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Abstract

Long-range memory (LRM) has been found in numerous natural data records, both in geophysics
and other fields. In this thesis LRM in surface temperature time series is studied. Short-range
memory (SRM) models, especially the first order auto-regressive model AR(1), have been widely
used to describe geophysical data, and in the more recent years, SRM and LRM models have been
compared. SRM is therefore also included in this thesis.

Trends are important in climate studies, but the trend definition is ambiguous. Two different
approaches are included here: the trend described as a function with parameters estimated from
the data, and a response model to external forcing. The most commonly used trend function is
the linear trend, often used as a measure of anthropogenic effects on global warming. This ap-
proach is illustrated by the application to a local instrumental temperature record from Cheyenne
(Wyoming, USA). The significance of the trend is dependent on the noise model assumed to
describe the data, and here AR(1) and fractional Gaussian noise (fGn) are used. In the example
of the Cheyenne record, the trend could not be explained as natural variations in any of the two
models. Since the forcing data available are global, the response model is applied to global land
temperature, with AR(1) and fGn used as models for the stochastic response.

Some methods for investigating SRM and LRM are described, and the Cheyenne record used
as an example of applications, showing how a linear trend affects the analysis. In this section,
comparison of SRM and LRM is also included, and applied to local temperature records from
Cheyenne and Prague (the Czech Republic) and the Niño3 index (area averaged sea surface tem-
perature over Niño region 3) to find which model best describes the data. The results suggest that
temperature is best described as an fGn on large time scales. The Niño3 index is not perfectly
described by any of the noise models, but AR(1) is a better statistical model than fGn. Appli-
cation to the response model approach shows that fGn is a far better model than AR(1) for the
stochastic response in the case of the global land temperature.

The thesis also includes a literature review. In the scientific literature mostly local temperature
records have been analysed with regards to LRM. Global and hemispheric temperature means
are far less studied, so this has been our main focus. In Paper I, the LRM properties of local and
global instrumental records and a Northern Hemisphere temperature record were studied after
detrending with different polynomial trend models. LRM was found on a wide range of time
scales, but different trend models were needed for the different records to yield the best scaling
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properties. Proper error bars for LRM scaling exponents were an important part of this study and
represents improvement of previous work. In Paper II, the significance of trends in global ocean
and land temperature was investigated under three null models for noise, i.e., AR(1), fGn and
fBm. A linear trend was clearly significant in the land temperature, and incorporating this in the
null model showed that an oscillation also stands out from the natural variations that could be
explained by the noise models. The significance of trends was not so apparent for the ocean tem-
perature, but an AR(1) noise model could be rejected. Temperature from different climate model
experiments was studied in Paper III, including control runs and experiments with full dynamic
forcing. Two temperature reconstructions were also analysed for comparison with the simulated
temperatures. Scaling properties in agreement with persistent LRM noise was found for a wide
range of scales for most of the simulated temperatures. The temperature from the control runs
and the runs with dynamic forcing showed similar scaling exponents. Only the HadCM3 con-
trol run differed from the other climate model experiments, yielding a temperature with a clear
cross-over from a motion to a persistent noise.

The overall conclusion that can be drawn from the present work is that long-range persistence on
time scales from years to centuries is ubiquitous in observed Earth surface temperature records,
and that similar persistence is present in the most advanced climate models to date. This per-
sistence weakens the significance of observed temperature trends, but not enough to render the
rising temperature trends throughout the last century statistically insignificant.

ii



Acknowledgements

I would like to acknowledge UiT The Arctic University of Norway and both the Department of
Physics and Technology and the Department of Mathematics and Statistics for giving me the
opportunity to study an interesting topic.

My warmest thanks go to my supervisor Kristoffer Rypdal. I am grateful for the opportunity
to go to interesting workshops, summer schools and conferences abroad during my PhD, but
most of all for all inspiration, encouragement and support. It is truly motivating to have a super-
visor who is always eager to learn, discuss and work on new problems in science, regardless of
place and time of the day.

I also thank my co-supervisor Chris Hall for his contributions early in my PhD.

I thank my whole research group for interesting discussions, travels and general support, and
especially
Tanja for being a role model, office mate and friend, and making conferences in San Francisco
and Vienna more fun.
Martin and Tine for their contributions to my journal articles.
Tine and Hege for the good company on conference trips.
Ola for helping me learn R and making me feel welcome at the Department of Mathematics and
Statistics.

Happy thoughts are sent to everyone involved in TODOS for improving the PhD life. Keep
up the good work!

I am grateful to my friends and family for their support and for reminding me that there is more
to life than a PhD.

iii



iv



Contents

Abstract i

Acknowledgements iii

Table of Contents v

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Short- and Long-Range Memory 5
2.1 Short-Range Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Long-Range Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Trends 9
3.1 Trends and noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Trend estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Response Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Methods 15
4.1 Short-Range Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Long-Range Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Comparing Short-Range and Long-Range Memory Processes . . . . . . . . . . . 24

5 Literature Review 31
5.1 Instrumental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Simulated Temperature From Model Experiments . . . . . . . . . . . . . . . . . 37
5.3 Reconstructed Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Summary of Papers 41

7 Concluding Remarks 43

v



Bibliography 45

Paper I 53

Paper II 73

Paper III 87

vi



Chapter 1

Introduction

1.1 Motivation

The first studies of long-range memory (LRM) include Hurst (1951), who studied the hydrol-
ogy of the Nile river. Hurst et al. (1965) developed the rescaled range (R/S) analysis where
the scaling parameter H, known as the Hurst exponent, was found through a power-law relation
R
S =

(T
2

)H . T is the time scale, R is the range and S is the standard deviation during this time.
This power-law relation was first found in river flow, but also in lake levels, thicknesses of tree
rings and varves, atmospheric temperature and pressure, and sunspot numbers. Mandelbrot and
Wallis (1969) suggested adjustments to the (R/S) analysis with applications to a large number of
geophysical data, discarding some of the values for the scaling exponent obtained by Hurst et al.
(1965), but confirming the presence of LRM. Since then, various methods have been developed
to investigate scaling properties and estimate a scaling parameter. Many studies focus on the per-
formance of the methods when applied to processes which are known to be scale invariant with a
known scaling exponent (Heneghan and McDarby, 2000, Weron, 2002, Delignieres et al., 2006,
Mielniczuk and Wojdyłło, 2007, Franzke et al., 2012). Geophysical time records, however, often
exhibit deviations from pure scale-invariance which influence the estimation of the scaling pa-
rameter. Trend estimation and detrending have therefore become important in LRM studies. The
time series is then modelled as a trend superposed on an LRM noise process, but inherent in such
modelling are ambiguities concerning how to separate the trend and the noise. The statistical
significance of the trend depends on how one models the noise process against which the trend
is tested, as some noise processes naturally have slow variations which may be falsely regarded
as trends, while others do not. The separation of the trend from the noise is an issue that needs
to be resolved, and one needs to clarify whether time series which appear to have long-range
memory really do so, or if they can be better described as time series with short-range memory
with superposed trends.

A number of studies suggest that atmospheric temperature have long-range memory, and a review
of these is given in Chapter 5. Although there is increasing evidence of the presence of LRM
in such time series, a precise physical explanation of the phenomenon has been elusive. Studies
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2 CHAPTER 1. INTRODUCTION

of instrumental data indicate that sea surface temperature is more persistent than air tempera-
ture over land (Pelletier, 1997, Eichner et al., 2003, Monetti et al., 2003, Lennartz and Bunde,
2009), so ocean dynamics seem to be an important component. Spatial averaging also influences
the persistence, as temperature averages over larger regions are more persistent than local data
(Lennartz and Bunde, 2009). Some studies also indicate that persistence is large close to the
equator, and is reduced with location closer to the poles (e.g., Pattantyús-Ábrahám et al., 2004,
Huybers and Curry, 2006, Vyushin and Kushner, 2009). There are some studies of temperature
from model experiments that suggest that several types of dynamic forcing must be included to
find scaling exponents in agreement with those from instrumental records. Dynamic CO2 forcing
alone is not enough, but adding dynamic solar and volcanic forcing has been claimed to be nec-
essary to produce scaling properties in better agreement with those of observed records (Vyushin
et al., 2004, Rybski et al., 2008). There are also indications that in some data records the scaling
properties may differ in different regimes of time scales (Pelletier, 1997), suggesting that differ-
ent physics govern the different regimes. The goal of the present thesis is to shed light on some
of these issues.

1.2 Thesis Outline

This thesis is organized as follows: Chapter 2 provides a brief introduction to the concepts of
short- and long-range memory. Trend estimation is a major issue in climate science, and involves
analysis of time series with short-range and long-range memory. The approaches used here are
described in Chapter 3. Chapter 4 explains methods for estimating parameters for different noise
processes. A wide range of methods is used in the literature regarding LRM, and there are
also several methods for analysing SRD series. In addition there are variations of some of the
methods. The methods described in Chapter 4 are limited to the methods used in this thesis.
A literature review is given in Chapter 5. The papers are summarized in Chapter 6, and some
concluding remarks are given in Chapter 7.

1.3 List of Publications

Papers

Paper I

Rypdal, R., L. Østvand, and M. Rypdal, Long-range memory in Earth’s surface tempera-
ture on time scales from months to centuries. J. Geophys Res. Atmos., 118, 7046-7062,
doi:10.1002/jgrd.50399, 2013.

Paper II

Østvand, L., R. Rypdal, and M. Rypdal, Statistical significance of rising and oscillatory trends
in global ocean and land temperature in the past 160 years. Submitted to Earth System
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Dynamics Discussions, 2014.

Paper III

Østvand, L., T. Nilsen, R. Rypdal, D. Divine, and M. Rypdal, Long-Range Memory in Millennium-
Long ESM and AOGCM Experiments. Submitted to Earth System Dynamics Discussions,
2014.

Other Publications and Presentations

As first author

Østvand, L., T. Nilsen, K. Rypdal, and M. Rypdal, Long range memory and trends in model
data. Poster presentation at American Geosciences Union Fall Meeting, San Francisco, Decem-
ber, 2013.

Østvand, L., M. Rypdal, and K. Rypdal, The performance of wavelet-variance analysis as
a method for estimating long-range memory in climatic temperature record. Poster presen-
tation at European Geosciences Union General Assembly, Vienna, April, 2013.

Østvand, L., O. Løvsletten, M. Rypdal, and K. Rypdal, Maximum Likelihood Estimates of
trend- and memory-coefficients in climatic time series. Poster presentation at European Geo-
sciences Union General Assembly, Vienna, April, 2012.

Østvand, L., O. Løvsletten, M. Rypdal, and K. Rypdal, Maximum Likelihood Estimates of
trend- and memory-coefficients in climatic time series. Oral presentation at Workshop on
Complexity and Climates, Tromsø, March, 2012.

Østvand, L., K. Rypdal, and M. Rypdal, Universal Hurst exponent of local an global Earth
temperature records?. Poster presentation at European Geosciences Union General Assembly,
Vienna, April, 2011.

