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Abstract
The amount of information generated exceeds the current available storage.
Big Data, the Internet of Things and the increasing popularity of self-tracking
gadgets call for new storage solutions to manage and analyze the data.

To handle the constant flow of information, we have implemented Eatnu. Eatnu
is a storage system designed to handle large data streams, where programmers
can specify what parts of the stream to persist to disk.
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1
Introduction
The amount of information generated exceeded the available storage capacity
in 2007[27], and IBM estimates that by 2020, we have created 40 Zettabytes¹
of data ². With prices for Internet going down, high-speed speed Internet is
becoming a household item. We use the Internet to access social networks,
share and view multimedia content such as video and music, play online games
and messaging with other users. When we access these services we generate
large volumes of data. As an example, the Facebook Data Warehouse receives
600 Terabytes of data every day[8]. Companies like Google and Facebook are
mining the vast amount of information at their disposal, such as search logs,
messaging and images, to enhance the quality of their services. These services
generate revenue by offering an advertisement platform that can target the
individual interests of the user. These datasets are rich, complex, and can bring
value to companies that are able to efficiently process and analyze the data.
The term Big data is used to describe these new collections of data, and can be
described using the four V’s of big data:³ Volume(scale of data), velocity(analysis
of streaming data), variety(different forms of data) and veracity(uncertainty
of data). The overload of information driven by big data bring a whole set of
challenges for the research community:⁴

1. 1 Zettabyte = 1 billion terabytes
2. http://www.ibm.com/software/data/bigdata/
3. http://www.ibmbigdatahub.com/infographic/four-vs-big-data
4. http://research.microsoft.com/en-us/projects/bigdataanalytics/

1
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1. Howdowe process information that is generatedwith such a high velocity
that it needs to be processed as it arrives?

2. How do we handle volumes of information that exceed the capacity of a
single machine and needs to be spread accross multiple machines?

3. How can we efficiently extract knowledge from the information available?

The use of smartphones and tablets is becoming increasingly prevalent, with
mobile Internet usage accounting for 25% of page views in 2014.⁵ Another
emerging trend is the use of wearable body sensors and self-tracking gadgets.
These devices capture and store information on our day-to-day activities. The
Fitbit Flex⁶ and the Jawbone UP⁷ are examples of wearable pedometers that can
capture steps and sleep quality. The Google Glass⁸ can capture images, sound,
video and movement, and connect to the Internet with a range of applications
including search, social and maps. Smartphones with built in accelerometers
and Global Positioning System (gps) can be used as an alternative to dedi-
cated devices. RunKeeper⁹ and Strava¹⁰ are smarphone applications that let
users track fitness activities with the built in gps. The applications upload the
positional data to a centralized site, users can view and share detailed informa-
tion of their activities. The quantified self movement¹¹ aims at capturing every
aspect of a persons’ daily life, such as activities, diet, mood and sleep. This rich
dataset can be beneficial to individual users as well as the general public.

The Internet of Things (iot) denotes a new set of devices, or things, that are
connected to the Internet. These are everyday objects that we rely on and
interact with on a daily basis, ranging from sensors, such as temperature gauges,
to cars and houses. These devices interact and share knowledge with us and
each other, and Gartner estimates that iot devices will grow to 26 billion units
by 2020[4]. With iot we can envision being able to monitor the position of
our recently ordered package in real-time, and having sensors monitoring our
physical well-being.

Clouds offer a wide range of services for companies that want to store and
process large amounts of data. Cloud providers typically host these services
in large data centers with thousands of machines. Microsoft, Amazon, IBM,
Google and Oracle Cloud are examples of vendors that currently offer cloud

5. http://www.kpcb.com/internet-trends
6. http://www.fitbit.com/uk/flex
7. https://jawbone.com/up
8. http://www.google.com/glass/start/
9. http://runkeeper.com/
10. http://www.strava.com/
11. http://antephase.com/quantifiedself
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http://www.google.com/glass/start/
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http://antephase.com/quantifiedself
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services in one or more data centers spread geographically. The cloud provider
is responsible for maintenance, power, cooling and networking. The services
provided span the entire software stack, ranging from virtual machines to
specialized software. Users can rent these services on a metered basis. A service
level agreement (sla) is a contract between a cloud provider and the user that
describe the service provided by the vendor, typically in the form of measurable
factors such as uptime, latency and throughput. The primary costs of a running
a datacenter are servers, infrastructure, power and networkwith their respective
estimated amortized cost of 45%, 25%, 15% and 15%[31]. With high costs, an
important goal for cloud providers is achieving high utilization of resources in
a datacenter. Higher utilization increases the profit margin, but may come at
the cost of violating slas.

Using a cloud can help companies build and deploy services with a modest
upfront investment compared to hosting everything locally. Storing and pro-
cessing large amounts of data can be costly, and application developers need
to consider the trade off between application needs and cost. For a large scale
service running in the cloud, minor implementation details such as verbose
logging to disk can amount to a substantial cost.

This thesis present Eatnu,¹² build to handle large streams of sensor data.

1.1 Problem Definition
“This thesis shall study the problems of creating a non-intrusive, privacy-preserving
life logging system capturing, storing, and partially analysing performance indica-
tors in the sports domain. The concrete prototypes developed will be in cooperation
with our partner Tromsø IL and their soccer A-team. Main focus will be on build-
ing and evaluating an end-to-end system that captures the digital footprints of
such athletes.”

1.2 Interpretation
The challenges of building a non-intrusive, privacy-preserving life-logging sys-
tem are multifaceted and complex. The properties of the data and the client
applications have to be considered before deciding on an architecture and
design. To reason with design choices, we need to fully understand the appli-
cation domain. The implementation of storage systems can be complex and

12. Eatnu is Sámi for ”stream“ or ”big river“‘
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requires a deep understanding of the entire software stack to achieve optimal
performance. As an example, the Apache Hadoop¹³ project currently consists
of over 1 million lines of Java code.

