
Faculty of Science and Technology

RS - Seismic Processing and Web-Visualisation
Simplifying visualization of Seismic Data—
Tom PedersenMaster thesis in Computer ScienceMay 2014

Abstract
The University of Tromsø - The Arctic University of Norway (uit) is conduct-
ing regular marine seismic acquisition cruises for scientific and educational
purposes in the polar regions of the Norwegian Sea and beyond. Leading
experts in the field currently employed by the Department of Geology at uit,
have found the current seismic visualization tools lacking in several fields.
The available seismic software provides a multitude of settings and filters to
improve visualization, but has limitations when it comes to user friendliness,
and lacks or has shortcomings for data interaction. Because of these limita-
tions the scientists are still reverting back to using thermal paper plots for
seismic data interaction. The thermal printers in the possession of uit are old,
bulky and prone to mechanical failure, and are expensive to replace.

The work done in this thesis attempts to address the needs of the Depart-
ment of Geology, and as a response to these needs presents the system RS.
A system to process, visualize and interact with both "live" and previously
recorded seismic 2D data. RS provides processing and filtering of seismic
data, and presents this data in a web based user interface, using an Open
Source JavaScript Tile viewer to visualize the seismic data. RS also consists of
among other: a Go1 two tiered backend system, a custom built tile maker, web
sockets for bidirectional communication and NoSQL database storage.

The goal of the system is to provide a new visualization tool to replace or
supplement current visualization platforms. RS does this by presenting a
visualization client which can run on any device with a modern browser,
giving every authorized person on a seismic vessel the ability to view and
interact with seismic data.

To present seismic plots to the end user, RS uses binary seismic data acquired
by existing seismic software and hardware. This data is a combination of
the seismic data and a variety of metadata from sensors aboard the vessel.
Data is filtered for noise, and cached before images are created. These images
are served by a web server, and made available to the end user through his

1. http://golang.org/

i

ii Abstract

preferred platform.

Acknowledgements
I would like to thank my Advisor John Markus Bjørndalen for his help and
guidance throughout the year. In addition I would like to thank the Depart-
ment of Geology, and especially Bjørn Runar Olsen and Anoop Mohanan Nair
for sharing their knowledge of the field Reflection Seismology, and providing
seismic data for testing and evaluation purposes. For helping with setting
up the system on the FF Helmer Hansen, and also sharing his knowledge, I
would like to extend my gratitude to Ronald Berntsen.

I would also like to thank all staff and students at the Department of Science
and Technology for providing a great educational environment through five
amazing years.

A special thank you goes to Wendy van Dreunen for first supporting me
through my bachelor degree, and then for supporting me to start on a master
while I still was motivated. I would also like to thank her for her extreme pa-
tience throughout these years and especially during her pregnancy with our
first child, despise my many late nights throughout the last 9 months.

iii

Contents
Abstract i

Acknowledgements iii

List of Figures vii

List of Tables ix

List of Abbreviations xi

1 Introduction 1
1.1 Marine Seismic Acquisition Process 2
1.2 Current State of Visualization 4
1.3 Contributions . 6
1.4 Conclusion . 7

2 RS 9
2.1 RS overview . 9

3 Architecture 15
3.1 Arcitecture Overview . 15

4 Design 17
4.1 Data collector . 17

4.1.1 Data Acquisition . 18
4.2 Backend . 18

4.2.1 Data Conversion . 18
4.2.2 Data Filtering . 20
4.2.3 Data Caching . 20
4.2.4 Metadata Storage . 21
4.2.5 Tiles . 21
4.2.6 Storage . 22

4.3 Front End . 24
4.3.1 Websockets . 24

v

vi CONTENTS

4.3.2 Web Server . 25
4.3.3 Client . 26

5 Implementation 29
5.1 Backend . 29

5.1.1 Data Conversion . 29
5.2 Data Caching and Tiling . 30

5.2.1 Prototype . 31
5.2.2 In-memory Version . 31

5.3 Front End . 38
5.3.1 CSS . 38
5.3.2 Websocket . 38

5.4 Web Client . 39

6 Evaluation 41
6.1 Evaluation Environment . 43
6.2 Data Processing Runtime . 43

6.2.1 All Images Ready . 46
6.2.2 One Image Ready . 49

6.3 Round-trip Latency . 51
6.4 Image Quality . 53
6.5 Evaluation by Expert . 56
6.6 On-site Evaluation . 56

7 Related Work 59

8 Concluding Remarks 61

9 Future Work 63
9.1 RS Format . 63
9.2 Delph Parsing . 63
9.3 Web Client . 64

9.3.1 Image Overlays . 64
9.3.2 Improved Websocket Updates 64

9.4 Filtering . 64
9.4.1 Improved Filtering . 64
9.4.2 User Defined Filtering 65

9.5 Data Acquisition . 65
9.6 Use Analog Signal . 66
9.7 Append Module . 66
9.8 Export to jpg/png . 67
9.9 Improved handling of Trace Depth Change 67

References 69

List of Figures
1.1 FF Helmer Hansen, UIT research vessel 2
1.2 Reflection Seismology . 3
1.3 Seismic Trace from RS . 4
1.4 Thermal plotter . 5
1.5 Screenshot of Edgetech software 5
1.6 Thermal Paper Roll . 6

2.1 List of Available Seismic Shot Gathers 10
2.2 RS on Desktop . 11
2.3 RS on Android . 11
2.4 RS on Iphone . 12
2.5 Screenshot of Annotation in RS 13
2.6 Screenshot Manage Feature in RS 13

3.1 RS General Architecture . 16

4.1 RS Backend Design . 19
4.2 RS Tile Zoom Structure . 22
4.3 RS File Structure . 23
4.4 RS Front End . 25

5.1 Pixel Data Structure in Slice 33
5.2 Median Filter . 35
5.3 Average Interpolation . 37

6.1 Runtime Backend All Tiles . 45
6.2 MB/S . 46
6.3 Backend Total Memory Usage 47
6.4 Runtime Backend One Image 49
6.5 Memory Usage 1 Image Created 50
6.6 High Pass Filter Comparison 54
6.7 Additional FIlters Comparison 55
6.8 Thermal Plot, Delph . 55

vii

List of Tables
4.1 RS Websocket Interface . 25
4.2 RS Rest Interface . 26

6.1 Consumer Expectation of Delivery Speed 42
6.2 Runtime Backend All Tiles . 44
6.3 Edgetech Runtime Speed . 45
6.4 Memory Utilization Image Creator all Tiles 47
6.5 Runtime Backend one Tile . 48
6.6 Memory Utilization Create one Tile 50
6.7 Round-trip Latency Seismic Map Request 52

ix

List of Abbreviations
bson Binary JavaScript Object Notation

css Cascading Style Sheets

gc Garbage Collector

html HyperText Markup Language

io Input/Output

json JavaScript Object Notation

mb megabytes

ms milliseconds

rest Representional state transfer

tms Tile Map Service specification

tvg Time Variant Gain

uit The University of Tromsø - The Arctic University of Norway

xi

1
Introduction
Seismic acquisition is conducted daily by research organizations and various
public and private companies. Seismic is a big money industry, responsible for
increasing the odds of finding natural gas and oil, by providing a platform for
increasing the knowledge of the location deposits of such natural resources. In
addition studies are being conducted into among other: earthquakes, tsunami
predictions and the composition of the earth and other bodily elements.

While seismology is the study of earthquakes and the natural seismic waves
that originate from such events, reflection seismology is part of the branch
of controlled source seismology. This thesis deals with data from marine
reflection seismology acquisitions done by The University of Tromsø - The
Arctic University of Norway (uit). The seismic data is used for, among other
things, scientific studies that include the study of the sediments layers below
the seabed, and studies into the presence of gasses.

At present time uit employs three scientific vessels for scientific exploration
in the Arctic region, but for seismic surveys the FF Helmer Hansen is mostly
used. This vessel is the property of uit and conducts research 300 days a
year1. The vessel is used by uit, the University of Bergen and the University
Center of Svalbard. The vessel is also available for charter by international
research groups.

1. http://uit.no/nyheter/

1

2 CHAPTER 1 INTRODUCTION

Figure 1.1: FF Helmer Hansen, UIT research vessel

Acquisition of seismic data can be done with various seismic equipment,which
in turn might come with its own software and proprietary formats. This
thesis presents RS, a seismic processing and viewing platform, which aims
to provide scientist’s a single platform to visualize and interact with seismic
data. The system allows for multiple data formats to be converted into one,
and displayed via a web-interface. RS runs in the background, and does not
interfere with normal operations. A system crash in RS will not affect ongoing
seismic surveys.

During the creation of RS, real seismic data from seismic expeditions was
provided for evaluation purposes. A further evaluation was conducted aboard
the FF Helmer Hansen in April 2014, where RS was able to visualize seismic
data collected during a seismic cruise.

1.1 Marine Seismic Acquisition Process
The process of acquiring the seismic imagery starts with the source of the
seismic wave. This source could consist of a number of available technologies,
including: air guns, sparker, and boomer sources. These have a different way

1.1 MARINE SEISMIC ACQUISITION PROCESS 3

Figure 1.2: Reflection Seismology (http://www.soes.soton.ac.uk/)

of generating the seismic waves. These sources are towed behind the seismic
vessel, and shoots acoustic seismic waves downwards into the seabed. On
a separate line towed behind the vessel, further behind the seismic source,
is a string of hydroponic sensors. Each shot or ping from the source and
subsequent collection of signal from the sensor group, is called a trace. A
series of traces form a shot gather. An example shot gather can be seen in
figure 1.3. This data was created and visualized using RS.

The energy formarine seismology consists of P-waves or Primary waves. These
waves are able to travel through any matter, even liquid. These waves will
travel through the water and hit the seabed, compressing thematerial it passes
through. At the interface between the seabed and the sea, some of the energy
will be reflected back up to the sensors. The rest of the energy will be refracted
downwards in an angle given by the density change of the two layers. This
refraction can be determined using Snell’s law [8]. The refracted energy will
continue in the same angle until it again hits the interface between two layers
with different density, here a part of the energy will again be reflected towards
the sensors, and the rest refracted.