As co-author

Rypdal, M., K. Rypdal, L. Østvand, and O. Løvsletten, Stochastic modelling of global temper-
ature. Oral presentation at Workshop on Complexity and Climates, Tromsø, March, 2012.

Zivkovic, T, L. Østvand and K. Rypdal , On the connection between the multifractality and
the predictability from the auroral index time series. Poster presentation at 24rd Summer
School and International Symposium on the Physics of Ionized Gases, Novi Sad, Serbia, Au-
gust 2008. Published in Publications of the Astronomical Observatory of Belgrade, 84, 511-514,
2008.
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Chapter 2

Short- and Long-Range Memory

2.1 Short-Range Memory

Although the main theme in this thesis is long-range memory, a brief discussion of short-range
memory cannot be avoided. SRM processes have been widely used to model climate series, and
in the more recent years both SRD and LRD processes have been used for statistical modelling
of climate time series (Percival et al., 2001, Zorita et al., 2008, Vyushin et al., 2012). SRD
processes are characterized by an autocorrelation function (ACF), ρ(t), for which the integral∫

∞

0 ρ(t)dt is finite. One of the simplest and most commonly used SRD processes is the first order
auto-regressive process AR(1), given by (e.g., Box and Jenkins, 1970)

x(t) = φx(t−1)+σw(t), t = 1,2, . . . , (2.1)

where w(t) is a discrete Gaussian white noise process of unit variance. AR(1) is part of the wider
AR(p) family,

x(t) =
p

∑
l=1

φlx(t− l)+σw(t). (2.2)

AR(p) has an autocorrelation function

ρ(k) =
p

∑
l=1

φlρ(l− k), (2.3)

and power spectral density (PSD)

S( f ) =
σ2

x

|1−∑
p
l=1 φl exp(−2πil f )|2 , (2.4)

where f is the frequency. The PSD is defined in the interval−1/2 < f < 1/2. For AR(1), the ACF
and PSD becomes

ρ(k) = φ
|k|, (2.5)
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6 CHAPTER 2. SHORT- AND LONG-RANGE MEMORY

S( f ) =
σ2

x
1+φ2−2φcos(2π f )

. (2.6)

The ACF can be written as an exponentially decaying function,

ρ(k) = φ
|k|

= exp(logφ
|k|) = exp(−|k|/τc).

The decorrelation time τc is then determined by φ through

τc =−
1

logφ
. (2.7)

If φ≈ 1, τc ≈ 1
1−φ

. If 2π f � 1 and φ≈ 1, then

S( f )∼ 1
1+φ2−2φ(1− (2π f )2/2)

∼ 1
(1−φ)2 +φ(2π f )2

∼ 1
τ
−2
c +(2π f )2

.

The spectrum has the form of a Lorenzian, showing that the process behaves as Brownian motion
with β = 2 on scales t < τc and as white noise on scales t > τc.

AR(1) is the discrete equivalent of an Ornstein-Uhlenbeck process, which is the solution of
the Langevin stochastic equation:

dx(t)+
1
τc

x(t)dt = σdB(t), (2.8)

where B(t) is the Wiener process (Brownian motion).
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2.2 Long-Range Memory

For stationary processes, long-range memory (LRM) is characterized by a slowly decaying au-
tocorrelation function, ρ(t)∼ t−γ as t→ ∞, with 0≤ γ < 1. In this range of γ we have that∫

∞

0
ρ(t)dt = ∞. (2.9)

Equivalently, the power spectral density (PSD) of a long-range memory time series follows a
power law,

S( f )∼ f−β. (2.10)

As different methods for studying the phenomenon have been introduced, so are different scaling
parameters. The Hurst exponent H, after Hurst (1951), is widely used, and so is the power
spectral density parameter β. The relation between the parameters is

H = 1− γ

2
=

β+1
2

. (2.11)

The LRM ranges corresponding to stationary processes for H and β are 1/2<H ≤ 1 and 0 < β≤ 1.
Nonstationary self-similar processes (with stationary increments) are characterized by 1< β≤ 3.
LRM time series are often called persistent processes. Stationary processes for which−1< β< 0
are anti-persistent, while β = 0 represents a completely random process (white noise).

Two generic processes with LRM properties are fractional Gaussian noise (fGn) and fractional
auto-regressive integrated moving average (FARIMA). An fGn can be cumulatively summed
to yield a fractional Brownian motion (fBm), commonly denoted BH(t), where H is the Hurst
exponent for the increments. An fBm, BH(t), exhibits the properties (i)-(iv):

(i) BH(t) is Gaussian.

(ii) BH(0) = 0 almost surely.

(iii) E[BH(t)−BH(s)] = 0.

(iv) var[BH(t)−BH(s)] = σ2|t− s|2H .

An fBm is self-similar, i.e., BH(at) d
=aHBH(t), where d

= means equal in distribution. Using this
property, it can be shown that an fGn has the following autocorrelation function,

ρ(k) =
1
2

σ[(k+1)2H−2k2H +(k−1)2H ]. (2.12)

The asymptotic behaviour follows by Taylor expansion, where ρ(k) is first rewritten:

ρ(k) =
1
2

σk2Hg(k−1), g(x) = (1+ x)2H−2+(1− x)2H
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g(x) = g(0)+g′(0)x+g′′(0)x2 +O(x3)

= 4H(2H−1)x2 +O(x3).

Then

lim
k→∞

ρ(k) = 2H(2H−1)σk2H−2 ∼ k−γ, (2.13)

explaining the relation H = 1− γ/2 in eq. (2.11).

An ARMA(p,q) model is the stationary solution of

φ(B)x(t) = ψ(B)w(t), (2.14)

where B is the backshift operator Bx(t) = x(t−1) and w(t) is Gaussian white noise. φ and ψ are
given by

φ(x) = 1−
p

∑
j=1

φ jx j and

ψ(x) = 1+
q

∑
j=1

ψ jx j.

A FARIMA(p,d,q) process is an ARMA(p,q) process which holds for the dth difference (1−B)dXt ,

φ(B)(1−B)dXt = ψ(B)w(t). (2.15)

(1−B)d can be defined for any real number d by

(1−B)d =
∞

∑
k=0

(
d
k

)
(−1)kBk. (2.16)

The FARIMA(0,d,0) process, where d = H− 1/2, is often preferred due to its simple autocorre-
lation function,

ρ(k) = σ
Γ(1−d)Γ(k+d)
Γ(d)Γ(k+1−d)

, (2.17)

where Γ is the gamma function. Similar to an fGn, this process is stationary for −1/2 < d < 1/2

(Beran, 1994).



Chapter 3

Trends

3.1 Trends and noise

In climate studies, it is common to separate the time series into a trend component and a ran-
dom component, often called the “climate noise”. The notion of climate noise may be slightly
misleading in climate studies, since the noise contains interesting information about the climate
system. Another source of confusion is that the trend definition is ambiguous. In some studies,
the trend refers to a linear increase or decrease, while in others it is the slow variation of the
observed record. This slow variation is often characterized through a function which may be,
e.g., a polynomial, an oscillation or a combination of both.

The simplest and most commonly used noise model is white noise, which is completely uncor-
related. Correlated noise may be a short-range memory (SRM) process or long-range memory
(LRM) process. Common examples are AR(1) (SRM, Section 2.1) and fGn (LRM, Section 2.2).
When a model for the trend has been selected, the trend could be subtracted from the record, and
the correlation structure of the residual studied. Different methods may be applied to estimate
parameters for the noise model. For an LRM model these parameters could be the scaling param-
eter β and standard deviation σ. Some methods have detrending incorporated in the estimator for
the scaling parameter, e.g., DFA which removes polynomial trends. If a polynomial trend model
is chosen, prior detrending is unnecessary using this estimator. However, the residual may not
be completely described by a simple noise model. Hence, to to call it a noise may therefore be
misleading, and the broad term residual is preferred.

Detrending is important, because trends may influence both the estimation of noise parame-
ters and scaling properties of the time series. However, too much detrending or choosing a poor
trend model may also generate spurious correlations in the residual. The significance of trends
is therefore assessed more convincingly by exploring different noise models and search for a
combination of trend and noise where the trend represents a good fit to the slow variations of
the record and the noise model represents a good description of the statistical properties of the
residual. Generally, noise models with no or only short-range memory do not exhibit strong slow
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10 CHAPTER 3. TRENDS

variations, while persistent long-range memory processes do.

3.2 Trend estimation

A trend model is based on the hypothesis that observed record can be modelled as a realization
of a stochastic process of the form

x(t) = T (A; t)+σw(t), (3.1)

where T (A; t) is the trend model with parameters A = (A1, . . . ,Am) and σw(t) is some noise
process. The model in eq. (3.1), with parameters A estimated from the observed record, is the
hypothesis whose significance we will test, and is denoted the alternative hypothesis. If our
trend model is properly selected, it captures a great fraction of the variance of the record, and
hence the noise part has a small variance. In that case a maximum likelihood estimation of the
trend parameters A under different noise models (white or “coloured”) will yield results similar
to what is found by a least-square fit. For the estimation of trend parameters it does not matter
much what the correct model for the climate noise is. We shall see, however, that it matters a lot
when we formulate the null hypothesis against which the trend model is tested.

Some typical trend models are:

T (a0,a1; t) = a0 +a1t linear trend

T (a; t) =
m

∑
k=0

aktk polynomial trend

T (A,ω,ϕ; t) = Asin(ωt +ϕ) oscillatory trend

T (a,A,ω,ϕ; t) =
m

∑
k=0

aktk +Asin(ωt +ϕ) combination of polynomial and oscillatory trend

(3.2)

An aid in formulating the alternative hypothesis could be to do a low-pass filtering to capture the
slow variations, and denote this the “trend”. This can be done through, e.g., Fourier analysis,
wavelet analysis or principal component analysis. Everything in the record not captured by the
trend is called noise or residual from the trend, and is typically considered to be the fast variation
in the record. One should keep in mind that the trend model is of interest only if it reflects some
hypothesized physical reality, e.g., a rising trend due to anthropogenic forcing and/or a distinct
oscillation of natural origin that stands out of the background climate noise continuum.

In the null model, all the slow variability of the observed record is assumed to be captured
by a particular noise model ε(θ; t). Here θ = (θ1, . . . ,θn) are the parameters which characterize
this noise process. Monte Carlo studies can be made to assess the probability that the estimated
trend may be explained as a natural fluctuation produced by the null model. The work flow is as
follows:
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(i) Select a trend model and a null model.

(ii) Estimate the parameters of both models from the observed record.

(iii) Construct a Monte Carlo ensemble of realizations of the null model noises with the esti-
mated noise parameters.

(iv) Estimate “pseudotrend” parameters for each realization by fitting the trend model to each
realization, and estimate a probability distribution for these parameters.

(v) Test statistical significance of the trend by observing whether the observed trend parameters
are outside the 95 percentile of the pseudotrend distribution. If they are, the null hypothesis
is rejected and the trend is significant. If they are not, the trend is deemed insignificant.

If the null hypothesis is rejected, a new null model is formed where the trend is included, i.e.,
x(t) = T (A; t)+ ε(θ; t). The new null model can then be tested against new alternative models,
until a model that describes the record in a satisfactory way is found, as shown in Figure 3.1.