Building a lifelogging system that can scale to thousands of users relies on a stor-
age system that can handle the amount of information generated. This thesis
primarily focuses on the storage component of such a system, and investigates
models that can facilitate storing large volumes of life-logging data.

1.3 Methodology
The final report [23] of the ACM task Force on the Core of Computer Science
divides the discipline of computing into three major paradigms:

Theory The mathematical foundation of the computing discipline.

Abstraction The experimental foundation of the computing discipline.

Design The engineering foundation of the computing discipline.

A theory is developed by first identifying the of objects the study(definition).
Next, hypotheses are built to describe the relationships among objects(theorem).
Finally, proofs are constructed and the hypotheses are evaluated by interpret-
ing the results. The theory paradigm is the foundation of computing as a disci-
pline.

The approach investigates the viability of an hypothesis by constructing amodel
and making predictions. Finally, the model is evaluated and the the experimen-
tal results are interpreted to validate the predictions. As such, the abstraction
paradigm is more experimental, but relies on an understanding of the under-
lying processes and components.

By following a set of requirements, a system is designed, implemented and
tested to solve a given problem. The design paradigm focuses on building com-
plete systems, rather than trying to understand the underlying theory.

The approach used in practice draws from all three paradigms. While not
providing a new theoretical models, this this builds on a foundation of existing
theory. Abstraction is used in system design, where experimental results are
used to evaluate the impact of high-level design and architectural elements.

13. http://hadoop.apache.org/

http://hadoop.apache.org/
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This thesis is closely related to the design paradigm, but rely on the other two
paradigms to complete the specifications of the design.

This thesis is written as a part of the Information Access Disruption (iad) center.
The iad center targets core research for next generation precision, analytics
and scale in the information access domain. Partially funded by the Research
Council of Norway as a Centre for Research-based Innovation (SFI), iAD is
directed by Microsoft Development Center (Norway) in collaboration with Ac-
centure, Cornell University, University College Dublin, Dublin City University,
BI Norwegian School of Management and the universities in Tromsø (UiT),
Trondheim (NTNU) and Oslo (UiO).

1.4 Outline
The remainder of the thesis is structured as follows:

Chapter 2 presents the current trends and applications related to big data and
the iot.

Chapter 3 describes the ongoing research collaboration with Tromsø IL. We
describe the applications currently in use and their properties.

Chapter 4 gives a formal description of the requirements, both functional and
nonfunctional.

Chapter 5 describes the design of Eatnu. We describe the individual compo-
nents and how they interact with each other.

Chapter 6 gives a brief introduction to the implementation the the client in-
terface.

Chapter 7 evaluates the performance of the implemented design.

Chapter 8 concludes and outlines future work.





2
Background
This chapter outline some of the ongoing research,trends and applications
related to the iot and big data.

2.1 The Internet of Things
From the early days of computing and up to today, we have seen technology
becoming an increasingly larger part of everyday life. The early computers
were few in number and rather large, but as technology progressed, computers
became household items. An estimated three billion people are connected to
the internet by the end of 2014[9], and an increasing number of people are
using handheld devices such as cellular phones and tablets. These devices are
replacing the more traditional home computer. We primarily use our devices to
connect the Internet and interact with other people through social networkings,
read and send emails, play games, stream music, watch movies and messag-
ing. It is estimated that the number of smartphone users will total 1.75 billion
worldwide[13].

Advances in technology enables us to create smaller and more powerful inte-
grated circuits, and connect all sorts of devices to the internet. The idea of an
iot was first proposed by Kevin Ashton[15] and is defined by Cisco as: “The
Internet of Things (IoT) is the network of physical objects accessed through the
Internet, as defined by technology analysts and visionaries. These objects contain

7
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embedded technology to interact with internal states or the external environment
In other words, when objects can sense and communicate, it changes how and
where decisions are made, and who makes them.”[5] This definition is broad
in the sense that it includes any object that is connected to the Internet. But
the primary focus lies on connecting everyday objects. For example, if your
refrigerator could monitor that items are currently stocked, it would be able to
alert you when you’ve run out of milk, or you could track the current position
of a package you have ordered online using gps. Atzori et. al. [17] grouped
the potential iot applications into four different domains:

1. Transportation and logistics domain.

2. Healthcare domain.

3. Smart environment (home, office, plant) domain.

4. Personal and social domain.

2.1.1 Transportation and logistics
Radio-frequency identification (rfid) and Near field communication (nfc)
technology can be used to monitor the individual chains of the logistics chain,
providing the detailed information of an item from its conception, production,
transportation and its usage once it reaches the consumer.

The modern car is equipped with technology to improve safety and enhance
the driving experience. An autonomous self-driving car is being developed
at Google [12]. The car uses video cameras, radar sensors and a laser range
finder combined with gps and map data to navigate the highways alongside
other motorists. Human error accounts for 90 percent of all road accidents¹,
and a self-driving vehicle has the potential to minimize accidents by removing
the human component. Within the iot domain we can envision traffic lights
that are connected to the Internet, that in turn can alert the driver (human or
computer).

2.1.2 Healthcare domain
Tracking people and objects such as medicine and equipment has the potential
to improve the workflow in a hospital by eliminating the need for forms and

1. http://www.alertdriving.com/home/fleet-alert-magazine/international/human-error-
accounts-90-road-accidents

http://www.alertdriving.com/home/fleet-alert-magazine/international/human-error-accounts-90-road-accidents
http://www.alertdriving.com/home/fleet-alert-magazine/international/human-error-accounts-90-road-accidents


2.2 B IG DATA 9

by maintaining a detailed history of events. Sensors can provide real-time
information on a patient’s well-being both inside and outside the hospital. For
example, patients suffering from Alzheimer can be equippedwithgps bracelets
to track their current position.