The change in density between layers is what can be seen on the final seismic
image, darker spots indicates a bigger change in density then lighter spots.
The seabed is such a dark spot which indicates that there is a substantial

4 CHAPTER 1 INTRODUCTION

Figure 1.3: Shows a seismic trace from evaluation expedition April 2014, visualized
with RS

difference in density between the seabed and the liquid of the ocean.

1.2 Current State of Visualization
To understand the need for a system like RS, a look into the current state of
seismic visualization is required. At present time there are two ways seismic
data can be visualized; thermal paper plot and the software provided by the
seismic system’s manufacturer. A seismic vessel has a thermal printer located
in the operational room which can print seismic traces via software available
on the vessel. These can be printed live, a line at a time, representing a
trace. The printers can also print data from stored seismic data. The plotters
currently in use at uit are old technology from the seventies and eighties, and
are big and bulky. Even so they produce nice plots of the collected data in the
form of thermal paper rolls half a meter wide and many meters long.

The software provided by the manufacturers can also display live seismic
data. The analog signal arriving in from the seismic survey is digitalized and
displayed on a screen on the seismic vessel. This data will be inserted into a
proprietary format which may or may not be well documented. One of the
problems with these programs is their inability to go back in time, not only
during the time of seismic acquisition, but also during playback of previously
collected seismic data. During a live feed or during playback, data will flow
from right to left. When new data appears it will push the data on the left side
out of the screen’s boundary, without any way to go back. The only way to see
data already gone from the screen would be to restart the playback from the

1.2 CURRENT STATE OF VISUALIZATION 5

Figure 1.4: Thermal plotter (http://delta.geo.uib.no/)

Figure 1.5: Screenshot of Edgetech software

beginning of the file, or in the case of live visualization, to make the program
end the file and let it insert newly collected data into a new file. Even so you
still have the issue of playback being quirky and not very interactive.

The limitations of these softwares are one of the main reasons for continuous
use of thermal plotters. Because of the size of the thermal paper rolls, the
scientists will take a roll of seismic paper and roll it out on a large table or
on the floor and work on it; making annotations and discussing over this roll
of paper. Although this might be adequate, this must be something which
should be done equally good or better on a computer. The image in figure 1.6
illustrates this perfectly.

The limitations of the current softwares and the aging plotters cause the
department of Geology to be interesting in acquiring new software for vi-
sualizing their seismic data. They wanted interactive software to visualize
and interact with both live and old seismic data. RS provides this and more.
It provides an interactive tool for visualizing seismic data; it does so from
a web-based application available to any personal device, anywhere on the

6 CHAPTER 1 INTRODUCTION

Figure 1.6: A roll of Thermal paper, rolled out on the floor with a IPad on it for
scale(The roll was to long to roll out completely)

seismic vessel.

1.3 Contributions
This master thesis contributes by:

1. Providing scientists and students a new tool for visualizing and inter-
acting with seismic data.

2. Using web technology via a tile viewer to present the seismic data is
believed to be a novel approach. It provides the end user the ability
to analyse and interact with the seismic data with any modern device
with a modern browser; this without storing large binary files on his
personal device.

3. Demonstration that RS can perform as a processing and visualization
tool by evaluating the system by measuring: processing latency and
round trip latency. An on-site evaluation is also performed, and an eval-
uation by a leading expert in the field of seismic acquisition.

1.4 CONCLUSION 7

1.4 Conclusion
RS provides the scientists with a fast seismic processing and visualization
tool. It adds another visualization platform to view seismic data, which is
both responsive and easy to interact with.

During evaluation of RS, it was found that it can process 5-10 minutes worth
of seismic data into viewable content in just above 4 seconds. This content
can be visualized in less than a 1.1 seconds from request time, on both per-
sonal computers and personal smart phones. The content presented has been
judged as being of good quality from a leading expert in the field, comparable
in image quality compared the existing visualization tools. The quality could
still be improved by implementing more advanced seismic filters.

RS provides a platform which can be built upon to create an even better tool
for processing, visualizing, interacting with and analysing seismic data.

2
RS
2.1 RS overview
Before delving into the architecture, design and implementation of RS, this
chapter will give a short overview of the RS user interface, and the function-
alities this interface provides. The main functionality revolves around the
visualization of shot gathers. This seismic data all originates from proprietary
binary formats, but has been parsed, restructured and processed in RS into
single format that can be visualized. In the current build the user is presented
with a list of shot gathers that in the applications are named maps. This is a
list of all available shot gathers currently stored on RS. This list can be seen
in image 2.1.

9

10 CHAPTER 2 RS

Figure 2.1: List of Available Seismic Shot Gathers

From this list the user can chose any available shot gathers, and will be pre-
sented with the actual seismic data. This is data represented as images, which
is stored on a server. No data is stored or processed on the client, although
the image viewer has built in caching of images. An image of the main user
window can be seen in figures 2.2, 2.3 and 2.4. They show screenshots both
from a desktop computer and two smartphones.

2.1 RS OVERVIEW 11

Figure 2.2: RS on Desktop

Figure 2.3: RS on Android

12 CHAPTER 2 RS

Figure 2.4: RS on Iphone

Here the user sees tiles of images that is created and stored to allow for
zooming in pre-defined levels. Interaction with RS is very smooth on modern
devices, but older smartphones and pads might lack the processing power to
properly interact with RS. This is due to the JavaScript library used, Leaflet1.
Leaflet does some processing on the client side that might cause the user
experience on older devices to be less than optimal.

From the main interaction point, the user can set markers by double click or
double tap, or with the use of a right click or long hold click via a context menu.
The user can choose to annotate the marker via the same context menu. The
context menu is visible in figure 2.2. Creation of markers are an interactive
process, any marker put on the seismic shot gather will instantaneously be
visible to all users with this shot gather open. Such a marker along with its
annotation is visible in figure 2.5.

1. http://leafletjs.com/

2.1 RS OVERVIEW 13

Figure 2.5: Screenshot of Annotation in RS

If a user wants to have a full overview of annotations made or make modifi-
cations on the shot gather metadata, he can used the Manage Map feature.
This feature presents the user with some managing options and all markers
and annotations on the seismic data in question. The manage feature can be
seen in figure 2.6

Figure 2.6: Screenshot Manage Feature in RS

3
Architecture
RS is a client-server system for retrieving and processing seismic data from ex-
isting seismic formats. Processed data is made available for visualization and
interaction through commodity devices. Figure 3.1 illustrates the architecture
on a high abstraction level. This chapter explains the idea behind the different
system layers and their place in the overall system architecture.

3.1 Arcitecture Overview
The system can be split into four components: a data collector1, backend,
front-end and clients. The data collector is responsible for collecting input
files from various sources, and makes it available to RS. The backend formats
the heterogeneous data into an appropriate format, here data is filtered and
made available as images and metadata to the front end. This is done via the
file system. The client requests content made available from the Front End
server.

The various components are split up into separate processes to make it easy
to swap out components without rewriting a lot of code. Every separate com-
ponent except from the client, works independently. The client needs data
from the Front End to work properly. The data collector should be able to

1. Note that the data collector isn’t currently implemented

15

16 CHAPTER 3 ARCHITECTURE

Seismic Data

Backend

Front End

Browser 1 Browser 2 Browser n

Data Collector

Figure 3.1: RS general architecture

run separately, even if the backend crashes, collecting data that later can be
used by the Backend when it again is operational. The backend can process
and create data for visualization without the Front End, as the Front End is
independent from the Back End. Separating these components also makes
the system more robust as a crash in a single process system would crash
everything.

The architecture would not scale up to the millions, but is more than good
enough for the intended usage. It was thought that a more complex archi-
tecture would only complicate the system without adding anything valuable.
The system is intended for a seismic vessel with a relative tiny crew, and a rel-
atively small contingent of scientists and students who both are the intended
target audience.

4
Design
This chapter goes into more details than the architecture presented in the
previous chapter. It delves deeper into the Architectural components and
explains the interaction between and within these components. Presenting
the design built upon the architecture.

4.1 Data collector
RS uses binary data created from existing software as data input. This data
comes in various formats. Currently RS support seismic data in 2 formats;
Elics’ Delph format1 and Edgetech’s JSF format2.

The seismic data originates from analog signals, and are converted to digi-
tal by Analog-to-digital converters. This creation of binary data is done on
separate machines, from now on called the source machines.

Together with the seismic data, these files also contain relevant metadata
such as: time of day, geographic position, speed of the vessel, pitch and roll
of the vessel. Which metadata types are available is dependent on the for-
mat. Edgetech provides rich metadata for each trace, while Delph has lim-

1. No online documentation
2. http://www.edgetech.com/docs/

17

18 CHAPTER 4 DESIGN

ited metadata available, and zero documentation on how this metadata is
structured within the binary data. RS metadata is thus not available for this
format.

As RS currently depends on these pre-created binary files to produce visual-
izations of the seismic data, it cannot provide a live feed such as the source
programs can. How this can be achieved is discussed in the future work chap-
ter, chapter 9.

4.1.1 Data Acquisition
The softwares responsible for creating the binary input files are located on
the source machines, running on the same closed network as RS. These files
are accessible to RS via remote access to folders on the source machines. The
current version of RS does not support automatic transfer of files, but it needs
manual copy from the source machine. It is envisioned that RS will support
either a user configuration of a source folder, or force the user of source
software to store new seismic data in a pre-defined folder on the source
machine. Both scenarios are possible, but also have drawbacks. A third option
is to go around the source softwares and formats and used data directly from
the analog source. This will be discussed in chapter 9.

These source softwares allow for configuration of the output size of the seismic
data, effectively ending a seismic file when it reaches a given size limit. From
this point the new seismic data will be written to a new file. It is presumed
that future versions of a source software will allow for this configuration. By
limiting the size of the binary data files, these will be available sooner for
processing on RS. RS needs a steady input of these binary files to simulate "live
visualization, but is designed to handle data seismic data of any size.

4.2 Backend
Figure 4.1 shows the inner design of the backend, together with its connection
to the Data collector and Front End.