Test trend 

significance 

Null model 

Reject: 

Adjust null mod. 
Accept 

Figure 3.1: Flowchart of hypothesis testing

In Paper II we consider SRM as well as LRM null models. This does not imply that any null
model is appropriate for a given data set. A proper null model should be consistent with the cor-
relation structure of the observed data record. For instance, if the null model is an LRM noise,
a correlation measure derived from the record should be consistent with an LRM model, and
inconsistent with an SRM model. Methods for selecting the proper null model are discussed in
Chapter 4.
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Example
Figure 3.2 illustrates fitting a linear trend to monthly temperature at Cheyenne, Wyoming, USA
(Brohan et al., 2006, Jones and Moberg, 2003). The temperature is the anomaly from the temper-
ature mean from 1961 to 1990. This record was chosen because it is one of the local continental
time series with the longest record without any missing data. It covers the period 1871-2010 AD,
and thus consists of 1680 data points. Cumulative distribution functions (CDFs) for the slope of
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Figure 3.2: Temperature anomaly at Cheyenne. The red line is the linear trend fitted to the record.
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Figure 3.3: Significance of trends under (a) AR(1) null hypothesis and (b) fGn null hypothesis. Ensem-
bles of synthetic noises are produced with the same parameters as those estimated under each
hypothesis by maximum likelihood estimation (MLE). The pseudotrend parameters are then
estimated by least-square fitting to each realization, and the CDF for the slope parameter is
found. The dashed line marks the 95 percentile for the CDF and the solid line marks the trend
slope found for the observed temperature.

the linear trend are found by generating ensembles of realizations of AR(1) and fGn processes
with parameters found by maximum likelihood estimation (MLE) from the temperature record.
This means that the parameters (φ,σ) are estimated from the AR(1) model and (β,σ) from the
fGn model. The pseudotrend parameters are then estimated by least-square fitting to each real-
ization, and the CDF for the slope parameter is found, as shown in Figure 3.3. The CDF for the
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synthetic AR(1) is narrower than that for the fGn, which is expected since long-range correla-
tions may produce more slow variations in the synthetic realizations. The dashed line in each
figure indicates the 95% confidence and the solid line is the slope estimated from the temperature
record. The trend is found to be significant for AR(1) as well as fGn noise models. Which noise
process that best describes the noise is discussed in Chapter 4.

3.3 Response Model

A different approach is to consider a linear response model of the surface temperature which
incorporates deterministic and stochastic forcing. The deterministic forcing describes known,
external climate forcing components and the stochastic forcing represents the internal dynamics
on unresolved spatiotemporal scales. The response to the deterministic forcing is the counterpart
of the trend in the trend models, but differs from this in the sense that the deterministic forcing can
contain both fast and slow variations. In the trend models the fast, forced variations are relegated
to the residual noise, whereas the response model is capable of separating this fast response from
the internal, stochastic variability driven by the stochastic forcing. The separation of externally
driven from internal, natural variability is one of the central problems in climate science. The
starting point for this approach is the linearized energy-balance equation (e.g., Hansen et al.,
2011, Rypdal, 2012),

dQ(t)
dt

+
1

Seq
T (t) = F(t). (3.3)

Q is the total energy content of the climate system, and F and T are perturbations of radia-
tive influx and surface temperature relative to a reference state in radiative equilibrium. Seq is
the climate sensitivity. Using the effective heat capacity C (dQ = CdT ) and the time constant
τc =CSeq, this can be rewritten to

LT (t)≡C
(

d
dt

+
1
τc

)
T (t) = F(t), (3.4)

where the linear operator L has the Green’s function G(t) = C−1 exp(−t/τc). The solution of
eq. (3.4) is the deterministic response to the forcing,

T (t) =
∫ t

−∞

G(t− s)F(s)ds. (3.5)

An equilibrium reference state is defined such that T is the temperature relative to the initial tem-
perature T̂0, i.e., T = T̂ − T̂0. The forcing F(0) at t = 0 is not necessarily 0, and also usually not
known a priori. The forcing data is given as F(t) = F(0)+FG(t), where FG(t) is the total “given”
forcing and F(0) is one of the parameters to be estimated. A perfect match to the observed record
cannot be obtained because the forcing should also have a stochastic component corresponding
to the random forcing of the ocean-land heat content from the atmospheric weather system. This
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can be introduced by rewriting eq. (3.5) to

T (t) =
∫ t

−∞

G(t− s)F(s)ds
︸ ︷︷ ︸

deterministic response

+σ

∫ t

−∞

G(t− s)dB(s)
︸ ︷︷ ︸

stochastic response

, (3.6)

where B(t) is the Wiener process. The stochastic response yields an Ornstein-Uhlenbeck pro-
cess, corresponding in the discrete case to an AR(1). The linear operator can be replaced with a
fractional derivative operator to obtain a scale-free response model with a Green’s function with
a power-law, G(t) = (t/µ)β/2−1ξ, where µ is a scaling factor in the units of time characterizing
the strength of the response and ξ ≡ 1 Km2/J is a factor needed to give G(t) the right physical
dimension. The stochastic response will then be an fGn when −1 < β ≤ 1 and an fBm when
1 < β ≤ 3. The σ in eq. (3.6) is the standard deviation of the noise process. Different Green’s
functions can be used, and the correlation structure of the residual from the deterministic re-
sponse can be analysed by methods (e.g. DFA) that will distinguish LRM processes from SRM
processes (Rypdal and Rypdal, 2013). The parameters (F(0),C,σ,τc) for the exponential model,
and (F(0),µ,σ,β) for the scale-free model are estimated using MLE, as will be described in
Chapter 4.

Example
The forcing data available are global, so in the following example, global land temperature (Jones
et al., 2012) is used. Figure 3.4 shows the global land temperature record in black, and determin-
istic response in cyan and red using the exponential and scale-free response model respectively.
The two models yield quite similar deterministic responses, and it is not clear which one is the
better fit. The difference between the temperature and the deterministic response will therefore
be analysed further with the methods given in Chapter 4.
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Figure 3.4: Yearly averaged global land temperature (black), and deterministic response using the expo-
nential response model (cyan) and scale-free response model (red).



Chapter 4

Methods

4.1 Short-Range Memory

There are several methods for estimating the parameters φk in an AR(p) process. In our studies
we have limited the use of SRM processes to AR(1), and have used the following methods to
estimate φ.

Autocorrelation Function

For an AR(1) the autocorrelation function (ACF) is given by ρ(t) = φ|t|. This means that the
lag-one correlation ρ(t = 1) = φ. Although estimators of ACF are noisy and inaccurate, most of
them are unbiased and with low uncertainty for the smallest lag. For the purpose of comparing
AR(1) to fGn as models for a times series it works well enough for estimating φ.

Maximum Likelihood Estimation
In maximum likelihood estimation (MLE) the log-likelihood function of a process is optimized.
For AR(1) we can rewrite eq. (2.1);

δ(t) = x(t)−φx(t−1) = σw(t), (4.1)

and use δ(t) as input time series in the log-likelihood function of a white noise with standard
deviation σ, and then optimize with respect to (φ,σ).

A slightly different approach is to use the log-likelihood function of an Ornstein-Uhlenbeck
process,

logL(λ,σ) =− N +1
2

log(πσ
2)− x(0)2

σ2 −
1
2

N

∑
k=1

log(1− exp(−2λ∆)) (4.2)

−
N

∑
k=1

x(k)− exp(−λ∆)x(k−1))2

σ2(1− exp(−2λ∆)
, (4.3)

15
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Figure 4.1: Bias and error bars for ACF (red) and MLE (green).

where ∆ is the sampling rate, N is the length of the time series and λ = 1/τc =− logφ.

Figure 4.1 shows bias and error bars when applying the ACF method and MLE to estimate φ

in an AR(1) process. The two methods seem to perform very similar. They are unbiased, with
decreasing error bars as φ increases.

4.2 Long-Range Memory

The toolkit of methods to estimate scaling parameters for long-range memory includes rescaled
range R/S analysis, variations of the variogram, variations of spectral analysis, wavelet vari-
ance analysis (WVA), detrended fluctuation analysis (DFA) and maximum likelihood estimation
(MLE). MLE is in this case used to optimize the log-likelihood function of an LRM process,
e.g., an fGn with respect to the scaling parameter H. Only the methods used in this thesis are de-
scribed here. There are several studies comparing different estimators of LRM parameters (e.g.,
Heneghan and McDarby, 2000, Weron, 2002, Delignieres et al., 2006, Mielniczuk and Wojdyłło,
2007, Franzke et al., 2012). All methods have their advantages and disadvantages, and their per-
formance depends on the data at hand and the purpose of the analysis. Trends may be present,
generally leading to overestimation of the scaling parameter. Methods like DFA and WVA has
polynomial detrending incorporated, but are in some cases biased. Correct estimation also pre-
sumes choosing correct detrending order. If the order is to low, β is in general overestimated, but
choosing a high order leads to a smaller scaling regime. MLE is unbiased for most β and has the
smallest error bars, but depends on choosing the correct noise model and a good representation
of trends if they are present. MLE also tends to emphasize the short scales, which may be prob-
lematic, e.g., if several scaling regimes are present or there are trends affecting the short scales
to a large degree. The periodogram is noisy and does not include any detrending, but may give
good indications of whether scaling is at all present, whether there are several scaling regions
and whether there are oscillations in the investigated record. Application of several methods to
the same data sets therefore gives a clearer picture of scaling regimes, possible trends and the
value and uncertainty of the estimated scaling parameter.
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Semivariogram
The semivariogram (Matheron, 1963) is given by

γ[k] =
1

2(N− k)

N−k

∑
n=1

(y[n+ k]− y[n])2, (4.4)

where k is the time lag between two values of the cumulatively summed time series y[n] = ∑
n
i=1 x[i].

The semivariogram scales with k (Mandelbrot and Van Ness, 1968),

γ[k]∼ k2H (4.5)

Periodogram
The periodogram is a simple estimator for the power spectral density (PSD),

S( f ) =
2

N∆t
|X( f )|2, (4.6)

where X( f ) is the Fourier transform of the time series to be analysed, x(t). Since the PSD is
symmetric, the frequencies of interest is f = m/N, m = 1,2, . . .N/2. For these frequencies, a
self-affine time series scales as a power-law (e.g., Voss, 1986)

S( f )∼ f−β. (4.7)

To put equal emphasis on all scales, log-binning is often used before fitting a straight line to the
PSD in a log-log plot. The periodogram is known to have variance problems, but this is reduced
by the log-binning, and the scaling behaviour is still easily seen. The periodogram can be used
as a first analysis to look for power-law scaling. For an accurate estimate of β, other methods are
recommended.

