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ABSTRACT

This work presents a simple feature-based multi-channel
SAR segmentation method that produces good, smooth,
fast and robust results for image segmentation and inter-
pretation. A basic set of six features produce good class
distinction for general applications, and the method is
easily extendable with new features and for multi-source
data fusion. Optional steps of sub-sampling and Markov
Random Field based contextual smoothing are presented.
The different stages of the basic approach are demon-
strated with real data examples from several sensors and
for several applications and is fast enough for operational
use.
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1. INTRODUCTION

The objective of image segmentation is to segment, or
partition, the image into several groups, of possibly dis-
joint regions, that have the same properties and presum-
ably represent distinct land-cover classes. Polarimetric
SAR images are difficult to interpret because the main
information is obtained from a complex matrix with sta-
tistical properties that may be difficult to evaluate. This
work tries to simplify the information extraction from this
complex matrix into a general approach that may be used
for effective image segmentation purposes. In addition,
and possibly after the segmentation phase, the features
may explored as a means of characterising, and poten-
tially labelling, the different regions.

The general approach is to extract features with a sliding
window technique that represent the polarimetric and sta-
tistical information in the multi-channel SAR image. The
choice of window size affects the degree of smoothing
and class distinguishing capabilities. Simple transforma-
tions, such as the logarithm, are applied during extraction
to remove any obvious non-linear spreading of the data
to produce features that appear well spread with simple
visible clusters. This transformation stage is important

because it allows the application of a simple segmen-
tation or clustering method to identify separate classes
based on data similarity. For example, a mixture of Gaus-
sian clustering algorithm has achieved good results and
is particularly fast when applying sub-sampling before
full image classification. The addition of Markov ran-
dom field based contextual smoothing greatly simplifies
the segmented image result, although at the expense of
some processing speed.

The principle behind the choice of features, the fea-
ture extraction and the feature transformation will be ex-
plained in detail. We demonstrate a basic set of five po-
larimetric features to extract from quad-pol data, which
have produced good general results for many applica-
tions [1]. These features are an absolute multivariate
brightness measure, the cross-pol fraction, the co-pol ra-
tio, and the correlation magnitude and phase. The ap-
proach works consistently for dual-pol or single-pol data,
although fewer features are available in those cases. We
demonstrate how to include additional features such as
non-Gaussianity (radar texture) measures, polarimetric
decomposition parameter features, as well as advanced
correlation and entropy measures. If the initial transfor-
mation of the parameters is carefully chosen, then the re-
sulting simple segmentation achieves good results. In ad-
dition, the optional stages of sub-sampling and contextual
smoothing will also be discussed and demonstrated.

This approach has been performing well for many real
data applications such as urban, agriculture, forestry and
sea ice analysis. Examples are shown for San Francisco
and Vancouver Radarsat-2 scenes, because they may be
familiar to many people, as well as for an ALOS PAL-
SAR sea ice image from Barrow, Alaska. These demon-
strate good, visually qualified, segmentation, but without
validation. Validation would require ground truth data
and be specific for each application or problem. How-
ever, the proposed segmentation and features may prove
suitable as a starting point for such investigations.

The simple nature of the approach means that a new scene
can be imported, features extracted and segmented with
contextual smoothing in less than half an hour and there-
fore falls well within the near-real-time processing de-
sired for operational use.



2. BASIC APPROACH

The basic workflow, summarised in Fig. [l is to extract
features with a sliding window method over the multi-
channel single-look complex (SLC) PolSAR Image Data.
It is assumed that all calibrations and terrain corrections
are already applied to the data-sets. The polarimetric in-
formation is extracted from the local covariance matrix
and can, thus, be extracted from MLC data-sets too. Sta-
tistical information regarding the radar textural properties
are measured on the local neighbourhood collection of
SLC vectors, with respect to the local mean covariance
matrix. For MLC data, such a statistical property would
have to be estimated from a local neighbourhood of MLC
pixels.
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2.1. Texture and the Product Model

Radar texture describes the concept of random variation
around the class mean that is in excess of that expected
for the simple Gaussian model for the complex vector,
or equivalently, the Wishart model for the covariance
matrix. This additional variation is evident in the non-
Gaussian statistics often observed in real radar images
and, thus, texture, or non-Gaussianity, may help with
class distinction in certain terrain types . Radar texture is
usually accounted for with the so-called “product model”
that describes the vector or matrix data as the product of
two independent random variables, one for fexture and
one for speckle, and may be found in many standard text
books on radar, e.g. [1]]:
texture x speckle: s=+/trg , C=1W
where g multivariate complex Gaussian distributed, W
matrix-variate complex Wishart distributed, and the 7
texture random variable has its own positive-only scalar
distribution that determines the final non-Gaussian model
for the SAR data.