2.1.3 Smart environment
Sensors and actuators placed in our homes or workplaces can monitor electrical
systems and environment to make decisions such as changing the room lighting,
heating or setting off alarms if something is wrong.

2.1.4 Personal and social domain
Social networks is a convenient way to expose everyday life to friends and
family. By automatically uploading events such as visits to public places or
meeting other people, people can share their daily activities without any effort.
This type of tracking can also be used by the individual to build a history of
activities throughout the day.

2.2 Big Data
With more devices comes more information, and we are generating more data
than we are currently able to efficiently store and process. The exponential
growth and heterogeneity of this type of data lead to coining Big Data. Big
Data is a term that describes this type of data and is can be characterized by
the three[42], four² or five V’s:

1. Volume Scale of data. As an example, Youtube users upload 100 hours
of video every minute[10]

2. Velocity Speed of data. When the amount of information produces ex-
ceeds the storage capacity, we need to be able to analyze the data as it
is being generated.

3. Variety Different types and sources of data. The structure of the data can
be complex and unstructured, ranging from multimedia content (images
and video) to sensor data.

2. http://www.ibmbigdatahub.com/infographic/four-vs-big-data

http://www.ibmbigdatahub.com/infographic/four-vs-big-data
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4. Veracity Trustworthiness of data.

5. Value The usefulness of data.

2.2.1 Machine Learning
The set of algorithms needed to process these types of datasets typically fall out-
side the application domain of traditional Database systems. Machine learning
is the theory of making programs that automatically improves with experience.
Machine learning algorithms can be particularly useful when the structure of
the data is unknown. Data is typically represented as objects. These objects
are represented by feature vectors, that is an n-dimensional vector of values
derived from the object.

Algorithms for classifying objects into different classes can mainly be split
into two classes: Supervised learning algorithms and unsupervised learning
algorithm. The distinction between the two is made by the use of training
data to build a classifier. A supervised learning algorithm uses a set of labelled
objects, or training data, that is fed into the algorithm that in turn will be able
to classify new objects. Unsupervised learning operate without labeled training
data, and tries to discover patterns in the data. Clustering algorithms can group
together similar objects into one or more clusters.

Applications in themachine learning domain include computer vision, language
processing, search engines, stock market analysis and sentiment analysis.

2.3 E-health
With the amount of information currently available and it’s rapid growth, we
cannot expect that our physicians to have complete knowledge of every journal,
tomography, lab tests and input from other sources such as sensors and explicit
annotations. From a physicians perspective the amount of information can
exceed what is feasible to interpret and might lie beyond their knowledge
domain.

At the intersection between Computer Science and Medicine, there is push to-
wards aiding physicians in diagnosing by analyzing the available information
using machine learning models. From the description of IBM’s Watson: ”Physi-
cians can use Watson to assist in diagnosing and treating patients by having it
analyze large amounts of unstructured text and develop hypotheses based on
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that analysis.“ The WebMD Symptom Checker³ and the Mayoclinic Symptom
Checker⁴ offers an interface where users can input their symptoms and returns
a list of possible diseases that might cause the symptoms. These rely on having
a large database containing the diseases and their related symptoms, that in
turn is used to decide which diseases most likely causes the symptoms.

Ginsberg et. al. [30] showed that it was possible to detect influenza epidemics
by analyzing the Google search engine query data. The number of queries per
minute is in the order of millions, that provides a unique insight into what
is currently happening in the world. Current trending topics can give clues
as to what is currently occupying the public, ranging from queries on current
events to queries related to diseases. A similar method for detecting influenza
epidemics by analyzing Twitter messages has also been presented[24]. The
drawback of this sort of analysis is that it does not really benefit the individual
as it is used to forecast and detect larger epidemics.

The increasing number of low-cost sensors available to consumers means that
we can create applications that activelymonitor individuals. The current trend is
sensors that can monitormovement, GSR (galvanic skin response), temperature
and heart rate [51]. Wearable body sensor devices, such as Fibtit Flex and the
Nike+FuelBand, have become increasingly popular among the hobbyist. These
are both good examples of technology that can be beneficial for the users health.
The success of these can be attributed to being simple to use and being non-
invasive⁵.

Personal health records (phr) contain personal information on users and is
managed by the user themselves. Combining these different sources of infor-
mation is a difficult task, since each device typically connects and stores the
data in a service hosted by the provider. Microsoft’s HealtVault[6] gatherers
phr from multiple sources, including Fitbit devices, to store and manage these
at single place. Similarly, Open mHealth[26] proposes an open architecture
where users can benefit from sharing the information gathered from multiple
sources.

The Quantified Self is an international collaboration of users and makers of self-
tracking tools⁶. The primary users are people who are interested at keeping a
detailed log of their day-to-day activities, and keep these for personal use in
the future.

3. http://symptoms.webmd.com/
4. http://www.mayoclinic.org/symptom-checker/select-symptom/itt-20009075
5. i.e the sensor is aesthetically pleasing and comfortable to wear.
6. http://quantifiedself.com/about/

http://symptoms.webmd.com/ 
http://www.mayoclinic.org/symptom-checker/select-symptom/itt-20009075
http://quantifiedself.com/about/
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2.4 Technology in Sport
The sports domain is another example of how this new type of wearable and
analytical technology can have a positive impact. Top athletes relies on small
margins to have the competitive edge over their competitors. This includes
consistently performing at a high level. Preventing injuries is benificial as it can
greatly increase the time that an atleet is active. In the soccer domain an injury
can put players out for several matches, that in turn can be a large economical
penalty for the team. Implementing new technology into the day-to-day activ-
ities of an athlete calls for solutions that is non-intrusive and provide useful
insight with as little effort as possible. As an example, the Seattle Sounders are
using sleep analytics to optimize player performance. The soccer Seattle based
soccer team is monitoring the players sleep quality by using the Readibands⁷
from Fatique Science.