4.2.1 Data Conversion
There is no limit on how many formats RS can support, and new formats that
can be supported in the future. To be supported, a future binary file format
needs to be parsed with a custom parser that alters this data into a uniform

4.2 BACKEND 19

RS Format

Edgetech

Delph

New
Format

Filtering

CachingTiler

Data collector

Web Server/ Front End

RS Format Filtering

CachingTiler

Data
base

Web Server/ Front End

RS Format Filtering

CachingTiler

FS

Web Server/ Front End

Custum parser/
Translator

Not Implemented

Figure 4.1: RS Backend Design

format usable to RS. This is to avoid working with many formats during the
seismic processing and creation of visualizations.

Metadata from the source formats are stored separately in a database. The

20 CHAPTER 4 DESIGN

reasoning for this design choice is to accommodate fast and reliable storage on
creation, and fast retrieval when metadata is requested from the web clients.
A future planned RS format will also contain this metadata to work in RS
without any dependencies to the source formats.

In a future version a new binary format will is presented, RS format. This
format will be comprised of both metadata and the actual uniformed seismic
data. The RS format will be stored to disk, for the possibility to redo parts of or
the entire seismic shot gather with different filters. The ability to apply new or
a different set of filters to the dataset can uncover new and interesting details
that the default filter might not. The default filter might hide interesting
features that might otherwise be present with different filters. This will be
discussed more in chapter 9.

4.2.2 Data Filtering
Data from a seismic acquisition contains, not only the representation of the
reflections, but also noise. Noise in the signal can be caused by a number of
either human contributed or natural sources. Surface waves are a common
source of noise; these waves can also tug seismic equipment due to the seismic
vessel having to change speed. Other noise factors might be: the swell created
by the seismic vessel itself, current, faulty equipment or nearby seismic activity.
No matter the cause, removing noise to give a better noise to signal ratio is
crucial for improving the readability of seismic data.

The data is exposed to a series of filters. Each filter implements an algorithm
for removing noise originating from a specific source. This is a standard filter
series, that might be modified by user in a separate configuration file. The
filters that is used will be discussed in section 5.2.2.

4.2.3 Data Caching
As data flows in via user configured sizes, ranging from small files containing
a few traces, to GB’s of data from hours of data collection, uniform and filtered
seismic data is cached before being ready for visualization. The system needs
a certain amount of traces to start creating the visualization, and will cache
up the incoming data in memory until it has enough. The caching will be
explained thoroughly in the next chapter, but it has to be mentioned that
the cache is the temporary memory storage from which the image tiles are
created.

4.2 BACKEND 21

4.2.4 Metadata Storage
Metadata is stored in a database, ready to be fetched when the user requests
it. The metadata is inserted into the database while parsing the binary input
files. The metadata for a separate trace is stored as documents in MongoDB3.
These documents are stored in a single collection of documents. RS currently
supports the following metadata to be visualized.

• Longitude and Latitude

• Compass Heading

• Pulse Frequency (start, end)

• Sweep Length

• Depth

• Pitch and Roll

• Time (year, day, hours, min, sec)

• Course

• Speed

• Sampling (interval, frequency)

Again this is only true for Edgetech binary files, but some of these or others
could be valid for Delph binary files at a later stage in the development process.
MongoDB collections are schema less, so a different format could support
alternative or additional metadata types.

4.2.5 Tiles
Data is visualized as tiles to the end user. The tiles are small images, and
combining these images forms a larger image. This thesis will from now on
present these images as tiles as it correctly describes the images. RS conforms
to the method used by Tile Map Service specification (tms) 4 to split a larger
image up into a pyramid of images, enabling different zoom levels to be

3. http://www.mongodb.org/
4. http://wiki.openstreetmap.org/wiki/TMS

22 CHAPTER 4 DESIGN

visualized to the end user. The tiles can be seen in figure 4.2. A tile is 256
x 256 pixels. A tile from a zoom level below is comprised of 4 tiles merged
into one, while still being the same total size, 256 x 256 pixels. This pattern
is followed all the way until zoom level 1, which is the last zoom level.

512 pixels 256 pixels 128 pixels

Zoom lvl 6 Zoom lvl 5 Zoom lvl 4

5
1

2
 p

ix
el

s

Figure 4.2: RS tile zoom structure, images taken from RS. Image on the left shows
4 tiles, this is needed to make 1 tile on zoom level 5. This data will be
part 1/4 of the tile on zoom level 4.

The tile creator collects data from the cache and creates data to be visualized
by inserting them into the file system. The tile creator creates tiles for each
zoom level needed to interactively visualize the data. The Data is resampled
and re-cached for use on different zoom levels. How and why this is done
will be discussed extensively in the next chapter.

4.2.6 StorageFile System Storage
RS stores the following data on the servers file system: tiles and appended
version of original files. The tiles are stored in the pyramid form mention
mentioned earlier and is visible in figure 4.3.

Database
Besides storing the actual tiles in the file system, two types of metadata
are stored in separate database tables. This is the metadata representing
the complete shot gather, and the metadata that correlates to each trace.
The database is a single MongoDB instance running in a non-replicated and
non-shared environment. MongoDB is a NoSQL document store that stores

4.2 BACKEND 23

Root

1

4

5

6

0

1

Zoom Levels

0.png

1.png

2.png

Column Nr

Figure 4.3: RS file structure for tiles

data or documents as Binary JavaScript Object Notation (bson). For better
availability and durability the database should be replicated and be located

24 CHAPTER 4 DESIGN

on separate machines, but at this stage of development the mongod5 instance
runs on the same machine as the server. To support faster reads, MongoDB
supports indexes. Every document is automatically indexed by its id, but
further indexes are created to support faster reads for the most common read
patterns. Creating indexes will harm the write speed but not enough to ignore
their power. This increase in insertion time is due to the fact that every entry
has to be added to a collection, and also added to an index. A drawback in
this design is complicating the export of RS data from the system, as tables
from MongoDB would have to be exported separately for data to work as
intended on a separate server.

4.3 Front End
The Front End server is located on the same machine as the backend. Alter-
natively the front end could have resided on a separate machine. It is not
connected to the internet, but is connected to the vessels local network. This
is a closed network. It can serve multiple browser clients that also are con-
nected to this network. This included any mobile device or personal computer
with a modern browser, which supports JavaScript and websockets6.

4.3.1 Websockets
Websocket is a light weight, Bi-direction and full duplex communication chan-
nel over TCP. It is a relative new communication technology, created under the
HTML5 initiative. It is considered to be the next evolutionary step after Ajax7.
It is a technology which is not created to replace Representional state transfer
(rest), but can work alongside rest. Websocket is initialized by the client,
but after initialization both client and server can communicate over a single
bi-directional and full duplex channel. It has an open connection after initial
http handshake (until timeout or closed by either part), and have a minimum
of 2 bytes header size after initial handshake, this means that websockets is
light weight and fast.

There are no pre-defined structures on which messages should be built. Any
communication structure needs to be defined by the developer. RS has a
websocket message structure based on CRUD8. This structure is shown in

5. http://docs.mongodb.org/manual/reference/program/mongod/
6. http://www.websocket.org/
7. https://developer.mozilla.org/en-US/docs/AJAX/
8. http://docs.mongodb.org/manual/crud/

4.3 FRONT END 25

Web Server

BackendDatabase FS

HTML, CSS, JS

Figure 4.4: RS Front End

table 4.1.

4.3.2 Web Server
The server serving the clients is a multi-threaded web server. It handles re-
quests for HyperText Markup Language (html), tiles, JavaScript and Cascad-
ing Style Sheets (css). The system uses the websocket solution for handling
requests which otherwise could be handled by a rest interface. These are
POST, PUT, and DELETE requests. The reason behind this design choice is to

Operation Type Data Description

CREATE coord x, y, comment For given shot gather, and updates all
clients with shot gather open

READ coords - Returns all markers to client
READ metadata Trace number Returns metadata for trace
UPDATE imageName New name Updates and returns new value
UPDATE coord x, y, comment Updates a comment on coordinate
DELETE coord x, y Deletes a marker

Table 4.1: RS Websocket Interface

26 CHAPTER 4 DESIGN

Resource Description

GET / Returns a list of all seismic maps available,
in future this will be a front-page for users

GET /maps Returns a list of all seismic maps available
GET /maps/:id Returns seismic map with unique id(bson id string)
GET /maps/:id/manage Returns page to manage a seismic map,

information includes tags and comments etc.
POST /search/querya Return list of maps based on the query
a An exception to keeping Post requests on the websocket is the search request

Table 4.2: RS Rest Interface

create dynamic web pages which can be altered by interaction by the current
user, another user, or the server. This can now be done without having to
create a new connection for every request, thereby saving time on initializa-
tion.

The server has no login mechanism. This is by design, and is based on the
specification given by the Department of Geology. Any user should be able to
do anything, and everyone on the vessel with access to the secure network, is
considered trusted. It is feasible that a future version of RS would run on land.
This would allow authorized personnel on land to view data collected from
various vessels over a long period of time. This would possible require a login
mechanism, but the login could be to access the network, not RS itself. Even
so, when dealing with sensitive data it would be prudent to have additional
security mechanisms in place.

The webpages are requested through a restful interface, where the web server
handles requests on a pre-defined port. This interface can be seen in table
4.2.

4.3.3 Client
The end user interacts with RS via the web application. The main content of
the client is made up of html, JavaScript and css, which is served from the
server. For static content the client connects via the restful interface, but for
potential dynamic content the clients connects via the websocket. The client
connects to the server via the websocket and is connected to it as long as he
stays on content related to a specific seismic map. Note the use of the term
"map", this will be the term used for the shot gather when dealing with RS
visualization.

4.3 FRONT END 27

Creating the RS client as a web application, automatic creates cross platform
compatibility. It is now available on any operating system that supports a
modern browser. Any modern device which has some processing power can
use RS as intended.

Leaflet
For visualization of the seismic data the choice fell on the JavaScript library
Leaflet9. Leaflet is an open source tile viewer, which can be compared to
among others: Google’s Google Map10, Openlayers11 and Mapbox12. It is de-
signed for interactive maps with an emphasis on quickly allowing creation
of mobile friendly custom maps with simplicity, performance and usability in
mind. In can for instance be used with the maps provided by openstreetmap13.
Withmaps in mind, Leaflet supports; amount other, georeferencing, tile layers,
markers and overlays.