2.2. Extended Polarimetric Feature Space (EPFS)

We first introduced six basic features in [2] that have
a reasonably general application for PolSAR analysis.
They are referred to as the extended polarimetric features,
because we have extended five basic polarimetric fea-
tures from the covariance matrix with a feature for non-
Gaussianity. All features are texture model independent,
because the non-Gaussianity feature is an empirical mea-
sure of the sample distribution and the covariance matrix
will be the same for all models under the product model
scheme.

Basic set of six real features:

PolSAR Data 4-D complex data, SLC

’ Feature Extraction ‘ local neighbourhoods

’ Feature Transformation ‘ 6-D real data

3
Sub-sampling

’ Mixture of Gaussian Clustering ‘ choose number of classes

[optional speed-up]

’ Expand to Whole Image ‘ [optional]

’ MRF Contextual Smoothing ‘ [optional]

Segmented Image label image

Figure 1. The basic workflow, with comments.

1. A non-Gaussianity measure: relative kurtosis RK
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2. An absolute backscatter value: multi-variate radar
Cross section

MRCS = {/det(C)

3. A cross-polarisation fraction or ratio:

Rcr = Chvhv/MRCS

4. A co-polarisation ratio: R, = C, ../ Crinn

5. The co-polarisation correlation magnitude: |p|

#= Cnoo/\/ (1Chinl [Covun)

6. The co-polarisation correlation angle:

Zp =< (bhh - (bv'u >

These features were chosen for several reasons: from
a purely mathematical point of view, given some basic
symmetry properties of backscatter from natural targets,
and features that have shown good potential from the
general literature. The absolute brightness measure for
the covariance matrix was chosen to be the determinant
rather than the span, because we felt that it better suited
the geometric scaling of the product model. Presumably,
the span would work in a similar way, but we have not
tried to compare the two since the determinant has shown
good results. This backscatter brightness feature is usu-
ally one of the most important features. The natural sym-
metries and scattering mechanism principles indicate that
the cross-pol terms, HV and VH, are usually reasonably
independent from the co-pol terms, HH and VV. Hence
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Figure 2. Example feature transformations to improve
visualisation of the data spread and natural groupings.

we separate out this fraction. The co-pol ratio has rele-
vance to single or multiple surface scattering and hence
is a useful feature. Similarly, the co-polarisation correla-
tion holds important dielectric information and has been
found useful in many different studies. It is complex
and both the magnitude and phase, or real and imaginary
parts, may hold information.

2.3. Feature transforms and histograms

Exploring histograms of these features soon indicated
that many of them were heavily skewed and it was diffi-
cult to see whether they held good class distinguishing in-
formation. Applying some simple monotonic transforma-
tions, such as the logarithm, inverse or square-root, soon
revealed a wealth of hidden detail and made visualisation
of natural groupings within the data space much clearer.
The choice of transform was guided by any physical in-
terpretation of the feature, e.g., power is best displayed
on a log-scale, or from mathematical considerations, as
in inverting the non-Gaussianity to compact the asymp-
totic trend from infinity to zero. Another consideration is
that complex magnitude and phase do not separate well
nor suit distance based discrimination measures because
of the phase wrapping. By reverting the complex values
back to the real and imaginary parts allows a 2-D distance
to be meaningful near the phase wrapping boundary, such
that a phase of 27 and 0 are similar, and near the origin,
where phase has little meaning on distance.

The San Francisco Radarsat-2 sample scene from 2008
will be used as an example, because many people are
familiar with it. Marginal histograms (normalised 0-1
scale) of all features are shown at the top of Fig. [3| and
a 2-D scatter density plot is shown underneath for the
features MRCS vs. co-pol ratio. The histograms show
several clear groupings within many of the features and
the scatter plot shows obvious globular clusters that can
indicate at least four major class divisions, with details
of several more sub-divisions. Images of the transformed
features are shown in Fig. f] and indicate good contrast
and distinct areas that represent natural classes in the im-
ages.

