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Abstract

Online web services that store fitness and health related data is evolving to
provide useful services to end-users. Examples of this include RunKeeper,
Fitbit and MS HealthVault. These services interconnect creating an
ecosystem of online web services. The services they provide are mainly
targeted for the consumer marked. However, professional sport clubs may
potentially benefit from integrating these systems in their daily activities.
This, however, requires a different set of data analytic than commonly
provided by these services.

A problem is connecting this type of ecosystems with statistical analytic tools
like R, Matlab, and Excel for doing statistical analytics and machine learning.
There is privacy concerns related to sensitive data and misuse. This thesis
explores this problem creating an extensible system for doing analytic with
statistical analytic tools on online data archives.

The system integrates the web services Fitbit and RunKeeper and creates
a runtime support for analytics written in R and Python. The system
encapsulates the burdens of privacy concerns and authentication for
interacting with web services. The system implements operational consent
to give athletes high level of control how data is used in analytics over long
periods of time. This is provided through metacode abstraction and eligibility
checking. Metacode extends the runtime dynamically by being able to run
user provided code that for instance can check for privacy violations upon
data accesses. The evaluation showed that Fitbit and RunKeeper as data
archives for analytics have some constraints in concern of latency and rate
limits. With caching and preemptive crawling the web services can become
useful data sources for professional sport clubs to integrate with.
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Chapter 1

Introduction

1.1 Background

A growing number of people are focusing more on fitness and exercising
more [2]. That is reflected in the increasing amount of health applications
and tools for self-tracking on the marked. The term quantified self is used
to describe this movement, described as gaining knowledge about yourselves
through numbers [37]. This movement is also reflected in the increasing
number of devices that is connected to the Internet every day [42] creating
a Internet of Things (IOT). Wearables for self-tracking that is connected
to the Internet create an ecosystem for everything related to fitness and
health. They are rapidly improving, providing better accuracy and becoming
affordable for consumers. Information they can measure ranges from daily
number of steps, distance covered, calories burnt and sleep quality. Added on
top of the expanding marked for wearables, there is also a growing marked
for health applications for smart phones [46]. Smart phones can provide
much of the same information begin equipped with accelerometer and GPS
tracking.

Many companies that collect and store health related data have their data
silos open for third parties to integrate with. Examples of this include
RunKeeper [18], Fitbit [17] and MS HealthVault [3]. This can benefit both
consumers and developers wanting to create own services and applications
based on the data the companies collect and store. For instance, Fitbit, offers
an Application Programming Interface (API) for developers to integrate to
gain access to users data. All the information Fitbit devices track is uploaded
to their data silos and is then made available to view at a personal web

1



portal.

Sports analytic are a increasingly hot topic [11]. Tromsø Idrettslag (TIL),
a Norwegian soccer club, uses ZXY Sport tracking1 to collect data while
playing matches and training. The ZXY system intended for professional use,
provides a higher data granularity than the typically consumer products. Its
use range is limited to the installation location. Other sport analytic systems
include the arena sports analytics system Bagadus [41] building on ZXY data
and the notational analysis system Muithu [21]. For professional sport clubs,
integrating and using wearables in addition to the professional equipment,
the blind spots during the rest of the day can be tracked, and potentially
gaining new insight regarding players fitness and health.

Using analytic on the data collected from wearables and health applications
can help to potentially learn more about a persons fitness and health. For
instance, when something abnormal is detected, it can be dealt with early and
long injuries are prevented, possibly extending the sport carrier for athletes
[16] [47].

1.2 Problem definition

A large ecosystem of interconnected online web services that store, analyse,
and visualize personal data is evolving to provide useful services to end-users.
Although primarily targeted for the consumer marked, professional sport
clubs may potentially benefit from integrating these systems in their daily
activities. This, however, requires a different set of data analytic than
commonly provided by these services.

This thesis will explore the problem of connecting statistical analytic tools
like R, Matlab and Excel to personal body sensor data archives like FitBit,
RunKeeper, Python and the ZXY Sport tracking system. A language binding
and runtime will need to be constructed. The runtime will be dynamically
extensible by user-code to give users high control of what data that is
accessible. Possibility for privacy preserving will be taken into concern in the
system design. Several analytic functions will be developed to demonstrate
the system and end-to-end latencies will be measured

1http://www.zxy.no/
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1.3 Method

The final report of the ACM Task Force on the Core of Computer Science
[8] divides the discipline of computing into three major paradigms:

• Theory : Theory: Rooted in mathematics, the approach is to define
problems, propose theorems and explore to prove them in order to find
new relationships and progress in computing.

• Abstraction: Rooted in the experimental scientific method, the
approach is to analyze a phenomenon by creating hypothesis,
constructing models and simulations, and analyzing the results.

• Design: Rooted in engineering, the approach is to state requirements
and specifications; design and implement systems that solve the
problem, and test the systems in order to find the best solution to
the given problem.

For this thesis, the design process seems to be the most suitable out of
the three paradigms. The design process consists of 4 steps, which are
repeated if tests reveal that the latest version of the system does not meet
the requirements.

• State requirements and specification: A need or problem is identified,
researched, and defined.

• Design and implement the system: Data models and a system
architecture are designed. Prototypes are implemented.

• Test the system: Assessment and testing of prototypes.

1.4 Interpretation

This thesis will look into designing and implementing a system enabling R
and Python to use online data archives as Fitbit and RunKeeper. Online
data archives store consumer sensible data, therefore, the system by design
will have users privacy in focus. A high degree of extensibility will be focused
on, for both allowing more data sources and statistical tools to be added, and
to provide dynamic extensibility of the runtime. The system will give users
fine-grained control of what data research projects can access from the data
archives. This, to give the user improved privacy control in long term where
possibly new body-sensors is added providing higher data granularity, new
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data mining algorithms is discovered and the research projects specifications
is changed.

The thesis goal is to design and deploy a working prototype. The system
will be evaluated by experiments demonstrating the system prototype by a
proof of concept and performance will be measured. At-least two statistical
packages and two data archives will be working in the prototype to prove
flexibility and extensibility. The system will be developed following the
design process methodology stated in 1.3.

1.5 Context

The iAD (information Access Disruption) Centre researches fundamental
structures and concepts for large-scale information access applications2.
iAD gets funds from the Research Council of Norway as a Center for
Research-based Innovation (SFI). Microsoft in collaboration with Accenture,
Cornell University, Dublin City University, BI Norwegian School of
Management and the universities in Tromsø (UiT), Trondheim (NTNU) and
Oslo (UiO) direct the research work.

A project developed by iAD is Bagadus [41]. It is an arena sport analytic
system-tracking players integrated with the ZXY Sport Tracking System. It
enables automatic playback of annotated events. The playback can follow
group of players or individuals by using the exact position. Presentation of
the video is done by stitching a panorama video or switching cameras. The
system is deployed at Alfheim Stadium (TIL, Norway).

Another system is Muithu [21], developed to help to lower the barrier of
annotating events. It lets you annotate sequences of a game with entities like
player and comment from mobile devices. It encapsulates predefined events
to speed up the annotation process. This information will then be time
synchronized with the video feed and made available for search on entity’s
to get the corresponding video feed.

A system currently under developing is Girji [25], providing management of
body-sensor data for sport analytic focusing on providing operative consent.
It is a security-centered system giving users high control of what data that can
be used. The work done in this thesis can be in cooperated into Girji.

2http://site.uit.no/iad/
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1.6 Terminology

• Athlete: Are the athletes practicing sports who agree to be participants
in scientific research projects by being the source of information
collecting.

• Analytical Principal (AP): Are those who will write the statistical
analytic functions that will be run.

• Analytic functions : Files/scripts that contains the code to be run.

• Client : Software that the analytic functions are sent from.

1.7 Outline

• Chapter 2 : Presents background information and related work to the
project.

• Chapter 3 : Describes the requirement specification.

• Chapter 4 : Describes the design and implementation of the system.

• Chapter 5 : Gives a demonstration of the system.

• Chapter 6 : Evaluates and discuss the system.

• Chapter 7 : Concludes.

5
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Chapter 2

Background

This sections presents some background related to the design and
implementation.

2.1 Background

2.1.1 Technical background

R is a programming language for statistical computing and graphics. Among
statisticians and data miners R is widely taken into use [50] [13]. It is a
interpreted language an the R source code is implemented in C, Fortran
and R. For high computational heavy computations, code can be written
in C, C++, Java and Python and called at runtime from R. Some of the
features R provides are linear and nonlinear modeling, classical statistical
tests, time-series analysis, classification and clustering. Strength of R is
the user-produced packages, which provide much useful functionality for
users.

Support for R as a statistical package was chosen for the positive reviews it
as got among data miners [38] [35] [30].

2.1.2 Big Data and machine learning

Big data is a term used to describe large quantities of data, both structured
and un-structured. A large potential lies in examining and doing large scale
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analytic on this kind of data; decision-making in businesses, health, and
sports, helping to make more accurate analyses. The three Vs define big
data: volume, velocity and variety [26]. Volume describes the large quantities
of data it is. With Internet of Things (IOT) and wearable devices even
more data will be generated. Variety of the data is about the data being
represented in all kind of formats, both structured and un-structured. In
addition, the data comes from various sources and data types like traditional
databases, documents, web pages, and devices. Velocity describes the speed
of the data both in and out.

In recent years two extras Vs have been added: value and veracity. Value
refers to turn the data into money. A lot of data is fine, but if it cant be used
to anything it is useless. Veracity refers to the quality and accuracy of the
data. For instance, hash tags at Twitter, the reliability of tags is not high.
High volumes come with a price in concern to quality and accuracy of the
data.

Machine learning is a branch of artificial intelligence and linked up to big
data. Tom M Mitchell defined machine as: ”A computer program is said to
learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves
with experience E” [29]. The decision how to react is based on previous
experience. New knowledge is learned if new measurements improve the
performance.

Example of where machine learning can be useful includes fraud detection,
product recommendation and churn prevention.

2.1.3 JSON

JSON1 is a data interchange format. It has two structures for representing
the data: collections of key value pairs and ordered list of values. Both
are easily mapped to similar concepts in various programming languages.
Collections of key value pairs are similar as dictionaries, struct, and hash
tables in various other languages. Ordered list of values is a similar concept
as arrays, lists and vectors. The two structures can be combined having a
key value pair where the value is an ordered list of values. Handling data
exchanging and mapping to languages are easy when the concepts matches
data structures in programming languages.

1http://www.json.org/
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An example of a JSON data exchange is given below.

{

"menu": {

"id": "file",

"value": "File",

"popup": {

"menuitem": [

{"value": "New", "onclick": "CreateNewDoc()"},

{"value": "Open", "onclick": "OpenDoc()"},

{"value": "Close", "onclick": "CloseDoc()"}

]

}

}

}

2.1.4 MongoDB

MongoDB is an open-source document based database. Documents can be
seen as a container for data, like a table in a Relational Database Mangement
System (RDBMS). In a RDBMS there is rigid tables with static fields that
will always be the same. MongoDB provides more flexibility in their schema
design by being dynamic. Documents in a schema do not have to have the
same field names or types. A document has a JSON-style representation
called BSON, short for Binary JSON. It supports embedding documents
in other documents. There can be other data types than JSON like Date
type and BinData type. To provide high flexibility of aggregation functions
MongoDB supports Map/Reduce data processing. It also has a rich query
language.

