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Introduction 
 

In the heart, the whole is more than the sum of its parts. Therefore understanding of the control and 

regulation of cardiac metabolism is an essential field within heart research (134). Cardiac 

metabolism and contraction are fundamentally integrated, thus without adequate fuel supply and/or 

utilization the heart is unable to meet the circulatory demands. The heart requires 3.5-5 kg of 

adenosine 5’-triphosphate (ATP) per day to maintain continuous pumping and as the heart has 

limited energy reserves, a constant renewal of ATP by the metabolic “machinery” within the 

myocardium is essential. The heart relies on ATP generated primarily by oxidative phosphorylation, 

and the rate of energy expenditure of the heart can therefore be assessed using myocardial oxygen 

consumption (MVO2). 

Efficiency is described by the relationship between the energy output and energy input (MVO2) in 

the heart (13). MVO2 can be designated for both mechanical and non-mechanical processes (132) 

(Figure 1). ATP is used for non-mechanical processes such as basal metabolism (BM) and 

excitation-contraction (E-C) coupling (120; 131; 132), the conversion of incoming electrical stimuli 

to a mechanical response (117), and for mechanical work, including external work (i.e. stroke work 

(SW), the work performed by the ventricle to eject the volume of blood within) as well as “internal” 

work/ potential energy (the energy generated within each cardiac cycle but not converted to external 

work) (132) (Figure 1). 

Several physiological states and pathological conditions can also alter the oxygen cost for both 

mechanical and non-mechanical processes; these include changes in substrate supply to the heart 

(elevated fatty acid supply), altered Ca2+ handling, beta-adrenergic stimulation, diabetes, exercise 

hypertrophy and heart failure. Their effects on cardiac efficiency are the focus of the present thesis.  
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Oxygen consumption in the heart 

The close correlation between cardiac work and MVO2 describes the increased energy expenditure 

in the form of MVO2 as the work demand of the heart increases (120; 132). MVO2 used for 

mechanical activity is often called work-dependent MVO2, and includes both an internal and 

external work component. Several studies have shown that there is a linear relationship between 

MVO2 and increasing cardiac work whether assessed only as external mechanical cardiac work 

(144) or total cardiac work (131; 132). A regression analysis of the relationships between MVO2 

and these parameters of cardiac work will provide information of changes in the efficiency of the 

heart. Contractile efficiency represents the additional MVO2 required for a given increase in cardiac 

work (the inverse of the slope). It is the product of the efficiency by which O2 consumption is 

converted to ATP synthesis (oxidative phosphorylation) and the efficiency by which ATP 

hydrolysis is converted to cardiac mechanical work (cross-bridge cycling) (132). Work-independent 

MVO2 represents the O2 required for non-mechanical processes, including E-C coupling and basal 

metabolism which are described in more detail below. 

 

 

Figure 1. Energy flow diagram for myocardial oxygen consumption (MVO2). ATP is 
designated for mechanical processes (cardiac work) that are comprised of potential energy 
(PE) and stroke work (SW). Non-mechanical processes within the myocardium include 
basal metabolism (BM), the amount of energy to maintain homeostasis in the quiescent 
heart and excitation-contraction (EC) coupling. Adapted from Suga (1990) (132). 
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Excitation-contraction (E-C) coupling in the heart. E-C coupling is a term that includes the 

process of converting an electrical stimulus to a mechanical response, and thus primarily includes 

the Ca2+ handling associated with the Ca2+ transient (117), as described in more detail in Figure 2. 

The most energetically costly process of E-C coupling is the ATP driven pump of the SR, which 

accounts for approximately 15% of the total myocardial energy expenditure (98; 136). In spite of 

this, Ca2+ uptake by SERCA into the SR is more energetically efficient (2 Ca2+:1 ATP)  than Ca2+ 

extrusion via sarcolemmal Ca2+-ATPase and the Na+-Ca2+ exchanger (NCX) coupled to the Na+-K+ 

ATPase driven pump (1 Ca2+:1 ATP) (124).  

 

 

 

      

 

 

 

 

 

 

 

Figure 2. Ca2+ handling in the cardiomyocyte during excitation-contraction coupling. The electrical signal in 
the cardiomyocyte is initiated by a wave of depolarization travelling through the myocardium, causing the 
rapid entry of Na+ ions (initial depolarization) followed by opening of the L-type Ca2+ channels (LTCC) in the 
sarcolemma and Ca2+ entry into the cytosol. This Ca2+ influx stimulates Ca2+ induced Ca2+ release through the 
ryanodine receptor (RyR) in the sarcoplasmic reticulum (SR). Ca2+ binds to the troponin complex on the actin 
filament, opens the binding site for myosin attachment and thus initates cross-bridge formation. Cytosolic 
Ca2+ is taken up by the SR Ca2+-ATPase (SERCA) into the SR, as well as transported out of the cell by the 
sarcolemmal Ca2+-ATPase and the Na+/Ca2+ exchanger. In addition, the mitochondria can take up Ca2+ and 
act as a Ca2+ buffer within the cytosol. However, this process takes longer than that of the other Ca2+ transport 
mechanisms mentioned (98).   
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Several physiological and pathophysiological conditions have been shown to alter Ca2+ handling in 

the heart.  It is well known that Ca2+ transients can be increased by β-adrenergic stimulation as well 

as an increased external concentration of Ca2+, which will both result in an increased force produced 

by the myocardium. Physiological adaptations that occur following exercise training have been 

shown to affect the dynamics of Ca2+ cycling within the heart as well as improve myofilament Ca2+ 

sensitivity (64; 65; 147). Changes in Ca2+ homeostasis are known to occur in type 2 diabetes 

including altered Ca2+ transients (102) and increased Ca2+ leakage from the ryanodine receptors in 

the SR (11; 130). Recent evidence has also linked a reduced energetic state in the heart to reduced 

SR Ca2+ content and increased leakiness from the SR (75). Reduced activity and/or expression of 

SERCA2 in the cardiomyocyte will have major implications on contractile function. 

Cardiomyopathy and pathological cardiac remodeling, i.e. heart failure and diabetes, have been 

shown to be associated with a reduction in the capacity (122) or presence (5; 30) of myocardial 

SERCA2. Thus given the central role of Ca2+ handling (including SERCA2 activity) in cardiac 

function this may lead to altered oxygen cost for Ca2+ handling in E-C coupling.  

 

Basal metabolism. The basal metabolism (BM) of the heart represents the rate of energy 

expenditure in the quiescent myocardium, and accounts for approximately 20-35% of total cardiac 

metabolism (44). The BM rate in heart tissue is several fold higher than that found in any other 

tissue, however the absolute or relative values of the oxygen cost of BM in the heart vary 

tremendously within the literature, most likely due to differences in species, type of cardiac 

preparation and method of assessment of energy consumption, which has been skillfully reviewed 

by Gibbs and Loiselle (2001) (44). The primary energy requirements of BM are designated for non-

mitochondrial purposes (10%) and maintaining the mitochondrial membrane potential to protect 

against proton leaks (20-30%); the remaining energy expenditure (60-70%) is devoted to ATP 

production in the mitochondria for protein synthesis, maintaining transmembrane ionic balance 

across the sarcolemma (Na+-K+-ATPase, Ca2+-ATPase), and resting actomyosin ATPase (28; 44; 

112). 
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Cardiac substrate utilization 

The heart can be regarded as an omnivore as it can use a variety of substrates (fuels) for ATP 

synthesis including fatty acid (FA), glucose, lactate and certain amino acids. The heart has therefore 

a high degree of plasticity with respect to substrate selection, encompassing daily changes between 

the fed and fasted state, as well as adaptations to various physiological (β-adrenergic stimulation, 

exercise) and pathophysiological conditions (pathological hypertrophy, heart failure, diabetes). The 

main substrates used by the heart are FA and glucose; the reciprocal changes in glucose and FA 

oxidation depending on their availability are the basis of the “glucose-fatty acid cycle”, also known 

as the Randle cycle (107; 108). Other factors that influence substrate utilization in the heart include 

hormones, cardiac workload and oxygen availability, as well as transcriptional changes of key 

metabolic enzymes and transporters (80; 99).  