Even with the design emphasis being on actual maps, Leaflet can be used
to visualize non map images. To use Leaflet as a zoomable image viewer it
is required to present the image as tiles, small images representing a whole
image, and present these tiles in the pyramid structure shown previously in
figure 4.3.

9. http://leafletjs.com/
10. https://developers.google.com/maps
11. http://openlayers.org/
12. https://www.mapbox.com/
13. http://www.openstreetmap.org/

5
Implementation
This chapter delves further into the details of the components presented in
chapter 3 and was further explained in chapter 4. Implementation details for
each component are presented, important algorithms explained, and some
implementation choices discussed.

5.1 Backend5.1.1 Data ConversionEdgetech
The Edgetech binary file is a set of data messages. Each message begins with
a header of 16 bytes. This header contains information like message type and
message size. RS uses the messages with message type 0x80, which contains
the actual seismic data. These messages start with a metadata header of
240 bytes, which forms the basis for RS’s metadata. The rest of the message,
message size - 240 bytes, are the seismic data. This seismic data consists of 2
parts, a real and an imaginary part.

RS stores part of the metadata in the MongoDB database, it currently uses 34
bytes of the original 240 bytes. The real and imaginary part is converted to a
complex trace[12]. Each pixel value keeps the original 16 byte value.

The actual seismic data from the Edgetech is converted into the uniform

29

30 CHAPTER 5 IMPLEMENTATION

format and made available for further processing.

Elics Delph
The data collected from the Delph system consists of 2 files. One file that shows
similar characteristics as Edgetech’s binary format, as it provides metadata
and then the trace data in a series of messages. The second file contains pure
metadata. It provides information about the first file, and user settings.

Currently there are little metadata from the Delph format that can be used by
RS. The binary Delph format presented has no known metadata specification;
beyond than that it contains some positional and time data.

The actual seismic data is in a compressed format. Each colour value that can
represent a pixel is stored as a nibble. This compressed storage prevents exact
representation of the Delph format on RS. More on this subject is discussed
in chapter 9.

The parser extracts the necessary data to from the binary file and inserts it
into the same uniform format as with Edgetech, 16 bits per pixel value.

5.2 Data Caching and Tiling
The tile creation process was implemented in two versions. Version one was
a prototype, which was implemented using Go1 and Python2. It created a
whole image of all the seismic input data from a single file. This version
scaled poorly, and was quickly discarded. One of the main motivations for
scratching this version was the false belief that the Department of Geology
was without software that could visualize live seismic data. This meant that
the tiling needed to be done quickly, to accommodate this "live" visualization.
This belief was due to miscommunication, but the result was a much better
and faster implementation.

The second implementation was a fast, in-memory scheme that dealt with
caching the data for each zoom level, and used these in-memory data caches
to create images for each zoom level. This implementation has some issues
when it comes to excessive memory usage, both in total memory use and peek
memory use. A little more about this will follow in the next chapter, where

1. http://golang.org/
2. https://www.python.org/

5.2 DATA CACHING AND TILING 31

memory usage is evaluated.

5.2.1 Prototype
The system parsed a file from the source machines and created an image of
the entire seismic data within this file. This image was split into tiles with the
help of a python program named gdal2tiles; which originates from the GDAL
translator library3. This was done to quickly show the validity of choosing
leaflet as a feasible way to visualize the data. Gdal2tiles proved to be an easy
way to create tiled images in the pre-required format. When a new file was
introduced into the system, it was again parsed and a separate image created.
This image was then stitched together with the large image from the first
file and totally re-tiled with gdal2tiles. The more files the system received the
slower it could process the final data. A version that attempted to only create
the new tiles was attempted, but quickly stopped when the complexity of the
operation was uncovered. The final visualization was aesthetically pleasing as
it was blessed with the image algorithms provided by GDAL. The performance
on the other hand was far from satisfactory.

This version scaled poorly due to a number of circumstances. Firstly, gdal2tiles
is a single threaded python program. It has a multi process implementation
available, but it was unstable and crashed constantly. Secondly, due to the
nature of how gdal2tiles creates tiles. It created tiles based on a large image,
albeit being slow, worked fine for large single files. But for partitioned files it
proved difficult to create tiles with the correct name, and there would be a
visible line between tiles between files. This was due to the fact that the last
column of a file would potentially be only a few pixels wide. In retrospect,
the full image from a file could have been stretched so total width modulo
tile width (256) was 0.

5.2.2 In-memory Version
This section will begin with an overview of the implementation and later
follow up with more detailed implementation details where it is deemed
necessary.

This version uses an in-memory cache system, where data for all levels of
zoom are created and cached in memory as uint16 bytes slices. A slice4 is
built on top of the array literal, and provides a flexible data structure. Instead

3. http://www.gdal.org/gdal2tiles.html
4. http://blog.golang.org/slices

32 CHAPTER 5 IMPLEMENTATION

of passing the underlying array as a value, the slice literal allows you to pass
the slice or part of the slice as a reference. Each zoom level has its own cache,
and the tiles for a level are created from its corresponding cache. RS takes
advantage of having 16 GB of available ram on the server machine, and this
allows for relatively large data structures to be stored in memory. Going back
in time this might not have been feasible as memory often was limited by the
underlying architecture.

Before the tiles are created, the entirety of the filtered seismic data is ap-
pended to the level 6 cache. From the level 6 cache the 1:1 tiles are created.
These are tiles that hold the same amount of data points as the original seis-
mic data. This is a statement that is close to the truth, but dependent of the
speed of the seismic vessel and the time frequency of traces, the tiles might
need to be stretched in width with a factor based on these parameters, the
stretching factor. Currently this factor is hard coded into a configuration file,
but should be made dynamic if development on RS continues.

For RS to start making a column of tiles, it needs a data set of seismic data
corresponding to 256 traces. This number is divided by the stretching factor,
so for a stretching factor of 4 there is a need for 64 traces. Note that only
the data from the level 6 cache need stretching. The data in lower caches
originates from the level 6 cache and is thus already stretched.

If there is a zoom level below the current level, the dataset that is used to
create the tiles, is resized to half height and half width. This means that
the dataset is reduced to 1/4 of the total size. This downsizing will produce a
dataset of the scale 1:4, from the dataset it was reduced from. The downsizing
is done by a average algorithm, which is explained in section 5.2.2. The data
used for tiling, which is either the stretched data, or data from a higher level
zoom is presented to the tiler. This data is called the column, as they represent
a column of images in a bigger image set. The column is split into tile sized
datasets, 256 x 256 pixels, and each tile is created into an image within a
separate goroutine5 to utilize the multi cores on the server machine. How the
slice structure lies in conjuncture to the placement of those values as pixels
are shown in figure 5.1. In this figure the slice is visualized as an image. It can
be seen that data that becomes pixels in an image, are located in a structure
that starts at top left and continues vertically in terms of the final image. This
goes against that standard that has values going from top left and horizontally,
again in terms of the image. The reason for this can be traced back to the
way the input data is collected and placed in binary files, a trace at a time.
And with a potential height difference of traces it would be very difficult and
costly to re-arrange the values.

5. http://golang.org/doc/effective_go.html

5.2 DATA CACHING AND TILING 33

0

1

2

3

16

17

18

19 35

34

33

51

50

49

32 48

4

5

6

7

20

21

22

23 39

38

37

55

54

53

36 52

8

9

10

11

24

25

26

27 43

42

41

59

58

57

40 56

12

13

14

15

28

29

30

31 47

46

45

63

62

61

44 60

Figure 5.1: Pixel data structure in slice, This can be seen as a column of tiles, scaled
down to 4 x 4 pixels to show the concept.

A tile created within a goroutine is then stored and named dependent on: its
position in the slice, its zoom level, and its column number. At any zoom level,
the first column slice will be numbered 0, and stored in a folder so named. In

34 CHAPTER 5 IMPLEMENTATION

this folder the tiles or images are stored. This folder will lay underneath the
zoom level folder, which will be named in accordance to its zoom level. For
level six this folder will be named "6". The tiles themselves are named from
0 to n. Tile 0 being the tile on the bottom of the column.

After all goroutines has started creating tiles, the tiler will check if there is
enough data to create tiles for the level below. If there is, it will create a
column for this zoom level as well, and continue down the zoom levels until
there isn’t sufficient data in a cache belonging to the zoom level in question.
When the system cannot make more tiles it will attempt to fetch another file
for data conversion and subsequent tiling. If another file is found, it will be
parsed to see if it follows the same name convention as the previous one. If it
does, it belongs to the current data set. If not, it is a new data set coming up
in the pipeline. This last case will trigger the first map to end, forcing creation
of all tiles from all remaining data.

Cache
The caches used to hold the data are in memory slices stored in a Go struct6,
and an instance of the cache is passed as argument to the tile creator. After
each unique identified map has completed its course and a new map with
another identity is being processed, a new cache will be initialized. This is
done to allow freeing the reference to the previous cache, and thus allow this
allocated memory to be garbage collected. After a part of a cache has been
used to create a column, it will be removed from the cache. Any new data
belonging to this zoom level will be appended to this cache slice.

Filtering
The data acquired from external sources are filtered using various techniques.
The goal is to improve the signal to noise ratio, and present visualizations that
can be useful to the end user. Data is mainly filtered using band pass filters.
Both high and low frequencies consist of noise. The most noteworthy are the
low frequencies as they are represented as black on an image. Although high
frequency noise is close to white, they can be removed using a low pass filter.
Although not as visible as the black pixels, it is still noise. The band pass
filtering is very basic and makes all pixels over and under a given value white.
If you filter too much you lose some of the signal, and if you filter too little
there will be important details hidden behind noise. This cut of value can be
tweaked in a configuration file. But it is envisioned that this should be done

6. http://www.golang-book.com/9

5.2 DATA CACHING AND TILING 35

via the client.

Another filter present is a median filter. This filter is used to smooth out pixel
data. Although it is not a perfect filter, it smooth’s out an otherwise jagged
pixel image. It also fills in some gaps that could be due to signal loss or a low
trace shot frequency. The value of a pixel is calculated by taking the median
value of a 2d window of 9 values, where the value itself is the middle value
and adjacent values form the remaining. An example of the median algorithm
is seen in figure 5.2. The current implementation does not resample the edge
values.

