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[1] The paper explores the hypothesis that the temporal global temperature response can
be modeled as a long-range memory (LRM) stochastic process characterized by a Hurst
exponent 0.5 < H . 1.0 on time scales from months to decades. The LRM is a
mathematical representation of the multitude of response times associated with the
various subsystems. By analysis of instrumental and reconstructed temperature records,
we verify LRM on time scales from months to centuries. We employ well-known
detrending methods to demonstrate that LRM increases when one goes from local and
regional (H � 0.65) to global (H � 0.75) land temperature records, and LRM is highest
in records strongly influenced by the ocean (H � 1.0). The increasing trend through the
last century cannot be explained as an unforced LRM fluctuation, but the amplitude of the
observed 60 year oscillation can be reconciled with the LRM process. We investigate
statistical bias and error of the analysis methods employed, and conclude that, for these
short record lengths, the error in estimated H is˙0.07 for the instrumental records.
Analysis of a northern-hemisphere reconstruction confirms that the LRM-scaling prevails
up to at least 250 years with H = 0.9˙ 0.1. We show that, if this reconstruction is correct,
the temperature difference between the Medieval Warm Period and the Little Ice Age
cannot be explained as an LRM fluctuation.
Citation: Rypdal, K., L. Østvand, and M. Rypdal (2013), Long-range memory in Earth’s surface temperature on time scales from
months to centuries, J. Geophys. Res. Atmos., 118, 7046–7062, doi:10.1002/jgrd.50399.

1. Introduction
[2] The standard paradigm of natural climate variability

up to millennial time scales is that global fields of cli-
matic variables can be decomposed into a diverse set of
quasi-coherent modes imbedded in a red-noise stochastic
field. This field has spatial correlation length of a few thou-
sand kilometers and autocorrelation time of the order of a
year [Mann and Park, 1994; Mann and Lees, 1996; Mann
and Park, 1999]. The red-noise hypothesis has replaced an
older white-noise assumption and is motivated by a num-
ber of empirical studies which suggest that the climate
noise can be adequately described as a first-order autore-
gressive (AR(1)) process xk = �xk–1 + wk, characterized
by the lag-one autocorrelation �. The red-noise stochas-
tic process exhibits short-range memory (SRM), i.e., the
temporal autocorrelation function C(t) is typically exponen-
tially decaying. Another class of processes is characterized
by long-range memory (LRM) and exhibit autocorrelation
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functions of power-law form C(t) � tˇ–1 for which the
integral

R
1

0 C(t) dt diverges. Such processes may be
Gaussian or non-Gaussian and monofractal or multifractal
[Franzke et al., 2012]. In fact, they do not even have to
belong to this wide class. It is sufficient that the process is
stationary with finite second-order structure function, which
is a power-law in the time lag [Rypdal and Rypdal, 2012].
The Gaussian approximation is valid for deseasonalized sur-
face temperature records, which are averaged over synoptic
spatiotemporal scales (e.g., monthly means averaged over
spatial scales & 103 km). Such records are also devoid of
signatures of multifractality Rypdal and Rypdal [2010]. For
all data records analyzed in the present paper, Gaussianity of
the deseasonalized and detrended records has been tested by
the standard Q-Q-plot technique [Wilk and Gnanadesikan,
1968], suggesting that fractional Gaussian noise (fGn) is
a proper model for the LRM in these data [Beran, 1994].
The power spectral density (PSD) of an fGn has the form
S( f ) � f –ˇ , and the range 0 < ˇ < 1 describes persistent
LRM noise. Here ˇ = 0 corresponds to uncorrelated (white)
noise and ˇ = 1 to strongly persistent (pink) noise.

[3] The majority of papers dealing with LRM proper-
ties in climatic records are confined to analysis of local
time records. Thus, Koscielny-Bunde et al. [1996, 1998];
Weber and Talkner [2001]; Govindan et al. [2003]; and
Eichner et al. [2003] apply the detrended fluctuation analy-
sis (DFA) method to atmospheric instrumental temperature
records from localized sites. Király et al. [2006] apply it to

7046



RYPDAL ET AL.: LONG-RANGE MEMORY IN EARTH TEMPERATURE

localized records over land, Monetti et al. [2003] over the
oceans, and Bunde and Havlin [2002] supplement these with
records from atmospheric measurements on islands, coastal,
and continental stations, and compare with corresponding
records from climate models. Bunde et al. [2001]; Govindan
et al. [2002]; and Vjushin et al. [2002] also focus on com-
paring LRM in localized records with climate model results,
pointing out a lack of correspondence between observations
and models. There are also a few studies of global land
and ocean records which suggest LRM properties on time
scales from months to decades [Pelletier and Turcotte, 1999;
Lennartz and Bunde, 2009a; Rybski et al., 2006; Rypdal
and Rypdal, 2010; Efstathiou et al., 2011], and of zonally
averaged temperature data which indicate stronger LRM
at higher latitudes than in the tropics [Varotsos and Kirk–
Davidoff, 2006]. It is possible to infer from these papers
that temperatures over oceans are more persistent than over
land and that global records are more persistent than local.
A common feature of virtually all these studies is that biases
and uncertainties, arising from the limited record lengths,
are not estimated. Thus, one of the main objectives of the
present paper is to provide proper error bars on the estimated
LRM exponents.

[4] The trends in the instrumental global temperature
record (1850–2012) are dominated by a monotonic rise
superposed on an oscillation with period of approximately
60 years. It is debated how much of the rising trend, which
is of anthropogenic origin, and the nature of the oscillation
is poorly understood. Schlesinger and Ramankutty [1994]
found some evidence that the oscillation is of internal origin,
but it has also been suggested that it is related to the motion
of the giant planets in the solar system [Scafetta, 2010,
2011a, 2011b]. Hence, it is a challenge to determine to what
extent this oscillation and the rising trend are driven by some
natural or anthropogenic forcing, or are natural fluctuations
internal to the climate system. For internal fluctuations, it is
also important for predictability on multidecadal time scales
to determine if they are constituents of coherent climate
modes detectable with high confidence under an LRM-noise
null hypothesis, or if they are plausibly explained as fluc-
tuations consistent with a long-memory process. The length
of the global instrumental records does not allow us to esti-
mate LRM properties of the records on time scales longer
than about 20 years. To establish LRM on longer time scales,
we need records of reconstructed temperatures. Rybski et al.
[2006] employ DFA to establish Hurst exponent of six differ-
ent reconstruction records, among these the Moberg record
analyzed here, and for the latter, they establish a spectral
index ˇ = 0.86 ˙ 0.03. The method by which they obtain
the error estimates is not explained, but it seems to be based
on a standard regression analysis, which assumes a linear
model for the log-log fluctuation function with a Gaussian
noise superposed. This method, which is based on only one
realization of the record, is completely inadequate for testing
an fGn-model of the signal, and gives too low error bars and
no information about statistical bias. The proper method is
to employ Monte Carlo simulations which explores the vari-
ability of different realizations of the LRM process. In the
present paper, we obtain error bars on this estimate, which
allows us to address the important question of whether the
millennium oscillation in the reconstruction record, separat-
ing the medieval warm period (MWP) from the little ice age

(LIA), can be completely described as a realization of an
fGn process with the estimated memory exponent. This pos-
sibility was suggested by Rybski et al. [2006], but without
quantitative assessment.

[5] In a recent study, Vyushin et al. [2012] compared the
performance of the AR(1) statistical model and an LRM
model for temperature time series from local observations
distributed in a global grid. They also used correspond-
ing data from multimodel ensemble simulations associated
with the Coupled Model Intercomparison Project 3, and con-
cluded that both statistical models describe these local data
equally well. The persistence in both statistical models are
higher over oceans than over continents, and in the climate
models, the persistence is independent of the forcing, hence,
the LRM properties are associated with the climate response
rather than with correlation structures in the forcing. Vyushin
et al. [2012] do not extend their study to time series of
regional and global averages and therefore miss the oppor-
tunity to observe that the SRM properties fade away in favor
of LRM as one goes from local to global behavior. One
of the purposes of the present study is to demonstrate that
strong LRM is a fundamental characteristic of global cli-
mate response. The methods employed here does not allow
us to make tests which discriminate more clearly between
SRM models like AR(1) and LRM models like fGn for local
climate records. In a forthcoming paper, we will employ
methods which utilize the information in available records
of global radiative forcing and allow us to test the valid-
ity of the two models in describing the recorded climate
responses to the known forcing. The result is that also local
temperature series are consistent with an LRM process and
inconsistent with an AR(1) process.