 

Fatty acid utilization. When plasma levels of circulating FA (bound to albumin) are high, the 

uptake of FA by the myocardium is also elevated. Most FA transport across the sarcolemma is 

mediated by FA transport and binding proteins (including fatty acid transport protein (FABT), fatty 

acid translocase (FAT/CD36) and the fatty acid binding proteins (FABP) located on the inner and 

outer side of the cell membrane (Figure 3). FA is also released from triglyceride (TG) in the form of 

triacylglycerol (TAG) bound to circulating lipoproteins (chylomicrons and VLDL) that are broken 

down by cardiac lipoprotein lipase to provide an additional source of FA for cardiac metabolism 

(46; 80; 142). When FA has entered the cardiomyocyte, it must first be converted to acyl-CoA by 

fatty acid acyl-CoA synthetase (FACS). The acyl-CoA can be converted to TAG or transferred into 

the mitochondria. For mitochondrial uptake, cytosolic fatty acyl-CoA is first converted to an acyl-

carnitine derivate by carnitine-palmitoyltransferase-1 (CPT-1) and then transferred by an acyl-

carnitine translocase into the mitochondria matrix where acyl-CoA is re-generated by CPT-2. Thus, 

the CPT-1 step is regarded generally as the rate limiting step of FA oxidation in the heart. Within 

the mitochondria, β-oxidation of the acyl-CoA will yield multiple acetyl-CoA molecules for entry 

into the tricarboxylic (TCA) cycle, and subsequent ATP production by the electron transport chain 

and oxidative phosphorylation (80; 99). High levels of acetyl-CoA formed by β-oxidation will also 

activate pyruvate dehydrogenase-kinase-4 (PDK4) which has an inhibitory effect on pyruvate 

dehydrogenase (PDH), thereby limiting glucose oxidation (46; 80). If FA uptake exceeds demand, 

excess acetyl-CoA provides negative feedback via malonyl-CoA and prevents further FA uptake 

into the mitochondria. Furthermore, acyl-CoA that does not enter the mitochondria for β-oxidation 

can be stored as TAG or structural lipids in the myocardial membrane. 
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Figure 3. Glucose and fatty acid uptake and oxidation in the cardiomyocyte. Fatty acids are delivered to 
the cardiomyocyte attached to albumin or as triacylglycerol (TAG) bound to chylomicrons or VLDL. 
They can enter via FA transport protein (FATP) and FAT/CD36 or by diffusion across the membrane. 
Once converted to acyl-CoA, they can pass through carnitine-palmitoyltransferase (CPT-1 and CPT-2) 
located in the mitochondrial membrane. Following β-oxidation, acetyl-CoA can enter the tricarboxylic 
(TCA) cycle to form FADH2/NADH which can enter the electron transport chain (ETC). H+ formed from 
the ETC is pumped into the mitochondrial matrix, which contributes to the mitochondrial membrane 
potential. Activation of uncoupling proteins (UCP) can enhance proton leak. Glucose uptake is mediated 
by glucose transporters (GLUT 1 and 4). Under aerobic conditions, pyruvate formed from glycolysis, 
forms acetyl-CoA in the mitochondria and can enter the TCA cycle and ETC. Adapted from Lopaschuk 
et al. (80). 
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Glucose utilization. Glucose uptake into the cardiomyocyte occurs by facilitated transport regulated 

by sarcolemmal glucose transporters (GLUT1 and GLUT4) (Figure 3). The dominant and insulin-

sensitive transporter GLUT4 moves between intracellular vesicles and the sarcolemma by insulin-

mediated translocation, and is also stimulated by the AMP-activated protein kinase (AMPK) in 

response to increased contraction and hypoxia (121). Intracellular glucose is phosphorylated by 

hexokinase (HK) to form glucose-6-phosphate, which apart from entering glycolysis, can also be 

used in glycogenesis and can enter the pentose phosphate and hexosamine biosynthetic pathways. In 

the glycolytic pathway, fructose-6-phosphate is converted to fructose 1,6-biphosphate by the 

enzyme phosphofructokinase (PFK), an important regulator of glycolytic flux stimulated by 

increased contraction, hypoxia, fed state, and catecholamines. When ATP levels are high, PFK is 

inhibited by cytosolic citrate released from the TCA cycle. The end product of glycolysis is 

pyruvate, which under anaerobic conditions may be reduced to lactate; under aerobic conditions, 

pyruvate is decarboxylated to acetyl-CoA by the enzyme PDH in the mitochondrial membrane prior 

to entering the TCA cycle. The enzyme PDH is stimulated by insulin, increased heart work and 

catecholamines; all conditions where the glycolytic rates are also high. Inhibition of PDH occurs via 

PDK4 which increases its activity when levels of acetyl-CoA derived from FA oxidation are high 

(99).  

 

Physiological and pathophysiological changes in cardiac metabolism 

Several physiological conditions (fasting, post-operatively, exercise) and pathophysiological 

conditions (diabetes/obesity) are associated with changes in levels of circulating FA and/or 

catecholamines which can affect substrate utilization, MVO2 and cardiac efficiency (56; 71; 80; 

103; 133).  

 

Acute elevation of FA supply to the heart. Elevated circulating FA levels are known to occur 

following fasting and following operative procedures due to increased β-adrenergic stimulation 

and/or postoperative insulin resistance, both of which act to mobilize FA from adipose tissue. Under 

these conditions, FA becomes the main substrate utilized by the heart (3; 71). Elevated FA is not 

only associated with elevated myocardial FA oxidation, but also with an increase in MVO2 that is 

larger than would be expected by changes in cardiac work, leading to what is often called oxygen 

waste (56; 72; 87). Several mechanisms have been suggested to induce FA-induced oxygen waste 

which is addressed in more detail in the Discussion section of this thesis. In brief, the 

phosphorous:oxygen (P:O) ratios of oxidative phosphorylation can offer a partial explanation for 
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the increased MVO2 following acute elevation of FA. The P:O ratio represents the amount of ATP 

(mols) formed from each mol of oxygen (terminal electron acceptor) utilized by the mitochondrial 

electron transport chain, and will vary depending on the type of energy substrate utlilized (99). 

There is an ATP yield of 32 for a mol of glucose oxidized, with a corresponding P:O ratio of 2.58. 

By comparison, the ATP yield is 105 for palmitate but with a lower P:O ratio of 2.33. Hence, 

although FA clearly generates a higher energy yield it comes at the expense of a larger oxygen 

requirement (61; 99). Elevated FA oxidation has been associated with increased mitochondrial 

production of reactive oxygen species (ROS). Both FA and ROS have been suggested to activate 

mitochondrial uncoupling proteins (UCP) which can increase proton conductance across the 

mitochondrial membrane (19) causing a reduced ATP production (19; 34; 35). Enhanced 

mitochondrial uncoupling may therefore contribute to impaired myocardial function and elevated 

O2 consumption (16). Under conditions of elevated FA, futile cycling of FA intermediates from 

TAG and back into the TAG pool is an energy consuming process that may further contribute to 

FA-induced O2 waste (93). Finally, recent studies have reported changes in Ca2+ handling following 

the elevation of FA (37), in addition to altered Ca2+ handling when UCP is elevated (140) and 

altered SR Ca2+ cycling in conditions where FA has been elevated over a prolonged period (11; 

102).  

 

Diabetes. Diabetes is associated with an increased prevalence of heart disease, increased morbidity 

and mortality rate (40; 48; 63). Heart failure in diabetics is due to coronary heart disease caused by 

accelerated atherosclerosis, and/or development of a specific diabetic cardiomyopathy (defined as 

the development of dysfunction independent of known coronary disease and/or hypertension) (125). 

Although the mechanisms behind the pathogenesis of diabetic cardiomyopathy are multifactoral and 

complex, there is evidence that metabolic changes play an important role in the development of 

mechanical dysfunction (2; 4; 26; 94). In support of this animal and human studies have revealed 

that alterations in myocardial metabolism may occur prior to major ventricular dysfunction (2; 32; 

79; 145).  A continuous elevation of plasma lipid levels and FA availability to the heart over time 

will lead to an adaptive increase in FA oxidation due to both the elevated FA supply as well as to 

transcriptional changes, as FA is known to activate the transcription factor peroxisome proliferator-

activated receptor (PPAR) α responsible for the regulation of genes coding for proteins increasing 

FA transport and metabolism in the diabetic heart (1; 9; 46; 92). Another hallmark of the type 2 

diabetic heart is decreased cardiac efficiency (15; 26; 57; 85).  Previous studies from our laboratory, 

using type 2 diabetic db/db hearts have demonstrated by regression analysis of the relationship 

between MVO2 and cardiac work that decreased cardiac efficiency in these hearts was due to 
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increased oxygen cost for non-mechanical processes (49; 57). Clinical studies have also 

documented an altered substrate utilization (elevated rates of FA oxidation) and decreased cardiac 

efficiency (103), as well as impaired energetic state (lowered PCr:ATP ratios) (32; 119) in obese 

and/or type 2 diabetic subjects. A higher O2 cost may be of particular importance during conditions 

of limited O2 availability for the heart and reduced cardiac efficiency may play a particular role with 

regard to the increased susceptibility to ischemia often found in diabetes (2; 7; 48; 49). Several of 

the same mechanisms as previously discussed for the FA-induced increase in MVO2 may contribute 

to the elevated MVO2 in diabetic hearts including a switch in substrate utilization to give a lower 

P:O ratio (80; 99), ROS-mediated mitochondrial uncoupling (18) and metabolic futile-cycling (93; 

114; 115). In addition, increased SR Ca2+ leak (11; 130) can increase Ca2+ recycling and thus the 

oxygen cost of E-C coupling.  

