.
Thus, we expect the cutoff frequency to be high for t close to 0, and then take smaller
values as t increases. The filter is a time-varying lowpass filter where the bandwidth of
the filter decreases with time, but this time variability is due to the change in envelope of
the input signal. Indeed, we see from comparing the KR-spectra of the unfiltered and the
filtered signal that the filter only attenuates very high frequencies at the start, and that
lower and lower frequencies are attenuated as t increases. This would have been impossible
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Figure 3.11: (a) 10 log10

∣∣∣R̂XX∗ [t, f)
∣∣∣ of the unfiltered guitar signal for guitar recording II

and (b) 10 log10

∣∣∣R̂Y Y ∗ [t, f)
∣∣∣ of the filtered guitar signal in guitar recording II.

to see from the power spectral density or the instantaneous power of the process.

The resonance setting used here leads to a lowpass filter with a non-constant gain. The
gain will be approximately constant for low frequencies, but will have a higher gain for
frequencies just below the cutoff frequency, thus boosting frequencies just below the cutoff
frequency. We see that in time instants right before a frequency is removed by the filter,
the corresponding line in the time-frequency spectrum is smeared out (has a ripple), this
might be due to the resonance effect. From the envelope plot in Figure 3.10, we see that
the magnitude of the filtered signal is lower than the magnitude of the unfiltered signal for
t = 0, but after about 1 second the filtered signal is larger than the unfiltered signal. This
might be due to the fact that the lowpass filter used here has a preamplifier. It could also be
due to the boost of frequencies near the cutoff frequency that the filter provides. At values
close to t = 0, the cutoff frequency is high such that high frequencies are boosted. However,
these high harmonics does not contribute much to the total signal, even if they are boosted
it may not be noticeable in the filtered signal. As the cutoff frequency decreases, lower
harmonics with more influence on the filtered signal are boosted, which could potentially be
noticeable in the filtered signal. This data set also demonstrate how useful time-frequency
analysis can be.
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3.4 Discussion
We have proposed estimators of the KR-spectra that while theoretically equivalent to the
estimators proposed in [Scharf et al., 2005], require less computational effort and provides
us with an intuitive understanding of the windows used in the estimators. The three
windows and two segment lengths that can be adjusted lend the estimators great flexibility,
and we have discussed how to choose these parameters in order to improve resolution,
suppress cross-terms and provide correct normalization of the estimate. We have discussed
the statistical properties of both the spectra themselves and the marginals of the spectra.
Simulated improper data was used to illustrate that the estimators give results that are
similar to the true KR-spectra. Three real-world data sets were considered, and we found
that the KR-spectra is a good tool for displaying the time-varying frequency content of
transient signals. The guitar recordings especially illustrated the advantage of being able
to represent a signal in time and frequency simultaneously. [Hanssen et al., 2006b] showed
how conventional spectral analysis may be used to extract information about guitar signals.
We have here showed how valuable time-frequncye analysis can be. We could not have
understood how the frequencies of the two guitar signals considered here changed with
time by just considering the marginals. The KR-spectrum estimator has also been applied
to sound recordings of a transversal flute made from Heracleum laciniatum [Hanssen et al.,
2006a], where it was shown that this type of flute has very interesting subharmonics caused
by nonlinear effects.
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Chapter 4

Estimation of the Ambiguity Function

The Hermitian ambiguity function of deterministic signals have been used in a wide variety
of fields, such as radar, sonar, communications and optics. In radar, the Hermitian am-
biguity function is used to measure the distance and velocity of a moving target [Skolnik,
2001], and to select radar waveforms and for performance evaluation of radar systems (see
e.g., [Rihaczek, 1969]). The Hermitian ambiguity function of a random process determines
if the process is underspread or not. We have already noted that the concept of under-
spread processes connects the behavior in the ambiguity domain to the HKR-spectrum.
If the Hermitian ambiguity function is supported only around the origin of the ambiguity
plane, it implies that the HKR-spectrum of the process is smooth. We actually make the
assumption of smoothness of the HKR-spectrum implicitly in the estimator presented in
the previous Chapter. In order to determine whether a process is underspread or not based
on realizations of the process, we need an estimator for the Hermitian ambiguity function.

There has been little work on how to estimate the Hermitian ambiguity function based
on one discrete-time realization of a random process. One common approach is to estimate
the Hermitian ambiguity function by means of a tapered Fourier transform of the estimator
for the Hermitian dual-time correlation in (2.32) [Larsen, 2003], and the complementary
ambiguity function can be estimated along the same lines. However, since our goal is
to classify X[n] as underspread or overspread, we are interested in the support in the
ambiguity domain. The tapered Fourier transform approach will produce an estimate that
is a smoothed version of the true Hermitian ambiguity function, thus increasing the support
in the ambiguity domain. This estimate is also in general nonzero for the entire ambiguity
plane, making it difficult to determine the essential support of the estimate.

The most popular estimator of the Hermitian ambiguity function is a direct implemen-
tation of the definition of the discrete-time Hermitian ambiguity function while ignoring
the expectation operator, i.e., use the DTFT of (2.32) without a kernel. This is equivalent
to considering x[n] as a deterministic signal, not as a realization from a random process.
It gives us the Empirical Ambiguity Function (EAF)

ÂXX∗ (ν, η] =
N−1+min(0,η)∑

n=max(0,η)

x[n]x∗[n− η]e−j2πνn, (4.1)
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where n = 0, . . . , N − 1 and η = −(N − 1), . . . , (N − 1). We have assumed unity sampling
frequency, and thus −1/2 ≤ ν ≤ 1/2. The edges are dealt with using zero-padding, edge-
effects of the Hermitian ambiguity function are discussed more carefully in [Hedges and
Suter, 2002]. This estimator will not have an estimator-induced increased support in the
ambiguity domain. However, the variance of the estimator is large, the expectation and
standard deviation are of the same order of magnitude. And since ÂXX∗ (ν, η] &= 0 for all
(ν, η], it is not trivial to determine the support of the estimated function.

Estimation procedures for time-frequency spectra based on the underspread nature of
the process have been proposed in [Jachan et al., 2007; Borgnat and Flandrin, 2008],
however these methods utilize a user-tuned parameter to determine the support in the
ambiguity domain. If the assumed support in the ambiguity domain is larger than the true
support, estimators in global time or global frequency are not smoothed sufficiently. If the
support is assumed to be too small, we accrue bias and smooth out details in the time-
frequency spectrum. Optimally the decision on whether a contribution in the ambiguity
domain is important or not should be based on whether the magnitude of the Hermitian
ambiguity function is sufficiently large for us to suspect it is not noise generated but rather
signal generated. Such ideas have also been used for processes observed in continuous time
in [Sayeed and Jones, 1995] and [Wahlberg and Hansson, 2007], but where the theoretical
properties of the process were assumed known to obtain the optimal kernel for smoothing
the time-frequency spectrum.

We propose an estimator of the Hermitian ambiguity function that does not increase
the support in the ambiguity domain, that has a lower variance than the EAF and which
enables us to easily estimate the support of the Hermitian ambiguity function. The estima-
tion method consists of a thresholding of the EAF, where the threshold is chosen based on
statistical considerations of the EAF. In this Chapter, we assume that the process X[n] is
a Gaussian, analytic and proper harmonizable process. We consider analytic processes in
order to avoid the well-known problem of aliasing and interference from negative frequen-
cies when estimating the Hermitian ambiguity function of real-valued signals [Jeong and
Williams, 1992], and we assume the process is proper in order to simplify variance expres-
sions. We work with the discrete-time Hermitian ambiguity function, and will not consider
problems related to whether this definition makes sense compared to the continuous-time
definition (see e.g., [Sandberg and Hansson-Sandsten, 2009]).

4.1 Properties of the Empirical Ambiguity Function
In order to chose the correct threshold, we need to know the distribution of the EAF.
The EAF is a complex-valued quantity, such that ÂXX∗ (ν, η] is a complex-valued random
variable for fixed (ν, η]. We define the probability density function of a complex-valued
Gaussian random variable Z ∼ NC(µ, σ2) as

pZ(z) =
1

πσ2
exp

[
− |z − µ|2

σ2

]
, (4.2)
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where µ is the mean and σ2 is the variance of Z [Neeser and Massey, 1993]. We show
that under certain conditions, the centered and normalized EAF is distributed as a zero-
mean, unity variance complex-valued Gaussian random variable outside the support of
the Hermitian ambiguity function. We also present a result on the distribution of the
magnitude squared of the EAF, which we need in order to choose the correct threshold. In
the following, µA(ν, η] and σ2

A(ν, η] denotes the expected value and variance of the EAF,
respectively.

4.1.1 Distribution for underspread processes

We assume that X[n] is an analytic process corresponding to a strictly underspread real-
valued process. A strictly underspread process has a Hermitian ambiguity function that
is zero for (ν, η] /∈ D, where there exists some finite non-negative T and Ω such that
D ⊂ [−Ω, Ω] × [−T, T ]. We assume that the energy of the signal is distributed over the
entire length of signal. Then the EAF evaluated at (ν, η] has an expected value

µA(ν, η] =

1/2∫

0

1/2−f∫

−f

ej2πfηSXX∗ (λ, f)ejπ(N+η−1)(λ−ν)DN−|η|(λ− ν) dλdf. (4.3)

Here, DN(f) = sin(πNf)/ sin(πf). Likewise, the EAF has a variance

σ2
A(ν, η] =

N−1+min(0,η)∑

n=max(0,η)

T−1∑

ζ=−(T−1)

e−j2πνζMXX∗ [n, ζ]M∗
XX∗ [n− η, ζ] + O

(
log

[
N

T

])
. (4.4)

The function O(·) describes the limiting behavior of a function as follows. If, for two
functions z[n] and q[n], we have z[n] = O (q[n]) as n → ∞, then eventually z[n] ≤ cq[n],
where c is a constant. A closely related order term is z[n] = o (q[n]), where eventually
z[n] < cq[n]. The O(·) term in (4.4) is due to the discrete Hilbert transform [Marple, 1999]
that is used to create the analytic extension of the real-valued realization. The expected
value is a convolution between DN(ν) and the Hermitian dual-frequency spectrum in the
local frequency variable, and an inverse FT with respect to the global frequency. We
express the variance of the EAF as functions of the Hermitian dual-time correlations, this
form does not provide any intuitive insight.

Since X[n] is Gaussian, we would expect the EAF to be Gaussian for (ν, η] /∈ D with
the expected value and variance specified by (4.3) and (4.3). However, additional con-
straints are needed for this to be true, since this is not a sum over independent identically
distributed variables. Theorem 2.1 in [Peligrad, 1996] gives a central limit result for a sum
of random variables that may be applied to our case. Fix (ν, η] /∈ D, let η ≥ 0 and define

Q[n] = (X[n + η]X∗[n]−MXX∗ [n + η,−η]) e−j2πν(n+η) (4.5)
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for n = 0, . . . , N − 1− η. We form a triangular array by letting N increase, N = η +1, η +
2, . . . , to get

Q =





Q[0] 0 0 · · · 0
Q[0] Q[1] 0 · · · 0
Q[0] Q[1] Q[2] · · · 0

...
...