[6] In section 2 of this paper, we present a stochastic-
dynamic model (SDM) of a global climate variable exhibit-
ing LRM response to external deterministic and internal
stochastic forcing. This model allows us to estimate ˇ in
those cases where time series of the deterministic com-
ponent of the forcing are available. What we estimate by
this method are the LRM-properties of the climate response
function, independent of correlation structures present in the
forcing. Due to space limitations, we will have to show
the results of this method in a forthcoming paper. The rea-
son for sketching the method here is to point out that the
problem of separating stochastic signal and trend disappears
when forcing data is available and is taken into account, and
that systematic methods of analysis exist. Section 3 gives
a brief summary of more conventional detrending methods
which do not require knowledge of deterministic forcing,
but have to devise ways to eliminate deterministic trends in
the signals. We also present here some new results on how
to evaluate the consistency of a given record with the LRM
hypothesis using Monte Carlo simulations, and estimates
of biases and uncertainties of ˇ for the different estima-
tion methods. In section 4 we present detailed analyses
of global, regional, and local instrumental records, utiliz-
ing methods and results presented in section 3. Section 5
extends these results to centennial time scales by analyzing
a northern hemisphere temperature reconstruction covering
the last two millennia. The LRM estimates of instrumental as
well as reconstructed temperature records are presented with
an evaluation of statistical biases and uncertainties result-
ing from the finite record length. The results allow us to
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draw general conclusions about the spatiotemporal origin of
LRM (local versus global) and about the roles of land and
ocean in its genesis. Section 6 provides further discussion of
the results, and we conclude that the oscillations on multi-
decadal and multicentennial time scales can be considered as
inherent parts of a realization of a long-memory fGn model
with ˇ � 1, while the rising trend over the last century
cannot be reconciled with such a null hypothesis.

2. Estimation of LRM-Response
to Known Forcing

[7] For the period since 1880 the global radiative forc-
ing F(t) of the Earth’s climate has been estimated with
annual resolution, and is routinely used as input in climate
models [IPCC, 2007]. The evolution of global climatic vari-
ables, like the global mean surface temperature (GMST),
on decadal to centennial time scales can be modeled as the
integrated response of the atmosphere-ocean system to F(t)
in addition to stochastic forcing of GMST from internal
synoptic-scale dynamics. To illustrate this point, let us con-
sider a simple one-box energy balance model for the GMST
anomaly T(t) resulting from an external forcing F(t) and an
internal stochastic forcing �w(t), where w(t) is a Gaussian
white-noise process of unit variance,

dT
dt

+
1
�c

T =
1
C

[F(t) + �w(t)]. (1)

Here C is the effective heat capacity of the climate system
and �c is the time constant for the climate response. An ele-
mentary explanation of the one-box model can be found in
Vallis [2012], and a derivation is given in Rypdal [2012].
The stationary solution of this equation in presence of a con-
stant forcing F and zero stochastic forcing is T = SeqF, where
Seq = �c/C is the equilibrium climate sensitivity. Since the
equation is linear, the general solution can be separated into
a response to the deterministic and stochastic forcing,

T(t) =
1
C

Z
G(t – s)F(s) ds„ ƒ‚ …

deterministic solution

+
�

C

Z
G(t – s) dw(s)„ ƒ‚ …

Ornstein-Uhlenbeck

. (2)

where G(t) = e–t/�c #(t) is the impulse response, and #(t)
is the Heaviside step function. The response to the stochas-
tic forcing is the well-known Ornstein-Uhlenbeck stochastic
process, which has the character of a Brownian motion on
time scales shorter than �c and of a white noise on scales
longer than �c. This stochastic process is the continuous-time
analog to the discrete-time AR(1) process. Equation (1) can
be generalized to yield an LRM-process (a fractional Gaus-
sian noise (fGn) or a fractional Brownian motion (fBm)) as
solutions to the stochastic forcing problem. Formally this is
done by replacing the left-hand side of the equation with
a Liouville fractional derivative operator Dˇ/2 [Herrmann,
2011], such that the equation takes the form,

1
�(ˇ/2)

(Dˇ/2T)(t) =
1
C

[F(t) + �w(t)]. (3)

In practice, it is not essential to know the definition of the
fractional derivative, since the equation is uniquely defined

by its solution, which is far more instructive;

T(t) =
1
C

2
6664
Z

(t – s)ˇ/2–1
+ F(s)ds„ ƒ‚ …

deterministic solution

+ �
Z

(t – s)ˇ/2–1
+ dw(s)„ ƒ‚ …

1/fˇ noise

3
7775 . (4)

The stochastic part of this solution (the term to the right)
has a power spectral density of the form S( f ) � f –ˇ ,
and is an fGn (a stationary process) if –1 < ˇ <
1 and an fBm (nonstationary) if 1 < ˇ < 3. The
physical rationale behind replacing the exponential cli-
mate response with a power-law response is discussed in
Rypdal [2012]. It is argued that the climate response involves
more than one single time constant (which has also been
noted by several other authors), and that the main fea-
tures of the GMST record can be better reproduced by
the LRM response than by the exponential response. An
LRM-like response can also be constructed from multi-box
energy balance models involving a hierarchy of interact-
ing subsystems with increasing time constants, such as
the atmosphere, ocean mixed layer, sea ice, deep ocean,
and so on.

[8] In a forthcoming paper, we employ equations (2) and
(4) as parameterized stochastic-dynamic models with the
known forcing function F(t) as input and observed and
reconstructed global temperature time series as output. The
unknown parameters {C, � , �c} in equation (2) and {C, � ,ˇ}
in equation (4) are then determined by maximum-likelihood
estimations (MLE). The MLE method is described in Beran
[1994] and in most intermediate or advanced textbooks on
time series analysis. By modeling the response rather than
the signal, the trends are represented as the response to the
deterministic component of the forcing. The stochastic com-
ponent of the signal is uniquely defined as the response
to the stochastic forcing, and hence no explicit detrend-
ing is needed. This is an obvious advantage compared to
those methods where ˇ is inferred from the temperature
records alone.

[9] When forcing information is not available, or avail-
able but not used, trends must be modeled along with the
stochastic component of the signal. This can be done within
a fully parametric model, e.g., by modeling the signal as an
fGn superposed on a polynomial trend of a given order, leav-
ing the memory exponent and the polynomial coefficients
to be estimated by MLE. But trends can also be modeled
or eliminated in a semiparametric approach where the trend
is determined by some smoothing procedure, sometimes
guided by physical insight or assumptions, or eliminated
by techniques designed to remove polynomial components
in the signal up to a given order. We call this approach
semiparametric because the methods do not estimate trend
parameters. The fully parametric models represent a more
systematic approach, but the results are more sensitive to
the selection of model, e.g., the selection of the polynomial
order of the trend.

[10] In the present paper, we shall not use information
about forcing, and hence we will have to separate trends
from noise. A major goal is to establish sound physical intu-
ition on this issue by applying a number of semiparametric
methods, which derive directly from the scaling properties
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of the LRM noise. For this reason, we shall also avoid the
more abstract MLE methods in this paper.

3. Detrending Methods
[11] These methods have to be implemented if reliable

data about the deterministic forcing component are unavail-
able, or can be used as a complement to the methods
described in the previous section even when forcing records
exist. Let us assume that the stochastic component of the
observed record is a discrete-time stationary stochastic pro-
cess x1, x2, : : : (a “noise") and let y0, y1, : : : be the cumulative
sum (also called the “profile” of the sequence {xk});

y0 = 0, and yt =
tX

k=1

xk, for all t = 1, 2 : : : . (5)

In other words, xt = yt – yt–1 is the differenced profile
time series. For a self-similar process {yt} the second-order
structure function is a power law [Beran, 1994],

S2(� ) � E[(yt+� – yt)2] = E[y2
� ] / �2H. (6)

Here H is the self-similarity exponent for the profile {yt} and
the Hurst exponent for the differenced noise process {xt}.
If the probability density function is Gaussian, the process
{yt} is called a fractional Brownian motion (fBm), and {xt}
is a fractional Gaussian noise (fGn). Strictly, self-similarity
on all scales is defined only for a continuous-time stochas-
tic process, but the results above are still valid for discrete
processes which are self-similar (scale invariant) on scales
larger than the time step of the discrete process. The impor-
tance of the Hurst exponent is its relation to correlations
in the noise {xt}. If it is an fGn then the autocorrelation
function (ACF) takes the form [Beran, 1994],

C(� ) � E[xtxt+� ] � (2 – � )(1 – � )�–� . (7)

where � = 2 – 2H. Equation (7) implies that the correla-
tion function of {xt} has algebraic decay for all H 2 (0, 1)
except for H = 1/2, for which {xt} is an uncorrelated noise.
For 1/2 < H < 1, the integral over the correlation func-
tion

R
1

0 C(� ) d� is infinite, and this property is what defines
long-range memory (or long-range persistence). By taking
the Fourier transform of equation (7) it is easy to show that
the power spectral density (PSD) also has a power-law form
[Beran, 1994],

S( f ) / f –ˇ , (8)
where ˇ = 2H – 1 is the spectral index. Thus, H = 1/2 cor-
responds to a “flat” PSD (white noise) and H = 1 to S � 1/f
(pink noise). In this paper we shall mainly be concerned
with persistent, fractional Gaussian noises (or LRM noises).
These are processes characterized by spectral indices in the
range 0 < ˇ < 1, or equivalently; Hurst exponents in the
range 1/2 < H < 1, or autocorrelation exponents in the range
0 < � < 1. The instruments to estimate these exponents
are then the instruments to estimate power spectral densities
S( f ), second-order structure functions S2(� ), and autocorre-
lation functions C(� ). For S( f ) we shall invoke the Fourier
transform technique, also known as the periodogram,
due to its conceptual simplicity, but for actual computa-
tion of the spectral index, we shall employ the Wavelet
Variance Analysis (WVA) [Flandrin, 1992; Malamud and