2.2 OAuth

OAuth is an open standard for giving others access to an API in a secure,
simple way. Many of the big players like Facebook, Google and Twitter uses
OAuth. For service providers, OAuth, lets you open up your API to third
parties, letting the they gain access to use data stored, without end-users
spreading their password to their accounts across the web, protecting
credentials. For consumer applications developers, OAuth lets you access
the protected data on behalf of the user, and enrich your own applications
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and services. There are mainly two protocol versions of OAuth in use, 1.0
and 2.0. Both requires the consumer application developer to register an
application at the service providers website to get a consumer key and a
consumer secret. Users have to authenticate the application, granting it
permission. This is done at the service provider typically by being redirected
to their website. Upon granting access, the user is redirected back to the
consumer application with an access token. This access token is acting as
the authentication of the user and has to be embedded in every request to
the service provider. For OAuth 1.0 an access token and access token secret
is returned in the callback. Requests to the service provider with OAuth 1.0
have to contain both the access token, and additional the request have to be
signed with the secret key. OAuth 1.0 is more complicated than version 2.0
and requires more work by the consumer developers.

OAuth can expose a security risk if the access token is lost or being
eavesdropped. This can be dealt with limiting the access token lifetime
and using SSL encryption. Any secret that cant be hidden doesnt count
as a secret. The access token is confidential. Another threat is malicious
applications pretending to be real ones, luring the consumers to grant access
to them. More attacks are summarized in OAuth 2.0 Threat Model and
Security Considerations [43].

2.3 Data sources and Web Services

There are numerous web services in the domain of fitness and health. Two
services that are integrated in our system are RunKeeper and Fitbit.

2.3.1 RunKeeper

RunKeeper is a fitness and health ecosystem allowing you to store and
retrieve body sensor data. Their core application is a running application
for iOS, Android and Windows Phone tracking your exercises using
movement-tracking features like GPS in mobile phones. All exercise is
available through their website where health and fitness data is illustrated.
Built around their success with the application they have developed a web
portal for everything related to health and fitness. A screenshot of the web
portal is shown below in figure 2.1. End-users can upload their own data
that RunKeeper will store for them in the cloud taking care of storage costs,
maintenance, backups and presentation of the data.
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Figure 2.1: The dashboard presenting various statistics. A activity from
Fitbit is also integrated in the fitness feed

In addition, they have introduced the HealthGraph API [18] where consumer
developers can create own applications to take advantage of the data collected
and stored. Data that can be fetched range from sleep, activities, body
measurements, nutritions, and diabetes. Authentication to the Application
Programming Interface (API) is done with the OAuth protocol. Healthgraph
has a range of partners that they cooperate with enabling RunKeeper to
provide an overview over all fitness tracking across devices and services.
MyfitnessPal, Fitbit, WitThings and Zeo are some of their partners. The
HealthGraph API can be reached over Hypertext Transfer Protocol (HTTP)
with a RESTful [12] interface, supporting responses in JSON format. Being
a RESTful interface, it takes advantage of the HTTP methods GET, POST,
PUT and DELETE to fetch, add, modify or delete fitness activities and
health measurements.

2.3.2 Fitbit

Fitbit has a range of devices where everyone integrates with their online web
services by uploading data collected. This ranges from weight trackers to
various activity trackers. The arm wristband, Fitbit Flex encourages you to
be more active and generally live a healthier life. It tracks your daily activity
by logging the number of steps you take, it tracks your sleep rhythm and
duration with some manual effort. The technology inside is an accelerometer.
By various algorithms it knows the difference between a hand movement and
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a step. However, this is not 100 percent accurate, but good enough for most
people providing a good estimate of daily activity. All the information is
made available to browse through a personal web profile. Fitbit wires the
devices only enabling them to upload data to Fitbit servers. The raw data
cant be accessed.

Figure 2.2: Screenshot from Fitbit.com showing several tracking devices
currently on the marked. Fitbit Flex is located left in the picture

Fitbits API is split in two parts; a public API for everyone and a partner
API. The partner API offers a higher granularity on the data. An example
of this is how the public API only gives you the number of steps for a whole
day, where the partner API provides you data down to steps per minute.
To become a partner you have to send Fitibit an application explaining why
your application should grant access. The applications are reviewed case by
case.

Fitbit comes with a rate limit per hour per user. Currently, for the public
API this is 150 requests per hour. Having a rate limit enables Fitbit to
regulate the amount of requests to their service and thus provide a stable
service by ensuring availability for everyone. The API is reached over HTTP
with a RESTful interface, following the same principles as RunKeeper, but
supports both JSON and XML data format in responses.

2.3.3 ZXY Sport Tracking System

ZXY Sport Tracking System (ZXY) is a professional sport analytic system
that uses body sensors. Soccer teams in Norway, including Tromsø Idrettslag
(TIL) and Rosenborg BK, use the system. Data captured is stored in a
Sybase database with each match requiring about 500-700MB storage. The
players have to wear a belt around their waist for the system to be able
to track their movements. The ZXY system is able to track the players
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movement very detailed with an accuracy of 0.5m. It has a resolution of 20
samples per second.

Figure 2.3: Overview of the ZXY system with receivers placed around the
pitch, and players wearing sensors. Image from zxy.no

The technology behind it relies on a radio-based signaling substrate
to provide real-time high-precision positional tracking, also including
acceleration and heart rate [15]. An installation of receivers is required for the
system to work. The home arena for TIL, Alfheim, is currently equipped with
10 receivers. A receiver tracks a specific area of the soccer field and combined
they cover the whole pitch with some redundancy areas for fault tolerance.
The communication from the belt to the receivers goes on a 2.45-5.2 G Hz
frequency radio signal. To compute the positional data the stationary radio
receiver uses an advance vector based processing of the received radio signal.
The data is aggregated and stored into a relational database. Including the
positions of the players ZXY also gives you the step frequency, speed and
direction.

2.4 Remote Procedure Call (RPC)

Remote Procedure Call (RPC) is a form for inter-process communication.
For the caller it is like using local code. In the background, the call is sent to
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another process, with another address space, for executing. The procedure
on the client will typically block until a response is received. A RPC should
define how the data structure should be like including errors, requests and
responses, in addition which serializer to use (JSON, XML, URI).

Java RMI [6] is one of the most known implementations of RPC. In short,
shown by figure 2.4, it works by generating stubs and skeletons of the object
interface to expose. When a client is invoking a remote method it makes
use of the stub. The stub will marshal parameters and pass the request to
the remote reference layer. The remote reference layer handles the lower
level details of which invocation protocol to use on both the client and server
side. At the server side the skeleton does an up-call to the remote object
implementation, which does the actual method call. Parameters are serialized
by marshalling and un-marshaling them when sent between the processes,
handled by the stub and skeleton. The process is reversed on a response from
the server. A cross-language implementation of RPC/RMI is Corba.

Figure 2.4: A simplified illustration of Java RMI.

Another approach for RPC is JSON-RPC [1] that encodes the procedural
code in JSON. It is a lightweight approach to RPC simplifying distributed
computing. Procedure calls and responses are done with a single JSON
object. Parameters are wrapped in an array. The method is specified in an
own key-value pair. The result response must contain an error key, set to
null if there was no error. Any request has an ID attached to it to be able
to match the request with the response message. This opens up for support
of un-ordered responses. The protocol also supports notifications meaning
a request doesnt require to have a response. JSON-RPC can be sent over
any communication protocol like sockets, HTTP and pipes. An example of
JSON-RPC request and response is given below.

{"method": "subtract", "params": [42, 23], "id": 1}

{"result": 19, "error" : null, "id": 1}
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2.5 Access Control List

Access Control List (ACL) controls accesses to objects. An object has read
and writes flags attached controlling if you can either read it, write it or both.
The flags are individual for each user in the system. This means one user,
Alice, can have read and write access, but another user, Bob, can only read
the object. Orchestrating read and write accesses is typical implemented via
a reference monitor that controls all accesses to objects [36], either denying
or allowing the procedure to continue the operation.

In Unix ACL can be configured for files using the same principles as for
objects. This includes read access, write access and execution access that
can be set. This allows a user to execute the file. Accesses can be configured
on a group level as well. For instance, it can be everyone with access to the
machine, a set of users, or system administrators.

In the cloud, ACL can be used as authorization to map roles, principal or
attributes of principals to set of rights on available services. A problem with
ACL is it requires that the set of rights is predefined. With systems with
many layers and services, ACL adds complexity with configuring ACLs across
the system layers and services. A attempt to handle this is Code Capabilites
(CodeCaps) [49]. Privileges are not predefined, but can evolve. Services
do not require any access control list, preventing configuration of predefined
access lists at every service/layer. Another similar approach of controlling
authorization in cloud is Macaroons [5].

2.6 Broker design

In the broker design pattern, the broker has responsibility for forwarding
requests, exceptions and results, in a distributed setting, where components
are decoupled [39]. Typically the components are heterogeneous. The
broker will handle communication related concerns between the components.
Benefits of a loose coupled system is in-dependability of other components
where a component can develop, tested and maintained independently from
the other components in the system. A potential issue is scalability with all
having to go through one component.
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2.7 Related work

This sections outlines descriptions of related work.

2.7.1 MapReduce

MapReduce [10] is a programming model typically used for doing
computations on large data sets. MapReduce consists of two phases; the
map procedure and reduce procedure. First a map function is run on input
key-value pairs. The map phase will generate a set of intermediate key-value
pairs; meaning similar keys are grouped together. This is where the reduce
function comes into play. Reduce will run on each set of intermediate
key-value pair generating a new key-value pair output. The computation
is staged into separate parts. Multiple MapReduce jobs can be run after
each other like in a pipeline, where each job works on the output of the
previous in the pipe, creating a pipe of data processing jobs.

A basic example of a MapReduce job is a word counter job. The map phase
receives a line of a text. It splits the line into words and generates a key-value
pair of the word and a count number. This will sort all equal words together.
The reduce phase will then run on the group of words counting occurrences.
The output is a key-value pair with the word and a count of appearances in
the input text.

Example of open source implementations of MapReduce is Cogset [48] and
Hadoop [19].

2.7.2 Mobile Code

Mobile code is code sent over network between systems. Good examples here
include JavaScript, Java applets and Flash, all popular choices for client side
scripting. Mobile code is essentially code that can be executed on the client
without explicit installing it.

Code mobility can be divided into two [4]: Weak mobility and Strong
mobility. Strong moves the execution state (like stack and instruction
pointer) of the code in addition to the code it-selves and data. This makes
it possible to continue execute right where it left off. Weak only moves the
code and the data.
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Several paradigms exists in code mobility [4]:

• Code on Demand (COD): code is requested when needed, and executed
locally.

• Remote evaluation (REV): code is sent over to a remote location where
it is executed, and the result is returned.

• Mobile Agent (MA): code migrates to another host, possible with some
intermediate results, and executed at the host.

COD and REV architectural styles can be categorized as weak mobility, and
MA as strong mobility.

TACOMA [24] is a example of a system that deploys mobile agents from
light clients, off loading computation to remote services. A similar approach
is Agent Tcl [14]. Both systems were introduced in mid 90s. An approach
towards an agent-computing environment is TACOMA ACE [23]. It builds
on previous work on TACOMA, creating an infrastructure for executing
mobile agent code in a distributed setting. Another approach of software
mobility is WAIFARER [22]. It is a desktop mobility approach where
desktop environment is moved around by saving and restoring application
level state.

Some key benefits of mobile code involve a high degree of service
customization. A problem with standard servers is their statically defined
interfaces. When unforeseen client needs is discovered programmers need to
extend their interface to support the new functionality. Using a mobile code
architectural approach the client can solve the problem them selves avoiding
involving the service operators. It brings autonomy to the system.