 

Exercise. Although chronic exercise training leads to a variety of systemic changes in the 

circulatory system and on the heart, the specific cardiometabolic effects of exercise are not clear. 

There are few and inconsistent reports with regard to exercise-induced changes in substrate 

utilization (22; 24) whereas the effect of exercise on cardiac energetics has not been previously 

reported. Isolated cardiomyocytes from rodents subjected to high intensity interval training show 

increased contractility, improved Ca2+ handling and increased myofilament Ca2+ sensitivity (65; 66; 

147) which can imply improvement of cardiac contractile efficiency and/or reduced oxygen cost for 

processes associated with E-C coupling. Moderate intensity exercise has been linked to reduced 

mitochondrial ROS production (128) and mitochondrial uncoupling (14), processes that may also 

affect cardiac efficiency in terms of altered O2 consumption. Finally, exercise-induced cardiac 

hypertrophy is associated with a shift in the myosin heavy chain (MHC) expression from β to α 

isoform (62; 101); the α isoform has higher ATPase activity and thus is energetically less efficient 

(54; 100). As the work of the heart will vary depending upon the type, intensity, duration and 

regularity of the exercise performed, there are reasons to believe that this may also affect the 

cardiometabolic status following exercise. 
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Aims of the study 

The general purpose of this thesis was to elucidate how cardiac substrate metabolism and/or Ca2+ 

handling influence cardiac energetics in hearts under altered physiological and pathophysiological 

conditions. Specific attention was paid to examination of cardiac efficiency, in particular the 

changes in oxygen cost for processes associated with basal metabolism (BM) and excitation-

contraction (E-C) coupling in these hearts. 

 

Specific aims: 

1.  Establish a technique for measurement of oxygen cost for BM (MVO2 BM) and E-C coupling 

(MVO2 ECC) in isolated perfused mouse hearts. 

2.  Examine changes in MVO2 BM and MVO2 ECC in hearts from type 2 diabetic (db/db) vs. non-

diabetic mice. 

3.  Elucidate the role of fatty acid oxidation rate vs. fatty acid load on myocardial oxygen 

waste. 

4.  Elucidate the cardiometabolic effects of exercise training, with a special focus on the role of 

exercise intensity.  

5.  Examine the cardiometabolic effects of myocardial SERCA deletion using conditional 

myocardial SERCA knock-out (KO) mice. 
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Methodological Considerations  

Assessment of MVO2 and cardiac efficiency 

The isolated perfused (ex vivo) heart is an important tool for characterizing the cardiac phenotype. It 

is important to remember that as the heart has been removed from its natural milieu, ex vivo 

characterization will not give the complete in vivo picture of heart function (8). Nevertheless, 

isolated heart perfusions have great value with regard to describing changes within the heart as 

factors such as loading conditions, heart rate, substrate supply and drug administration are easily 

controlled, and the heart is without neuro-hormonal influences. In some cases, the ex vivo perfusion 

setting allows for earlier detection of contractile abnormalities that are difficult to detect in vivo due 

to variable in vivo hemodynamics and/or neuro-hormonal influences (49; 57; 141). In the present 

thesis, cardiac work, contractile properties, MVO2, cardiac efficiency and myocardial substrate 

utilization has been assessed in isolated hearts that have been perfused in the antegrade perfusion 

(working) mode (Figure 4A) and in the retrograde perfusion (non-working Langendorff) mode 

(Figure 4B).  

 

 

 

 

 

 

 

 

Figure 4. Instrumentation of an isolated perfused working heart (panel A) where PO2 is 
measured using oxygen sensors placed in the left atrium (LA) canula and pulmonary artery 
(PA). Left ventricle (LV) pressure and volume were measured using a P-V catheter. In a 
retrograde perfused unloaded heart PO2 is measured by oxygen sensors placed in the aortic 
cannula and PA (panel B). The heart is mechanically unloaded by venting the LV. In both 
models, electrodes are attached on the left atrium for electrical pacing of the heart. 
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Cardiac efficiency, as proposed by Bing in 1949 (13), is defined as the relationship between the 

energy produced (cardiac work) and energy consumed (MVO2). This concept of cardiac efficiency 

requires a cardiac work term that correlates as closely as possible to MVO2. In 1979, Suga 

described a linear relationship between such a work term and MVO2, which he defined as the 

pressure-volume work (pressure volume area, PVA) (131). PVA was measured using a conductance 

catheter inserted through the apex of the left ventricle of a working heart (paper 1, 3, 4). This 

catheter contains a micromanometer for pressure recordings in addition to electrodes for 

measurement of volume within the left ventricle. Volume is calculated from the total conductance 

(G) by the following formula:  Vt = (1/α) * (L2/ρ) * [G(t)-Gp], where L is the inner electrode 

distance and ρ is the resistivity of the perfusate. The α factor is calculated by the ratio between the 

directly measured stroke volume and the stroke volume obtained by the catheter. The instantaneous 

conductance by the myocardium, Gp, gives rise to the estimated volume within the ventricle wall 

(called parallel volume). Using the conductance catheter, pressure-volume loops are obtained by 

plotting left ventricular pressure against the corresponding volume throughout a cardiac cycle (the 

P-V loop). A temporary reduction of preload pressure that causes a passing reduction of ventricular 

filling forms a family of PV loops that are used to define the end systolic pressure volume 

relationship (ESPVR) and the end diastolic pressure volume relationship (EDPVR) (Figure 5A). 

These are used to describe systolic and diastolic properties of the heart, as well as to determine the 

theoretical value of the volume in the heart when zero pressure is generated (V0). The PVA includes 

the work exerted by the heart on its environment, stroke work (SW, defined by the P-V loop) and 

the potential energy triangle, limited by the ESPVR, EDPVR, and the descending limb of the P-V 

loop (Figure 5B). Thus, PVA can be calculated using the following formula:  

PVA = SW + [Pes • (Ves –V0)/2] – [Ped • (Ves-V0)/4] (148).  

 

The MVO2 was obtained using fiber-optic O2 probes for the measurement of the partial pressure of 

oxygen (PO2) of the buffer entering (PO2 buffer) and the buffer exiting the heart (PO2 effluent), 

representing the arterial-venous difference in PO2. MVO2 is calculated by the Fick’s principle, 

according to the following equation: MVO2 = [PO2 buffer-PO2 effluent] * Bunsen solubility coefficient 

of O2 * coronary flow (Figure 4). It is worth noting that constant on-line measurement of the PO2 

provides accurate assessment of MVO2 as despite the use of a constant gas mixture (95% O2), 

oxygenation of the perfusate can vary due to an altered flow pattern in the surface oxygenator. This 

variation can be of considerable importance when, for example, the arterial-venous PO2 difference 

becomes small. Although using arterial-venous difference is a recognized method for measuring 
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MVO2 in isolated perfused hearts, the possibility of transepicardial O2 flux (44) cannot be excluded 

and may be a methodological limitation.  

 

 

 

 

 

 

 

Regression analysis of the PVA:MVO2 relationship (131) allows us to evaluate two aspects that 

affect cardiac efficiency (Figure 6):  whereas changes in the slope can reflect the contractile 

efficiency of the heart (i.e. how much work-dependent O2 is converted to mechanical energy), the 

extrapolated y-intercept of the relationship (when PVA is 0) can reflect the O2 required for non-

mechanical (work-independent) processes (unloaded MVO2). Thus cardiac inefficiency can be 

exhibited by i) a parallel increase of the PVA:MVO2 relationship (i.e. inotropic stimulation) due to 

an increase in work-independent oxygen consumption, ii) by a change in the slope due to an 

increase in work-dependent MVO2 (i.e. increased wall stress),  or in some cases iii) by both.  