Turcotte, 1999] because of its ability to eliminate the effect
of trends. For S2(� ), we will perform fluctuation analy-
sis (FA), supplemented by detrended fluctuation analysis
(DFA). For ACF, we will use a standard moving-window
averaging technique for estimation:

C(� ) =
1

(N – � )�2

N–�X
k=1

(xk+� – �)(xk – �), (9)

where � and � 2 are the true mean and variance for the
stationary process, respectively. In numerical realizations
(samples) of stochastic processes, the true mean and vari-
ance are known, but in observed time records, they usually
are not. In those cases they have to be replaced by the
sample mean and variance, and this gives rise to a biased
estimate when records are short. In this paper the purpose
of generating numerical samples of specified processes is to
subject them to the same analysis as applied to observed time
records. Since the ACF of the observed record can only be
estimated using the sample mean and variance (the biased
estimate), we have to do the same with the numerical sam-
ples. Analytic expressions for the ACF bias, and methods
for corrections, have been obtained by Lennartz and Bunde
[2009b]. The bias of the ACF estimate is one reason for not
using it to estimate the Hurst exponent. On the other hand,
the ACF is the most intuitive and direct measure of LRM,
and is why we shall use it to test if an observed record is
consistent with an fGn model for which the Hurst exponent
has already been estimated by other methods.

[12] The PSD is estimated with the periodogram, which
for the evenly sampled time series x1, x2, : : : , xN is defined in
terms of the discrete Fourier transform Hm as

S(m) =
2|Hm|2

N
, m = 1, 2, : : : , N/2.

Since our time unit here is the sampling time, the frequency
measured in cycles per time unit is fm = m/N. The smallest
frequency which can be represented in the spectrum (and the
frequency resolution) is 1/N, and the highest frequency that
can be resolved (the Nyquist frequency) is fN/2 = 1/2.

[13] If we want to eliminate the effect of a linear trend
on the estimate of H, an elegant approach is to use Wavelet
Variance Analysis (WVA) [Flandrin, 1992]. Suppose we
have chosen a mother wavelet  (t). Common choices of
 (t) are nth order derivatives of the Gaussian function,
among which the second-order derivative (the Mexican-hat
wavelet) is most frequently used. For an fGn characterized
by ˇ = 2H – 1, the variance of the wavelet coefficient
W(t, s) = (1/

p
s)
R
 [(t0 – t)/s] dt0, i.e.,

Vw(s) =
1
N

NX
t=1

|W(t, s)|2

depends on the wavelet scale s like

Vw(s) � sˇ .

The WVA method, with nth order derivatives of the
Gaussian wavelet, filters out oscillations on the scale s and
has much in common with the local Fourier transform.
Because it is a local filter, it reduces the effects of trends on
longer scales than the scale s and eliminates exactly poly-
nomial trends of order n – 1 and lower. In this paper we
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Figure 1. (a) Blue: a numerical realization of an fGn with
ˇ = 0.8 (H = 0.9). Red: the same signal, but with zero
sample mean. (b) The blue, irregular curve is the unbiased
ACF estimate from the blue signal in Figure 1a. The red,
irregular curve is the biased ACF estimate from the red sig-
nal in Figure 1a. The thick, blue curves mark the border of
the 95% confidence region for the unbiased ACF estimate,
based on an ensemble of 5000 realizations of the fGn. The
red, thick curves mark the border of the confidence region
for the biased estimate.

will restrict ourselves to the Mexican-hat wavelet, which
completely eliminates linear trends and reduces the effect
of higher-order trends. In the figures, we shall plot the
wavelet variance as a function of the stretched scale � =
(10/3)s which for this wavelet is approximately the period
of oscillation in the wavelet. Using this as the scale param-
eter allows direct comparison with Fourier methods like the
periodogram.

[14] Because of the stationarity of the increments of the
profile yt, the square root of the second-order structure func-
tion

p
S2(� ) can be estimated by the fluctuation function;

F(� ) �

vuut 1
N – �

N–�X
l=1

|yl+� – yl|2. (10)

According to equation (6), the fluctuation function of an
LRM process with Hurst exponent H scales with � as

F(� ) = k�H, (11)

where k is a constant, and hence log F(� ) = H log � + log k.
The plot of log F versus log � is a straight line with slope H
if {xt} is an LRM noise.

[15] Like the FA method, the detrended fluctuation analy-
sis (DFA) is performed on a fluctuation function based on the

profile {yt} [Koscielny-Bunde et al., 1996, 1998]. The pro-
file is divided into N� = N/� non-overlapping segments of
equal length � and enumerated by the index � = 1, : : : , N� .
In each segment an nth order polynomial fit is computed and
subtracted from yt for each segment, thus producing a locally
detrended signal. In the final step, the variance F2(�, � ) for
the detrended signal in each segment is computed, and the
fluctuation function is found as the square root of the average
over all the segments;

F(� ) =

"
1

N�

N�X
�=1

F2(�, � )

# 1
2

, (12)

The Hurst exponent is then estimated from the asymptotic
relation F(� ) � �H by plotting log F(� ) against log � and
computing the slope of the linear regression line. The fluc-
tuation function depends on the order of the detrending
polynomial, hence, for polynomial order n, we denote the
method as DFAn. For a time series with no trends, our
detrending function is a zeroth-order polynomial, i.e., we
subtract the segmental mean from yt in every segment. We
shall adopt the convention of denoting this method DFA0, in
accordance with Eichner et al. [2003]. This is not identical
to FA, where the record mean is subtracted in every segment.

[16] The fact that all measures of LRM have their uncer-
tainties and biases is not an unsurmountable problem if
one explores the opportunity to clarify these through Monte
Carlo simulation of the specified LRM processes. When
we know the biases through analysis of large ensembles of
simulated realizations of the processes, we can correct our
analysis results, and we can obtain confidence estimates. In
this paper we shall show some examples on how this can be
done, which will give us an idea about how accurate the esti-
mates we can obtain from the relatively short climate records
that we have at hand. The method we employ to generate an
LRM process with a given Hurst exponent is described in
McLeod et al. [2007]. The resulting signal has the desired
correlation structure, a PSD on the form S( f ) � f –ˇ , and is
a realization of an fGn with H = (ˇ + 1)/2.

[17] In Figure 1a, the blue curve is a realization of an fGn
with H = 0.9 (ˇ = 0.8 , � = 0.2) containing 2000 data points.
The true mean (ensemble mean) of the process is zero, but
the sample mean is not. The red curve is the same signal
with zero sample mean. In Figure 1b, we have plotted the
ACF estimate for this realization (blue irregular curve). The
theoretical ACF for this process decays as 1/�� , but due to
the finite length of the sample, the estimate is very noisy.
The red irregular curve is the biased ACF estimate obtained
from the red signal with zero sample mean in Figure 1a.
By computing these unbiased and biased estimates for an
ensemble of 5000 realizations of the fGn process, and com-
puting the ensemble mean, we obtain one smooth curve for
the unbiased estimate and another for the biased estimate.
The former is a 1/� 0.2-function, but the latter will attain
negative values for large � due to the bias [Lennartz and
Bunde, 2009b]. This negative bias is more pronounced for H
approaching unity. At any given � we compute the 95% con-
fidence interval for the distribution of ACF estimates. The
border of these intervals are shown as the blue thick curves
in Figure 1b for the unbiased estimates, and as the red, thick
curves for the biased estimate. If an observed record has a
biased ACF estimate within the confidence limits marked by

7050



RYPDAL ET AL.: LONG-RANGE MEMORY IN EARTH TEMPERATURE

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. ˇFA (red) and ˇWVA (blue) plotted against ˇ.
Every point has been computed from an ensemble of numer-
ically generated fGn records of only 2000 data points. The
error bars are 95% confidence intervals and are approxi-
mately ˙0.14 for both estimation methods.

the red curves, the variability of the record can be described
as a natural fluctuation within the LRM process, and hence
needs not be explained as trends imposed by external forc-
ing. On the other hand, if the estimate extends way beyond
these confidence limits, one has to conclude the existence of
trends, provided the null hypothesis is an LRM process with
the prescribed Hurst exponent. A great advantage of this
simple test is that it is capable of detecting both slow and fast
signal components violating the null hypothesis, not only
the slow trends. For instance, climate oscillations which are
incompatible with the LRM hypothesis could be detected,
irrespective of their characteristic period.

[18] The estimates which yield equation (11) are unbiased
only if {xk} are samples of a process with true mean� = 0. If
{xk} are samples with zero sample mean, the variogram is a
strongly biased estimate for H close to 1, where it returns too
small values for short records. This was observed in Monte
Carlo simulations by Malamud and Turcotte [1999], and
computed analytically by Lennartz and Bunde [2009b]. Such
biases is one of many reasons to use several different esti-
mators when one investigates data for long-range memory.
DFA does not have this bias problem because it is inherent in
the method to subtract the segment mean, and the same is the
case with power spectra and wavelets. Finite length of the
records also introduce large uncertainties in the estimates,
and this is a problem with all methods, although some are
worse than others [Franzke et al., 2012]. This is shown for
FA and WVA in Figure 2, where estimates have been made
based on ensembles of 1000 realizations with record length
2000 data points, which is the typical length of the climatic
data records we analyze in this paper. Here we observe that
while the typical bias for ˇWVA is negligible, the bias for ˇFA
when ˇ approaches 1 is close to –0.2. The ˙2� error for
both estimates over the entire ˇ-interval is approximately
˙0.14. Since H = (ˇ + 1)/2, the corresponding figures for H
is ˙0.07.