... · · · ...
Q[0] Q[1] Q[2] · · · Q[N − 1− η]




. (4.6)

In order for Theorem 2.1 in [Peligrad, 1996]) to apply, we need Q to be strongly mixing,
which is a mathematical upper bound on how much dependency there is in the data. As
we consider two data points that are far enough apart in time, the data points must be
statistically independent of each other. We also need Q to satisfy the Lindeberg condition
to ensure that none of the variables have distributions with too heavy tails. Also, the
Lindeberg condition and the additional condition

sup
N

{
1

σ2
A(ν, η]

N−η−1∑

n=0

MXX∗ [n + η, 0]MXX∗ [n, 0]

}
< ∞ (4.7)

will make certain that all the variances of the individual variables are small compared to
the sum of the variances. If these conditions are fulfilled, Theorem 2.1 in [Peligrad, 1996])
states that

ÂXX∗ (ν, η]− µA(ν, η]

σA(ν, η]
L−→ NC (0, 1) , (ν, η] /∈ D, η ≥ 0, (4.8)

where L−→ denotes convergence in law [Ferguson, 1996]. Repeating the calculations for
η < 0 yields similar results. Thus, we need to have a bounded degree of dependency, we
need to ensure that the variance does not concentrate to a few of the variables in the sum,
and we need the tail behavior of the random variables to be moderate. In this case, the
centered and normalized EAF at (ν, η] /∈ D will converge in law to a Gaussian variable with
zero mean and unit variance as N increases. This central limit theorem does not provide
rates of convergence, and in some degenerate cases the joint distribution of ÂXX∗ (ν, η] over
several (ν, η] may not be asymptotically multivariate Gaussian.

The thresholding procedure will be applied to the magnitude squared of the EAF, thus
we need to know the distribution of this quantity as well. Assuming that the conditions
are fulfilled, such that ÂXX∗ (ν, η] for fixed (ν, η] /∈ D has a Gaussian distribution, and∣∣∣ÂXX∗ (ν, η]

∣∣∣
2

will be χ2-distributed. However, what kind of χ2-distribution depends on the
so-called relation of the EAF. The relation is simply the expectation of the squared complex-
valued variable, i.e., rA(ν, η] = E

{
Â2

XX∗ (ν, η]
}

, thus it corresponds to the complementary
dual-time correlation at η = 0. The term relation is taken from [Picinbono and Bondon,
1997], where the complementary dual-time correlation of a discrete-time process is termed
the relation sequence. We find that for an analytic process X[n] corresponding to a real-
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valued strictly underspread process, we have

rA(ν, η] = O

(
log

[
N

T

])
if |η| > T, (4.9)

and rA(ν, η] = 0 for |ν| > Ω. The order term is again due to the use of the discrete Hilbert
transform. The relation will be negligible for (ν, η] /∈ D, thus we have

∣∣∣ÂXX∗ (ν, η]− µA(ν, η]
∣∣∣
2

σ2
A(ν, η]

d
=

1

2
χ2

2 + O

(
|log(N)|2

N − |η|

)
+ o (1) (4.10)

for most of the values of (ν, η] in the ambiguity plane, whereas a relation with unity value
would lead to a χ2

1 distribution [Barber and Nason, 2004]. These distributions have different
variances, such that it is important to know the relation of the EAF in order to chose a
correct threshold. The order term O

(
|log(N)|2
N−|η|

)
is due to the relation, while o(1) is due to

the convergence to the Gaussian distribution.

4.1.2 Moments for some special cases
While we (asymptotically) retrieve the Gaussian distribution for the EAF, we fail to obtain
simple interpretable forms for σ2

A(ν, η]. For this reason, it is convenient to derive the first
and second order structure directly for some commonly used classes of processes. We
consider three simple classes of processes, namely stationary processes, white nonstationary
processes and deterministic signals in Gaussian white noise.

Stationary process

The Hermitian ambiguity function of a stationary process X[n] is given by (2.17). The
EAF based on one realization will have an expected value

µA(ν, η] = DN−|η|(ν)MXX∗ [η]e−jπν(N+η−1), (4.11)

and a variance

σ2
A(ν, η] = (N − |η|)(1/2− |ν|)

1/2−max(0,ν)∫

max(0,−ν)

SXX∗ (f + ν)SXX∗ (f)

1/2− |ν| df + O (1) . (4.12)

The term O (1) stems from the use of the limiting behavior of DN(ν) in the calculations
(this also applies to (4.13), (4.14) and (4.16)). We see that µA(ν, η] is not zero for ν &= 0,
but rather decays with ν as DN−|η|(ν). However, DN(ν) will approach a delta function
as N → ∞, such that the EAF is asymptotically unbiased. For convenience, an analytic
process corresponding to a real-valued stationary white process is denoted an analytic
white process. An analytic white process is thus a process with a power spectral density
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that is zero for negative frequencies, and constant for non-negative frequencies. Of course
the analytic white process is not actually a white process, the name merely reflects the
correlation structure of the corresponding real-valued process. If X[n] is an analytic white
process, the integral in (4.12) equals unity and the variance of the EAF decays like N−|η| in
η and like 1/2−|ν| in ν. Informally, we say that the greater similarity between X[n] and an
analytic white process, the more the variance of the EAF will decay like (N−|η|)(1/2−|ν|).

Uniformly modulated process

One of the simplest cases of real-valued nonstationary processes is a uniformly modulated
white process. Let X[n] be the analytic extension of σX [n]ε[n], where ε[n] is a Gaussian
white process with variance σ2

ε = 0.5 and σ2
X [n] is the time-varying variance with a DTFT

ΣXX∗ (ν). The EAF has an expected value

µA(ν, η] = ΣXX∗ (ν)ejπ(1/2−|ν|)η(1/2− |ν|) sinc[η(1/2− |ν|)] + O (1) , (4.13)

where Σ(0) = O(N) and sinc(f) = sin(πf)/(πf). The variance of the EAF is given by

σ2
A(ν, η] = (N − |η|)(1/2− |ν|)

1/2−|ν|∫

−1/2+|ν|

|Σ(f)|2

N − |η|e
j2πfηdf + O (1) . (4.14)

The EAF is biased as an estimator for the Hermitian ambiguity function, even if the
maximum of the sinc(·) function will ensure that the EAF is largest at η = 0. Note that
the bias increases as ν increases. The relation for the uniformly modulated case and the
stationary case was calculated in [Hindberg et al., 2008], where it was shown that the
relation decreases in magnitude as ν and η increase.

Deterministic signal in white noise

We consider the signal X[n] = g[n] + ε[n] where g[n] is an analytic deterministic sequence
and ε[n] is an analytic white process with variance σ2

ε . For deterministic signals, the expec-
tation operator will have no effect, and the EAF is a deterministic quantity. However, the
EAF of a deterministic signal may still suffer from the fact that we are only considering a
finite length segment of a possibly infinite length signal, such that the EAF of a determin-
istic signal may not equal the theoretical Hermitian ambiguity function of the signal. We
denote Âgg∗ (ν, η] the EAF of g[n], and find the expected value of the EAF of X[n] as

µA(ν, η] = Âgg∗ (ν, η] + σ2
ε e
−jπν(N+η−1)DN−|η| (πν) ejπη/2 sinc (πη/2) . (4.15)

Likewise, we find the variance of the EAF as

σ2
A(ν, η] = σ2

ε (G(ν, η] + G(−ν,−η]) + σ4
ε (N − |η|)(1/2− |ν|) + O (1) (4.16)
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where

G(ν, η] =

1/2−max(0,ν)∫

max(−ν,0)

∣∣∣∣∣∣

N−1−|η|∑

t=0

g[t− |η|I (η < 0)]e−j2πft

∣∣∣∣∣∣

2

df. (4.17)

Here,

I (ζ) =

{
1 if ζ ∈ C

0 if ζ /∈ C
(4.18)

for some element ζ and some set C, is the indicator function. If the support of Âgg∗ (ν, η]
is limited, the moments of the EAF will be dominated by the behavior caused by the
Gaussian white noise outside the support of the Hermitian ambiguity function of g[n].
Thus, the variance will behave approximately like the variance for Gaussian white noise
and the relation will be negligible outside the support of Âgg∗ (ν, η].

4.2 Thresholding Procedure
We estimate the Hermitian ambiguity function of an underspread zero-mean random pro-
cess based on the EAF. Since the process is underspread, |µA(ν, η]| 1 σA(ν, η] for most
(ν, η], and so thresholding is an admissible estimation procedure. If the variance σ2

A(ν, η] is
known, we would, based on the distributional results in Section 4.1.1, threshold the EAF
as

Â(T)

XX∗ (ν, η] =





ÂXX∗ (ν, η] if

∣∣∣ÂXX∗ (ν, η]
∣∣∣
2

> λ2σ2
A(ν, η]

0 if
∣∣∣ÂXX∗ (ν, η]

∣∣∣
2

≤ λ2σ2
A(ν, η],

(4.19)

where λ2 is some given threshold. This is strictly speaking a correct treatment only for
processes satisfying the constraints presented in Section 4.1.1, but we expect that the dis-
tributional result is valid under less constrained scenarios. The conditions are sufficient,
but by no means necessary, for the distributional result to hold. If we divide the magnitude
squared of the EAF by σ2

A(ν, η] for each point (ν, η], we retrieve a set of correlated positive
random variables. For any such collection, we may note from [Olhede, 2007], that a thresh-
old λ2

K = 2 log(K[log(K)]) may be used. In our case, K = 2N where N is the number of
observations, as we threshold the EAF frequency by frequency, across the total collection
of all time lags. The risk of this non-linear estimator for sums of unequally weighted χ2

1’s
was calculated in [Olhede, 2007][p. 1529].

4.2.1 Estimating the variance
In general σ2

A(ν, η] is not known, and previous results have shown that σ2
A(ν, η] takes dif-

ferent forms depending on the spreading of the process. The variance of the EAF is often
smooth in ν and η, and may exhibit a decay in (ν, η] that resembles that of the variance of
the EAF of an analytic white process. We choose to estimate the variance as if X[n] is an



42

analytic white process, and thus only need to find the scale σ4
ε of the data. To determine

σ4
ε from the EAF, we use a median absolute deviation procedure, which has been used

for estimating the scale of correlated data before [Johnstone and Silverman, 1997]. The
median absolute deviation is a robust estimator, with a breakdown point of 50 %. We note
that this procedure requires a 1

2χ
2
2 distribution, thus we need the relation of the EAF to

be zero. An estimator of σ4
ε over any region Mk ⊂ [−1/2, 1/2] × [−(N − 1), (N − 1)] is

defined as

σ̂4
ε (Mk) =

1

ln(2)
median






∣∣∣ÂXX∗ (ν, η]
∣∣∣
2

√
(N − |η|)(1/2− |ν|)





(ν,η]∈Mk

. (4.20)

A suitable threshold procedure simply corresponds to using

σ̂2
A(ν, η] = σ̂4

ε (Mk)(N − |η|)(1/2− |ν|) (ν, η] ∈Mk. (4.21)

as an estimate of σ2
A(ν, η] in (4.19), and employing the thresholding. Note that the threshold

decreases with increasing η and ν, taking into account the sampling properties of the EAF.
In (4.20), the ambiguity plane has been segmented into k = 1, . . . , K regions Mk.

We have seen that the variance of the EAF for non-white processes normalized by (N −
|η|)(1/2 − |ν|) will be approximately constant in some regions of the ambiguity plane.
Ideally, we would estimate σ4

ε separately in these areas, but of course, we do not generally
know how to segment the ambiguity plane. Instead, we estimate the variance of the EAF
by segmenting the ambiguity plane into suitable user-tuned regionsMk and apply (4.20) to
each region. If K = 1, i.e., σ4

ε is estimated by the same value in the entire ambiguity plane
we denote the result after thresholding as the thresholded EAF, Â(T )

XX∗ (ν, η]. Likewise, if
K > 1 we denote the results of the thresholding as the locally thresholded EAF, Â(LT )

XX∗ (ν, η].
Note that for processes that are not strictly underspread, our thresholding procedure will
identify regions where the mean of the EAF is sufficiently distinct in magnitude from
the variance of the EAF. This in essence corresponds to comparing the magnitude of the
Hermitian ambiguity function at a point with the magnitude at other points.