Soccer has a long history of broadcasting popular matches to the public. With
technologies such as cable, satellite television and lately streaming, more and
more people are able to see their favourite teams playing. The use of broadcast-
ing video is not only limited to that of entertainment, but can also be used for
analysis and preparation. Companies such as Prozone [7] and ZXY[1] aims at
providing solutions for soccer teams, with detailed event analysis and statistics.
These systems typically relies on low-level features such as positional data and
high-level features such as manual annotations. Another drawback is that they
can be very expensive and requires experienced operators.

2.5 Security and Privacy
The growing market of self monitoring devices has the potential to improve our
quality of life. The data is being stored at the service providers, that may own
the rights to your personal data. The service may resell the information to a
third party. One such example is the Strava mobile-fitness app for tracking the
gps coordinates of cyclists and runner,who are selling the data to governments
who use the data in urban planning. Facebook provides data to advertising
partners and customers, but states that this does not include any personal
identifiable information[3].

7. http://fatiguescience.com/solutions/readiband/

http://fatiguescience.com/solutions/readiband/
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2.6 Summary
This chapter has given an overview of the iot paradigm and it’s application in
the medical and sports domain. Additionally, we have presented an ongoing
case study with Tromsø Idrettslag (til).





3
Tromsø IL: A soccer casestudy
At their home stadium Alfheim above the arctic circle in the city of Tromsø,
the local soccer team til are participating in a research collaboration with the
iAD group located in Tromsø and Oslo. The primary goal of this collaboration
is to discover new ways to incorporate technology into the everyday life of
the elite athlete, in ways that enrich the training sessions of the team and the
individual player. The systems range from self-tracking cellular applications to
high-performance video processing engines.

3.1 Muithu
Manually browsing through a large collection of video can be a time consuming
process. To illustrate this with an example, consider a surveillance scenario
where one or more cameras are set up around a store. More often than not, the
surveillance tapes are not viewed at all and only consulted on specific occasions.
The amount of information can be reduced to the sequences where there is
movement in the frame using computer vision techniques such as background
subtraction. Classifying an action as “stealing” is difficult, especially with the
sort of equipment a modest convenience store can afford.

15
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We have built Muithu[36, 50], a system designed to store short sequences from
a continious video stream. A video sequence is only stored if it captures an
event that is considered to be important enough. The decision is made by a
human operator with a cellphone application, who makes an annotation if an
event meets this requirement.

When deploying Muithu in til, we placed the main expert in control of oper-
ating the system. The expert in our case is the head coach, as this person is in
charge of the team and responsible for the tactical decisions. By capturing only
a subset of the events out of a sequence, we reduce the number of sequences to
those considered important enough. To capture these events, we have imple-
mented Bagadus[32]. Bagadus is currently installed at Alfheim, and provides
a high quality panoramic view of the stadium.

The external trigger that decides whether a part should be persisted or not does
not necessarily need to be a human. It could be based on real-time analytics
similar to the approaches used in [35, 16].

3.2 Ohmage
Ohmage [47] is a an open source participatory sensing platform for conducting
surveys, where the data is collected from explicit input from the user as well as
sensory data from the users mobile phone. Ohmage is open source and consists
of a server application and a mobile phone application for Iphone and Android.
The application gathers self-reports, accelerometer data, GPS position, WiFi
and cell tower radio connections and acoustic traces.

3.2.1 RPE and Wellness reports
The self-reporting functionality provided by the Ohmage platform is currently
operational with two surveys running in the til Cohort: A rpe[18] and a
Wellness survey. The players report their perceived rating of exertion on a
zero to ten scale after each practice, that in return is uploaded to the storage
backend of Ohmage hosted locally by our group. Figure 3.1 shows the interface
as presented to the players on their cellular phones.

The data collected can be used to track the well being of the players over time,
and the medical support staff has access through the Ohmage portal. A sample
application is shown in Figure 3.2, that shows the collected mean rpe over a

1. http://www.highcharts.com/

http://www.highcharts.com/
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Figure 3.1: A question from the wellness survey as presented to the players

time period.

3.3 Fitbit
Wearable sensors are also being tested at til. Each player have received a
personal Fitbit Flex bracelet, that is used to track activity and sleep [11]. The
aim is to investigate whether the use of such devices raises the awareness level
over the users, and in the long term be able to process and analyze this type
of data in correlation with the other sources of information.

Fitbit offers a limited Application programming interface (api) to the public,
with some additional features available to selected partners².

3.4 Application properties
Theworkloads presented by the three applications have different characteristics.
Table 3.1 shows a comparison between the application.

2. https://wiki.fitbit.com/display/API/Fitbit+Partner+API

https://wiki.fitbit.com/display/API/Fitbit+Partner+API
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Figure 3.2: Chart showing the mean rpe for the entire team and the rpe values of
single player. The chart is implemented using Highcharts¹

Application Type Volume Velocity
Muithu/Bagadus Video Gigabytes High %
Ohmage Schema Kiloytes Low %
Fitbit Sensor Megabytes High %

Table 3.1: Application requirements
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3.5 Summary
In this chapter, we have presented an ongoing case study with til. By pre-
senting some of the applications and devices currently available, we can better
understand the storage requirements of this type of data. Muithu, Bagadus,
Ohmage and Fibit each represent different source of information. Muithu bring
the notion of only keeping a small percentage of the data that is deemed rele-
vant, and is one of the primary inspirations behind this system.