[19] In Figure 3, we investigate the detrending capabil-
ity of FA and WVA for records of 2000 data points. We
generate a numerical realization x(ˇ)

t of an fGn with ˇ = 0.5
and unit variance and analyze this record and another record
X(ˇ)

t = x(ˇ)
t + 0.001(t – 1000). The growth in X(ˇ)

t due to the

added linear trend over the record is twice the standard devi-
ation of the noise, which is not more than what is obtained
by linear regression of the instrumental temperature records,
which we will analyze in the next section. The chosen value
of ˇ is also in the range found in these records, so this sig-
nal exhibits roughly the LRM- and trend-properties of the
instrumental records. Figure 3a shows the variogram for the
fGn signal (red) and the signal with trend (black). The for-
mer has slope H = 0.75, corresponding to ˇ = 0.50, while
the latter has slope H = 0.82, corresponding to ˇ = 0.64.
Hence, FA for the signal with trend gives a clear overesti-
mate of the true exponent ˇ = 0.5. For a stronger trend,
FA on the signal with trend will return ˇ � 1, i.e., the
FA is totally overwhelmed by the trend. How such analy-
ses have lead to misinterpretations were discussed by Rypdal
and Rypdal [2010]. In Figure 3b, we show the correspond-
ing results from the WVA. The fluctuation function for both
signals look very similar up to a certain scale; in this case
�+ � 60. The effect of the trend appears in the black curve
for � > �+ as a cross-over to a scaling dominated by the trend.
The value of �+ is reduced for stronger trend. The curvature
for � � �– � 3 is inherent in the wavelet method. Hence,
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Figure 3. (a) FA of synthetic fGn record with ˇ = 0.5 (H =
0.75), � = 1 and length 2000 data points (red) and FA of the
same record with the linear trend with slope 0.001 (black).
Over the entire record, the trend implies an increase of 2� .
The slope of the red curve is H = 0.75 and for the black
curve H = 0.82. (b) The same as in Figure 3a, but for WVA.
The slope of the red curve corresponds to H = 0.72 and for
the black curve to H = 0.73. The scale � used in the WVA
is � = (10/3) s, where s is the wavelet scale parameter. This
convention is used in all WVA plots throughout the paper.
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Figure 4. (a) WVA of the CET record. The slope of the
black line is ˇ = 0.26, corresponding to H = 0.63. (b)
DFA0–8 of CET. The upper curve is the fluctuation func-
tion for DFA0, the ones below are DFAn, n = 1, : : : 8, with
DFAn + 1 coming as the curve right below DFAn.

we conclude that if the trend is weak enough to provide a
segment �– < � < �+, which is long enough to fit a straight
line, the WVA will allow us to obtain a good estimate of ˇ
for the underlying noise process. However, the method is not
fool proof. One has to examine the fluctuation function to
find the best fitting interval (if possible), and one has to take
into consideration the uncertainties that were demonstrated
in Figure 2.

[20] The detrending properties of DFA with respect to
a linear trend can be studied the same way as we did for
FA and WVA in Figures 2 and 3. We find that the bias
for DFA and WVA are both negligible, while the errors are
somewhat larger for DFA. In our WVA analysis we have
used the Mecixan-hat wavelet. Higher-derivative wavelets
will have effects similar to higher-order DFA. They will in
principle have better detrending capabilities, but for short
records higher-order wavelets will give rise to stronger oscil-
lations in the fluctuation function and high-order DFA has
spuriously steep fluctuation function for small � . Thus, the
general performance and detrending capabilities of the two
methods are quite similar. Curiously, DFA has completely
dominated the literature on LRM in climate records.

[21] Throughout this section we have for conceptual sim-
plicity used the fGn as our paradigmatic model, and it could

be objected that this is also a parametric model, requir-
ing self-similarity and Gaussianity. However, all results
described above, except for those based on the Monte Carlo
simulations of fGns, are valid for a much broader class of
processes. The power-law dependence of the ACF and PSD
depends only on the power-law dependence of the second-
order structure function S2(� ) [Rypdal and Rypdal, 2012].
Hence, the PDFs do not have to be Gaussian, the only
requirement is that the second moment is finite. Moreover,
the process does not have to be self-similar. It could be mul-
tifractal, i.e., the qth structure function Sq(� ) = E[y2

� ] / ��(q)

does not need to have scaling exponent 	(q) which is linear
in q. And it does not even have to belong to the class of mul-
tifractals, since we don’t require that Sq(� ) are power laws in
� , except for q = 2. Hence, the techniques of periodogram,
FA, DFA, and VWA all estimate the scaling exponent H for
a wide class of stationary processes with finite second-order
structure function, which scales like S2(� ) / �2H. This is the
strength of these techniques, which make them worthwhile
to pursue in spite of weaknesses as estimators.

4. Analysis of Instrumental Temperature Records
[22] In this section we analyze three different instrumen-

tal temperature records with detrending methods. We start
the analysis of each record by WVA and DFA0–8 to obtain
a first assessment of the scaling properties and an “auto-
matic” estimate of the Hurst exponent. This is followed by
estimation for different degrees of polynomial detrending of
periodograms, FA, and ACF estimates with confidence lim-
its determined from Monte Carlo simulations. The purpose
of applying these simple estimators on the polynomially
detrended signals is to establish which degree of polyno-
mial detrending we can undertake before we destroy the fGn
scaling at long time scales. The physical significance of the
results are discussed on the way.

4.1. The Central England Temperature Record
[23] The Central England temperature record (HadCET)

is the longest continuous instrumental record in the world.
The monthly mean temperatures are recorded from 1659 to
date and are representative of a roughly triangular area of
the United Kingdom enclosed by Lancashire, London, and
Bristol [Manley, 1974; Parker et al., 1992]. The data set
can be downloaded from the Hadley Center Met Office web
site. It is assumed to be representative of the monthly mean
temperature variations over a region with spatial extent of a
few hundred kilometers, and hence is somewhat less influ-
enced by weather noise than records from a single station,
but much more than hemispheric or global records. The sea-
sonal variation of this record is obtained by computing the
climatology, which is the mean temperature of a given month
averaged over the record. The climatology curve over the
year is very close to a sine function with peak-to-peak ampli-
tude of approximately 12 K. The deseasonalized record is
obtained by subtracting the climatology.

[24] The WVA and DFA estimates of the deseasonalized
CET record are shown in Figure 4. In this case it is a bit
difficult to determine the exact position of the crossover �+
in the WVA fluctuation function. This is because of a wave-
like structure on the fluctuation function, which is an effect
of the finite record length. These waves are present also in

7052



RYPDAL ET AL.: LONG-RANGE MEMORY IN EARTH TEMPERATURE

(a)

(c)

(b)

(d)

Figure 5. (a) PSDs of deseasonalized monthly CET record 1659–2011 A.D. with variable degree of
detrending. Gray: undetrended. Red: P1 detrended. Purple: P3 detrended. Blue: P7 detrended. Thick line
has slope –ˇ = –0.30, corresponding to H = 0.65. Vertical dashed lines mark the 60 year period (blue),
and the 1 year period (red). (b) FA of the CET record with variable degree of detrending. Black: after no
detrending. Red: after P1-detrending. Purple: after P3-detrending. Blue: after P7-detrending. The slope of
the black line is H = 0.73 and of the red line is H = 0.66. (c) Gray: Deseasonalized monthly CET record in
degrees Kelvin (time origin starts 1659 A.D.). Colored: Polynomial fits. Red curve: P1-fit. Purple: P3-fit.
Blue: P7 fit. (d): Black: ACF estimate from undetrended, deseasonalized CET record. Red: ACF estimate
from P1-detrended, deseasonalized CET record. The shaded area represents the 95% confidence interval
for the ACF computed from an ensemble fGns of the same length as the GMLT record and with H = 0.65.

numerical realizations of fGns (see e.g., the red curve in
Figure 3 b), but are reduced for longer records. For the CET
record, the positive phase of this wave incidentally coincides
with �+ and makes the crossover less evident. However,
with this insight, we estimate that �+ � 27 and use this as
the upper border of the fitting region, giving the estimate
H = 0.63. Interestingly, an analysis of a shorter record from a
single station (Durham, UK, 1880–2012) yields the same H,
suggesting that local and regional Central England temper-
atures on time scales longer than a month exhibits the same
scaling properties. The uncertainty of the estimate shown in
Figure 4a is greater than usual, because of the uncertainty in
estimating �+. Figure 4b shows an DFA0-slope of H = 0.79
converging toward H � 0.64 for DFA8. We made assess-
ments of bias and uncertainty of these estimates in section 3
(Figure 2), and found negligible bias and uncertainty of
˙0.07 for both WVA and DFA8. This suggests an fGn pro-
cess with H = 0.64 ˙ 0.07 superposed on a linear trend,
which is significant enough to influence the DFA0 analysis.

