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Summary 
 
Parasite-host interactions are important in understanding ecosystem processes, for 

instance by using trophically transmitted parasites as indicators of host ecology. 

Parasite infections are expected to correlate with host density, habitat choice and 

feeding behaviour. The importance of long-term data and perturbation experiments 

has been emphasized for advancing our knowledge of the parasite-host relationship. 

Over a five-year period in the 1980s a mass removal of fish was implemented on a 

stunted population of Arctic charr (Salvelinus alpinus (L.)) in subarctic lake Takvatn.  

This culling of fish can be seen as a large ecological experiment, and the effects have 

been monitored with long-term analysis on the fish populations of the lake. Here, I 

study the long-term effects of this fish removal experiment on two component 

populations of the tapeworms Diphyllobothrium ditremum and D. dendriticum 

infecting Arctic charr. Infections are also compared between charr and brown trout 

(Salmo trutta (L.)). The infections of both Diphyllobothrium species in Arctic charr 

decreased after the fish removal, reflecting a shift in habitat and diet from pelagic 

zooplanktivory to littoral benthivory in the charr population, and a reduced abundance 

of copepods in the zooplankton community. The decrease was more drastic in the D. 

dendriticum population suggesting altered transmission rates to the avian final hosts. 

Infections of both parasite species oscillated between years, likely as a result of cycles 

in the population density of three-spined stickleback (Gasterosteus aculeatus (L.)). 

Arctic charr had higher infections of D. ditremum than brown trout, while the 

opposite was true for D. dendriticum infections. This suggest niche segregation 

between the two fish species with charr grazing more on zooplankton and trout more 

on fish, as D. dendriticum has been described as an indicator of piscivory. The study 

has highlighted how parasite infections respond to a large perturbation, and how 

sensitive they are to variation in ecological processes.  

 

 

 

 

 



! 5!

Introduction  

 

Parasite-host interactions are key in understanding ecosystem processes (Marcogliese 

and Cone 1997, Hudson et al. 2006, Lafferty et al. 2008a), for instance in respect to 

how parasite-mediated effects may alter the flow of energy through ecosystems 

(Hudson et al. 2006), or by using parasites as biological indicators to provide 

information on various aspects of their host’s biology (Williams et al. 1992). Parasites 

can also be used as indicators for the trophic links between host species (Marcogliese 

and Cone 1997), and ecological differences between competitors at the same trophic 

level can be assessed by analysing their trophically transmitted parasite faunas 

(Knudsen et al. 2008). Marcogliese (2004) phrases it nicely when he states that 

parasites are small players with crucial roles in the ecological theatre. Most people, 

however, have negative associations to parasites (Hatcher et al. 2012), and the 

presence of certain parasites in populations subjected to human harvest is a problem 

in several animal taxa (e.g. Kuris and Lafferty 1992, Barnes et al. 1995, Chai et al. 

2005). Here, I address the long-term effects of a mass removal of fish as an effort to 

reduce parasite burdens in a highly parasitized population of Arctic charr (Salvelinus 

alpinus (L.)). Anderson (1991) emphasized the importance of long-term data and 

perturbation experiments in testing ecological ideas regarding the parasite-host 

relationship, and the mass removal of charr can in this respect be seen as a large-scale 

ecological experiment monitored over decades. 

 

Aquatic habitats have physical and ecological properties that make these systems 

optimal for the maintenance and evolution of parasite life cycles (Barber et al. 2000). 

The trophic position of teleost fishes puts them in an ideal position as hosts for 

parasitic organisms (Barber et al. 2000). Fish serve as hosts for many species of 

helminth parasites (see Marcogliese 1995). Several helminths, including tapeworms, 

have relatively long lifespans in relation to that of their fish hosts (Anderson & 

Gordon 1982). The infrapopulations of such parasites are therefore to a large extent 

controlled through immigration, while the metapopulation is controlled by average 

infection rates and the death of hosts (Anderson and Gordon 1982). Helminth 

parasites normally possess complex life cycles where they are trophically transmitted 

from one host to another by consumption of infected hosts (Amundsen et al. 2003).  
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Such trophically transmitted parasites tend to exhibit more aggregated (or over-

dispersed) distributions within the host population compared to parasites with other 

types of life cycles (Shaw and Dobson 1995, Lester 2012). These aggregations can be 

caused by multiple factors such as heterogeneity in habitat use or feeding behaviour 

within the host population (Knudsen et al. 2004, 2008), individual differences in 

immunological defences against the parasite (Anderson and Gordon 1982, Morrill and 

Forbes 2012), and/or aggregated distributions of infective stages through space and 

time (Anderson and Gordon 1982, and references therein). 

 

One group of trophically transmitted tapeworms, which are commonly found and 

widely distributed in freshwater fish, especially salmonids, is the Diphyllobothrium 

genus (Henricson 1977). In Scandinavia, two common species of Diphyllobothrium 

using salmonids as second intermediate host, are D. dendriticum (Nitzsh) and D. 

ditremum (Creplin) (Henricson 1977). Both utilize copepods as first intermediate 

hosts and may, in addition to salmonids, utilize 3-spined stickleback (Gasterosteus 

aculeatus) and burbot (Lota lota) as their second intermediate hosts (Vik 1964, 

Halvorsen 1970). The parasites can also be transmitted from fish to fish through 

piscivory (Vik 1964). The only stage where their hosts differ is as adults where they 

utilize different avian and (to a lesser extent) mammalian final hosts (Vik 1964, 

Halvorsen 1970).  

 

Two fish species that frequently serve as hosts for Diphyllobothrium spp. are brown 

trout (Salmo trutta (L.)) and Arctic charr. These salmonids occur commonly 

throughout Scandinavia (Klemetsen et al. 2003). Lake resident populations utilize 

similar niches in allopatry, with both species preferring benthic prey in the littoral 

zone (Nilsson 1963). The brown trout is however a more efficient benthivore, and is 

more aggressive and more territorial than the Arctic charr (Nilsson 1963, Jansen et al. 

2002).  Hence, in sympatry, the Arctic charr appears to be excluded from the littoral 

areas of the lake during summer and autumn, while brown trout feeds similarly as in 

allopatry (Nilsson 1963, Langeland et al. 1991). This sympatric niche segregation 

may also be reflected in the parasite communities of the two salmonids. Knudsen et 

al. (2008) found that Arctic charr harboured more copepod-transmitted parasites than 

brown trout, and related this to charr feeding more upon zooplankton. 
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The ecological interactions between Diphyllobothrium spp. and their second 

intermediate fish hosts have been studied extensively since the middle of the 20th 

century (Hickey and Harris 1947, Henricson 1977, Halvorsen and Andersen 1984, 

Sharp et al. 1992, Kristoffersen 1993). The plerocercoids in the fish can live several 

years in their host, which therefore can accumulate high infections (Henricson 1977, 

Halvorsen and Andersen 1984). Many studies addressing these two parasites in 

sympatry, have shown that the prevalence and mean abundance of D. ditremum is 

higher than that of D. dendriticum (e.g. Henricson 1977, Knudsen et al. 1997). 

