
Faculty of Science and Technology
Department of Computer Science

Láhttu
A system for Retrieval and Consolidation of Personsal Data from Activity-Tracking
Web Services
—
Ida Jaklin Johansen
INF-3981 Master’s Thesis in Computer Science, June 2014

Abstract
In recent years, self-tracking and recording ourself has become increasingly
popular. A large ecosystem of interconnected online activity-tracking web ser-
vices that record, store, analyse, and visualize personal data is evolving to
provide useful services to end-users. However, these personal data can be scat-
tered over multiple web-services, which makes it di�cult for an individual to
manage and maintain an overveiw of activity levels.

This thesis identifies requirements, designs, and develops a system for connec-
tioning to a set of activity-tracking web-services. The system retreives personal
data from these activity-tracking web-services for end-user, and presents and
consolidates personal data stored on these web-services. The main goal for the
system is to provide a homogenous, presentation and improve insight for the
end-users into their own activity tracking personal data recorded at hetergoe-
nous web-services.

The system is evaluated from a proof of concept veiw point.

Acknowledgements
I would like to thank my supervisor Dr.Åge Andre Kvalnes for being my supervi-
sor and for great feedback. Additionally, great thanks to Dr.Håvard Dagenborg
Johansen, for discussions and input during this thesis periode. In addition, I
thank the rest of my colleagues at the iAD group for valuable input and discus-
sions.

Furthermore, I would like to thank all my fellow classmates, or “my boys”:
Simon, Jan-Ove,Magnus, Einar, Bjørn, Tom,Alexander and Steffen for awesome
years together. Especially, thanks to Simen Lomås Johannessen, for being the
greatest friend one could ever get.

Finally, I would like to thank my friends and family for their support and believ-
ing in me. Special thanks to my Father, for being a true source of inspiration and
inspired me to pursuit the path of Computer Science. Maria Wulff Hauglann
for being a “big sister” to me all these years at IFI and to my little sister, Lisa,
your dedication is admirable. Last but not least, my boyfriend, for always being
so supportive and with a kindness out of this world. I love you.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Problem Definition . 2
1.2 Methodology . 2
1.3 Interpretation, Scope, and Limitations 3
1.4 Context . 4
1.5 Terminology . 5
1.6 Outline . 5

2 Background 7
2.1 Health Tracking . 7

2.1.1 Fitbit . 9
2.1.2 ZXY Sport Tracking 9
2.1.3 RunKeeper . 11
2.1.4 “Internet of Things” (IoT) 11

2.2 Personal Data Vaults . 12
2.3 Authentication with OAuth 13
2.4 Access Control, Data Management, and Storage 14

2.4.1 Database . 15
2.4.2 Cache and Caching Algorithms 15
2.4.3 "Big Data" . 16
2.4.4 RESTful API . 17

2.5 Data Integration and Interoperability Survey 18
2.5.1 Data Consistency Issues 20

2.6 Summary . 22

vii

viii CONTENTS

3 Requirement Specification 25
3.1 System Functional Overview 25

3.1.1 Frontend . 26
3.1.2 Backend . 27
3.1.3 Web-Services . 27

3.2 Non-functional requirements 28
3.2.1 Security and Privacy 28
3.2.2 Reliability and Availability 28
3.2.3 Extensibility . 28
3.2.4 Scalability . 29
3.2.5 Fault-tolerance . 29
3.2.6 Dependency . 29
3.2.7 Interoperability . 30
3.2.8 Maintainability . 30
3.2.9 Usability . 30
3.2.10 Performance . 30

3.3 Summary . 31

4 Design 33
4.1 System Architecture . 33

4.1.1 Frontend . 33
4.1.2 Backend API . 34
4.1.3 Access Control . 35
4.1.4 Storage . 36
4.1.5 Crawling . 37

4.2 Web Services and their APIs 38
4.2.1 Fitbit . 39
4.2.2 RunKeeper . 40

4.3 Summary . 40

5 Láhttu 41
5.1 Frontend . 41
5.2 Backend . 47

5.2.1 Time, Date, and Range Query 49
5.2.2 Storage . 50
5.2.3 Crawler . 51
5.2.4 Web-services API . 52
5.2.5 Access Control . 55

5.3 Summary . 57

6 Evaluation and Results 59
6.1 Methodology and Methods 59
6.2 Proof of Concept . 60
6.3 Experiments . 61

CONTENTS ix

6.3.1 Experimental Setup 61
6.3.2 Estimation of requests 62
6.3.3 Latency . 63

6.4 Evaluation of non-functional requirements 65
6.4.1 Scalability and Extensibility 66
6.4.2 Fault Tolerance and Availability 66
6.4.3 Security and Privacy 67

6.5 Summary . 67

7 Related Work and Discussion 69
7.1 Related Work . 69

7.1.1 Microsoft HealthVault 69
7.1.2 Consolidating Personal Data Platforms and Systems . 70

8 Conclusion 73
8.1 Achievements . 73
8.2 Concluding Remarks . 74
8.3 Future Work . 74

A JSON Reponse from Web-services 77
A.1 RunKeeper . 77
A.2 Fitbit Step . 78
A.3 Fitbit Sleep . 83

Bibliography 89

List of Figures
2.1 The Fitbit Flex . 9
2.2 ZXY sensor belt [15] . 10
2.3 ZXY radio receiver on an antenna at Alfheim Stadium [15] . 10
2.4 Overview of the ZXY Positioning Sensors [15] 11
2.5 Connected devices in the Internet of Things (figure from [7]) 12
2.6 Memory hierarchy . 15
2.7 Eco-system of tracking system and devices. 18
2.8 Control over applications connected to a Fitbit end-user account 19
2.9 Connection of Application, synchronous data between 19
2.10 Fitness Feed in an end-user account at RunKeeper, the end-

user are anonymously . 20
2.11 Fitbit recording for one day, automatically synchronized with

Endomondo and stored there. 21
2.12 A record run in RunKeeper 21
2.13 Importing the RunKeeper record into Strava 22
2.14 Importing the RunKeeper record into Endomondo 23
2.15 Importing the RunKeeper record into SportTrackLive 23

3.1 The System Model,Abstract Architecture 27

4.1 System Architecture . 35

5.1 Screenshot of Láhttu login page with the RunKeeper connec-
tion button . 42

5.2 Screenshot of the option for the end-user for RunKeeper . . . 43
5.3 Flow over the login process 43
5.4 Screenshot of the option for the end-user for Fitbit 44
5.5 Screenshot of the main page of Láhttu 45
5.6 Screenshot of the main page of Láhttu after an Range Query

for 4th of March . 45
5.7 Screenshot of the timeline with personal data in the range of

4th to 5th of March . 47
5.8 Request Range Query . 49
5.9 Response Range Query . 53

xi

xii L IST OF FIGURES

5.10 Give access . 56

6.1 The prototype paradigm. 60
6.2 Timeline of the personal data retrieve in the Appendix A . . 61
6.3 Closer look at the timeline in Figure 6.2 61
6.4 Latency figure . 63
6.5 Latency Chart for table 6.2 and table 6.3 65

List of Tables
4.1 Current Data Sources for the system 39

5.1 Language at Frontend. 47
5.2 JavaScript Libraries and features. 47
5.3 HTTP methods . 48
5.4 Python Libraries. 48
5.5 Register an application at Fitbit, Required Information 52
5.6 Register an application at RunKeeper, Required Information . 53
5.7 Web services represent data. 55

6.1 Correlation between number of end-user and required num-
ber of API requests. 62

6.2 The end-to-end latency from the Fitbit Web-serivce. 64
6.3 The end-to-end latency from cache. 64
6.4 Seconds for acquisition personal data from the web service . 65
6.5 Seconds for acquisition personal data from the cache 66

xiii

List of Abbreviations
acl Access Control List

ajax Asynchronous JavaScript and XML

api Application Programming Interface

bmi Body Mass Index

css Cascaading Style Sheets

fifo First In First Out

gps Global Positioning System

gpx the GPS Exchange Format

gui Graphical User Interface

html HyperText Markup Language

http Hypertext Transfer Protocol

iot Internet of Things

json JavaScript Object Notation

lru Least Recent Used

pdv Personal Data Vault

phr Personal Health Record

rdbms Relational Database Management System

xv

xvi List of Abbreviations

rest Representational State Transfer

rpe Rating of Perceived Exertion

sql Structured Query Language

til Tromsø Idrettslag

ui User Interface

uri Uniform Resource Identifer

url Universal Resource Location

ux User Experience

who World Health Organization

xml Extensible Markup Language

zxy ZXY Sport Tracking System

1
Introduction
Recent advances in sensors and portable technologies have enabled ordinary
people to keep track of their daily activities in a profoundly new and detailed
manner. Through self-tracking, end-users might achieve self-awareness and
knowledge about themselves. This has received significant attention in the
consumer marked. In particular, self-tracking is changing how amateur and
professional athletes train and live [9]. As a response, many consumer level
devices for self-tracking, such as Fitbit and Jawbone, utilize accelerometers
in the devices for tracking movements. Activity-tracking applications, such as
RunKeeper and Endomondo utilize the Global Positioning System (gps) in
smart phones for tracking position and routes.

One of the key benefits of such self-tracking is to enhance the ability of indi-
viduals to keep an eye on their health parameters and fitness levels. This in
order to detect emerging health problems early and to foster physical activities.
The ability to foster activity by tracking personal fitness levels is in particularly
becoming important in the modern society. Since 1980, the number of people
with obesity has doubled. More than 1.4 billion adults are overweight, with
500 million of them being obese. This is about 11% of the world’s population
over the age of 20. Obesity can impair ones health due to abnormal or excessive
amount of body fat. World Health Organization (who) defines overweight as a
person with BodyMass Index (bmi) greater than or equal to 25, while anything
above 30 is considered obese [31]. In Norway, one of five is overweight and

1

2 CHAPTER 1 INTRODUCT ION

around 100.000 obese. ¹ Indicators show that these numbers will increase in
coming years. According to the Norwegian Directorate of Health in the report,
"Kunnskapsgrunnlag fysisk aktiviet"[28], they state and estimate that inactive
or insu�cient activity level amongst Norwegians, will cost Norway 239 bil-
lion NOK kroner per year. Simultaneously, science and technology are focusing
more on health, wellness, and fitness to overcome the obesity epidemic in the
western part of the world. Personal data can also be used in larger big-data
medical studies by having people pool their activity data into larger research
projects [40].

1.1 Problem Definition
A large ecosystem of interconnected online activity-tracking web services that
store, analyse, and visualize health and activity data is evolving for collecting
and analyzing personal activity data for the consumer marked. Unfortunately,
little has been done to standardize data exchange and data formats between
these services and we have ended in a situation where our personal health
and fitness data has become scattered over multiple different, heterogeneous
systems. This makes it di�cult to see the big picture of their health and activity,
diminishing the purpose of self-tracking [5, 6].

This thesis will explore system issues related to the use of personal
data from activity tracking web-services. The goal is to architect and
build a prototype system that provides end-users an overview of and
improve insight into their online personal data.

The system should be evaluated with focus on a proof of concept system that
addresses the stated problem.

1.2 Methodology
The final report of the ACM Task Force on the Core of Computer Science divides
computing as a discipline into three major paradigms [4]:

Theory: Rooted in mathematics, the approach is to define a problem, propose
theorems and try to prove that the relationships are true, in order to
determine and interpret the result.

1. http://www.vg.no/nyheter/innenriks/artikkel.php?artid=10122067

1.3 INTERPRETAT ION , SCOPE , AND L IM ITAT IONS 3

Abstraction: Rooted in the experimental scientific method, the approach is to
investigate a phenomenon by forming a hypothesis, construct a model,
and make a prediction. Collecting data and experimenting on this data,
finally interpret the results.

Design: Rooted in engineering, the approach is to construct a system or de-
vice to solve a defined problem by stating the requirements and spec-
ifications. Design and implement the system or device. Finally, testing
and evaluation of the system is done depending on the requirements and
specifications.

This thesis largely adheres to the design paradigm. Given a problem, construct
the prototype system by stating the requirements and specifications. A proto-
type system will be designed, implemented, and evaluated.

1.3 Interpretation, Scope, and Limitations
The motivation for developing this system is to give end-users increased insight
in their own tracked personal data and gain access control over whom can
access personal data. The main focus will therefore be on making a homoge-
neous system for end-users with data from a small selection of heterogeneous,
online web services. We will therefore focus on integrating with at least Fitbit
and RunKeeper services.

The thesis will resolve the stated problem through designing and implementing
a prototype system with all the component for accomplishing the goals which
are stated. The system will include components for acquisition of personal
end-user data from heterogeneous web-services, storage management through
database usage and Graphical User Interface (gui) to present and get input
from the end-users of the system. The User Experience (ux) is not the main
focus for this thesis, but focusing on providing an intuitive experience for end-
users.

Additionally, this thesis will need to investigate the eco-system of heterogeneous
web-service. In particular, what type of personal data are they recording and
tracking and how is this personal data represented. The limitations and restric-
tions of these web-services and how this can and may impact the development
of this thesis, is also a concern.

Evaluation of the system will be conducted with a focus on functional and
non-functional system properties. A goal is to prove that concepts adhere to
specifications and stated limitations.

4 CHAPTER 1 INTRODUCT ION

Primarily the limitations of the system will depend on the Application Program-
ming Interface (api) of the web services. For example, Fitbits state: "If your
Developer Application causes technical stress to the Fitbit platform, Fitbit will
disable your access."

There are some limitations in making the system. When working with a third-
party api, that api sets some boundaries for what a developer can do and
cannot do. For example, there are limitations as to what can be read and
written from the web-services.

There are some features that are out of scope for this thesis. These features
can be added to potential future work. How web-services record and track
the personal data and how accurate this personal data is, beyond the insight
one have to the web-services. To limit the engineering scope of this thesis, we
will only consider single-user scenarios in the evaluation. Because of limitation
in the evaluation practice of this thesis, through testing with multiple end-
users simultaneously, there will be no requirements to multiple concurrent
end-users.

In addition, security is necessity; however this is not the main focus of the
thesis and will be eventual future work.

Finally, one shall also investigate how these self-tracking personal data could
be used in a bigger context, in form of core and case study for public health
studies.

1.4 Context
This project is written as a part of the Information Access Disruption(iAD)
centre. The iAD centre targets research into fundamental concepts and struc-
tures for large-scale information access. The main focus areas are technologies
related to sport, analytic runtimes, and cloud computing.