2.8 Summary

In this chapter we have introduced background information for the thesis. We
have taken a look at RunKeeper and Fitbit, and how to interact and take
advantage of their services. In the last section we have looked upon some
related work and concepts including: MapReduce and mobile code.
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Chapter 3

Requirement Specification

This chapter outlines the requirement specification. Requirements and the
proposed architectural design are influenced by work on Girji [25]. Functional
and non-functional requirements are constructed with information provided
in the previous chapter in mind.

3.1 Functional Requirements

3.1.1 Introduction

A decision that influences the functional requirements is a wish of providing
operative consent. In medical terms, consent is about getting permission
for a treatment stating what is going to be done, including benefits and
consequences of the procedure. Providing operative consent means in our
context, before accessing data, the operation shall check if it is eligible
to do it. This is to be able to secure and protect athletes privacy
over a long time when there is possible changing environments like new
body-sensors providing higher data granularity, new data mining algorithms
and modifications in research projects specifications. In our experience, the
willingness of participating in health researches lies on how good privacy is
handled and if by participating directly benefits the athlete. In other words,
if the direct outcome of the research can help athletes directly, the athletes
are more willing to give away access to sensitive data.

There are two functional requirements that help to provide operative
consent:
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• Dynamic extensibility at runtime: Athletes shall have the possibility
to control data access to their personal data through extensibility by
code.

• Eligibility : Athletes shall have the possibility to set fine-grained control
of what data that is accessible.

3.1.2 Overview

The envisioned system shall serve as a support for running analytics on data
from online health and sport data archives like Fitbit and RunKeeper by
using statistical tools. The system is envisioned used by APs in research
projects on sports and health, and athletes to run analytics on their own
data to learn more about health and sports at a professional level.

The system shall support uploading of user provided code, loading
code dynamically and run it, thus extending the system functionalities.
Extensibility through code is provided for athletes to dynamically control
what data from the online archives that researches in projects are able to use
by evaluating the data through coding.

The system shall give athletes fine-grained control of what data research
projects can access. The athletes shall be able to control the exact data that
analytic principals can use and access from data archives. This to give the
athletes improved control and prevent losing control of their data sharing in
changing environments. The system thus needs an interface for athletes to
configure and set the access control lists.

The system will need to support graphical and textual output that is
produced by the statistical analytic tools. The output is the end result after
running an analytic function.

The system shall support chaining multiple analytic functions where the
output from one analytic function can be sent in to the next one in the
chain, staging the analytic process into separate parts. For instance, data
can be filtered by the first function and used as the input of an aggregation
function, summing up the result of the filtering process. This concept builds
on passing of privileges. A scenario is where an athlete would like to share
some of his data with an analytic principal to use, but the AP does not have
privilege to extract the data directly. Thus the athlete can create a function
that extracts the data required, and pass it to the AP. The AP can chain his
own function with the athletes functions.
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3.2 System Model

3.2.1 Overview

Based on the functional requirements we propose an abstract architecture of
the system shown in figure 3.1. Components include a client and a back-end.
The back-end consists of three components: process, runtime and storage. In
addition, there is the data archive that the back-end interacts with.

Figure 3.1: Abstract Architecture

The data flow is as following: the client interacts with the back-end process
to request a execution of a analytic function, upon execution the analytic
function interacts with the runtime to request various data, the runtime
communicates with the online data archives. It can be multiple interactions
between the analytic function and the runtime, and the runtime and the data
archives, before a result is returned to the client.

3.2.2 Client

Client has to be able to transmit the data analytic function(s) to the runtime.
The client application has to be able to specify the order of execution for
the functions, if there is more than one. The client has to sign files for the
back-end to be able to ensure files are authentic and not tampered with. The
client has to be able to receive output generated by the execution. Upon a
response from the back-end, the client has to store both graphical and textual
output, if there are any.
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3.2.3 Back-end

3.2.3.1 Process

The back-end process has to be able to receive and persist files containing
the analytic functions before executing them. The request authenticity has
to be checked and aborted if not valid.

The back-end process has to be able to execute the analytic functions when
receiving them. The back-end process has to orchestrate the whole operation
by controlling input and output to the analytic functions in chains and alone.
Many executions can be worked on simultaneously and the back-end process
has to ensure there are no conflicts.

The back-end process has to be able to send a response to the client upon
finished executions. Output generated from the last function executing has to
be returned to the client. The back-end shall leave no traces of the execution
after the client has received the result.

3.2.4 Runtime

3.2.4.1 API

The runtime has to expose a way for the statistical analytic tools to interact
with it to request data. The runtime has to examine the request and do
appropriate actions out from the request.

3.2.4.2 Data acquisition

The runtime must support data acquisition from the data archives. A high
degree of extensibility is required to support new data archives like ZXY
Sport Tracking System (ZXY) database. Data acquisition need to handle
heterogeneous services that represent data differently and uses different API
protocols. For instance, data responses and errors can be in different formats.
In addition, online web services can have a diverse set of response times and
availability. The data acquisition code needs to optimize data acquisition in
concern of latency and availability.
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3.2.4.3 Access Control

The runtime need to provide operative consent through access control. The
data analytic function requests of data must be approved. The term metacode
is used from work done in [20]. Techniques and concepts metacode utilizes
include reference monitors, mobile code and extensible systems. Essentially,
metacode is code that is attached to data segments. It can for example
be run on every access to a specific data segment, providing access control.
The metacode will extend the runtime dynamically providing extensibility
in a dynamic manner. Extensibility of the runtime execution will be from
a user perspective. Athletes will have the opportunity to upload metacode
and thus configuring the runtime. Athletes will most likely dont know how to
configure and code the metacode. Therefor a set of pre-defined metacode can
be deployed for the athlete to choose from. For expert users, self-uploading
of code attaching the code to data will be supported. The back-end has to
be able to store and persist metacode and relate it to data.

When a data access occur a validation of eligibility must be done, either
aborting or continuing the request. This resembles a reference monitor and
will provide fine-grained control of what data that is accessible.

Summarized, operative consent is provided through access control. Athletes
are ensured a high degree of customizability by letting them control how and
what data that is accessible to APs.

3.2.5 Storage

The back-end has to have some form of storage to store credentials for
athletes. Collecting personal data from Fitbit and RunKeeper requires
OAuth authentication. This will generate access tokens and access token
secrets. The tokens will be used in each request to the online data archives
as authentication. In addition, upon a data access the storage will be asked
about metacode to execute and eligibility of the request. Information about
metacode and files has to be stored. The storage has to be a persistent
storage that lives when the back-end crashes and is down.

3.2.6 Interface

To support operative consent the system need to provide an interface. This
is required for athletes to configure their data access control and upload
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metacode.

3.3 Non-Functional Requirements

3.3.1 Extensibility

Extensibility is crucial for the system to allow it to evolve as new needs
are discovered. New features need to be easy to add to the system without
requiring a lot of effort and change in existing functionalities. A measure of
high degree of extensibility is when new behavior of the system can be added
without having to recompile the existing source code.

The system shall support extensibility to add new statistical tools, new web
services and possible other data sources like databases being included in
the system. There are various services and products out there. Whats the
most used and highest ranked today may be forgotten tomorrow. Having to
redesign the system when new data sources are added would not provide
sustainability in long term. Analytic functions can be written in many
statistical packages like R, Excel and Matlab. The system need to handle
easy extension to new statistical tools as new needs is discovered. Supporting
more statistical tools will lower the barrier for APs to do analytics letting
them use a familiar tool.

In addition, the system shall support behavior extensibility to support
metacode from athletes wanting to control data accesses done in the analytic
functions. The system shall not have to be restarted to execute new
metacodes received after start up of the system. However, the internal flow
shall change when metacode is uploaded with the metacode being embedded
into the loop, executed upon data accesses.

The communication between the statistical tools and the runtime has to be
widely supported and simple to implement in order to support extensibility.
The system extensibility shall be measured of how many statistical packages
and online data archives that is supported, and if metacode is supported.
At least the system shall be operable with two statistical package and two
online data archives.
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3.3.2 Interoperability

The system will need to be interoperable with a wide range of data
exchanging protocols. Data can be in different data formats (XML,
JSON) and be severed over different communication protocols (HTTP, RPC,
sockets).

To narrow the thesis, we concentrate on Fitbit and RunKeeper. As
mentioned in chapter 2, data from Fitbit comes in JSON and XML format
and from RunKeeper in JSON format. System shall need to handle a degree
of interoperability with the web services, supporting at least one data format
and communication protocol for each service.

3.3.3 Dependency and Availability

The system is dependent on the data archives it supports. For web services,
they are out of our control, thus creating a high degree of dependency upon
the services. The API, including data exchanging format and communication
protocol, may be changed at any time and even taken down. Both Fitbit
and RunKeeper are currently free services to integrate against. There is no
Service Level Agreements (SLA) meaning that no minimal uptime, maximum
response time and availability can be expected.

As mentioned in section 2.3.2, Fitbit limits the number of requests to 150
per hour per access token. This sets a limit of for availability for requesting
new data when the limit has been reached. Storing data will provide a
fault tolerance when the limit has been reached. RunKeeper has not stated
any rate limitation. Both RunKeeper and Fitbit are big cooperations that
are likely to invest money in having fault tolerance and providing high
availability.

The back-end of the system may be taken down by receiving too many
computational requests. The back-end will then become unavailable for
clients. A typical technique to handle this is through replication having
the back-end deployed at several places. Other faults not being able to reach
the back-end is network partitioning. In the thesis it is left out for future
work to achieve high availability and fault tolerance.
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3.3.4 Security and Privacy

The system shall preserve athletes privacy. Accesses to the sensitive data
have to be secure. Potential security breaks will identify athletes and their
medical reports. Privacy and security is therefore a must for the system.
Executing code received from third parties exposes a lot of security risks.
In [40], they introduce four aspects to take into consideration for Remote
Evaluation (REV) servers:

• Authentication: Client needs to authenticate him selves

• Secrecy : Information on the server is secret

• Availability : Executions are not hindered by malicious requests

• Integrity : The information located on the server should be preserved.

Clients shall be authenticated upon requests and the integrity of analytic
functions shall be verified, to ensure they are not tampered with. The
thesis will not focus on the security threats secrecy, availability and integrity
(SAI) when running untrusted code. A way of dealing with this is through
sandboxing, isolating the executions, limiting computational resources, and
access to the file system. These three aspects are considered future
work.

As mentioned in the previously chapter OAuth is typically utilized as
the authentication protocol for web services. Fitbit and RunKeeper uses
OAuth therefore authentication upon interactions with their Application
Programming Interface (API) is required. Every request must contain the
access token. Exposing the access token gives away access to the athletes
data. Therefore the communication channel between the runtime and the
web services has to be encrypted with HTTPS to prevent eavesdropping.
Fitbit uses OAuth 1.0/a where requests are signed by the access token secret.
It is therefore not as exposed as OAuth 2.0, as it has two secrets.

Although security and privacy is important, there may be parts of the system
where security and privacy issues are discovered that will be considered as
future work to limit the scope of the thesis.

3.3.5 Performance

The performance is directly linked up what the analytic function do.
Therefore performance is not a criteria set. The system will be developed as a
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proof of concept, giving a sense of latencies that is to be expected for analytics
on online data archives, and if is feasible in terms of performance trade-offs.
No specific performance constraint is therefore set. Latency for fetching data
from the online data archives relies on several aspects. The server and the
online data archives may be in geographical different locations, like Europe,
west or east coast, thus increasing the round trip delay for communication.
Then there is the latency for processing the request that may diverse out
from load at the web services.

The system shall try to hide the limitations for interacting with the online
data archives. The prototype will be a base for further investigation of how
to improve efficiency and understand design trade-offs.