[25] We shall supplement these estimates with a more
intuitive heuristic analysis based on the periodogram and
the FA. The deseasonalized record is shown in Figure 5c,
along with linear (P1), third-order (P3), and seventh-order
(P7) polynomial least-square fits to this record. When a
Pn polynomial fit is subtracted from the deseasonalized
record, we shall refer to the result as a Pn-detrended record.
The P1-detrended, deseasonalized CET record has standard
deviation 1.39 K.

[26] Since the most intuitive measure of LRM is the
estimated PSD (we use the periodogram estimator) in a
log-log plot, we have made such plots for varying degrees
of detrending. In general, detrending reduces the low-

frequency components in the spectrum, and more so for
higher degree of the detrending polynomial. For the CET
record, the power in the lowest frequencies is not very much
above a linear fit to the log-log spectrum, but a P1-detrending
seems to give a better power-law behavior of the PSD. The
black line in Figure 5c is not a fit to any of the spectra, but a
line of slope –ˇ = –0.30 (H = 0.65). The reason for plotting
this line derives from the results of WVA and DFA shown in
Figure 4, but also from the FA curves, as will be explained
in the following. Fluctuation functions for Pn-detrended
records are shown in Figure 5b. Both the undetrended and
P1-detrended record exhibit good scaling (straight log-log
variograms) on scales up to 29 months (about 40 years),
but higher-order detrending destroys the scaling for � > 27

months (about 10 years). This means that Pn-detrending with
n > 1 removes low-frequency components in the record,
which are consistent with the LRM-scaling, and hence, peri-
odograms for such detrended records will show power in
the low frequencies below the straight line in Figure 5a.
The slope of the variogram for the P1-detrended record is
H = 0.66, which corresponds to a spectral index ˇ = 2H–1 =
0.32. Recalling that the FA bias is negligible for this small
ˇ, this result is consistent with those found from WVA and
DFA. In summary, WVA, DFA, and FA yield H estimates
of 0.63, 0.64, and 0.66, respectively, suggesting the best
estimate H = 0.65˙ 0.07 for the CET record.

[27] We can also use Monte Carlo simulations to check
that our estimates are consistent with the conjecture that
the P1-detrended record is a realization of this fGn pro-
cess. What we want to demonstrate is that the P1-detrended
observed record falls well within the ensemble of simu-
lated fGns with our estimated H, or more precisely, that the
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Figure 6. (a) WVA of the GMLT record. The slope of the
black line is ˇ = 0.48, corresponding to H = 0.74. (b)
DFA0–8 of GMLT. The upper curve is the fluctuation func-
tion for DFA0, the ones below are DFAn, n = 1, : : : 8, with
DFAn + 1 coming as the curve right below DFAn.

long time-scale variability of this record (which alternatively
could be interpreted as trends) lies within the statistical
spread of the simulated ensemble. One measure we can use
to estimate this spread is the biased ACF. In Figure 5d, we
have estimated the ACFs for the undetrended (black) and
P1-detrended (red), deseasonalized CET record. Since the
record has a finite length, this estimate is too noisy to be
used to assess whether the ACF has a power-law asymp-
totic dependence, and if so, to estimate the exponent � . A
problem in this context is that estimating an exponent would
require to look at the ACF estimate in a log-log plot, but
this is impossible since the noisy estimate is not always
positive. This, in addition to the known bias, is an obvious
reason for using the PSD estimate (which is positive defi-
nite), rather than the ACF, for estimating memory exponents.
What we can do, however, is to estimate the statistical spread
of the biased ACF estimates in the simulated ensemble. This
spread is shown as the shaded area in Figure 5d. The fact
that the estimated ACF for the P1-detrended record mostly
falls within the ˙2� confidence interval (� is the standard
deviation of the distribution of the simulated ACFs) shows
that the fluctuations on all time scales of the P1-detrended
record are within the limits of fluctuations that can be
expected in realizations of an fGn with H = 0.65.

[28] In the present example, this result is quite obvi-
ous and trivial, since the noise dominates the “trends” and
the long-range correlations appear to be rather weak. The
results are consistent with the findings of Bunde et al. [2001]
for records from individual continental stations. The situa-
tion changes, however, when observations from individual
stations are synthesized into a global temperature record.
We have analyzed the global, monthly mean temperature
records from land, ocean, and combined land-ocean from
1850 A.D. to present [Brohan et al., 2006]. These data sets
are freely downloadable from the Hadley Center. The ocean
sea surface temperatures are so dominating in the combined
data set, that the analysis of the two data sets (ocean and
combined land-ocean) yields virtually identical results. In
this paper we therefore only present the results from the
combined data set.

4.2. The Global Land Temperature Record
[29] Figures 6 and 7 show the results of the analysis

of the global mean land temperature record (GMLT), the
CRUTEM4 global data set. The result of WVA is shown in
Figure 6a and yields H = 0.74. Figure 6b presents the result
of the DFA. Here, DFA0 yields a slope of H = 0.91, which
converges to H � 0.73 for DFA1-8. The temperature record
itself is shown in Figure 7c along with polynomial fits P1, P3,
and P7. The standard deviation of the P3-detrended record is
0.35 K. This is four times less than the standard deviation for
the CET data set, and demonstrates the dramatic reduction
global spatial averaging introduces on monthly fluctuation
levels. Fluctuation levels are reduced for both data sets if one
performs a moving average with a time window � , and the
reduction is larger for larger � . The rate at which the fluctu-
ations change with window size is exactly what fluctuation
analysis measures, i.e., the standard deviation of the mov-
ing average with window � is F(� )/� . Hence, if the data set
exhibits scaling with Hurst exponent H, the fluctuations of
the moving average scales as �H–1. It may not come as a sur-
prise that the fluctuation level of the CET data set decreases
faster with increasing � than the corresponding fluctuation
level for the GMLT data, since the monthly fluctuations for
the former is so much higher, and after averaging over sev-
eral decades, the fluctuations of two data sets are both dom-
inated by global variability and are of similar magnitude.
A faster decrease of the moving average with increasing �
implies a smaller H, hence, we should expect that the FA
yields smaller H for CET than for GMLT. This is exactly
what is found in Figure 7b. Here the dotted line has a slope
H = 0.77 (and corresponds to the thick line in Figure 7a), and
is the representative scaling exponent after P3-detrending.
In this range of Hurst exponents (H = 0.77, ˇ = 0.54),
the bias of H for FA estimates is close to –0.03, and the
error approximately ˙0.07. This should yield H = 0.80 ˙
0.07. H for WVA has negligible bias and error ˙0.07 and
yields H = 0.74 ˙ 0.07. DFA converges to something near
H = 0.73, with negligible bias and error (for DFA8) ˙0.07.
A value that is consistent with all these constraints must be
close to H = 0.75.

[30] The different scaling for CET and GMLT is phys-
ically very important because it illustrates that local
variability is dominated by the horizontal spatial structure of
the atmospheric circulation systems, while the global vari-
ability is dominated by different dynamical mechanisms (as

7054



RYPDAL ET AL.: LONG-RANGE MEMORY IN EARTH TEMPERATURE

1 2 3 4 5 6 7 8
-1
0
1
2
3
4
5
6

0 500 1000 1500

-1.0

-0.5

0.0

0.5

1.0

0.001 0.01 0.1

10-5

0.001

0.1

10

0 200 400 600 800 1000 1200
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

(a) (b)

(d)(c)

Figure 7. (a) PSD of monthly GMLT record 1850–2010 A.D. Gray: undetrended. Red: P1 detrended.
Purple: P3 detrended. Blue: P7 detrended. Thick line has slope –ˇ = –0.54, corresponding to H = 0.77.
Vertical dashed lines mark the 60 year period (blue), and the 1 year period (red). (b) FA of the GMLT
record with variable degree of detrending. Black: after no detrending. Red: after P1-detrending. Purple:
after P3-detrending. Blue: after P7-detrending. The slopes for n = 1, : : : , 4 correspond to the following:
black: H = 0.91, red: H = 0.82, purple: H = 0.78, and blue: H = 0.65. The slopes for n = 5, : : : , 8 are as
follows: black: H = 0.87, red: H = 0.70, purple: H = 0.77, and blue: H = 0.23. Dotted line has slope 0.77.
(c) Gray curve: Monthly GMLT anomaly record 1850–2010 in degrees Kelvin (time origin starts 1850
A.D.). Red curve: P1- fit. Purple: P3-fit. Blue: P7 fit. (d) Black: ACF estimate from undetrended GMLT
record. Purple: ACF estimate from P3-detrended record. The shaded areas represent the 95% confidence
interval for the ACF computed from ensembles of fGns of the same length as the GMLT record and with
H = 0.75.

will become evident in the next subsection) influenced by
the ocean-atmosphere interaction.