However, piscivorous fish may harbour more D. dendriticum relative to D. ditremum, 

as the plerocercoids of D. dendriticum are shown to survive piscivory better 

(Halvorsen & Wissler 1973). Three-spined sticklebacks are shown to be important 

transmittors of D. dendriticum to piscivorous trout (Vik 1957). 

 

Differences in the density and habitat use of fish populations have been shown to 

influence the structure of their invertebrate prey communities (Klemetsen et al. 2002), 

which could in turn affect the fauna of trophically transmitted parasites in the fish. 

Stunted growth is a common problem in populations of Arctic charr (Amundsen et al. 

1993), and lakes that are easily accessible for humans often contain populations of 

stunted small-sized fish as the larger individuals have been selectively removed with 

large-meshed gill nets (Klemetsen et al. 2002). Such populations of small-sized fish 

are of little commercial value (Ylikarjula et al. 1999), and may exhibit high infections 

of certain parasites, especially tapeworms that utilize planktonic copepods as 

intermediate hosts (Kennedy et al. 2001, Amundsen et al. 2002). Reducing the 

number of fish in stunted populations has been suggested as a method of improving 

their status related to growth rates and condition (Amundsen et al. 1993). In the early 

1980s, Lake Takvatn in Northern Norway contained a stunted Arctic charr population, 

characterized by poor growth and high infections of plerocercoids of the tapeworms 

D. ditremum and D. dendriticum (Kristoffersen 1986). A large fish removal 

experiment was carried out with two main management goals; to increase the growth 

of the Arctic charr, and to reduce its parasite burdens (A. Klemetsen pers. comm.). 

Scientifically, this whole-lake perturbation constitutes a large-scale ecological 

experiment addressing population and community dynamics and trophic interactions 

in a subarctic freshwater ecosystem, and the effects have been followed up by long-
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term studies carried out since 1980 (see e.g. Klemetsen et al. 2002, Amundsen et al. 

2007, Persson et al. 2007).       

 

The long-term analyses of the Arctic charr population following the fish removal 

experiment showed an increase in somatic growth and size, an effect that has been 

sustained over time (Klemetsen et al. 2002; Amundsen et al. 2007). Three years after 

the end of the experiment, brown trout had increased in numbers after being nearly 

absent prior to the perturbation (Klemetsen et al. 2002), and the importance of this 

species has increased over the following decades (Persson et al. 2007, Eloranta et al. 

2013, P.-A. Amundsen, unpublished data). The present study addresses the long-term 

variation in the infection of plerocercoids of D. ditremum and D. dendriticum in 

Arctic charr in the years prior to, during and following the fish removal experiment. 

Data on plerocercoids in brown trout after its reappearance are also included. The 

study covers a total period of 31 years, mostly with annual sampling, and these time-

series data have been used to address three main questions: Firstly, how does a mass 

removal of fish affect the infections of the two Diphyllobothrium species in a highly 

parasitized population of Arctic charr? Secondly, do the two species show similar 

temporal trends in abundance? Finally, are there differences in the Diphyllobothrium 

infections between Arctic charr and brown trout in terms of prevalence, mean 

intensities and the relative incidence of the two parasite species?  

 

Large ecological changes have occurred in the lake system after the fish removal 

experiment was implemented. The zooplankton community has shifted from being 

dominated by copepods, to inhabiting larger cladoceran species (Dahl-Hansen 1995; 

P.-A. Amundsen et al., unpublished data). Simultaneously, the availability of benthic 

prey has increased, resulting in a habitat shift in Arctic charr, with young fish less 

frequently utilizing the pelagic and profundal areas (see Klemetsen et al. 2002). 

Consequently, the diet of Arctic charr shifted, with an increase in the importance of 

invertebrate benthic prey (Amundsen et al. 1993) The three-spined stickleback 

population in Takvatn are efficient zooplankton feeders (Dahl-Hansen 1998), and also 

constitutes an important part of the diets of the salmonids in the lake (Amundsen 

1994, Klemetsen et al. 2002). Furthermore, following the stock reduction experiment, 

the predation on juvenile charr has increased both through cannibalism (Amundsen 

1994, Klemetsen et al. 2002) and piscivory from the increasing brown trout 
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population (Klemetsen et al. 2002, Persson et al. 2007). Based on the background 

described above, it was hypothesized that i) the Diphyllobothrium infections of Arctic 

charr have decreased after the stock removal experiment through a reduction in the 

density of hosts and reduced predation on copepods, and ii) piscivorous fish may 

aggregate large infections, especially of D. dendriticum, due to secondary 

establishment of plerocercoids from their prey fish, and iii) Arctic charr have higher 

Diphyllobothrium infections than brown trout, as Arctic charr typically feed more on 

zooplankton. Finally, iv) it was hypothesised that the relative infections of the two 

Diphyllobothrium species are different between the two fish species, with Arctic charr 

mostly harbouring D. ditremum, and brown trout having higher intensities of D. 

dendriticum, being a more prominent piscivorous species.  
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Material and methods 
 

Study site 

Takvatn is a 14,2 km2 large and 80 m deep dimictic lake located in the Målselv River 

system in Troms county, Northern Norway. It is situated 214 meters above sea level, 

and is typically ice-covered from November to early June each year (Amundsen et al. 

2007, 2009). The lake is oligotrophic with Secchi depths ranging between 14 and 17 

m, and phosphorous levels not exceeding 5 µg L-1 (Eloranta et al. 2013). The 

landscape surrounding the lake is dominated by birch (Betula pubescens) with some 

pine trees (Pinus sylvestris) and patches of farmland (Amundsen et al. 2007, 2009).  

  
Fig. 1. Map of Takvatn, including the location of Takvatn in Norway.  

 

Fish community 

Brown trout is the only native fish species in Takvatn. The population was 

overharvested in the early 1900s, and Arctic charr was introduced to the lake around 

1930 (Persson et al. 2007).  In the years following the introduction, the Arctic charr 

grew large and was considered a good food resource by local fishermen (Amundsen et 

al. 1993). After some years the population became dense, with declining growth rates 

and smaller sizes. 3-spined stickleback (Gasterosteus aculeatus) was introduced to the 

lake around 1950 as a potential prey fish for brown trout and Arctic charr. By 1980, 

the fish community in Takvatn was dominated by a very dense population of stunted 
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Arctic charr (Amundsen & Klemetsen 1988), with sticklebacks also being highly 

numerous and brown trout nearly absent from the lake (Amundsen et al. 1993).  

 

Fish removal programme  

From 1984 to 1989, a total of 666 000 or 31,3 metric tons of Arctic charr were 

removed from the lake by intensive fishing with baited funnel traps. This was 

conducted as volunteer work by landowners and members of local fishing 

associations (Amundsen et al. 1993).  During and following this perturbation, the 

density of Arctic charr decreased while the brown trout population increased (see fig. 