Figure 3. Simplified Feature Space: marginal histograms
(top) and example 2-D scatter density plot, for MRCS
vs. co-pol ratio, showing good natural class groupings
in simple globular clusters.

2.4. Simple Mixture of Gaussian Clustering

The appearance of nice globular clusters in the feature
space influenced the choice of a simple segmentation al-
gorithm and suggests that a mixture of Gaussian clus-
tering should achieve good results. Mixture of Gaus-
sian clustering is also very fast, simple to understand and
built-in to many analysis software packages. It has an ad-
vantage over the simpler k-means in that it can account
for elliptical clusters, i.e., dissimilar and possibly corre-
lated variation in different feature dimensions, and will
certainly capture the observed density centres in the fea-
ture domain. The number of classes must be given in
advance and may be guided by the visual peaks in the
feature domain, or repeatedly applied (since it is so fast)
for different numbers of clusters and a suitable resulting
image chosen by visual inspection. The algorithm result
is influenced by the initial conditions, so it is advisable
to use multiple starts if implemented. Fig. [5] shows the
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Figure 4. Example Feature Images - San Francisco. Many features have good distinguishing ability as noted by differently
coloured areas. The last parameter shows little distinction for this image.

clustering results in both the feature space and the image
space. It may be clearly seen that the coloured clusters in
the feature domain match the natural density centres and
that they also correspond to clear regions, and likely ice
type classes, in the image domain. The window size is
24 x 3 and we chose 10 classes.

It is worth noting that the clusters are not perfectly Gaus-
sian, nor symmetric, in profile, but at a coarse level, and
particularly with sub-sampling of the data, the Gaussian
model nevertheless achieves reasonable results. With in-
creasing the number of clusters, it certainly finds the
major, dominant classes before splitting clusters due
to shape mis-match. Future work may explore non-
Gaussian clustering or kernel methods, but the speed of
the simple mixture of Gaussian clustering is highly de-
sirable and worth some compromise. The mis-match in
cluster profiles also means that some advanced methods
to determine the number of classes through goodness-of-
fit testing [3]] cannot be applied.

2.5. Contextual Smoothing - MRFs

Contextual smoothing with Markov random fields
(MREFs) is a rigorous image smoothing approach that ac-
counts for the pixel-wise class probability of each pixel in
the context of its neighbours. We use the basic isotropic,
8 neighbour MRF with a globally optimised smoothing

parameter and the mean-field approximation [4} [3]. Es-
sentially, the global class prior probabilities are replaced
by local prior probabilities that depend on the neighbour-
ing probabilities and can boost the likelihood of the lo-
cal majority class throughout the image. This can eas-
ily be applied after the main mixture of Gaussian clus-
tering phase, once the cluster parameters have been ob-
tained, and is an iterative smoothing phase that allows
the Markov property to spread throughout the image to-
wards the globally optimum result. This stage may take
many iterations, but can still process large scenes in only
seconds or minutes.

The effect of the contextual smoothing can be dramatic
for classes with highly overlapping probabilities. An ex-
ample is shown in Fig.[f]for the San Francisco Radarsat-2
sample scene, with an 8 x 4 window size. Note the ef-
fect on the red and green classes, and between the brown,
purple and cyan classes. The smooth, more solid regions
are also more pleasing to the eye and simplify the inter-
pretation of the segmented image.

2.6. Generic and Extendable to Data Fusion

This approach is generic in the sense that it is indepen-
dent of the specific texture distribution or model, uses
five generic features from polarisation matrix given ba-
sic symmetries that work well for many applications, can



Figure 5. ALOS PALSAR, 2010, example of sea ice
around Svalbard, with the land masked out. Feature space
density (top-left) and the coloured clusters (top-right),
image space Pauli RGB (bottom-left) and correspond-
ing coloured classes (bottom-right). The feature domain
clusters do segment visual regions in the image domain.

be applied to quad, dual or mono-pol data (although with
reduced features, see Tab. |I[), and can be extended in a
consistent manner with new features.