Previous projects developed at iAD areMuithu[19] andBagadus[12][37]. Muithu
is a sports notational analysis system for video, developed by the iAD depart-
ment at the University of Tromsø and in partnership with Tromsø Idrettslag
(til). Bagadus is a player tracking system that uses ZXY Sport Tracking System
(zxy) and a video camera array. The system tracks individual soccer players
and computes statistics by combining captured video footage and data from
zxy. The paper[15], addresses the different system developed by iAD that
are used at Alfheim stadium. In addition, the paper addresses how big-data
analytic can improve performance in the soccer area.

1.5 TERM INOLOGY 5

Girji[20]is a system for performing big-data analytic in the consent of preserv-
ing control access to the end-users personal data.

1.5 Terminology
Important terminology used in this thesis include:

End-User: A end-user is a person that using the system.

Component: The system is divided into several entity with their own func-
tionality. Each entity of the system is referred to a component.

System: The prototype system that is design and implemented, later on given
a specific name to be refereed to.

She: May represent a given end-user in the context of a situation.

Frontend: The side the end-user interact with, may be referred to as the client
side.

Backend: Computation side, may be referred to as the server side.

1.6 Outline
The thesis is structured as follows:

Chapter 2 This chapter presents relevant technical background information
for the thesis. Also, a survey around the eco-system of web-services.

Chapter 3 This chapter describes the requirement specification including the
general system model with functional and non-functional requirements.

Chapter 4 This chapter describes the architecture and design.

Chapter 5 This chapter describes implementation details for the system.

Chapter 6 This chapter presents evaluation and results. Including reflection
of the system through discussion.

Chapter 7 This chapter presents related work in the context of the system.

6 CHAPTER 1 INTRODUCT ION

Chapter 8 This chapter presents the conclusion and potential future work for
the thesis.

2
Background
Self-tracking has been popularized recently in the context of the “Quantified
self (QS)”, a term that was first coined in 2007 by Gary Wolf and Kevin Kelly
in San Francisco. Since then, the Quantified self has become an international
collaboration movement for self-tracking tools, both for users and developers,
which is rapidly growing¹. Through self-tracking everyday movements, activity,
food and water intake, the end-users are providing self-knowledge about them-
selves and their own health [39]. The Quantified Self movement holds annual
meetings and conferences are held throughout the world. In 2013 and 2014,
there was a Quantified Self Europe Conference in Amsterdam. In addition,
there are local Quantified Self meet ups all over the world.

This chapter presents the central technical background material related to the
large number of technological advances and issues emerging from online self-
tracking and relation to this thesis.

2.1 Health Tracking
Health is in the context of humans the general condition of a persons mind and
body and how healthy or unhealthy these are. Being healthy or having good
health is to be exempt from pain, illness or injury, entirely both physically and

1. http://quantifiedself.com/about/

7

8 CHAPTER 2 BACKGROUND

mentally [11]. There are various factors that impact human health, nutrition
and diet so that a human is getting the right amount of protein, carbohydrates
and fat. With a balanced diet one are getting the vital substances: amino acids,
vitamins and minerals that helps build up a good immune system. The immune
system is the body defence from diseases and illness. Eating an unbalanced diet
and too much sugar and fat can lead to lifestyle diseases and obesity.

Another main factor on health is sleep. Sleep is something that has ba�ed
scientist for centuries and they still have no definitive answer to why we need
it. What they do know is that sleep is essential and a requirement for survival.
It is essential for our brain’s ability to function properly, especially to maintain
our cognitive skills such as speech, memory and flexible thinking. Studies have
shown that sleep deprivation can affect not only ones cognitive skills, but have
an impact on emotional and physical health. There is no exact amount of sleep
required for humans, as it varies from person to person. The record for longest
time without sleep is 11 days². Sleep is divided into two categories: non-REM
and REM sleep. Non-REM sleep is further split into four stages: Light sleep is
the first stage and is the one where one feels like one is half asleep and could
easily be awakened. After 10 minutes one enters the second stage, true sleep,
which lasts around 20 minutes and is where the heart and breathing slow down.
Stage three, deep sleep, is when the breathing and heart rate is at its lowest
and the brain begins to produce delta waves. Stage four is also called deep
sleep, and is where one has a rhythmic breathing and limited muscle activity.
After the non-REM stages, one enters the REM sleep, which stands for rapid
eye movement, simply because our eyes move rapidly at this point. It starts
after 70 to 90 minutes, and at this stage, our brain is very active, often more
than when we are awake. This is also the stage when most dreams occur, our
blood pressure rises, but where our body is effectively paralysed. After the REM
sleep, the whole cycle starts over again. ³

Physical fitness is a state of health that defines the ability to perform a sport,
activity or everyday life assignments. Studies have shown that everyday activity
and walking can improve creative thinking [30], one of many health benefits
from being physically active. Abstaining from obesity through being physically
active. To track parameters related to physical fitness, activities, and sleep,
a large number of wearable technology and self-tracking web-services have
emerged. We will give a few examples in the following sections.

2. https://science.education.nih.gov/supplements/nih3/sleep/intro/getting-started.htm
3. http://healthysleep.med.harvard.edu/healthy/science/what

2.1 HEALTH TRACK ING 9

2.1.1 Fitbit
Fitbit Inc. is a company which produces wearable activity tracker devices. The
Fitbit devices measure personal data such as number of steps walked, distance
walked or run, very active minutes, calories burned per day, and duration/qual-
ity of sleep. Fitbit offers an application and web interface for the end-users
account.⁴ The end-users can record and log their food and water intake, weight,
and personal goals; this could be weight lost, drinking more water or having a
more active day.

The application on a smart-phone synchronizes data between the device and
the end-users online account. For instance, the Bluetooth enabled Fitbit Flex, as
illustrated in Figure 2.1, synchronizes the data recorded on the wristbandwhen
it is in range of either the communication dongle inserted into a computer that
has the Fitbit Connect software running or with a mobile device that has been
paired to the given device. The end-users can interact with friends, comparing
who is the most active one. It is also possible to create and organize groups,
setting common goals and competing against each other.

Figure 2.1: The Fitbit Flex

Fitbit Inc. also produces a scale, Fitbit Aria, for tracking the weight of up to eight
persons, their body fat percentage and bmi. This personal data is wirelessly
synchronized with the end-users account at Fitbit. Fitbit offers an open api for
developers to make third-party applications. This allows developers to access
and utilize Fitbit data in their own third-party applications.

2.1.2 ZXY Sport Tracking
zxy is a stationary radio-based system developed by a Norwegian-based com-
pany for recording telemetry from players in soccer matches. zxy is used by

4. http://www.fitbit.com/

10 CHAPTER 2 BACKGROUND

several soccer teams in Tippeligaen and Addecoligaen, the Norwegian elite
series for soccer and the secondary level. Among these teams are Tromsø IL in
Tromsø and Rosenborg BK in Trondheim.

Figure 2.2: ZXY sensor belt [15]

A sensor belt is placed on the waist of all the soccer players, and on the belt is
a sport chip for measuring and sending data.

Figure 2.3: ZXY radio receiver on an antenna at Alfheim Stadium [15]

There are radio receivers placed around the stadium for receiving information
from the soccer players, sampling data up to 20 times per second. This infor-
mation is stored in a SQL Anywere database on a server. The data generated
from zxy are telemetry like position, acceleration, playtime, run distance, pulse
and more from a soccer match[15]. It has been proven that zxy is accurate
for recording and tracking [15]. Hence, one can assert that the zxy system is

2.1 HEALTH TRACK ING 11

reliable.

Figure 2.4: Overview of the ZXY Positioning Sensors [15]

2.1.3 RunKeeper
RunKeeper is a fitness-tracking application with more than 26.2 million end-
users as of the 26th of November 2013 for both iOS and Android. RunKeeper
was launched in 2008. End-users track their walking, running, cycling, hiking,
biking and other activities using the gps in their smart phones, turning the
device into their own personal trainer.

RunKeeper tracks performance over time, allowing end-users to see statistics
and detailed history of their activities and consequent progression. One can
also share these activities by posting them on Twitter and Facebook.

RunKeeper offers an open api for third-party developers to plug into RunKeeper
user feeds, making a community of applications for RunKeeper [24].

The api that RunKeeper uses for generating a cloud of health and fitness appli-
cations is the HealthGraph[16]. The HealthGraph is a digital map of a persons
health, with health data as either interrelations or connections. HealthGraph
snapshots ones current physical condition, as well as maintaining a health his-
tory and how it has evolved over time [24].

2.1.4 “Internet of Things” (IoT)
Internet of Things (iot) is things or objects that are connected to the Internet.
Although most familiar are devices such as laptops, servers, smartphones and
tablets, are the concept of iot in a much larger scale. iot devices can be
wearable devices, alarms, sensors, home appliances such as television, remote
controller, lamps and vacuum cleaners as illustrated in Figure 2.5. In 2008, the
number of devices connected to the internet was greater than the number of
people in the world who were using the Internet [41].

12 CHAPTER 2 BACKGROUND

Figure 2.5: Connected devices in the Internet of Things (figure from [7])

It is estimated that the iot is to reach 50 billion devices before 2020[41]. To
illustrate the exponential growth in things connected to the Internet, Cisco has
created a counter to track the number of iot[1].

2.2 Personal Data Vaults
In recent years, technology and software that focus on health which can be de-
fined as eHealth (Electronic health).⁵ have increased. mHealth (Mobile health)
is mobile devices that are used for supporting the practice of health andmedicine,
such as communication, data exchanging and reports. These mobile devices
include everything from smart phones, tablets and laptops, also including iot
devices.

Ohmage [34] is system for acquiring end-user data for recording and analyzing.
An Ohmage implementation can acquire Rating of Perceived Exertion (rpe)
from a cellular, which is a feedback form in a scale for measuring perceived
exertion. During a test or exercise a sport coach and athlete can rate the current
physical health and wellness of the athlete.

Microsoft has a platform for health and fitness information for storing andmain-
taining personal data, Microsoft Health Vault.⁶ Every end-user has a Health-

5. http://www.who.int/topics/ehealth/en/
6. https://www.healthvault.com/

2.3 AUTHENT ICAT ION W ITH OAUTH 13

Vault account with their individual health information stored. Access control
can be adjusted so that a mother may have access to her childrens account or
other relatives. HealthVault have support and functionality to let the end-users
connect medical devices and application to their HealthVault account. Worth
mentioning is that Google had a similar project, Google Health, that has been
permanently discontinued.

Personal Data Vault (pdv) [26] is a privacy architecture concept of gathering
and storing personal data. Such personal data can be anything from sleep
recording, nutrition and diet or everyday activity and exercises. In addition,
more sensitive personal data be integrated in the pdv. A Personal Health Record
(phr) is a health record over an end-users lifetime history with diseases, aller-
gies, illness, and hospitalizations.

2.3 Authentication with OAuth
Working and accessing personal data involve access to possibly sensitive data.
There are several areas in computer security that must be taken into considera-
tion. OAuth is an open protocol for authorization⁷ of web services. Its goal is to
be a secure, simple, and standardmethod to allow users to approve applications
to act on their behalf to gain access to resources without sharing their creden-
tials, such as usernames or passwords. For instance, large, software companies
such as Facebook, Twitter, and Google uses OAuth. Any application which is
able to post something on ones Facebook site have been given permission to
do so by you using OAuth.

OAuth is a way to give third-party services permission to use an end-users
account information, without revealing the users credentials: either username
or password to the service. What differentiates OAuth from for example OpenID,
which is a solution based on using a single identity account to access different
sites, is that with OAuth you give each third-party the permissions and access to
only what they need, without the possibility to see, modify or change anything
else and keep your credentials secret.

Any website with commentaries for instance, can make their end-users use
OAuth to connect to their social network account, like Facebook, Twitter or
Google+ to sign their commentaries. This prevents the users from having
to create accounts on every site and the websites from having to implement
user accounts in their systems. It also works the other way around. If you for
example want an application to see, post or change something on one of your

7. http://oauth.net/

14 CHAPTER 2 BACKGROUND

social network sites, you do not give the application your account information,
but instead you, via the application, log in to your Facebook, Twitter, or Google+
account and in turn, give the applications the permission it needs.

To achieve its goals, OAuth uses three credentials: client, temporary, and token,
with the client credential supporting RSA encryption. The credentials are used
to authenticate the client, allowing information to be collected, and resources
provided. Tokens are used for giving out usernames and passwords.⁸

There are two version of OAuth: 1.0 and 2.0. Although, version 1.0 is upgraded
to 1.0a, that fixed a security fault with the 1.0 version. The main difference
between the two versions are security, where OAuth 2.0 relies on SSL using
HTTPS. This means one can just send the api key and tokens as query strings,
whereas with OAuth 1.0 one must «sign» requests and send two security tokens
for each api call.

An important issue with Oauth is that it is non-interoperable with different
implementations of the OAuth protocol. Hence, integration of one system that
use different versions of OAuth is not straightforward.

2.4 Access Control, Data Management, andStorage
Data storage is how data is retained and maintained in a storage component.
Data storage can be structured as a hierarchical pyramid. The top of the pyra-
mid is fast but costly memory. Downwards the pyramid, access to the memory
becomes slower but is cheaper to buy. Hence, it is natural that one has most
of the cheapest memory. Two concepts that are important in data storage are:
volatile, data remains after the power turn off, and non-volatile, data is removed
when the power is turning off[32][42].

In data management, access control is about controlling who can access data,
so that the user can control how has access to their own data. This can be
done with a Access Control List (acl), which is a list over who has access
rights to given data. In the acl, each end-users privileges are defined. This
includes whether a user should have write, delete or read privileges to the data
records [42]. There can be multiple or groups of end-users accessing the same
data object [38].

8. http://oauth.net/

2.4 ACCESS CONTROL , DATA MANAGEMENT, AND STORAGE 15

Figure 2.6: Memory hierarchy

2.4.1 Database
A database is a collection of data in a structured and organized manner, and
there are many types of organized models for structuring the data. A database
schema is the structure describing the database system. Relational Database
Management System (rdbms), store data in related tables, making it quite
easy to understand how data is related. A table consists of columns and rows
that are related. A database is volatile, and holds information after power is
turned. One can expect longer access time to retrieve data stored at a database
then in the higher levels of the memory hierarchy. This is of the seek time on
disk for finding where the data is located [32].

2.4.2 Cache and Caching Algorithms
Cache is a storage component for temporally storing data. The cache is in one
of the top levels of the memory hierarchy. Data stored in a cache is in most
cases temporary and the cache is often small in size resulting in fast access
time to the data. The cache is also non-volatile, meaning that data will not be
preserved when power is turned off. If these data need to be preserved, one has
to store data to one of the lower levels in the memory hierarchy [32].

If requested data is present in a cache, it is called a cache hit and if the requested
data is not present it is called a cache miss. If a cache miss occurs, one needs
to acquire the data from another storage component.