3.3.6 Scalability

The thesis will not focus on providing scalability. Although the system will
potentially be used by large amount of AP concurrently that will generate
traffic load and computation requests. How computational heavy requests
are unknown for our system in concern of resources required. A sandbox
limiting processing power available for an analytic function can be a way of
controlling processing power.

3.3.7 Accessibility

The system shall be accessible from a large set of clients. Running analytic
functions shall be by design possible from various clients with potential
limited resources available. Clients that shall be supported ranges from
normal Personal Computers (PC) to light clients like mobile devices with
limited resources. A study shows that people are using Internet from mobile
devices more than PCs [33]. Requesting analytics and receiving output
shall not be by design platform dependent to for example Windows desktop
machines only.

3.3.8 Usability

Requesting data from the online data archives shall be easy from the
statistical tools. It shall not be more complex than using standard functions
in the language. The language binding to the runtime shall encapsulate the
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burdens of communication including serializing input/output and handling
errors.

3.4 Summary

In this chapter we have presented the functional requirements of the system
and based on that presented an abstract architecture. In the last section we
looked at constraints of the system, several metrics and criteria to base the
judgment of the system.
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Chapter 4

Design

In this chapter we present the overall design concepts for the system and
discussion around them. More details of the implementation are given in the
next chapter.

4.1 System architecture

4.1.1 System models

The main architectural decision relates to how to reach the online data
services from statistical analytic tools. This decision influenced the whole
system design. Three main choices are considered; local code execution, a
proxy design, or a mobile code approach where code is transferred to another
system and executed there.

The first way of modeling the architecture, shown in figure 4.1, is based on
locally executions of functions at the client where the client communicates
with the online data services directly. This would be with the assumption
that the client runs on a trusted computer. In this architecture, the client
would receive all the data from the different online web services. This
exposes a risk of losing control over fulfilling the privacy requirements for the
athletes. The client computer can be exposed to intruders either by malware
or physical. In addition, receiving potential big sets of data for light clients
with limited storage capabilities is not optimal. Light clients will potential
also suffer of low performance and reduced energy capabilities.
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Figure 4.1: a) Client-WebService architecture.

The second architectural approach, shown in figure 4.2, is the inter-mediator
approach where everything goes through an external part, a proxy. The client
communicates with the proxy to get data. Extensibility through metacode
can be added in this design approach by running the metacode before the
data is sent to the client. This provides athletes with customizability and
control over what data that is used in researches. The design complicates
the process of sharing output between data analytic functions as functions
are executed on the client. Having the execution on the client also is not
optimal for light clients and transferring large amounts of data may be an
issue also.

Figure 4.2: b) Client-Proxy-WebService architecture.

Based on this, the design, shown in figure 4.3, is based on a code mobility
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approach. The design follows the principles of Remote Evaluation (REV),
where code is transferred to a remote destination for execution. Results of
the execution are returned back to the original sender. In this approach, the
whole data analytic function can be executed by the runtime and therefore
the runtime has full control of output produced. The analytic functions will
be provided access to data archives through a runtime support via a language
binding. The runtime orchestrates it all.

Figure 4.3: System architectural overview

Sending the code to the data instead of vice versa can improve the
performance in certain scenarios [40]. Data captured by ZXY Sport Tracking
System (ZXY) from a match is about 500-700 MB of storage for example.
Transferring this amount of data requires high bandwidth to clients. That
is not always the case, with clients using Wi-Fi networks, edge and 3G.
Another thing is the computational power of the clients versus the back-end
servers. Light clients may have problem with doing the computation efficient
enough.

Having code mobility opens up for introducing push based result messages.
In WAIF [7], wrappers around web services creating a publish subscribe
system for normal web services was introduced. Push prevents clients from
pulling after results wasting network resources and generating unnecessary
load for the back-end when there is no updates. Code stored at the back-end
uploaded by clients, can be executed every day or week with cron Unix jobs.
The result can be pushed to the client(s) without any actions required by the
client. Another advantage is when data is updated, either from ZXY, Fitibt,
RunKeeper and other services, the back-end can be configured to run the
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code pushed up by the client, and send the result back automatically. For
example a graph plotting intensity from a training exercise generated after
the data has been processed and ready.

4.1.2 Overview

Two design principles have been taken into consideration in the system
design process; simplicity and generality. Simplicity for in most cases less is
more, keeping the system maintenance and debugging simple, and potential
increase the efficiency of the system instead of over-engineering. Generality
for supporting extensibility to multiple statistical languages, multiple data
archives and user-supplied code.

The systems main components, shown in figure 4.3, are a client, a library
and a runtime. The client sends the data analytic functions to the runtime.
While executing, the data analytic functions goes through the library to
interact with the runtime. The library is the language binding to the
runtime. The runtime can be seen as a support for the execution by handling
logic for accessing the online web services. It also ensures eligibility, data
violation handling through metacode and caching for reducing end-to-end
latency.

The design is influenced by the broker design. In the broker design pattern,
the broker has responsibility for forwarding requests, exceptions and results,
in a distributed setting, where components are decoupled [39]. Adopting this
design, the runtime is orchestrating data accesses, by forwarding requests
between components. Sensitive data as blood pressure and hearth rate are
not accessible directly and can be anonymized before being granted to the
analytic functions. There can be, for instance, user IDs identifying the
athlete, embedded in the response data from the online web services. Support
for additional statistical analytic tools can be made by creating a library for
the statistical package added, without having to modify the runtime source
code. The architecture fits well with the requirement specification.
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4.2 Back-end

4.2.1 Overview

The back-end accepts incoming requests for executing functions. Upon
receiving a request, it validates its authenticity by computing the Hash-based
Message Authentication Code (HMAC) for the request and compares it to the
one in the request. The system supports chaining up multiple functions where
each function fn builds upon the output of the previous function fn - 1, shown
in figure 4.4. The only data returned is the output of the last function. This
builds on similar principles as MapReduce where the computation is staged.
First, a filtering function can be run on a data set, and then a aggregation
function on the result set. There is also the Sawzall programming language
[34] that uses similar techniques, staging up the computation.

Figure 4.4: Functions chained where the output are sent as input to the next
function

When there is multiple data analytic functions embedded, the HMAC is
computed for each function to check its authenticity. Data analytic functions
can be shared between APs and athletes. Athletes can give access to their
data to APs via analytic functions subtracting a data set. Therefore, the
client has to provide the HMAC for each function and the associated ID in
our system. Any un-match of the embedded HMAC and the one calculated
the execution is stopped and error is returned to the client.

While executing functions the runtime will receive requests for data from
the library. The runtimes exposes a Application Programming Interface
(API) for the library to interact with. A request for data is handled by
either the cache or by fetching it from the web service specified in the
request. Responses from the web services are anonymized before stored in the
cache, and returned to the executing function. There is no functionality for
requesting a specific athlete in the runtime API. Their identity is preserved
and hidden from APs. However, the AP can request either one candidate or
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all candidates. Candidates are athletes that are in the scope for a research
project. Projects are described in 4.4.

The back-end is notified when the function has ended and has access to all
output the functions has generated. This and possible errors stumbled upon
during execution will be returned in the original request response.

The system supports running Python and R-scripts in chains or alone. It
can easily be extended to run other statistical analytic functions as well by
creating a new language binding to interact with the runtime API.

4.2.2 Metacode

Figure 4.5: The figure illustrates how metacode is inserted into the loop
when an analytic function does a method invocation. If there is any errors
while running the metacode this is forwarded to the executing data analytic
function following the flow 6-7-8.

As previously mentioned, the runtime supports extensibility through
metacode execution for extra privacy control for athletes. Metacode extends
the runtime in a dynamic manner providing dynamic system extensibility.
Metacode allows you to attach code to data segments that can be run after
an access to the data is made. Users can upload code and associate it
with different resources like sleep, steps, activities, that is accessible in the
health clouds. When an access to a resource is attempted any metacode
associated with that resource would be executed. By design there can be
many metacodes associated with one resource. When there is more than one
metacode for a resource, they are chained and executed in the same way as
with data analytic functions, where the result of the first one is sent to the
next.
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The metacode can throw exceptions, for example on a privacy violation for
a data request wanting data generated a year ago, that will be forwarded
to the running analytic functions by the runtime. The analytic function can
the then decide on a action based on the exception thrown. The original
data requested will not be returned when exceptions are thrown. Only the
exception.

4.2.3 Cache

A cache managed by the runtime is introduced to prevent triggering the
rate limit for web services like Fitbit and providing availability of data when
services is possibly down. A cache also helps to try to hide the end-to-end
latency for fetching from online web services. The cache has a simple key
value design. Providing a key gets you the value stored with that key. This
provides fast look ups, preventing, for instance scanning lists to find cached
values. A response from the web service is stored with ’Uniform Resource
Locator (URL)/username’ as key, an example is given below.

dev.fitbit.com/1/user/-/activities/date/2010-02-21.json/testuser

The runtime caches every request to the web services in the memory until the
configurable max size is reached. A problem with a caching everything policy
is that it may lead to inconsistency. For example requesting data from the
current day. Possibly this data will change during the day as more activity
is registered. There is no logic to handle this kind of inconsistency. A Least
Recently Used (LRU) replacement policy is used to make room for the new
objects when the cache reaches the max limit.

Another cache design that could increase the hit-rate is creating a more
customized key by combining the service name, the resource requested and
the date. For instance, a range query requesting data from a date, to a date,
would pack all data in one response. When iterating the response each date
and value is pulled out and stored as own key-value pair. Other requests
asking for a single day within that range, the data can be served from the
cache, thus increasing the cache hit-rate. For further investigating into key
design the access pattern needs to be analyzed.
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4.2.4 Anonymizer

A novel anonyminizer algorithm is run on the data returned from the web
services. The algorithm uses a blacklist1 approach filtering out data that
also appears in the blacklist. The black list contains sensitive names that
can identify the athletes. It is assumed that the data is in JavaScript Object
Notation (JSON) format. All keys in the data are checked by a recursive
approach, drilling down in the data, by looking at new key value pairs. When
a name that appears in the black list occurs the value is masked out. The
returned value is the masked data.

For even more fine-grained privacy control the black list can be open for
athletes to fill in themselves by for example at runtime loading the black list
dynamically in.

4.3 Language library

The language library encapsulates functionality for interacting with the
runtime, creating a language binding from the statistical analytic tool to
the runtime. From the statistical tools, using the library is no different than
other libraries or functions. The communication flow of the library and the
runtime is shown in figure 4.6. When the Remote Procedure Call (RPC)
method is called, a RPC to the runtime from the library is invoked. This call
will block the processing until a response is returned to the analytic function.
More details on RPC are given in 5.1.2.

Input to analytic functions that is chained together can be done in three
ways:

• RData: For R functions an R cache object is available. The object will
store whatever R object that is inserted to the cache and save it as a
.RData file.

• Stdout/Stdin stream: Writing to Standard Output (STDOUT). The
output will be piped to the next function.

• Filesystem: Through the filesystem storing the output in a ’.txt’ file.
The file can be read by the next function

Support for not only R specific inputs/outputs makes us able to combine
chain of scripts from other languages. The easiest and less error prone is

1http://en.wikipedia.org/wiki/Blacklist (computing)
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Figure 4.6: The language library interacts with the runtime to request data.
In addition, the library can use the file system to store output from the
analytic function.

storing output in a cache object that is serialized and written to the file
system. The next function can deserialize this object and load it into the
environment. Python Pickle is a similar concept that could have been used
for Python scripts.