As the y-intercept is obtained by extrapolation of the PVA:MVO2 relationship, it represents an 

indirect value for unloaded MVO2 and not a direct measurement. Alternatively, work-independent 

MVO2 (MVO2 unloaded) can be directly measured in isolated hearts by reducing the workload through 

retrograde perfusion where PVA is zero. This is obtained using retrogradely (Langendorff) perfused 

mouse hearts where the heart is unloaded by inserting a small cannula (a vent) in the left ventricle to 

drain any remaining perfusate (Figure 4B). 

 

Figure 5. A reduction in preload pressure creates a family of loops that define the end systolic and end-
diastolic pressure volume relationships (panel A). The pressure-volume area (PVA) is the sum of the stroke 
work and the potential energy triangle (panel B).  
 



 18

 

 

.  

 

 

 

Although residual cross-bridge interaction remains in the myocardium as the myocytes remain 

intact and in contact with each another, the O2 consumed for the unloaded contraction with zero 

PVA is considered to be of a negligible amount relative to the unloaded MVO2 (132). In spite of 

this other studies have measured unloaded MVO2 in isolated cardiomyocytes or in muscles slices 

from the heart (124; 135; 136; 149) where compounds including 2,3-butanedione monoxime 

(BDM) and blebbistatin, known to affect myofilament interaction by stopping any residual, energy-

consuming crossbridge formation, have been added (33; 38; 135; 149). BDM has been reported to 

reduce the Ca2+ sensitivity of the myofilaments without affecting the intracellular Ca2+ transient (76; 

149) however, there are also several reports that demonstrate that BDM may in fact alter total Ca2+ 

handling (83; 104; 138). In the present thesis, pilot experiments were performed where BDM (10 

mM) was added to the perfusion buffer in order to further “unload” the heart. We found that BDM 

reduced MVO2 unloaded by more than 50%, without altering MVO2 BM.  The dramatic reduction in 

MVO2 ECC seen in these pilot studies could indicate that BDM affected total Ca2+ handling. As this 

would lead to an underestimation of the O2 cost for E-C coupling in our experimental protocol, the 

use of BDM was therefore not further explored. In further pilot experiments, we have also evaluated 

the use of blebbistatin (10 μM), a compound reported to specifically inhibit actin-myosin interaction 

in cardiac muscle without altering the Ca2+ transients (33; 38). Our experiments revealed that 

blebbistatin stopped contractions and caused an immediate fall in MVO2 unloaded. However, as the fall 

Figure 6. Regression analysis of the PVA and MVO2 relationship allows for the determination of contractile 
efficiency and the energy required for non-mechanical processes in the heart. 
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in MVO2 was approximately 60% this raised the uncertainty of whether blebbistatin could have 

altered E-C coupling in isolated heart perfusions. For this reason, in addition to its sensitivity to 

ultra-violet light (38) and the challenge of blebbistatin contamination in the perfusion system (not 

water soluble), it was not further explored.  

Measurement of the O2 cost for BM was obtained by electrically arresting the heart through the 

elevation of the extracellular concentration of potassium chloride (KCl) to approximately 16 mM. 

Elevated KCl results in depolarization of the sarcolemma membrane and arrests the heart through 

the cessation of action potentials and thereby of mechanical contractions. As MVO2 unloaded 

represents the O2 required for the unloaded contraction with zero PVA (132) and this was directly 

measured in isolated hearts during retrograde perfusion, the difference between MVO2 unloaded and 

MVO2 BM was defined as the O2 cost for E-C coupling (MVO2 ECC). 

 

Assessment of myocardial substrate utilization 

Myocardial substrate flux rates were assessed using radioisotope techniques by adding trace 

amounts of labeled radioactive substrates to the perfusion buffer, where the end-products (3H2O or 
14CO2) are quantitatively collected at regularly timed intervals. In the present thesis, glucose 

oxidation was determined using [U-14C]-glucose where 14CO2 is released during the pyruvate 

dehydrogenase step and in the TCA cycle. Gaseous 14CO2 was trapped when the gas was bubbled 

from a closed (airtight) perfusion system through hyamine hydroxide, while 14C-labelled 

bicarbonate was measured by injecting a sample of the perfusate into a sealed test tube containing 

sulphuric acid where the 14CO2  released as a consequence of the acidification is trapped on filter 

paper with hyamine hydroxide (8). Palmitate oxidation was measured using [9,10-3H]-palmitate, 

where 3H2O is released at the cytochrome C step in the respiratory chain, and separated from the 

tritiated palmitate by Folch’s extraction (41). The use of radioactive isotope techniques is a 

relatively inexpensive method to assess metabolic rates in isolated hearts that does not require the 

use of advanced equipment. As with all ex vivo experiments it cannot completely reproduce the 

complex in vivo situation (96). For example, only 2 labeled substrates in the same experiment (to 

detect 3H2O and 14CO2) can be measured simultaneously and there is a potential contribution of 

endogenous substrates in the heart when using this technique.  
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Mouse models 

The inbred mouse strains C57BL/6J and BalbC/cJ have been used in this thesis for all experiments 

in normal, control mice with the exception of the C57BL/KsJ-leprdb+/+(db/+) mice which were 

always used as a control in comparison with the db/db type 2 diabetic mouse model (described 

below). The choice of mouse model for studies carried out in normal mice was based on several 

reasons. The C57BL/6J mouse shares the same background as the db/+ and db/db mouse strain thus 

in paper 1 it was the appropriate model for establishing the method that was later used in db/+ and 

db/db mice.  In paper 2, early pilot studies performed in BalbC/cJ mice made this strain the natural 

choice for the continuation of experiments. A report by Lightfoot et al. (2001) showed that 

C57BL/6J mice, used again in paper 3, had a lower aerobic capacity as compared to other mouse 

strains (77), however, as this strain has been previously described to run willingly (77) and respond 

to training (65) they were included in the exercise protocol.  

 

The type 2 diabetic (db/db) mouse. In paper 1 and 2, C57BL/KsJ-leprdb/leprdb (db/db) mice were 

used as a monogenic model of obesity and type 2 diabetes. These mice have a mutation on the 

leptin receptor gene (chromosome 4) (29) which in the homozygote mice (db/db) causes 

hyperphagia and the development of obesity, insulin resistance, hyperinsulinemia, hyperglycemia 

and dyslipidemia, while their heterozygote littermates (db/+) are phenotypically normal. In addition 

to having very severe and fast progressing type 2 diabetes, the db/db mouse develops contractile 

dysfunction without the presence of atherosclerosis which has resulted in its use as a model for 

diabetic cardiomyopathy. The majority of studies evaluating cardiac metabolism and function in 

db/db hearts have been performed with ex vivo perfusions. Despite a difference in cardiac substrate 

availability in db/db and db/+ mice in situ, these hearts are most often perfused ex vivo with buffer 

containing fixed levels of glucose and palmitate and have been shown to display altered substrate 

utilization, where FA utilization is elevated whereas glucose oxidation and glycolysis are reduced 

(2; 9; 26).  

 

The myocardial Serca2 knockout mouse.  Reduction in myocardial sarcoplasmic reticulum Ca2+ 

ATPase (SERCA2) has been regarded to play an important role in development of heart failure (86; 

97; 105; 122). To study the consequences of a reduction in SERCA2, colleagues at the University of 

Oslo, Norway, have generated a genetically modified mouse with an inducible cardiac specific 

excision of the Atp2a2 (Serca2) gene. These Serca2flox/flox Tg (αMHC-MerCreMer) (SERCA2 KO) 

mice and their WT mice Serca2flox/flox (SERCA2 FF) have been described previously (5; 6; 126). 
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The SERCA2 KO mice do not present any abnormalities until cardiomyocyte-specific excision of 

Serca2 is induced by tamoxifen. Tamoxifen, however, does not affect the SERCA2 FF control mice 

(5; 6). In situ assessment of heart function has revealed that SERCA2 KO mice maintain near 

normal function at 4 weeks following SERCA2 excision, despite less than 5% of cardiac SERCA2 

protein abundance as compared to that found in SERCA2 FF control mice. At this stage, there were 

no signs of cardiac hypertrophy or heart failure as assessed by echocardiography, whereas end stage 

heart failure had developed by 7 weeks (5; 82). Myocytes isolated from SERCA2 KO hearts 

exhibited reduced fractional shortening, smaller amplitude and longer decay rate of Ca2+ transients 

as compared to controls (5; 82; 129), all of which progressively worsened until end stage heart 

failure at 7 weeks (82). These changes were accompanied by increased dependence on other 

mechanisms to maintain Ca2+ homeostasis, such as increased Ca2+ influx through L-type Ca2+ 

channels and the enhanced presence of plasma membrane Ca2+-ATPase and NCX in the 

sarcolemma (5; 82; 129). These compensatory mechanisms result in Na+ accumulation over time, 

contributing to the development of heart failure in these mice (82). 