4
Requirement specification
This chapter descibes the system model and outlines a set of functional and
non-functional requirements describes the needs of the systems.

4.1 Systemmodel
Before deciding on an architecture, we need to fully understand the properties
of the applications in the domain. One key observation we made from working
with this type of data was that the data itself was rarely changed, and new data
is appended to the old data. Another observation we made was that portions
of the data is often more important than others, and that we could safely
discard the unnecessary data. Finally, the decision of whether or not the data
is important cannot be made at the moment the data is stored, but rather, once
a certain state was reached. A conventional storage system might store the
incomming data on the same storage that will eventually persist the data. The
applications interact with the storage system, and deletes records once they
become obsolete.

Figure 4.1 shows the proposed system model for Eatnu. Eatnu acts as interme-
diate storage for the data, and applications evaluate the data before persisting
it to stable storage.
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Store Store Store

Source 1 Source 2 Source N...

Storage 1 Storage 2 Storage N

App App App...

...

Eatnu

Figure 4.1: Proposed system model

4.2 Functional requirements
A functional requirement describes a functionality of the system and is speci-
fied using inputs, the behaviour and outputs. The Eatnu needs to support the
following functional requirements:

Write to stream A client must be able to write data that is in turn stored by
the system. If an error occurs during a write the client needs to be alerted.

Read from stream Once the data has been written to a stream, a client needs
to be able to read the data.

Policy creation A policy is a small piece of code that is set to run once the
stream reaches a specific state. The user should be able to add policies
to run on specific stream

Policy execution Once the execution requirement of a policy is met, the sys-
tem needs to run the code specified by the policy.

Persist data The main task of a policy is to decide on what portions of the
stream needs to be persisted (kept) to storage.
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4.3 Non-functional requirements
Non-functional requirements specifies the requirements for the operation of
the system, and is typically judged by a set of criterias. The Eatnu needs to
support the following non-functional requirements:

Scalability The system should be able to scale beyond the capacity provided
by a single machine.

Throughput The system needs to support a high write throughput to deal
with data that is generated at a high velocity.

Fault tolerance If a server fails, the data should not be lost. Additionally, the
system needs to detect and correctly recover from failures.

Availability The system should remain available even if servers fail or new
servers are added to the system.

Extensibility Future versions of the system might need additional functional-
ity to support integration with other system such as batch and stream
processing engines.

Usability The final non-functional requirement is usability, the ease of that
clients can learn and use the system. This requirement is hard to quantify,
but is typically realized by hiding complexity and exposing well-defined
interfaces to the user.





5
Design
This chapter describes the design of Eatnu, covering the overall architecture
and design elements. We describe the individual components that interact to
provide a single service. The design goal is to build a distributed storage system
with fault-tolerance, high throughput, availability and scalability. The design
choices are motivated by their impact on these properties.

This chapter first outlines the stream data model and stream policies. Next,
each architectural element is presented and the different roles of each node.
Then describe how the different operations are performed. Finally, we look at
how the design incorporates fault tolerance and how the system can recover
from failures.

5.1 Data model
Eatnu offers a data model similar to that of a file-system. The system supports
has a similar interface to that of a file-system functions, supporting to open,
read, write(append) and delete files.

Sensor data is stored in streams, that in turn is made up of one or more blocks.
The stream consists of the continuous stream of data flowing from the applica-
tion, and is split into blocks of data replicated across several nodes. The streams
are accessed by a unique streamname, that is arranged in an hierarchical names-
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Stream "/foo/bar"

Block 0 Block 1 Block 2 Block 4 Block 5 Block 6

Figure 5.1: A stream with six blocks

pace. A stream can be read from any position, but data can only be appended
to the end. Figure 5.1 shows an example stream with the name “/foo/bar” that
consists of six blocks of data.

Each block is assigned a set of N replicas to tolerate the failure of N − 1 repli-
cas. These replicas are assigned at random, but can be spread across multiple
fault domains for fault tolerance, that in turn will impact the performance. A
write is appended at the end of each block and replicated to the secondary
replicas.

When a block reaches a pre-determined size, or an error occurs, the block is
closed. A closed block is immutable and no more appends will be accepted by
the block replicas. When a new block is allocated, N replicas are chosen and
informed that they have been assigned a block.

5.2 Stream triggers
A stream trigger is an abstraction offered by Eatnu. For a stream s, the trigger
ps () is a task that is executed for s when the condition ci (p,s,e) is true. The
execution state e is updated on a successful execution of ps (). The condition
cp and execution state es can differ from trigger to trigger . For Eatnu we have
implemented two trigger conditions: c1 and c2. The first condition c1(p,s,e) is
true when the current size of the stream ssize is psize larger than the size of the
stream at the previous execution eprev_size:

c1(p,s,e) =



true if ssize − eprev_size >= psize
false else

(5.1)

The second trigger condition checks if the time since a trigger was last executed
exceeds a pre-determined interval pseconds. The current time is here denoted
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by t .

c2(p,s,e) =



true if t − et >= pseconds
false else

(5.2)

The stream policies are similar to that of a database trigger. A database trigger
is a procedure that is executed on specific changes in a Database Management
System (dbms)[46], and a database with associated triggers is called an active
database. A trigger is described using three parts:

Event: The internal change to the database that in turn causes an activation
of the trigger mechanism. This can be an insert, update or delete.

Condition: The trigger test that determines if the trigger action will be acti-
vated.

Action: The procedure accosiated with the trigger. The action can be executed
before, after or instead of the trigger event.

Eatnu shares some of the semantics of database triggers. An important distinc-
tion is that Eatnu does not follow a strict before, after or instead ordering of
the execution of the trigger in relation with the event. The trigger invokes an
asynchronous task, that is scheduled for execution. The task is stored as a small
BASH¹ script, that in turn is may schedule other programs.