Wavelet Variance Analysis
The wavelet transform was introduced by Grossmann and Morlet (1984). The continuous version
is given by

W (t,τ;x(t),Ψ(t)) =
∫

∞

−∞

x(t ′)
1√
τ

Ψ

(
t ′− t

τ

)
dt ′, (4.8)

i.e., the convolution between a time series x(t) and the wavelet Ψ(t). The mother wavelet Ψ(t)
and all rescaled versions of it must fulfil the criteria∫

∞

−∞

Ψ(t ′)dt ′ = 0. (4.9)

For self-similar time series, the variance F(τ) = ∑
N
t=1W (t,τ) scales as a power-law (Flandrin,

1992, Malamud and Turcotte, 1999).

F(τ)∼ τ
β. (4.10)
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(a)

(b)

8τ

t=4τ+1

Figure 4.2: The time series is covered by the wavelet (a) for only the last half of the time when the wavelet
is centred in t = 1 and (b) at all times when it is centred in t = 4τ+1.

The method is therefore known as the Wavelet Variance Analysis (WVA). Eq. (4.10) is also valid
for the discrete wavelet transform. Any wavelet can be used, but not all wavelets exist for both
the continuous and discrete transform. If trends are present in the time series to be analysed, it is
preferable with a wavelet with a high number of vanishing moments. For polynomial trends of
order p, the wavelet must have p+ 1 vanishing moments to detrend the data properly and give
the correct value for β (Abry and Veitch, 1998). In our studies we have used the nth derivative of
Gaussian wavelet,

(−1)n+1
√

Γ(n+ 1/2)

∂n

∂tn exp
(
−t2

2

)
, (4.11)

and use the notation WVAn to indicate which order of the wavelet that has been used. The num-
ber of vanishing moments corresponds to the order of the derivative.

When performing the wavelet transform, the times near the beginning and the end of the time
series will not be covered by the wavelet. This will influence the wavelet coefficients at these
times, and these are therefore deleted before computing the variance. The derivative of Gaussian
wavelet has a width 8τ, and the time series will not be completely covered by the wavelet until
t = 4τ+1, see figure 4.2.
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Detrended Fluctuation Analysis

The Detrended Fluctuation Analysis (DFA) (Peng et al., 1994, Kantelhardt et al., 2001) was
explicitly designed to remove polynomial trends. The method can be summarized in four steps.
First, the cumulative sum (the profile) is computed,

Y (i) =
i

∑
t=1

x(t)−〈x〉, (4.12)

where 〈x〉 denotes the mean. In the second step the profile is divided into Nτ = N/τ non-
overlapping segments of equal length τ. This is done starting both at the beginning and at the end
of the profile, so 2Nτ segments are obtained altogether. In the third step, an nth order polynomial
is computed and subtracted for each segment,

Yτ(i) = Y (i)− pν(i), (4.13)

where pν(i) is the polynomial fitted to the νth segment. The notation DFAn is used to indicate
the order of the polynomial. In the final step, the variance of each segment is computed,

F2(ν,τ) =
1
τ

τ

∑
i=1

Y 2
τ [(ν−1)τ+ i]. (4.14)

The fluctuation function is given by the square root of the average over all the segments,

F(τ) =

[
1

2Nτ

2Nτ

∑
ν=1

F2(ν,τ)

] 1
2

. (4.15)

The scaling exponent is defined by the relation

F(τ) ∝ τ
α. (4.16)

α corresponds to the Hurst exponent H when 0 < H < 1. DFA may also yield α > 1, and is
related to β through β = 2α− 1. For a time series with no trends, the detrending in the third
step is unnecessary, and the standard fluctuation analysis, FA, can be used. Then a simplified
definition of the variance for each segment, F2

FA(ν,τ) = [Y (ντ)−Y ((ν−1)τ)]2, replaces F2(ν,τ)
in eq. (4.15) (Bunde et al., 2001).

By definition the scales must be τ > n+ 2 (Kantelhardt et al., 2001). The effect of trends was
studied in Hu et al. (2001), where an upper limit of τ < N/10 for the scaling region was sug-
gested, where N is the record length. The practical implication is that scaling properties can only
be accurately assessed up to time scales one tenth of the time record analysed.
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Maximum Likelihood Estimation
In Maximum Likelihood Estimation of the Hurst exponent H, a log-likelihood function using the
autocorrelations for the LRM process is optimized with respect to H. This function is given by

logL(µ,σ,H) =−1
2

log |CN(H)|− (2σ)−1S(µ,H)− (N/2) logσ, (4.17)

where S(µ,H) = (x− µ1)>[CN(H)]−1(x− µ1). x is the time series to be analysed expressed as
a column vector, and CN(H) is the correlation matrix (McLeod and Hipel, 1978). The autocor-
relations are given by eq. (2.12) for fGn and eq. (2.17) for FARIMA(0,d,0). The inversion of
CN(H) has a high computational cost, so the implementation of the MLE method was done by
using the R package FGN (McLeod et al., 2007), where the Durbin Levinson algorithm is used
to compute the log-likelihood function.

The advantage of WVA and DFA is that the methods can be applied to both stationary and non-
stationary time series, with scaling exponent in the range 0 < β < 3 (although for some β there
is a bias). One problem with both WVA and DFA is to find the best scaling regime to determine
the scaling parameter. LRM processes do not always scale well on the smallest scales, as LRM
defined by the asymptotic behaviour, but it is not straightforward to find when this behaviour
starts (Beran, 1994). Furthermore, the time series may include different scaling properties for
different scales, e.g., in the presence of trends or if the dynamics change with time. In DFA, this
is often seen as a clear cross-over at a certain scale. However, if the time series is short, the range
of scales available is small, and it may be hard to find the proper scaling regime.

For MLE, the problem of finding the proper scaling regime is shifted to selecting the most
proper model, both with regards to noise process and trends. Trends could be included in the
model such that trend coefficients for, e.g., a polynomial function is estimated together with H.
Then z = x−T, where T is the trend, is used instead of x in eq. (4.17). Observational data often
contain trends, but the nature of these is usually unknown. A model with few parameters may
not reproduce the observational data well. Using many parameters may fit the data better, but
introduces higher uncertainty with a higher number of parameters to be estimated. There is also a
chance of overfitting, and thus attributing properties of the noise to the trend. Another alternative
is to apply a response model, using z = x−GF instead of x in eq. (4.17), where G is the Green’s
function and F is the forcing described in Chapter 3.

Comparing LRM Methods
To compare the performance of the methods, we can produce ensembles of synthetic fGn and
fBm, and estimate β. The mean and 95% quantiles for each ensemble is computed, and shown
as dots and error bars respectively in Figure 4.3. If the mean of the estimated β corresponds
to the given β, there is no bias. Figure 4.3(a) shows bias and error bars for fGn/fBm analysed
with DFA2, WVA2 and MLE for an fGn, which are the methods we have used most frequently
to estimate β in our studies. DFA2 and WVA2 eliminate linear trends in the data. The MLE
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Figure 4.3: (a) Bias and error bars for DFA2 (red), WVA2 (blue) and MLE (green). (b) Bias and error
bars for MLE. fGn and fBm with different β analysed as fGn (red) and fBm (green). analysing
as fBm means that the increments are analysed as fGn and β̂ = β̂incr +2.

estimates of β are unbiased given that the correct noise model (fGn/fBm) is chosen, except when
the given β is close to 3. Both DFA2 and WVA2 have a negative bias when β→ 1+, and WVA2
has a similar bias when β→−1+ as well. DFA2 is slightly overestimating β in the same range.
Figure 4.3(b) illustrates the problem with choosing the wrong noise model when applying MLE.
In the method used here, the autocorrelation function of fGn is used in the estimation of β, shown
in red. This means that the estimation can only return β̂ in the range −1 < β̂ < 1, even when
the synthetic data set is a realization of an fBm with β in the range 1 < β < 3. The result of
such an estimation for synthetic records with 0 < β < 3 is shown as the red dots in Figure 4.3(b).
To provide correct estimated β̂ for synthetic fBms in the range 1 < β < 3, the record must be
differenced, and the method applied to the increments. The estimated β̂ is then β̂ = β̂incr+2. The
result of this approach is shown in green. When the correct noise model is used, the estimates
are unbiased. When fBm are analysed as fGn, β̂→ 1 as β increases, but smaller values are found
when β→ 1+. When the increments of fGns are studied, β̂→ 1 as β decreases, but larger values
are found when β→ 1−.

Example
The results of applying the semivariogram, periodogram, WVA, and DFA to the Cheyenne tem-
perature record are illustrated in Figure 4.4, and show that the methods cannot be applied uncrit-
ically. The semivariogram yields a higher value for β (β = 0.50) than the other methods. The
periodogram follows a fairly straight line corresponding to β = 0.22, but there are some devia-
tions at the lower frequencies. These are not included in the estimation of β, but would lead to a
higher estimate if they were. WVA and DFA are applied for order 1-4. For order 2-4 they both
yield β≈ 0.2, while WVA1 and DFA1 show higher estimates when all scales up to about 1/10 of
the record length are used. This is due to the influence of a trend, apparent as a change in scaling
regimes. In Figure 3.3(b) in Chapter 4, a linear trend was found to be clearly significant when
adopting an fGn null model. This typically leads to an overestimation of the scaling exponent if
not taken into account, and this is exactly what we observe. WVA1 and DFA1 do not detrend, but
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Figure 4.4: Temperature anomaly at Cheyenne analysed with (a) semivariogram, (b) periodogram, (c)
WVA of order 1-4 from top to bottom and (d) DFA of order 1-4 from top to bottom. The red
lines indicate the scaling range used to estimate β. The red circles in panel (b) are the result
of log-binning.

order 2 and above eliminate linear trends. Hu et al. (2001) described how the fluctuation function
of the noise is dominant on small scales and the fluctuation function of the trend is dominant on
large scales for DFA. The change in regimes is not very obvious for DFA1 for the temperature
at Cheyenne as the cross-over scale is fairly large. The effect is very visible for WVA1. If only
the smaller scales are used in the estimate of β, overestimation is not a problem. In Figure 4.5
the scales used to estimate β are chosen by eye. The estimated β corresponds better to the ones
found for the higher orders of WVA and DFA. There is, however, a problem not knowing at ex-
actly what scale the cross-over takes place, as the transition is not very sharp. Including too high
scales will make the estimate influenced by the trend, but only including the scales well below
the cross-over leads to a smaller scaling regime, potentially leading to poor statistics. Using order
2 of DFA and WVA, or performing linear detrending prior to applying the estimation method, is
therefore a safer choice. The higher orders of WVA do not follow a completely straight line. This
could be an effect of trends (e.g. higher order polynomials or oscillations), but some waves in the
wavelet variogram occur even for pure noises. WVA tends to enhance oscillations which appear
as statistical fluctuations in realizations of a persistent noise, especially on the large scales. As
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seen in Figure 4.3(a), WVA and DFA mostly have error bars of the same order, although DFA
does not have the problem with wavy structure. For pure noises, the waviness in WVA mostly
affects the error bars of the wavelet variance at each scale, and not so much the error bars of the
estimated β.
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Figure 4.5: Temperature anomaly at Cheyenne analysed with (a) WVA1 and (b) DFA1. The red lines
indicate the scaling region when all scales up to about 1/10 of the record length are used to
estimate β. The green lines show the scaling region when only the scales up to the assumed
cross-over scale where the trend becomes dominant are used.