 

Exercise training protocol in mice 

The aim of paper 3 was to determine the cardiometabolic effects of long term exercise training at 

both high intensity (HIT) levels versus those of moderate intensity (MIT). Treadmill running allows 

control of the intensity and volume of the workload (duration, speed, inclination, distance) (58). 

Moreover, exercise intensity can be further controlled through regular assessment of VO2 max, where 

the running speed can be adjusted to maintain a constant relative intensity throughout the entire 

protocol (58). Mice have commonly been used to study the cardiovascular effects of exercise 

training although the majority of exercise studies in mice have applied continuous moderate 

intensity treadmill running (12; 39; 113). In recent years, HIT has become of a topic of interest for 

both the professional and amateur athlete, as well as for the researcher, based on the argument that 

HIT achieves higher aerobic fitness earlier than MIT (53; 146). HIT also seems more effective for 

achieving structural and functional adaptations within the heart, such as exercise-induced 

hypertrophy (52; 67). Based on this, a training protocol, slightly modified from that described by 

Kemi et al. (2002) (68), was designed and is further described in paper 3. 
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Summary of Results 

Paper 1 

Previous studies have demonstrated reduced cardiac efficiency in type 2 diabetic (db/db) mice. 

Regression analysis of the relationship between cardiac work (measured as pressure-volume area, 

PVA) and myocardial oxygen consumption (MVO2) has revealed that the decreased efficiency is 

due to increased work-independent MVO2 as indicated by an elevated y-intercept of this 

relationship. In paper 1, our aims were to compare the estimated (extrapolated) value for work-

independent MVO2 from the PVA:MVO2 relationship to a directly measured value of MVO2 in the 

same hearts now perfused in an unloaded retrograde mode (MVO2 unloaded). As the unloaded MVO2 

is representative of the oxygen cost for basal metabolism (MVO2 BM) and excitation-contraction 

coupling (MVO2 ECC), our aim was to separately determine O2 cost for each of these processes in 

normal and db/db mouse hearts. We found that the estimated value of work-independent MVO2 

corresponded well with the directly measured MVO2. In addition, we measured MVO2 BM in KCl-

arrested hearts and determined MVO2 ECC as the difference between MVO2 unloaded and MVO2 BM.  

The procedure was validated by demonstrating that elevations in perfusate FA and/or Ca2+ 

concentrations resulted in predicted changes in either MVO2 BM and/or MVO2 ECC. The main finding 

of this study is that we have demonstrated for the first time using this technique that elevated MVO2 

unloaded in db/db mice was due to both a higher MVO2 BM and MVO2 ECC.  

 

Paper 2 

It is well known that the administration of catecholamines as well as an elevation of fatty acids in 

situ induces cardiac O2 waste (23; 87-89) which has more recently been shown to be due to an 

increase in unloaded MVO2 (56; 72; 133). In paper 2 we have examined the O2 waste associated 

with both high FA supply and catecholamines in normal and type 2 diabetic hearts. We found that 

an acute elevation of FA induced an acute increase in MVO2 unloaded in normal hearts, due to an 

increase in MVO2 BM as well as for MVO2 ECC. Isoproterenol stimulation, on top of a high FA 

supply, led to an additive increase in MVO2 unloaded, due to increased MVO2 ECC. The acute FA-

induced O2 waste seen in normal hearts was shown to be dependent on processes initiated by the 

presence of FA and not to the increased FA oxidation per se, as we found that the increase in FA 

oxidation rate following pharmacological stimulation (GW610742) under normal fat conditions was 

equivalent to that obtained with hearts exposed to HF, yet only HF increased MVO2 unloaded. 

Likewise, reducing FA oxidation rate (dichloroacetate, DCA) in hearts that remained exposed to 

high FA supply did not reduce MVO2 unloaded. In hearts from type 2 diabetic (db/db) mice, 
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isoproterenol but not acute elevation of FA supply led to a further increase in MVO2 unloaded. This 

may suggest that diabetic hearts are adapted to chronic (in vivo) exposure to a high fat environment 

and are thereby resistant to the O2 wasting effect following an acute elevation in FA supply.  

 

Paper 3 

High intensity training (HIT) has been shown to have a more profound effect on cardiovascular 

function and aerobic capacity than isocaloric low and moderate intensity training (MIT). The 

specific effects of exercise on myocardial metabolism and energetics remain unclear. In paper 3, the 

cardiometabolic effects of exercise were evaluated with a specific focus on the role of exercise 

intensity. Although both exercise training regimens resulted in the same degree of cardiac 

hypertrophy, HIT was found to have a greater effect with regard to improvement of aerobic capacity 

and running speed as compared to MIT. Furthermore, only HIT was found to alter cardiac substrate 

utilization (increased glucose oxidation and decreased FA oxidation) as well as increase cardiac 

efficiency due to decreased MVO2 BM. HIT also increased cardiac mitochondrial biogenesis and 

elevated maximal respiratory capacity. Based on these findings we concluded that the metabolic 

effects of exercise on the heart were intensity-dependent, and high intensity was shown to be 

necessary for inducing changes in cardiac substrate utilization and energetics.  

 

Paper 4 

Although several studies have examined myocardial Ca2+ dynamics and functional characteristics in 

the SERCA2 KO mouse (5; 82; 129), cardiac substrate metabolism and ventricular energetics for 

this model have not been described. Thus, work-dependent and work-independent myocardial 

oxygen consumption (MVO2) as well as substrate metabolism was measured in isolated perfused 

hearts from SERCA2 KO mice, four weeks after the induction of Serca2 excision. Although these 

hearts showed no signs of hypertrophy and normal substrate utilization, they clearly exhibited 

reduced systolic and diastolic function. Regression analysis of the PVA:MVO2 relationship revealed 

that KO hearts displayed reduced contractile efficiency. Moreover, we found that unloaded MVO2 

was reduced in KO hearts due to a 30% reduction in oxygen cost for Ca2+ handling (MVO2 ECC). 
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General discussion 

Exposure to variations in metabolic milieu will cause the heart to adapt to accommodate ATP 

synthesis at whatever cost necessary within its new environment. These adaptations will include 

changes in myocardial substrate utilization and oxygen consumption (MVO2), which may result in 

rapid/acute metabolic changes or create signals for long term adaptation to occur. Although these 

changes initially may be essential for the heart to maintain optimal function, they may over time in 

some conditions contribute to development of dysfunction and/or be energetically disadvantageous 

to the heart. Thus, the line between changes regarded as a metabolic adaptation to those regarded as 

metabolic maladaptation is not clear. For instance, in type 2 diabetic hearts, altered metabolism, 

which clearly is essential in the acute adaptation of the heart to diabetes, most likely also 

contributes over the long term to development of contractile dysfunction and unfavorable cardiac 

energetics (151). There are also reasons to believe that cardiometabolic changes are essential in the 

adaptations of the heart to long term exercise and/or altered Ca2+ handling.  

In this thesis a recurrent theme is to elucidate how cardiac substrate metabolism and/or Ca2+ 

handling influence cardiac energetics under altered physiological and pathophysiological conditions 

in the heart. A specific focus was given to examining cardiac efficiency, specifically the changes in 

oxygen cost for processes associated with basal metabolism (BM) and excitation-contraction (E-C) 

coupling in these hearts. 