Equation (4.20) is not appropriate unless (N − |η|)(1/2 − |ν|) = O(N), which is a
problem at the very rim of the ambiguity plane. In this area, (4.12) and (4.14) are not good
approximations of the variance. Asymptotically these rim coefficients are of no importance,
but for a finite number of samples two approaches can be made. We can either treat the
coefficients as if (4.12) and (4.14) were appropriate, or we can set the coefficients for which
(N − |η|) < n0 or (1/2− |ν|)× 2N < n0 equal to zero for some suitable n0 = O(1). These
coefficients will have little effect on (4.20), as this is a robust estimator.

4.2.2 Spread

We have proposed an estimate of the Hermitian ambiguity function in the entire ambiguity
plane that facilitates a simple estimator for the spread of the process. The total spread
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of the Hermitian ambiguity function of X[n] over a region S in the ambiguity domain is
given by

ξX (S) =

∫ ∑
S

I (|AXX∗ (ν, η]| &= 0) dν
∫ ∑

S
dν

, (4.22)

and 0 ≤ ξX (S) ≤ 1. A process X[n] is compressible in the ambiguity domain if ξX (S) <<
1. If ÂXX∗ (ν, η] is an estimator of the Hermitian ambiguity function, then we obtain an
estimated spread ξ̂X (S) by replacing AXX∗ (ν, η] with ÂXX∗ (ν, η] in (4.22). Extended
underspread processes will be approximated by the thresholded EAF to the region of their
essential support, i.e., where their magnitude is non-negligible in comparison to the rest
of the ambiguity plane. If any other estimator was employed, be it simply the EAF or the
FT of an estimator of any of the three other second-order moments, we would in general
get a function that is nonzero for the entire ambiguity plane. Thus, we would have to do
some manner of thresholding anyway to estimate the spread.

4.3 Numerical Examples
We consider some simple examples to examine the thresholding procedure. In order to
approximate the mean square error of the estimator, we need a value to compare the
estimate with. The true Hermitian ambiguity function does not exhibit any finite sample
issues with spreading in local frequency and time lag due to finite sample effects. We
can never observe such values in a finite sample, because the maximum concentration of
energy will behave like the number of sample points, and thus will be finite for a finite
sample length. We compare the estimator with a function for which we insist on the ideal
support of the true Hermitian ambiguity function, but that only takes finite sample length
realizable values, i.e., we compare the estimators to µA(ν, η]I ((ν, η] ∈ D). If the process
under consideration is an analytic process obtained from a real-valued process, D is the
support of the Hermitian ambiguity function of the real-valued process.

For the locally thresholded EAF, we divide the ambiguity plane in three squared annuli,
where M1 is the region where |η| ≤ N/3 and |ν| ≤ 1/6. The outer region M3 is given
by |η| > 2N/3 and/or |ν| > 1/3, and the remaining points in the plane form the middle
region M2, this is illustrated in Figure 4.1 for N = 256. The segmentation is chosen
simply because we know that the Hermitian ambiguity function has its maximum value at
the origin, and we expect it to decay with ν and η. For single-component processes, this
decay is reasonable to assume. We estimate the mean square error of the estimator by
Monte Carlo simulation, averaged over 5000 realizations of the given processes. The total
mean square error of the estimator is the sum over all points of the estimated mean square
error. Throughout this section, ε[n] denotes a real-valued Gaussian white noise process
with unit variance σ2

ε = 1 and the sample length is N = 256, unless otherwise specified.
We have chosen to treat the rim of the EAF as the rest of the function, but it would be easy
to equivalently set the rim coefficients to zero and not use these coefficients when forming
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Figure 4.1: Partitioning of the ambiguity plane for estimating the variance in the local
thresholding scheme.

the estimator σ̂4
ε . Simulation studies verify that using such methods has little impact on

the mean square error of the estimator, but significantly improves the estimated spread.

4.3.1 Moving average process

We consider the analytic process X[n] corresponding to a real-valued stationary moving

average process Y [n] =
L∑

i=0
θiε[n− i], where

θ =





1
0.33
0.266
0.2

0.133
0.066




. (4.23)

Both thresholding procedures give quantities that are zero for most values of (ν, η] outside
ν &= 0, which corresponds to a substantial improvement compared to the EAF. We show
the results of the estimated total mean square error and the estimated spread in Table 4.1.
The total mean square error of the thresholded estimate is actually reduced by more
than a factor of 100 compared to the EAF, which is a substantial reduction. The locally
thresholded EAF has a lower mean square error than the thresholded EAF in this case,
which is expected since our chosen partition of the ambiguity plane matches the behavior
of the process under consideration. The estimated spread is larger than the true spread
due to the analytic signal spreading energy in η and the points at the rims that have not
been successfully thresholded, but still reflects the fact that X[n] is underspread. Using the
discrete analytic signal and problems with edge effects makes the inflated spread inevitable.
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Moving Uniformly Time-varying
average modulated moving average

Mean square error EAF 204 (465) 331 (71.9) 510 (138)
Mean square error 9.79 (5.58) 1.74 (0.516) 3.13 (1.77)
thresholded EAF
Mean square error 9.51 (4.37) 1.71 (0.468) 2.94 (1.25)

locally thresholded EAF
Estimated spread 11 (14) 5.7 (9.0) 11 (16)
thresholded EAF
Estimated spread 9 (10) 5.6 (7.9) 9 (13)

locally thresholded EAF

Table 4.1: Estimated total mean square error (standard deviation) in 105, and estimated
spread (standard deviation) in 10−4.

The mean square errors in Table 4.1 might seem high, but we remember that this is the
total sum of the mean square error over 261632 pixels.

4.3.2 Uniformly modulated process
Next, we consider the analytic extension of a real-valued non-stationary, uniformly mod-
ulated process Y [n] = σ1[n]ε[n] with σ1[n] = sin(2πf0n) and f0 = 0.0908. In this case,
the Hermitian ambiguity function is only supported on three points, namely the points
(0, 0] and (±2f0, 0]. Thresholding has reduced the mean square error with a factor over
one hundred compared to the EAF results, and again the locally thresholded EAF has a
lower mean square error than the thresholded EAF. The theoretical spread of this process
is 1.1466× 10−5. Even if the estimated spread is too high, it is still low enough to suggest
that X[n] is underspread.

4.3.3 Time-varying moving average
We combine the moving average with the uniformly modulated process, thus defining a

time-varying moving average process Y [n] = σ1[n]
L∑

i=0
θiε[n − i], with f0 = 0.042. We

consider the analytic process X[n] corresponding to Y [n], and employ the thresholding
methods to the EAF. The total mean square error is shown in Table 4.1, and it shows a
distinct improvement for the thresholding. The total estimated spread demonstrates that
the Hermitian ambiguity function of this process is extremely sparse. Figure 4.2 shows
the results for two intersects in the ambiguity plane, the lines ν = 0 and η = 0. We have
kept the points corresponding to the conventional autocorrelation function of the moving
average part of the process for ν = 0, except for the point η = ±4 but the support is still
reflected. For η = 0 we have peaks at ν = 0 and ν = ±2f0, as we expect from σ1[n].
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Figure 4.2: For one realization of the time-varying moving average process. (a)
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4.3.4 Deterministic chirp in additive Gaussian white noise

We consider the case of the analytic, deterministic linear chirp, g[n] = exp[jπ(2αn+βn2)],
immersed in an analytic white noise process. The chirp has a starting frequency α = 0.1,
an end frequency of 0.33 (which gives a chirp rate β = 9.0196 · 10−4), and the noise has
variance 0.6. Figure 4.3 shows the EAF and the locally thresholded EAF for one realization
of the process. The Hermitian ambiguity function of a linear chirp should ideally be
concentrated on the line intersecting (0, 0] with a gradient of ∂/∂νAgg∗ (ν, η] = β−1, such
that theoretically we expect the Hermitian ambiguity function to be nonzero only for one
value of ν for each value of η. Because we deal with a finite segment of the chirp, the
line will be thicker in the ambiguity domain, but still we expect the EAF to be mostly
concentrated around this line. We see that the EAF is substantially corrupted by noise,
even if the line caused by the chirp is visible. The thresholding has removed most of the
noise and kept almost all (ν, η] on the line. As noted, the line is thicker than what we
expect from the theoretical Hermitian ambiguity function, and the thickness is larger for
large values of |η|.

4.4 Discussion

We have proposed an estimator of the Hermitian ambiguity function based on thresholding
the EAF obtained from one realization of the process. The estimator has the advantage
that it does not increase the support in the ambiguity function, while it has a small
variance compared to the EAF. An estimate of the spread in the ambiguity domain is
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Figure 4.3: (a)10 log10
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∣∣∣
2

for one realization of the
chirp in additive noise.

readily obtained from this estimator as well, and the numerical examples showed that the
estimator has a much lower mean square error than the EAF. However, as is often the
case in estimation, we need to know the value of an unknown variance in the estimation
procedure. We have chosen to approximate the variance of the EAF of the process under
consideration as the variance of the EAF of a stationary white noise process. Thus, we
only need to estimate the scale of the data from the EAF itself. This method will work for
processes that are close to white noise processes in some manner, and might be considered
as somewhat naive for a general process. To improve the estimator, a better method for
estimating the variance of the EAF needs to be specified, which is a possibility for further
work.
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Chapter 5

Generalized Spectral Coherence

We have seen how the second-order moments of complex-valued harmonizable processes
can be represented through Hermitian and complementary quantities. However, these
quantities are not normalized, such that it is difficult to measure the relative importance
of contributions in the moments. In addition, we always need two quantities to completely
describe the second-order moments of a complex-valued improper process, one Hermitian
and one complementary. We propose measures that describes the second-order behavior
of X(t) in an objective and normalized manner, while utilizing both the Hermitian and
complementary information in one dimensionless quantity. These measures will be denoted
generalized spectral coherences.

By generalized spectral coherences, we understand coherence measures that have been
extended from the conventional stationary definition, to a version that accommodates non-
stationarities. Stationary processes have no spectral correlations, thus spectral coherences
does not make sense for only one stationary process. Rather, coherences are convention-
ally defined as a univariate measure of spectral correlation between mutually stationary
processes. Since nonstationary processes are correlated across frequencies, one can talk
about auto spectral coherence, i.e., spectral coherences involving only one process. The
generalized coherence will be a bivariate function, either of time and frequency or of two
frequency variables. We focus on the time-frequency spectral coherence, but we also present
the dual-frequency coherence since it is closely related.

5.1 Time-Frequency Coherence
The frequency content of harmonizable processes may change with time, and we have
seen that this may be expressed through the correlation between the process itself and its
modulated increment process. We want to define an objective and dimensionless measure
of how strong this correlation is, and to that end we will consider estimating the process
X(t) from dX̃(f) exp(j2πft). The mean square error of any estimate X̂(t) is defined as

ε2 = E

{∣∣∣X(t)− X̂(t)
∣∣∣
2
}

. (5.1)
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A linear estimator of X(t) is constructed by

X̂(t) = αdX̃(f) exp(j2πft) α ∈ C. (5.2)

If we minimize the mean square error ε2 with respect to α, we obtain the linear minimum
mean square error ε2

L
of this estimate as

ε2
L

= E
{
|X(t)|2

} (
1− |γX,L(t, f)|2

)
, (5.3)

where
|γX,L(t, f)|2 =

|PXX∗ (t, f)|2

MXX∗ (t, 0)SXX∗ (0, f)
(5.4)

is the time-frequency squared correlation coefficient of the estimate.
By Schwartz’ inequality we can easily show that 0 ≤ |γX,L(t, f)|2 ≤ 1. The interpre-

tation is that if the squared correlation coefficient has a value close to unity, then X(t)
is estimable as a linear function of dX̃(f)ej2πft. The time-frequency squared correlation
coefficient is thus a normalized quantity that measures the correlation between the process
itself and its modulated increment process at a fixed time and frequency. This suggests that
|γX,L(t, f)|2 may be used as a measure of the time-frequency magnitude squared coherence,
and we denote |γX,L(t, f)|2 the time-frequency Linear Magnitude Squared Coherence (or
the time-frequency LMSC) of a complex-valued harmonizable process. The time-frequency
LMSC is identical to the magnitude squared coherence measure based on Hilbert space in-
ner product considerations proposed in [Hanssen and Scharf, 2003]. Note that |γX,L(t, f)|2
only depends on the Hermitian second-order quantities of the process.