Figure 5.2: Median filter

Tile Creation
The tiles are created from the pre-filtered and cached data. After the external
data is loaded in to the system and into the cache, the tiler will go through
each cache, one by one, starting at the level 6 cache, creating a column, and
check the next cache. By design the tiler does not complete every column
and subsequently every tile for a level before moving to the next cache level.
This is done to not delay the creation of tiles of levels below, but to gradually
create more content on each level. The basis for this implementation is the
idea that there was a need for "live" visualization. And this implementation
would better simulate such "live" creation of content.

Data for the level below is created by resampling the data from the current
zoom level. The data is resampled into half the original size, half width and
half height. For the tiler to create tiles for a level below the current level, it

36 CHAPTER 5 IMPLEMENTATION

requires 2 column of the current level. This means that a column of tiles will
not be created until there is enough data to create one. A consequence of this is
the delayed tile creation for level 1; as it requires 32 level 6 columns until it will
have enough data to create a complete column of tiles. This implementation
choice was done with execution speed in mind. It was the belief at the time
that re-creating tiles or appending to tiles would slow the live visualization
process. But none the less, there is no loss in data; the creation of lower level
tiles is just delayed.

A future version of RS might support creation of partial columns, where a
portion of the column is created when there are data available. This would
present the end user with data for all levels quicker, but would slow down
the overall process as columns and tiles would need to be recreated or be
appended to.

For an append to work, the tiles that are images would need to be decoded,
before new colour values could be added, finally these images would need to
be re-encoded.

Resampling
As stated before, data for a cache below the current level needs resampled
data to be able to create tiles. The resampling algorithm in us is an imple-
mentation of an average interpolation algorithm. It resamples a pixel based
on the average values of itself and 3 neighbours. This can be seen in 5.3. This
solution is not optimal in terms of quality, but it provides good quality and
fast down scaling of images. A Nearest Neighbour solution was also created
but failed to meet the expected image quality. Other solutions that could be
implemented in the future are among other: bilinear interpolation, Bicubic
interpolation or a Lancos algorithm.

5.2 DATA CACHING AND TILING 37

Figure 5.3: Average interpolation

If data needs to be stretched, they are stretched using a linear interpolate
algorithm. It stretches the column x times in 1 dimension by approximating
the values in between pre-existing pixel values by using these existing values.
The algorithm takes 2 known colour values and estimates the colours between
these values. This is done by drawing an imaginary linear line between the
known points and calculating the slope by using the following mathematical
formula:

𝑚 = 𝑦1 − 𝑦0
𝑥1 − 𝑥0

The 𝑥0 value can be random but 𝑥1 is 𝑥0+ distance in positional value on
final image. The Y values are colour values. After calculating the slop, any x
value in between 𝑥1 and 𝑥0 can be calculate with the use of the same formula
and one of the original points.

User configuration change
To accommodate alternating depth during the acquisition of seismic data
and subsequent binary data creation at the external data source, the external
source supports changing the stored height for each trace. RS supports such
a configuration change, both in mid file and between files.

For an increase in data size in mid file, the entirety of the file is re-run from
the beginning. The part that has a lower height will be padded for a uniform
height for all traces. This is a quick fix solution to support this feature.

38 CHAPTER 5 IMPLEMENTATION

Handling a decrease in trace height is easier as it only involves padding. Redo-
ing data in this case would make no sense as it would cause data loss.

This solution is sub-optimal. A new and better solution is planned and will
be presented in chapter 9.

5.3 Front End
As mentioned in in section 4.3.2, the Front end consists of a web server han-
dling requests on a rest interface, and on an open websocket. This server
is constructed by using the server provided by the http package7 in Go. This
server is multi-threaded, and can handle enough requests to handle the low
user mass expected to use RS. It serves html by utilizing the template pack-
age8, this allows for static html to be combined with data from Go structures.
This static content is requested through the rest interface.

5.3.1 CSS
The css of RS’s client is strongly influenced by the Bootstrap9 framework,
which provides easy to use and aesthetically pleasing css and JavaScript.
It also supports a responsive web design by adapting to the user changing
his window size or using a device with small resolution. It was not deemed
necessary to provide a self-made and complex css implementation, while
bootstrap and similar implementations where available. Besides bootstrap,
some css was written to accommodate Leaflet within the layout.

5.3.2 Websocket
The websocket implementation on the server side is influenced by the web-
socket implementation found at 10. It differs slightly from this by adding a
map identifier. This identifier is used by the front end to only push relevant
data to the viewer of a certain map.

7. http://golang.org/pkg/net/http/
8. http://golang.org/pkg/html/template/
9. http://getbootstrap.com/
10. http://gary.burd.info/go-websocket-chat

5.4 WEB CLIENT 39

5.4 Web Client
The web client is created from the html, css, and JavaScript served from the
Front End.

When the user has connected to a map, he sees the shot gather. Here the
user interacts with an instance of Leaflet. This instance is responsible for
fetching tiles from the server based on the: map id, the zoom level, and client
viewpoint. Here the user can annotate the map via a right click or long hold
menu. Markers are visible on the screen via a Leaflet overlay. Markers can
be inserted by any client, and will be quickly visible on all clients viewing
the same map. This is done via the websocket. Any user can annotate the
markers, leaving notes as he sees fit. Unfortunately there is no collaborative
writing via the websocket when writing notes. This means that there might
be a conflict if two clients annotate on the same marker at the same time.
This is temporarily solved by letting the last save overwrite the first. Users
can also view and hide all markers via the same menu.

The client supports zooming in or out. This results in fetching tiles belonging
to a higher or lower zoom level respectively. Leaflet caches tiles to avoid re-
fetching tiles from the server.

The user can view and interact with any map, with no regard for other users.
He can search for old maps via a search bar, get a list of all available maps, or
manage a specific map, altering map name or notes made by any user.

When a client requests a seismicmap via the restful interface, a websocket con-
nection is also created. This is also true for connecting to the GET /maps:id/manage.
The server saves the map id corresponding to the map the client is connected
to. When a client requests something, the server will know which map the
client is referring to, without the need for this to be specified at every message.
This also allows the server to potentially send new information to all clients
that have the map in question open. The websocket message system used
by RS is designed based on CRUD (Create, Read, Update, and Delete) which
are the major function types available in a database. All communication after
initialization is done with JavaScript Object Notation (json)11.

For adding right click or long hold menu system, RS uses the leaflet extension
Leaflet-Contextmenu12.

11. http://www.json.org/
12. https://github.com/aratcliffe/Leaflet.contextmenu

6
Evaluation
The goals of the evaluations in this chapter is to both evaluate the system
with respect to scalability, processing speed and visualization quality; and by
doing this, show the suitability of the system as a tool for visualizing seismic
data.

RS is all about visualization and interaction, and with that in mind, both run
time on the data creator, and the round-trip latency for loading the seismic
map to the web application are important areas to evaluate.

Without creating images from the seismic data there would be nothing to
visualize for the end user. It is therefore important this data is available as
fast as possible without compromising the quality of the images.

A user of a system like RS would also require low latency when interacting
with the server, the user should not be have to wait for content for a time
frame which is perceived as long. The user also requires low latency when
interacting with the data. This involves both perceived lag when sliding back
and forth on a seismic shot gather, and latency when dealing with content
manipulation and subsequent feedback.

Harry Shum [6] said that "250 milliseconds (ms), either slower or faster, is
close to the magic number now for competitive advantage on the web". This
means that if a user needs to wait for more than 250 ms he is likely to leave
and use a competitor’s site.

41

42 CHAPTER 6 EVALUATION

Time Required For Millisecond

One beat of a hummingbird’s wings 20 ms
A single frame of a projected film 42 ms
A website loading delay to discourage visitor 250 ms
The blink of an eye 400 ms
A baseball pitched at 99 mph to reach the plate 417 ms
a Numbers gracefully borrowed from [6]

Table 6.1: Consumer expectation of delivery speed

If the response time is greater than 10 seconds it will break the thinking
continuity of the user, but a response delay of around 2 seconds will still allow
for continued focus [7].

There are no other web based solutions available for uit that can provide
similar services to RS. But if the system is perceived as slow the user might
choose to discontinue the use of RS, and revert back to the other visualiza-
tion tools available, thermal paper plots and source software’s visualization.
Although the goal is not to be as fast as stated in [6], it is something to strive
for. And the numbers from [7] give added indication of the human tolerance
for delay.

Without visually pleasing images, a system like RS would not be used to a
greater extent. Perception of image quality is often highly subjective, but it is
important that the users who use RS perceive the images as being of a good
quality. Subjective image assessment is accepted to be the most effective and
reliable [9]. Good quality in this case is determined to be quality which is
comparable to the alternatives, thermal paper plots and existing software. A
quality that is perceived as inferior to what is already available is likely to
discourage the continued use of a system.

In the book Color imaging: vision and technology [3] Joyce E. Farrell stated
that: "Since our customers are the final arbiter of image quality, we consider
their subjective image quality judgments to be key to the success of our imag-
ing product". Besides subjective evaluation there are a number of other meth-
ods of evaluating images which are discussed in [9], [13] and [4], but in the
context of this thesis it does not make much sense to attempt to evaluate
based on such techniques.

6.1 EVALUATION ENVIRONMENT 43

6.1 Evaluation Environment
The system is evaluated using a server machine bought in by the Department
of Geology at uit, for the sole purpose of running RS on a seismic vessel. It is a
blade suitable to be inserted into one of the racks available in the operational
room of a seismic vessel. The machine consists of the following hardware and
software:

• Intel Core i7 3.1 GHz

• 16 GB ram

• 7200 RPM Hard disk

• Windows 7 64bit

Unless otherwise pointed out, all numbers provided in this evaluation is cre-
ated by using 30 measurements.

6.2 Data Processing Runtime
In this section, the data creator will be evaluated based on the latency when
data is available to RS, to when visualization content is available to the end
user in form of images.