 

Measurement of unloaded MVO2 

Assessment of cardiac efficiency by regression analysis of the PVA:MVO2 relationship is 

advantageous, as it may point to the underlying mechanisms in the energetically inefficient 

myocardium. This concept of cardiac efficiency recognizes that cardiac ATP can be destined for 

either mechanical activity or for non-mechanical processes. While changes in the slope of this 

relationship indicate changes in contractile efficiency (work-dependent MVO2), changes in the 

extrapolated y-intercept indicate an altered work-independent MVO2, reflecting the oxygen 

consumption in a heart not performing mechanical work. We have in the present thesis (paper 1) 

shown that MVO2 in an isolated, retrogradely perfused mouse heart (MVO2 unloaded) corresponded 

well with the extrapolated value. By further subjecting these hearts to electrical arrest we could also 

determine the oxygen cost of BM (MVO2 BM) and from this calculate the oxygen cost for processes 

associated with E-C coupling (MVO2 ECC). In accordance with the values reported in other species 

we have found that in mouse hearts the oxygen cost for BM accounts for approximately 22% of the 

total MVO2 unloaded (44; 45; 133).  
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Conditions including fasting, diabetes/obesity, or post-operatively are known to be associated with 

elevated levels of circulating fatty acid (FA) and/or catecholamines. Previous studies have shown 

that increased FA supply to hearts both in situ (72; 87) and ex vivo (50; 56) results in increased 

MVO2 and decreased cardiac efficiency. Regression analysis of the PVA:MVO2 relationship 

revealed that the FA-induced decrease in cardiac efficiency was due to an increased work-

independent oxygen consumption (increase in the extrapolated value of the y-intercept of the 

regression line) and not to any change in contractile efficiency (49; 56; 72). We confirmed by direct 

measurement in mechanically unloaded hearts, that high FA exposure increased MVO2 unloaded. 

Furthermore, the increase in MVO2 unloaded was due not only to an increase in oxygen cost for BM 

(paper 1 and 2) but also to increased oxygen cost for E-C coupling (paper 2), which is discussed in 

the following section. Similarly to the effect of elevated levels of FA, a rise in catecholamine and 

extracellular Ca2+ concentration has been shown to cause a parallel upward shift of the PVA:MVO2 

relationship (73; 133; 148) reflecting increased work-independent MVO2. In accordance with this, 

we have found MVO2 unloaded to be increased following both elevated Ca2+ and isoproterenol (paper 

1 and 2). Both interventions are known to enhance cycling of Ca2+ during E-C coupling (43; 133; 

137) and in accordance with this increase MVO2 ECC (paper 1 and 2). These findings suggest (paper 

2) that the isoproterenol-induced myocardial oxygen waste that has previously been observed in situ 

(23; 88; 89) is due indirectly to FA-induced increase in the oxygen cost of BM and E-C coupling, in 

addition to a direct catecholamine-induced increase in the oxygen cost for E-C coupling.  

 

The cardiometabolic effect of an acute elevation of fatty acid supply to the heart 

The underlying mechanisms for the acute FA-induced increase in MVO2 have yet to be fully 

deciphered. As elevations in FA supply are normally accompanied by increased rates of myocardial 

FA oxidation, the increased MVO2 may be related to increased FA oxidation rates due to the lower 

ATP to oxygen (P:O) ratio for FA as compared to carbohydrate oxidation (99). However, as the 

exclusive switch from carbohydrate to FA as the main energy source would only result in an 

approximate 12% increase in MVO2, it is clear that the 30-50% increase in MVO2 that we have 

observed following elevated FA (paper 1 and 2) cannot be explained solely by differences in the 

P:O ratio. It is therefore clear that additional mechanisms must also be involved in FA-induced O2 

wasting. This notion is further supported by the finding that stimulation of the FA oxidation rate (by 

GW610742) to the same extent as that obtained following increased FA supply, did not alter MVO2 

unloaded (paper 2) and likewise, that inhibition of FA oxidation by DCA did not reduce the FA-

induced increase in MVO2 unloaded (paper 2). Thus, it is reasonable to conclude that it is not the 

increase in FA oxidation rate per se, but the presence of a high FA load that leads to FA-induced 
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oxygen waste. Other mechanisms that may also contribute to oxygen waste will be discussed 

briefly, including i) mitochondrial uncoupling ii) FA-induced changes in metabolic pathways and 

iii) FA-induced changes in Ca2+ handling.   

 

i) FA-induced mitochondrial uncoupling. Uncoupling proteins 2 and 3 (UCP2, UCP3) are found in 

the myocardium and are believed to increase proton conductance of the mitochondrial membrane 

and/or contribute to FA anion transport across the mitochondrion, both potentially leading to 

mitochondrial uncoupling (19-21). Furthermore, it has been shown that FA or FA 

derivatives/metabolites can increase production of ROS (37) and that superoxide and lipid 

peroxidation products can activate uncoupling proteins (34; 36; 123). Himms-Hagen and Harper 

hypothesized that UCP3 was essential for maintaining high rates of FA oxidation when FA were in 

over-supply (55). This has since been rejected by the same group who has instead demonstrated the 

role of UCP3 under conditions where FA is elevated such as during starvation/fasting (123). Under 

these conditions ROS production increases during catabolism of FA, however, subsequent 

stimulation of mitochondrial uncoupling can lower the proton-motive force, thus reducing the rate 

of FA-induced ROS production (34; 36). Although it remains unclear to what extent these processes 

alter ATP levels (20; 140) increased uncoupling activity will increase the oxygen consumption of 

the heart and thus potentially contribute to a reduction in cardiac efficiency. An alternative 

mechanism suggested to contribute to increased MVO2, is the hypothesis that UCP3 can export FA-

peroxide anions out of the mitochondria during elevated FA levels, thus reducing the accumulation 

of toxic FA oxidation products within the mitochondria (47) although the extent to which this 

increases uncoupling is unknown (21). 

Genipin (Gardenia fruit extract) which has been used in traditional Chinese medicine to treat type 2 

diabetes has recently been described as a membrane soluble inhibitor of UCP2 (84; 140; 153). 

Genipin has not been reported to have been used in isolated perfused hearts therefore we performed 

pilot experiments where the effect of different concentrations of genipin (100-1000 μm) on MVO2 

unloaded was examined. We were unable to demonstrate any effect on MVO2 unloaded in hearts perfused 

with either normal or high FA concentrations, or in db/db hearts. The lack of effect seen by genipin 

is not fully understood although we speculate it is either due to ineffective exposure of the UCP 

inhibitor within the cells, and/or that the effect of inhibition of UCP2 does not significantly affect 

MVO2 under the experimental conditions used. In addition, pilot experiments were performed 

where the effect of the antioxidant N-(2-mercaptopropionyl)-glycine (MPG) on MVO2 unloaded was 

examined. The addition of MPG (10 mM) did not alter cardiac function or substrate utilization rates 

(glucose and palmitate) in normal hearts. We also did not find MPG to alter MVO2 unloaded in normal 
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hearts perfused with high fat, nor in db/db hearts. The lack of effect may be due to inadequate 

length of exposure of the anti-oxidant, the possibility that FA-induced ROS production does not 

increase MVO2, or the possibility that the changes in O2 consumption are too small for 

measurement in the experimental model used in this thesis.  

 

ii) FA–induced changes in metabolic pathways. An excess FA supply to the heart may result in 

changes of metabolic pathways that have been suggested to be associated with excess ATP 

utilization. As this will increase MVO2, they are often referred to as oxygen wasting processes. One 

such process includes the cycling of FA intermediates from TAG and their subsequent ATP-

dependent incorporation back into the triglycerides pool. Under normal aerobic conditions, FA-

TAG cycling is a physiologic process that can provide a potential source of energy substrate and, 

most importantly, reduce the accumulation of FA to dangerous levels within the cytosol (114; 115). 

However, under conditions of stress for the heart such as ischemia, the consumption of ATP for 

futile turnover may be detrimental to the energy-challenged cell. Myrmel and Larsen (93) suggested 

that the cycling of FA and TAG may account for up to 30% of the energy consumption within the 

cell. This has been proposed to occur under conditions of elevated FA, which due to a superfluous 

energy expenditure, can contribute to cellular damage (93; 115).   

During ischemia, the uncoupling of glycolysis from glucose oxidation has been proposed to result 

in increased H+ accumulation (31; 81) and altered cardiac ionic homeostasis which in turn may 

affect cardiac efficiency in this setting. The proposed cardioprotective effect of DCA during 

ischemia-reperfusion has been attributed to a reduced H+ ion accumulation and improved cardiac 

efficiency (139). In the present thesis we did not find DCA to reduce the FA-induced increase in 

MVO2 unloaded, which is in line with findings from a recent study (42). This may indicate that 

although reducing the metabolic uncoupling may improve efficiency following ischemia-

reperfusion, FA-induced mechanisms may not be of major importance under aerobic conditions. 