Since the process and the increment process are in general complex-valued, we should
not limit ourselves to estimate X(t) as a linear function of dX̃(f)ej2πft. A widely linear
estimator forms an estimate of X(t) as a linear combination of dX̃(f)ej2πft and its complex
conjugate dX̃∗(f)e−j2πft [Picinbono and Chevalier, 1995], i.e.,

X̂(t) = αdX̃(f)ej2πft + βdX̃∗(f)e−j2πft α, β ∈ C. (5.5)

Thus, X̂(t) is no longer a linear function of dX̃(f)ej2πft. However, the moment of order k of
X̂(t) is completely defined from the moments of order k of dX̃(f)ej2πft and dX̃∗(f)e−j2πft,
which characterizes a form of linearity [Picinbono and Chevalier, 1995]. The mean square
error associated with this estimate is given by (5.1). By minimizing the mean square error
with respect to α and β, we obtain the so-called widely linear minimum mean square error

ε2
WL

= E
{
|X(t)|2

} (
1− |γX,WL(t, f)|2

)
, (5.6)

where
|γX,WL(t, f)|2 =

γN(t, f)

γD(t, f)
, (5.7)

with
γN(t, f) =

(
|PXX∗ (t, f)|2 + |PXX(t,−f)|2

)
SXX∗ (0, f)

− 2Re{ej4πftSXX(2f,−f)P ∗
XX(t,−f)PXX∗ (t, f)}

(5.8)
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and
γD(t, f) = MXX∗ (t, 0)

[
|SXX∗ (0, f)|2 − |SXX(2f,−f)|2

]
. (5.9)

Here, |γX,WL(t, f)|2 is the time-frequency squared correlation coefficient of the widely linear
estimate.

The coefficient |γX,WL(t, f)|2 is a normalized quantity that has a value close to unity
if X(t) is estimable as a widely linear function of dX̃(f)ej2πft. We propose the quantity
|γX,WL(t, f)|2 as an alternative time-frequency magnitude squared coherence of harmoniz-
able processes, which we denote the time-frequency Widely Linear Magnitude Squared
Coherence (or time-frequency WLMSC). Note that |γX,WL(t, f)|2 depends on both the
HKR-spectrum and the CKR-spectrum, both dual-frequency spectra and the variance
of the process. We see that the numerator of |γX,WL(t, f)|2 depends on the magnitude
squared of both KR-spectra, which can be seen as an expansion of |γX,L(t, f)|2 to include
the complementary functions. But it also contains the real part of a cross term that makes
|γX,WL(t, f)|2 depend on the phase of the complex-valued KR-spectra as well. We also
recognize the first factor in γD(t, f) from the denominator of |γX,L(t, f)|2, while the second
factor again includes the complementary information.

Time-frequency coherence measures for harmonizable processes based on widely lin-
ear estimation were also discussed in [Schreier, 2007; Schreier, 2008a], where a coherence
measure was used to determine the fit of approximating the process X(t) at time t with
a local ellipse at (t, f). We estimate the process at time t as a widely linear function
of the increment process at frequency f to obtain our coherence measure. In [Schreier,
2007; Schreier, 2008a], the process is estimated as a widely linear function of both the
increment process at frequency f and the increment process at frequency −f , thus X(t)
is estimated from four quantities. This coherence measure may be applied to cases where
separating the behavior for positive and negative frequencies are not necessary. However,
since complex-valued processes will not have a symmetric frequency content, we would in
general not mix positive and negative frequencies. We also note that [Schreier, 2008b] dis-
cusses correlation coefficients for complex-valued random variables, a topic closely related
to coherence measures for complex-valued random processes.

5.2 Dual-Frequency Coherence
The increment process dX̃(f) of a harmonizable process X(t) is in general a non-orthogonal
random function, i.e., it exhibits correlation across different frequencies. To quantify this
correlation, we consider the dual-frequency coherence of the process. Following along the
same lines as for the time-frequency coherence, we derive a useful definition of the dual-
frequency coherence by estimating the increment process at a single frequency, dX̃(f + ν),
from the increment process at another frequency, dX̃(f). By minimizing the mean square
error associated with estimating dX̃(f + ν) as a linear function of dX̃(f), we obtain the
minimum mean square error

ε2
L

= E
{
|dX̃(f + ν)|2

}(
1− |ρX,L(ν, f)|2

)
, (5.10)
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where

|ρX,L(ν, f)|2 =
|SXX∗ (ν, f)|2

SXX∗ (0, f) SXX∗ (0, f + ν)
. (5.11)

Thus, |ρX,L(ν, f)|2 can be used as a measure of the dual-frequency LMSC of the pro-
cess [Hanssen and Scharf, 2003]. Like the time-frequency LMSC, the dual-frequency LMSC
only depends on Hermitian quantities of the process, actually it only depends on the Her-
mitian dual-frequency spectrum.

If we estimate dX̃(f + ν) from dX̃(f) by a widely linear estimator, and subsequently
minimize the mean square error, the minimum mean square error of the estimate is found
to be

ε2
WL

= E
{
|dX̃(f + ν)|2

}(
1− |ρX,WL(ν, f)|2

)
, (5.12)

where
|ρX,WL(ν, f)|2 =

ρN(ν, f)

ρD(ν, f)
, (5.13)

with

ρN(ν, f) =
(
|SXX∗ (ν, f)|2 + |SXX(2f + ν,−f)|2

)
SXX∗ (0, f)

− 2Re{SXX(2f,−f)S∗XX(2f + ν,−f)SXX∗ (ν, f)},
(5.14)

and
ρD(ν, f) = SXX∗ (0, f + ν)

[
|SXX∗ (0, f)|2 − |SXX(2f,−f)|2

]
. (5.15)

This defines the dual-frequency WLMSC |ρX,WL(ν, f)|2, which utilizes the complemen-
tary dual-frequency spectrum as well as the Hermitian dual-frequency spectrum of the
process. The connection between |ρX,L(ν, f)|2 and |ρX,WL(ν, f)|2 is the same as the con-
nection between |γX,L(t, f)|2 and |γX,WL(t, f)|2, in that the numerator and denominator
has been expanded in similar ways to include the complementary information. Note that
|ρX,L(0, f)|2 = 1 and |ρX,WL(0, f)|2 = 1 for all f , which is just to say that there is full co-
herence between dX̃(f) and dX̃(f). This equals the standard single-frequency magnitude
squared auto-coherence for stationary processes.

5.3 Geometry
The orthogonality condition states that the mean square error of the best linear estimate of
a variable Z based on a variable Q is orthogonal to Q [Picinbono, 1993]. Likewise, the mean
square error of the best widely linear estimate of Z is orthogonal to both Q and Q∗ [Picin-
bono and Chevalier, 1995]. In the widely linear case, the estimate of X(t) can be seen as
the projection of X(t) onto the vector space spanned by dX̃(f)ej2πft and dX̃∗(f)e−j2πft,
as illustrated in Figure 5.1(a). The magnitude squared coherence |γX,WL(t, f)|2 is the mag-
nitude squared of the cosine of the angle associated with the Hilbert space inner product
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X(t)

Φ(t, f)

X̂(t)
{

dZ(f)ej2πft, dZ∗(f)e−j2πft
}

(a)

Ψ(ν, f)

{dZ(f), dZ∗(f)}

dZ(f + ν)

d̂Z(f + ν)

(b)

Figure 5.1: (a) The projection of X(t) onto the vector space spanned by dX̃(f) exp(j2πft)
and dX̃∗(f) exp(−j2πft). (b) The projection of dX̃(f + ν) onto the vector space spanned
by dX̃(f) and dX̃∗(f).

between the process and the estimate,

|γX,WL(t, f)|2 = |cos[Φ(t, f)]|2 =

∣∣∣
〈
X(t), X̂(t)

〉∣∣∣
2

〈X(t), X(t)〉
〈
X̂(t), X̂(t)

〉 . (5.16)

As the angle Φ(t, f) approaches zero, X(t) will be contained in the vector space spanned by
dX̃(f)ej2πft and dX̃∗(f)e−j2πft, and a small value of Φ(t, f) implies a value of |γX,WL(t, f)|2
close to unity.

For the dual-frequency WLMSC, the estimate of dX̃(f+ν) is the projection of dX̃(f+ν)
onto the vector space spanned by dX̃(f) and dX̃∗(f), as seen in Figure 5.1(b). Thus,
|ρX,WL(ν, f)|2 is the magnitude squared of the cosine of the angle associated with the

Hilbert space inner product
〈

dX̃(f + ν), d̂X̃(f + ν)

〉
, i.e.,

|ρX,WL(ν, f)|2 = |cos[Ψ(ν, f)]|2

=

∣∣∣∣

〈
dX̃(f + ν), d̂X̃(f + ν)

〉∣∣∣∣
2

〈
dX̃(f + ν), dX̃(f + ν)

〉 〈
d̂X̃(f + ν), d̂X̃(f + ν)

〉 .
(5.17)

As the angle Ψ(ν, f) approaches zero, dX̃(f + ν) will be contained in the vector space
spanned by dX̃(f) and dX̃∗(f), and |ρX,WL(ν, f)|2 will approach unity. The dual-frequency
and the time-frequency LMSC will have equivalent interpretations as the magnitude squared
of the cosine of the angle associated with Hilbert space inner products. The difference is
that for the LMSCs, the estimate d̂X̃(f + ν) can be seen as the projection of dX̃(f + ν)
onto the vector space spanned by dX̃(f), and the estimate X̂(t) is the projection of X(t)
onto the vector space spanned by dX̃(f) exp(j2πft).
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5.4 Properties
The magnitude squared coherence measures obtained in (5.7) and (5.13) are valid for all
complex-valued harmonizable processes. We will consider three important subclasses of
complex-valued processes, namely proper processes, analytic processes, and real-valued
processes. We will also briefly sketch how the coherence measures can be extended to
cross-coherences.

5.4.1 Proper processes
The complementary quantities of a proper complex-valued process are zero everywhere,
which implies that |γX,WL(t, f)|2 = |γX,L(t, f)|2 and |ρX,WL(ν, f)|2 = |ρX,L(ν, f)|2. Thus, for
proper processes, widely linear estimation reduces to linear estimation, and the proposed
magnitude squared coherences will not add any new information.

5.4.2 Analytic processes
The analytic process X(t) corresponding to the real-valued process Y (t) has the spectral
representation in (2.21), with dX̃(f) = 2dỸ (f)u(f). There is no correlation between the
increment process at a positive frequency and the increment process at a negative frequency.
In [Hindberg and Hanssen, 2007] this was found to lead to SXX (2f,−f) = 0 for analytic
processes. This is incorrect, SXX (2f,−f) for an analytic process corresponding to a real-
valued harmonizable process will in fact never be zero for all non-negative frequencies (it
can be zero for some values of f). The expressions for the time-frequency WLMSC and
dual-frequency WLMSC will not simplify for analytic, improper processes. However, they
will have a limited support in the plane,

|γX,WL(t, f)|2 =

{
|γY,WL(t, f)|2 for f ≥ 0

0 for f < 0
(5.18)

and

|ρX,WL(ν, f)|2 =

{
|ρY,WL(ν, f)|2 f ≥ 0, f ≥ −ν

0 elsewhere.
(5.19)

Thus the time-frequency WLMSC of an analytic process has the same support as the HKR-
spectrum of an analytic process, and likewise the dual-frequency WLMSC has the same
support as the Hermitian dual-frequency spectrum.