[31] We have not yet explained why we have chosen a P3
detrended signal for estimation of H for the GMLT by the FA
method. Again, this is based on an assessment of the result
of the analysis using several different methods. The peri-
odograms for undetrended and P1-detrended records show
more power in the lowest frequencies than consistent with
a straight-line fit to the corresponding log-log periodogram,
and for detrending higher than P3 there is too little power
in these frequencies. The corresponding signatures in the FA
plots in Figure 7b is that scaling is lost for � > 3 years
for higher polynomial detrending. This picture is supported
by the ACFs in Figure 7d. The undetrended ACF estimates
is outside the confidence limits for a Monte Carlo ensem-
ble with H = 0.75, while the P3 detrended ACF is within
these limits. This implies that the monotonic trend is incon-
sistent with an fGn with H = 0.75, while the apparent 60 year
oscillation, which is prominent in the P7-detrended record,
can consistently be described as an fGn-fluctuation with this
Hurst exponent.

4.3. The Combined Global Ocean and Land Record
[32] This is the HadCRUT3 global data set for global

mean surface temperature (GMST), for which results are
shown in Figures 8 and 9. As mentioned earlier, this data
set is very similar to the HadSST global ocean sea sur-
face temperature data. The main difference from the analysis
of the GMLT is that the WVA and all DFA3-8 curves
have slopes corresponding to H � 1.0 (Figure 8), and the

log-log periodogram of the P3-detrended record is well fit-
ted by a line with slope –ˇ = –1 (Figure 9a). For H � 1.0
the bias of H for WVA and DFA3 is negligible, while the
error for WVA is ˙0.07 and for DFA3 is ˙0.14. However,
the variograms of the Pn-detrended records have slopes sim-
ilar to that of the GMLT record (Figure 9b), suggesting a
lower Hurst exponent in the range 0.8 < H < 0.9. One rea-
son why the slopes of the Pn-detrended variograms is lower
than H = (ˇ + 1)/2 = 1 suggested by the periodogram, WVA,
and DFA is the large bias of the variogram when H is close
to unity, as shown in Figure 2. This bias of H is –0.12 and
the error is ˙0.07. We must also take into account that the
estimates of bias and errors for FA in Figure 2 are done for
fGns without trends. As is apparent from Figure 9b, it is
difficult to assess accurately the appropriate degree of poly-
nomial detrending, and the appropriate fitting interval for the
FA, although of the variograms displayed, the one for P3
detrending gives the most constant scaling over the entire
range of � . That P3 detrending is the most appropriate is
confirmed by the results shown in Figure 9d. Here the ACF
estimates for the undetrended record are outside the confi-
dence intervals for ACFs for an H = 0.99-ensemble, whereas
the ACF estimate for the P3-detrended record is within these
confidence limits.

[33] The P7 polynomial fits for GMLT og GMST highlight
the existence of an oscillation in the instrumental records
with period of about 60 years. It has been suggested that
this oscillation is of astronomical origin [Scafetta, 2010,
2011a, 2011b], while the mainstream view is that it is of
internal origin and associated with the Atlantic Multidecadal
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Figure 8. (a) WVA of the GMST record. The slope of the
black line is ˇ = 1.07, corresponding to H = 1.03. (b)
DFA0–8 of GMST. The upper curve is the fluctuation func-
tion for DFA0, the ones below are DFAn, n = 1, : : : 8, with
DFAn + 1 coming as the curve right below DFAn.

Oscillation (AMO). Our analysis shows that removal of this
oscillation by P7-detrending destroys the scaling properties
of the record on time scales longer than a decade (the blue
variograms in Figures 7c and 9c, and that these oscillations
(which are present after P3-detrending) are within the con-
fidence limits for fGns with the estimated Hurst exponents.
In other words, these oscillations are explicable as natural
LRM-fluctuations superposed on a P3 growing trend, which
most likely is of anthropogenic origin. This is not inconsis-
tent with the AMO interpretation, since the AMO is not a
coherent oscillation, but rather one of many natural oscil-
lations of the climate system whose totality might be well
represented in the global temperature record as a pink-noise
LRM process.

[34] Since the GMST record is very similar to the global
sea surface temperature (SST) time series, it is reasonable
to assume that the higher memory in the GMST data, com-
pared to the GMLT, is due to the thermal inertia of the
oceans. However, the time constant of the thermal inter-
action between the atmosphere and the ocean mixed layer
is estimated to be at most a few years [Padilla et al.,
2011], while we find LRM extending at least over sev-
eral decades. This high inertia must involve heat exchange
between the mixed layer and the deep ocean which involves
the thermohaline overturning circulation [Vallis, 2012].

[35] The standard deviation of the monthly P3-detrended
GMST is only 0.17 K, which is half of that of the GMLT. On
multidecadal time scales, the two records have similar vari-
ability, so, this is consistent with the higher Hurst exponent
for the GMST. It may also suggest that the physical source
of the LRM in land temperatures is really associated with
ocean dynamics and ocean-atmosphere interaction, and not
within the atmosphere itself.

5. Analysis of Hemispheric Reconstructions
[36] A rule of the thumb is that scaling in a time record

of length N can be verified by FA or DFA only for time
scales up to � � N/10. For longer time scales, the number
of independent samples (the number of independent win-
dows of length �) is so low that the tail of the distribution
of the fluctuations is not well represented and the variance
is underestimated. The result is that the log-log curve of
the fluctuation function bends over for these large � . For
the WVA, the fluctuation function develops a wavy struc-
ture on these time scales. This is the reason why we have
only fitted straight lines to the log-log fluctuation function
for the global records up to log2 � = 8, corresponding to 256
months or about 20 years. From the instrumental records,
it is hard to verify if the LRM scaling holds for longer
scales than this, and is a major motivation for analyzing
longer records of reconstructed temperatures based on paleo
proxies. Unfortunately, the multitude of published northern-
hemisphere temperature reconstructions differ in the timing
of fluctuations on decadal and multidecadal time scales, and
also in the amplitude of the long oscillation of period approx-
imately a millennium, encompassing the Medieval Warm
Period (MWP) and the Little Ice Age (LIA). This ambi-
guity turns out to be a serious problem for establishing a
reliable assessment of the LRM properties of the records on
centennial time scales.

[37] We shall illustrate the issue by analyzing the longest
existing paleo reconstruction of northern hemisphere tem-
peratures [Moberg et al., 2005]. This reconstruction spans
the last two millennia (0–1979 A.D.) and is given with
annual resolution, although it appears smooth on time scales
less than a decade. We shall also give some consideration
to another recent reconstruction [Mann et al., 2009], which
spans the somewhat shorter period 500–1850 A.D. The lat-
ter, however, is more heavily low-pass filtered so that the
record appears smooth on time scales up to a few decades.
This makes the range of scales available for scaling analysis
smaller than for the Moberg record. Among the published
reconstructions, the Moberg record has one of the largest
amplitudes of the millennium oscillation, while the Mann
record is in the lower end; the difference being roughly a
factor two.

[38] The Moberg record itself is shown in Figure 10c
along with the seventh order (P7) polynomial fit. Lower-
order polynomial fits give insignificant trends as shown by
the variograms in Figure 10b. The undetrended variogram
suggests a Hurst exponent of H = 0.90 and the correspond-
ing line with slope –ˇ = –0.80 is plotted in Figure 10a along
with the periodogram of the undetrended and P7-detrended
signals. The periodogram of the P7-detrended record (i.e.,
the millennium oscillation is subtracted from the record)
displays a reduced power in the low-frequency part of the
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Figure 9. (a) PSD of monthly GMST record 1850–2010 A.D. Gray: undetrended. Red: P1 detrended.
Purple: P3 detrended. Blue: P7 detrended. Thick line has slope –ˇ = –1.0, corresponding to H = 1.0.
Vertical dashed lines mark the 60 year period (blue), and the 1 year period (red). (b) FA of the GMST
record with variable degree of detrending. Black: after no detrending. Red: after P1-detrending. Purple:
after P3-detrending. Blue: after P7-detrending. The slopes for n = 1, : : : , 4 correspond to the following:
black: H = 0.96, red: H = 0.92, purple: H = 0.88, and blue: H = 0.83. The slopes for n = 5, : : : , 8 are as
follows: black: H = 0.88, red: H = 0.82, purple: H = 0.78, and blue: H = 0.48. Dotted line has slope 0.77
and is the same as the dotted line in Figure 7b. (c) Gray curve: Monthly GMST anomaly record 1850–2010
A.D. Red curve: P1 fit. Purple: P3-fit. Blue: P7 fit. (d): Black: ACF estimate from undetrended GMLT
record. Purple: ACF estimate from P3-detrended record. The shaded area represents the 95% confidence
interval for the ACF computed from an ensemble of 5000 realizations of fBms of the same length as the
GMST record and with H = 0.99.

spectrum (i.e., for periods above 250 years). This creates a
flat variogram for � > 28 years and makes it difficult to fit
a straight line to any extended range of time scales � in the
variogram as shown by the blue, dotted curve in Figure 10b.
This detrending obviously does not remove only the actual
trend, but also the low-frequency part of the fGn noise back-
ground, and this may be the cause of apparent lack of scaling
of the detrended signal. On the other hand, it may not be
obvious from this analysis to which extent the millennium
oscillation should be interpreted as a trend, an inherent part
of the noise, or a combination of the two. The fact that
the power in the frequency corresponding to the 1000 year
period in the PSD of the undetrended signal is consider-
ably above the fit-line in Figure 10a suggests that all of the
power in this mode cannot be a part of the noise. This is
confirmed by the observation in Figure 10d that the biased
ACF estimated from the undetrended record is outside the
confidence limits for the biased ACF estimates for sam-
ples from the Monte Carlo ensemble of fGns with H = 0.9
(and this will also be the case for records with detrending
lower than seventh order). This means that the millennium
oscillation has too large amplitude to be consistent with
a H = 0.9 noise process.