As discussed earlier, data available to the system can be available in a multi-
tude of sizes. These sizes are user-determined. The seismic data can either
be split into smaller chucks by the source software, to allow for a more con-
tinuous data creation by RS, or be made available for RS when a seismic run
has completed. It is likely that such a run will take many hours, and will then
present RS with a file of potentially many Gigabytes. In the last scenario there
will be no new data for RS to process until the run is over, with a consequence
of no available "live" visualization of the current seismic cruise.

For a system like RS to work as intended during "live" data acquisition, it
would need a steady input of data. A file of 14 megabytes (mb) is the data
created from minutes or 10’s of minutes of seismic acquisition. Megabyte per
minute is based on a two parameters. The first being depth, and the second
being window stored. In shallow waters, there will not be much data stored
per trace, and it will take longer to collect 14 mb, but in deeper water each
trace would contain more data, and thus the time taken for 14 mb to be
collected would be shorter. To prevent unimportant data to be stored, only a

44 CHAPTER 6 EVALUATION

Megabytesb Meanc Stdd

4 2.13 0.162
14 4.04 0.389
46 14.24 0.710
86 24.37 0.856
123 33.98 0.872
190 51.03 1.261
297 80.85 2.507
429 121.82 2.758
701 284.69 72.365
953 328.52 8.987
1829 717.59 32.836

a Time from seismic data to be available until all
images is available to user

b Input files size in MB
c Average in seconds
d Average standard deviation in seconds

Table 6.2: Edgetech runtime for creating all tiles
from input file

window of the complete trace is stored in the final binary format.

The system will be evaluated based on input size, the lowest being 4 mb,
the biggest being 1829 mb. This file was the biggest available for evaluation,
but file sizes such as this would be unlikely during a seismic cruise. A more
likely size would be 14 mb, which was used during on-site evaluation of RS
discussed later in section 6.6.

6.2 DATA PROCESSING RUNTIME 45

Figure 6.1: Average runtime backend, create all tiles from a File

Megabytesb mb/sc

4 1.878
14 3.467
46 3.230
86 3.529
123 3.620
190 3.723
297 3.673
429 3.522
701 2.462
953 2.901
1829 2.549

a Megabytes divided by time
b Input size in MB
c Megabytes per second

Table 6.3: Edgetech runtime speed

46 CHAPTER 6 EVALUATION

6.2.1 All Images Ready

Figure 6.2: Megabytes divided by time, mb/s

Figure 6.2 and table 6.1 shows the runtime results, when taking the time for
RS to create all image tiles from a file. Figure 6.2 and table 6.3 provides a
different view of the results by dividing file size by time measured. From the
numbers it can be see that RS scales up to relatively well up to file sizes of 1829
mb, but the scalability is not linear as might be perceived in the graph in figure
6.1. The numbers provided in figure 6.3 show that files in the ranges above
429 MB provide a gradually decreasing execution speed. A potential reason
for such decreasing execution speed can seen by looking at the measurements
done for total memory usage. Measurements of CPU load is not taken into
account, as it was observed that the CPU load at the measurement time was
very constant, around 10-16 percent total system utilization, and the size of
the input files had no bearing on this load.

6.2 DATA PROCESSING RUNTIME 47

Megabytes Total Memory Consumption GB Standard deviation GB

4 0.48 0.586
14 2.03 0.009
46 4.08 0.004
86 7.57 0.008
123 10.92 0.009
190 17.25 0.279
297 28.01 0.543
429 38.56 0.015
701 87.23 20.102
953 131.74 27.4556
1829 340.40 92.2569

a Memory consumption from acquisition to all tiles are available

Table 6.4: Total memory utilization image creator

Figure 6.3: Backend memory usage in GB for all images created

By looking at the usage in memory in figure 6.4 it can be seen that the Go
implementation uses a lot of memory to create the finished visualization. A

48 CHAPTER 6 EVALUATION

Megabytesb Meanc Stdd

4 NA NA
14 1.943 0.121
46 11.404 0.187
86 18.316 0.856
123 24.910 0.595
190 33.982 0.561
297 37.674 0.875
429 69.431 1.935
953 142.664 4.225
1829 271.648 10.719

a Runtime from acquisition to first tile is ready for request
b Input size in MB
c Average in seconds
d Average standard deviation in seconds

Table 6.5: Edgetech runtime image creator one tile

big contributor to this is Go built-in append1 function. This function is used
to append two slices to each other. Instead of allocating the exact memory
needed, it will increase the memory held by the slice by x2 if size of slice is
less than 1024 elements, and by x1.25 if over 1024 elements. This will account
for some of the high memory usage.

By looking at the memory numbers in table 6.4 and the graph in figure 6.3
it follows the same pattern as when measuring processing time in figure 6.2
and table 6.1. The increase up until files with size up to 500 mb is linear, but
for input files over this size, the increase is growing at a gradually higher pace.
This gives reason to believe that there is at least some relationship between
high memory usage and the total processing time.

From the standard deviation column of table 6.2 it can be seen that calculation
speed for the image creator is very stable, except for the files with size 701
and 1829 mb. These files had a handful of consecutive runs which largely
deviated from the standard. What causes this deviation remains unclear. This
is of course in an optimal environment with no requests on the Front End,
with also runs on the same machine. Given a steady stream of requests, it is
likely that these times would increase slightly as the tile creator would have to
compete for CPU time and disk Input/Output (io) with the web server.

1. http://golang.org/pkg/builtin/

6.2 DATA PROCESSING RUNTIME 49

Figure 6.4: Runtime on Backend from data acquisition to first tile/image is ready
for request

6.2.2 One Image Ready
The end user does not have to wait for all tiles to be created to start interacting
with the seismic data. He can request images as soon as they are ready in the
backend. With that in mind it is also prudent to measure the time it takes to
process the seismic data, and create only one image, the first tile for zoom
level 6. By looking at the table 6.5 and figure 6.4 it can be seen that this part
follows a more linear pattern then creating all images. This is also true if we
study the memory usage in table 6.6 and the graph in figure 6.5. Here it again
follows the pattern of time taken, in this case linear.

50 CHAPTER 6 EVALUATION

Megabytes Total Memory Consumption GB Standard deviation MB

4 0.479 0.586
14 0.95 1.874
46 3.05 0.003
86 5.71 11.482
123 8.08 0.005
190 12.56 0.007
297 19.81 35.937
429 27.88 0.005
953 64.44 80.841
1829 124.00 84.937

a Memory consumption from acquisition to first tile/image ready for request

Table 6.6: Total memory utilization for image creator, one Tile/Image

Figure 6.5: Total memory usage in GB for 1 image created

By looking at the numbers and graphs in this section and section 6.2.1 it can
therefore be concluded that something during the creation of images are
causing a high memory usage. And this high memory usage might contribute
to the extra time it takes to complete building these images.

6.3 ROUND-TRIP LATENCY 51

The windows version of Go, v1.22, has issues with the Garbage Collector (gc).
Previously used memory is not release back to the operating system without
forcing the gc to run. Without this "hack" the memory will reach the max
allotted memory fast, and start paging to disk. But even with forcing the gc
to run at certain sections of the code, all unused memory is still not released.
Go version 1.3 promises to have a 100 percent precise gc, and hopefully this
will fix some of the issues related to memory. Although this does not affect
the total memory usage, it might cause less memory to be occupied by the
RS backend at any given time.

6.3 Round-trip Latency
This section evaluates the round-trip time for loading RS’s most important
feature, the seismic data. Measuring the time it takes for all tiles to be loaded is
important for showing RS as an application which meets the standards which
one might expect for a web application. To take into account the expected use
pattern on the vessel RS will be employed, this evaluation was done on PC’s
with cable network andmobile devices connected to a wireless network.

The round-trip time is measured from the user clicks a link for a random map,
until all JavaScript on the client has loaded. In between these two points in
time are among other: the request to server, server preparing data to be sent,
a database call, sending of data, and the important processing of the data
on the client side. The client side processing also includes a setup for the
websocket and a call on this websocket to fetch relevant markers.

It must be noted that the measurements were done at optimal test conditions,
with only one user and no other user initiated programs running on the server
or on the clients. The server was not processing seismic data at the time. It
would be expected that such events would have increased the times measured
slightly. The measurements will also be higher the first time a device loads
in static content like css and JavaScript. Content such as this is cached on
the client to avoid unnecessary file transfers. These files are neither bundle
together or minimized, so the client requests much more data then he would
had the files been be optimally bundled and minimized.

This evaluation was conducted with 2 personal computers, the first being the
machine that runs RS, and the second a 4 year old laptop. The server machine
was included in the evaluation as is likely that it will also be used as a client to
visualize seismic data from RS. The 2 mobile devices consisted of a 3 year old
Samsung Galaxy S2, and a new LG Nexus 5. All measurements where done

52 CHAPTER 6 EVALUATION

Device Round-tripa Client loading timeb

i7 3.1cd 139 49
i5 2.26d 293 124
Samsung S2e 1039 423
Nexus 5e 678 219
a round-trip in milliseconds
b Client processing and loading time in milliseconds
c Running at the same machine as server
d Cable network
e Wireless network, Eduroam

Table 6.7: Round-trip latency for a seismic map request

running the newest version of Google Chrome2, version 34.0.1847.131. The
evaluation was done with 15 measurements for each device. It is a given that
testing wireless against Cable could result in different numbers for the two
PC’s, but this was found irrelevant for this evaluation. This is due to the use
patter expected on the seismic vessel, where PC’s run on cable and mobile
devices run on the wireless network.

As was expected the blade with the best hardware, and cable network was
the fastest to display the seismic data, the old i5 computer still did good,
and the total time discrepancy from the i7 is mostly due to the added client
loading times. Both devices had an acceptable round-trip time, under and or
far away from the magic 250ms mentioned in table 6.1. The mobile devices
where expected to be slower, but even at a little over a second total time the
aging S2 was not perceived as slow. The Nexus did a little better, especially
on the client side due to the improved hardware available.

This evaluation proves that the RS client can perform well, even on smart
phones. In addition to this evaluation, a leading expert in the field of seismol-
ogy did not perceive the latency as high when evaluating the system on the
S2.

Interaction with the server through the websocket is very responsive, it is per-
ceived as instantaneous, and a small evaluation case with heavy load provided
content within milliseconds.