5.4.3 Real-valued processes
For real-valued processes, the Hermitian and the complementary quantities are identical.
The increment process is still complex-valued, however, such that the potential for us-
ing widely linear estimation is still there. In general, |γX,WL(t, f)|2 &= |γX,L(t, f)|2 and
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|ρX,WL(ν, f)|2 &= |ρX,L(ν, f)|2 for real-valued processes. In determining the time-frequency
WLMSC of real-valued processes, we estimate a real quantity X(t) from a complex quan-
tity dX̃(f) exp(j2πft). For real-valued processes, the numerator of |γX,WL(t, f)|2 reduces
to

γN(t, f) = 2 |PXX∗ (t, f)|2 SXX∗ (0, f)− 2Re{e−j4πftSXX∗ (2f,−f)P 2
XX∗ (t, f)}. (5.20)

Thus, the time-frequency WLMSC may be useful even for real-valued processes. Also,
|γX,WL(t, f)|2 will be singular for f = 0 for real-valued processes, since dX̃(0) is real-
valued. We may use the time-frequency LMSC for this line solely, such that |γX,WL(t, 0)|2 =
|γX,L(t, 0)|2.

For the dual-frequency coherence, |ρX,WL(ν, f)|2 will be singular at f = 0 for real-valued
processes. Since dX̃(0) is real-valued, it does not make any sense to estimate dX̃(−ν) as
a widely linear function of dX̃(0). To deal with the singularity at f = 0, we carry out the
analysis on the analytic process corresponding to the real-valued process. Note that for
real-valued processes, the dual-frequency WLMSC has the symmetries

|ρX,WL(ν, f)|2 = |ρX,WL(−ν,−f)|2 = |ρX,WL(ν + 2f,−f)|2 = |ρX,WL(−ν − 2f, f)|2. (5.21)

Analyzing the analytic process gives us the magnitude squared coherence |ρX,WL(ν, f)|2 of
the real-valued process in the region f ≥ 0, f ≥ ν. By the symmetries in (5.21) we can
determine |ρX,WL(ν, f)|2 in the entire f -ν plane from this.

5.4.4 Generalized Cross-Coherences
We can easily extend the results to cross-coherences, i.e., coherences between a pair of
mutually harmonizable random processes. Let dX̃(f) and dỸ (f) be the increment pro-
cesses of the two mutually harmonizable random processes X(t) and Y (t), respectively.
By estimating Y (t) from dX̃(f)ej2πft as in Section 5.1, we obtain the time-frequency
magnitude squared cross-coherences |γXY,L(t, f)|2 and |γXY,WL(t, f)|2. Likewise, we find
the dual-frequency magnitude squared cross-coherences |ρXY,L(ν, f)|2 and |ρXY,WL(ν, f)|2

by estimating dỸ (f − ν) from dX̃(f) following the lines of Section 5.2. In contrast to
the auto-coherence case, the cross-coherences will in general have |ρXY,L(0, f)|2 &= 1 and
|ρXY,WL(0, f)|2 &= 1. Note that |ρXY,L(0, f)|2 is the conventional single-frequency magnitude
squared cross-coherence between two mutually stationary processes.

5.5 Discussion
We have presented alternative measures with which we can represent the second-order sta-
tistical information of the process in the time-frequency and the dual-frequency domain.
We showed how previously defined spectral coherence measures can be obtained through a
linear estimation scheme. These measures only depend on the Hermitian quantities of the
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process. Since we generally deal with complex-valued quantities, and since the increment
process is generally complex-valued, we proposed to use a widely linear estimation scheme
to define alternative spectral coherence measures. These alternative measures simultane-
ously utilize the Hermitian and complementary quantities of complex-valued processes, as
well as providing dimensionless and objective measures of the behavior of the process in
the time-frequency and dual-frequency domain. We showed that the WLMSCs reduce to
the corresponding LMSCs for proper processes, but for analytic processes, real-valued pro-
cesses and of course general complex-valued processes, the WLMSC may provide additional
insight into the second-order structure of the process.



Chapter 6

Stochastic Differential Equations

An interesting field where the HKR-spectrum of random processes gives additional insight
into the problem is the field of stochastic differential equations. Differential equations are
very important in mathematical modeling of physical systems, and we solve differential
equations in order to learn something about the underlying process that the equation gov-
erns. Stochastic differential equations have been extensively studied from a mathematical
point of view (see e.g. [Øksendal, 2002; Gardiner, 2004]). To solve a stochastic differential
equation directly, we need to know how to integrate a random function. Two main differ-
ent definitions of stochastic integration exit, namely the Itô integral and the Stratonovich
integral [Øksendal, 2002]. The ambiguous nature of stochastic integrals makes stochastic
differential equations difficult to handle. For random processes, we consider the moments
of the process rather than the process itself, and we have focused on the time-frequency do-
main in particular. Inspired by [Hanssen, 2009], we will use the HKR-spectrum to analyze
stochastic differential equations. We restrict our attention to the Hermitian second-order
quantities, without any assumptions of propriety of the process.

6.1 Differential Equation Basics

We first introduce linear ordinary differential equations (ODEs) mathematically, and dis-
cuss how to represent the ODE in the time-frequency domain. A general ODE of order M
has the form

aM
dM

dtM
X(t) + · · ·+ a1

d

dt
X(t) + a0X(t) = G(t), (6.1)

where X(t) is the process of interest, G(t) is a driving process and {am}M
m=0 is a set of

complex-valued coefficients we denote the system coefficients. We express this as the linear
system

L{X(t)} = G(t), (6.2)
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with the linear differential operator defined by

L =
M∑

m=0

am
dm

dtm
. (6.3)

We will without loss of generality assume that aM = 1. An ODE is stochastic if either
the driving force G(t) is a random process or if one or more of the system coefficients are
random variables. We assume that X(t) belongs to the class of harmonizable, complex-
valued, zero-mean processes, and G(t) either belongs to the same class or is a deterministic
signal. The M -order derivative of the harmonizable process X(t) exists in the mean square
sense if and only if ∫∫

|fν|MSXX∗ (ν, f)dνdf < ∞. (6.4)

This result was presented for stationary processes in [Yaglom, 1987], the corresponding
result for harmonizable processes is obtained similarly. We assume that the derivative of
X(t) always exists up to the desired order M .

Since we are dealing with nonstationary random processes, the frequency content of
the process may change with time, and since the ODE is originally specified in time, the
time-frequency domain seems to be the best domain for analyzing the second-order mo-
ments of a stochastic ODE. Time-frequency representation of differential equations has
been considered in a recent series of papers, see [Galleani and Cohen, 2002; Galleani and
Cohen, 2004a; Galleani and Cohen, 2004b; Yang and Cohen, 2005; Galleani and Cohen,
2006a; Galleani and Cohen, 2006b]. However, these papers express the differential equa-
tions through the Wigner-Ville time-frequency spectrum. There are two main reasons why
the KR-spectra should be preferred over the Wigner-Ville for ODEs. The standard reason
is that the Wigner-Ville spectrum has no physical interpretation, while the HKR-spectrum
has an interpretation as a measure of correlation across time and frequency. Specifically
for differential equations, we prefer to represent an ODE of order M through the HKR-
spectrum, since this results in an ODE of the same order M in the time-frequency domain.
If we use the Wigner-Ville representation, the corresponding ODE in time-frequency will
be of order 2M , which will lead to a much more complicated problem.

6.1.1 System interpretation
General system theory states that a linear and time-invariant system can be represented
through its impulse response, and the output of the system is given as a convolution between
the input and this impulse response. The system has an even simpler representation in
the Fourier domain, where the FT of the output is the product of the FT of the input and
the FT of the impulse response. Let us then consider the system specified in (6.1) in the
Fourier domain, to see if we can simplify the system representation. Since X(t) and G(t)
are harmonizable, they have the spectral representation in (2.1) with increment processes
dX̃(f) and dG̃(f), respectively. If we insert the spectral representation of X(t) and G(t)



Stochastic Differential Equations 59

in the system, we get
∫

ej2πft
[
(j2πf)M + · · ·+ a1j2πf + a0

]
dX̃(f) =

∫
ej2πftdG̃(f). (6.5)

Thus
D(f)dX̃(f) = dG̃(f), (6.6)

where we have defined the characteristic function D(f) of the ODE as

D(f) =
M∑

m=0

am(j2πf)m = (j2π)M
M∏

i=1

(f − pi). (6.7)

If D(f) &= 0∀f , i.e., Im{pi} &= 0∀i, we get

dX̃(f) =
1

D(f)
dG̃(f), (6.8)

which can be expressed in the time domain as

X(t) = h(t) - G(t). (6.9)

The impulse response is defined as

h(t) =

∫
1

D(f)
ej2πftdf. (6.10)

Thus, X(t) is the output from a linear time-invariant system with impulse response h(t) and
input G(t). The output X(t) of a linear time-invariant system is ensured to be harmonizable
if the input G(t) is harmonizable and the condition

∫∫ ∣∣∣∣
SGG∗ (ν, f)

D(f)D(f + ν)

∣∣∣∣ dνdf < ∞. (6.11)

is fulfilled [Yaglom, 1987]. In general we need D(f) &= 0∀f to satisfy this condition, unless
we design the input signal such that possible singularities become removable. This will
place strict system-dependent restrictions on the form of G(t). We will not consider this
case, and thus demand that D(f) &= 0∀f . Note that if G(t) is deterministic, dG̃(f) =
G(f)df , where G(f) is the FT of G(t).

The method of transforming an ODE to the Fourier domain is a standard approach to
solving the equation, since solving the ODE in the Fourier domain only consists of dividing
by D(f) on both sides of the equation. As long as we can transform back to the time
domain, this approach is quite simple. However, for stochastic differential equations we still
have problems with stochastic integration. If some of the system coefficients are random
variables, we need to solve a stochastic integral to obtain h(t). If G(t) is a random process,
the convolution in (6.9) will be a stochastic integral. Even if this system interpretation of
the ODE provides additional insight into the problem, we still cannot solve the stochastic
ODE from this.
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The impulse response

We take a closer look at the impulse response h(t) of the ODE. If we assume that all system
coefficients are deterministic, the impulse response is defined in (6.10). This is an ordinary
deterministic integral which we can solve using standard residue theory [Cauchy, 1890] (see
e.g., [Ablowitz and Fokas, 2003] for a tutorial). We recall that we have assumed that D(f)
has no real-valued roots. The residue of a function z(f) at pole f = pi with multiplicity
mi is defined as [Ablowitz and Fokas, 2003]

Res(z(f), pi) = lim
f→pi

1

(mi − 1)!

dmi−1

dfmi−1
z(f)(f − pi)

mi . (6.12)

Thus, the impulse response is given by

h(t) =
1

(j2π)M−1

Md∑

i=1

Res

(
ej2πft

∏M
i=1(f − pi)

, pi

)
ũ(t, pi), (6.13)

where we have defined

ũ(t, pi) =

{
u(t) Im{pi} > 0

u(t)− 1 Im{pi} < 0,
(6.14)

and {pi}Md
i=1 are all the distinct roots of the characteristic function.

If Md = M , we have

h(t) =
1

(j2π)M−1

M∑

i=1

ej2πpit

∏
m'=i

(pi − pm)
ũ(t, pi), (6.15)

which can be written as

h(t) =
u(t)

(j2π)M−1

Mp∑

i=1

ej2πpit

∏
m'=i

(pi − pm)
+

u(t)− 1

(j2π)M−1

M∑

i=Mp+1

ej2πpit

∏
m'=i

(pi − pm)
. (6.16)

Here, {pi}Mp

i=1 is the set of poles with positive imaginary values, and {pi}M
i=Mp+1 is the set of

poles with negative imaginary values. The first term in (6.16) thus determines the impulse
response for t ≥ 0. If D(f) only has roots with positive imaginary values, i.e., Mp = M ,
the system is causal. The concept of causality is important in real-time systems, in many
cases it is necessary that there is no output from the system prior to the input starting. In
order to design a causal system, D(f) can only have roots with positive imaginary values.