[39] If the Moberg record can be modeled as a
millennium-oscillation trend similar to the blue curve in
Figure 10c superposed on an fGn with Hurst exponent of
the magnitude derived from WVA, FA, or DFA, it should be
possible to subject Monte Carlo realizations of such a model

to the same analysis as the observation data. The result of
these analyses should then agree within the established con-
fidence limits for the respective methods. We have done this
analysis as follows. First we produce a wavelet-filtering of
the Moberg signal which is similar to the P7 polynomial fit
shown in Figure 10c, but believed to be a somewhat bet-
ter representation of the millennium oscillation trend. The
detrended signal is obtained from subtracting this filtered
signal from the original record. We then produce a synthetic
Moberg signal consisting of this trend superposed on a real-
ization of an fGn with H = 0.87 and variance equal to that of
the detrended Moberg record. The results of the WVA and
FA applied to this signal and the observed Moberg record are
shown as the black and red curves in Figures 11a and 11b.
The same analyses have been applied to the fGn realization
and the detrended Moberg record in Figures 11c and 11d.
There is an overall good agreement between the analysis

results for the synthetic records and the observed ones. Since
the red curves in Figures 11c and 11d are results from anal-
ysis of a synthetic fGn, it is clear that most of the apparent
loss of scaling for large � in the variogram for the detrended
record is a feature of the FA method applied to a short record
and not a loss of LRM on these scales.

[40] Figure 12a shows results of the DFA applied to the
Moberg reconstruction, and Figure 12b to the detrended sig-
nal. This should be compared to the DFA of the synthetic
signal with the trend superposed on the fGn with H = 0.87
in Figure 12c and of the fGn itself in Figure 12d. For the
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(b)

(d)

Figure 10. (a) PSD of undetrended Moberg record 0–1979 A.D. (gray) and of P7-detrended record
(blue). Thick line has slope –ˇ = –0.80, corresponding to H = 0.90. Vertical dashed lines mark the 60
year period (blue), and the 1000 year period (red). (b) Variogram of the “profile” y(t) of the Moberg
record with variable degree of detrending. Black: after no detrending. Red: after P1-detrending. Purple:
after P3-detrending. Blue: after P7-detrending. The slope of the black line is: H = 0.90, red line: H = 0.89,
and purple line: H = 0.88. (c) Gray: Moberg record 0–1979 A.D. in degrees Kelvin. Blue: P7 fit . (d)
Black: ACF estimate from undetrended Moberg record. Blue: ACF estimate from P7-detrended record.
The shaded area represents the 95% confidence interval for the biased ACF computed from an ensemble
fGns of the same length as the Moberg record and with H = 0.90.

(a)

(c) (d)

(b)

Figure 11. (a) WVA of undetrended Moberg record (black) and of synthetic record consisting of
wavelet-filtered signal plus fGn with H = 0.87 (red). The slope of the black line is ˇ = 0.80 (H = 0.90)
and of the red line ˇ = 0.76 (H = 0.88). (b) FA of the same signals as in Figure 11a. The slope of the black
line is H = 0.90 and of the red line H = 0.86. (c) WVA of Moberg record detrended by subtraction of
wavelet-filtered signal (black) and of synthetic record consisting of fGn with H = 0.87 (red). The slopes
of the black and red lines are both ˇ = 0.70 (H = 0.85). (d) FA of the same signals as in Figure 11c. The
slopes of the black and red lines are H = 0.75 and H = 0.82, respectively. In the FA-curves the fit has
been made in the range of the full lines. The dashed lines are continuation of these lines to help visualize
the departure from scaling for large � .
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(a)

(c) (d)

(b)

Figure 12. (a) DFA0–8 of undetrended Moberg record. The upper curve is the fluctuation function for
DFA0, the ones below are DFAn, n = 1, : : : 8, with DFAn + 1 coming as the curve right below DFAn. (b)
DFA0–8 of Moberg record detrended by subtraction of wavelet-filtered signal. (c) DFA0–8 of synthetic
record of wavelet-filtered Moberg record superposed on synthetic fGn with H = 0.87. (d) DFA0–8 of
synthetic fGn with H = 0.87.

observed signals in Figures 12a and 12b, there is an increas-
ing slope for increasing order of the DFA, which is related to
a downward curving of the fluctuation function for small � .
This anomaly is obviously caused by the smoother character
of the Moberg record for time scales less than a few decades,
as is clearly observed in the PSD shown in Figure 10a. It is
the same feature of the Moberg record that yields the dis-
crepancy for small � between the observed and synthetic
signals in the WVA shown in Figures 11a and 11c. Another
clear anomaly is the large slope of DFA0 for the signals
with trend, and the corresponding smaller slope of DFA0 for
the detrended signals. The former is due to the effect of the
trend on DFA0, the latter is due to a negative bias on esti-
mates like FA and DFA0. This bias will be discussed in the
next section. For DFA1–4 the results in Figures 12a–12d are
similar and consistent with the value H = 0.87, but with
some random scatter in the estimated H-values due to the
previously discussed errors associated with short records.

[41] We should bear in mind that the analysis on synthetic
records here has been done on one arbitrary realization of the
fGn. Estimates of H from other realizations will give some-
what different results. In section 3, we estimated biases and
error bars for WVA, FA, and DFA applied to ensembles of
realizations of fGns containing 2000 data points. The length
of 2000 data points in the record was chosen because the
global instrumental time series contain approximately 2000
data points with monthly resolution. The Moberg record also
contains nearly 2000 data points with annual resolution, but

from the periodogram in Figure 10a, we observe a strong
depletion of the spectrum for high frequencies, indicating
that the record is smooth on scales less than 4 years. This
is also the reason why the fluctuation function for WVA of
the Moberg signal in Figure 11a (black dots) is depleted for
� < 22. This means that the meaningful sampling interval
for the study of the scaling properties of this time record
is 4 years, and hence that the “real” length of the record is
about 500 data points. Hence, in a Monte Carlo study rele-
vant for this record, we should generate fGns of this length.
The result of such a study for FA and WVA yields results
similar to those shown in Figure 2, but with larger errors and
larger negative bias for FA. The negative bias of estimated
ˇ for FA is now –0.30 when ˇ approaches unity, and the
error for both FA and DFA is approximately ˙0.20. Since
H = (ˇ + 1)/2, the corresponding figures for the Hurst expo-
nent is a bias of –0.15 for FA and error for H of˙0.10. From
these bias and error estimates it makes little sense to give the
estimate of H for the detrended Moberg record with more
than one decimal, i.e., our best estimate is H = 0.9˙ 0.1 on
scales up to � � 250 years.

[42] A more rigorous approach to this problem is to make
Monte Carlo simulations with fGns properly filtered to yield
a PSD similar to that of the Moberg record. We do this by
wavelet filtering and show the WVA fluctuation function of
the filtered signal as the red dots in Figure 13a. The dots
are the mean values computed from an ensemble of filtered
fGns with ˇ = 0.75 (H = 0.875). The error bars are the 95%
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Figure 13. (a) Black dots: WVA fluctuation function for
the Moberg record. Red dots: Mean WVA fluctuation func-
tion for an ensemble of filtered fGns with ˇ = 0.75 (H =
0.875). The error bars indicate the 95% confidence intervals
estimated from the ensemble. (b) Periodogram for one real-
ization of the filtered fGn. The black straight line has slope
–0.8, corresponding to H = 0.9.

confidence intervals computed from this ensemble. The
black dots is the fluctuation function computed from the
Moberg signal, and is the same as the black dots in
Figure 11a. Recall that the red dots in Figure 11c represent
the fluctuation function for the unfiltered fGns and note how
the filtering makes the fluctuation function coincide with
that of the Moberg record for small time lags. The same is
seen in the PSD of a realization of the filtered fGn shown
in Figure 13b, which should be compared to the PSD of the
Moberg record in Figure 10a.

[43] We can now repeat the estimates of biases and errors
with a full length record of nearly 2000 data points, of fil-
tered fGns. The result of the WVA for such an ensemble
agrees very well with those of unfiltered fGns of length 500
data points, both in the small bias and the estimated error
bars. The results of the ACF estimates in Figure 10d are not
influenced noticeably by the filtering since the fluctuations
on the shortest time scales have little impact on the corre-
lations on longer time scales. A weakness of that analysis,
however, is that it is done for one specific value of ˇ, which
is the ˇ estimated from the WVA. But as our analysis shows,
this estimate has an uncertainty of ˙0.2, so we cannot be
certain that we have used the right ˇ to test if the millennium

oscillation in the Moberg record can be reconciled with the
fGn hypothesis. Below we shall show that we can do better.