4.4 Access Control List and Projects

Athletes can register an Access Control List (ACL) for resources for
fine-grained control of data accessibility. We introduce the concept of ACL
for resources. For example, for the resource sleep, athletes can either set
read only, write only or both. Only resources that are granted access to are
possible to access for APs following the principle of least privileges. This
principle is rooted in giving processes only the minimal set of privileges to
be able to fulfill the task, to minify the damages it potential can do. Writing
to resources is currently not supported and is intended for future use-cases.
Athletes can change the ACL via the website as shown in the use-case chapter
6.

Instead of the traditional reference monitor, controlling each access to objects
(resources), the ACL for each individual athlete is used to match athletes with
research projects instead. For example, a research project would register that
they need sleep and steps data resources. Athletes granting access to read
both resources will become participants. Anytime an ACL for an athlete
changes, a crawler is started to refresh participants in projects. All projects
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and all ACL are scanned to map up athletes with research projects.

Upon a request from the analytic function to the runtime API, a check for
eligibility is done, before continuing. The database is looked up to verify
that the project have access to that resource the request tries to access. By
design, all participants in the project will also have granted access to use the
resource configured through ACL.

In our design model it was mentioned that willingness of participating in
research projects is linked up with how it benefit each individual athlete.
With the ACL design, athletes are automatically mapped up to research
projects when agreeing to give away data. It exposes a risk of athletes loosing
control over projects and benefits. Therefor, an additional complementary
confirmation mail, containing a description of the project and benefits by
participating, could have been implemented as well, to prevent loosing
control. This would allow athletes to allow/deny projects. This is not
implemented in the prototype.

4.5 Client

The client uses the GUI application to send files containing data analytic
functions to the runtime. The client specifies which files he want to send and
the order of the execution like figure 4.7 illustrates. Each file is signed to

Figure 4.7: Data analytic functions are signed before sent to the runtime for
execution

ensure it is not tampered with. Output from the execution will be located
in the same folder as the execution file is. The client does not do any of
the computations and could therefor be run at light clients without any
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limitations. The main responsibility of the client is to ship the analytic
functions. For this it has to be compatible with the communication protocol
of the back-end, which uses Hypertext Transfer Protocol (HTTP).

4.6 Authentication

Interacting with web services requires authentication before getting access to
the API and athletes data as mentioned in the non-functional requirements.
First of all, an application is registered at Fitbit and RunKeepers website.
The first time an athlete is using the system he will need to register a user
giving him an ID in our system. A simple proof of concept web page handles
athlete registration, authentication, uploading metacode, and configuring
ACL. After registration, authentication with the web services is the next
step. Athletes needs to have accounts at the web services and then grant
our application access to their data. For each service, an access token is
generated for the user. This makes us able to access the data on behalf of
the user. The communication between the back-end and the web services is
encrypted while obtaining the access token for the athlete. Fitbit uses OAuth
1.0a and will also provide an access token secret used for signing requests to
the web service.

4.7 Storage

A database is necessary for having control over services, projects, users and
credentials. The different schema’s are listed in table 4.1. The service schema
is bootstrapped with information about the two services at the first startup of
the runtime. Rest of the schemas is filled when athletes register and projects
are registered. A demonstration of the website is given in 6.2.
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Credentails Service Metacode User Project
username name resource username name
serviceName requestUrl username password description
access token accessUrl fileNames hmacKey resources
access token secret consumerKey participants

consumerSecret
signatureMethod
authorizeUrl
callbackUrl

Table 4.1: Database Schema
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Chapter 5

Implementation

In this section implementation details will be given. We focus on the R
implementation of the language binding. The same principles and most of
the details also apply for the Python implementation.

5.1 R-library

The R library consists of a S4 R object that comes with methods to
communicate with the runtime. It also consists of an R Cache object used
to store data.

5.1.1 Initiating

When the object is initiated it reads Standard Input (STDIN) to check for
any input to the function from the runtime. For R functions input can be
stored in an RData file on disc that will be located in the input folder. Upon
initiating this file is loaded (if it exists) into the global environment for the
R execution, and then unlinked from the file system. This is to prevent any
other scripts in the chain to get access to the input. However, the execution
can create other files in the execution folder that will not be deleted and
is accessible to other functions in the chain. Another scheme for handling
security and privacy issues for input and output for functions in chain is
needed to prevent this as is left out of scope from this thesis.
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5.1.2 Remote Procedure Call (RPC)

Remote Procedure Call (RPC) is the communication protocol used for
analytic tools to communicate with the runtime. Communication is done over
sockets using JSON-RPC that specifies methods to be invoked. JSON-RPC
was chosen for its lightweight, simple remote procedure call protocol.
JSON-RPC is not platform/language depended and only requires support
for JSON to be supported. The runtime API can easily be extended with
new methods without distributing interfaces to the client.

Upon calling the RPC library function from R, a new socket is created
connecting to local host. The RPC method takes in a list containing the
parameters of the method called, the method name to call and a ID for the
request. It follows the JSON-RPC specification mentioned in chapter 2. The
JSON object is then serialized and sent to the runtime over the socket. The
response from the runtime is received on the same socket. A complication
when receiving data is that the response data contains the number of bytes
read before the actual JSON data. This is removed by slicing the response
string before un-serilaizing the JSON response to a R-object.

On the other side, the runtime is listening for incoming connections on port
1337. Upon receiving data, the runtime unserilaizes the JSON and inspects
the method field to check the request method. Currently, the runtime API
has 2 methods: ’singleGetRequest’ and ’multipleGetRequest’ for a given URL
to a web service. For both API calls it is required that the project-id is sent
with. This is for the runtime to know which credentials (access tokens) to
embed as authentication when requesting data from the web services. Also
it is used to check eligibility of the RPC. Interactions with the web services
are done in a secure channel with HTTPS.

The procedure for ’singleGetRequest’ method is now described. First, the
’Project’ database model is queried for the specific project by project-id.
Only credentials for the requested service (Fitbit or RunKeeper) are included.
A check for eligibility of the request is done. Upon a match with the requested
resource and the resources the project have access to, and the request can
continue. First then the web request to the web service can be invoked, but
first of all the cache is checked. The cache is looked up with the key scheme
described previously using the URL and the username. On cache miss, the
request goes to the web service. On a response the anonyminizer function is
run on the result set before stored in the cache.

Further, before a response can be returned, a look up in the database is done
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to find any metacode associated with the athlete and the resource the AP tries
to access. The resource is found by scanning the URL to look if it contains
resource name like sleep, steps or bp (blood pressure). This is a novel design
scheme; if the URL contains ’sleep’, the resource returned is ’sleep’. If there
is any metacode attached, it is then run or the method can return the data
directly. The return data is sent back to the data processing function via the
socket with the format specified in the JSON-RPC specification described in
section 2.1.3.

If there are errors encountered for the runtime or exceptions after running
the metacode, this will be wrapped in the error object in the return JSON
object. The R library will on a response check if there is any errors, and
halt the execution using the built in ’stop’ function. In other languages that
support more specific exceptions like Python, real exceptions can be thrown.
The error object in the JSON-RPC response will be ’FALSE’ when there are
no errors and contain an actual object when there are errors. Using ’stop’
ends the execution in R, but it can be catched by wrapping the RPC method
call in a try-catch clause. This opens up for specific actions out from what
error that has encountered by examining the error message.

A goal for RPC is transparency for the caller that a remote invocation is
happening upon calling the object method. In our library API in R this is
not fully achieved since the caller uses one method for every API call.

5.1.3 R Cache

R supports object serializing by storing the object in a binary representation
on disc. The implementation of R cache is an S3 class. The class contains a
list for storing properties to be saved. Saving and loading the object is done
with the built in R functions save and load. Saves stores the object as a
binary file. Using load, the binary file is converted into R Object and loaded
into the global environment of the R execution. A static hard coded file name
is used when saving the file. This way the next R function in the chain knows
what file to load. The final output of the execution of an analytic function
has to be sent through Standard Output (STDOUT) and not by using the
R cache.
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Resource HTTP Method Response
/proxy POST Files
/static/ GET Files
/fitbit cb GET HTML
/runkeeper cb GET HTML
/authenticate/:serviceName GET redirect
/user/new POST HTML
/metacode GET HTML
/metacode/new POST HTML
/acl GET HTML
/acl/new POST HTML

Table 5.1: API

5.2 Runtime and WebServer

The runtime is written in Node.js [45], Node from now on, is a packaged
compilation of Googles JavaScript engine1 engine. Its a relatively new (being
released in 2009) and unproven platform, but has gained a lot of attention in
the computer science community for its lightweight and efficient model. This
comes from the even-driven and non-blocking I/O model. Per default, an
instance of node runs in a single thread and does not utilize other CPU
cores. When writing a web server with Node, you need to avoid long,
blocking computations as this will block the node process for handling new
incoming requests. Our runtime uses non-blocking I/O calls when accessing
the database or accessing the file system to avoid this issue. Initiating
computations in child processes makes it possible to do long CPU intensive
computations. The root process of a child process controls standard streams
and can be piped back after the execution is done or at runtime.

The runtime supports executions of Python and R code, integrates with
Fitbit and RunKeeper, and it embeds a web server. It exposes a interface
over Hypertext Transfer Protocol (HTTP), shown in figure 5.1. Requests are
handled based on the resource Uniform Resource Locator (URL) accessed.
The API is listed in table 5.1. In addition, the runtime listens for
incoming connections on a socket to handle communication with language
bindings.

The runtime takes use of several node packages2, including the Express

1https://code.google.com/p/v8/
2https://npmjs.org/
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framework, which is a web framework.

5.2.1 Running data processing functions

In the non-functional requirement we stated that securing the secrecy and
integrity of the server data was left for future work. It is assumed in
the implementation that executions of code can be isolated and that the
execution cant tamper with files on the server.

The main URL is the ’/proxy’ URL. The runtime expects a HTTP POST
with Content Type header set to multipart/form-data. This is a content
type used for sending multiple files over HTTP. In addition to the files, a
Hash-based Message Authentication Code (HMAC) and a username for each
file are expected to be embedded in the HTTP headers. When a request is
received by the runtime, one at a time the file is read and written to disc,
then executed, before repeating for the next file. For a file to be run it has
to be valid. Each file must have a HMAC associated with it. The signing
has to be done with the hash algorithm SHA1 and generate a 40 bytes hex
string. The HMAC is computed by taking the raw bytes of the file and a
secret key generated when a user is created. The secret key is generated by
first generating a random seed of 20 bytes using the built in crypto module
of Node. This seed is then again hashed with the SHA1 algorithm, and
generates a 40-byte hex string that becomes the secret key. Invalid requests
where the HMAC doesn’t match are aborted. Having files signed, helps to
verify that both the authentication and the data integrity of the files are
valid.

Before any files are executed the runtime will create a folder for the request.
This is a random named folder, equal to how the secret key is generated,
that is removed after all files have executed. All input and output for the
data processing functions will be in this folder. This means we can run
multiple requests from the same AP or multiple APs at the same time.
Input/output from executions isnt mixed up. The folder is deleted when
the request response is returned.

For each incoming function the runtime will spawn a child process for
execution of the file. The child processes always has three streams associated
with them: stdin, stdout, stderr. Upon errors while executing a file, error
messages will be received by stderr. All executions will be stopped and the
error returned back to the client in the HTTP header. Input to functions is
streamed through the stdin stream. This is done right after the process is
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spawned. Input to functions is optional.