6.1.2 The HKR-spectrum of differential equations
In order to express the ODE in (6.1) in the time-frequency domain, we need to know the
HKR-spectrum of the derivatives of a harmonizable process X(t). The cross HKR-spectrum
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of Xi(t) = aidiX(t)/dti and Xm(t) = amdmX(t)/dtm is given by

RXiX
∗
m
(t, f) = aia

∗
m(−j2πf)m

(
d

dt
+ j2πf

)i

RXX∗ (t, f). (6.17)

Thus, it is completely determined as a function of the HKR-spectrum of X(t). By forming
the HKR-spectrum from each side of (6.1), we get the time-frequency representation of the
ODE, which is a linear ODE in the time-frequency domain,

[
M∑

i=0

ai(j2πf)i

]∗ [
M∑

m=0

am

(
d

dt
+ j2πf

)m
]

RXX∗ (t, f) = RGG∗ (t, f), (6.18)

or
M∑

m=0

am

(
d

dt
+ j2πf

)m

RXX∗ (t, f) =
RGG∗ (t, f)

D∗(f)
. (6.19)

Note that the ODE in time-frequency is of the same order M as the original ODE in time.
By considering the ODE in the time-frequency domain, we avoid stochastic integration,
and we still obtain information about how the system changes with time. We can solve
this ODE in time-frequency with standard methods. However, closed-form expressions of
the HKR-spectrum of X(t) are harder to find when the order M increases or the driving
force G(t) is complicated. Numerical solutions are possible, but they will be slow since we
need to solve a different ODE for each frequency f .

6.1.3 Time-varying coefficients
If the coefficients are allowed to be time-varying, the FT of (6.1) will contain convolutions
in frequency between the FT of the time-varying coefficients and dX̃(f). In this case, we
cannot solve for a simple expression for dX̃(f) and find X(t) from that. We can of course
express this kind of a differential equation in the time-frequency domain, but solving for
the HKR-spectrum of X(t) will require a deconvolution. However, if the coefficients have
a polynomial time dependency, we avoid convolutions because a multiplication with t in
time results in a derivation with respect to f in frequency. We find the HKR-spectrum
between X1(t) = γ1tµ

dm

dtm X(t) and X2(t) = γ2tζ
di

dti X(t) to be

RX1X
∗
2
(t, f) = γ∗1γ2t

µ

(
∂

∂t
− j2πf

)m (
t− d

2πjdf

)ζ

(j2πf)i RXX∗ (t, f). (6.20)

From this, we can find the corresponding time-frequency representation of a general ODE
in time with system coefficients given as polynomials. We see that this results in a partial
differential equation (PDE) in time-frequency. The Wigner-Ville time-frequency represen-
tation of ODEs with time-varying coefficients of general forms was presented in [Galleani
and Cohen, 2004a; Galleani and Cohen, 2006b]. Here, the coefficients are not assumed
to have a polynomial form explicitly, however no examples of other forms are provided in
these papers. We limit ourselves to solving ODEs with time-invariant coefficients in the
remaining.
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6.1.4 Homogeneous solution
An ODE will have a solution consisting of a homogeneous solution, which is the solution
to the undriven ODE

M∑

m=0

am

(
d

dt
+ j2πf

)m

RXX∗ (t, f) = 0. (6.21)

and a particular solution that involves the driving force. The homogenous solution to the
ODE in the time-frequency domain is

RXX∗ (t, f) =
Md∑

i=1

ci(f)tmi−1ej2π(pi−f)t, (6.22)

where again {pi}Md
i=1 are the Md distinct roots of the characteristic function and mi is

the multiplicity of the root pi. The coefficients {ci(f)}Md
i=1 are determined from the initial

conditions of the ODE. We note that if a root of D(f) has a positive imaginary value,
this corresponds to the characteristic equation of the ODE having a root with negative
real value. Thus, the fact that only roots with positive imaginary values contribute for
positive time instants is related to the stability of the system. If we have a root of the
characteristic equation with a positive real value, the solution will grow exponentially,
leading to an unstable system for t > 0. For t < 0, the system is unstable if a root of the
characteristic equation has a negative real value.

From a system point of view, we are mainly interested in the particular solution to
the ODE, since the particular solution relates the output to the input. We also note that
if the homogeneous solution is non-zero for one value of t is non-zero for all values of t
(except maybe t = 0). In real-world scenarios, we are restricted by the concept of time.
Usually, both the input signal and output signal will have a start time and an end time.
If we require an output with limited time support, the homogeneous solution must be zero
everywhere. Finally, we note that finding initial conditions in the time-frequency domain
that corresponds to initial conditions given in the time domain is not a trivial task.

6.2 Particular Solutions in the Dual-Frequency Domain
Particular solutions of ODEs can, as already mentioned, be found by transforming the
ODE to the Fourier domain. We likewise propose to find a particular solution to our ODE
in time-frequency by transforming the time-frequency ODE to the dual-frequency domain.
We start by assuming that the coefficients of the ODE are deterministic. The increment
processes of X(t) and G(t) are related through (6.8), and if we form the dual-frequency
spectrum from both sides of this equation, we get

D∗(f)D(f + ν)SXX∗ (ν, f) = SGG∗ (ν, f). (6.23)
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Since we have assumed that D(f) &= 0, this can also be written as

SXX∗ (ν, f) =
SGG∗ (ν, f)

D∗(f)D(f + ν)
. (6.24)

We find the HKR-spectrum of X(t) through an inverse FT of SXX∗ (ν, f) with respect to
ν,

RXX∗ (t, f) =
1

D∗(f)

∫∫
ej2πν(t−ξ)

D(f + ν)
RGG∗ (ξ, f)dνdξ, (6.25)

which can be expressed as

RXX∗ (t, f) = RHH∗ (t, f) -t RGG∗ (t, f). (6.26)

Here, -t denotes convolution with respect to the variable t, and

RHH∗ (t, f) =
h(t)

D∗(f)
e−j2πft

=
e−j2πft

−j(2π)2M−1
∏M

i=1(f − p∗i )

Md∑

i=1

Res

(
ej2πft

∏M
i=1(f − pi)

, pi

)
ũ(t, pi)

(6.27)

is the HKR-spectrum of the impulse response. Note that since h(t) is a deterministic
quantity, RHH∗ (t, f) is not a second-order moment, but rather just a deterministic time-
frequency representation of h(t).

A particular solution to the ODE in the time-frequency domain is thus given by (6.26),
the HKR-spectrum of the output is a convolution between the HKR-spectrum of the in-
put and the HKR-spectrum of the impulse response, which is analogous to the system
representation in (6.9). Note that RHH∗ (t, f) may also be interpreted as the Green’s func-
tion [Green, 1828] of the linear system in (6.18). The spectrum RHH∗ (t, f) will be peaked
in frequency around f = Re{pi}, while the time behavior will be one of decay determined
by the values of Im{pi}. Thus, the roots of D(f) directly dictates the behavior of the sys-
tem in the time-frequency domain. This will be useful when designing systems, where one
can specify the roots to get the desired frequencies and decay, and find the corresponding
system coefficients.

6.2.1 Random coefficients
We briefly consider the case where one or more of the ODE coefficients are random vari-
ables. We still have the relation (6.6) in the frequency domain, but now D(f) is a random
quantity. If we assume that D(f) and X(t) are statistically independent, we can potentially
solve for an expression of the HKR-spectrum of h(t) using only the first and second order
moments of the random coefficients. Indeed, [van Kampen, 2007] states that: “A stochas-
tic differential equation is a differential equation whose coefficients are random numbers or
random functions of the independent variable (or variables). Just as in normal differential
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equations, the coefficients are supposed to be given, independently of the solution that has
to be found”. However, it is unreasonable to assume that the output X(t) is statistically
independent of the random function specifying the system itself. Obviously, the output
will change if the systems parameters are changed. Otherwise, the system does not affect
the output at all, and we would not need to consider the system. If one assumes that
the system coefficients are given independent of the solution, we can treat the system as
completely deterministic as we have done up to this point. If we have the situation where
one or more of the system coefficients are random variables, the ODE may be expressed in
the dual-frequency domain as

SXX∗ (ν, f) = SHH∗ (ν, f)SGG∗ (ν, f), (6.28)

where
SHH∗ (ν, f) = E

{
1

D∗(f)D(f + ν)

}
. (6.29)

This assumes that the input and the system are statistically independent, which is reason-
able. If, as before, we define h(t) as the inverse FT of D−1(f), we see that SHH∗ (ν, f) is
in fact the dual-frequency spectrum of the random impulse response of the system. We
find the HKR-spectrum of the output by a convolution between the HKR-spectrum of the
input, and the HKR-spectrum of the random impulse response,

RHH∗ (t, f) = E

{
h(t)

e−j2πft

D∗(f)

}
. (6.30)

Contrary to previous results, RHH∗ (t, f) is now the second-order moment of the random
impulse response. We cannot find a general closed-form expression of RHH∗ (t, f) as we did
for deterministic coefficients.

6.3 Differential Equations in Time and Space
Systems such as acoustic or electromagnetic wave fields will not only evolve in time, but
also in space. Such a random quantity can be modeled by the random field X(r, t), and
the system can be modeled by a PDE in time and space L {X(r, t)} = G(r, t), with a
spatio-temporal differential operator

L{} =
M∑

m=0

L∑

µ=0

am,µ
∂m

∂tm
∂µ

∂rµ
. (6.31)

Thus, this is a PDE of order M in t and order L in r. If X1(r, t) = ∂(µ+m)X(r, t)/∂rµ∂tm,
and X2(r, t) = ∂(ζ+i)X(r, t)/∂rζ∂ti, we have the cross HKR time-frequency space-wavenumber
spectrum of these given as

RX1X
∗
2
(r, q, t, f) =(−j2πf)i(−j2πq)ζ

×
(

∂

∂t
+ j2πf

)m (
∂

∂r
+ j2πq

)µ

RXX∗ (r, q, t, f).
(6.32)
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If we form the HKR time-frequency space-wavenumber spectrum of the system, we get the
PDE specified by L′ {RXX∗ (r, q, t, f)} = RGG∗ (r, q, t, f) where

L′{} =
M∑

m=0
i=0

L∑

µ=0
ζ=0

a∗m,µai,ζ (−j2πf)i (−j2πq)ζ

(
∂

∂t
+ j2πf

)m (
∂

∂r
+ j2πq

)µ

, (6.33)

in the time-frequency space-wavenumber domain. We again see that we obtain a PDE of
the same orders in this domain, which can be solved by transforming the equation to the
dual-frequency dual-wavenumber domain. Following the same procedure as in Section 6.2,
we find that

D∗(q, f)D(q + κ, f + ν)SXX∗ (κ, q, ν, f) = SGG∗ (κ, q, ν, f). (6.34)

where the characteristic function of the PDE is

D(q, f) =
M∑

m=0

L∑

µ=0

am,µ(j2πf)m(j2πq)µ. (6.35)

We obtain the HKR time-frequency space-wavenumber spectrum of X(r, t) as

RXX∗ (r, q, t, f) = RGG∗ (r, q, t, f) -t -rRHH∗ (r, q, t, f), (6.36)

where we have define the HKR time-frequency space-wavenumber spectrum of the system
as

RHH∗ (r, q, t, f) =
e−j2π(qr+ft)

D∗(q, f)

∫∫
ej2π(κr+νt)

D(κ, ν)
dκdν. (6.37)

If D(κ, ν) is separable in κ and ν, we can solve the integral in RHH∗ (r, q, t, f) with residue
theory, otherwise we can use numerical methods.