[44] The procedure is as follows: for the observed record
xobs(t), we estimate ˇobs from the WVA method. The esti-
mate is Ǒobs. By low-pass wavelet filtering, we find an
estimated millennium-oscillation trend xT

obs(t) and we char-
acterize the strength of the trend by means of the range
Orobs � max (xT

obs) – min (xT
obs). Then we generate numerically

an ensemble of appropriately filtered fGns of length equal
to that of the Moberg record (1978 data points) and repeat
this procedure for each realization in the ensemble. The true
ˇ values for the synthetic fGns are drawn at random from a
prior probability density distribution p(ˇ). From this ensem-
ble, we can establish a conditional joint PDF p(Or, Ǒ|ˇ) and
the joint distribution of estimated Or, Ǒ is

p(Or, Ǒ) =
Z

(p(Or, Ǒ|ˇ)p(ˇ)dˇ. (13)

Our knowledge prior to the analysis in this section is that the
observed record can be described by an fGn, possibly super-
posed on an oscillatory trend. We also know an estimate Ǒobs
and the PDF for this estimate derived from an ensemble of
fGns generated with ˇ = Ǒobs. If the prior distribution p(ˇ) is
chosen to be this PDF, the joint PDF given by equation (13)
should be interpreted as the likelihood of observing the pair
(Or, Ǒ) provided the null hypothesis; that the signal is an fGn
without a trend, is true. In Figure 14, we have drawn the con-
tour of constant p(Or, Ǒ) that separates an internal region for
which the total probability is 0.95 from an external region
for which it is 0.05. It shows that if the WVA yields a small
estimated memory exponent Ǒ it is unlikely that the low-
pass wavelet filtering will estimate a spurious trend with a
high range parameter Or, but at high Ǒ it is more likely that
the estimates return a spurious strong trend. If the WVA and
wavelet detrending of the observed record yield (Orobs, Ǒobs)
lying in the region where p(Or, Ǒ) is large, it is not possible
to conclude that there is a real trend, i.e., we cannot falsify
the null hypothesis that no trend exists. On the other hand,
if (Orobs, Ǒobs) is well outside this region, the null hypothesis
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Figure 14. The closed contour indicates the line of con-
stant p(Or, Ǒ) inside which the integrated probability is 0.95.
The red dot is the estimated (Orobs, Ǒobs) for the Moberg
record. The blue dot is the same estimate for the modified
Moberg record where the millennium-oscillation amplitude
is reduced by a factor two.
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is falsified, and we have to conclude that there exists a sig-
nificant trend that goes beyond the fGn model. The red dot
in the plot is (Orobs, Ǒobs) for the Moberg record, and since
it is located outside the confidence region, it confirms our
result from previous sections that millennium oscillation in
this record is incompatible with the fGn null hypothesis,
and hence is a significant trend. But the red dot is not very
far outside the 95% confidence region, and it is therefore
imperative to investigate how sensitive this result is to the
estimated amplitude of the millennium oscillation.

[45] As mentioned in section 3, the millennium oscilla-
tion in the Moberg record has larger amplitude r than in
most other reconstructions. For instance, it is about twice the
amplitude of the more recent reconstruction by Mann et al.
[2009]. A crucial question is then if the significance of this
millennium trend will survive if the range r of the oscilla-
tion is reduced by a factor two. We produce such a signal by
adding a signal corresponding to the wavelet-filtered trend-
signal, but with half its amplitude, to the “detrended” signal.
The WVA fluctuation function of this modified Moberg
record coincides with the ensemble mean of the WVA fluc-
tuation function of the filtered fGns shown by the red dots in
Figure 11a, which already indicates that reducing the ampli-
tude in the slow oscillation by a factor two makes the result
consistent with an fGn. This conclusion is enforced by com-
puting Or, Ǒ for the modified record. The result is marked as
the blue dot on Figure 14b and falls close to the center of the
joint distribution.

6. Discussion and Conclusions
[46] In this paper we have employed non-parametric

detrending techniques on regional and global surface tem-
perature records. These techniques should be considered
complementary to the more model-dependent parametric
statistical methods. The results obtained confirm the exis-
tence of strong (H � 1) long-range memory in the global
temperature records on time scale from months and at least
up to several centuries obtained by non-parametric meth-
ods [Rybski et al., 2006], and on scales from months to
decades by parametric methods [Gil-Alana, 2005]. The error
bars (˙0.07) obtained on these estimates are due to the
short lengths of the records and not strongly dependent
on the analysis technique. Ensembles of numerical realiza-
tions of the same fGn process with 2000 data points shows
considerable diversity and is an unsurmountable source of
uncertainty when it comes to estimating the memory param-
eter from a single realization. The results further suggest
that the LRM is more pronounced in global than in local
records, and more pronounced in ocean records than in land
records. They also suggest that the LRM is associated with
the thermal inertia of the oceans, and not only the inertia of
the ocean mixed layer. Response times longer than a decade
must involve overturning circulations that couple the mixed
layer to the deep ocean [Delworth et al., 1993].

[47] It is well known that aggregation of AR(1) processes
with a wide distribution of lag-one autocorrelations � can
give rise to a long-memory process [Granger, 1980]. This
can be the case even if the individual processes are indepen-
dent. In principle, this could explain the emergence of LRM
as local temperature records are merged into a global record.
However, as we will demonstrate in a forthcoming paper,

there is strong evidence that even local temperature records
exhibit LRM, so the problem to deal with is rather aggre-
gation of relatively weakly persistent LRM-processes to
produce a strongly persistent fGn. On the other hand, the var-
ious subsystems of the climate system (atmosphere, ocean
mixed layer, deep ocean, sea ice, etc.) may exhibit exponen-
tial response functions with varying time constants, whose
aggregation may produce an LRM-response on the global
scale. These are challenging issues for future research.

[48] Our analysis confirms that the rising temperature
trend over the last century is too strong to be consis-
tently described as part of the LRM process associated with
undriven climate variability [Schlesinger and Ramankutty,
1994]. However, the 60 year oscillation that is observed in
these records, and especially strong in the ocean SST record,
is explicable as a natural LRM fluctuation, and does not have
to be externally driven.

[49] In Rypdal [2012], the deterministic version of
equations (1) and (3) were studied for a prescribed forc-
ing record F(� ), but without any stochastic forcing. The
result can be interpreted as the non-stochastic response to
this forcing, i.e., in one specific meaning of the word, as a
trend. The deterministic response signal shown in that paper
appears rather “noisy” in the sense that it contains some saw-
tooth-like spikes. These are the responses to forcing from
volcanic eruptions, which are present in the deterministic
parts of the forcing. Hence, with this definition, trends do
not have to be slow, and this makes the detection problem
more difficult. However, it helps a lot if we have knowledge
about the forcing F(t) that gives rise to the trend. The tradi-
tional approaches to detecting long-range memory in climate
records is to disregard the available information about the
deterministic forcing function F(t) and analyze the signal
as if it is the response to the stochastic forcing superposed
on some hypothesized slow trend. One such approach is to
assume that the response to the deterministic forcing can be
described by a low-order polynomial, and that the stochas-
tic second term of the solution is an LRM process. In the
present paper we have employed some of these techniques
to regional and global instrumental temperature records with
emphasis on establishing proper confidence limits on the
estimates of memory exponents.

[50] The results of our analysis of the Moberg recon-
struction are consistent with those obtained by Rybski et al.
[2006] and provide proper error bars which imply that the
actual Hurst exponent for the Moberg record is in the inter-
val 0.8 < H < 1.0, with the most probable value H = 0.9. The
millennium-oscillation trend consistent with this estimate is
given as the blue curve in Figure 10a. The last half-period
of this oscillation coincides approximately with the period
and phase of a number of reconstructions of total solar irra-
diance based un sunspot number observations, which do not
go further back than to the early 17th century, and hence
may incorporate the Maunder minimum and the LIA, but
do not extend back to the MWP [Gray et al., 2010]. How-
ever, a number of more recent multiproxy reconstructions,
which extend back to 850 A.D., show much higher ampli-
tudes of an oscillation with period of roughly 200 years than
of the millennium-period oscillation [Schmidt, 2011]. This
period is not very prominent in the Moberg record, so it may
be difficult to explain the millennium oscillation exclusively
as an effect of solar variability on the basis of these TSI
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reconstructions. It is not our ambition in this paper to provide
a physical explanation of the millennium oscillation in the
Moberg reconstruction of northern hemisphere temperature,
but one cannot disregard the possibility that this reconstruc-
tion overestimates its amplitude. Reducing this amplitude by
a factor of two will bring it in more in line with the majority
of other reconstructions, and then the null hypothesis; that
the millennium oscillation is an inherent part of the LRM
noise, and cannot be rejected. This means that, unless we
use information about the forcing record, it will not be pos-
sible to settle with any certainty the issue of whether this
oscillation is an LRM fluctuation or a forced variation of the
global climate. Fortunately, forcing reconstructions for the
last millennium exists, and using it to settle this issue will be
addressed in a forthcoming paper.

[51] Acknowledgments. The authors are grateful to Ola Løvsletten
for illuminating discussions and for contributing to a numerical routine for
accurate generation of fractional Gaussian noises.
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