When a cache storage is full, one needs to replace an entry in the cache for a
new entry of data. There are several replacement policies for caching:

Least Recently Used: Replace the data that was Least Recent Used (lru) in
the cache. That is, evict from the cache the data that are unused for the

16 CHAPTER 2 BACKGROUND

longest amount of time. One needs to keep track of when a data was last
used. There are several, almost similar replacement algorithm versions
and variants based on lru.

Most Recently Used: Replaced the data in the cache, which was most recently
used. That is evict from the cache, the data that is used for the recent
amount of time. One need to keep track of when a data was last used.

Random Replacement: Simple, randomly select a data entry for replacement.

2.4.3 "Big Data"
Big data involves large and complex collections of data, where traditional data
processing is di�cult to apply due to data volume. Challenges range from acqui-
sition of data, analysing, storage, and visualization. Big data defines challenges
in three-dimensions [21]:

Volume: Increasing the amount of data volume.

Velocity: In and out speed of data.

Variety: Many heterogeneous data types and sources.

In addition, an update to the definition adds two more challenges:

Veracity: The quality and trustworthiness of the data.

Value: The value and meaning of the data, in the context of how useful or
useless the data is.

Big data are used formany purposes. One thing is to find recognise patterns and
derive insight in the big volume of data and utilization of that information. For
processing the large amount of data, programming models such as MapReduce
[8] are often used. MapReduce mainly involves the writing of two functions.
A Map function takes the input and maps it into smaller key/value pairs, and
assign this smaller problem to working proccesses. Then the Reduce function
gathers the results from the working processes and combines these results in
a holistic result. An implementation of MapReduce is Hadoop MapReduce⁹,
which is an open source framework. Additionally, Cogset [44] is a MapReduce
implementation that is proven to be more e�cent than Hadoop MapReduce in
almost every case. Instead of dynamic routing of data done in other MapReduce

9. http://hadoop.apache.org/

2.4 ACCESS CONTROL , DATA MANAGEMENT, AND STORAGE 17

implementation, Cogset does the routing static.

In 2012, president Obama, announced and unveiled $200 million in research
and development initiative to Big data. To address the important problems
that can be faced and dealt with Big data [29].

2.4.4 RESTful API
Representational State Transfer (rest) is a software architecture style princi-
ple consisting of several properties[10][36] . These properties and principles
are:

Client-Server: Separation of concerns. The client have no concerns about the
server- side and vice versa. For instance, the client side has no concerns
about the storage at the server-side. The server-side has no concerns
about the interface at the client side. Simplifies things. That each side
only is concerned about itself.

Stateless: Stateless requests, were the server maintains no static accuse re-
quests.

Uniform Interface: The separation of concern is done through encapsulation.
Each part can be developed independently because of the de-coupled
design.

Layered System: Load balancing benefits a layering system. Each layer only
interacts with its intermediate layer. It simplifies the behaviour and re-
sponsibility for each layer by restricting the knowledge of other compo-
nents in other layers.

In almost all cases rest uses the Hypertext Transfer Protocol (http) for com-
munication. It focuses on how system resources are addressed and transferred
over http by any client written in any language. rest architecture princi-
ple operates the http methods with CRUD (create, read, update and delete)
corresponding with the http requests POST, GET, PUT and DELETE. Since its
introduction in 2006, REST has become popular because of its simplicity and us-
ability, often replacing other older technology like SOAP andWSDL [35].

18 CHAPTER 2 BACKGROUND

2.5 Data Integration and Interoperability Survey
Data integration is combining data from heterogeneous sources and providing
a uniform, homogeneous representation of these data. Interoperability is the
ability and functionality of making heterogeneous systems and applications
collaborate and work together as a whole system.

Many of the web services in the Health cloud do already connect to one another
to share and exchange data. To gain insight in the growing complexity of these
interconnected services, we have conducted survey on several popular activity
tracking web services, as shown in Figure 2.7. In the figure, blue are systems
with dedicated hardware devices, red are professional sport systems, and orange
are smart-phone based systems.

Figure 2.7: Eco-system of tracking system and devices.

We observed that connecting two services mostly consisted of adding an “app”
that could intermediate between the web-services. Every end-user account has
control over which application or web-services is connected to the account,
and different connections between the web-services offers different support for
synchronization of end-users personal tracking data. An example of connecting
an app from a Fitbit end-user account to Endomnondo and RunKeeper can be
found in Figure 2.8. Although interfaces are mostly simple to operate, we
found no common mechanism for connecting accounts, and it is unclear what
the underlying consistency and data sharing models are.

2.5 DATA INTEGRAT ION AND INTEROPERAB IL ITY SURVEY 19

Figure 2.8: Control over applications connected to a Fitbit end-user account

By manually inspecting all services in Figure 2.7 we constructed a data flow
graph, as shown in Figure 2.9, that summarize which services interact with
one another. Note that we could only obtain o�cial data flow information
from the service providers. Data exchanges between third-party entities, from
third-party software developers, is out of scope for this survey.

Figure 2.9: Connection of Application, synchronous data between

20 CHAPTER 2 BACKGROUND

2.5.1 Data Consistency Issues
Although the functionality to automatically synchronize end-user data between
the different services in the self-tracking ecosystem is benificial for availability, it
raises the question of data consistency. Moreover, there does seemingly not exist
a standard data rapresentation of data format or granularity, which might lead
to data corruption or other artefacts. This leads to several problems related to
how data flows between different systems, which we will exemplify next.

Data inconsistencies. For instance, when RunKeeper automatically im-
ports Fitbit end-user activity data, this will show in the "Fitness Feed" for the
RunKeeper end-user account. Although the imported Fitbit activities shows in
the feed, it does not reflect in overall activity summary numbers like calories
burned. A Screenshot of this is shown in Figure 2.10. In the upper bar, with in-
formation such as total miles, total activities and total calories, is the summary
provided for the RunKeeper end-user account. Under this bar one can see the
feed with several Fitbit posts with activity from Fitbit.

Figure 2.10: Fitness Feed in an end-user account at RunKeeper, the end-user are anony-
mously

Data duplication. When an end-user has connected Fitbit and Endomondo
¹⁰, the activity from Fitbit will automatically synchronize with the Endomondo
end-user account, and present the activity with the total summary for the end-
user. Figure 2.11 shows the Fitbit activity with distance, duration and steps.

10. http://www.endomondo.com/

2.5 DATA INTEGRAT ION AND INTEROPERAB IL ITY SURVEY 21

These are added to the summary of the end-user account at Endomondo. Then
the end-user has duplicated of that activity on two different web-services.

Figure 2.11: Fitbit recording for one day, automatically synchronized with En-
domondo and stored there.

Data consistency. Given an activity record from RunKeeper, as shown in
Figure 2.12. Exporting the activity in the GPS Exchange Format (gpx) file with

Figure 2.12: A record run in RunKeeper

gps data format for tracks and routes. The gpx file format data as Extensible
Markup Language (xml) format:

22 CHAPTER 2 BACKGROUND

<t rkp t l a t ="69.668616000" lon="18.916597000">
<ele >0.0</ele><time>2014−03−04T20:31:39Z</time>

</trkpt>
<t r kp t l a t ="69.668638000" lon="18.916554000">

<ele >0.0</ele><time>2014−03−04T20:31:39Z</time>
</trkpt>
<t r kp t l a t ="69.668553000" lon="18.916480000">

<ele >0.0</ele><time>2014−03−04T20:31:45Z</time>
</trkpt>
<t r kp t l a t ="69.668499000" lon="18.916284000">

<ele >0.0</ele><time>2014−03−04T20:31:50Z</time>
</trkpt>

Taking this record and importing it manually into other web-services. These
web-services are Endomondo Figure 2.14, Strava ¹¹Figure 2.13 and Sport-
TrackLive ¹² Figure 2.15. All the settings are the same, such as gender, age,
height and weight.

Figure 2.13: Importing the RunKeeper record into Strava

Their are some small deviations to the record after importing the record to the
other web-services, and one can assume that the web-services uses different
formula and calculation for getting these numbers. Hence, there is some small
variation in the web-services, and consistency is not preserved.

2.6 Summary
In this chapter background material for existing self-tracking systems and on-
line services are presented. We show that there exist an ecosystem of inter-
connected services that synchronize collected end-user data. Our survey over
data flow in these services reveals key consistency problems in these services.
Emerging out of this information, the prototype will be stated through the
knowledges and technical background presented in this chapter.

11. http://www.strava.com/
12. http://www.sportstracklive.com/

2.6 SUMMARY 23

Figure 2.14: Importing the RunKeeper record into Endomondo

Figure 2.15: Importing the RunKeeper record into SportTrackLive

3
Requirement Specification
This chapter outlines the requirements of the system based on the problem
definition in Section 1.1 and the background knowledge presented in Chap-
ter 2. Both functional and non-functional requirements are stated and we de-
scribe the the overall conceptual system model, outlining and defining an ab-
stract overview of the prototype system with the main components and fea-
tures.

3.1 System Functional Overview
To give end-user insight into their many online pdvs and health-tracking web
services, key functional requirements that we must develop are:

1. Connection to tracking web-services.

2. Retrieval of personal data from connected tracking web-services.

3. Consolidation of personal data from multiple tracking web services.

4. Presentation of the retrieved personal data to the end-user.

5. Storage of data.

25

26 CHAPTER 3 REQU IREMENT SPEC IFICAT ION

Connection and retrieval requirements are necessary as data resides on remote
web services and needs to be accessed over the Internet. There is currently
no mechanism to push or install processing functions to existing web tracking
services [18], and so all data consolidation and transformation must be done
in our system.

Establishing connection to a web service involves some form of authentication.
As argued in Section 2.3, OAuth is the most commonly used protocol for this
and we must be able to store and manage web-service credentials provided by
the OAuth protocol.

Once connection is authenticated and established, the systemmust request data
for retrieval. All web service apis we surveyed in Section 2.5 requires data to be
pulled over http. Our system must therefore manage the Uniform Resource
Identifer (uri)s for the web service apis that is to be used and associate each
connection with specification and limitations of each web service. Our system
will also need to schedule pull intervals between different web service in order
to optimize non-functional requirements and ux. In particular, the end-user
might specify a wide variety of date ranges which must be mapped down to
data request calls for the individual web services.

Data retrieved must be consolidated and presented for the end user. As argued
in Chapter 2, data from web services is often heterogeneous with varying for-
mats and granularity. Data consistency issues might also result in data point
duplication and other irregularities, as we discovered in our survey in Sec-
tion 2.5.1. The system must therefore have facilities to specify and execute
per web-service data transformation and consolidation rules. This in order to
homogenize data for presentation to the end-user.

Based on these requirements, the system is organized in three distinct logical
units: a frontend, which interacts with the user, a backend that retrieve and
process data requests, and the web services. A highly, abstract overview of these
unites are illustrated in Figure 3.1.

3.1.1 Frontend
Through some graphical interface, the end-user interact with the system. Input
from the end-user will be in the form of a range request for personal data
from currently supporting web-services or data sources for the system. These
requestswill be visualized in an interface for the end-user presenting the results.
Hence, this gives the end-user increased insight over where their personal data
is stored.

3.1 SYSTEM FUNCT IONAL OVERV IEW 27

Figure 3.1: The System Model,Abstract Architecture

3.1.2 Backend
The backend unit is the intermediate between the frontend and the web-
services. The backend will need to handle requests from the frontend and re-
sponse from the web-service unit. The backend shall process the request from
the frontend, depending on the request and execute instructions depending on
the request. Action can for instance be forwarding a request from the frontend
to the corresponding web-services. Additionally, the backend shall process the
response from the web-services, process it and forwarding the response to the
frontend. Finally, the backend processes the data that the system must store in
the right level of the storage.

3.1.3 Web-Services
The web-services that will be connected to the system must offer a api for third-
party developers to have access to their data and functionality. Selection of
the web-service will depend on that factor. Through the api the web-services
offers, it will handle requests from the backend and response depending of
these requests. Upon a request from the backend, the web-services will return
response data to the backend.

28 CHAPTER 3 REQU IREMENT SPEC IFICAT ION

3.2 Non-functional requirements
In the following, we will discuss the set of non-functional requirements [43]
needed to develop our system in accordance with the problem statement in
Section 1.1. We will discuss to what extend each listed requirement impact the
system we are to design and implement.

3.2.1 Security and Privacy
When processing personal data, security and privacy are important factors to
take into consideration. Authentication and access control against the web-
services is already determined by the OAuth mechanisms already in place in
these services. Our system must therefore handle OAuth access credentials in
a secure and safe manner. Data retrieval over Internet should also use end-
to-end encryption in the form of HTTPS when available for the web services
and HTTPS/SSL over internal connection that goes over untrusted networks.
Personal data should also be stored encrypted on disk. Although security and
privacy issues are crucial for real deployments, they are orthogonal to our
main objective and therefore will not be the focus of this thesis, as stated in
Section 1.3. These issues will be considered as part of eventual future work on
the system.

3.2.2 Reliability and Availability
Availability defines that the system must be up and running when an end-
user wants to access the system and its features. The system depends on the
personal data being provided from the web-services. However the web-service
may have access limitation for third-party systems, and this will affect the
availability to the system. For example, an end-user may want to retrieve more
data than the web-services allows from third-party system. The system will
then be unavailable. Reliability states that the data presented is correct and not
corrupted. How accurate and reliable the data is recorded at the web-services
is out of scope for this thesis. However, the system shall under any circumstance
not corrupt the data retrieved from the web-services and seek to present and
consolidate the data uniformly regardless how the heterogeneous web-services
represents the data.

3.2.3 Extensibility
The eco-system of web-services described in the survey 2.5 are rapidly changing
and constantly under development. The system shall be designed and imple-

3.2 NON-FUNCT IONAL REQU IREMENTS 29

mented in a way that extensible so that support for future web-services or data
sources is possible. Furthermore, adding new features and functionality to the
system shall be supported with out having to change the whole implementa-
tion.

In addition, the system shall support that if a web-service terminates its apis,
it will be simple to continue to function with out that web-services.

3.2.4 Scalability
The systemmust be able to handling an increasing number of end-users,without
serenely impacting the performance. Issues involve handling personal data
storage and maintaining credentials for the end-users. However, the system
will not be tested fully with many end-users due to practical limitations. Hence
the ability to have multiple, concurrent end-users at the same time, will be
considered the future work for this thesis.

In context of computations, functionality, and components take scalability will
be considered.

3.2.5 Fault-tolerance
One of the many benefits of utilizing web-services from big software companies
is that they have can make these systems and apis fault tolerant. If a failure
should occur, it is likely that they have the ability to recover from it quickly. One
can assume that there will be no minimum unavailability and downtime for
the web-services. Through redundancy of personal data one can improve fault
tolerance by having personal data several places, for instance, stored at the
backend of the system. However, redundancy raises consistency concerns, how
will the personal data hold it consistency. If an end-user has the functionality
and opportunity to modify an activity, the same record at stored elsewhere
may then be inconsistent due to modification.