 

iii) FA-induced changes in Ca2+ handling. In paper 2 we have shown for the first time that high FA 

increases the oxygen cost for E-C coupling. Several recent reports have also given reason to believe 

that high levels of FA will influence Ca2+ handling and may therefore alter the oxygen cost of E-C 

coupling; in cardiomyocytes elevated palmitate has been shown to decrease the amplitude and 

decay rate of Ca2+ transients as well as cellular fractional shortening (37; 51). However, as a 

decrease in Ca2+ transient amplitude should predict a decrease in the oxygen cost for E-C coupling, 

additional mechanisms must explain the FA-induced increase in MVO2 ECC. Interestingly, a recent 
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study has linked an elevated expression of UCP2 in cardiomyocytes with altered Ca2+ handling; due 

to a reduced mitochondrial Ca2+ uptake these myocytes exhibit a lengthened decay of the Ca2+ 

transient and increased occurrence of Ca2+ sparks (140), processes which can lead to increased 

MVO2.  

 

The cardiometabolic effect of chronic elevation of fatty acid supply to the heart 

Elevated circulating lipids in type 2 diabetes will lead to a chronic exposure to elevated lipid supply 

to the heart. A hallmark of the diabetic heart is therefore altered cardiac substrate utilization with 

elevated FA oxidation and a concomitant decrease in glucose utilization (2; 10; 25). During the last 

years it has become known that diabetic hearts also show reduced cardiac efficiency. Regression 

analysis of the PVA:MVO2 relationship has repeatedly shown that this decreased efficiency in 

hearts from type 2 diabetic db/db mice is due to increased oxygen cost for work-independent 

processes (49; 57). In the present thesis, we have confirmed this finding by direct measurement of 

MVO2 unloaded and further demonstrated this increase to be due to an increased O2 cost for basal 

metabolism as well as for E-C coupling (paper 1 and 2). Altered Ca2+ handling in E-C coupling has 

been described in models of diabetes (11; 111; 118; 152). Reduced amplitude and longer decay rate 

of the Ca2+ transients as well as reduced SR Ca2+ content has been reported in cardiomyocytes (11) 

as well as in isolated perfused whole hearts (102) from db/db mice. Interestingly, Belke et al. 

(2004) (11) have also reported that cardiomyocytes from db/db hearts demonstrated Ca2+ leak from 

the sarcoplasmic reticulum (SR), a finding later confirmed by Stølen et al. (2009) (130). An 

increased SR Ca2+ leak could increase Ca2+ cycling and thus contribute to the increased MVO2 in 

unloaded db/db hearts (paper 1 and 2).  In contrast to that seen in normal mice under elevated FA 

conditions, Fauconnier et al. (2007) have reported that a high palmitate concentration prevented the 

diabetes-induced decrease in Ca2+ amplitude and cell shortening in cardiomyocytes from ob/ob 

mice (37). This further raises the question of whether decreased Ca2+ amplitude that has been 

previously measured in perfusate without FA accurately represents in situ Ca2+ handling.   

Several of the mechanisms proposed to contribute to the reduced cardiac efficiency in diabetic 

hearts, include those previously discussed in association with the acute FA-induced oxygen waste. 

Again, despite elevated FA oxidation that has been shown in db/db hearts the lower P:O ratio for 

FA oxidation cannot fully explain the increased MVO2 in these hearts. Elevated ROS production 

and mitochondrial uncoupling have been suggested to play an important role in reduced cardiac 

efficiency (18). Although there is inconsistency regarding the gene and protein expression of UCP2 

and 3 in hearts from type 2 diabetic models (17; 27; 92) it is important to point out that mRNA 

expression and/or protein levels do not necessarily predict functional levels of uncoupling proteins 
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(21). Murray et al. (2004) have reported FA levels to be correlated with increased expression of 

UCP2 and UCP3 in the heart (91) whereas Boudina et al. (2007) have reported increased 

mitochondrial uncoupling in db/db hearts independent of changes in UCP expression levels (18). As 

increased ROS generation is suggested to affect cardiomyocyte function in type 2 diabetes (150) 

and is moreover associated with high FA supply (37) there is reason to believe that ROS-induced 

mitochondrial uncoupling may play an important role in the increased MVO2 in the diabetic heart.  

An important finding in the present thesis is that the acute elevation of FA concentration did not 

increase MVO2 in mechanically unloaded db/db hearts as compared to non-diabetic controls (paper 

2), which thereby confirmed previous data obtained in working db/db hearts by regression analysis 

of the work-MVO2 relationship (57). Fauconnier et al. (2007) found that while elevated FA 

increases ROS production and decreased mitochondrial membrane potential in non-diabetic 

cardiomyocytes, this was not the case in myocytes from ob/ob hearts (37). This may indicate that 

prolonged exposure to high FA levels leads to adaptation of the myocyte so that FA becomes the 

preferred substrate and thus cellular Ca2+ handling and contraction actually improve following FA 

exposure. Furthermore, we have observed that although FA-induced increase in MVO2 was not 

found to be associated with changes in FA oxidation rates in normal hearts, a switch in myocardial 

metabolism towards glucose oxidation using DCA (Hafstad, unpublished data) or following the 

addition of high glucose and insulin (Paper 1) (49) reduces MVO2 in db/db hearts without any 

detectable effects in normal hearts. Thus, reducing the rate of FA oxidation improved cardiac 

efficiency in these hearts as compared to non-diabetic controls. 

 

The cardiometabolic effects of exercise 

A low aerobic capacity is considered to be an important predictor for the development of 

cardiovascular disease (69). Although exercise has been reported to be cardioprotective with respect 

to post-ischemic functional recovery, the effect of prolonged exercise on cardiac efficiency is not 

clear. Previous reports on the metabolic effects of exercise have been few and inconsistent, which 

may be related to different aspects of the exercise training used such as variations in mode, duration 

and intensity. In accordance with this, we found that the cardio-metabolic effects of exercise are 

demonstrated to be intensity dependent (paper 3) as only high intensity training (HIT) led to an 

increase in cardiac glucose utilization and a reduction in unloaded MVO2. The reduction in 

unloaded MVO2 was due to a reduced O2 cost of basal metabolism and not for E-C coupling. 

Although the mechanisms behind the decreased MVO2 remain unclear, it cannot be explained 

singularly by altered substrate utilization (decreased FA oxidation and increased glucose oxidation) 

and the higher P:O ratio of glucose. Thus we suggest that there are other potential oxygen-sparing 
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mechanisms that are induced by HIT. Evidence of increased myocardial antioxidant capacity seen 

by increased mRNA expression of manganese superoxide dismutase and catalase suggests that 

exercise training reduced ROS generation due to an increased anti-oxidant expression (106), and/or 

that the presence of anti-oxidants may contribute to reduced UCP uncoupling activity (14) and 

thereby reduce energy expenditure for this. Although we did not find indications of altered 

mitochondrial uncoupling in skinned cardiac fibers receiving malate and glutamate as oxidative 

substrates, we did find HIT to result in increased mitochondrial capacity (Vmax).  

Previous reports have demonstrated HIT-induced increases in cardiomyocyte cell shortening, 

accompanied by an unchanged or reduced Ca2+ amplitude and increased myofilament Ca2+ 

sensitivity (64; 65; 147). Based on this, it would have been expected that HIT would reduce energy 

cost for E-C coupling and/or increase contractile efficiency in isolated hearts. In contrast, our 

findings in paper 3 have demonstrated an unaltered O2 cost for E-C coupling. However, altered 

contractile function in isolated cardiomyocytes may not necessarily be identical to that seen in the 

whole heart due to differences in the extracellular milieu (substrate availability) as well as 

differences in contractility of isolated cells versus those that are attached and developing tension in 

the whole heart. Interestingly, both types of training resulted in exercise-induced hypertrophy 

however only HIT induced the concurrent shift towards the α-myosin heavy chain (MHC) isoform. 