Output from the last functions stdout stream is placed in the HTTP header as
’stdout’. A problem is to know what to send back to the client as the analytic
function may produce arbitrary output, graphical and text files. The current
solution only supports graphical output in PDF file. When the processing
are finished the runtime checks if there has been generated a ’Rplots.pdf’ in
the execution folder of the request, and inserts the file as an attachment3

in the HTTP response if there is. Graphical output works both for R and
Python when the output is named ’Rplots.pdf’.

An error that may occur is the stdout max buffer exceeded error. By default
Node spawns the new child process with 200*1024 bytes buffer. If this is
exceeded an error is thrown and the execution stopped. The buffer proved
to be too little while running experiments and was boosted to 10 kB, which
was sufficient for our experiments. Another approach would be to use the
’child process.spawn’ function instead. It returns an object with stdout and
stderr streams. Then we could continuously read the standard out stream
for data, and continuously start streaming the data back to the client via the
network for example. Another possibility would be to stream it directly to
the next function in the chain.

5.2.2 Metacode

An execution of a metacode is started up by starting a child process from
the runtime. The data to evaluate is streamed in as stdin to the process.
The output is written to stdout. A small library in Python standardizes
the process of reading input and output for all metacodes. Only metacode
written in Python is currently supported. The main issue with implementing
metacodes is how to catch exceptions that is thrown by the metacode. An
external Python script runs the metacode in a try-catch clause like shown in
the code snippet below.

try:

execfile(sys.argv[1])

except, e:

sys.stdout.write({errorInMetacode : True, message: e.message})

The metacode filename is given to the script as a system argument when
the script starts up. By using the built in Python command ’execfile’ the

3http://expressjs.com/4x/api.htmlres.download
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file can be executed as the code was embedded in the script. This way we
can catch the exception thrown by the metacode and serialize the exception
into a special JSON object containing the exception description. Language
wrappers can be built to transform the exceptions description to built in,
real exceptions in the statistical languages.

When the metacode is finished running the runtime is notified. The runtime
will serialize the output from the metacodes stdout to JSON and check if
it contains an error key ’errorInMetacode’. The error key signals that an
exception has been thrown. There may be scenarios where the output cant
be serialized and an exception will be thrown in the runtime. This, however,
is catched, and it is assumed that everything is ok and no exceptions have
been thrown by the metacode, as this would have been catched with the
external Python script.

An example of a metacode is given below. It iterates through the result set
containing steps per day. If the steps are more than 10 days old an exception
will be thrown.

steps = data[’activities-steps’]

now = datetime.datetime.now()

for step in steps:

date = datetime.datetime.strptime(step[’dateTime’],’%Y-%m-%d’)

if((now - date).days > 10):

raise Exception("Data expired")

Uploading of code is done through the website. Code will be stored in
the file system in a special folder for the athlete under his username, like
’public/uploaded/username/hexstring.py’. The filename is a random hex
string generated the same way as the secret key mentioned earlier. The root
folder for the athlete is created when he register in our system. The metacode
data is then inserted into the database and will be looked up later and run
when data for the athlete is used. The folder containing the metacode is
assumed to be only accessibly by the runtime, secret for executing functions
and integrity preserved for privacy reasons as stated in the section 3.3.4.

5.2.3 Cache

The runtime cache is implemented as a JavaScript object using the prototype
property to add functionalities like attributes and methods to the object.
It exposes get, put, del and clear methods. The cache data container is
implemented with a standard JavaScript dictionary to match the key value
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design chosen. To handle the least recently used policy a list is used to keep
track of the least recently used items. The first item in the list is the least
recently used and the last, the most recently. An additional dictionary is
used to know where each key is in the list to avoid scanning through the list
every time a key is used. A single lookup in the dictionary and we know
the location of the key in the list, this item can be deleted from the list and
placed last in the list. The extra dictionary adds some extra meta-data, but
is small compared to the cache data it selves, as there can be large datasets
for each key. The size limit of the cache is by the number of keys.

5.2.4 Anonymizer

A blacklist of all field names that is considered to be identifying the
user is first of all created; userId, memberSince, fullName, displayName,
dateOfBirth, height, gender, country, weight. All keys checked are
transformed to uppercase to match the keys in the blacklist. The anonymizer
algorithm function receives a JavaScript Object Notation (JSON) object
with a set of key value pairs. Keys that are in the blacklist are masked
by writing over their corresponding value. This prevents the algorithm of
scanning through every key. The end result is the masked, anonyminized
JSON object.

5.3 Client

Figure 5.1: GUI application. The file listed first is the first to be executed

The client is implemented in the Python library Tkinter4. This is small GUI
application used to send files to the runtime. When the ’send’ button is
pressed, an HTTP POST is sent to runtime containing the files the user has

4https://docs.python.org/2/library/tkinter.html
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specified. In addition each file is signed using the clients secret key with
SHA1 hash algorithm.

In the HTTP response from the runtime the output from the last function
executed is wrapped in the HTTP header field ’stdout’. This output is
written to a ’.txt’ file in the folder the application was started in. If the
last function produced graphical output it will be stored in ’outputFile’ field
in the HTTP header. This will be read and written to a PDF file, the only
graphical output currently supported.

5.4 Database

The database is chosen is MongoDB. Chosen for its ease of use from Node. It
is also well documented, that helps when running into problems. MongoDB
interaction is done through the Mongoose module. It supports direct
insertion of JavaScript Objects that are mapped to database schemas. Every
schema stores only strings. This is the only data type used except from files.
Some fields have indexes to secure uniqueness. This includes ’serviceName’
in the Service schema, ’username’ in the User schema. A thing to notice
is the Project schema that embeds a reference to the credentials schema in
the participants field. A normal query on the Project schema only returns
the MongoDB ID of the credentials documents. MongoDB ID is a unique
ID generated for every document. To embed the credentials documents, and
not only the ID, a populate query is run. MongoDB will then do a operation
like the join operation in Relational Database Mangement System (RDBMS)
where the credentials documents are fetched and inserted to the participants
field, replacing the ID. It is also possible to do filtering on the credentials
documents that is embedded. For example a request wanting only Fitbit
credentials for a project will only embed credentials for Fitbit by filtering on
’credentails.serviceName’ = ’Fitbit’.

5.5 Webpage, authentication and users

A simple web site in HTML provides the interface for athletes to create users,
authenticate themselves with Fitbit and Runkeeper, upload metacode and
configure Access Control List (ACL). Fitbit and Runkeeper is bootstrapped
by inserting all the details like request URL, access URL, consumer key,
consumer secret, signature method, callback urn and authorize URL, into the
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database. This details are found at the services website when an application
is created. The runtime has callback URLs for Fitbit and RunKeeper services
to redirect the user to after granting access for the application. For example
RunKeeper will redirect the user from the RunKeeper servers to the back-end
URL ’runkeeper cb?code=22e5c5f8d63d4001b23e30bf434bad0f’. Code is a
temporary token used in the last exchange before receiving the actual access
token between the back-end and the web service. Everything around OAuth
is handled by the Node module node-oauth5.

When the users fills in the registration form and submit it, a cookie for storing
the users username is created. The browser will send this on every request.
Cookies enable us to save state across many requests over the stateless HTTP
protocol. When the user navigates to the access control page, the server
fetches the ACL for the user based on the username stored in the HTTP
cookie field.

Upon authenticating with Fitbit the server has to keep track of the temporary
access token secret as specified in the OAuth 1.0/a protocol. Again the users
cookie is used. When the server gets a callback Fitbit this can be extracted
from the cookie. The authentication flow follows the standard as described
in section 2.2.

Every request to the web server needs a cookie with a username or they
are redirected to the user sign up page. The exception from this scheme is
the callback URL’s, the proxy URL used by the client application, user sign
up page and any static files like HyperText Markup Language (HTML),
Cascaading Style Sheets (CSS) files.

The secret key used for signing requests is generated upon user creation
following the same algorithm as mentioned in 5.2.1. This has to be shared
to APs and hidden for strangers.

Using HTML and the Handlebars6 view engine create the actual web pages.
The view engine handles caching of files to save I/O operations. To achieve
dynamic content on the web pages, data loaded from the database is inserted
into the HTML document before being returned to the web browser. A
main skeleton HTML page is the basic for every page, containing the header
navigation elements. Out from the page that is visited a different HTML
document is inserted to the HTML body tag of the skeleton HTML page. A
example from the ACL page how access permission are inserted dynamically
are shown in figure 5.2

5https://github.com/ciaranj/node-oauth
6https://www.npmjs.org/package/express3-handlebars

50



Figure 5.2: HTML of the Access Control List page. Curly brackets define
input of dynamic data. In this page a list of ACLs is inserted, where each
object contains a resource and permission key-value object

The web page part of the runtime could have been a own service running
somewhere else and not a integrated part of the runtime as present. However,
abstracting it away from the runtime doesn’t require much effort because of
the module based code implementation.
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Chapter 6

Use-Case

This chapter gives a demonstration of the system including showing the
output of four analytic functions and a demonstration of the web site.

The data in the examples are real data fetched from Fitbit and RunKeeper.
Users in the examples have used Fitbit Flex since 01-01-2014. The data from
RunKeeper is data from runs recorded with the RunKeeper application for
Android.

6.1 Analytic functions

6.1.1 Sleep and Steps

The first function plots the link between sleep quality and daily activity. It
is written in R and uses Fitbit data as source. The hypothesis is to see if
with more activity during the day, the sleep quality increases.

Plots like this can be evaluated by human interpretation and visual analyses
of the plot. Any clustering of data can confirm the hypothesis one way or
another. Errors in the data occur, as Fitbit Flex requires manual registration
of sleep. You tap the device when you go to sleep and when you wake up. For
instance, a result where the restless duration is above 600 minutes is most
likely a result of forgetting to end the sleep sequence.

The output is shown in figure 6.1, 6.2, 6.3 and 6.4.
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Figure 6.1: Plot of number of steps taken and the number of times restless
during the following night sleep.

Figure 6.2: Plot of number of steps taken and the amount of time in minutes
restless during the following night sleep.
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Figure 6.3: Plot of number of steps taken and the efficiency of the sleep the
following night sleep. Efficiency is a percent calculated by Fitbit

Figure 6.4: Plot of number of steps taken and the number of times awakened
during the following night sleep.
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6.1.1.1 Result

Out from the results, it cant be concluded with anything. There is no clear
clustering pattern in any of the plot. If anything, the plot confirms that
there is no such link between activity and sleep. In addition, quality of the
data is probably not the best with users forgetting to end the sleep when
awakening.

6.1.2 Steps

The second analytic function is a simple dynamic plot of the number of steps
taken over a range of days written in R. Data is gathered with Fitbit Flex.
Days where 10000 steps are reached is marked with green and days below
are marked with red. The output is shown in figure 6.5

Figure 6.5: Daily step count over a range of dates. The date is hidden for
privacy reasons.

6.1.3 Running

The third analytic functions written in R uses data from RunKeeper. The
data is a run recorded with the RunKeeper application for Android, fetched
from the RunKeeper healthgraph API. The output is shown in figure 6.6 on
the next page.
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Figure 6.6: Plot of time in seconds against the number of meter done during
a run.

6.1.4 Sleep cycle

Figure 6.7: Plots the stages of sleep during the night. In the x-axe the
time asleep in minutes. In the y-axe the different stages: Awake, Rapid Eye
Movement (REM), deep sleep.

The fourth analytic function uses data from Fitbit to plot the stages of sleep
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during night. It is written in Python. The calculation of which sleep stage
you are in is based on movement over a period of time. An assumption here is
that movement is linked up to sleep stages. A lot of movement indicates that
you are an awake, lighter movement in Rapid Eye Movement (REM) stage
and little to non-movement in deep sleep. A problem here is the granularity
of the data Fitbit provides on their sleep. Each minute has a value associated
that variate between 3 values: 1, 2 and 3. The values indicates awake, restless
and sleep. With higher data granularity a better plot could have been made.
The output is shown in figure 6.7.