2).  

 

 
Fig. 2. Changes in the abundance of charr (squares, solid lines) and brown trout (circles, dashed lines) 

in Takvatn between 1984 and 2006. Hatched area shows period of fish removal programme. From 

Persson et al. (2007). 
 

 

Bird community 

The bird community of Takvatn is dominated by fish-eating birds, namely red-

breasted mergansers (Mergus serrator) and common gulls (Larus canus), with Arctic 

terns (Sterna paradisaea) being abundant some years (Klemetsen and Knudsen 2013). 

Tufted ducks (Aythya fuligula), common scoters (Melanitta nigra) and black-throated 

divers (Gavia arctica) are also regularly breeding at the lake (Klemetsen and Knudsen 

2013). Of these species, red-breasted mergansers and black–throated divers are the 

most important final hosts for D. ditremum, while common gulls are final hosts for D. 

dendriticum (Halvorsen 1970). 
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Fish sampling 

Fish used in the present study were collected in the years 1980, 1981, 1987, 1988 and 

every year between 1992 and 2011 except in 1998 and 2000. The fish were sampled 

throughout the ice-free season using bottom and floating gill nets. Net series with bar 

mesh sizes from 10 to 52 mm knot to knot were used prior to 1989. From 1989 and 

onwards, multi-mesh nets with panels ranging from 10 to 45 mm knot to knot were 

used (Klemetsen et al. 2002). The nets were left overnight for approx. 12 hours in the 

lake. Fish were collected from the littoral (< 15 m depth), profundal (25 – 40 m depth) 

and pelagic (offshore, 0 – 6 m depth) zones of the lake. In the field, the fish were 

weighed, measured in fork length, and sex and gonad maturation were recorded. 

Otoliths were taken from each fish and preserved in ethanol. In the laboratory, age 

was determined by immersing the otoliths in glycerol, and counting the growth 

seasons using a dissecting microscope (Klemetsen et al. 2002).  An overview of the 

fish used in the present study is provided in table 1. 

 

Table 1. Sample sizes and mean age and length of Arctic charr and brown trout sampled for 

Diphyllobothrium spp. screening.  

Year N Arctic 
Charr 

Mean 
Age 
(± SD) 

Mean 
Length 
(± SD) 

 N brown 
trout 

Mean 
Age  
(± SD) 

Mean 
Length 
(± SD) 

1980 487 5.8 (2.3) 170.8 (28.3)  - - - 
1981 179 6.5 (2.1) 179.4 (28.1)  - - - 
1987 516 4.5 (2.0) 173.1 (53.3)  - - - 
1988 244 5.2 (2.2) 191.0 (64.9)  - - - 
1992 311 6.3 (3.3) 228.2 (104.6)  - - - 
1993 56 7.9 (3.1) 283.8 (89.9)  - - - 
1994 240 5.0 (2.9) 194.4 (86.0)  - - - 
1995 170 3.5 (1.8) 213.9 (58.4)  - - - 
1996 115 4.0 (1.3) 227.2 (34.5)  - - - 
1997 95 3.9 (1.7) 210.8 (64.5)  - - - 
1999 150 5.8 (1.6) 233.4 (73.9)  - - - 
2001 62 5.3 (2.1) 210.8 (87.0)  11 4.9 (2.0) 256.5 (68.4) 
2002 75 4.2 (1.8) 178.4 (52.3)  24 4.6 (1.6) 244.5 (65.6) 
2003 77 4.2 (1.8) 177.8 (56.4)  6 5.7 (0.9) 340.8 (70.5) 
2004 60 4.2 (1.9) 179.8 (61.1)  48 3.8 (1.5) 240.8 (76.7) 
2005 67 4.7 (2.1) 211.4 (88.8)  36 3.8 (1.4) 234.6 (84.0) 
2006 72 4.5 (1.9) 180.9 (67.0)  44 3.8 (1.7) 220.0 (95.8) 
2007 58 4.5 (1.9) 171.6 (52.7)  37 3.6 (1.2) 213.8 (81.0) 
2008 61 5.4 (2.6) 220.9 (83.1)  13 4.3 (1.1) 258.3 (51.1) 
2009 82 3.8 (1.3) 175.4 (51.3)  18 4.5 (1.7) 228.1 (79.2) 
2010 92 5.5 (2.3) 253.3 (82.9)  68 4.5 (1.7) 249.8 (113.5) 
2011 61 4.4 (1.8) 200.4 (72.8)  64 4.2 (1.4) 210.8 (89.8) 
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Parsite sampling 

In the field cysts of Diphyllobothrium spp. located on the stomach wall, visceral 

organs and flesh of each dissected fish were placed in digestive fluid (1 L containing 

2 ml HCl, 5 g pepsin, 9 g NaCl and water) to excyst the plerocercoids (Knudsen and 

Klemetsen 1994). The excysted plerocercoids were stored on buffered 4% formalin 

and later identified to species in the laboratory as described by Andersen and Gibson 

(1989). The most important morphological features that distinguish the two 

Diphyllobothrium species are size, scolex morphology and the shape and appearance 

of the body. Diphyllobothrium ditremum are less than 2,5 cm, their scolex is extruded 

and they have a smooth body surface that lack any sign of segmentation. 

Diphyllobothrium  dendriticum can be longer than 10 cm, their scolex is partly 

retracted and they have a wrinkled body surface that appears segmented. The overall 

body shape of D. dendriticum appears more rectangular while D. ditremum is more 

oval. These features are less prominent in the smallest individuals (Halvorsen 1970), 

which could lead to erroneous identifications. The extent of misidentifications is 

however thought to be small, and should not be biased toward one species 

(Kristoffersen 1986). 

 

Statistical analyses 

Statistical parameters  

The terms prevalence, mean abundance and mean intensity are used according to 

Bush et al. (1997). !Prevalence (P) is the frequency or percentage of a particular host 

population that is infected with a particular parasite species.! It is calculated by 

dividing the number of hosts infected with a particular parasite species, a, by the total 

number of hosts examined for that parasite, N.  

 

P = a / N × 100 

 

Mean abundance (A) is the average number of a particular parasite species among all 

members of a particular host population. It is calculated as the total number of 

individuals of the parasite within the sample of hosts b, divided by N.  

 

A = b / N  
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Mean intensity (I) it is the average intensity of a particular species of parasite among 

the infected members of a particular host species.! It is calculated similarly to mean 

abundance, but here b is divided by the number of examined hosts that are infected 

with the parasite, n.  