Coupling data with code with code has been done in other systems. The term
meta-code is used [34] and shows an abstraction where code is coupled with
data.

5.3 Architecture
Before going into the specifics on the architecture, we distinguish between
three different types of processes:

Stream master A single process that is responsible for maintaining the stream
namespace, allocating nodes, closing blocks, executing policies and or-
chestrating the error recovery if a node fails.

1. https://www.gnu.org/software/bash/bash.html

https://www.gnu.org/software/bash/bash.html
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Stream servers Responsible for storing the blocks and serving client requests
to read and write data.

Stream client The the client side api that is responsible for communicating
with the stream nodes and master node to read and write the stream
data.

Trigger monitor The process responsible for monitoring streams and execut-
ing the associated procedure once a the trigger condition is met.

Stream servers store the block data in main memory, and is able to respond
to request without scheduling disk access. They listen to incoming read, write
and close request. The block data is stored in a key-value store, with the key
being the unique block name and the value pointing to a memory buffer.

5.4 Stream namespace
Each stream is identified by a unique path, e.g. “foo/bar”. A list of pointers to
block servers is kept for each unique path. A client needs to read this list of
pointers before accessing the stream. The stream namespace is the collection of
these pathnames and their associated block replicas. Strong consistency of the
stream data can be provided by having a namespace with strong consistency.
When a stream is updated, the stream namespace atomically writes the new
state such that any subsequent read is the same.

A consistent view of the namespace can be maintained by only allowing a sin-
gle server to update the namespace. This approach was adopted by Google
file system (gfs)[28, 43]. gfs was designed and implemented by Google to
meet the demands of their applications. By accepting component failure as the
norm, they built a distributed file system that could store and serve files in the
terabyte and petabyte scale even when components are failing. A gfs master
is responsible for allocating new chunkservers, and client only communicate
with the master to discover the location of these servers. The clients commu-
nicate directly with chunk servers to do read an write operations. The master
also updates a set of replicas to recover from errors without having to rebuild
the entire namespace. When a master fails, a new master replaces the faulty
node.

State machine replication was first suggested by Leslie Lamport[39], and later
described by Fred Schneider[48]. Paxos[40] is a state machine replication
algorithm for reaching consensus between multiple replicas even in the event of
failures. The core algorithm has been generalized to reduce en-to-end message
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delays[41] and to eliminate the need for a single distinguished leader[44].
Viewstamped replication[45] is another replication protocol based on primary-
backup[14, 20]. A single primary copies each action to a set of replicas. If the
primary fails, one of the replicas becomes the new primary.

ZooKeeper[33] is a highly reliable centralized service for maintaining system
configuration, naming and can be used to implement synchronization primi-
tives. ZooKeeper provides FIFO execution of client requests and linearizability
of all client requests. This is combined with a highly reliable service spread
across several machines to tolerate failures. ZooKeeper is similar to Chubby
[21], that provides a locking service for coarse-grained locking and a reliable
low-volume storage. Chubby maintains a set of replicas by using the Paxos
algorithm to reach consensus across multiple machines. ZooKeeper servers are
replicated using ZooKeeper Atomic Broadcast (zab)[37]. zab is a primary-
backup protocol where the primary executes client operations and then prop-
agates the incremental updates to the backup processes. zab is optimized to
handle multiple outstanding operation without violating FIFO ordering.

ZooKeeper stores stores data as node with a similar interface as a filesystem. A
node is has a unique path, may have one or more children nodes. Each node
may hold data, and the all data is read or written as a single operation. Two ad-
ditional options can be specified when creating a node: empheral and sequence.
An ephemeral node only exists as long as the creating process maintains a
session with ZooKeeper. When the sequence option is specified, ZooKeeper
will append a monotonically increasing counter at the end of the path of the
new node. Sequence nodes can be used to implement locking functionality by
creating an sequence node with the sequence flag set. A process that wishes
to acquire the lock create a new child of the lock node ands sets sequence and
ephemeral flag. The owner of the child with the smallest sequence number
holds the lock. A lock is released by deleting the locknode. ZooKeeper will
delete the node if the current owner lock fails, thus the lock is released when
processes fails. A client process can set a one-time watch to keep track of chang-
ing nodes, and ZooKeeper will notify the client when the watch condition is
met.

5.4.1 The Eatnu namespace
The Eatnu stream namespace is kept in a single ZooKeeper instance. The blocks
that make up a stream is stored in a node corresponding to the stream name.
ZooKeeper nodes containing the stream metadata are stored with a “_stream_”
prefix. The metadata is a list of pointers to blocks and their replicas. Figure 5.2
shows an example of this hierarchical namespace. Ephemeral nodes are used
to register available servers. ZooKeeper will delete the node, and notify any
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/

/_streamservers_

/_streamservers_/storage1 /_streamservers_/storage2

/_stream_

/_stream_/bar/_stream_/foo

Figure 5.2: ZooKeeper nodes with two registered servers and two streams

process that have set a watch to monitor the nodes.

The master process is the only process permitted to update the namespace
stored in ZooKeeper. This ensures that the close and alloc operations are per-
formed atomically since ZooKeeper does not execute client code.

5.5 Client operations
The client side api provides an interface for programs to access the storage
system. Multiple clients can read from a single stream at the same time, but
only one client may write to the stream. To facilitate multiple readers, single
writer, the client apiwill need to grab an exclusive lock before writing data to a
stream. As the system is append-only, we only need to grab a write lock.