24 CHAPTER 4. METHODS

4.3 Comparing Short-Range and Long-Range Memory Pro-
cesses

Selecting the correct null noise model is not straightforward, but one can select a few models
and compare their scaling properties with those of the observational data. We have chosen to
compare AR(1) and fGn/fBm, as these processes are widely used in the climate community. The
theoretical spectra are well known, given in eq. (2.6) for AR(1) and eq. (2.10) for power-law
scaling. WVA and DFA can also be used to distinguish between the two processes. In some
cases it is difficult to draw firm conclusions on what process best fits the data. One example
is local temperature records from continental interiors. These records show low persistence on
time scales from months to decades; hence if they are sampled with monthly or longer sampling
interval, they appear as white or very weakly persistent fractional noises. With higher sampling
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Figure 4.6: (a) WVA2 and (b) DFA2 applied to the temperature anomaly at Cheyenne (black crosses).
Ensembles are generated of synthetic realizations of two different stochastic processes: An
AR(1) process (cyan) and fGns (red). The synthetic processes are generated with parameters
estimated from the observed record by the MLE method, and the coloured areas are the 95%
confidence regions for these estimates. Panel (c) and (d) show WVA2 and DFA2 applied to
the linearly detrended temperature record and for the synthetic realizations of the processes
generated with parameters estimated from the detrended record.
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rates there will be correlations on scales shorter than a month that may be reminiscent of that of
a Brownian motion. Hence the total correlation structure may be similar to that of an Ornstein-
Uhlenbeck (OU) process with τc of the order of a month or less. The temperature from Cheyenne
serves a good example. Figure 4.6 shows WVA2 and DFA2 applied to the temperature record be-
fore and after linear detrending. The cyan area is the 95% confidence area for an AR(1) process
and the red area is the 95% confidence area for fGns. The noise processes have parameters esti-
mated from the record with MLE. The results are fairly similar before and after the detrending.
The estimate of τc of an AR(1) model from the monthly record yields τc ≈ 0.5 months and the
estimate of β of an fGn model yields β≈ 0.2. This explains why the WVA fluctuation functions
for the synthetic realizations of these two processes are very similar on time scales from months
and up. Since the fluctuation function of the observed process is within the confidence areas for
both models on these time scales we cannot select between AR(1) and fGn models on the basis
of these monthly data.

In another method for distinguishing between noise models, we use the fact that a discrete-
time sampling of the continuous-time OU process yields an AR(1) process, but that the lag-one
correlation φ(∆t) then will depend on the sampling time ∆t. When we apply the relation

τ
(∆t)
c =− ∆t

logφ(∆t)
(4.18)

for the decorrelation time, and estimate φ̂(∆t) from the AR(1) process resulting from sampling
the OU process at time-lag ∆t, we find that τ̂c ≈ τc as long as ∆t < τc, but when ∆t � τc the
AR(1) process cannot be distinguished from a white noise, resulting in τ̂c ∝ ∆t. This feature is il-
lustrated in Figure 4.7, which demonstrates explicitly that this method can be used to distinguish
between AR(1) and weakly persistent fGn if the time resolution is better than τc, but otherwise
not. In this figure the cyan area is the 95% confidence area for an ensemble of realizations of the
Ornstein-Uhlenbeck (OU) process with τc = 10. The grey area is the 95% confidence area for
white noise. The application of this method to the Cheyenne monthly temperatures is shown in
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Figure 4.7: Estimated τc as a function of ∆t for an Ornstein-Uhlenbeck process with τ = 10 (cyan) and
white noise (grey).
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Figure 4.8: Panel (a) and (b) shows the estimated decorrelation time τc as a function of ∆t for the temper-
ature anomaly at Cheyenne as black circles. Ensembles are generated of synthetic realizations
of two different stochastic processes: An OU process (cyan) in panel (a), and fGns (red) in
panel (b). The synthetic processes are generated with parameters estimated from the observed
record by the MLE method, and the coloured areas are the 95% confidence regions for these
estimates. The grey area in panel (a) is the confidence region for τc from a white noise pro-
cess. Panel (c) and (d) show the decorrelation time of the linearly detrended temperature
record and for the synthetic realizations of the processes generated with parameters estimated
from the detrended record.

Figure 4.8. In panel (a) and (c) the cyan areas are the 95% confidence areas for an OU process
and the grey areas are the 95% confidence for white noise. They almost completely overlap.
The red areas in panel (b) and (d) are the 95% confidence area for fGns. The parameters of the
synthetic realizations are the same as those in Figure 4.6. The estimated τ̂c shows the behaviour
of a white noise for almost all ∆t when compared to synthetic realizations of an OU process,
which is expected for OU processes with small τc. Since the white noise behaviour is domi-
nant on most of the times scales, one would expect to see this when applying the standard LRM
methods in Figure 4.4. In all cases the estimated β > 0, but error bars must also be taken into
account. For WVA2, the lower error bar stretches below zero for given β = 0.2, indicating that
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the temperature record could be white noise. However, for DFA2 the estimate is β = 0.19±0.10
and β = 0.20± 0.05 using MLE after linear detrending. The results altogether indicate that the
Cheyenne temperature may be described as an fGn with β = 0.2 superposed on a linear trend.

In Chapter 3 both the exponential and scale-free response models were applied to global land
data, but from the deterministic response alone we could not really determine which response
model that gives the best reproduction of the observed record. The clue to this assessment is
found in the residual, i.e., the difference between the temperature record and the deterministic
response. If this residual is analysed with DFA2, and the fluctuation function is compared with
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Figure 4.9: DFA2 applied to the residual from the deterministic response of the exponential response
model (black circles) and scale-free response model (black crosses). The cyan area is the
95% confidence for realizations of AR(1) and the red area is the 95% confidence area for
realizations of fGn. The noises are produced with parameters estimated with the response
models.

those produced from synthetic realizations of AR(1) and fGn, we obtain the results shown in
Figure 4.9. The black circles and crosses are the fluctuation functions for the residuals from the
exponential response model and scale-free response model, respectively. The coloured areas are
the 95% confidence areas for synthetic noises with parameters estimated from the two models,
where the cyan area is for AR(1) and the red area is for fGn. In Figure 3.4 the two deterministic
responses were quite similar, and DFA2 applied to the residuals shows almost identical results.
When comparing with synthetic noises, however, the scale-free response model is clearly fa-
vored. The fluctuation function falls mostly within the confidence area of the fGns, while it
clearly deviates from the confidence area for the AR(1) model. The reason why we are able to
select one model above the other for the global data set, but not for the Cheyenne record, is that
the global data shows strong persistence even at time scales up to a century. When one tries to
fit an AR(1) model to such data, the estimated τc exceeds a decade, and hence the fluctuation
function of the synthetic AR(1) process has the steep slope α ≈ 1.5 (β ≈ 2) corresponding to a
Brownian motion for τ < 100 months as shown by the cyan area in Figure 4.9. This is clearly
distinguishable from the fluctuation function for the global record, for which α < 1.

Two more examples are given to illustrate methods for distinguishing between AR(1) and fGn:
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Figure 4.10: (a) 10 000 data points (∼ 28 years) for Prague, daily temperature. (b) DFA2 applied to the
record (black crosses). The cyan area is the 95% confidence for realizations of AR(1) and
the red area is the 95% confidence area for realizations of fGn. Panel (c) and (d) shows the
estimated decorrelation time τc as a function of ∆t for the record as black circles. Ensembles
are generated of synthetic realizations of two different stochastic processes: An OU process
(cyan) in panel (c), and fGns (red) in panel (d). The synthetic processes are generated with
parameters estimated from the observed record by the MLE method for the OU processes
and with DFA2 for the fGn, and the coloured areas are the 95% confidence regions for these
estimates. The grey area in panel (c) is the confidence region for τc from a white noise
process.

Daily mean temperature from Prague, the Czech Republic (Klein Tank et al., 2002) and the
Niño3 index (Rayner et al., 2003). The first 10 000 data points from the Prague daily mean tem-
perature record was used after removing the seasonality, with the results shown in Figure 4.10.
The Prague temperature is widely used in temperature studies since it has a long record. In the
analysis with DFA2 (Figure 4.10(b)), the AR(1) seems to be a better fit than fGn, at least on
the smallest scales. The approach where the decorrelation time is estimated as a function of the
sampling rate is shown in Figure 4.10(c) and (d), and τc = 5.6 was found for the OU process.
For the smallest ∆t, there is a quite good fit for the estimated τc from the record to that of an OU
process. For the larger sampling rates (∆t > 10), the estimated τc for the record are larger than
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that of the OU process, which starts to behave as white noise. For these scales, the fGn seems
to be a better fit. Caballero et al. (2002) found for daily mean temperature at three locations a
good fit to the FARIMA(1,d,1), which may capture both the AR(1) behaviour on small scales
and LRM scaling on large scales. The results in Figure 4.10 suggest that this process also might
well describe the daily temperature at Prague.

The Niño3 index is the area averaged monthly sea surface temperature from 5S-5N and 150W-
90W. DFA2 (Figure 4.11(b)) does not show a perfect fit to neither noise process, but the record
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Figure 4.11: (a) The deseasonalized Niño3 index. (b) DFA2 applied to the record (black crosses). The
cyan area is the 95% confidence for realizations of AR(1) and the red area is the 95% con-
fidence area for realizations of fGn. For AR(1), τc = 11.8 was found with MLE, while
β = 0.62 was found with DFA2.

has a closer fit to AR(1) than fGn. No trends are obvious from the record (Figure 4.11(a)), and
DFA2 does not show influences typical for low-order polynomial functions or oscillations. It
seems that the Niño3 index has a more complex underlying process than those described in this
thesis.
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Chapter 5

Literature Review

Earthquakes, rainfall and river flows all give rise to geophysical records with long-range memory
(Hurst et al., 1965, Mandelbrot and Wallis, 1969), but LRM has also been found in fields like
medicine (Goldberger and West, 1987, Stanley et al., 1992), finance (Vandewalle and Ausloos,
1997) and internet traffic (Abry and Veitch, 1998). Since LRM is so ubiquitous, this literature
review is restrained to studies of Earth surface temperature records, which is the focus in this
thesis. This includes observational temperature, temperature from model experiments, recon-
structed temperature, and to some extent temperature proxies. It is common practice to remove
daily and seasonal variations from the temperature records prior to analysis, if this is not already
done in the record. Some analysis includes the removal of so called trends, often regarded as a
slow variation or linear tendency in the time series, as explained in Chapter 3.

5.1 Instrumental Data

Universal Scaling Exponent?