6.2 Web site

Figure 6.8: User sign up page. User fills the sign up form to create a user

In this section we give a demonstration of the web page. First of all, the user
needs to sign up before any other page can be visited. Signing up is done by
filling out the form and submitting.

6.2.1 Services

In this page all web services the system is linked up to are listed. Clicking
on one of them starts the authentication process. The user is redirected to
the requested web service website to authenticate our application to use their
data.
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Figure 6.9: Services page. All web services available are listed here

6.2.2 Access Control List

Shown in figure 6.10, is the Access Control List page for adding or removing
access to resources. Only resources that are listed can be used by APs. New
resources can be added by filling out the form at the bottom of the page.
The user can update an existing resource by overwriting the old. Currently,
there is no way of deleting a resource.

Figure 6.10: Access Control List page. To create new resource the user enters
the resource and sets what access permission it should have.
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6.2.3 Metacode

Uploading of code to be associated with resources is done in the ’Metacode’
page. The user chooses a file to upload and what resource to associate the
metacode with. Examples of resources are sleep, steps, bp (blood pressure)
and activity. On submit the file is uploaded to the back-end.

Figure 6.11: Metacode

6.2.4 Project

To create a project, the user fills in the form with name of project, description
and which resources that it requires, like shown in figure 6.12. On submit
the project registration is sent to the back-end.

Figure 6.12: Simple project registration. Only three resources is listed for
demonstration purposes
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Chapter 7

Evaluation and Results

This chapter presents methods used to evaluate the system; results collected
evaluating the system and a discussion around the system including
non-functional aspects. The discussion of the results is given right after
the result is presented.

7.1 Methods

The goal of the experiments is to validate the system sustainability for doing
statistical analytic, and the architectural and design choices made. To do
this we conduct several experiments and evaluate system metrics; latency,
CPU utilization and memory consumption.

The CPU utilization relies much on the analytic functions executing as it
may do arbitrary CPU intensive computations, and it is without the control
of the runtime. Memory consumptions depend on how large the runtime
cache size is, and the analytic functions memory usage. Therefore, the
most interesting metrics to measure is the latency. This is done for RPCs,
end-to-end, anonymizer and metacode:

• RPC : Latency is measured from the RPC call in the analytic function
to a response is received, measured by using Sys.time in R.

• Metacode: Latency is measured from the metacode is initiated in the
runtime and to a response is received when the subprocess finish,
measured by using console.time in Node.
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• End-to-end : The latency from pressing send in the client application
to a response is received, measured in Python using time.time.

• Anonymizer : The anonymizer algorithm latency from calling the
function until a results is returned, measured using console.time in
Node.

The experiments are done to measure what latencies that can be expected
when using the system for statistical analytic tasks, and evaluate if this
is feasible. Two persons Fitbit account have been active since 01-02-2014,
generating data, both sleep and activity. Both these accounts is integrated
in the system with credentials for Fitbit and added to a project. The test
project requires access to steps and sleep resources, which both test user
accounts have granted access to.

To evaluate CPU utilization the terminal command sar in Ubuntu was used;
sar -u 0.3 100t. It will show the CPU utilization every 300 ms 100 times.
The CPU utilization is defined as the amount of CPU a given process uses,
measured in percent of total CPU capacity.

7.2 Experiments and Results

7.2.1 Experiments Setups

The system runtime is deployed on DigitalOcean1 cloud, which is a simple
cloud hosting service. Our test machine runs Ubuntu 14.04 32bit. The virtual
machine has the following specifications:

• 2.7-3.1 GHZ CPU

• 20GB SSD Disc

• 512 MB ram

It uses only one core, but can be scaled up on demand to use more Cores.
The machine is hosted in their New York 2 server park. The data round-trip
delay time is 122 ms from the client in University of Tromsø to the test server.
Both the runtime written in Node and the database MongoDB runs on this
virtual machine. All experiments have been run 20 times to get an average
performance measurement, and hide skewed results.

1https://www.digitalocean.com/
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7.2.2 Experiments

7.2.2.1 Experiment 1

The first experiment (1), consists of one data processing function. It starts
by fetching all the sleep records from Fitbit since 2014-01-01 and 45 days
forward. Sleep has to be fetched a day at once, a limitation in the Fitbit
API. Total, 44 Remote Procedure Call (RPC)s is required. In addition, the
data processing function also fetches the steps count for the same days. This
can be done with one RPC. It then combines the data having the daily step
count linked with the number of times restless the following night. Only one
Fitbit users data was used in this experiment.

The metacode in the experiment scans through the data set, checking that
the date is not older than two years, and throws an exception if older. The
analytic function at last plots the result in a graph that generates a PDF
file that is returned to the client. The runtime cache was off during this
experiment meaning every data request had to hit the Fitbit servers. The
results (1) are as following measuring latency:

Algorithm Min ms Max ms Avg.
Anonyminize 0 38 1
GET Fitbit 274 5385 368
Metacode 81 87 83
End-to-End 20189 25998 23093

From the results above, requesting 45 days of sleep and steps data from
Fitbit service has a average latency of 368 ms. In average for 46 requests
that is required in the experiment, the runtime will have to wait 16928
ms on response from Fitbit. The reason for this is the sequential design
of the RPC in the R library. Each request to the runtime is done one
at a time, sequential, taking large fractions of the overall execution time.
Hiding latency for communicating with the online web services was a goal
for the system. The network latency in this experiment dominates the overall
execution time.

A possible approach to speed up RPCs is by introducing threads. It will
prevent blocking the execution of the analytic function while it is waiting for
a response. Threads can be a bit hassle and painful, and to evaluate potential
speed up another approach was chosen by complementing the runtime API
with a new method. The new method spawns requests from a date to a
date simultaneously. Network calls are seen as I/O in Node and runs in
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background until a result is return. In average 45 days of sleep data could be
retrieved in 2805 ms using the new API method, compared to the previous
approach that took an average 16560 ms for requesting the same data, a
decrease of 83 percent.

In the experiment metacode is only run once, when requesting the daily
number of steps. Starting a new subprocess runs the metacode. Processes
are cost heavy having to allocate resources by copying memory and creating
entries in process table. In addition, the metacode can do arbitrary long
computations without any restrictions, and therefor it must run in an own
process to prevent blocking Node’s event loop. Currently, metacodes have
full access to the Operating System (OS). We can assume athletes do not
upload malicious code, but others can gain access to their account and upload
dangerous code. A solution to handle this is by code inspection before
approving the metacode.

The anonyminize functions execution time various out from the size of the
data set. Days where there is no sleep data recorded it finished in 0-1 ms.
The data set that required the longest time run finished in 38ms. This data
set contained sleep data for 582 minutes.

Running experiment 1 with all data already located in the cache, the
end-to-end latency was in average 2045 ms:

Algorithm Min ms Max ms Avg.
End-to-End 1838 2443 2045

As expected, minimizing requests to Fitbit servers is key reducing the
end-to-end latency. The end-to-end latency went down 91.1 percent when all
data was cached compared to the sequential. This suggests that the system
should store more data to be more efficient. The cache in the runtime stores
data now, but memory is precious and small in size compared to magnetic
discs. A suggestion is to store more data on disc and use pre-emptive
crawlers to speed up executions of analytic function. A little longer overhead
for accessing data can be tolerated especially taking into consideration the
latency for fetching data from the online data archives.

The other data archive the system integrates, RunKeeper, shows a
longer average latency for requests to retrieve fitness activity for a user,
’https://api.runkeeper.com/fitnessActivities/id’. Retrieving a response for
this URL took an average of 1240 ms from the server.

Figure 7.1 shows the result of multiple clients trying to run experiment 1 in
parallel. All data requested was cached. As the results shows the latency
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Figure 7.1: Latency in ms when multiple clients runs experiment 1 in parallel

increases approximately linearly when more clients are run simultaneously.
With 1 client an average of 82.43 percent of the CPU is utilized while running.
Already with 2 clients running in parallel, 100 percent of the CPU is utilized.
This is most likely because of the heavy deserializing/serializing of JSON that
is known to be CPU intensive. JSON is our data format for data-interchange
between processes and the Fitbit data comes in JSON format, which requires
to be deserialized before the anonyminize function can be run.

The test machine setup has only one core. The runtime does not utilize more
than one core running in a single thread. Using the cluster module2, Node
can take advantage of multi-core systems.

7.2.2.2 Experiment 2

To evaluate the RPC procedure, a hard coded JSON of 29.1kB was returned
on a RPC call to the runtime. In average it took 42.4 ms for the RPC call to
finish in R. In Python this was significant faster returning in average 4.9 ms.
To have something to compare with, the same JSON response was returned
over the socket without deserializing/serializing overhead. On average, the
latency was 3.79 ms.

2http://nodejs.org/api/cluster.html

65



Procedure Min ms Max ms Avg. ms
R: JSON-RPC 29.1 kB 34,7 143 42.4
R: JSON-RPC 37 bytes 3.0 4.3 3.5
R: Socket 29.1 kB 3.33 6.49 3.79
Python: JSON-RPC 29.1 kB 3.4 16.6 4.9
Python: JSON-RPC 37 bytes 1.8 5.5 2.5

Our Inter-process Communication (IPC) is based on TCP over sockets.
Time consumers for normal socket communication include establishing socket
connection, and transmitting the data over the network interface. In
additional, when including the JSON-RPC protocol, overhead for serializing
and deserilazing the request/response. A good protocol language is vital.
It should be efficient to encode/decode, and be compact in serialized
form. Efficiency lies on the implementation of the JSON serializer, both
in Node and in the analytic tools. From the results we can see that the R
JSON serialize library RJSONIO is significant slower than the native JSON
serializer in Python 2.7.2. There are several approaches to make JSON faster
to serialize/unserializer and more compact. Attempts of this include BSON3,
BJSON4 and UBJSON5.

7.3 General Discussion

In this section a discussion of if our goals and other functional/non-functional
specifications was achieved.

7.3.1 Extensibility and Interoperability

One of our main goals was that the system should support dynamic
extensibility at runtime. We introduced metacode to cope with this problem.
Athletes can upload code and associate it with resources like sleep, steps,
fitnessactivities and bp. The code is guaranteed to run every time the
resources are accessed by a analytic function. Multiple metacodes can be
associated with a resource and everyone will be executed. Exceptions thrown
will be forwarded to the analytic function.

3www.bsonspec.org
4www.bjson.org
5www.ubjson.org
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In our interpretation we stated that the system should be extensible to more
statistical packages and data archives. Providing support for RunKeeper
and Fitbit for data archives, and support for both R and Python proves
this. The module-based code makes it easy to extend to use other data
sources like relational databases. Creating a new Application Programming
Interface (API) method in the runtime, taking in the query to be run on the
database, could provide this. Extending to more statistical analytic tools
requires a new language binding supporting JSON-RPC over network sockets.
Requirements for the statistical tool to be supports is being able to receive
input from Standard Input (STDIN) or by reading a file in the file system, and
be able to share output via Standard Output (STDOUT)/filesystem.

A limitation for our goal of interoperability is the anonyminize function
running on the returned data. The implementation of it assumes the
response from the data archives is represented in JSON. Running the current
implementation on XML data would not work. However, the system supports
at least one of the file formats (JSON) the data archives uses that was
required as stated in the non-functional requirements.