The extension from ODEs in time to PDEs in time and spatial coordinates is mathe-
matically straightforward. Instead of a one-dimensional convolution in time, the spectrum
of the output is given as a two-dimensional convolution in time and spatial coordinate be-
tween the input spectrum and the system spectrum. All the other concepts discussed for
ODEs in time, such as random coefficients and homogeneous solutions, are readily defined
for PDEs in time and spatial coordinate as well. However, as we will see in Section 6.4.4,
there are conceptual differences between dealing with processes that change with time and
fields that change with spatial coordinates.

6.4 Examples
We consider some specific systems of differential equations, both analytically and numeri-
cally, to further investigate the time-frequency representation of differential equations.
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6.4.1 Langevin equation for Brownian motion
First, we look at a simple example that allows for closed-form solutions of the ODE in the
time-frequency domain. We define a classical Langevin equation for Brownian motion

m
d

dt
X(t) + βX(t) = G(t), (6.38)

which was also considered in [Galleani and Cohen, 2006b]. Here, X(t) is the speed of the
Brownian particle, m is its mass, and β is the friction coefficient. The driving force G(t)
is chosen to be Gaussian white noise with zero mean and variance σ2

G. First, we see that
the first order ODE has the characteristic function

D(f) = mj2πf + β = mj2π

(
f − jβ

2πm

)
, (6.39)

which has one root with positive imaginary value. Thus, the system is causal. We find the
dual-frequency spectrum of X(t) as

SXX∗ (ν, f) =
σ2

G

D∗(f)D(f + ν)
δ(ν), (6.40)

which gives us

RXX∗ (t, f) =
σ2

G

|D(f)|2
= SXX∗ (f). (6.41)

The output is independent of t, implying that X(t) is a stationary process. This is a
general result for ODEs driven by stationary random processes, the output will always be
a stationary process with a power spectral density equal to SXX∗ (f) = SGG∗ (f) |D(f)|−2.
It is implicitly assumed that the driving force has run for an infinite time and that the
homogeneous solution is removed in this case.

We would like to see what happens right after the driving force is turned on at t = 0.
The HKR-spectrum of the impulse response is

RHH∗ (t, f) =
e−j2πfte−βt/m

m (β − j2πmf)
u(t). (6.42)

We assume that the driving force is turned on at t = 0, GC(t) = G(t)u(t), which has a
HKR-spectrum RGCG

∗
C
(t, f) = σ2

Gu(t). The output has a HKR-spectrum

RXX∗ (t, f) = SXX∗ (f)
(
1− e−j2πfte−βt/m

)
u(t). (6.43)

Both the system and driving force is turned on at t = 0, i.e., the output need to satisfy
RXX∗ (t, f) = 0 for t < 0. Thus, the homogeneous solution must be zero everywhere. We see
that as t →∞, this will converge to the solution obtained with the driving force G(t), and
X(t) will converge to a stationary process as time evolves. We note that limiting the driving
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force in time is not equivalent to limiting the output process in time, as XC(t) = X(t)u(t)
has a HKR-spectrum

RXCX
∗
C
(t, f) = SXX∗ (f)

(
1 +

2πmf + jβ

2jβ
e−j2πfte−βt/m

)
u(t). (6.44)

These two HKR-spectra have some similarities, but are not identical. Of course, as t →∞,
these two solutions will converge to the same result. In [Galleani and Cohen, 2006b], this
system was considered for the case where the driving force has been going forever, but the
homogeneous solution contribute and has not died off yet. Since the initial condition was
not specified in [Galleani and Cohen, 2006b], it is difficult to compare the results.

The problem of linear time-invariant systems driven by stochastic stationary forces that
are turned on at a given time was also considered in [Lilly and Lettvin, 2004]. Here, the
problem with stochastic integration was not addressed, and solutions of X(t) was expressed
through integrals of deterministic functions and what corresponded to the increment pro-
cess of the stationary process. For this example, using the approach outlined in [Lilly and
Lettvin, 2004] to obtain an expression for X(t) and from this creating the HKR-spectrum
of the process, we obtain the same result given in (6.43). The solution in [Lilly and Lettvin,
2004] is more general since it allows real-valued roots of the characteristic function, but as
noted, we are then no longer ensured to be within the harmonizable class.

6.4.2 System with random coefficients
We briefly discussed ODEs with random coefficients earlier, but analytic solutions are
difficult to obtain for this case. By numerical simulations we can see if our intuitive
understanding of such a system corresponds with how the system actually works. Let

d2

dt2
X(t) + a1

d

dt
X(t) + a0X(t) = G(t), (6.45)

where a1 is real-valued and deterministic and a0 is a real-valued random variable with a
shifted exponential probability distribution

pa0(a) = λe−λ(a−a2
1/4)u

(
a− a2

1/4
)
. (6.46)

Here, λ = (m − a2
1/4)−1, such that E {a0} = m and Var {a0} = λ−2 + m2. The roots of

the characteristic function of this system is given by p1,2 = (2π)−1
(
ja1/2±

√
a0 − a2

1/4
)
.

We know that the values of the roots will specify the behavior of the system. The fact
that a0 ≥ a2

1/4 ensures that the value of a1 alone determine imaginary value of both roots,
which controls the damping of the system. The real part of the roots have equal magnitude
and opposite signs, and the magnitude is determined by both coefficients a0 and a1. The
system is stable for the same values of t and experiences the same decay for all possible
realizations of a0, only the frequency for which the system representation peaks changes
with a0. We denote this frequency as the system frequency fsys = (2π)−1

√
a0 − a2

1/4. In
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Figure 6.1: 10 log10

∣∣∣R̂XX∗ [n, f)
∣∣∣ for the output of a system with random coefficients, (a)

for one realization and (b) averaged over K = 100 realizations.

a discrete time simulation, the value of a0 should have an upper limit specified to avoid
aliasing in fsys. For the values chosen in our numerical example, the probability of a0 being
too large and causing aliasing in the system is of order 10−8, which we will ignore.

We perform a numerical simulation of the system by sampling at t = n = 0, 1, . . . 511,
and we let the system be driven by a complex-valued chirp g[n] = exp [jπ (2αn + βn2)]
with starting frequency α = 0 and ending at frequency 0.4, which gives a chirp rate
β = 7.8 × 10−4. We obtain a realization x[n] of X[n] by drawing a value for a0 from
its distribution and apply the Runge-Kutta method of order 4 (see e.g., [Moler, 2004]) to
numerically solve the ODE specified by a0 and a1 with the driving force g[n]. The initial
values used where that both x[n] and its derivative are zero at n = −1, thus ensuring that
the homogeneous solution is removed. We generate K = 100 realizations of the system and
we estimate the HKR-spectrum of X(t) based on each realization of the sampled process
X[n]. The HKR-spectrum is estimated with NF = 60, NT = 30, and all windows are zero
order DPSSs with NWT = 6 and NWF = NWB = 3.

Figure 6.1(a) show the HKR-spectrum for one realization a0 = 0.9843, which gives us
fsys = ±0.1579. We see that the output is a combination of the HKR-spectrum of the
chirp and the HKR-spectrum of the system until the instantaneous frequency of the chirp
coincides with fsys. When the chirp frequency crosses this frequency, the system imposes
its frequency on the chirp, and the output is dominated by a pure tone at the positive
system frequency from this time on. However, we still see residuals of the chirp after
this time. The HKR-spectrum averaged over all K realizations, shown in Figure 6.1(b),
illustrates that as we get different values of a0, the instantaneous frequency of the chirp
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will cross the systems frequency at different time instants, and the output will converge
to different tones as n increases. The averaged spectrum is dominated by the behavior
around low frequencies, which we would expect from the distribution of a0 which favors
low values of a0. If not for the damping, the output would, after some time has passed,
behave like a pure tone with a random frequency. The numerical results thus confirm our
intuitive understanding of the system.
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Figure 6.2: (a) A realization of the pulse. (b) The corresponding output from the second-
order ODE driven by the realization, where the real part is the black line and the imaginary
part is the red line.

6.4.3 Pulse response
In the real-world, one is often interested in a systems response to a pulse of finite duration.
This allows us to see how the system responds to a sudden input, how it converges to a
stable state and how the output dies out when the driving force is turned on. We consider a
second-order ODE in time driven by a rectangular pulse of duration T , G(t) = u(t)u(T−t),
where T is chosen large enough for the system to reach its steady state before the pulse is
turned off. The impulse response of the system is given by

RHH∗ (t, f) =
e−j2πft [ej2πp2t − ej2πp1t]

j2π(p2 − p1)D∗(f)
u(t), (6.47)

where we assume that the characteristic function has two distinct roots, p1 &= p2, with
positive imaginary values. The HKR-spectrum of the driving force is

RGG∗ (t, f) =

(
ej2πfT − 1

)

j2πf
e−j2πftu(t)u(T − t). (6.48)

From (6.26) we have

RXX∗ (t, f) =
T sinc(πfT )ejπfT

π3p1p2D∗(f)
e−j2πft ×

{
L(t)− 1 t ≤ T

L(t)− L(t− T ) t > T
(6.49)
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where

L(t) =
p2ej2πp1t − p1ej2πp2t

p1 − p2
. (6.50)

We see that L(0) = −1, and L(t) approaches zero as t increases. Also, when t 2 T , we
have L(t) ≈ L(t− T ), thus the output dies off as t increases.

We show a numerical example where T = 512, N = 2T and the system is specified by
a characteristic function with roots p1 = 0.0264 + j0.005 and p2 = 0.1240 + j0.007. We
add a Gaussian zero-mean white noise process with σ2

ε = 2.5 × 10−5 to the driving force,
and we show a sampled realization g[n] of the driving force in Figure 6.2(a). The noise
term will result in an extra term σ2

ε |D(f)|−2 added to the HKR-spectrum of the output
in (6.49). Similar to the random system case, we numerically solve the differential equation
driven by the realization g[n] to obtain the realization x[n] of the output process shown
in Figure 6.2(b). The HKR-spectrum is estimated from this realization, with NF = 100
samples, NT = 20 samples, vF [n] is a Hanning window, and vT [n] and vB[n] are zero order
DPSSs with NWT = 6 and NWB = 4.

The numerical results are shown in Fig 6.3, we see that they are consistent with the
theoretical results. Both the pulse and system starts at t = 0, and the system response
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Figure 6.3: For the pulse response. (a) 103 ×
∣∣∣R̂XX∗ [n, f)

∣∣∣ for −0.1 ≤ f ≤ 0.1. (b)

10 log10

∣∣∣R̂XX∗ [n, f)
∣∣∣ for n = 300, . . . , 1024.

dies off quickly. The output is dominated by the pulse until it is turned off. At this
time, the system response starts up again, and then decreases with increasing values of n.
On a linear scale, we only see the system response influence as a bending of the straight
line cause by the pulse at the beginning and end of the interval. On a logarithmic scale,
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as shown in Figure 6.3(c), we see that as the pulse is shut off, we get contributions for
frequencies f = 0.0264 and f = 0.1240, which corresponds to p1 and p2, respectively. The
contribution at f = 0.0264 is largest, this is due to the fact that Im{p1} < Im{p2}.

6.4.4 Spatial differential equations
Differential equations of random fields is a very interesting topic. We consider a system
that is a second order ODE in the one-dimensional spatial variable r,

d2

dr2
X(r) + 4π2γ2X(r) = G(r). (6.51)

This can be thought of as the electromagnetic wave equation of an electric field X(r) that
has a separate time and spatial behavior, and the time dependency is purely harmonic.
Here, X(r) and G(r) are harmonizable random fields. The coefficient γ2 ∈ C in (6.51) has
a positive real-part and a positive imaginary part, and is in the case of an electromagnetic
wave equation determined by the magnetic permeability, the permittivity and the electrical
conductivity of the medium.