Can use any suitably transformed real valued features, for
example:

Log-cumulants k9, k3 for texture

Optical data (e.g., Intensity, NDVI)

Directional / image texture

e Multi-scale / wavelet measures

Polarimetric decomposition parameters

Model based decompositions (e.g., RVOG)

3. RESULTS: FURTHER EXAMPLES

We have applied this method to many scenes and include
three examples here to demonstrate that it works well for
a variety of cases. Please note that we have not consis-
tently applied geocoding or performed any radiometric

Figure 6. Contextual Smoothing Example with the San
Francisco, Radarsat-2 scene, 8 x 4 window, 10 classes.
After clustering (top) and with MRF smoothing (bottom).

terrain correction to these examples, they are simply pre-
sented as quick demonstrations. Different window sizes
and number of classes would, of course, influence all of
these results.

The first is again the San Francisco image, Fig.[7] but here
with a slightly larger window size, 24 x 12, to achieve
smoother, regional, urban results. The obvious water,
vegetation and urban are well separated, and different ur-
ban classes are distinguished, which appear to correlate
with either density or block orientation.

The second example, Fig.[§] is the Vancouver sample im-



Table 1. Reduced features with dual and single-pol data

Quad | dual-co/cross | dual-co/co | mono
1. RK + + + +
2. MRCS + + + +
3. R, + + - -
4. R, + - + -
5. 0p + - + -
6. /p + - + -

+ indicates available, - indicates not computable.

age, Radarsat-2 scene from 2008, with 8 classes and a
16 x 8 window. The central city region and the large
airport structures are clearly distinguished in brown and
dark-blue, the sub-urban areas are a mixture of cyan and
grey, the agricultural fields and forestry are segmented as
pink and yellow, and the water is primarily red and green
with some dark-blue where the side-lobe ghosting effects
of the city high-rise buildings are spread over the water.

A third example is of sea ice near Barrow, Alaska and
is from an ALOS PALSAR scene from 2009. The lower
quarter of the scene is land and includes frozen ponds and
the township of Barrow. There is a region of land-fast ice
above this and then some highly complicated dynamic ice
floes. Even though it is quite complex, and is predomi-
nantly one material type, “ice”, this simple approach has
clearly distinguished many regions that we can visually
distinguish by eye on the Pauli RGB image.

The fourth example, Fig.[10} is for a Sigma-nought, wide-
swath, HH-HV, Radarsat-2 image of sea ice around Sval-
bard, with the land masked out. This demonstrates that
although the dual-channel data has less features, three in
this case, the general approach still segments the main re-
gions and certainly the ice and water classes in the lower
corner.

The final example, Fig. [II] depicts only the three
entropy-alpha-anisotropy decomposition parameters and
their segmentation. Obviously, three parameters does
not describe the full polarimetric information (which has
five free parameters) and these normalised terms do not
include the important information of absolute backscat-
ter intensity, therefore, they should not be expected to
achieve optimal results by themselves. They are seg-
mented here, by themselves, simply to demonstrate that
they can easily be included in this overall approach and
that any class distinction that they contain can be utilised
for segmentation. They should, of course, be included
in addition to other useful parameters and may improve
some aspect of the overall image segmentation.

4. CONCLUSIONS

We have demonstrated a simple feature-based multi-
channel SAR segmentation method that produces good,

Figure 7. San Francisco, Radarsat-2 example: Pauli
RGB (top) and 10 class segmentation with MRE, 24 x 12
window.

smooth, fast and robust results for image segmentation
and interpretation. The method is quite generic and easily
extendable with new features and for multi-source data
fusion. The basic approach was demonstrated to work
well for several different sensors and land-cover types.
Of course, the best choice of features for different ap-
plications may be improved by further application spe-
cific studies, and be extended to use the class properties
to identify and label the segmented image.

The main message of this presentation is that a good
choice of features, hopefully capturing all of the polari-
metric information, and some smart transformations, al-



Figure 8. Vancouver, Radarsat-2 example: Pauli RGB
(top) and 8 class segmentation with MRF, 16 X 8 window.

lows a very simple segmentation approach to achieve sat-
isfactory results. The advantage of this approach is its
simplicity and speed, being able to segment full scenes
into meaningful class segments in a matter of minutes,
and is generic and consistent enough for operational use.
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Figure 10. Wide-swath, sigma-nought example,
Radarsat-2, 2012: Pseudo-Pauli (2 channel) RGB (top)
and 7 class segmentation with MRF, 5 X 5 window.

Figure 11. H-A-alpha example, Radarsat-2, San Fran-
cisco: H-A-alpha RGB (top) and 6 class segmentation
with MRF, 5 X 5 window. Segmentated uses only the three
decomposition parameters to highlight that they are suit-
able for this scheme.
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