Records of instrumental temperature from numerous stations have been available for a long time,
and are widely used in studies of LRM. In the first approaches, the records are more or less ran-
domly picked and studied to find if there is good scaling in agreement with LRM, and what
the scaling exponent is if so. A variety of methods have been used. Bodri (1994) applied the
rescaled range R/S analysis as defined in Mandelbrot and Wallis (1969) to annual mean tem-
perature from 7 stations in Hungary. They found Hurst exponents between 0.72 and 0.81 with
mean 0.77, corresponding to β between 0.44 and 0.62 with mean 0.54. Bodri (1995) applied the
same approach to Central Europe annual mean temperature, yielding H = 0.69 (β = 0.38). This
temperature was estimated using records from 224 stations by Hansen and Lebedeff (1987). The
average periodogram for monthly mean temperature from 94 stations was estimated, yielding
β ≈ 0.43 in Pelletier (1997). Pelletier and Turcotte (1999) applied the periodogram to monthly
averaged atmospheric temperature for Central England (CET) (Parker et al., 1992) among other
time series, resulting in β ≈ 0.47. The CET is representative of a roughly triangular area of the
United Kingdom enclosed by Lancashire, London and Bristol, and is widely studied since it is
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the longest instrumental record in the world. In Koscielny-Bunde et al. (1998a) and Koscielny-
Bunde et al. (1998b) DFA and a wavelet technique were applied to daily temperatures from 14
stations and 12 stations respectively. Roughly the same exponent of α ≈ 0.65, corresponding
to β ≈ 0.3, was found for all the temperature records. The result led to the question whether
a universal scaling exponent was true for temperature. The exponent was found to be slightly
smaller than in other studies of temperature from continental stations, and suggest that the R/S
and periodogram estimates are influenced by trends that are eliminated in the DFA method.

Difference Between Air Temperature over Land and Oceans
The analyses mentioned so far, only regards records from continental stations. Several studies
suggest that the temperature is more persistent at ocean sites than land sites. Pelletier (1997)
analysed daily mean temperature from 90 maritime and 1000 continental stations. Average pe-
riodograms gave β ≈ 0.63 for the maritime stations. For the continental stations β ≈ 0.37 was
found for frequencies less than f ≈ 1/(1 month) and β≈ 1.37 above this frequency. Both the pe-
riodogram and DFA were applied to daily temperature records from 20 continental and maritime
stations in the USA in Weber and Talkner (2001). They found higher values of β for maritime
stations (0.30 < β < 0.36) than for continental stations (0.24 < β < 0.44, but with most values
around β ≈ 0.25) in the low frequency range f < 1/(10 days). These values are smaller than
what Pelletier (1997) found, and they explained this by different ways of eliminating the annual
cycle from the temperature records prior to the scaling analysis. Eichner et al. (2003) applied
DFA to temperature from 95 stations all over the globe. They found that for continental sta-
tions, the scaling exponent is close to α = 0.65 (β = 0.3). Temperature from island stations has
a distribution between 0.65 and 0.85, with an average of 0.8, corresponding to β between 0.3
and 0.7 with mean 0.6. Their study confirms previous findings from DFA applied to continental
temperature. For maritime stations, the result agrees well with Pelletier (1997), but the value
of β is larger than what was found in Weber and Talkner (2001). Monetti et al. (2003) studied
monthly and weekly sea surface temperature at different sites in the Atlantic and Pacific Oceans
with DFA. A scaling exponent of α ≈ 1.4 (β ≈ 1.8) was found for the North Atlantic sites and
α≈ 1.2 (β≈ 1.4) for the rest of the ocean sites for time scales below 10 months. In the region of
the tropical Pacific where the El Niño-Southern Oscillation (ENSO) takes place, oscillations start
to influence the fluctuation function above this time scale. Outside the ENSO region, α ≈ 0.8
(β ≈ 0.6) for large time scales. The studies suggest that sea surface temperatures are motions
(β > 1), while the temperatures at islands are persistent noises (0 < β < 1). The higher per-
sistence at islands than at continents is probably due to the influence of the ocean. Lennartz
and Bunde (2009) also applied DFA to a number of local temperature records, with results in
agreement with, e.g., Eichner et al. (2003), Monetti et al. (2003).

Altitude Dependence
A few studies also investigate scaling differences for stations at low altitudes and stations located
at mountains. Talkner and Weber (2000) and Weber and Talkner (2001) analysed daily minimum,
maximum and mean temperatures with DFA and variations of spectral analysis. They found
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lower values for the scaling exponent (0.06 < β < 0.25) at mountain sites, but these records did
not show good scaling behaviour. These studies indicate that the scaling exponent is not the same
all over the globe, but that air temperature at high altitudes is more random than other land air
temperatures. In Kurnaz (2004a) monthly averages of maximum daily temperatures from 129
stations in the continental US were investigated with DFA to find scaling exponents α = 0.60±
0.05 (β = 0.20±0.10). The authors also looked for correlations between scaling exponents and
elevation of weather stations, and between scaling exponents and distance from the stations to
the ocean, without finding any clear patterns. However, they used the standard deviation of the
temperature fluctuations to classify different climate types, finding slightly different exponents
for each type. Kurnaz (2004b) applied DFA to monthly temperatures from 384 stations in the
Western US, finding similar results.

Latitude Dependence

Pattantyús-Ábrahám et al. (2004) analysed daily temperature from 61 stations in Australia with
DFA, finding that the scaling exponent varies from station to station. Generally it decreases with
increasing distance from equator. They also found different scaling exponents for minimum and
maximum temperature from the same station, but no pattern for magnitude. Király and Jánosi
(2005) applied DFA to daily temperature records from 61 stations in Australia and 18 stations
in Hungary. 48 of the Australian stations were based on the continent, while the remaining 13
were located on islands. They found a decreasing correlation exponent with increasing distance
from the equator for the Australian station temperatures, in agreement with Pattantyús-Ábrahám
et al. (2004). For the stations on islands the temperature analysis is in agreement with Weber
and Talkner (2001) and Monetti et al. (2003). Huybers and Curry (2006) used the NCEP-NCAR
instrumental re-analysis (Kalnay et al., 1996) to find a global map for β using spectral analysis.
In this study it was found that β is smaller over land than over ocean, but also that β is smaller
toward higher latitudes, in agreement with Király and Jánosi (2005). They also found that the
temperature for the Southern Hemisphere has a larger β than the Northern Hemisphere, probably
because of larger ocean areas in the Southern Hemisphere. Temperature proxies together with
observational data were analysed to get a patched periodogram for high latitudes and the tropics.
Between annual and centennial time scales the tropical marine compilation has β ≈ 0.56 and
the high-latitude compilation β ≈ 0.37, in agreement with the findings in their global map. At
centennial time scales the spectra look more similar, but for time scales longer than centuries the
tropics has β≈ 1.29 and the high latitudes β≈ 1.64. Király and Jánosi (2006) analysed several
thousands of temperature records from the Global Daily Climatology Network with DFA. They
did not find systematic dependence on geographic parameters similarly to Pattantyús-Ábrahám
et al. (2004), Király and Jánosi (2005). It was concluded that the pattern for scaling exponent
has no simple dependence on latitude, longitude or distance from oceans. Vyushin and Kushner
(2009) did a study on monthly mean re-analysis air temperature (ERA-40, Uppala et al. (2005)),
where the Hurst exponent was calculated at each longitude, latitude and pressure. They used both
DFA and spectral methods. A decrease of H from the tropics to the extratropics was found, and
the spectral methods showed a pronounced maximum in the Southern Hemisphere. The authors
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attribute the latter finding to linear trends, since they did not find this with DFA.

Scaling Regimes
In studies of daily temperature, several scaling regimes have been found (Pelletier, 1997, Talkner
and Weber, 2000, Weber and Talkner, 2001, Caballero et al., 2002), although with different
cross-over scale (from 3 days to 1 month). The typical time scale of general weather regimes
is about 10 days, and up to this time scale the weather is highly correlated, explaining the high
scaling exponents on these scales. Different cross-over scales for daily records may be found
if they are from sites with different climate types. Different methods may also yield different
cross-over scales. For monthly and annual instrumental records, cross-overs are usually not
apparent. Longer records must be used to investigate if there are new regimes at scales above
100 years, and proxies going far back in time may be studied to indicate such changes. Pelletier
(1997) studied a Vostok deuterium record converted into degrees Celsius. The Vostok station
is located in Antarctica, and the record is the based on the isotopic fractions between 18O and
2H in ice cores. Three scaling regimes were found with the periodogram. For frequencies less
than f ≈ 1/(40 kyr), β ≈ 0, i.e. the time series is a white noise. The regime between f ≈
1/(40 kyr) and f > 1/(2 kyr) displayed β≈ 2 (Brownian motion), and for the regime with f ≈
1/(2 kyr) β ≈ 0.5 was found. Pelletier and Turcotte (1999) also applied the periodogram to the
Vostok record, with the same result discussed in Pelletier (1997). Solar luminosity was studied
in this paper, showing regimes in the periodogram similar to that of the Vostok record. The
authors concluded that the physics of the radiating layer of the sun must strongly resemble the
physics of the Earth’s atmosphere. Markonis and Koutsoyiannis (2013) studied a number of
temperature time series consisting of satellite, instrumental, proxy and reconstruction data. They
applied a type of variogram combining the standard deviation as a function of scale for all the
temperature series, spanning scales from 1 month to 50 million years. The authors did not find
several scaling regimes, but an overall slope corresponding to β = 0.84, unlike Pelletier (1997).
However, variogram methods are not always an accurate tool to investigate scaling properties, as
they are in some cases biased and do not incorporate detrending. It is also disputable how well
the variogram follows this slope at different time scales.

Difference Between Local, Regional and Global Temperature
Baillie and Chung (2002) analysed two different annual temperature series for the Northern
Hemisphere, Southern Hemisphere and the entire globe (total of six records) with a FARIMA(0,d,0)
model. They found d = 0.38 and d = 0.33 (β= (0.76,0.66)) for the global temperature, d = 0.40
and d = 0.30 (β = (0.80,0.60)) for the Northern Hemisphere temperature and d = 0.25 and
d = 0.32 (β = (0.50,0.64)) for the Southern Hemisphere temperature. Alvarez-Ramirez et al.
(2008) applied DFA to four monthly temperature sets for continents and oceans in the North-
ern and Southern Hemisphere. They estimated the scaling exponent for subsample windows
of approximately 20 years with a 2-month slide to test for time-varying degrees of long-range
memory, finding the same persistence pattern in time. Using the full record they found for North-
ern Hemisphere land temperature, Northern Hemisphere ocean temperature, Southern Hemi-
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sphere land temperature and Southern Hemisphere ocean temperature the scaling exponents
α≈ (0.69,0.93,0.78,0.90), corresponding to β≈ (0.38,0.86,0.56,0.80), respectively. They also
claimed that multifractality is present in the temperature data, and more evident for the land tem-
perature. In Lennartz and Bunde (2009), DFA2 was applied to monthly land air, sea surface and
combined temperatures of the globe, and the Northern and Southern Hemisphere. They found
scaling exponents of α ≈ 1.22 (β ≈ 1.44) for Northern Hemisphere sea surface and α ≈ 0.79
(β≈ 0.58) for Northern Hemisphere land temperature. The result for the sea surface temperature
in the Northern Hemisphere is in agreement with Monetti et al. (2003), while the exponent for
land temperature is higher for the Northern Hemisphere than for local stations. This may indicate
that spatial averaging increases persistence. Alvarez-Ramirez et al. (2008) found smaller values
for β for the Northern Hemisphere than Lennartz and Bunde (2009), and ocean temperature with
β < 1, which is not in agreement with previous studies. Like Huybers and Curry (2006), they
find higher values for the Southern Hemisphere than the Northern Hemisphere, while Baillie
and Chung (2002) found the opposite. This might be due to different methods estimating β, or
differences in the records (e.g. trends) influencing the estimation.