5.5.1 Open
When a client opens a file, it reads the content of from the ZooKeeper node
containing the block pointers. If the file does not exist, a new empty stream
is created by requesting that the stream master allocate the first block. The
master will then assign the required number of replicas to the new block. The
stream servers are notified that they have been assigned a new block. Before
returning that the operation succeeded, the master updates the ZooKeeper
node containing the newly allocated block. Figure 5.3 shows the steps that is
required to open an empty stream.
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Figure 5.3: Steps of opening a new stream

5.5.2 Append
The replicas are arranged in a chain from replica1 to replicaN as seen in
Figure 5.4. replica1 acting is the primary and the next replica in the chain
after replicai is replicai+1. A write request is sent to the primary replica and
forwarded along the chain, and once all replicas have successfully stored the
data the primary returns success to the client.

In the event that the client is unable to append to the stream block, the client
will have the stream master close the block. This operation prevents further
any further appends to the same block to complete. Since one or more stream
servers may have commited to storing the data locally, retrying the operation
may result in duplicate records.

Arranging replicas in a chain i often used to acheive a high consistency. Chain
Replication[52] is a technique used to coordinate clusters of fail-stop storage
servers. Queries (write requests) are sent to the first node or emphhead of the
chain, and a successful write is sent from the last node or tail of the chain.

The CAP theorem[29] presented by Eric Brewer stated that we can at most
have two of three following properties in a network shared-data system: Con-
sistency(C), availability(A) and tolerance to network partitions(P). Consistency
is a guarantee that all nodes accessing the data see the same data. Availability
guarantees that we are able to access the data items. Network partitioning
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Figure 5.4: The replication chain and request steps with three replicas

occurs when nodes experience arbitrary loss of messages, or is unable to reach
one or more other nodes.

The “choose two out of three” formulation of the CAP theorem is stated as mis-
leading by Eric Brewer[19], and in reality the properties are more intertwined
and their relations complex. Windows Azure Storage (was)[22] by Microsoft
is a storage service that offers strong consistency and availability in the face
of most types of network partitions. was is built on top of an extension of
Bing’s storage system Cosmos[2]. The storage system replicates the data ac-
cross multiple nodes with a similar technique as chain replication but only
support writes in the form of appends. was builds higher level abstractions
such as blobs(files), tables(structured storage) and queues(message delivery).
Some systems[38, 25] use an optimistic approach that reduces the consistency
requirements, allowing clients to proceeds in case of failure, thus increasing
the availability.

5.5.3 Close block
When the stream master is requested to close a stream block, the master con-
tacts the stream servers and asks for their current length and to stop serving
request for that block. If all servers return the same value, the block is closed
at the current length. Otherwise, an append error has occured and the master
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Figure 5.5: Closing a block

selects the lowest value as the block length. Since the client will close the block
if an append error occurs, the latest append might be written successfully to all
replicas or some of the replicas. As the client maintains the position of the last
successful append, the client can check if the block was written to all replicas
and retry the write operation for the new block. Figure 5.5 shows the steps of
a successful close operation.

5.5.4 Read
A client read may span several blocks, and as such it is the responsibility of the
client to determine that streams servers to contact. A read request is sent to
the stream server with an offset and a desired length. This offset is calculated
at the client and is relative to the starting offset of the block and not the stream.
Stream servers does not keep a notion of streams, only blocks, and only servers
requests at a block level.

The client can read data from any replica, and the read operation ensures
that only data written to all replicas can be read. The writer is responsible for
periodically updating the stream master of the current size of the replicas. The
master will in turn update the stream metadata kept in ZooKeeper. The read
operation sacrifices read freshness in favour of high throughput, consistency
and availability. The tradeoff is acceptable as the processing workloads are
typically batch oriented rather than stream oriented.
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5.5.5 Commit
One of the key functionalities provided by Eatnu, is the ability to transparently
flush the contents stored in memory to a specified storage. The storage can
be a Network-attached storage (nas), or a distributed file-system. A commit
operation flushes the content of a requested range to storage. The operation
invokes a storage handler responsible for communicating with the destination
storage system. The client determines which stream blocks that needs to be
persisted, and instructs to stream servers storing the block to write to the target
destination.

Stream "/foo/bar"
Store Store Store

Uncommited

Keep

Delete
File "/foo/bar"

Figure 5.6: Commiting to either storing or deleting stream data

5.6 Master server
The leader election process selects a single master process that is responsible
for serving the requests of the clients. Any process that wants to participate
in the leader election creates a child node of the leader node in ZooKeeper.
With both ephemeral and sequence options set, the process that owns the node
with the lowest sequence number is considered to be the leader. If the current
leader fails, ZooKeeper will delete the node and the owner of the node with
the currently lowest sequence number will be the new leader. The other master
processes competing to be the leader watches the node of the process next in
line, as this only triggers a single watch when a node fails.

Internally, the master node maintains an event queue of tasks that have been
assigned to the master. The different types of tasks have different priorities and
completion time constraints. Some tasks such as the closing of a block needs
to be performed as soon as possible, and other tasks such as garbage collecting
deleted blocks have more relaxed time constraints. A static number of worker
threads concurrently selects tasks and performs the necessary steps to complete
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Task description Task Constraints Task Priority
Close block Synchronous High
Allocate block Synchronous High
Restore block Asynchronous Medium
Execute policy Asynchronous Medium
Check stream Asynchronous Low
Delete block Asynchronous Low

Table 5.1: The different types of tasks performed by the master.

it.

Table 5.1 shows a list of the types of tasks the master performs along the syn-
chronization constrains and task priority. The worker threads will select tasks
based on their priorities. A synchronous task will block the caller the task is
completed. This is done when a remote caller blocks until a response, as is the
case when a block is allocated or closed.