2. http://www.google.no/intl/no/chrome/browser/

6.4 IMAGE QUALITY 53

6.4 Image Quality
In this section, images originating from RS are compared with images from
both the Edgetech software and a digitalized Delph image from a plot on
thermal paper. The images from RS consist of actual seismic data collected
by uit. The images are subjected to different filters with increasing cut-off
frequencies.

Providing images with high quality is important to the user. Without images
with a quality equal or better than expected, the user might choose to revert
back to thermal paper or the software’s which comes with the seismic equip-
ment. With that in mind, an emphasis was put in to create images of similar
quality to what was available. As these software’s provide a number of meth-
ods to: filter away noise, resample data, change gain levels and sharpening
images; it was important that RS also supported similar features.

Images in RS are filtered for noise using techniques like, low and high pass
filters. These filters discard high frequency and low frequency signals re-
spectively. In the case of images, high values are white and low values are
black.

In figure 6.6, the effect of adding a high pass filter to unfiltered seismic image
can be seen to affects the quality of the visualization. By studying the visual-
ization of the unfiltered data in this figure it is evident that data contains a
high degree of noise. By adding a high pass filter and subjecting the unfiltered
data to various degree cut-off values, it can be seen that the images are losing
more and more noise, by tuning up the cut-off frequency up. It is also evident
that applying a too high cut-off value removes potential signal data.

Figure 6.7 shows more filters being applied to the same image. In the second
image from the left, the median filter is applied, and the lines of the image
become a little clearer. On the third image some of the noise has been filter on
the high value scale by applying a low pass filter. In addition a high pass filter
with a high value has been added. This should become a very white image,
but when making all present colours which currently isn’t filtered away, black,
the image show a lot of details. On the right hand side of figure 6.7 an image
from the Edgetech software is displayed. Notice that this is an image taken
from the exact seismic shot gather as the other 7 in these two figures. There
are some differences in scale, but it shows what RS is up against when it comes
to image quality. The Edgetech image looks very nice, and has been subjected
to filters and image manipulation which differs from RS images.

There are unfortunately not any example for thermal plotter plots using the
same dataset, but to illustrate the quality of these thermal plotter visualization,

54 CHAPTER 6 EVALUATION

No Filters
 Complex Trace

0,05% high pass
Filter

0,5% high pass
Filter

20% high pass
Filter

Figure 6.6: Compares different cutoff frequencies for high pass filter

an image of an unrelated plot from an unknown location can be seen in figure
6.8. From this figure is can be seen that the thermal plotter images from Delph
can show seismic images with good quality, with a high signal to noise ratio.
As this is the visualization that the scientists are accustomed to, it should be
taken into consideration when evaluating RS visualization quality.

6.4 IMAGE QUALITY 55

0,05% high pass
Filter

0,05% high pass
Filter & median

10% High pass
with

enhancement

Edgetech

Figure 6.7: Compares for aditional filters and Edgetech image

Figure 6.8: A scanned copy of a Delph thermal plot

56 CHAPTER 6 EVALUATION

In his PHD thesis [2] from 2010, Thomas Elboth said: "A decade ago, only ap-
plying band pass filter in certain areas to attenuate noise might have satisfied
us". There is a lot of work left in this section, new filters should be developed
to create both sharper and smoother images, filter out noise and give options
for alternative views. More about this future work will be discussed in Chap-
ter 9. It is evident when looking at the images provided in figures 6.6 and
6.7 that there is a lot of work still to be done in terms of creating an optimal
visualization environment to use for scientific and educational purposes, but
RS has taken the first step of Creating such a tool.

6.5 Evaluation by Expert
To decide whether the images from RS can hold up to its competition, a
leading expert in the field of seismic acquisition was asked to evaluate the
image quality. The leading expert found the image quality very pleasing. The
images produced by RSwere similar to what the Delph software could provide.
An example of an image from Delph in form of a paper plot can be viewed
in figure 6.8. Even though the images have similar qualities to Delph images,
the RS images was still lacking in quality when compared with both Delph
and Edgetech images. Besides the filtering done in RS, these two programs
provide additional or better filters to improve the image quality. The expert
also suggested some filters that could be implemented in a future version of
RS.

The expert was very pleased with the functionalities of RS and the ability
to look at the seismic data on his personal smart phone. The application
performed to expectation when it came to user-friendliness and interaction
smoothness. Even though he was happywith the presented product, he missed
the functionality to re-filter sections of the seismic data. In addition he has
numerous suggestions when it came to added or improved visualizations and
functionalities. Some of the suggestions for improvement will be discussed
further in chapter 9.

6.6 On-site Evaluation
RS was evaluated on the FF Helmer Hansen in April 2014, on a short seismic
cruise. Seismic data was collected from departure from Tromsø, to Mefjorden
(east of the island Senja), and back again. This data was collected using
the Edgetech software. The Edgetech software was configured to produce
14 megabyte output files. This provided RS with new seismic data at a pace

6.6 ON-SITE EVALUATION 57

varying between minutes and 10’s of minutes, depending on the sea depth.
The files where processed and images where ready in around 4 seconds after
a file was presented to RS. During this evaluation RS successfully processed
all input files and created visualizations to the scientists and students aboard.
This evaluation shows that RS can perform as a visualization tool on a seismic
vessel, producing interactive and available data to any interested user on
board the seismic vessel.

At the time of evaluation RS did not have the image quality it has in its current
build, and due to suggestions given by scientists aboard, the image quality
on RS was later improved.

7
Related Work
Providing content as tiles via a web application or another application is not
a novel way to represent images, there are numerous application that does
exactly this. For web applications images can be presented via a number of
both licenced and open sourced JavaScript libraries. Of the most commonly
known are Google’s Google Map1, Openlayers2, Leaflet3 and Mapbox4. The
common use case for such libraries is to display actual map data, be it a World
Map, or just a map of the local area.

Using these libraries for images other than maps is not unheard of, albeit
a little less common. An example is using google maps as an art viewer5.
Another example is Zygote6 which displays a 3d models of the human body. A
third example is the Genome Projector7, which displays genes as tiles. Leaflet
itself was even used to create a gigantic xkcd8 cartoon9. This proves that
libraries such as Leaflet can be used for numerous things, also to visualize
seismic data.

1. https://developers.google.com/maps
2. http://openlayers.org/
3. http://leafletjs.com/
4. https://www.mapbox.com/
5. http://www.google.com/culturalinstitute/project/art-project
6. http://www.zygotebody.com/
7. http://www.g-language.org/g3/
8. http://xkcd.com/
9. http://xkcd-map.rent-a-geek.de/

59

60 CHAPTER 7 RELATED WORK

Finding work that is truly related to RS is challenging, as there are no known
web applications for seismic data which is in the same mould as RS. With
that in mind the most related work from the field of seismology, is the soft-
ware that come with the seismic hardware, Edgetech, Elics Delph and similar
systems.

The first to study is the Edgetech software which is one of the software’s
available for uit. It is software used for acquisition, processing and visualiz-
ing seismic data. It is powerful software providing the user with numerous
settings to filter seismic data for improved visualization. Filter included are
among other, the Gain filter, Time Variant Gain (tvg) and swell filter. As this
is commercially licenced software there is no description of the architecture,
design or implementation. It created to run on Microsoft Windows PC as a
desktop application.

The second program uit has available is Elics Delph. It is also used for ac-
quiring, processing and visualizing seismic data. Information available about
this software is very limited. It is also a proprietary system, but filters it uses
can be seen from the output header file. It uses Swell filters, high pass filter,
low pass filter, gain filter and a tvg filter. As with the Edgetech software It is
also a Windows based desktop application.

The project OPENTECH from dGB10 is another seismic viewer which provides
visualization in 2D and 3D. It provides a desktop interface which allows for
viewing and interacting with the seismic data in a way that can be compared
to RS. This is a program written in C++, and is available as an open source
product.

10. http://www.dgbes.com/

8
Concluding Remarks
This thesis presented RS, a system for processing, visualization and interacting
with seismic data from potentially a multitude of sources. RS was created
in response to a demand for better seismic visualization and interaction by
the Department of Geology at uit. The scientists have for a long time been
working with inadequate visualization tools in form of old thermal plotters,
and software which lacks the required features for proper interaction with
the seismic data.

This thesis has contributed by:

1. Providing scientists and students on a seismic vessel a new tool for
processing, visalizing and interacting with seismic data.

2. Providing an application available on heterogeneous platforms, by pro-
viding seismic visualization through a web application.

3. Demonstrating the capabilities of RS in an evaluation. Showing RS as a
promising seismic processing and visualization tool.

The system presented provides components which processes and filters seis-
mic data, before making it available to clients via a web interface. The web
interface is implemented to support mobile devices. It provides seismic data
as image tiles, for zoomable content, and provides markers and annotations
as an overlay to the tiles created.

61

62 CHAPTER 8 CONCLUDING REMARKS

RS was evaluated during an actual seismic acquisition cruise, and was further
evaluated experimentally to asses RS’s contribution towards being a new
and improved visualization tool for seismic data. During evaluation on the
research vessel FF Helmer Hansen and further evaluation of RS, RS proved to
process minute’s worth of seismic data in just over four seconds. This allows
the seismic data to be used for seismic studies quickly. The RS client was
evaluated, and it was shown that under optimal conditions RS could provide
seismic data to a client in less than 1.1 seconds.

The evaluation also showed that RS can perform well in terms of visualization
quality when compared to existing visualization tools. Further evaluation was
done by a leading expert in the field of seismic acquisition. He was pleased
with the visualizations RS provided, and is eager to continue the development
of RS. He was interested in adding features to the user interface, and improv-
ing the filtering and collection of data. He also concluded that the client was
very responsive, even on a three year old smartphone.

9
Future Work
9.1 RS Format
RS does not currently store data into a RS format, and therefore cannot re-
filter data, without using the binary files from source software. This should
be the first priority for future work. While the software from source binary
files is being parsed, both the seismic data and metadata should be stored in
a new format, RS format. The code needs to be slightly rewritten to support
parsing of RS format, or use RS format out of the box in the tiler. For the last
option the tiler needs to be slightly rewritten to support the uniformed data
now containing metadata.