Trends
Bloomfield and Nychka (1992) studied the significance of a linear trend in a global annual tem-
perature record (Folland et al., 1990) using 7 different short-range and long-range memory noise
models. They found that the trend was significant for all of the models. Beran and Feng (2002)
suggested a semi-parametric method for simultaneous estimation of trends and parameters for
FARIMA(p,d,0). The method was applied to temperature data for the Northern Hemisphere.
For land+sea data, d = 0.38 (β = 0.76) was found and the trend was just at the border of signif-
icance at the 5% level. For land temperature only, d = 0.09 (β = 0.18), and no significant long
memory was found. The trend was clearly significant. Koutsoyiannis (2003) applied a variogram
approach to a Northern Hemisphere temperature record (Jones et al., 1998). For the Northern
Hemisphere, H = 0.88 (β = 0.76) was found, and a trend study showed no strong evidence that
temperature increase was of an unusual change of climate. They also studied a Paris temperature
time series, yielding H = 0.79 (β = 0.58) and no significant trends. Craigmile et al. (2004) sug-
gested using the discrete wavelet transform to extract a polynomial trend from an LRM record.
They applied this approach to a 150 year record of the sea surface temperature from the Sey-
chelles, in the Indian Ocean (Charles et al., 1997), and found that the large scale variations in
the record could be attributed to the stochastic variations rather than to a deterministic trend. In
Gil-Alana (2005) the monthly Northern Hemisphere temperature record (Jones and Briffa, 1992)
was examined by means of fractional integration techniques. It was found that the record follows
a FARIMA(0,d,0) with 0.3 < d < 0.4 (0.6 < β < 0.8), and that there is a statistically significant
linear trend in the record. Cohn and Lins (2005) considered the Northern Hemisphere temper-
ature by Jones et al. (1999). They found almost the same value for the slope of a linear trend
under different noise models, but different significance levels. For white noise and short-range
memory processes, the trend was significant, while for long-range memory processes it was not.
Fatichi et al. (2009) analysed 26 temperature records in the Tuscany region with three different
non-parametric trend detection procedures, using FARIMA processes to model the records. They
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found significant linear trends for 9 of the station records. Rybski and Bunde (2009) studied trend
significance in temperature records from six stations. They used a DFA-based technique to es-
timate linear trends, and found the probability that a given long-term correlated record contains
a certain trend. They found significant trends for two of the six records. Lennartz and Bunde
(2009) performed a trend analysis to decide if a linear trend could be a natural part of an LRM
record, or if the trend was of external origin. They found that the trends were more significant in
global than local records, and that the annual increase over the last 50 years was a weaker indi-
cator of an anthropogenic trend than the lower increase over the last 100 years. Franzke (2010)
used spectral analysis to estimate LRM parameters for temperature at eight Antarctic stations,
finding 0.16 < β < 0.56. A trend study was done under two null models: that the data are rep-
resented by an AR(1) (SRM) and that the data are represented by a FARIMA(0,d,0) (LRM). A
significant trend was found for 3 stations under the SRM hypothesis, and for 1 station under the
LRM hypothesis. In Franzke (2012a) the significance of trends in temperature records was tested
against three null models: SRM, LRM and phase scrambling. The records analysed were daily
temperature records from central England (CET), Stockholm, Faraday-Vernadsky and Alert. The
last two stations are in two polar regions that have experienced some of the most dramatic en-
vironmental changes in the last two decades. Different trends were investigated, and the cubic
polynomial fit had the smallest RMS error for all four time series. The temperature record at
Faraday-Vernadsky showed the largest warming, which could not arise by chance for any of the
null models. For CET and Stockholm temperature records, the warming trends were significant
under the SRM and phase scrambling null model, but not for LRM. The Alert temperature record
had a warming trend which could be reproduced by all three models, i.e., the trend was not sig-
nificant. A similar approach was done in Franzke (2012b) on daily mean temperatures from
109 stations in the Eurasion Arctic region. This resulted in significant trends in 17 temperature
records against the SRM null model, in 3 temperature records against the LRM null model and 8
temperature records against the phase scrambling null model.

The trend studies show variable results for how significant trends are in temperature records. The
significance depends on the null model (LRM/SRM), the trend model and the location, length,
and temporal and spatial resolution of the records. When the trend is found to be insignificant,
it does not mean that the record is not affected by global warming, but rather that properties like
high variance and persistence may make it hard to detect a global warming signal.

Comparing Different Models
Talkner and Weber (2000), Weber and Talkner (2001) found slightly different scaling expo-
nents using the periodogram and DFA. Caballero et al. (2002) estimated the scaling parame-
ter d for daily mean temperature from Central England, Chicago and Los Angeles using four
methods: Periodogram, aggregated variance, differenced variance and maximum likelihood es-
timation of an FARIMA(1,d,1) process. They found that long memory was present with two
scaling regimes in the temperature data. This was best captured by the FARIMA(1,d,1) noise
model with d = (0.20,0.13,0.23), corresponding to β = (0.40,0.26,0.46), for Central England,
Chicago and Los Angeles respectively. The cross-over was around 1/(6 days). The other meth-
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ods yielded slightly different scaling parameters. If pure noises are studied, the different methods
should yield similar scaling exponents. Different scaling exponents may be due to influence of
trends or multiple scaling regimes.

Percival et al. (2001) analysed the Sitka, Alaska, winter air temperature record, and fitted two
models, AR(1) and FARIMA(0,d,0), to the time series. They compared the autocorrelation
function and periodogram with the theoretical ACFs and PSDs for the models with parameters
from the record, and applied a goodness-of-fit test. They found that there was no statistical
evidence to favour one model over the other.

5.2 Simulated Temperature From Model Experiments

Many different climate models have been used in the study of LRM in simulated temperature, but
most of them are coupled Atmosphere-Ocean General Circulation Models (AOGCM). Different
climate model experiments from the same models are often available, where the difference lies
in which forcings are kept fixed and which are dynamic. The forcings used in the model exper-
iments usually consist of total solar forcing, volcanic forcing, CO2 or GHG forcing and aerosol
forcing, and for some model experiments forcings related to land use change and orbital forcing
are also included.

Controlruns/Fixed Forcings

In Fraedrich and Blender (2003) DFA was applied to global fields of observed and simulated
surface temperatures from an AOGCM climate model experiment. The result from observa-
tional data was mostly in agreement with previous studies of temperature in oceanic and coastal
regions, but the authors found α≈ 0.5 corresponding to white noise in inner continents. A 1000-
year simulation from the model experiment yielded similar exponents to what was found for the
observational data in this study. They did not find decreasing exponents with increasing distance
from equator like Király and Jánosi (2005), who comment that this might be due to lower spatial
resolution over Australia in Fraedrich and Blender (2003). Blender et al. (2006) compared ap-
plication of DFA to Greenland ice core δ18O time series with near surface temperature from an
AOGCM simulation. The analysis showed LRM scaling up to millennial time scales during the
Holocene in the ice core data, and that the LRM was reproduced by a 10000 year simulation.

Dynamic CO2 Forcing

Syroka and Toumi (2001) studied persistence in observed temperature, the NCEP re-analysis
(Kalnay et al., 1996) and temperature from a HadCM3 model experiment with daily resolution.
Data from Central England (CET), the El Niño region and global data were used. A variogram
approach was used to determine scaling regimes and exponents. They found different scaling
regimes for the different records, and anti-persistence on scales larger than 1 year in the El Niño
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region. The authors found that the temperature from the model experiment reproduces high per-
sistence on time scales less than one year, but that the persistence on larger time scales is smaller
than for the global temperature and CET. For the El Niño region the model experiment and NCEP
produce temperatures with similar features. The authors also concluded that neither the observa-
tions nor the model simulations can be interpreted in terms of an AR(1) process by comparing
power spectra of the data and synthetic noise. One should be careful with the interpretation of
these results, as variogram approaches do not incorporate detrending, and cannot yield β > 1. In
the El Niño region, the temperature have oscillations, which also affects the scaling behaviour.
Still, this study may give indications of how well the climate model simulation of temperature
reproduces the observed temperature.

In Bunde et al. (2001), observed maximum daily temperatures from 6 sites, among them Prague,
was studied with DFA. Temperature data from Prague from different climate model experiments
with AOGCM models were analysed with the same methods, and the results compared. They
used time series cut off at the year 1992, and time series extending into the future. For all the
observational data they found an α ≈ 0.65 corresponding to β ≈ 0.3 for time scales above 10
days. The temperatures from the model experiments showed good scaling for the data from the
CSIROMK2 experiment, with a scaling exponent close to that for the Prague record. The tem-
peratures from the experiments with ECHAM4/OPYC3 and HadCM3 showed a crossover after
about 3 yr, where the data had an exponent corresponding to white noise. In Govindan et al.
(2001) a similar study was done, but with comparison between observational data and data from
model experiments from two sites, Prague and Melbourne. The same models were used. The
Prague results were discussed as in Bunde et al. (2001). For Melbourne the results were similar,
except for the temperature from the HadCM3 experiment, which yielded a slightly higher expo-
nent than the observational data. In Vjushin et al. (2002) temperature records at four sites from
seven climate model experiments were analysed with DFA. All the models were AOGCM’s. His-
torical forcing records were used up to 1990, and a 1% increase in CO2 level was assumed after
that. The authors found that the different model experiments varied significantly with regards to
LRM, and also found variations from location to location. Scaling exponents differed from those
found for observational temperature record. They concluded that the gradual addition of CO2
makes the temperature from the model experiments lose their memory, and that the results may
be improved by changing the method for adding CO2.

Blender and Fraedrich (2003) did a similar analysis as Fraedrich and Blender (2003) with tem-
perature from two different model experiments with dynamic greenhouse gas forcing included.
The results of these two studies are in agreement.