5.7 Summary
Eatnu implements a storage service for capturing and evaluating stream data.
The data model stores each stream as a sequence of blocks and maintains a
consistent namespace in ZooKeeper. Each block is replicated across multiple
block server, where data is first appended to the primary and forwarded along
a chain of replicas before the primary responds to the calling client. A read
operation reads the stream definition from ZooKeeper, selects one of the replica
block servers, and issues a read request to the server.

A key design element of Eatnu is the commit operation. When a client issues
a commit for a specified range within the stream, the corresponding data is
moved to stable storage. Uncommitted data can safely be discarded if the range
precedes a committed range. A stream can be monitored by assigning a stream
policies to streams. Each policy stores a small piece of code, a condition that
triggers the execution and the target path. Once the policy condition is met, a
server executes the piece of code associated with the policy.





6
Implementation
This chapter describes the api and implementation of Eatnu. The system is im-
plemented in approximately 6000 lines of C, divided into storage components
and a client-side api. The api shares some of the functionality and semantics
as a traditional file-system, with the exception of the commit function.

6.1 API
Eatnu exposes the following interface to the programmer:

Connect() Connects to the Zookeeper instance and initializes all the local data
structures.

Open() Opens a an existing stream with the given path, or creates a new
empty stream if the path does not exist. The call returns a descriptor
handle.

Close() Closes a file descriptor and releases all local data structures.

Append() Appends data at the end of the stream. Either all data is successfully
written, or none at all.

Read() Reads data from at the current position. A successful read moves the

37
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read pointer to the end of the last byte read.

Seek() Sets the position of the read pointer.

Commit() Commits to either storing the data at a given offset. All bytes up to
the last committed range can safely be discarded.

6.2 Zookeeper
Zookeeper simplifies the implementation of a distributed system by implement-
ing a coordination service with strict consistency. The small set of primitives
can be used to build higher level constructs such as synchronization primitives,
membership, naming and configuration managing.



7
Evaluation
In this chapter we evaluate the non-functional requirements of the Eatnu. We
start by outlining the experimental benchmark and setup. Next we evaluate
our system and compares it with a state of the art distributed file system before
finally discussing the experimental results.

7.1 Experimental setup
The Hadoop Distributed File System (hdfs)[49] is a distributed file system
for storing and streaming large datasets for MapReduce applications. Hadoop
and hdfs is an Apache project¹, and is available with an open source licence.
hdfs and gfs share many of the same design elements. Both systems use a
master/slave architecture master to maintain the namespace, accept failure
as the norm and replicate the data across multiple replicas for fault tolerance.
hdfs was chosen to since it shares many of the design elements of Eatnu.
hdfs is built from the Hadoop version 2.4.0 source code using the default
configuration.

All experiments are run a cluster of HP ProLiant BL460 server blades, running
Ubuntu 13.10. Each server is equipped with two Quad-Core Intel Xeon X5355
processors running at 2.66 GHz, connected to eight 2048MB DDR2 memory

1. http://hadoop.apache.org/
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modules running at 667 MHz, for a total of 16GB of ram. The disk is a single
2.5 inch Fujitsu 160gb spinning at 5.4K RPM. The servers are interconnected
with 1Gbit ethernet.

ZooKeeper version 3.4.6 is used for all Eatnu experiments, with master servers
and Zookeeper servers co-located on the same physical machine unless other-
wise stated.

7.2 Benchmarks
To evaluate the performance of our system,we have designed two simple bench-
marks that evaluate the non-functional properties of the system.

7.2.1 Throughput
Throughput is the rate that a network application successfully delivers over a
communication channel. To evaluate the read/write throughput, we store and
read random bits to isolate the I/O bound network component at the client
side.

The first benchmark stores and evaluates a continuous flow of data from nu-
merous sensors. This simulates a workload where we are only interested in
storing a portion of the data, and only when something is considered impor-
tant enough to store. The evaluation uses outlier detection algorithms, and only
persist the data when and outlier is detected. The motivation behind this type
of benchmark is to understand how the system behaves when data is being
appended at a constant rate.

For this experiment, we evaluate the performance of the commit operation on
a stream. We measure the average throughput per block server. For the commit
workloads, we use set that 0%, 25%, 50%, 75% and 100% of the stream is
persisted. The result is shown in Figure 7.3, Figure 7.1 and Figure 7.2. The results
show that Eatnu is able to achieve read and write throughputs comparable to
HDFS, and in some case achieves a higher throughput.
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Figure 7.1: Mean throughput with one replica per block
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Figure 7.3: Read, write and commit throughput with three replicas per block





8
Concluding Remarks
This thesis presents Eatnu, a storage systems designed to capture, evaluate and
persist data arriving at a high speed. Eatnu is designed to scale to thousands
of users and distribute the data to multiple machines. The design incorporates
fault tolerance, where component failure in most scenarios will not case the
data to be unavailable.

A key observation that led to the creation of Eatnu, was the characteristic
that sensordata often remains unchanged (immutable) and that only a portion
of the data has real value. As such, we have designed and implemented a
model where the developer can write to a append only storage system with
similar semantics as a file-system, stored in main-memory and replicated across
multiple server. The key feature of Eatnu is the addition of a commit operation.
This operation selects a portion of the stream and persists it on stable storage.
Any prior data that has not been committed can safely be discarded, and is
garbage collected.

To facilitate writing applications that monitors and reads from these streams,
we have also implemented a stream policy abstraction. A policy consists of a
piece of code and a condition. The condition is a test that triggers the execution
of code, that in turn will start an analysis on the stream that triggered the
policy.
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8.1 Contributions
The main contribution of this thesis can be summed up as follows:

1. We have identified the key properties of the data in the application do-
main related to large scale storage of personal sensor data.

2. We have outlined operations that allows programs to make decisions on
which portions of data to persist.

3. We have designed and built a working prototype incorporating the these
operations.
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