 

I = b / n  

 

To adjust for differences in host body size among sampling years, intensity per 100 

gram was calculated among infected individuals. The mean intensity/100 gram fish is 

presented as relative intensity (RI) and calculated as 

 

RI = ∑ [intensity / weight (g) × 100] / n 

 

Temporal analyses 

The temporal analyses of prevalence for each year are presented longitudinally with 

fitted regression lines. The linear regressions were performed for both parasite 

species, providing the slope for prevalence with increasing sampling years. This tells 

us if there is an increasing or decreasing trend in prevalence from 1980 and onwards, 

and provides a p-value which is the probability of the observed values being obtained 

if the null hypothesis (i.e. no difference) is true. A separate linear regression including 

an interaction between the two species was performed to check if they differed 

temporally in prevalence. A regression analysis assumes that the residuals are 

constant, independent and follow a normal distribution. The validity of these 

assumptions was tested using a diagnostic tool plot in R, and regressions where the 

residuals did not meet these terms were omitted from the results. The same method 

was used for analysing temporal variations in mean abundance and mean intensity. In 

this case the average for each year was based upon count data from individual fish 

(i.e. intensities). The linear regression for relative intensity was performed on log-

transformed values to meet the model assumptions. The dispersion of parasites tends 

to be aggregated, with high variance to mean ratios (s2 / x̅# > 1) (Wilson et al. 2002). 

Such over-dispersed data are often assumed to follow a negative binomial 

distribution. Negative binomial distributions do not allow for regular confidence 

intervals to be made, and variation is thus presented by standard errors (table 3).  
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Comparisons of Diphyllobothrium infections in Arctic charr and brown trout  

For comparing the infections of the two Diphyllobothrium species in Arctic charr and 

brown trout, data from 2001 to 2011 were pooled together to get a large sample size 

and thus provide a general picture of the infections regardless of yearly differences. 

The prevalence of infection is compared between the two fish species using a chi-

squared test. This test analyses the probability that the observed counts of infected 

and uninfected brown trout and Arctic charr are independent of one another. To test 

for differences in intensities (of D. ditremum and D. dendriticum) between trout and 

charr, a two-tailed permutation (or randomization) test was done/used/employed. This 

test pools all the data from the sampling groups (both uninfected and infected 

individuals) and reassigns it without replacement to the to the treatment levels, 

keeping the number of observations identical as in the original data (Crowley 1992). 

This was simulated   100 000 times, and the p-value is the proportion of all 

simulations yielding test statistics at least as extreme as the observed value. 

Permutation tests do no assume any underlying distribution in the data, and are not 

very sensitive to outliers (Crowley 1992). A separate test was conducted for each 

Diphyllobtorhium species. 

 

A generalized linear model (GLM) was used to do a negative binomial regression for 

estimating the mean intensities of the two parasite species in relation to fish length. 

Wilson and Grenfell (1997) encouraged the use of GLMs for interpreting 

parasitological data. As the data is over-dispersed with variance/mean ratios 

exceeding 1, a negative binomial parameter, theta, is included in the GLM as a 

measure of aggregation. Separate GLMs were conducted for each parasite species 

with fish length and species (Arctic charr and brown trout) as predictor variables and 

mean intensity of infection as the response variable. The model output gives the 

intercept value, mean intensity at length 0, for species a, and the difference in the 

intercept value from species a to b. It provides a slope, fitting mean intensity with 

increasing length for species a, and an interaction parameter that describes any 

difference in slope between species a and b. P-values are provided for each parameter.     

 

Software used for computing statistical analysis and creating graphs include R 

(version 3.0.1) and Microsoft Excel (2011). 
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Results 
 

Temporal dynamics of Diphyllobothrium infections in Arctic charr  

Prevalence 

The temporal analysis of prevalence revealed a decrease for both parasite species after 

the fish reduction experiment (fig. 3). The prevalence was generally higher for D. 

ditremum than for D. dendriticum. There were fluctuations in prevalence between 

years for both parasite species, but the prevalence decreased gradually for D. 

ditremum from more than 90% in the 1980s, to less than 60% in the late 2000s. The 

decrease in prevalence was more abrupt for D. dendriticum. By 1987, the prevalence 

of D. dendriticum had been halved from around 80% before the manipulation, to less 

than 40%. Thereafter the prevalence fluctuated below 50% with the exception of 

1993. The decreasing trend prevailed throughout the whole study period, with 

prevalence below 20% in six of the 11 years from 2001 and onwards. The linear 

regression showed that the decline in prevalence was significant for both 

Diphyllobothrium species (p<<0,01), but there was no significant difference between 

the declining prevalence slopes for the two species (p > 0,05).  

 
Fig. 3. Prevalence with linear regression lines for D ditremum (black dots, dashed line) and D. 

dendriticum (Grey dots, solid line) in Arctic charr, for years sampled between 1980 and 2011. For n see 

tab. 1 and for exact values see appendix tab. 1 and 2. 
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Frequency distributions 

Both for D. ditremum and D. dendriticum, the frequency of heavily infected 

individuals within the Arctic charr population decreased immensely from 1980-1981 

to 2009-2011 (fig. 4). Prior to the implementation of the fish depletion experiment, 

most individuals of the Arctic charr population were infected by more than 10 

plerocercoids of D. ditremum.  The proportion of highly infected fish showed some 

reduction towards the mid 1990s, but in 1999 the frequency of intensities were similar 

to conditions prior to the fish-depletion. The proportion of Arctic charr with low 

infections of D. ditremum decreased in the 2000s, culminating with low frequencies 

of highly infected fish in 2009-2011. The infections of D. dendriticum were similar to 

D. ditremum prior to the culling of fish, but from 1987-1988 and onwards most of the 

Arctic charr harboured 0 or few parasites and very few fish had high infections. 

 

Temporal dynamics of mean abundance and mean intensity  

For both Diphyllobothrium species, the mean intensity increased from 1980 towards a 

peak in 1993 (fig. 5). Thereafter, the mean intensity strongly declined and fluctuated 

at low levels with peaks every five to seven years. A highly similar pattern was 

observed for the mean abundance, but for D. dendriticum there was no initial increase 

in mean abundance until the peak in 1993. The mean intensity and abundance are 

closely correlated, and were between 2,5 and 3 times higher for D. ditremum than for 

D. dendriticum prior to the fish depletion (see appendix tab. 1 and 2). The infections 

of D. ditremum remained higher than D. dendriticum throughout the study period, but 

the ratio of this difference varied between years and was in general higher for mean 

abundance than mean intensity. The standard errors and variance to mean ratios 

showed a general increase with higher values of mean intensity and mean abundance, 

and were particularly high in the years 1987 - 1993 (appendix tab. 1 and 2). The mean 

abundance was calculated for Arctic charr in a fixed size-group between 15 and 25 

cm for all sampling years (fig. 6). Here, the mean abundance of D. ditremum 

increased from 1980-81 to 1987-88, thereafter decreasing with two smaller peaks of 

infection in 1999 and 2004. The infections of D. dendriticum in the same length group 

of charr decreased rapidly after 1981 and persisted at low infection levels until the 

end of the study. 
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Fig. 4. Frequency distributions of D.ditremum (left) and D. dendriticum (right) infections in A. charr. 
Y-axis shows frequency of fish, note the differences in scale. The x-axis shows no. of plerocercoids. 
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Fig. 5. Mean intensity (dashed line) and mean abundance (solid line) of D. ditremum (A) and D. 
dendriticum (B) in Arctic charr sampled between 1980 and 2011. For n see tab. 1. For exact values and 
standard errors see appendix tab. 1 and 2.!
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Fig. 6. Mean abundance of D. ditremum (dashed line) and D. dendriticum (solid line) in 15 - 25 cm 

long Arctic charr sampled between 1980 and 2011. 