3.2.6 Dependency
The system has a high degree of dependency because it relies on web-services
and their apis for data acquisition. As stated, these web-services may at any
time terminate apis.

30 CHAPTER 3 REQU IREMENT SPEC IFICAT ION

3.2.7 Interoperability
Having heterogeneous web-services integrate into a homogeneous system, one
needs to take integration and interoperability issues into consideration. Al-
though, in most of the web-services can use the same technology and methods
for the apis, they may represent data differently. For instance, an activity can be
represented in milliseconds, seconds, minute, hours or days. The system needs
to wrap these data and integrate it into the system to the same data format
for consolidating the data. The more inequalities between the web-services,
the more one need to take into concern and consideration to make the system
integrate comprehensive.

3.2.8 Maintainability
Maintenance of the system shall be simple and implemented in a way so that
it is easy for other developers to do maintenance and expansions. Although, as
stated by the web-services, one cannot guaranteed how long the web-services
will provide an api for third-party as well as maintaining these apis.

In addition, maintainability is important in case if the developer that started
with an implementation leaves, hence no longer works on the implementation,
and an another developer acquires to continue working on the implementation.
She will need to understand what previously been done by the developer.

3.2.9 Usability
Who the end-users of the system should be is not defined. However, the end-
users can have knowledge in ranging from non-technical to technical. This
leads to that the system shall have an intuitive User Interface (ui), that is
simple to understand. An intuitive design typically leads to a system with a
high degree of usability. However, due to practical limitation in evaluation of
the system, there will be no end-user survey to verify the usability of the system.
Although, under development of the system usability issues and concerns shall
be consider[27].

3.2.10 Performance
Performance defines the amount of time and resources used to perform a given
task. Depending on the context, a given level of performance will be no re-
quirement for the system. The performance depends on the apis, which is a
factor third-party developers have no control over. That the web-service api

3.3 SUMMARY 31

have limitations and boundaries, such as rate over access to the web-service,
will impact performance.

However, one will seek to increase the performance in making design decisions,
such as, storing personal data at the system for increase latency.

3.3 Summary
The system will be an independent, working system that can generate the
results outlined. Another aspect is that the system can be linked to the system
Girji [20]. The architecture of Girji, is to be an intermediate between the end-
user and their personal data and the analytical principals that are analysing
their data.

The system can be used as a component for the Girji architecture. The com-
ponent functionality could then be as a connector to the web-services or data
source for data acquisition. In Girji’s Consent Object, the system can store the
credentials needed for acquiring the data from the web-services or data source.
Other systems can also utilize the components for instance for acquisition of
end-users personal data to use in their system or in analytic.

This chapter has presented the functional and non-functional requirements.
Stating the limitation that must take into consideration under development of
the system.

4
Design
This chapter outlines the architecture and design of the system based on the
background knowledge in Chapter 2 and the functional and non-functional
requirement stated and described in Chapter 3.

4.1 System Architecture
In Chapter 3, the system model was presented and shown to consist of three
distinct units. The presentation of the system architecture will be structured
around these units.

4.1.1 Frontend
There are mainly two approaches to how an end-user can access their personal
data. Either an end-user can access her personal data directly on the web-
services sites. The functionality available will then depend on that is offered by
the particular site. For instance, can the functionality to export a self-tracked
record in an given file format be offered, the end-user can be offered the op-
portunity to manually input a activity.

The other approach is to use a third-party system, such as this prototype system,
that has access though the OAuth authentication protocol to the personal data

33

34 CHAPTER 4 DES IGN

on the web-services.

The architecture of our system is based on a client-server model, where the
client side provides thegui. The input from the end-user will mainly be request
for personal data from the web-services in form of a range query. The server side
receives requests from the client side, processes and performs the requested
service.

The frontend computes the personal data for presentation and consolidation
in the gui. By having the computation on the frontend the system scalability
is increase. Although, given a very large number, for instance 10 000 or 100
000, end-users to the system, backend performance will impact overall system
performance. A solution to this would be to have multiple homogeneous back-
ends with the same component connection to a master backend that has the
storage component with all the authentication credentials for all the end-users.
The main reason for not implementing this approach is the limitation in testing
with multiple end-users.

The frontend ui runs in a web browser, which make it possible to access from
many devices, such as stationary computers, laptops, tablets and smart phones.
In addition, the advantage with running the system in a web browser solution
that it will be independent of the operating system or platform. One issue can
be if a specific web browser does not have support for a given functionality. An
alternative solution for the frontend ui is to have a program or application in-
stalled at the frontend. With a program or application, the end-user must install
it on the frontend, and one needs to take into consideration what operating
system the program or application will be installed on.

4.1.2 Backend API
The backend api is the intermediate between the frontend and all the web-
services, and provides interoperability when different heterogeneous web-services
respond to a given request. By making the backend in this way, extensibility
and maintainability is increased. The backend handles request from the fron-
tend and processes these requests. The handling involves sending requests to
the web-services and receipt of responses. The main type of requests from the
frontend are range queries, for retrieval of end-user personal data from the
web-services.

4.1 SYSTEM ARCH ITECTURE 35

Figure 4.1: System Architecture

4.1.3 Access Control
A major consequence with personal data scattered over different systems and
web-services is that an end-user can quickly lose control over who has access
to their personal data. The system supports that every end-user has control
over who has access to retrieve their personal data through the system from
the supported web-services.

One of the main components of the system are two Access Control Lists acl.
One is for controlling who the end-user has authorized to access her personal
data. The other is a list of who the end-user has access to retrieve personal
data on behalf of. A use case scenario for this is if a coach wants to access a
player’s activity to gain insight in a player’s activity or perhaps sleep quality.
A coach can then be pro-active and find reasons why the performance on the
field is not as expected, and analyze and use this personal data for improved
coaching.

36 CHAPTER 4 DES IGN

4.1.4 Storage
One of the main reasons for the system to have a storage component is for in-
creasing performance and fault tolerance. In context of performance, given that
the web-services have access and request limitations, and if these limitations
are encountered, the system will then be unavailable. However, if a defined
amount of end-user personal data is stored at the backend storage component
it will decrease the load upon the web-services. Furthermore, having replica-
tion of personal data supports and increases the systems fault tolerance. Hence,
storing personal data impact the performance by decrease the access time to
retrieve the personal data.

The storage component of the systemwill contain a cache and aMySQL database.
Retrieving end-user data from the different web services requires end-user cre-
dentials, and these credentials are stored in an end-user table in the database
the very first time an end-user logs into the system. By storing the end-user
credentials, the end-user does not have to the same first sign in stages the
next time she uses the system. A database table will be used to hold the acl
describing who has access to end-user data.

In the cache, end-user personal data is temporally stored from current date
and backwards 30 days, because it is more likely that an end-user chooses
to examine and analysis the freshest data. In Haystack [3][14], although in
context of photos, they prove that the newest photos are the most likely to be
revisit in the nearest future. The same argument may be used for personal data;
the freshest data is the most likely to be accessed.

Another scenario for supporting the choice of what personal data to cache, is
that an end-user will also for current insight and progression see yesterday, last
week or perhaps last months activity. The number of steps taken on a given
date several months or years ago is not that likely to be accessed.

"You may cache data you receive through use of the Health Graph API in order
to improve your application’s user experience, but you should keep the data up
to date."¹, state that caching of Health graph data is allowed.

If an end-user wants to delete her personal data and account from the system,
her personal data and credentials are deleted in all storage components. Al-
though stated at RunKeeper: "Should a user disconnect from your application,
you may continue to store previously cached data, unless the user requests (via
mechanism we provide) that you delete such data. Upon such request, you

1. http://developer.runkeeper.com/healthgraph/api-policies

4.1 SYSTEM ARCH ITECTURE 37

shall delete the cached data of the disconnected user."²

An alternative system architecture is to remove the backend and have the
frontend access the web-services directly. One will then perhaps increase the
performance. One of the main issues supporting the backend solutions is that
the end-user authentication credentials should never be sent to the frontend
side. A security issue with having authentication credentials at the frontend,
however, is that one will then have to encrypt or embed them. Another issue
with not having a backend is that if an end-user accesses the web-services from
different devices the authentication process needs to be complied for each
device, since the credentials would be stored locally at the devices without an
backend solution.

4.1.5 Crawling
The crawler component of the system is for fetching the freshest data for each
end-user. This functionality ensures that the cache will contain the newest
data generated by the end-users. End-user personal data from RunKeeper is
not crawled because of stated in the api policies: "You cannot use web scraping,
web harvesting, or web data extraction methods to extract data from the Health
Graph or RunKeeper"³, To not violate these terms, no data from RunKeeper
is fetched without real-time end-user interaction. Regardless, RunKeeper have
no access limitation, therefore there are no need to crawl and cache personal
data from RunKeeper.

Crawlers have policies that will affect their design and behaviour. Combinations
of policies are selection, re-visit, politeness and parallelization policies.

Selection Policy: Selects Fitbit Sleep and Activity through the resource Uni-
versal Resource Location (url).

Re-visit Policy: Uniform frequency visits the selected cites every night after
midnight in a fixed order.

Politeness Policy: Limitation per end-user is 150 request per hour, and only 2
requests per end-user. The crawler should not in any cases overload the
server for the web-services.

Parallelization Policy: Not taken into account. Seen as out of scope for this
theses, can be added to further work.

2. http://developer.runkeeper.com/healthgraph/api-policies
3. http://developer.runkeeper.com/healthgraph/api-policies

38 CHAPTER 4 DES IGN

The crawler components backups the performance of the system through hold-
ing the freshest personal data in the system, which is most likely to me access
by the end-user.

4.2 Web Services and their APIs
Using a api can have many advantages and disadvantages. One of the major
drawbacks can be if the company that has developed the api changes it so
much that current systems or applications that are using it cannot longer work
properly because of the changes. A worst case scenario is if the company decides
to stop supporting and terminates the api. The web-services are factor that
the third-party developers have minimal control over.

An example of this is as follows:"Further, you acknowledge that Fitbit reserves
the right to disable or upgrade the Fitbit API and related services at any time
without notice to you and without any form of compensation or consideration
to you, regardless of the status of any Developer Applications. Fitbit has no
obligation to ensure that an upgrade of the Fitbit api or related services will
continue to be compatible with existing Developer Applications." as stated by
Fitbit.

"Termination. FitnessKeeper, Inc. may change, suspend or discontinue all or
any aspect of the Health Graph API, including its availability, at any time, and
may suspend or terminate your use of the Health Graph API at any time. Fit-
nessKeeper, Inc. may terminate your access to the Health Graph API and your
right to use it at any time, for any reason, or for no reason including, but not
limited to, if you engage in any action that reflects poorly on FitnessKeeper, Inc.
or otherwise disparages or devalues the FitnessKeeper trademarks or Fitness-
Keeper, Inc.’s reputation or goodwill. If you desire to terminate your agreement
to comply with the Health Graph Terms and Policies, you must cease to use the
Health Graph API" stated by RunKeeper.

All apis sets some terms and policies for the third-party developers, to protect
the rights and privacy of the end-users. The developers must agree on these
terms and if they are violated, the access to the api can be withdrawn from
the third-party.

There is an ecosystem of web-services out there, as the Survey in Section 2.5
illustrates, but not many off them offers a third-party api for developers. This
will limit what web-services can be connected to our system. The web-services
that the system is currently supports include RunKeeper and Fitbit, illustrated
in Table 4.1.

4.2 WEB SERV ICES AND THE IR AP IS 39

Web Service Type Data

Fitbit Flex Armband Steps, calories, sleep
RunKeeper App Smartphone Position, calories, distance etc

Table 4.1: Current Data Sources

4.2.1 Fitbit
Although an end-users activities and sleep can be recorded by the same wear-
able device, it is not guaranteed that the end-user remembers to track her sleep.
For that reason, the system sees the sleep and the activities from an end-users
Fitbit account as two different sources of personal data.

Fitbit has two APIs: A one Public and a one Partner API. The Public api can
developers use after they have registered their application on Fitbit developer
cite⁴. Here the developer states and describes the purpose of the application
and where the application should be redirected through stating the callback
url. The Public api is currently rate limited to 150 requests per hour for each
end-user. Although the number of end-users of the system may increase, it will
not affect the limit rate for the system using the Fitbit api. This limitation is
for insuring a consistent and stable access for all applications. If the limit is
exceeded, the Fitbit api will email the developer a notification to the email
address registered.

The Partner api is an extension to the Public api. In addition to offering the
same as the Public api it can also fetch more detailed end-user data with finer
granularity. For instance, the Public api offers only number of steps per day,
but with the Partner api, one can retrieve with a granularity of steps per 15
min or 1 min, making the data fetched more accurate and precise. To gain
access to the Partner api a developer must inquire a personal request to Fitbit.
These request are granted individually on a case-by-case basis, depending on
why it is necessary to have access to the Partner api.

The systemwill use the partnerapi from Fitbit for accessing optimal granularity
for activity. The access to the partner api is gain though Girji [20], that has
these privileges.

4. https://dev.fitbit.com/apps/new

40 CHAPTER 4 DES IGN

4.2.2 RunKeeper
RunKeeper and the Healthgraph api have not listed any limitations upon what
the system needs to fetch of personal data and will not affect the design of the
system.⁵.

Although, it would be most preferred to utilize web-service apis with no limita-
tion. One must use the different web-service because they track and record dif-
ferent personal data. For instance, RunKeeper do not track sleep activity.

4.3 Summary
In this chapter the architecture of the system is discuses and presented. Design
decisions are taken in relation to the functional and non-functional require-
ments stated in Chapter 3.

5. http://developer.runkeeper.com/healthgraph/api-policies

5
Láhttu
This chapter presents the Láhttu system. Láhttu is a word from the Sami lan-
guage meaning making tracks in the snow done by ski. These tracks leave a
visible trace for others, until the tracks eventually melt or snow away. Similarly,
tracking activities can leave a virtual track of the activity for insight, study-
ing, and analyzing. The many details around the implementation of Láhttu is
describe in this chapter.