It is possible that this energetically more expensive isoform and/or the hypertrophy itself (90) 

counteracts the anticipated reduction in MVO2 ECC. Pathological hypertrophy is associated with the 

reactivation of the fetal gene programme (110; 127) however less is known about physiological 

hypertrophy. In paper 3, HIT induced many of the same transcriptional changes seen in hearts 

subjected to increased load and hypoxia (increased hypoxia inducible factor 1-α target genes such 

as pdk4, ldh, vegf and hk, and reduced expression of ppar-α) (70; 74; 109) suggesting that 

continuous high workloads can lead to episodes of reduced O2 tension in the cardiac tissue and can 

thereby activate certain pathways also associated with pathological hypertrophy. Thus it is possible 

that pathways commonly associated with a pathological stimulus indeed may lead to very beneficial 

adaptations in the heart that enables the heart to perform better during stressful conditions. 
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The cardiometabolic effect of SERCA2 reduction 

Pathological conditions causing depressed myocardial contractility are often associated with 

reduced myocardial SERCA2 expression, altered myocardial metabolism, and reduced energetic 

state (11; 59; 75; 143). It is well known that a reduction in the capacity of SERCA2 (30; 122) or 

absence (5), leads to reduced force generation, delayed relaxation and eventually heart failure. In 

paper 4, myocardial substrate utilization and cardiac efficiency were examined in isolated, perfused 

hearts from SERCA2 KO mice, where SERCA2 expression was less than 5% of that seen in 

controls (SERCA FF). Assessment of cardiac function, MVO2 and efficiency clearly revealed that 

SERCA2 excision not only reduced work capacity but also altered MVO2 and cardiac efficiency. In 

vivo examination of these mice in previous studies with the same myocardial SERCA2 levels has 

shown that in vivo cardiac function is surprisingly well preserved despite the reduced Ca2+ transient 

amplitude and decay rate in found in isolated cardiomyocytes (5; 82) possibly due to enhanced 

sympathetic stimulation and/or Ca2+ sensitivity (5). In the present study, however, ex vivo 

assessment of cardiac function in the absence of neuro-hormonal interference showed that hearts 

from KO mice exhibited a clear reduction in work capacity as well as signs of diastolic dysfunction. 

Interestingly, extracellular Ca2+ had to be increased (5 mM) in order to make the KO hearts produce 

sufficient external work to be included in experiments.  Moreover, we observed increased 

expression of Mhc-β as compared to FF hearts, a sign that fetal gene activation was initiated and a 

hallmark of heart failure (80; 110; 127).  

In addition to altered Ca2+ transients that have previously been shown in cardiomyocytes from 

SERCA2 KO mice, they also exhibit an increased dependence on other mechanisms to maintain 

Ca2+ homeostasis, such as enhanced presence of plasma membrane Ca2+-ATPase (PMCA) and NCX 

in the sarcolemma (5; 82; 129). Although the energy expenditure for Ca2+ uptake by SERCA2 

corresponds to approximately 70% of MVO2 for E-C coupling, it still remains more energetically 

efficient as compared to other mechanisms of Ca2+ handling (136). This notion is further supported 

by Sakata et al. (2007) (116) who have reported an improved O2 cost of left ventricular contractility 

following adeno-viral overexpression of SERCA2 and Shimizu et al. (2009) (124) who have 

reported an increased O2 cost for Ca2+ handling in E-C coupling in hypertrophic hearts where 

SERCA2 was reduced. With this in mind, our findings of reduced MVO2 unloaded associated with a 

decreased oxygen cost for E-C coupling in SERCA2 KO hearts was therefore surprising. This 

suggests that despite the possibility of a greater energetic cost for Ca2+ homeostasis by other ion 

pumps in the absence of SERCA2, it would seem that the reduction of transient amplitude (60; 78; 

127) results in overall less energy expenditure for Ca2+ handling during E-C coupling. 
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An important finding in paper 4 was an increased work-dependent MVO2 (increased slope of the 

PVA:MVO2 relationship), representing a reduced contractile efficiency in the KO heart. Thus KO 

hearts must exhibit decreased efficiency of mitochondrial oxidative phosphorylation and/or the 

conversion of ATP to cardiac work as seen in cross-bridge cycling (132). 

Despite that fact that heart failure is generally associated with increased glucose oxidation and 

decrease in fatty acid oxidation (60; 78; 127), the reduced cardiac function in KO hearts was not 

associated with altered myocardial substrate metabolism. As it is well known that decreased 

energetic state is a strong predictor for heart failure (95) the cardiac dysfunction following SERCA 

KO may very well be associated by a decreased energetic state induced by the decreased cardiac 

efficiency. 
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Concluding remarks 

One of the overall objectives of this work was to establish a reproducible and direct method for 

measurement of the unloaded MVO2, an important component of cardiac efficiency. Furthermore, 

the objective was to measure the individual contributions of work-independent processes associated 

with unloaded MVO2 such as BM and E-C coupling, which have been seen to vary under different 

physiological and pathophysiological conditions. The implications of a reduced cardiac efficiency 

are paramount under conditions of limited O2 availability such as myocardial ischemia, where 

altered cardiac energetics can have crucial consequences.  

The direct measurement of unloaded MVO2 in retrogradely perfused hearts was validated by 

acutely altering the heart perfusate (e.g. inotropic stimulation, FA concentrations, and 

pharmacological interventions influencing cardiac substrate utilization). This approach also allowed 

us to obtain mechanistic information, e.g. by evaluating the consequences of FA load vs. FA 

oxidation on unloaded MVO2. Application of this method was further used to assess cardiac 

efficiency in a variety of mouse models such as i) a monogenic model of obesity and type 2 diabetes 

(db/db), ii) moderate- and high intensity trained mice and finally iii) a genetically engineered mouse 

model of heart failure (SERCA KO). 

A main finding in this thesis is that in contrast to that seen in normal hearts, the chronic exposure to 

high circulating levels of FA in the hearts of db/db mice seems to cause adaptation such that the 

heart exhibits an altered tolerance to acute elevation of FA. Moreover, work from our research 

group (49; 50) and this thesis have shown that the inhibition of FA oxidation by metabolic 

intervention (administration of glucose plus insulin) can reduce unloaded MVO2 in diabetic hearts. 

Thus, despite the lack of direct evidence for the mechanism(s) for this observation yet, we speculate 

that the underlying mechanisms behind the increased MVO2 following acute and chronic FA load 

are different and that this issue clearly needs more detailed examination.  

Other notable findings include the significance of intensity and duration of exercise performed in 

the determination of the cardiometabolic effects of exercise, including substrate metabolism, 

hypertrophy, and myocardial gene expression. Furthermore, measurement of cardiac efficiency in 

the ex vivo SERCA2 KO heart resulted in findings different from those expected based on previous 

in vivo studies showing that early contractile dysfunction can, in some cases, be detected earlier in 

the ex vivo perfusion setting. In summary, the evaluation of cardiac efficiency in combination with 

the direct measurement of unloaded MVO2 and O2 cost of E-C coupling and BM in the heart is a 

tool that allows for the evaluation of O2 wasting processes that occur in the heart. An understanding 
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of these processes can be useful in the development of therapeutic strategies to offer myocardial 

protection following an ischemic insult.  

 

 

Future investigations 

The inability to identify the precise mechanistic basis for altered unloaded MVO2 under various 

physiological and pathophysiological conditions, particularly those leading to O2 wasting (i.e. 

through evidence of an enhanced generation of reactive oxygen species or uncoupling in the 

mitochondria) represents a limitation in this thesis. These underlying mechanisms need more 

detailed examination and should be addressed in future work. For example, the effects of FA load 

on mitochondrial respiration and the potential corresponding changes in mitochondrial uncoupling 

and ROS production would provide more mechanistic information. In addition, direct measurement 

of unloaded MVO2 in isolated heart perfusions could also be further examined in the uncoupling 

protein (UCP) KO mouse heart perfused with normal and high FA levels and may further illustrate 

O2 wasteful processes. To date, there have been no reports of MVO2 measured in UCP KO mice 

however as there is evidence for increased mitochondrial stress and reduced tolerance to elevated 

FA load in these mice (123) there is also reason to believe that unloaded MVO2 is altered. As recent 

studies have implicated adenine nucleotide translocator (ANT) as another mediator of FA-induced 

mitochondrial uncoupling in the heart (15; 34) examination of the effects of an inhibitor of ANT 

(carboxyatractyloside, CAT) could be a useful tool in the evaluation of O2 wasteful processes. Other 

tools such as the quantification of FA breakdown products such as ceramide and diacylglycerol that 

are believed to contribute to enhanced ROS generation could also shed light on O2 wasting in hearts 

exposed to high FA.  Finally, it would be further beneficial to investigate FA-TAG cycling under 

various physiological and pathophysiological conditions such as acute elevation of FA and in db/db 

hearts, as it is repeatedly referred to as a potential contributor to reduced cardiac efficiency, and yet 

only few studies have measured this in the heart. In conclusion, future investigations of O2 wasteful 

processes in the heart should include a focus on the relationship between enhanced ROS generation 

and mitochondrial uncoupling, measurement of futile cycling (FA-TAG) and evaluation of 

mitochondrial function under altered physiological and pathophysiological conditions.  
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