 

Relative intensity 

The relative intensity showed a different temporal pattern than mean intensity (fig. 7). 

The linear regression revealed a significant decrease in mean relative intensity for 

both Diphyllobothrium species following the fish removal experiment (p << 0.01) 

(appendix fig. 1). The D. ditremum infection showed a marked decrease from > 36 

plerocercoids/100 g fish up to 1988 to 14.7 in 1992 and further down to between 2-4 

from 2008 and later, thus fluctuating in a similar pattern as described for mean 

abundance and mean intensity (fig.7). The relative intensity of D. ditremum was 

significantly higher than D. dendriticum (p < 0.05). The infection of D. dendriticum 

declined rapidly from 19.6 plerocercoids/100g in 1980 to 5.7 in 1988, thereafter 

fluctuating at a low level in a similar pattern as seen for D. ditremum.  
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 Fig. 7. Relative intensity (no. plerocercoids / 100 gram fish) of D. ditremum (black circles) and D. 

dendriticum (grey circles) in Arctic charr in all sampling years. Lines are fitted based on log y-values. 

 

Infections of Diphyllobothrium in Arctic charr versus brown trout 

The prevalence of D. ditremum was significantly higher in Arctic charr than in brown 

trout (chi-square test, p << 0,01), being 61.5 versus 39.3 % for the two fish species, 

respectively (tab. 2). There was no significant difference in the intensities of D. 

ditremum between charr and trout (two-tailed permutation test, p > 0.05). For D. 

dendriticum the prevalence was highest in brown trout (chi-square test, p << 0,01) 

with 31.2 %, while 19.3 % of the Arctic charr were infected. The mean intensity of D. 

dendriticum was much higher in brown trout (25.0) than Arctic charr (3.0), and the 

intensities differed significantly between the two fish species (two-tailed permutation 

test, p << 0.01).   

 
Table 2. Prevalence, mean abundance and mean intensity of D. ditremum and D. dendriticum infecting 

Arctic charr (n = 767, mean age = 4.4) and brown trout (n = 369, mean age = 3.9) sampled between 

2001 and 2011. Standard errors in parentheses. 

 Arctic charr Brown trout Arctic charr Brown trout 

 D. ditremum D. ditremum D. dendriticum D. dendriticum 

Prevalence 61,5 39,3 19,3 31,2 

Mean abundance 6,7 (0,51) 5,3 (1,13) 0,6 (0,09) 7,8 (2,02) 

Mean intensity 10,9 (0,78) 13,4 (2,75) 3,0 (0,43) 25,0 (6,17) 
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Intensity of infection through the ontogeny of the hosts  

The fitted negative binomial GLM curves in figure 8 show that Arctic charr became 

slightly more infected with D. ditremum than brown trout with increasing fish length. 

However, there was no significant difference between the intercept (length = 0), or the 

interaction parameter (= rate of increase) for the two fish species (p > 0,05). For D. 

dendriticum, the infections in brown trout started to increase exponentially around 30 

cm fish length, while the infections in Arctic charr remained low. The negative 

binomial GLM reveals that Arctic charr had significantly higher infections of D. 

dendriticum than brown trout at the intercept (p < 0,05), but the rate of increase was 

more than twice as large in brown trout than in charr (p << 0,01), which resulted in 

the observed pattern (fig. 8).  

 
Fig. 8. Fitted negative binomial GLM for intensities of D. ditremum (A) and D. dendriticum (B) 

infecting Arctic charr (solid lines) and brown trout (dashed lines) sampled in the period 2001 – 2011. 

Uninfected fish are not included. The x-axis shows the length of the fish in mm. 
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Discussion 
 
The long term monitoring of the two Diphyllobothrium component populations 

infecting Arctic charr revealed a profound decrease in prevalence, mean abundance 

and mean intensity over the three decades period from the years prior to the fish 

depletion until the last years of this study. The two Diphyllobothrium species 

displayed different temporal trends in infections, with D. ditremum increasing after 

the initiation of the fish removal before declining in the 1990s, while infections of D. 

dendriticum decreased more rapidly. Infections of both parasite species fluctuated 

quite regularly between years. The abundance of D. ditremum was higher in Arctic 

charr than in brown trout, whilst brown trout exhibited higher infections of D. 

dendriticum obtained at increasing fish lengths. The revealed infection dynamics of 

the two parasite species will be discussed in light of the large ecological changes that 

took place in the Takvatn ecosystem following the mass removal of Arctic charr.  

 

As hypothesized, the abundances of both Diphyllobothrium species decreased 

significantly in the Arctic charr population over the three decades study period. 

Parasite infections are generally shown to correlate positively with host density both 

from theoretical (Dobson and May 1987, Dobson 1990) and empirical work (Morand 

and Poulin 1998, Arneberg et al. 1998, Kennedy et al. 2001). Heavy stock 

reduction/fishing is therefore expected to reduce parasitism (Lafferty et al. 2008b). 

However, for parasites with life cycles involving multiple host species, it is unclear 

which host’s abundance is most important for parasite infection levels (Hansen and 

Poulin 2006), and the association between host densities and parasite infections is less 

clear (Arneberg 2001, Heins and Ecke 2012). The observed decrease in infection 

levels of D. ditremum and D. dendriticum could be caused by the reduced density of 

Arctic charr in the system (Klemetsen et al. 2002, Persson et al. 2007), as correlation 

between host density and parasite mean abundance in second intermediate hosts have 

been reported elsewhere (Hansen and Poulin 2006). Similarly, reducing the density of 

a European whitefish (Coregonus lavaretus) population led to decreased infections of 

the copepod-transmitted cestode Trianeophorus crassus which has whitefish as the 

second intermediate host (Amundsen et al. 2002). The decrease in infections of D. 

dendriticum, observed in the present study, correspond with the reduced density of 

Arctic charr. For D. ditremum, however, reduced infections occurred some years after 
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the fish removal programme was terminated, suggesting that other factors than fish 

density alone play a role. 

 

The culling of fish in Takvatn induced changes in the prey populations of Arctic charr 

as well as in the Arctic charr population itself (Amundsen 1989, 1994, Dahl-Hansen 

1995, Klemetsen et al. 2002, Persson et al. 2007). It is probable that these factors, 

rather than the isolated effect of a reduced density of intermediate fish hosts, are key 

to understand the observed temporal patterns in the Diphyllobothrium infections. 