5.1 Frontend
As stated in Chapter 3 and Chapter 4, Láhttu has a frontend unit. The Frontend
part of Láhttu consists of gui for the end-users, as well for input requests
from the end-users. For accessing and using Láhttu, creation of a user account
and password is not necessary. Láhttu utilizes already existing technology and
methods for managing end-user account. Maintenance of end-user information
and corresponding end-user password are the RunKeeper handles. Through
methods offered by Healthgraph, a developer can easily establish a connection
to RunKeeper by configuring a login button with the proper information that
is required. The required information is the Client ID, a 16 bytes HEX string,
which is assigned to the developer after registration of the third-party system
or application on the HealthGraph. Also, it contain a redirect uri for where the
end-users should be redirected after the signing process, which is the main page
of Láhttu. The developer can also configure login buttons with Cascaading Style

41

42 CHAPTER 5 LÁHTTU

Sheets (css) and structure HyperText Markup Language (html) through
support from the HealthGraph. This button is shown in the screenshot 5.1. This
is a method of authentication when signing up for Láhttu or returning.¹

Figure 5.1: Screenshot of Láhttu login page with the RunKeeper connection button

The end-user is upon first login presented with two options; either allow-
ing Láhttu privilege to access their personal data on the terms stated at the
end-users account at RunKeeper, or denying Láhttu access. Shown in screen-
shot 5.2.

If an end-user chooses to deny Láhttu access, the end-user will be redirected
to an error page. However, accepting the terms of Láhttu for RunKeeper, the
end-user will be redirected to the main page of Láhttu. The process is shown
in Figure 5.3.

1. http://developer.runkeeper.com/healthgraph/login-plugin

5.1 FRONTEND 43

Figure 5.2: Screenshot of the option for the end-user for RunKeeper

Figure 5.3: Flow over the login process

44 CHAPTER 5 LÁHTTU

Once an end-user has allowed and accepted the terms of Láhttu for their Run-
Keeper account, the system checks in the database for the Fitbit credentials for
the end-user. If they do not exist in the database, the end-user is redirected
to the Fitbit site, where the end-user must allow or deny Láhttu privilege to
access her personal data on Fitbit. Láhttu utilizes the Partner api for Fitbit, this
privilege is gain through the Girji system [20] which has access to the Partner
api, as Figure 5.4 illustrates.

Figure 5.4: Screenshot of the option for the end-user for Fitbit

Both for RunKeeper and Fitbit this will only happen the very first time a end-
user uses Láhttu.

When the sign-in process is done, the end-user is at the main site of Láhttu
where the end-user can choose a range query between two dates for fetching
personal data from any web service Láhttu currently supports, as shown in
Figure 5.5.

5.1 FRONTEND 45

Figure 5.5: Screenshot of the main page of Láhttu

The end-user will then be presented with an timeline over consolidation of
activity recorded and at which web services the personal data is located. Shown
in screenshot 5.6.

Figure 5.6: Screenshot of the main page of Láhttu after an Range Query for 4th of
March

Láhttu at the client-side offers a dynamic, interactive web interface, and this is
implemented by using JavaScript with several JavaScript libraries, as Shown in
Table 5.2. Communication and requests from the end-user are done by Asyn-
chronous JavaScript and XML (ajax) in an asynchronous style with http
methods between the frontend and backend, without reloading the interactive
web interfaces of the frontend[23]. However, communication could have been

46 CHAPTER 5 LÁHTTU

done with WebSockets, which initialize a TCP connection between the client
and server side. The communication channel is held open until the connection
is closed, making it possible for the server side to send content to the client side.
A major drawback with WebSocket is that not all web browsers have support
for WebSockets.

ajax takes advantage of JavaScript event loop. This is simply a queue where
messages to be processed are added. JavaScript runs in a single threadmeaning
executing functions will block events, like an end-user pressing a button, until
it has finished executing. Only then, the JavaScript runtime can process the
button click event. Every message in the message queue has a function attached
that the JavsScript runtime will execute. For ajax, when a response is received
from the back-end, a message is added to the message queue, with a callback
function to be executed attached. The callback specifies what to do, for instance,
to process the response data and add it to ahtml DIV so it will be visible in the
web browser for the end-user. Any time an event occurs, the message queue is
updated, but only if there is a listener attached to the event. A button without
an event listener will fade silently.

The ajax calls are done with jQuery², which is a JavaScript library that simpli-
fies all the standard JavaScript functionalities. In addition, jQuery is utilized
in the implementation for accessing different html DOM-elements. The argu-
ment for this is for the simplicity. jQuery is one of the most popular JavaScript
libraries available, and big company such as Google, Microsoft, IBM and Netflix
are utilizing jQuery.

Data between the frontend and backend is represented by JavaScript Object
Notation (json) format³. Although json originates from JavaScript, json
is a completely independent language data interchange format. It represents
data in collections of key-value pairs in a similar way as dictionaries, struct,
and hash tables do in various languages. In addition it supports ordered lists of
values similar to arrays, lists or vectors. Additionally, json is faster and easier
to parse than xml and has proven to be a good replacement for xml.

The ui is done with css and html, with several included libraries. These
libraries are the Bootstrap libary that has design templates for css and html
and Highchart libary for charts. The main features of the gui are the timeline
that presents the range between two given dates with personal data from all
the web services. The timeline is from the D3-library ⁴, with several methods
for representing data in timelines. The timeline represents date and time in

2. http://jquery.com/
3. http://www.json.org/
4. //github.com/jiahuang/d3-timeline

5.2 BACKEND 47

Language Purpose

JavaScript Interacktiv website
HTML Structure of the website
CSS Styling of the website

Table 5.1: Language at Frontend.

Library Purpose

Highcharts varies charts
Bootstrap Twitter framework
D3-timeline Timeline

jQuery simplify
AJAX Asynchronous communication between front-and-backend

Table 5.2: JavaScript Libraries and features.

milliseconds, so personal data from the varies web-services must wrap up the
date to integrate with the timeline.

Figure 5.7: Screenshot of the timeline with personal data in the range of 4th to 5th
of March

5.2 Backend
The backend is the server-side software and intermediate that performs, pro-
cesses and handles the request upon the web services and from the frontend.
When selecting the programming language for implementing the backend,
there are several aspects to take into consideration. One of the main justifica-
tions will depend on what programming languages the web-services support.
Personal preferences will also affect the choice. The backend is implemented
in Python 2.7.4⁵, which is a high-level, object-oriented programming language.
Python offers numerous libraries for functionality. The libraries utilized in this
implementation are stated in table 5.4. Although C would have better perfor-
mance and low-level details than Python, one must code more to achieve the
same functionality.

5. https://www.python.org/

48 CHAPTER 5 LÁHTTU

HTTP methods Action

HTTP GET/RunKeeper Get range query of activity from RunKeeper
HTTP GET/FitbitCredentials Check for credentials, if not present, retrieves

HTTP GET/index Start html page
HTTP GET/login Login button

HTTP GET/FitbitSleep Get sleep activity for the query range
HTTP GET/FitbitActivityMIN Get steps activity for the query range
HTTP GET/FitbitUserInfo User info from fitbit
HTTP GET/FitbitDistance Total distance in query range from fitbit
HTTP GET/checkAccessID Check the access ID
HTTP GET/getUserID Get user ID for the current end-user
HTTP GET/checkAccess Retrieves all the end-user one have access to
HTTP PUT/GivenAccessTo Give access to an end-user

HTTP DELETE/removeAccess Removes access from a end-user

Table 5.3: HTTP methods

Library Purpose

JSON json support
Requests Sending HTTP request

web Web.py
rauth Oauth lib

datetime manipulating date and time
MySQLdb MySQL lib
pystache Mustache lib

healthgraph HealthGraph lib
urllib fetching data
sys access the interpreter
os operating system interface

Table 5.4: Python Libraries

The web framework is done with web.py ⁶, a simple, lightweight Python web
framework, exposing the rest interface. The backend exposes a api for the
JavaScript to use. The end-users send data requests from the frontend, through
a http GET with a query string embedded in the url. The query string
contains data passed from the frontend request to the backend, to be operated
on at the backend. The http methods is in Table 5.3.

All the components on the frontend and backend side supports UTF-8 encoding

6. http://webpy.org/

5.2 BACKEND 49

for representing every character in the unicode character set. The main reason
for that choice is to support the Norwegian letters ’Æ’,’Ø’ and ’Å’.

5.2.1 Time, Date, and Range Query
Time and date is represented in "YYYY-MM-DD" format, both for RunKeeper and
Fitbit. When selecting a range for the range query, one selects from a starting
date to a stop date. Further, three seperate http GET request are generated
and sent to the backend with a url with a query range embedded in a query
string. At the backend side each request is routed to the correct function based
on the url. All three functions at the backend get the end-user credentials
from the storage. For RunKeeper, the request is that the starting date is "noEar-
lierThen" and stop date is "noLaterThen", and RunKeeper returns all activity
between these dates. If an end-user request a whole year from RunKeeper, and
there is only one activity in the requestet date range, the response will only
contain one item. However, if an end-user request for a year from Fitbit, the
response will contain all dates whether the dates have recorded an activity or
not. If a date do not contain a date, it will only contain ’0’ values.

Figure 5.8: Request Range Query

Fitbit, for both sleep and steps, needs a loop for retrieving all personal data in
the desired range. Thus, the greater the range in the range query is, the more
processing the backend has to perform. The frontend sends a range query
request with the range in the "YYYY-MM-DD" format. On the backend side, the
Python library datetime⁷ converts the date into a datetime object.

7. https://docs.python.org/2/library/datetime.html

50 CHAPTER 5 LÁHTTU

start_range = datetime.datetime.strptime(noEarlierThan,
"%Y-%m-%d".date().isoformat())

stop_range = datetime.datetime.strptime(noLaterThan,
"%Y-%m-%d".date().isoformat()

In the loop, as long as start range is less or equal to the stop range, a request
to Fitbit for the date is sent. When Fitbit has responded to the request, the
datetime object is increased by one day. This is done until all dates in the range
are retrieved.

start_range = start_range + datetime.timedelta(days=1)

The whole request is illustrated in Figure 5.8. Although, this could have been
differently, by sending only one request from the frontend to the backend.
Having three separate request handles makes the maintenance of the system
simpler, if one were to remove a web-service. In addition, responses are easier
to handle by separating the requests.

5.2.2 Storage
Láhttu has an hierarchy of storage components: a cache and a MySQL database,
each for different purposes.

Cache
The cache of Láhttu is a key-value storage, where the key is "unique 16 bytes
HEX string + which data source + date" for each insertion in the cache. The
cache holds the last 30 days from current date and backwards. The crawler
component is the one that insert into the cache for the end-users. If an end-
user requests an older record of data than the previous 30 days, this record
will not be inserted into the cache. When a new date is to be inserted, the
oldest date is replaced in the cache. The cache has a First In First Out (fifo)
queue implemented as a stack for holding all the keys. When one replaces a
key, the oldest key is popped of the fifo queue. lru replacement policy is not
necessary because the cache will always hold the freshest 30 days of data, and
not the personal data the end-users has recently accessed. Also, achieving a
good lru replacement policy one will need to keep track of when a value was
last accessed.

The cache could have been implemented as a list structure with 30 indexes and
removing always the value in the last index. However, when the data source

5.2 BACKEND 51

can be of various source, it is better to have a key and direct look up on that
key instead of iterating through the list. Another list structure solution would
be to have several list where each list contained a unique data source.

When an end-user request a date the system check first in the cache, if the date
is not contained in the cache, there is a cache miss resulting further that the
backend request the web-services for the date for personal data.

Database
The main storage of Láhttu is a MySQL database performing Structured Query
Language (sql) queries upon. There are two tables: one for the user creden-
tials and one for acl. Every delete and insert query upon the database tables
has commit and rollback functionality.

The user credentials hold for each row in the tablets, all the different web
services credentials for accessing the web services for the end-user. In addition,
the ID-number and Name of the end-user is included.

The acl tables hold end-user access authorizations organized around end-users
ID-numbers, each has a one-to-one mapping for access privilege. Thus, a row
describes which end-users that have given the access and which end-user now
have these privileges.

The database handles sql injection by escaping the variables in the query.
Using "%s" instead of direct variables, the variable or value is then passed
through a tuple or a list. This is done for security and protection reasons, so
that the database table would not be altered through end-user input in the
system.

query = cur.execute("SELECT Fitbit_rok, Fitbit_ros
FROM user_credentials WHERE ID = %s", ID)

5.2.3 Crawler
One of the main components of Láhttu is the crawler, which fetches personal
data from the web-services automatically without any real-time end-users input.
A cron job in Linux is scheduled to start every night after midnight for starting
up the crawling. It starts by using the current date, to calculate the previous
date of interest.

52 CHAPTER 5 LÁHTTU

today = datetime.date.today()
yesterday = today - datetime.timedelta(1)

Then the crawler queries for all the credentials for all the end-users currently
in the database table. These credentials are the RunKeeper Access Token, Fitbit
Resource Owner Key and Secret. These credentials are needed for retrieving
the personal data on behalf of the end-users. For each end-user in the table,
the crawler checks if there exists a cache entry for that end-user, if not, it will
be initialized. A key is generated for the cache with the right name. Then the
Fitbit activity is fetched and inserted into the cache for the end-user.

The same process is repeated for the Fitbit sleep data for the end-users. The
crawler continues in the same order until all the end-users personal data is
fetched and inserted into the cache.

5.2.4 Web-services API
Láhttu currently supports two different web services: Fitbit and RunKeeper.
There are several web services which have no api for third-party develop-
ers.

Getting started with these apis, the developer must register her system or appli-
cation on the website to the web service. For Fitbit and RunKeeper, registration
of an application the developer insert information such as in table 5.5 and 5.6.
The third-party developer must read and agree to the terms of the web-services
when registering. After the registration, the developer will receive for her appli-
cation a Client Key, a 16 bytes HEX string and a Client secret, a 16 bytes HEX
string. Also, she will be given a url for the authorization part, including url
for token retrieving. Although, Fitbit and RunKeeper have many of the same
processes here, they use different versions of OAuth.

Type Information

Application Name Developers choice of name
Description Developers description of the application

Application Website main url of the application
Application Type Desktop or Browser
Callback URL URL for redirecting

Default Access Type Read and Write or Read-Only

Table 5.5: Register an application at Fitbit, Required Information

5.2 BACKEND 53

Type Information

Application Name Developers choice of name
Description Developers description of the application

Application Icon picture
Permission requests Read, Edit and Retain Health Information

Authorization Removal Callback URL max. 2048 charther

Table 5.6: Register an application at RunKeeper, Required Information

Both apis offer response in json, and additionally Fitbit api offers responses in
xml. Taken the request with the range query and the date "2014-03-04", illus-
trated in Figure 5.8, an successful response is illustrated in the Figure 5.9.