9.2 Delph Parsing
Delivered version of RS does support the Delph format, and provides a parser
that transforms the Delph format into a uniform format and images. The
image quality on the other hand is severely lacking. The image data in the
binary data are stored in a compressed format. Each pixels data is located in
a nibble. There is a need for a major rethinking of the Delph format parsing.
Unfortunately there are little or no documentation on this format. In addition,
there are metadata located within these files. This metadata setup is not
specified beyondwhere it is located, and thus it is difficult to use this metadata
in RS.

63

64 CHAPTER 9 FUTURE WORK

9.3 Web Client9.3.1 Image Overlays
Besides displaying the image tiles, the images should have an overlay indi-
cating depth and distance; this should be achievable with the use of leaflet
overlays. It is envisioned that images of horizontal and vertical lines can be
placed on the left and top section of the screen respectively. As a separate
overlay or connected to this overlay there should be a number indicating rel-
evant measurements. For this to work, placement of the lines and number
have to be dynamically calculated as the user shifts his view or zooms.

9.3.2 Improved Websocket Updates
The envisioned role of the websocket solution in RS was to provide the user
both quick communication, and support the user with dynamic content. This
has partly been achieved, but in certain areas the user needs to manually
update the web client to receive updates by different users. This could be
fixed by directly adding data into the html via JavaScript. This has been
done successfully in parts of the client code.

9.4 Filtering9.4.1 Improved Filtering
Currently RS used simple filtering techniques to filter noise from the seismic
data. The filters used are classified as band pass filters. Along with these, the
images are treated with a median filter to smooth out images. A lot of work
remains in this section, as these techniques are lacking in sophistication as
described in [2].

Looking at the images from Edgetech, they are treated with a smoothing
algorithm far superior to RS’s median algorithm. It can be speculated that
these have been treated with a Gaussian filter that adds blur and a subsequent
sharpening technique.

Filters to remove noise from swell and doubles etc. could be included to
improve the visualization of RS imagery. It can be speculated that such im-
provements might increase the total processing time for creating images, but
visualization quality is key to analysing the seismic data.

Techniques that exits that could be looked into are among other: automatic
Gain filters [11], stack filters [10], swell filters [5] and rectification filters

9.5 DATA ACQUISITION 65

[1].

The idea behind the gain filter is to work your way down the image data, a
trace at a time. Doing a median on a window sized set of this trace, and for
each pixel, recalculate the value.

A version of the Gain filter is a tvg filter, the idea is that the pixel in terms of its
position in the trace matters. The lower part on the trace will have less signal
strength due to less reflection as the seismic wave continues downwards. This
filter would add more gain on the lower parts than it would on the top part
of a map.

The swell filter would remove effects of waves by adjusting the positioning
of a trace of pixel data. This adjustment is based on a heave value available
on board the vessel. This means that if the boat is at the peak of a wave, the
traces affected would be shifted downwards. By following this pattern, you
would get smoother lines, and remove wave like features on an area on the
seismic image that in real life is flat.

9.4.2 User Defined Filtering
When filtering noise from the seismic data, it is difficult if not impossible to
find a filter or filter set that works best in all situations. It would therefore be
desirable to be able to re-filter data after it has already been processed.

If the user finds an area that he or she finds interesting, or believes a different
filter could create better images, the user could mark it in the web client. The
user could then choose between numbers of different filters and filter settings
to get images exposed to these filters. The user should then be able to decide
that a certain filter suits best for this area and potentially overwrite original
images.

Storing data in the RS format would solve this. This disk stored binary format
should provide all the data needed to redo filtering of any section of a shot
gather.

9.5 Data Acquisition
Current build of RS does not support automatic collecting of seismic data.
The data needs to be manually copied from the binary data creator to RS,
via a folder on the private network. There are three ideas on how such an

66 CHAPTER 9 FUTURE WORK

automatic collection could work.

In the first, RS monitors a pre-defined shared folder on the source machine,
holding track of which files have been read, attempting to open a new file
with write permission at a given interval. If successful, the file is ready to
be transferred, if not, RS will delay for a set time, and try again later. The
negative about this approach is that it breaks the current use pattern. The
scientists are costumed to choose which folder to store files, and thus prevent
a further file management.

The second option is the same as the first, but for the fact that the target folder
can be customized via RS user interface. The disadvantage here is the need
to manage two programs when choosing a folder to store the seismic data,
RS and the source software. There would be no consequence in forgetting to
configure RS, other than RS being unable to do its work. This folder could be
set in RS during a seismic run, and would allow RS to catch up quickly.

The third option is to write a separate monitor and push program on the
source machines. The idea is that this program would monitor a folder, and
push data to RS when it becomes available. This solution would also require
a second configuration by the end user.

9.6 Use Analog Signal
RS is now dependant on the data from different seismic binary formats. An
option would be to use the analog signal that originates from the sensors. RS
would need access to these analog signals, and have access to an Analog-to-
digital converter to convert signals from analog to digital. This task could be
well suited for the Physics department of uit.

9.7 Append Module
Ideally RS would need small binary files from source software’s to provide a
delayed live image viewer. This causes a conflict with the later use of these
binary files. The use pattern after a seismic cruise is completed involves the
use of a bigger file in the further research. Many smaller files would complicate
this work. Although RS solves this by appending all input files into a big file,
the scientists would like to have the option to append only a selection of the
files. This could be done as a separate script, where the scientist specifies
the files he or she wants, and a subsequent append is done only on these

9.8 EXPORT TO JPG/PNG 67

files.

9.8 Export to jpg/png
A common use case of seismic data is exporting sections of this data to an
image format. To accommodate this RS needs an option to export a section
of the full visualization. RS could provide such a feature by creating images
straight from the planned RS format data. Here RSwould need to encode a big
image out of an area specified by the scientist. As this does not involve tiling, a
custom image creator would have to be written to support this feature.

9.9 Improved handling of Trace Depth Change
As discussed in section 5.2.2, a user configured change in trace length can
happen at any moment inside a binary file. This is handled, but not good
enough. This could have been handled by stopping a parsing of a file parsing
when a trace height change is detected. The data already parsed into the
correct format could be pushed to the cache. The cache would have to be
emptied by the creation of tiles, from all available data. From this point, the
data parsing could continue until a new potential shift occurs. This would
cause a separation of the images with vertical edges, but would not require
padding of data and re-parsing data as is the current practice. This would
also give a similar visualization experience as thermal paper plots give, where
a separation line would be visible between height alterations.

References
[1] AH Balch. Color sonagrams: a new dimension in seismic data interpre-

tation. Geophysics, 36(6):1074–1098, 1971. 65

[2] Thomas Elboth. Noise in marine seismic data. 2010. 56, 64

[3] Joyce E Farrell. Image quality evaluation. Colour imaging: vision and
technology, pages 285–313, 1999. 42

[4] Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In
Pattern Recognition (ICPR), 2010 20th International Conference on, pages
2366–2369. IEEE, 2010. 42

[5] M Jenkerson, R Houck, M Walsh, L Combee, AD Curtis, JE Martin,
N Moldoveanu, A Özbek, CM Sayers, RC Walker, et al. Signal preserving
swell noise attenuation using point receiver seismic data. In 2000 SEG
Annual Meeting. Society of Exploration Geophysicists, 2000. 64

[6] Steve Lohr. For impatient web users, an eye blink is just too long to wait.
New York Times, 2012. 41, 42

[7] Robert B Miller. Response time in man-computer conversational trans-
actions. In Proceedings of the December 9-11, 1968, fall joint computer
conference, part I, pages 267–277. ACM, 1968. 42

[8] Harris Onishi. Anisoropy in head waves in crosswell data. 3

[9] Thrasyvoulos N Pappas, Robert J Safranek, and Junqing Chen. Percep-
tual criteria for image quality evaluation. Handbook of image and video
processing, pages 669–684, 2000. 42

[10] David G Schieck and Robert R Stewart. Pre-stack fk median filtering.
64

[11] Thomas H Shipley, Mark H Houston, Richard T Buffler, F Jeanne Shaub,

69

70 REFERENCES

Kenneth J McMillen, John W Ladd, and J Lamar Worzel. Seismic ev-
idence for widespread possible gas hydrate horizons on continental
slopes and rises. AAPG bulletin, 63(12):2204–2213, 1979. 64

[12] M Turhan Taner, Fulton Koehler, and RE Sheriff. Complex seismic trace
analysis. Geophysics, 44(6):1041–1063, 1979. 29

[13] Zhou Wang and Alan C Bovik. A universal image quality index. Signal
Processing Letters, IEEE, 9(3):81–84, 2002. 42

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Marine Seismic Acquisition Process
	1.2 Current State of Visualization
	1.3 Contributions
	1.4 Conclusion

	2 RS
	2.1 RS overview

	3 Architecture
	3.1 Arcitecture Overview

	4 Design
	4.1 Data collector
	4.1.1 Data Acquisition

	4.2 Backend
	4.2.1 Data Conversion
	4.2.2 Data Filtering
	4.2.3 Data Caching
	4.2.4 Metadata Storage
	4.2.5 Tiles
	4.2.6 Storage

	4.3 Front End
	4.3.1 Websockets
	4.3.2 Web Server
	4.3.3 Client

	5 Implementation
	5.1 Backend
	5.1.1 Data Conversion

	5.2 Data Caching and Tiling
	5.2.1 Prototype
	5.2.2 In-memory Version

	5.3 Front End
	5.3.1 CSS
	5.3.2 Websocket

	5.4 Web Client

	6 Evaluation
	6.1 Evaluation Environment
	6.2 Data Processing Runtime
	6.2.1 All Images Ready
	6.2.2 One Image Ready

	6.3 Round-trip Latency
	6.4 Image Quality
	6.5 Evaluation by Expert
	6.6 On-site Evaluation

	7 Related Work
	8 Concluding Remarks
	9 Future Work
	9.1 RS Format
	9.2 Delph Parsing
	9.3 Web Client
	9.3.1 Image Overlays
	9.3.2 Improved Websocket Updates

	9.4 Filtering
	9.4.1 Improved Filtering
	9.4.2 User Defined Filtering

	9.5 Data Acquisition
	9.6 Use Analog Signal
	9.7 Append Module
	9.8 Export to jpg/png
	9.9 Improved handling of Trace Depth Change

	References