Predator-prey relationships such as habitat choice and foraging behaviour may be 

important factors structuring the parasite component communities in fish (Esch 1971, 

Knudsen et al. 2004, 2008). The mass removal of Arctic charr increased the 

abundances of attractive benthic prey, notably the amphipod Gammarus lacustris and 

the snail Radix peregra (Amundsen et al. 1993). Likely as a result of this, there was a 

habitat-shift in small zooplanktivore Arctic charr from the profundal and pelagic zone 

to the littoral (Klemetsen et al. 1992, 2002, 2003). Simultaneously, the relative 

abundance and importance of cladocerans in the zooplankton community increased 

(Dahl-Hansen 1995; P.-A. Amundsen et al., unpublished data).  Hence, the combined 

effects of the migration to the littoral habitat, increased abundances of littoral prey, a 

relatively relative higher proportion and abundance of cladocerans in the zooplankton 

community, and the subsequent change in the diet of Arctic charr away from 

copepods, are likely all important factors contributing to the observed decrease in the 

D. ditremum and D. dendriticum infections. 

 

With respect to the temporal variations in the Diphyllobothrium infections in Arctic 

charr, the prevalence, mean abundance and mean intensity of D. ditremum were 

higher than for D. dendriticum in all sampling years. This is in accordance with 

findings from other sub-arctic lakes (Halvorsen 1970, Henricson 1977, Knudsen et al. 

1997). A tolerance for lower temperatures for the developing stages of D. ditremum 

has been suggested as a factor explaining the higher success of D. ditremum 

compared to D. dendriticum in the sub-arctic (Halvorsen 1970). Differences in the 

biology of the avian final hosts has also been proposed as a mechanism behind this, as 

mergansers and divers are more specialized fish predators than omnivorous gulls 

(Hickey and Harris 1947, Henricson 1977).  
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The mean intensities and abundances were stable or increasing for both 

Diphyllobothrium species during and shortly after the culling. The peak observed in 

1993 is most likely due to old and large-sized fish dominating the sample (see tab. 1), 

and overall, the prevalence, frequency distributions, relative intensity and mean 

abundance of 15 – 25 cm long fish suggest that there was a more rapid decrease in 

infections of D. dendriticum compared to D. ditremum. This rapid decline in 

infections could be caused by altered transmission rates to the final host population of 

gulls. In the stunted condition, infections of Diphyllobothrium spp. suggested parasite 

induced mortality in heavily infected Arctic charr, which acted as a negative feedback 

mechanism on the parasite population (Kristoffersen 1993). Such parasite-induced 

host mortality has previously been documented for D. dendriticum (Henricson 1977, 

Rahkonen et al. 1996), and Hickey and Harris (1947) suggested that fish mortality 

may be essential for the parasite in order to reach its final hosts that feed mostly on 

dead or dying fish. Consequently, an initial decline in D. dendriticum could have been 

reinforced through infections no longer reaching lethal levels in Arctic charr. Humans 

leaving fish entrails accessible to gulls may also be important in canalizing the 

transmission of D. dendriticum (Halvorsen 1970). Sensible handling of fish and their 

remains were emphasized locally in the culling period (Hope 1992), and this may 

have contributed to reducing the transmission to the final host. 

 

Whereas the infections of D. dendriticum decreased shortly after the culling of fish 

began, the infection of D. ditremum in contrast showed an apparent increase at least 

until 1988. This unexpected response could be caused by Arctic charr increasing their 

consumption rates, which was observed when the population density was lowered 

(Amundsen 1989, Amundsen et al. 2007). This could have led to a higher net intake 

of copepods infected with D. ditremum. However, despite higher consumption rates, 

Amundsen (1989) found that Arctic charr consumed less copepods in the summer of 

1986 compared to 1980. Kristoffersen (1993) proposed that Arctic charr were able to 

sustain higher infections of D. ditremum in the absence of D. dendriticum, which 

could explain the apparent increase in D. ditremum infections after the culling of fish.  

 

From the 1990s and onwards, the two Diphyllobothrium species showed distinct inter-

annual fluctuations in mean abundance, mean intensity and relative intensity as well 

as in the mean abundance within the 15 – 25 cm size-group of Arctic charr. Parasite 
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and host populations can exhibit parallel oscillations in systems where the parasite 

regulates the host population in a density-dependent manner, similar to predator and 

prey oscillations (Anderson and May 1978, Tompkins et al. 2002). The density of 

Arctic charr fluctuated between years after the fish removal experiment (Klemetsen et 

al. 2002, Persson et al. 2007, see also fig. 2), but the oscillations did not match the 

peaks of Diphyllobothrium spp. infection observed here. The low levels of infection 

after the culling do not indicate any parasite induced regulation of the Arctic charr 

population (Kristoffersen 1993), and shifting densities of Arctic charr in Takvatn are 

more likely linked to predation from brown trout (Persson et al. 2007). An oscillating 

pattern has been described for red foxes infected with the cestode Echinococcus 

multilocularis, where the infection cycles corresponded with the fluctuating 

abundance of, and hence predation upon, voles (Clethrionomys rufocanus), the 

intermediate host of E. multilocularis (Saitoh and Takahashi 1998). In my study, the 

peaks of infection in Arctic charr seem coincide with high population density of three-

spined sticklebacks, which show cyclic oscillations with peaks every 6-7 years 

(Klemetsen et al. 2002, see also appendix fig. 2).  

 

There are several possible explanations for how the fluctuations in stickleback density 

can affect infections of Diphyllobothrium in Arctic charr directly or indirectly. Firstly, 

Arctic charr can become directly infected with both D. ditremum and D. dendriticum 

through consumption of three-spined sticklebacks (Bérubé and Curtis 1986). The 

stickleback population of Takvatn have been shown to harbour many plerocercoids, 

especially of D. ditremum (Hope 1992, Jakobsen 2011). Sticklebacks have frequently 

been found in stomach samples of Arctic charr in Takvatn (Amundsen 1994) and  

piscivorous individuals have elevated infections of both Diphyllobothrium species 