Figure 5.9: Response Range Query

The response from RunKeeper is as described in Appendix A.1. The backend
forwards the response to the frontend without modifying the data. On the
frontend side, the data retrieved from the backend is converted to adapt and
integrate with the timeline. RunKeeper represents the activity duration in sec-
onds and the timeline in milliseconds. On the frontend the response data is
stored in the variable runKeeperdata. Furthermore, the convert function ac-
cesses the values in the json for the start time of the activity and duration of
the activity. The function uses Date.parse() to parses the time into a UNIX time.
Converting the duration of the activity from seconds into milliseconds.

var s t a r t _ t ime = runKeeperdata ["items"][i]["stater_time"] ;
var un ix_ s t a r t _ t ime = Date . parse (s t a r t _ t ime) ;
var durat ion = runKeeperdata ["items"][i]["duration"] ;

durat ion = durat ion * 1000;

54 CHAPTER 5 LÁHTTU

var unix_stop_t ime = un ix_ s t a r t _ t ime + durat ion ;

The response from Fitbit Steps is as described in Appendix A.2. On the frontend
the response data is stored in the variable FitbitMINData. Furthermore, the
convert function accesses the values in the json for steps in the date. If there
are no steps in a given minute, the value for that minute is ’0’ and will not be
taken care of. The function uses Date.parse() to parse the time into a UNIX
time. The steps are represented in steps per minute, and converted this to
milliseconds to integrate with the timeline for consolidation.

f o r (var i =0; i < Fitb i tMINData . length ; i++){
var date_t ime = Fitbi tMINData [i]["activities-steps"]
[0]["dateTime"] ;
f o r (var j =0; j < Fitb i tMINData [i]["activities-steps-intraday"]
["dataset"] . length ; j++){

var t imes_d i c t = {} ;
var value = Fitbi tMINData [i]["activities-steps-intraday"]
["dataset"][j]["value"] ;
i f (value != 0){

var min = Fitbi tMINData [i]["activities-steps-intraday"]
["dataset"][j]["time"] ;
var temp_date = date_t ime + "␣" + min ;
var unix_date_t ime = Date . parse (temp_date) ;
t imes_d i c t ["starting_time"] = unix_date_t ime ;
var min_ in_mi l l i s e c = 60000;
unix_stop_t ime = unix_date_t ime + min_ in_mi l l i s e c ;
t imes_d i c t ["ending_time"] = unix_stop_t ime ;
t imes . push (t imes_d i c t) ;

}
}

}

The response from Fitbit Steps is as described in Appendix A.3. On the frontend
the response data is stored in the variable FitbitSleepData. Furthermore, the
convert function accesses the values in the json for sleep start time and stop
time in the date. The sleep from Fitbit is represented in milliseconds. However,
one need to subtract one hours or 360 0000 milliseconds to adjust to the time-
line. The function uses Date.parse() to parse the time into UNIX time.

f o r (var i =0; i < F i t b i t S l e epDa ta . length ; i++){
fo r (var j =0; j < F i t b i t S l e epDa ta [i]["sleep"] . length ; j++){

var t imes_d i c t = {} ;
var date_t ime = F i t b i t S l e epDa t a [i]["sleep"][j]

5.2 BACKEND 55

Service Data Granularity

RunKeeper Seconds
Fitbit Sleep Milliseconds
Fitbit Steps 1 min or 15 min

Table 5.7: Web services represent data

["startTime"] ;

var unix_date_t ime = Date . parse (date_t ime) ;
unix_date_t ime = unix_date_t ime − 3600000;

var s l e e p _m i l l i = F i t b i t S l e epDa t a [i]["sleep"][j]
["duration"] ;

var unix_stop_t ime = unix_date_t ime + s l e e p _m i l l i ;

t imes_d i c t ["starting_time"] = unix_date_t ime ;
t imes_d i c t ["ending_time"] = unix_stop_t ime ;
t imes . push (t imes_d i c t) ;
}

}

5.2.5 Access Control
One of the main features of Láhttu is offering access control over their personal
data, by implementing an acl. One list contains every other end-user the end-
user has given permission to access her personal data. The other list contains
whose personal data the end-user has access to. When an end-user gain ac-
cess to another end-user personal data, this end-user gains only principle of
least privilege, meaning that the end-user that is given privileges to access on
behalf, only have the essential privilege to perform the access, nothing more
[38].

Each end-user is assigned a unique ID-number, and with this ID-number end-
users of Láhttu can share their ID-number for giving other end-users permis-
sion.

For instance, say there is a coach C and an athlete A, C wants to access A
personal data for greater insight and overview.

56 CHAPTER 5 LÁHTTU

Then C gives her ID-number to A, then A enters while signed into Láhttu C the
ID-number for the given permission to C. A can now see that C has permission
to her personal data from the web-services through Láhttu. Now C can login to
Láhttu an see what that A may have permission and access to, and then chose
to access personal data on their behalf. When C chooses to access personal
data of A, Láhttu executes a sql query on the acl table in the database for
permission check. A can whenever she desires revoke and remove the availabil-
ity to access her personal data. Then, a delete sql query is performed on the
database.

Figure 5.10: Give access

When an end-user wants to give another end-user permission to access her
personal data, she inserts the other end-users ID-number in the insertion field
and clicks on the add button. The frontend sends an http request containing
a urlwith an query string with the other end-users ID number as data. On the
backend, a checks first done for duplication of the access privilege in the acl
table of the database. If the other end-user is currently in the table with the
access permission to the end-user, the backend returns immediately and the
frontend pops up an alert message saying that the other end-user has already
access permission.

If there is no duplication in the table, the backend executes a sql insert query
with ID number of who has given access from and who has been granted access
to. The name of the end-user that has been given permission is returned and
appended the acl list in the guimain page of Láhttu. In addition, the backend
checks if the end-user has inserted an ID-number tries to add an ID number
that is non-existing in the system. If the ID number is not current, the backend

5.3 SUMMARY 57

returns and an alert message pops up.

An end-user can revoke this access to their own personal data any time. When
the end-user clicks on the delete button. The frontend sends an http request
containing a url with an query string with the other end-users ID number for
which access is to be revoked. The backend executes a sql delete query with
ID number of whom has given access from and who has been granted access
to for deleting the row in the table. The gui removes that end-user from the
acl list over whom one has given access to.

When an end-user wants to access other end-users personal data, the end-user
clicks on the name of the desire end-user from the acl over who one has access
to. Then a field in the gui will show, with the opportunity to selected a range
between to dates.

5.3 Summary
In this chapter we have presented our system, Láhttu, which is an intermediate
between end-users and the activity-tracking web services. The many imple-
mentation details have been descried in this chapter.

6
Evaluation and Results
This chapter presents an evaluation of Láhttu. Several important aspect of this
thesis will also be discussed.

6.1 Methodology and Methods
Stated in section 1.2, this thesis follows the Design paradigm. The design pro-
cess for the thesis is using prototyping[33], which is the best approach when
not all details are identified and defined. This will make the process more
abstract and non-rigorous, exploring ideas more easily, when constructing a
system with requirements and specifications.

Firstly, the prototype process starts with an idea, which is an abstract descrip-
tion of a problem and defining loosely a thinkable solution to the problem. The
idea is what will shape and form the system.

Then we need to define the design and architecture with all the components
and their functionality. In addition, more details for the system will be defined
in this stage, taking into consideration requirements and specifications. The
next stage is to implement the design, which is itself the prototype system.
Although the limit prototype system needs improvements, it provides a basic
solution to the idea. However, performing experiments on the prototype sys-
tem provides empirical insights, which validates the features and functionality.

59

60 CHAPTER 6 EVALUAT ION AND RESULTS

Figure 6.1: The prototype paradigm.

Much experience is gained through this stage.

These steps are iterated over, until a system is more properly defined and
finished. If a good given idea or design is not enough, one can start all over
again or move back to a previous step.

As stated in the problem definition in Section 1.1, the prototype system should
be evaluated through proof of concept, meaning that, testing and evaluation is
done to investigate if the prototype system is feasible. Hence, that the prototype
system fulfills the stated problem definition.

6.2 Proof of Concept
The main idea with the prototype system is to give end-user insight and control
over of their personal data on the various of web-services. From listings in
Appendix A, we see that personal data can be retrieved from heterogeneous,
activity-tracking web-services.

In addition, through the gui, presented in Chapter 5 and the timeline illus-
trated in Figure 6.2, we see shows that the prototype system present, and
consolidates personal data from Appendix A.

6.3 EXPER IMENTS 61

Figure 6.2: Timeline of the personal data retrieve in the Appendix A

Taking a closer look at the timeline illustrated in Figure 6.2, that the granularity
of the personal data in optimal for insight and integrate into a homogeneous
presentation.

Figure 6.3: Closer look at the timeline in Figure 6.2

The prototype system verifies and proves through proof of concept in the form
of testing the system, that it is feasible.

6.3 Experiments6.3.1 Experimental Setup
All experiments were conducted on the following hardware and software:

• A Dell Precision 390 with processor 4x Intel(R) Core(TM)2 Quad CPU
Q6600 @2.40 GHz.

• 4 GB DDR2 RAM and ATA SAMSUNG HD501LJ 500 GB.

• Operating system is Linux Mint 15 Olivia.

• Láhttu is tested on the web browsers Google Chrome and Mozilla Firefox
with the url Localhost on port 8080.

62 CHAPTER 6 EVALUAT ION AND RESULTS

End-Users: 1 10 100 1000 10.000

One day 2 20 200 2000 20.000
One Month 60 600 6000 60.000 600.000
Three Month 180 1800 18.000 180 000 1800000
Half year 365 3650 36500 365000 3650000
A year 730 7300 73000 730000 7300000

Two year 1460 14600 146000 1460000 14600000
Few year 3650 36500 365000 3650000 36500000
Ten year 7300 73000 730000 7300000 73000000

Table 6.1: Correlation between number of end-user and required number of API re-
quests.

In addition, for testing one need to create a test account at RunKeeper and
Fitbit. The personal data used is our own personal data.

6.3.2 Estimation of requests
We are interested in a scenario where a researcher wants to collect and analyze
large amounts of personal end-user data. In an epidemiological study done
through the Tromsø Study [17], if a researcher would like to use step/everyday
activity and sleep for the case study, the researcher would estimate the time it
would take to retrieve all these data. Given for instance, an experiment with
a time period of 10 years and 10 000 test end-users. The number of requests
depending on the numbers of end-users and number of days is illustrated in the
Table 6.1. The researcher would then request the Fitbit api 73 million times
for all the personal data she would need for the research. If the researcher
takes only one end-user at a time, she would request all 10 years of personal
data for only one end-user before continuing on to the next end-user in the
case study. With the limitation of 150 requests per end-user per hour, 10 years
of personal data from Fitbit would take 48-49 hours per end-user. Requesting
personal data for 10 000 end-users a time of 485 000 hours, 20 208 days or
55 years. Table 6.1 takes requests for the end-users with both details for sleep
and steps through the Fitbit API-Get-Sleep and Fitbit API-Get-Intraday-Time-
Series.

A successful request to the web-services returns the response code 200- OK. If
the limit rate of the end-user is exceeded, the response code 409 - Conflict, is
returning with a message telling that one must wait until the next hour before
continued requests to the web service can be issued.

Another improvement could be for the researcher to issue requests to the web

6.3 EXPER IMENTS 63

service in parallel for different end-users. Executing several requests in parallel
would decrease time extremely. Another solution could be to divide the request
into smaller portions. For instance, taking a half a year of one end-user, counting
with the next end-user half a year until all 10 000 end-users personal data is
retrieved, basically context switching between the end-users. The researcher
can request cache of Láhttu for the same information, for better latency, which
we will experiment next.

6.3.3 Latency
The latency will depend much on the network and processing of server imple-
mentation for the web services. Another factor that is worth mentioning is that
the request will be sent from Tromsø, Norway and the web services servers are
in the USA.

Figure 6.4: Latency figure

The end-to-end latency would have been different if one were testing from
another country. Taking into consideration that the server load at the web-
services can affect the time. The same range are tested on the same dates, for
accuracy.

The Python function time.time() returns the time the request takes in seconds

64 CHAPTER 6 EVALUAT ION AND RESULTS

Fitbit One day One Week One Month Three Months Six months a Year

Steps 0.87051 6.90366 26.59282 76.22344 156.95865 297.04248
Sleep 0.88108 7.02704 27.15323 73.04234 147.33407 307.59995

Table 6.2: The end-to-end latency from the Fitbit Web-serivce.

Cache One day One Week One Month Three Months Six months a Year

Steps 0.00010 0.00031 0.00057 0.00240 0.00449 0.01012
Sleep 0.00001 0.00007 0.00085 0.00146 0.00261 0.00616

Table 6.3: The end-to-end latency from cache.

as a floating point number. In this context, latency is measured from the back-
end side and roundtrip back to the backend, not from when an end-user clicks
on the request button on the frontend gui. Another aspect is that while testing
only one web-service is tested at a time, so the results would not be disturbed
or polluted.

sum_time = 0
s t a r t = time . time ()
#reques t goes here
end = time . time ()

t o t a l _ r eque s t _ t ime = s t a r t − end
sum_time = sum_time + to ta l _ r eque s t _ t ime

When there are several dates to request, the measuring sums the time in a
variables for holding the time.

Every request to Fitbit takes roughly 0.85 seconds, estimated from the results
in Table 6.2. Estimating that without any limitation from the web service or
hardware specification limitations, the researcher would use almost 2 years for
acquisition all the personal data for the study. Latencies are Shown in Table
6.4.

Every request to the cache of Láhttu takes roughly 0.00005 seconds. The re-
searcher would for the same acquisition of the personal data use approximately
an hour. Table 6.5 illustrates that the cache is an extremely improvement for big
data acquisition. However, the problem in practice is that the cache is limited
in size and old data will have been evicted. Table 6.5 and Table 6.4 initially of
the Table 6.1, for the number of request the researcher would needed for the
case study. Although, in practice the cache is limited in size, this showed that

6.4 EVALUAT ION OF NON-FUNCT IONAL REQU IREMENTS 65

Fitbit Steps

Fitbit Sleep

Cache Steps

Cache Sleep

0

50

100

150

200

250

300

350

1
7

30
90

180
365

La
te

n
cy

 (
s)

Number of days

Fitbit Steps

Fitbit Sleep

Cache Steps

Cache Sleep

Figure 6.5: Latency Chart for table 6.2 and table 6.3

WEB SERVICE 1 10 100 1000 10.000

One day 1.7 17 170 1700 17 000
One Month 51 510 5100 51000 510.000
Three Month 153 1530 15300 153 000 1530000
Half year 310.25 3102.5 31025 310250 3102500
A year 620.5 6205 62050 620500 6205000

Two year 1241 12410 124100 1241000 12410000
Few year 3102.5 31025 310250 3102500 31025000
Ten year 6205 62050 620500 6205000 62050000

Table 6.4: Seconds for acquisition personal data from the web service

storing the personal data at the system would increase the acquisition of data
extremely.