We first find the characteristic function of the ODE

D(q) = −4π2
(
q2 − γ2

)
= −4π2 (q − γ) (q + γ) , (6.52)

which gives the spatial impulse response

h(r) =
exp (j2πγ|r|)

4πjγ
. (6.53)

Put together, the HKR space-wavenumber spectrum of the system is

RHH∗ (r, q) =
exp (j2πγ|r|) exp (−j2πqr)

−j16π3γ (q − γ∗) (q + γ∗)
. (6.54)

We show |RHH∗ (r, q)| for r = −50, · · · , 50, −1/2 ≤ q ≤ 1/2, and γ = 0.12 + 0.05j in
Figure 6.4. The system specified with these values will be investigated numerically later.
From Figure 6.4 and (6.54), we see that RHH∗ (r, q) will decrease exponentially as we move
away from the origin r = 0. As a function of q, RHH∗ (r, q) will have its maxima at
q = ±Re{γ}.

The HKR space-wavenumber spectrum of X(r) is given by

RXX∗ (r, q) = RGG∗ (r, q) -r RHH∗ (r, q). (6.55)

If we require the solution to decrease as we move away from r = 0, or at least not increase
exponentially, we need to remove the homogeneous solution for all values of r. Thus, the
boundary conditions of the system will be specified such that c1(q) = c2(q) = 0, and
then (6.55) gives the complete solution of the system.
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Figure 6.4: The absolute value of the HKR space-wavenumber spectrum of the spatial
ODE in (6.51) with γ = 0.12 + 0.05j.

Homogeneous driving force

Homogeneous random fields have second-order moments that does not depend on the
specific location of two spatial coordinates in the field, but only the spatial difference
between the coordinates. This will greatly simplify our calculations. We consider the
case where the driving force is a homogeneous random field with a spatial correlation
that decays exponentially as we consider spatial coordinates farther apart, independent
of r, MXX∗ (r, ρ) = exp(−αρ), where α ∈ R and α > 0. The driving force has a spatio-
wavenumber spectrum

RGG∗ (r, q) = SGG∗ (q) =
α

2π2
(
q2 + α2

4π2

) , (6.56)

and the spatio-wavenumber spectrum of X(r) thus is given by

RXX∗ (r, q) =
SGG∗ (q)

|D(q)|2
. (6.57)

This is a general result for homogeneous driving forces, and we note that the solution
does not depend on the spatial variable r. Thus, if the driving force is a homogeneous
random field, the output is also a homogeneous random field. The output will be mainly
concentrated on the lines q = 0 and q = ±Re{γ}. We note that this result is similar to
the result obtained for ODEs in time driven by a stationary process in Section 6.4.1.

Spatially white driving force

Next, we assume that the driving force is an inhomogeneous random field, i.e., that the
probability density of the field is different for different spatial coordinates r. Thus, the
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spatio-wavenumber spectrum will depend on the spatial variable r. To simplify our cal-
culations, we assume that any two different points in the field are uncorrelated, i.e., that
the field is spatially white. The variance of the process should decrease as we move away
from the source r = 0. To enable us to find a closed-form expression of the HKR space-
wavenumber spectrum of the output, we assume that the variance decays exponentially,
E

{
|X(r)|2

}
= exp(−2πb|r|), where b ∈ R and b > 0. The spatio-wavenumber spectrum of

the driving force is
RGG∗ (r, q) = exp(−2πb|r|), (6.58)

and it follows that

RXX∗ (r, q) =
1

16π4γ (q2 − γ2)∗

[
jb ej2π(γ|r|−qr)

b2 + [γ − sgn(r)q]2
− γe−2πb|r|

γ2 + [b− jsgn(r)q]2

]
, (6.59)

where

sgn(r) =

{
1 if r ≥ 0

−1 if r < 0.
(6.60)

The first term will decay like RHH∗ (r, q) in r, and will be centered around q = sgn(r)Re{γ},
since b is real-valued. The second term will decay like the driving force. In q, this term will
be peaked around values related to both b and γ in a non-trivial manner. Specifically, the
absolute value of the second term will have a peak at the value of q equal to the real-valued
root of the polynomial q3 + (b2 − Re{γ2}) q − bIm{γ2}.

Spatial versus time

Even if the basic definitions for random fields and random processes are very similar, these
two types of random functions need to be handled quite differently. For a random process,
it is quite natural, in fact for real-world processes necessary, that the process starts at a
given time and then evolves with time. Obviously it only evolves in one time “direction”.
However, for a random field that originates from a single point, e.g., an audio signal from a
speaker, it would be unnatural to assume that the field only propagates in one direction in
space. A speaker would typically emit sound in all directions, but with different intensity
in different directions. ODEs in time are easier to handle since the time development
starts at one time and grows in only one direction. For an ODEs in spatial coordinates,
the field will propagate in all directions, and we need to separate near-field behavior (close
to the source) from the far-field (far away from the source). As we want to suggest more
complicated random fields as driving forces, a seemingly good choice could be a field similar
to autoregressive time processes. The field originates from the source point r = 0, and
spreads in both positive and negative direction (assuming a one-dimensional problem). For
an autoregressive field, the field at the spatial coordinate r0 will be a linear combination
of the field in the, say, L spatial coordinates that are closer to the source point than r0.
However, since spatial coordinates on the negative r-axis and on the positive r-axis share
the source point, one will have correlations between negative and positive coordinates.
Already for this simple example, the spatial correlation function will be quite complicated.
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Figure 6.5: The estimates (a) 10 log10

∣∣∣R̂GG∗ [r, q)
∣∣∣ and (b) 10 log10

∣∣∣R̂XX∗ [r, q)
∣∣∣ averaged

over K = 200 realizations for the spatial ODE driven by a non-white inhomogeneous
driving force.

This is only a small example of the problems one encounters when working with spatial
problems as opposed to temporal problems.

Numerical example with inhomogeneous driving force

We have seen how we can simplify the calculations and find closed-form expressions of
the spatio-wavenumber spectrum of X(r) by assuming that the driving force is either
homogeneous or spatially white. Since even finding the spatio-wavenumber spectrum of
an inhomogeneous and colored G(r) can be complicated, we will consider this case with
numerical methods. Thus, all quantities are now functions of the discrete spatial coordinate
r. The driving force is given as an autoregressive random field with additive noise of time-
varying variance,

G[r] =






1 r = 0
min(|r|,3)∑

m=1
θmG[r − sgn(r)m] + ε[r] r &= 0.

(6.61)

We let r = −N/2, . . . , N/2 − 1, N = 512, θ =
[
0.5 −0.3 0.1

]T , γ = 0.12 + 0.05j
and σ2

ε [r] = 0.05 exp(−0.03|r|). For the HKR space-wavenumber spectrum estimator, we
choose NF = 50, NT = 20, vF [m] is a Hanning window, and vT [µ] and vB[m] are zero
order DPSSs with NWT = 6 and NWB = 3. The HKR space-wavenumber spectrum of
the impulse response is shown in Figure 6.5(a), while Figure 6.5 shows the estimated HKR
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space-wavenumber spectra of G[r] and X[r]. In spatial coordinates, |RHH∗ [r, q)| decays
quickly as |r| increases, and it is concentrated around the wavenumbers q = ±0.12, which
relates to our choice of γ. We see that the HKR space-wavenumber spectrum of the driving
force also decays as |r| increases. The spectrum has contributions concentrated mostly at
|q| ≤ 0.2. For the output X[r], the estimated HKR space-wavenumber spectrum shows
how the system h[r] has altered the input G[r]. The spectrum still has contributions
concentrated mostly at |q| ≤ 0.2, but now with maxima at q = ±0.12 due to the impulse
response. Also note that the spectrum is more spread out in r for these two wavenumbers.

6.5 Remarks
We have presented how the HKR-spectrum and the time-frequency domain can be used
for the analysis of stochastic differential equations. We presented both theoretical results,
and numerical examples for several of the systems that were considered theoretically. We
considered the simple but interesting examples of systems with a nonstationary driving
force consisting of a stationary process with limited time support, and an ODE where one
coefficient was a random variable. The pulse response and spatial differential equations ex-
amples were inspired by the field of petroleum exploration where pulses of electromagnetic
fields are used to analyze the earth below the surface [Nekut and Spies, 1989], where the
electromagnetic fields are governed by differential equations. The theory presented here
for stochastic differential equations involving harmonizable random fields may be used to
improve methods of petroleum exploration. Since differential equations are used to model
many real-world systems, the theory will have many other potential applications as well.
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Chapter 7

Summary

We have considered harmonizable random processes, and more specifically time-frequency
representation of second-order moments of this class of processes. The concept of a har-
monizable process and its second-order moments was presented in Chapter 2, both in
continuous and discrete time. We saw that the second-order moments of a real-valued
process are completely determined by the Hermitian dual-time correlation, the Hermitian
dual-frequency spectrum, the Hermitian Kirkwood-Rihaczek time-frequency spectrum and
the Hermitian ambiguity function. A complex-valued process has four corresponding com-
plementary quantities as well, and we need both one Hermitian and one complementary
quantity to completely describe the second-order moments of the process. We briefly re-
viewed existing methods for estimating the dual-time correlations and the dual-frequency
spectra. In order to simulate from complex-valued improper processes, we considered an
existing method aimed at simulating from stationary improper processes, and we proposed
an extension of this method that allows us to simulate from nonstationary improper pro-
cesses. The theory of harmonizable random fields was also introduced.

In Chapter 3, we proposed estimators of the Kirkwood-Rihaczek time-frequency spectra
based on the Hilbert space inner product formulation of the spectra. The estimators was
shown to be theoretically equivalent to a known estimator, but our implementation is less
computational intensive. We discussed how to chose the parameters of the estimator to
obtain good resolution, to reduce cross-terms and to ensure the correct normalization in
the estimate. The estimators were shown to have an expected value that was a smoothed
version of the true spectrum. We implemented the estimators and tried them out on sim-
ulated improper data and on real-world real-valued data sets. All the numerical examples
showed that our estimators work well.

The estimation of the Hermitian ambiguity function was considered in Chapter 4. The
concept of underspread processes was introduced, and we examined the distributional prop-
erties of the empirical ambiguity function. Based on these distribution results, we proposed
a method of thresholding the empirical ambiguity function, and we proposed to use the
results of this thresholding as an estimate of the Hermitian ambiguity function. Numerical
examples showed that the thresholding reduced the mean square error of the estimator. At
the same time thresholding did not increase the support in the ambiguity domain, which
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is what determines if a process is underspread or not.
In Chapter 5 we proposed objective and dimensionless measures of a process’ behavior

in the time-frequency and dual-frequency domain, these measures were denote spectral
coherences. We obtained results consistent with the standard spectral coherences of non-
stationary processes through a linear estimation scheme. Extended spectral coherence
measures was proposed based on a widely linear estimation scheme, and these spectral
coherence measures were shown to utilize the information contained in both the Hermitian
and complementary quantities in one quantity.

Finally, we considered stochastic differential equations in Chapter 6. The Hermitian
Kirkwood-Rihaczek time-frequency spectrum was used in order to analyze the system de-
termined by the stochastic differential equation. By considering the second-order moments
in the time-frequency domain rather than the equation itself, we avoided the problems
related to stochastic integration. We discussed how to handle differential equations where
the driving force was random, and differential equations driven by a deterministic force
where at least one of the system coefficients were random. We transformed the stochastic
differential equation to an ordinary differential equation in the time-frequency domain, and
solved this equation by the Fourier transform technique. The time-frequency spectrum of
the output was found to be a convolution in time between the time-frequency spectrum
of the system and the time-frequency spectrum of the driving force. We also considered
partial differential equations of harmonizable random fields, which yielded a similar solu-
tion where the time-frequency space-wavenumber spectrum of the output was found as the
two-dimensional convolution in time and spatial coordinate of the time-frequency space-
wavenumber spectrum of the system and the time-frequency space-wavenumber spectrum
of the driving force. Analytical and numerical examples were provided that further illumi-
nated this theory.
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