(Knudsen et al. 1996). In years with high densities of three-spined stickleback high 

transmission rates of parasites to Arctic charr are therefore expected. Secondly, in 

years with high stickleback densities in Takvatn the relative abundance of copepods 

in the zooplankton community increases (Dahl-Hansen 1995). Three-spined 

sticklebacks are efficient zooplankton predators that can exert top-down control on 

the zooplankton community structure (Jakobsen et al. 2003). The typical reduction in 

large-bodied cladocerans (Jakobsen et al. 2003) may enhance the importance of 

copepods in the diet of zooplanktivorous Arctic charr, thereby indirectly increasing 

infection rates of the two Diphyllobothrium species. Empirical support for this is 
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found during the years with both low Diphyllobothrium infections and stickleback 

densities in the mid 1990s, when the importance of the cladoceran Daphnia galeata 

suddenly increased in the diet of Arctic charr (Klemetsen et al. 2002). Thirdly, high 

densities of three-spined sticklebacks may facilitate the life cycle of the two 

Diphyllobothrium species, as the sticklebacks are probably more important than 

salmonids in transmitting plerocercoids to the bird final host (Halvorsen 1970). The 

avian hosts for D. ditremum and D. dendriticum are predators of sticklebacks 

(Reimchen 1994), and the presence of sticklebacks has e.g. been shown to be a good 

predictor of the distribution of red-breasted mergansers (Råd 1980). Consequently, 

high densities of the stickleback population can lead to increased stickleback 

predation by avian hosts, especially red-breasted mergansers, causing higher 

infections in the birds and more cestode eggs, particularly of D. ditremum, being 

released into the lake. In this way, high densities of sticklebacks could lead to 

increased prevalence of Diphyllobothrium spp. in copepods, thereby indirectly 

enhancing the probability of transmission to zooplanktivorous Arctic charr. Finally, 

the three-spined stickleback population in Takvatn is infected with the 

diphyllobothriidean cestode Shistocephalus solidus (Hope 1992, Jakobsen 2011), 

which often co-occurs with Diphyllobothrium spp. in infected sticklebacks (Hope 

1992). Individuals infected with S. solidus have reduced anti-predator behaviour 

(Giles 1983, Barber et al. 2000). As higher host densities is expected to increase 

parasite transmission (Morand and Poulin 1998, Arneberg et al. 1998), years with 

high stickleback densities could lead to higher infections of S. solidus. Consequently, 

in these years sticklebacks may be more easily predated upon by both birds and Arctic 

charr, thereby facilitating the transmission of the two Diphyllobothrium species.  

 

The cyclic pattern observed in the Diphyllobotrhium infections is intriguing, and 

could likely be caused by oscillations in the density of three-spined sticklebacks. The 

most obvious factors for this are that the presence of sticklebacks maintains a larger 

population of avian final hosts, and that the sticklebacks can increase the transmission 

of Diphyllobothrium through piscivory, especially when they are infected with S. 

solidus. Mass die-offs have been observed in 3-spined stickleback populations heavily 

infected with S. solidus (Threlfall 1968). Parasites that induce mortality in hosts may 

cause a stable cyclic pattern in host and parasite population size (Anderson and May 

1978), and S. solidus may therefore be a driver in the fluctuating nature of the 
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stickleback population in Takvatn. This notion is worth further investigation as no 

unequivocal evidence of fish host and parasite populations undergoing linked stable 

cycles exist (Kennedy 2009). 

 

Finally, it was hypothesized that the infections of Diphyllobothrium would differ 

between brown trout and Arctic charr, reflecting their trophic niches in sympatry. 

Arctic charr had a higher prevalence of infection of D. ditremum than brown trout, but 

the intensities did not differ significantly between the two fish species. Brown trout 

had a higher prevalence of D. dendriticum, and also a higher mean abundance and 

intensities, especially with increasing fish lengths. Phylogenetic specificity and 

parasite-host compatibility are two factors that can create dissimilarities in helminth 

infections between fish species (Lagrue et al. 2011) due to e.g. differences in the 

immune responses of the hosts  (Secombes and Chappell 1996). The tissue immune 

response exhibited when infected with Diphyllobothrium plerocercoids seems to be 

poorly developed in salmonids (Bylund 1972, Sharp et al. 1992). However, it cannot 

be ruled out that the success of D. ditremum and D. dendriticum in establishing 

infections differs between Arctic charr and brown trout, thus creating the infection 

pattern observed here. 

  

Ecological differences in feeding or habitat utilization may be more important than 

immunological factors for observed discrepancies in the parasite acquisitions of fish 

hosts (Knudsen et al. 1996, 2004, 2008). When co-occurring, brown trout is found to 

restrict the habitat use and foraging behaviour of Arctic charr during summer and 

autumn by dominating in the littoral zone (Nilsson 1963, Langeland et al. 1991, 

Eloranta et al. 2013). They also segregate in diet with brown trout feeding on 

zoobenthos and pleuston while Arctic charr forage on zooplankton (Langeland et al. 

1991, Jansen et al. 2002, Eloranta et al. 2013).  The segregation in diet is maintained 

even when both species are found sympatrically within the littoral zone (Eloranta et 

al. 2013). The infections of both Diphyllobothrium species in Arctic charr and brown 

trout in the current study can to some extent reflect the different niches of these two 

fish species in sympatry. The higher prevalence observed for D. ditremum indicates 

that Arctic charr are feeding more on zooplankton than brown trout, and the elevated 

intensities in large charr could support the notion that even large Arctic charr to a 

greater extent are zooplankton feeders when coexisting with brown trout (Nilsson 
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1963).   Interestingly, the infections of D. dendriticum was higher in brown trout, with 

a mean intensity 8-folds greater than in Arctic charr. Diphyllobothrium dendriticum 

seem to be more successful than D. ditremum at re-establishing in piscivorous fish 

(Halvorsen and Wissler 1973), and the parasite may tend to aggregate in piscivorous 

individuals (Halvorsen 1970). Knudsen et al. (2008) found D. dendriticum to be a 

suitable indicator for piscivorous feeding, and the high infections of large brown trout 

observed here suggest that these infections are acquired through piscivory. The 

prevalence and mean intensity of D. ditremum in brown trout was higher than 

expected, and also high in comparison with findings from another lake in northern 

Norway lake with identical fish fauna to Takvatn (Knudsen et al. 2008). If these 

infections were acquired through predation upon infected copepods it would suggest 

that 40 per cent of the brown trout population have regularly been feeding copepods 

at a similar or higher rate than Arctic charr. This would contradict existing theory and 

findings both from Takvatn (Eloranta et al. 2013) and other, similar lakes (Langeland 

et al. 1991, Knudsen et al. 2008, Amundsen and Knudsen 2009). Similarly as for D. 

Dendriticum, most of these infections are probably obtained through piscivory, which 

has been described for piscivorous individuals harbouring D. ditremum elsewhere 

(Hammar 2000, Gallagher and Dick 2010). Around a length of 150 mm brown trout 

can start predating on small fishes, and the extent of piscivory and the prey-size range 

usually increase with with increasing length (L’Abee-Lund et al. 1992, Klemetsen et 

al. 2003). This scenario is supported by the exponential increase in D. dendriticum 

infections as the brown trout in Takvatn grow larger. However, the higher infection 

level of D. dendriticum also suggests that the susceptibility of brown trout for re-

infection from fish prey is much higher for this parasite species than for D. ditremum, 

as also have been indicated from previous studies (Halvorsen & Wissler 1973). The 

observed infection patterns seem to correlate to dietary segregation between the two 

fish species, where large-sized brown trout is feeding heavily on three-spined 

sticklebacks or Arctic charr whereas piscivory is much less pronounced in Arctic 

charr. This is in accordance with the diet utilization derived from isotopic analyses of 

muscle tissue from an earlier study in Takvatn (Eloranta et al. 2013).  