Dynamic CO2 and Aerosol Forcing
Govindan et al. (2002) made another study applying DFA to observational data and temperature
from climate model experiments. They used records from six sites, and temperature from more
model experiments than previously used in Bunde et al. (2001) and Govindan et al. (2001). In
addition, both experiments with dynamic greenhouse gas forcing and with dynamic greenhouse
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gas plus aerosol forcing were included. The main conclusion was that the temperature from the
model experiments fail to reproduce the scaling behaviour found for observational data, and that
the models display large differences in scaling at different sites. Of the two scenarios, the one
with dynamic greenhouse gas plus aerosol forcing performed better. The authors claimed that
since LRM is underestimated in the temperature from the climate model experiments, it follows
that anticipated global warming is overestimated. Bunde and Havlin (2002) applied DFA to
mean daily temperature from a number of sites with different climate, as the locations are on
continents, coast lines, islands and in the ocean, finding exponents in agreement with the DFA
studies of instrumental records already mentioned. They compared to simulated temperature,
where three types of climate model runs were used: control runs with all forcings fixed, run
with dynamic greenhouse gas forcing and run with dynamic greenhouse gas plus aerosol forc-
ing. The authors found that the experiments with dynamic greenhouse gas and aerosol forcing
produce temperatures that perform best with regards to scaling exponents, but they are not per-
fectly reproducing that found for observational temperature. Govindan et al. (2003) analysed the
temperature volatility, i.e., the increments, from a few selected sites and compared with tempera-
ture volatility from climate model experiments, using DFA. For the observational data they found
scaling exponents similar to that of the direct analysis of observational temperature. Temperature
from model experiments were obtained with the same three types of model runs as in Bunde and
Havlin (2002). Here the temperature volatility showed a wider range of scaling exponents and
conclusions were harder to draw.

Including Dynamic Volcanic Forcing
In Vyushin et al. (2004) temperature from model experiments with no forcings, greenhouse gas,
sulphate aerosol, ozone, solar, volcanic forcing and various combinations were studied (these
forcings were dynamic, other forcings fixed). Scaling exponents for temperature at 16 land sites
and 16 sites in the Atlantic Ocean were estimated. They found that dynamic volcanic forcing was
the most relevant for obtaining scaling exponents close to those found for observational records.
Rybski et al. (2008) used model experiments with constant forcing and with dynamic solar, vol-
canic and greenhouse gas forcing. They analysed data from grid cells all over the globe. They
found that for the forced run experiment, the temperature showed a scaling exponent in agree-
ment with observational temperature, but that the temperature from the control run generally
yields somewhat lower scaling exponents.

Comparing Different Models
Vyushin et al. (2012) analysed a large number of records from temperature re-analysis and tem-
perature from model experiments. They used methods for estimating both the lag-one auto-
correlation φ for an AR(1) and the scaling parameter H and made geographical maps of these
noise parameters. The H values for the simulations were largely consistent with the results in
Fraedrich and Blender (2003), Blender and Fraedrich (2003), Blender et al. (2006), Rybski et al.
(2008). Goodness-of-fit tests were also applied, but it was found that neither AR(1) nor fGn pro-
vided a better fit to the observed and simulated data. Their method was similar to the one we
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applied in Figures 4.7 and 4.8, but the sampling intervals considered was limited to monthly
and annual. Application of a larger range of sampling rates would have given a clearer picture
and favoured the fGn model. Zhu et al. (2010) used experiments from COSMOS to investigate
temperature simulations all over the globe. LRM properties and forecast experiments based on
an AR(1) linear predictor were studied, with various results. They demonstrated the existence of
long-range memory in the near-surface temperature field in high-latitude oceans, while in areas
with LRM, the prediction skills of the AR(1) predictor were poor. In the central South Atlantic
on the other hand, the predictable component by AR(1) was enhanced due to local strong decadal
and bicentennial fluctuations, while LRM scaling were poor.

5.3 Reconstructed Temperature

Rybski et al. (2006) apply DFA2 to six reconstructed temperature records for the Northern Hemi-
sphere. This resulted in scaling exponents corresponding to 0.6 < β < 1. For the Moberg recon-
structed temperature they found β = 0.72. In their study the authors concluded that their work
support the claim that the most recent observed warming is inconsistent with the hypothesis of
purely natural dynamics. In Mills (2007) the periodogram was applied to the Moberg Northern
Hemisphere reconstructed temperature, as well as fitting a FARIMA(2,d,2) to the record. The
author analysed the temperature divided into different subperiods as well as the full record, to
find d ≈ 0.5 (β ≈ 1) for most of the periods. The periodogram and FARIMA(2,d,2) approach
gave almost the same scaling parameter with a few exceptions. Rea et al. (2011) analysed six
temperature reconstructions for Northern Hemisphere, Western USA, Colorado (USA), Shihua
(near Beijing, China), Tasmania (Australia) and Torneträsk (Sweden) with 11 different estima-
tors of the scaling exponent. They found a wide range of scaling exponents for each location,
and concluded that although some of the methods suggest a good fit to long-range memory pro-
cesses, there are phenomena present in the data, e.g., oscillations, that cannot be explained by
LRM. They claim that the apparent long-range memory is merely an artefact of the method of
analysis, but do not consider the possibility that the reconstructions could be a long-range mem-
ory process superposed on a trend. Halley and Kugiumtzis (2011) did a non-parametric testing
of linear trends in 9 temperature reconstructions for the Northern Hemisphere using a type of
surrogate data preserving the LTP structure of the records. They found that the rising trend had
a low probability of being natural fluctuations.

For reconstructed temperature there are few studies, and it is harder to draw an overall picture.
The studies of the Northern Hemisphere reconstructions mostly indicate that this temperature is
a highly persistent noise with a superposed trend.



Chapter 6

Summary of Papers

The papers in this thesis focus on long-range memory in time series of surface temperature.
We have mostly studied global and hemispheric temperature means, since such records are far
less studied than local temperature time series in the existing literature. A regional instrumental
record, the Central England temperature (CET) was included in Paper I, together with global
land temperature, combined global land temperature and ocean temperature and a Northern
Hemisphere (NH) temperature reconstruction. In Paper II, only global land and global ocean
temperature were used. In Paper III, the focus was on Northern Hemisphere temperature. Local
data at Reykjanes Ridge were also studied, using a model temperature simulation, reconstructed
temperature based on proxies and reconstructed temperature based on temperature observations.
Proper error bars for the estimated scaling exponents and more rigorous testing for LRM and
trends including Monte Carlo simulations distinguish Paper I from previous work on LRM in
temperature records. The local data in Paper III were included to illustrate that local ocean tem-
perature also is strongly persistent, as opposed to local continental temperature which is usually
random or only weakly persistent.

The scaling behaviour was investigated with a number of methods. In Paper I, WVA, DFA,
periodogram, variogram and autocorrelation function were used to find if the correlation struc-
ture of the records was consistent with that of fGns, with positive result after proper detrending.
However, other noise models were not considered. The significance of trends under an AR(1)
model was included in Paper II, and therefore an approach for finding the noise model that best
describes the temperature records was applied. The correlation time τc was estimated as a func-
tion of the sampling rate ∆t for the full data set, the detrended data set, and synthetic data under
the two null hypothesis. This showed that for the land temperature, the time series was more con-
sistent with fGn than AR(1) after detrending. The ocean temperature was most consistent with
fBm without detrending, and with fGn after linear detrending. Due to the high persistence in the
ocean temperature, we could not decide whether fGn or fBm was the best model, but AR(1) was
rejected. In Paper III, the periodogram, DFA and WVA was applied to temperature from model
experiments and reconstructed temperature for the Northern Hemisphere and Reykjanes Ridge.
Based on the results from these methods and the results in Paper II, it was not found necessary
to test an AR(1) hypothesis. To avoid the effects of linear trends associated with anthropogenic
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global warming, the time series were cut off at 1750 AD. Instead of assuming that the records
should be divided into a trend and a noise, an approach considering a deterministic and stochastic
response to external forcing was performed.

Our papers confirm that global and hemispheric temperature means are more persistent than
local temperature, and that temperature over oceans is more persistent than temperature over
land. In Paper I, we found for CET H = 0.64± 0.07, corresponding to β = 0.28± 0.14, for
global land temperature H = 0.75± 0.07 (β = 0.50± 0.14), for combined land and ocean tem-
perature H ≈ 1 (β ≈ 1) and for the NH reconstruction H = 0.9± 0.1 (β = 0.8± 0.2). In Paper
III we found a somewhat lower scaling exponent for the NH reconstruction, 0.6 < β < 0.7. For
the NH temperature simulated by climate model experiments, 0.6 < β < 1 was found, and the
temperature from Reykjanes Ridge showed slightly lower persistence with 0.4 < β < 0.6.

Trends are important in our papers in two ways: they tend to influence the estimation of memory
exponents, and LRM tends to influence the statistical significance of trends. In Paper I, three
trend models were considered: linear, cubic, and 7th order polynomial. For CET, the linear
detrending resulted in the best scaling behaviour, while for the global land temperature and com-
bined global land and ocean temperature, the cubic trend model gave the best result, although
the results for the latter record were slightly harder to interpret due to β ≈ 1. For the NH re-
construction, polynomial detrending did not give good scaling, so a wavelet filtering approach
was done to simulate an oscillation. The record was well described by an fGn with such a trend
superposed. In Paper II, a rigorous study of significance of trends in global land temperature
and global ocean temperature was performed. A trend model consisting of a linear function and
an oscillation was chosen, but the procedure could have been used for any trend model. The
method of hypothesis testing was emphasized, as the testing of significance of trends in LRM
records previously have been done with different approaches, leading to different conclusions.
In our approach, a correlated noise was chosen as the null model, with the alternative model that
a trend was present in the temperature records. Three noise models were used: AR(1), fGn and
fBm (for ocean temperature only). The noise parameters for each noise model were estimated
for the two records, and ensembles of synthetic noises with the same parameters constructed.
The trend model parameters were estimated for each ensemble, and used to obtain 95% confi-
dence contours of the distribution for the trend parameters. When the trend parameters for the
ocean temperature were compared to the 95% confidence, the trend was significant for AR(1)
and fGn, but not for the fBm null model. For the land temperature, the linear part of the trend
was clearly significant. The null hypothesis could then be rejected, and a new null model includ-
ing the linear trend was formed. It was then found that the oscillation also was significant in the
land temperature record.



Chapter 7

Concluding Remarks

The study of different surface temperature time series, including instrumental records, recon-
structions and climate model simulations, shows that LRM is present on time scales from months
to centuries. Most of the time series can be described as persistent noise. Global ocean tempera-
ture may be described as a highly persistent noise or a nonstationary motion, but the distinction
is unclear because of biases and errors in the methods when β≈ 1. Significant rising trends can
be found in temperature time series over the last 100-200 years, but may be hard to detect in
local records due to high variance and in ocean records due to high persistence. The global land
temperature over the last 160 years works as a great example of a temperature record showing
a clear rising trend as well as an oscillation with a period of ∼ 70 years. The study of North-
ern Hemisphere temperature from climate model experiments shows that external forcing alone
cannot explain LRM in temperature, since LRM is found in both temperature from control runs
and in the residual from a deterministic response to forcing. The scaling exponents are in this
case close to that of the temperature from the experiments with full dynamic forcing. Although
some of the previous studies of simulated temperature indicate that some types of dynamic forc-
ing is important for reproducing LRM in agreement with that found in observational data, this is
not always the case. These studies focus on local data, so the smaller scaling exponents could
perhaps be explained by other features masking the LRM, e.g., higher variance, oscillations, or
generally lower persistence in local than in global data. The lack of persistence in control runs
is not found for the Northern Hemisphere mean used in our studies. This suggests that LRM
arises from internal dynamics of the climate system, and since sea surface temperature is more
persistent than land air temperature, ocean dynamics must be a crucial component for LRM in
temperature.
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