6.4 Evaluation of non-functional requirements
The non-functional requirements were defined in the Section 3.2. In context of
the implementation of Láhttu these requirements will now be discussed.

66 CHAPTER 6 EVALUAT ION AND RESULTS

CACHE 1 10 100 1000 10.000

One day 0.00010 0.00100 0.01000 0.10000 1
One Month 0.00300 0.03000 0.30000 3 30
Three Month 0.00900 0.09000 0.90000 9 90
Half year 0.01825 0.18250 1.82500 18.2500 182.50
A year 0.03650 0.36500 3.6500 36.50 365

Two year 0.073 0.7300 7.300 73 730
Few year 0.18250 1.82500 18.2500 182.50 1825
Ten year 0.365 3.6500 36.50 365 3650

Table 6.5: Seconds for acquisition personal data from the cache.

6.4.1 Scalability and Extensibility
The backend implementation is structured using classes, where each feature
is encapsulated in a class. Through having separate classes for each feature,
extensibility is increased, because one can add more classes into the system.
Also, the class structure is argues for decreased dependability, because the
classes do not depend on each other. In addition, on the frontend, one can
apply new features simplify adding a new function in JavaScript.

One main factor that can affect scalability is the storage of the end-user cre-
dentials. For retrieving personal data from the web-services, credentials are
required, and accessing this on disk may be a bottleneck. In a scenario where
the backend is scaled horizontally to serve more tra�c, the storage would
become the bottleneck as the credentials for the end-user is needed for authen-
ticating with the web-services. General if there are some share variables or
resources, there could be a bottleneck and affect scalability.

Having adopted the REST design principles, described in Section 2.4.4 at the
backend api increases scalability. The backend is stateless in its design, easing
replicating of state between servers. It is layered so that a load balancer can be
introduced without any problems. It is autonomous to the frontend it interacts
with and the frontend can interact with any backend server.

6.4.2 Fault Tolerance and Availability
The backend cache provides an extra replica of the personal data for the end-
users. If the web service is unavailable, the system serves as a potential extra
failover handler by having replicas of the personal data for the end-users. Ma-
chine failures or network partitioning will lead to unavailability for end-users

6.5 SUMMARY 67

until the machine and the backend is up and running again.

6.4.3 Security and Privacy
Láhttu offers privacy to the end-users of the system for their personal data, but
Láhttu cannot vouch for the privacy of the web-services. This can be illustrated
with one example:

The web-service Strava, wants to sell end-users personal running (gps) and
cycle data to city planners. This can be used by city planners to determine
popular routes and tra�c hot-spots by tracking patterns over which streets
have the highest tra�c of end-users. Strava has already entered a deal with
Oregon, London and Orlando[25].

A question arises if the web-services selling end-user data[22]. Fitbit states
in their policy that they may sell the personal data for an end-user: "At times
Fitbit may make certain personal information available to strategic partners
that work with Fitbit to provide services to you."¹.

Although, they states that it is for the greater good and making the world a
better place. Selling the end-users personal data can backfire at the end-user.
Given that an end-user applies and wants to purchase a life insurance, she
can be denied the life insurance because the insurance company has the self-
tracking data for that end-user, showing that the end-user is in bad physical
health, inactive, and obese.

Security is important and necessary. In case of sensitive end-user personal data,
security is critical. One can discuss in which degree the personal data Láhttu
have support for is critical, but is not that critical as for phr for end-users. Any-
way, personal data should in any case be encrypted. There is several methods
for encryption, symmetric-key algorithms, AES and DES, and asymmetric-key
algorithms, RSA and elliptic curves.

6.5 Summary
In this chapter, we have stated and evaluated that the prototype system Láhttu
is feasible through proof of concept. Retrieval of personal data, then presenting
and consolidating the personal data for the end-user.

1. https://www.fitbit.com/privacy

68 CHAPTER 6 EVALUAT ION AND RESULTS

In addition,we have learned that having personal data available through Láhttu
increase latency and data acquisition extremely in a bigger context. Although,
primarily the cache will not hold that much personal data, one sees opportu-
nities to use the system for core or case study for public health as stated in
Section 1.3.

7
Related Work andDiscussion
This chapter presents and discusses some related work to the thesis.

7.1 Related Work
The eco-system of all the web-services with their connections between each-
other can be seen as related work to some degree from the Survey in Chap-
ter 2.5. Here some other systems will be included and briefly discussed.

7.1.1 Microsoft HealthVault
Microsoft HealthVault is Personal Data Vault(pdv), as mentioned briefly in
section 2.2, for end-users with their health related personal data. The personal
data include phr, fitness goals, pharmaceuticals, health measurements and
testing. The HealthVault supports interoperability for end-users so they can
upload personal data from a small number of compatible devices and system.
These devices include body scales such as the Withings WS-50 and Fitbit Aria.
Furthermore, one can also connect Fitbit Flex for steps and sleep. The systems
and devices that have the opportunity to connect to the HealthVault are very

69

70 CHAPTER 7 RELATED WORK AND D ISCUSS ION

rigorous, according to the HealthVault only total 150 system and application
have this opportunity.

Security and privacy are top concerns forMicrosoft in HealthVault ¹. The privacy
policy for HealthVault states that the end-user account and the corresponding
personal data belongs to the end-users and is not Microsoft property. Microsoft
states that it will not use the personal data unless explicitly asking the end-user
for that permission. One of the main concerns in the context of security of
the end-users system is the management of end-users and their credentials
for gaining access to the system. One of the weak points is that end-users are
making too weak and simple passwords that are easy to hack [2]. HealthVault
requires strong passwords, typically a password with a minimum length in
characters including upper and lower case letters and numbers. If the password
is not strong enough, the password will be rejected. In addition, Microsoft
isolates and logs all tra�c to the separate network and data silos holding the
personal data of HealthVault. Also, Microsoft limits employees that have the
necessary permissions to perform essential operations on HealthVault.

End-users of HealthVault can grant access to other end-users of HealthVault
to their account². There are different levels of access privileges, either read,
read-write or time limited access. The end-user decides the granularity of
sharing. This can be a single journal or all the personal information stored
at HealthVault. Discarding records is done instantaneously, but Microsoft will
hold the discarded record in a private cache for 90 days in case of malicious or
mistaken deletion of the record.

Compared to Láhttu, HealthVault handles more sensitive personal data, and
needs a higher level of security. Furthermore, HealthVault is more restricted
than Láhttu with regard to systems and applications that can to connect the
HealthVault than Láhttu. Given that one wants to connect, a system, it will take
time to integrate it into HealthVault. Here is the one of the main motivation
for Láhttu; taking control over which web-services or data source to connect
and integrate.

7.1.2 Consolidating Personal Data Platforms and Systems
The Locker Project ³, is a cloud storage of personal data. These personal data
can be end-users photos, places a end-users have visited, links shared by the end-
user, how the end-user have communicated with and contact details. Privacy for

1. http://www.pcmag.com/article2/0,2817,2191920,00.asp
2. https://account.healthvault.com/help.aspx?topicid=PrivacyPolicy
3. http://lockerproject.org/

7.1 RELATED WORK 71

the end-users of The Locker Project is able to decide and take control over what
they share with social networks. The Locker Project is open source software
available at Github ⁴, and is currently under development.

Another system is Personal⁵ that is an pdv with cloud storage. All end-user
information can be stored at Personal. This Information can be passwords to
vary systems and applications, ID-numbers, credit card information, end-user
fill out information, addresses and much more. The pdv for the end-user at
Personal is encrypted with a 256-bit AES encryption and RSA 2048 asymmetric
key encryption, also with default 128-bit SSL encryption. In addition, only the
end-user knows the password to Personal. However, if an end-user forgets pass-
word to Personal and need to reset the password, all the encrypted information
will be delete for the end-user. Privacy of Personal states that the end-users own
the data and only the end-user can share their personal data with others.

Both The Locker Project and Personal are part of "Personal Data Ecosystem
Consortium" ⁶. The main purpose is to develop systems and tools for benefiting
personal control over end-users personal data.

4. https://github.com/LockerProject/Locker
5. https://www.personal.com/
6. http://personaldataecosystem.org/

8
Conclusion
This chapter presents the achievements of the thesis and offers some concluding
remarks. Furthermore, possible future work for the thesis is outline.

8.1 Achievements
This thesis describes the design and implementation of the Láhttu prototype
system that gives insight for end-users in their personal data generated in sev-
eral heterogeneous web-services. The problem definition stated the following,
in Section 1.1:

This thesis will explore system issues related to the use of personal
data from activity tracking web-services. The goal is to architect and
build a prototype system that provides end-users an overview of and
improve insight into their online personal data.

In the ecosystem of all the system and devices available for the end-users,
losing control over where the personal data is stored is not optimal. Láhttu
offers an end-user to use range queries for retrieval personal data from the
different, heterogeneous web-services that Láhttu supports. Another feature
Láhttu offers is to allow other end-users of the system to retrieval personal data
on behalf of other end-user, after been granted that permission.

73

74 CHAPTER 8 CONCLUS ION

The main reason end-users want to track themselves is to quantify themselves,
and not just assume they are active but getting a proof of just how active,
they are. An overview and insight into personal data can inspire and motivate
a person to change their lifestyle. Hence, due to increasing obesity amongst
people in the world, more particular in the western part of the world¹, self-
tracking and "Quantified Self" can make the world a better place. However, the
large eco-system of self-tracking web-services provide little interoperability and
opportunity to gather personal data from heterogeneous web-services.

8.2 Concluding Remarks
This thesis has shown that by introducing an intermediate system, Láhttu, it is
possible to consolidate and present the heterogeneous personal data to the end-
user for increased insight over their physical activity level for activity-tracking
web-services.

One of the core problem under development of the system was getting over
the limitations of what each api for the web-services offers for third-parties. In
addition, integration and interoperability issues such as different representation
and format and the personal data must be considerate.

Through evaluation, estimation and experiments shows that the prototype sys-
tem, Láhttu, can be used in bigger context for case study involving public health
through personal data studying and analysing.

8.3 Future Work
Consequently, there are several improvements and functionality that can be
expand the current prototype system:

Security: Improve security aspect of the system.

Multiple, concurrent end-users: The storage has support for multiple end-
users. However, the system currently does not support concurrent end-
users. Changing it with adding session event or cookies to the system.

Support for more web-services: Through system extensibility, it is possible

1. http://www.vg.no/nyheter/utenriks/nesten-en-av-tre-i-verden-veier-for-
mye/a/10124327/

8.3 FUTURE WORK 75

to expand with more web-services. Also, one can look into integrating
professional system, such as zxy.

GUI: The systems gui can be improved in structure. In addition, the represen-
tation of larger ranges in the timeline could be better.

Duplication: An end-user may use two web-services simultaneously, which
leads to having the same activity recorded on two different web-services.
Although, this increases redundancy, one issue is that summaries of the
end-users activity level will be inconsistent. The system currently sup-
ports in the timeline gui, that the end-user is present with these consoli-
dated personal data. A future approach could be to have computing that
personal data prioritized over another source.

Analyze: The system currently can be used as an data acquisition component
for other system that performs analyses on the personal data.

Deployment: The system is not deployed, one need to set up a server with the
system running on it.

A
JSON Reponse fromWeb-services
Response data in json from the webs-services in a range query of 2014-03-
04.

A.1 RunKeeper
{

"items": [
{

"entry_mode": "API",
"total_calories": 586,
"has_path": true,
"uri": "/fitnessActivities/313921905",
"source": "RunKeeper",
"total_distance": 8210.13869291205,
"duration": 3063.829,
"type": "Running",
"start_time": "Tue, 4 Mar 2014 20:31:39"

}
],

77

78 APPEND IX A JSON REPONSE FROM WEB-SERV ICES

"size": 1
}

A.2 Fitbit Step
Fitbit Steps: The whole reponse generated around 6000 lines of JSON, cutting
big parts away.

{
" a c t i v i t i e s −s teps−i n t raday " : {

" datasetType " : " minute " ,
" d a t a s e t I n t e r v a l " : 1 ,
" da ta se t " : [

{
" value " : 0 ,
" time " : "00 :00:00"

} ,
{

" value " : 0 ,
" time " : "00 :01:00"

} ,
{

" value " : 0 ,
" time " : "00 :02:00"

} ,
{

" value " : 0 ,
" time " : "00 :03:00"

} ,
{

" value " : 0 ,
" time " : "00 :04:00"

} ,
{

" value " : 0 ,
" time " : "00 :05:00"

} ,
{

" value " : 0 ,
" time " : "00 :06:00"

} ,
{

A .2 FITB IT STEP 79

" value " : 0 ,
" time " : "00 :07:00"

} ,
{

" value " : 0 ,
" time " : "00 :08:00"

} ,
{

" value " : 0 ,
" time " : "00 :09:00"

} ,
. .

{
" value " : 156 ,
" time " : "21 :02:00"

} ,
{

" value " : 164 ,
" time " : "21 :03:00"

} ,
{

" value " : 169 ,
" time " : "21 :04:00"

} ,
{

" value " : 174 ,
" time " : "21 :05:00"

} ,
{

" value " : 162 ,
" time " : "21 :06:00"

} ,
{

" value " : 175 ,
" time " : "21 :07:00"

} ,
{

" value " : 165 ,
" time " : "21 :08:00"

} ,
{

" value " : 173 ,
" time " : "21 :09:00"

} ,

80 APPEND IX A JSON REPONSE FROM WEB-SERV ICES

{
" value " : 168 ,
" time " : "21 :10:00"

} ,
{

" value " : 167 ,
" time " : "21 :11:00"

} ,
{

" value " : 173 ,
" time " : "21 :12:00"

} ,
{

" value " : 172 ,
" time " : "21 :13:00"

} ,
{

" value " : 174 ,
" time " : "21 :14:00"

} ,
{

" value " : 175 ,
" time " : "21 :15:00"

} ,
{

" value " : 175 ,
" time " : "21 :16:00"

} ,
{

" value " : 172 ,
" time " : "21 :17:00"

} ,
{

" value " : 173 ,
" time " : "21 :18:00"

} ,
{

" value " : 173 ,
" time " : "21 :19:00"

} ,
{

" value " : 167 ,
" time " : "21 :20:00"

} ,

A .2 FITB IT STEP 81

{
" value " : 176 ,
" time " : "21 :21:00"

} ,
{

" value " : 176 ,
" time " : "21 :22:00"

} ,
{

" value " : 134 ,
" time " : "21 :23:00"

} ,
{

" value " : 119 ,
" time " : "21 :24:00"

} ,
{

" value " : 0 ,
" time " : "21 :25:00"

} ,
{

" value " : 131 ,
" time " : "21 :26:00"

} ,
{

" value " : 107 ,
" time " : "21 :27:00"

} ,
{

" value " : 121 ,
" time " : "21 :28:00"

} ,
{

" value " : 122 ,
" time " : "21 :29:00"

} ,
{

" value " : 135 ,
" time " : "21 :30:00"

} ,
{

" value " : 135 ,
" time " : "21 :31:00"

} ,

82 APPEND IX A JSON REPONSE FROM WEB-SERV ICES

{
" value " : 114 ,
" time " : "21 :32:00"

} ,
{

" value " : 104 ,
" time " : "21 :33:00"

} ,
{

" value " : 127 ,
" time " : "21 :34:00"

} ,
{

" value " : 101 ,
" time " : "21 :35:00"

} ,
.