7.3.2 Security

Introducing Remote Evaluation (REV) has its security risks that need to
be addressed. A recap of the four aspects introduced in the non-functional
requirements to take into consideration for REV servers:

• Authentication

• Secrecy

• Availability

• Integrity

We stated that authentication would be the only one being focusing on
achieving in the prototype. Authentication is secured with requests having
to contain a Hash-based Message Authentication Code (HMAC). Invalid
requests not signed by an AP with a secret key are aborted. The code in the
request will not be executed.

Secrecy, availability and integrity were stated as future work. In our system
design it is assumed that each data processing functions runs in a sandbox.
A sandbox is used to separate running programs. Programs running in a
sandbox have controlled set of resources available. Limited memory space,
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little to no disc access and ability to inspect the host. Typically, sandboxes
are used were you have to run untrusted code. For R, the RAppArmor [32]
package can be used, which is essentially a sandbox for Unix to run R script
in by enforcing security restrictions on processes.

In concern to availability an analytic function may do computation heavy
processing on purpose to slow the system down. Solutions exist to limit
the processing power of a process for example by lowering the priority of
the process, or specific setting a upper limit of CPU utilization for the
process.

In terms of integrity a security risk is that analytic functions accesses each
other input and output. This can violate athletes privacy. Currently,
executions have full access to the file system. It also means that metacode
stored for each athlete is accessible and can in theory be modified violating
the integrity and secrecy. A possibility to prevent this is to restrict the
process to only have access to its execution folder. In Unix ’chroot’ does this
restricting the process to access files outside the directory tree.

7.3.3 Privacy concerns

A problem with sensitive data and research projects is to preserve privacy
in long term when possible new algorithms is discovered that can point
out individual participants. Our solution with dynamic operative consent
through Access Control List (ACL) and metacode extensibility helps the
user controlling changing environments. Potentially, new data sources can
be added providing higher data granularity, and thus being able to identify
athletes. With metacode extensibility, athletes have the option to ensure
that privacy is protected while environments are changing.

Using big companies devices and infrastructure have its advantages; they take
care of consumer support, software upgrades and web portals for managing
and displaying data. However, there is privacy concerns to think about. One
thing is that our system can preserve the privacy of athletes data as good as
possible. Another thing are the companies behind the services used.

Concerns are raised [27] [28] that data collected about consumers can be sold
to other companies using it for example advertisement targeting. In Fitbits
privacy policy6 they state that they can make personal information collected
from users available to strategic partners. Essentially saying that they can

6http://www.fitbit.com/uk/privacy
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sell your personal information to other companies. Internet users in Europe
have also raised concerns. Stated in the report Attitudes on Data Protection
and Electronic Identity in the European Union [9], 70 percent says that they
are concerned that companies may misuse personal data. Personal Data
Vaults (PDV) [31] is an approach to control personal data where the user
retains ownership to the data.

In the system an anonyminize algorithm is run for every request to the web
service before stored in the cache. A problem with it is that it is only as
good the blacklist. The algorithm goes by name of the keys in the response
from web services. A possibility is that a web service uses a shortening of
a word or a acronym. Semantics may also diverse where a key is meaning
something else than our interpretation. A suggestion mentioned is opening
up for athletes to fill the blacklist. A long list increases the overhead of
running anonymity algorithm. For each key, k, in the JavaScript Object
Notation (JSON) data, the ’n’ words black list is scanned. For one key the
complexity is O(n * k). In the worst case all keys have to be iterated. In
practice, if one key - value pair is masked, keys in the value is skipped, saving
time. Keeping the blacklist small is key for good performance because it is
scanned for every key, but will limit the privacy protection.

In our system design its much up to the athlete him selves to secure privacy
taking advantage of metacode. Non-technical athletes will probably have
difficulties configuring their own code and understanding this aspect of the
system. A pre made set of metacodes can be made to help the non-technical
customize data accesses.

Eligibility of data accesses is done with ACL, inserting participants into
research projects registered in the database. It ensures only athletes with
all the resources requested for the project is made participants. Upon data
accesses, the project resources field in the database is scanned to see if it has
eligibility to proceed.

7.3.4 Accessibility

We stated in section 3.3.7 that the system should be accessible by design
from many clients. The communication protocol used to transmit analytic
functions to the back-end is Hypertext Transfer Protocol (HTTP), which is
standard Internet protocol used for World Wide Web and used by everyone.
The accessibility of the system is therefore high being able to transmit
analytics from many devices. The computation is done at the back-end
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and this enables light clients to use the system without any limitations.
Currently, the client is only available for devices running Python as the client
implementation is based on.

7.3.5 Scalability

Several aspects have to be considered for scalability. The first is the storage
of credentials, metacode and projects. Having these available is required
for the runtime to handle any RPCs. Although, its not necessary to have
these details for every athlete and project. This opens up for a decentralize
approach where the runtime can be deployed at many locations, scaling
horizontally. The runtime can receive replicas of athletes settings and policies
from a centralized unit. Machines can in addition be scaled vertical by
upgrading the machine specification.

An optimization of the runtime is to take advantage of todays multiple core
CPUs. Large fractions of machines are wasted when not utilizing multiple
cores. As mentioned, Node runs in a single thread, but using Nodes cluster
module processing can be done on all cores available.

7.3.6 Fault Tolerance

Failures during processing analytic function like exceptions being thrown will
abort the whole request and return the error message. If the Node software
crashes it is restarted with Forever7 that ensures scripts run continuously.
However, this only ensures availability. A system that is down one millisecond
every hour has availability over 99.9999 percent, but is not reliable [44].
To be reliable the system should be able to run for long periods without
interruptions.

As stated in section 3.3.3 there is no fail handling upon machine crashes
or network partitioning. The system is deployed at one machine. Neither
does the storage provided by MongoDB have any replication of the data.
Upon hard disc errors and loss of data, athletes and projects would have
to be registered again. What DigitalOcean does upon machine failures and
possibility of running back-up schedules havent been researched.

7https://github.com/nodejitsu/forever
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7.3.7 General experiences

After having the system running for several months we can draw some
experience and lessons learned. Our execution model works with AP writing
code for doing data processing on the health data. In our case, having
adopted the Remote Evaluation (REV) design from code mobility helps us
provide high degree of service customization in our system by letting APs
write code to provide their own needs. The opposite would have been a
statically defined interface that had to be expanded every time a new need
was discovered. Our approach with code approach secures a powerful and
expressive interface for APs.

There is plenty of I/O accessing and writing for executions. First of all, a
folder is created for the execution, then the analytics are written to the folder
before execution. Then, there is the analytic functions input and output.
Analytic functions use the file system to store output. A thing to notice
is that the I/O overhead might have been more noticeable with a mechanic
disc, because of disc seeks having to positioning the read/write head.

Debugging the data processing functions is not trivial and is time consuming.
Output from STDOUT is written to a text file. Any errors from Standard
Error (STDERR) will also be in this file. A solution could be a plugin for a
Integrated Development Environment (IDE) like RStudio8 where the output
is piped to the built in console.

A current limitation is that the runtime only supports graphical output other
than in Portable Document Format (PDF) format. A possible solution for
this would be to read execution folder before deleting it, and return images
in an archive (such as ZIP) in the HTTP response. This havent been a big
issue as both the R and Python supports plots in PDF. PDF is also vector
based, making it possible to scale the plot without loosing quality.

8https://www.rstudio.com/
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Chapter 8

Concluding Remarks

This chapter presents our achievements, gives some concluding remarks and
outlines possible future work.

8.1 Achievements

In this project, we have designed, develop and evaluated a system for doing
analytic in R and Python, on Fitbit and RunKeeper data archives. The
problem definition is as follow:

This thesis will explore the problem of connecting statistical analytic tools
like R, Matlab and Excel to personal body sensor data archives like FitBit,
RunKeeper, Python and the ZXY Sport tracking system. A language binding
and runtime will need to be constructed. The runtime will be dynamically
extensible by user-code to give users high control of what data that is
accessible. Possibility for privacy preserving will be taken into concern in the
system design. Several analytic functions will be developed to demonstrate
the system and end-to-end latencies will be measured

In the requirements specification we stated the requirements and outlined an
abstract system architecture. A goal for our design was to provide athletes
with high customizability and operative consent to deal with changing
environments.

In design chapter, we outlined the overall system design of the system after
reviewing and reflecting over several system designs including client-Web
Service architecture and client-proxy-Web Service architecture. We landed
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on a mobile code approach following Remote Evaluation (REV) paradigm
where code is being transmitted from clients to the runtime and executed
there. Further in the design, we introduced how the requirement specification
was transmitted into the system design focusing on providing extensibility,
eligibility and privacy preserving through metacode, Access Control List
(ACL) and anonymizing.

In the implementation chapter we looked at the details. We decided to use
JSON-RPC as the communication between statistical tools and the runtime
for its ease of use and few requirements attached.

Then we presented use-cases showing the system in action. Several analytic
functions written in R using Fitbit data was shown analysing activity
and sleep patterns. A simple analytic function written in Python using
RunKeeper data was given as proof of extensibility. Lastly a demonstration
of the website was given.

In the evaluation a discussion if constraints and metrics set for the
non-functional requirements was achieved. For extensibility, we have
achieved to dynamically extend the runtime with user provided code through
the metacode concept. Also in context of extensibility, the system proves
to be extensible to new statistical tools and data archives by providing
support for Python, RunKeeper, R and Python. For privacy preserving
ACL were introduced for fine-grained access control and a novel anonymizer
algorithm.

Performance measuring was done through experiments focusing on latency
as the most important metric. This showed that the end-to-end latency
was over 20 seconds when a relatively small data set was requested. An
optimization, taking advantage of parallelism in the runtime, showed that
the end-to-end latency could be reasonable when RPCs are not processed
sequential. Currently, using Fitbit and RunKeeper as data archives for
analytics proved to have some constraints in concern of latency and rate
limits. With smart caching/storing of data and preemptive crawling the
web services can become useful data sources for professional sport clubs to
integrate with.

8.2 Conclusion

We have achieved to build a dynamically extensible system for executing data
analytic code written in R and Python, allowing the tools to use data from
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Fitbit and RunKeeper. The system successfully encapsulates the burdens
of privacy concerns and authentication for interacting with these kinds of
services. The system is easily extensible to new statistical tools and data
archives. User provided code extensibility of the system through metacode
where athletes can control data accesses and check for privacy violations is
the biggest contribution of this thesis.

8.3 Future Work

Privacy and security have to be taken into concern. As suggested in the
evaluation, a sandbox might be the solution to restrict executing code to
gain access to the file system and to use all the resources (CPU, memory) of
the runtime. In addition functions chained can access output generated by
previous functions in the chain. How to restrict functions in chain in concern
to secrecy and integrity havent been thought true and need to be worked
on.

In the design system we discussed some benefits with REV. One of them was
push-based result of executions. Analytics can be run when data is updated,
pushing the result to clients. This would improve the usability of the system.
Clients get result on the fly when there are updates without requiring any
effort.

The client code has now a hard coded username and secret key embedded.
In addition, if more files are embedded, they are signed with the same secret
key. Sharing analytic function is for athletes giving away access to use their
data, passing on privilege. A method for including a analytic function in the
request that is already signed is required. Another approach would be to save
the code at the back-end and provide the Hash-based Message Authentication
Code (HMAC) instead.

Another improvement that needs to be added is supporting multiple outputs.
Now only PDFs are supported. Statistical tools may generate PNG images
or files. This would not require much effort for a simple solution scanning the
root folder of the execution, read the files and send them to the client.

Lastly, a way to send a context object with the analytic function(s) and have
it available during the execution can be useful for analytics doing machine
learning were computations builds on previous results.
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