{
" value " : 0 ,
" time " : "23 :53:00"

} ,
{

" value " : 0 ,
" time " : "23 :54:00"

} ,
{

" value " : 0 ,
" time " : "23 :55:00"

} ,
{

" value " : 0 ,
" time " : "23 :56:00"

} ,
{

" value " : 0 ,
" time " : "23 :57:00"

} ,
{

" value " : 0 ,
" time " : "23 :58:00"

} ,
{

" value " : 0 ,
" time " : "23 :59:00"

A .3 FITB IT SLEEP 83

}
]

} ,
" a c t i v i t i e s −s t ep s " : [

{
" value " : "19282" ,
" dateTime " : "2014−03−04"

}
]

}

A.3 Fitbit Sleep
{

" s l eep " : [
{

" log Id " : x ,
" i sMainSleep " : true ,
" minutesToFal lAs leep " : 65 ,
" awakeningsCount " : 12 ,
" minutesAwake " : 151 ,
" timeInBed " : 471 ,
" minutesAsleep " : 244 ,
" awakeDuration " : 3 ,
" e f f i c i e n c y " : 62 ,
" s ta r tT ime " : "2014−03−04T00 :50 :00 .000" ,
" r e s t l e s sCoun t " : 12 ,
" durat ion " : 28260000,
" r e s t l e s sDu r a t i on " : 224 ,
" minuteData " : [

{
" value " : " 2 " ,
" dateTime " : "00 :50:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "00 :51:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "00 :52:00"

} ,

84 APPEND IX A JSON REPONSE FROM WEB-SERV ICES

{
" value " : " 2 " ,
" dateTime " : "00 :53:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "00 :54:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "00 :55:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "00 :56:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "00 :57:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "00 :58:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "00 :59:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "01 :00:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "01 :01:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "01 :02:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "01 :03:00"

} ,

A .3 FITB IT SLEEP 85

{
" value " : " 2 " ,
" dateTime " : "01 :04:00"

} ,
{

" value " : " 3 " ,
" dateTime " : "01 :05:00"

} ,
{

" value " : " 3 " ,
" dateTime " : "01 :06:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "01 :07:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "01 :08:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "01 :09:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "01 :10:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "01 :11:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "01 :12:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "01 :13:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "01 :14:00"

} ,

86 APPEND IX A JSON REPONSE FROM WEB-SERV ICES

{
" value " : " 2 " ,
" dateTime " : "01 :15:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "01 :16:00"

} ,
{

" value " : " 3 " ,
" dateTime " : "01 :17:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "01 :18:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "01 :19:00"

} ,
. .

{
" value " : " 1 " ,
" dateTime " : "08 :29:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "08 :30:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "08 :31:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "08 :32:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "08 :33:00"

} ,
{

" value " : " 2 " ,

A .3 FITB IT SLEEP 87

" dateTime " : "08 :34:00"
} ,
{

" value " : " 2 " ,
" dateTime " : "08 :35:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "08 :36:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "08 :37:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "08 :38:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "08 :39:00"

} ,
{

" value " : " 2 " ,
" dateTime " : "08 :40:00"

}
] ,
" awakeCount " : 0 ,
" minutesAfterWakeup " : 11

}
] ,
" summary " : {

" tota lTimeInBed " : 471 ,
" to ta lMinutesAs leep " : 244 ,
" to ta lS l eepRecords " : 1

}
}

Bibliography
[1] Connections counter: The internet of everything in motion. cisco.com,

July 2013.

[2] Howard Baldwin. Passwords are the weak link in it security. computer-
world.com.

[3] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel.
Finding a needle in haystack: Facebook’s photo storage. In Proceedings of
the 9th USENIX Conference on Operating Systems Design and Implementa-
tion, OSDI’10, pages 1–8, Berkeley, CA, USA, 2010. USENIX Association.

[4] D. E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe Turner,
and Paul R. Young. Computing as a discipline. Commun. ACM, 32(1):9–
23, January 1989.

[5] European Commission. Attitudes on data protection and electronic iden-
tity in the european union. SPECIAL EUROBAROMETER 359, 2011.

[6] European Commission. Safeguarding privacy in a connected world a
european data protection framework for the 21st century. COM(2012)9,
Sep 2012.

[7] Tony Danova. Morgan stanley: 75 billion devices will be connected to
the internet of things by 2020. businessinsider.com.

[8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. Commun. ACM, 51(1):107–113, January 2008.

[9] Peter Dizikes. Sports analytics: a real game-changer. MIT News, Mar
2013.

[10] Roy Thomas Fielding. Architectural styles and the design of network-
based software architectures. Doctoral dissertation, University of Califor-
nia, Irvine, 2000.

89

90 B IBL IOGRAPHY

[11] Frank P. Grad. The preamble of the constitution of the world health
organization. Bulletin of the World Health Organization 2002, 80 (12),
2002.

[12] Pål Halvorsen, Simen Sægrov, Asgeir Mortensen, David K. C. Kristensen,
Alexander Eichhorn, Magnus Stenhaug, Stian Dahl, Håkon Kvale Stens-
land, Vamsidhar Reddy Gaddam, Carsten Griwodz, and Dag Johansen.
Bagadus: An integrated system for arena sports analytics: A soccer case
study. In Proceedings of the 4th ACM Multimedia Systems Conference, MM-
Sys ’13, pages 48–59, New York, NY, USA, 2013. ACM.

[13] John A. Hoxmeier, Ph. D, and Chris Dicesare Manager. System response
time and user satisfaction: An experimental study of browser-based appli-
cations. In Proceedings of the Association of Information Systems Americas
Conference, pages 10–13, 2000.

[14] Qi Huang, Ken Birman, Robbert van Renesse,Wyatt Lloyd, Sanjeev Kumar,
and Harry C. Li. An analysis of facebook photo caching. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP
’13, pages 167–181, New York, NY, USA, 2013. ACM.

[15] Pål Haloversen Håvard D. Johansen, Svein Arne Pettersen and Dag Jo-
hansen. Combining video and player telemetry for evidence-based de-
cisions in soccer. Regional Centre for Sport, Exercise and Health - North,
2013.

[16] FitneessKeper Inc. Health graph api.
http://developer.runkeeper.com/healthgraph.

[17] Bjarne K Jacobsen, Anne Elise Eggen, Ellisiv B Mathiesen, TomWilsgaard,
and Inger Njølstad. Cohort profile: The tromsø study. International
Journal of Epidemiology, 2011.

[18] Dag Johansen and Joseph Hurley. Overlay cloud networking through
meta-code. In Proceedings of the 2011 IEEE 35th Annual Computer Soft-
ware and Applications Conference Workshops, COMPSACW ’11, pages 273–
278, Washington, DC, USA, 2011. IEEE Computer Society.

[19] Dag Johansen, Magnus Stenhaug, Roger Bruun Asp Hansen, Agnar Chris-
tensen, and Per-Mathias Høgmo. Muithu: Smaller footprint, potentially
larger imprint. In Proc. of 7th International Conference on Digital Infor-
mation Management, pages 205–214. IEEE, August 2012.

[20] Håvard D. Johansen, Wei Zhang, Joseph Hurley, and Dag Johansen. Man-

B IBL IOGRAPHY 91

agement of body-sensor data in sports analytic with operative consent.
In of the 2014 IEEE Ninth International Conference on Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP). IEEE, April 2014.

[21] Dogulas Laney. 3d data management: Controlling data volume, velocity
and variety. Gartner, Feb 2001.

[22] Dana Liebelson. Are fitbit, nike and garmin planning to sell your personal
fitness data? motherjones.com, Jan 2014.

[23] Lori MacVittie. The impact of ajax on the network. F5 Networks, Inc,
2007.

[24] ERIKMALINOWSK. How runkeeper could become the facebook of fitness,
2011.

[25] May. Strava, popular with cyclists and runners, wants to sell its data to
urban planners. wsj.com, 2014.

[26] Min Mun, Shuai Hao, Nilesh Mishra, Katie Shilton, Jeff Burke, Deborah
Estrin,MarkHansen, and RameshGovindan. Personal data vaults: A locus
of control for personal data streams. In Proceedings of the 6th International
COnference, Co-NEXT ’10, pages 17:1–17:12, New York, NY, USA, 2010.
ACM.

[27] Jakob Nielsen. Usability Engineering, chapter Interactive technologies.
Morgan Kaufmann Publishers, 1993.

[28] The Norwegian Directorate of Health. “kunnskapsgrunnlag fysisk ak-
tivitet. innspill til departementets videre arbeid for økt fysisk aktivitet
og redusert inaktivitet i befolkningen.”. helsedirektoratet.no, February
2014.

[29] O�ce of Science and Technology Policy. Obama administration unveils
big data initative announces 200 million dollar in new r and d investe-
ment. whitehouse, March 2012.

[30] Marily Oppezzo and Daniel L. Schwartz. Give your ideas some legs: The
positive effect of walking on creative thinking. Journal of Experimental
Psychology: Learning, Memory, and Cognition, April 2014.

[31] World Health Organization. Health topics obesity, 2013.

[32] D.A. Patterson and J.L. Hennessy. Computer Organization and Design: The

92 B IBL IOGRAPHY

Hardware/Software Interface. The Morgan Kaufmann Series in Computer
Architecture and Design. Elsevier Science, 2013.

[33] Roger S Pressman. Software Engineering: A Practitioner’s Approach, 7
edition. R. S. Pressman & Associates, Inc, 2010.

[34] N. Ramanathan, F. Alquaddoomi,H. Falaki,D. George,C. Hsieh, J. Jenkins,
C. Ketcham, B. Longstaff, J. Ooms, J. Selsky, H. Tangmunarunkit, and
D. Estrin. ohmage: An open mobile system for activity and experience
sampling. pages 203–204, 2012.

[35] Alex Rodriguez. Restful web services: The basics, 2008.

[36] RICHARD N. TAYLOR ROY T. FIELDING. Principled design of the modern
web architecture. ACM Transactions on Internet Technology, Vol. 2, No.
2, May 2002.

[37] Simen Sægrov, Alexander Eichhorn, Jørgen Emerslund, Håkon Kvale
Stensland, Carsten Griwodz, Dag Johansen, and Pål Halvorsen.
BAGADUS: An integrated system for soccer analysis (demo). In Proc. of
the ACM/IEEE International Conference on Distributed Smart Cameras,
November 2012.

[38] R.S. Sandhu and P. Samarati. Access control: principle and practice.
Communications Magazine, IEEE (Volume:32 , Issue: 9), 2002.

[39] Emily Singer. The measured life. MIT Technology review, June 2011.

[40] Ian Steadman. ‘ibm’s watson is better at diagnosing cancer than human
doctors”. wired magazine, www.wired.co.uk, Feb 2013.

[41] Melanie Swan. Sensor mania! the internet of things, wearable comput-
ing, objective metrics, and the quantified self 2.0. Journal of Sensor and
Actuator Networks, 1(3):217–253, 2012.

[42] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press,
Upper Saddle River, NJ, USA, 3rd edition, 2007.

[43] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems:
Principles and Paradigms (2Nd Edition). Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 2006.

[44] S.V. Valvåg, Dag Johansen, and Åge Kvalnes. Cogset: a high performance
mapreduce engine. Concurrency and Computation: Practice and Experi-

B IBL IOGRAPHY 93

ence, 25(1):2–23, 2013.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Problem Definition
	1.2 Methodology
	1.3 Interpretation, Scope, and Limitations
	1.4 Context
	1.5 Terminology
	1.6 Outline

	2 Background
	2.1 Health Tracking
	2.1.1 Fitbit
	2.1.2 ZXY Sport Tracking
	2.1.3 RunKeeper
	2.1.4 ``Internet of Things'' (IoT)

	2.2 Personal Data Vaults
	2.3 Authentication with OAuth
	2.4 Access Control, Data Management, and Storage
	2.4.1 Database
	2.4.2 Cache and Caching Algorithms
	2.4.3 "Big Data"
	2.4.4 RESTful API

	2.5 Data Integration and Interoperability Survey
	2.5.1 Data Consistency Issues

	2.6 Summary

	3 Requirement Specification
	3.1 System Functional Overview
	3.1.1 Frontend
	3.1.2 Backend
	3.1.3 Web-Services

	3.2 Non-functional requirements
	3.2.1 Security and Privacy
	3.2.2 Reliability and Availability
	3.2.3 Extensibility
	3.2.4 Scalability
	3.2.5 Fault-tolerance
	3.2.6 Dependency
	3.2.7 Interoperability
	3.2.8 Maintainability
	3.2.9 Usability
	3.2.10 Performance

	3.3 Summary

	4 Design
	4.1 System Architecture
	4.1.1 Frontend
	4.1.2 Backend API
	4.1.3 Access Control
	4.1.4 Storage
	4.1.5 Crawling

	4.2 Web Services and their APIs
	4.2.1 Fitbit
	4.2.2 RunKeeper

	4.3 Summary

	5 Láhttu
	5.1 Frontend
	5.2 Backend
	5.2.1 Time, Date, and Range Query
	5.2.2 Storage
	5.2.3 Crawler
	5.2.4 Web-services API
	5.2.5 Access Control

	5.3 Summary

	6 Evaluation and Results
	6.1 Methodology and Methods
	6.2 Proof of Concept
	6.3 Experiments
	6.3.1 Experimental Setup
	6.3.2 Estimation of requests
	6.3.3 Latency

	6.4 Evaluation of non-functional requirements
	6.4.1 Scalability and Extensibility
	6.4.2 Fault Tolerance and Availability
	6.4.3 Security and Privacy

	6.5 Summary

	7 Related Work and Discussion
	7.1 Related Work
	7.1.1 Microsoft HealthVault
	7.1.2 Consolidating Personal Data Platforms and Systems

	8 Conclusion
	8.1 Achievements
	8.2 Concluding Remarks
	8.3 Future Work

	A JSON Reponse from Web-services
	A.1 RunKeeper
	A.2 Fitbit Step
	A.3 Fitbit Sleep

	Bibliography