     

The large changes in the fish populations and their prey communities induced by the 

fish removal experiment in Takvatn have been well documented (Amundsen et al. 

1993, Dahl-Hansen 1995, Klemetsen et al. 2002, Persson et al. 2007). Combining 
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such data on fish populations and their habitat use with parasitological observations is 

important for understanding how ecological factors influence the transmission of 

parasites to northern fishes (Curtis 1995). Here, I have shown how the infections of 

two Diphyllobothrium species in Arctic charr responded to a mass removal of the 

host. The changes in habitat and diet, important factors in increasing the growth of 

Arctic charr (Klemetsen et al. 2002), seem influential for the population decrease of 

both Diphyllobothrium species as well. The importance of a diet switch from 

zooplankton to benthic invertebrates, in reducing copepod-transmitted cestodes in fish 

populations has also been emphasized through culling experiments performed on 

stunted European whitefish and brook charr (Salvelinus fontinalis) populations (Curtis 

1995, Amundsen et al. 2002). For management purposes, reducing the density of a 

stunted fish population can reduce copepod-transmitted parasite burdens as well as 

increasing the growth of fish, thereby improving the fish quality for human harvest.  

 

The increased growth rate of Arctic charr may have altered the transmission rates of 

both Diphyllobothrium species to their avian final hosts by fish rapidly growing out of 

the predation window of birds, that typically feed on small-sized fish (Nilsson and 

Nilsson 1976, Doornbos 1984). Moreover, the larger fish that harbour most parasites 

are likely dead-ends in the life cycle of the parasites (Halvorsen 1970). Combined, 

this could have a large impact on the abundance of the two parasite species. However, 

both Diphyllobothrium species have been able to sustain their component populations 

despite the rapid somatic growth of Arctic charr and brown trout. Parasite populations 

are more likely to persevere when there are multiple competent hosts present (Curtis 

1995, Hatcher et al. 2012). My results supports the notion of Amundsen et al. (2013), 

who suggested that the introduction of three-spined stickleback, and its host-

manipulating cestode S. solidus, likely has increased the transmission rate and 

abundance of trophically transmitted parasites to piscivorous birds and fish in 

Takvatn. This implies that the fish culling would have had an even more severe effect 

on the two Diphyllobothrium populations in the absence of three-spined stickleback. 

The analysis of Diphyllobothrium infections in sympatric Arctic charr and brown 

trout could indicate diet segregation between the two fish species, where Arctic charr 

are feeding more on zooplankton and brown trout more on fish. Reduced piscivory by 

Arctic charr through interspecific competition from the increasing brown trout 
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population could therefore also be a factor in the vast reduction of D. dendriticum 

infection observed in the temporal analysis of charr. 

 

The study of long-term data is essential in advancing our knowledge of the parasite-

host relationship (Anderson 1991, Kennedy 2009). Temporal variations in prevalence 

and density of parasite populations can be the result of environmental perturbation or 

variability in the behaviour of potential intermediate or final hosts (Esch et al. 1986). 

Klemetsen et al. (2002) had unanswered questions regarding the stability in Takvatn 

10 years after the end of the fish removal experiment. The present study shows that 

the infections of Diphyllobothrium had not stabilized by 2011, and the effects of the 

culling seem to still be echoing in the system. Kennedy (2009) proposed that helminth 

parasite communities in freshwater fish are unstable stochastic assemblages rather 

than stable entities. The parasite-host relationship described here may be in a 

perpetual dynamic where the importance of different interactions varies between 

years. It is evident that parasite-host interactions are pivotal in furthering our 

knowledge of ecosystem processes (Marcogliese and Cone 1997, Hudson et al. 2006, 

Lafferty et al. 2008a), and this study has highlighted how these interactions are 

sensitive to and indicative of ecological processes in a freshwater ecosystem.  
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Appendix 
 
 
!
Appendix table 1. Infections of Diphyllobothrium ditremum in Arctic charr in sampled years. Standard 
error in parentheses. Variance to mean ratios include infected and uninfected fish (i.e. is based on 
abundance data).  
!
Year% Prevalence% Mean 

abundance 
(± SE)%

Mean 
intensity 
(± SE)%

Relative 
intensity%

Var / mean 
(abundance) 

1980 92.0 23.0 (1.3) 25.0 (1.3) 51.4 33.6 
1981 96.1 23.7 (2.2) 24.6 (2.2) 42.8 34.7 
1987 89.3 33.7 (2.8) 37.7 (3.1) 50.6 117.5 
1988 93.8 37.9 (3.8) 40.4 (4.0) 36.3 93.8 
1992 75.2 30.7 (4.1) 40.8 (5.2) 14.7 166.3 
1993 89.3 38.1 (11.0) 42.7 (12.2) 10.0 175.5 
1994 67.9 10.2 (1.6) 14.9 (2.3) 7.6 61.5 
1995 78.8 5.5 (1.0) 7.0 (1.3) 4.8 31.5 
1996 85.2 8.5 (1.2) 10.0 (1.3) 7.3 17.7 
1997 75.8 9.3 (1.3) 12.2 (1.5) 8.1 16.6 
1999 95.3 23.7 (2.3) 24.9 (2.3) 13.4 32.0 
2001 80.7 15.6 (3.2) 19.3 (3.8) 8.8 39.7 
2002 56.0 4.6 (1.4) 8.2 (2.3) 7.1 30.3 
2003 64.9 4.1 (0.7) 6.3 (0.9) 5.6 8.3 
2004 65.0 9.3 (2.3) 14.3 (3.3) 14.4 34.4 
2005 83.6 12.6 (2.1) 15.1 (2.4) 7.6 23.1 
2006 73.6 9.1 (2.0) 12.4 (2.6) 10.2 31.9 
2007 48.3 5.0 (1.3) 10.3 (2.3) 7.7 19.4 
2008 67.2 7.1 (1.6) 10.5 (2.2) 4.0 19.7 
2009 31.7 1.0 (0.3) 3.1 (0.7) 2.3 6.0 
2010 59.8 4.1 (0.9) 6.9 (1.4) 2.0 17.3 
2011 52.5 4.6 (1.8) 8.8 (3.3) 4.3 42.9 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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Appendix table 2. Infections of Diphyllobothrium dendriticum in Arctic charr in sampled years. 
Standard error in parentheses. Variance to mean ratios include infected and uninfected fish (i.e. is 
based on abundance data). !
!
Year% Prevalence% Mean 

abundance 
(± SE)%

Mean 
intensity 
(± SE)%

Relative 
intensity%

Var / mean 
(abundance) 

1980 78.0 7.7 (0.5) 9.8 (0.5) 19.6 12.9 
1981 85.5 8.9 (0.7) 10.4 (0.8) 17.6 9.9 
1987 38.0 5.4 (1.7) 14.2 (4.5) 12.8 284.6 
1988 36.6 4.0 (1.1) 10.9 (2.8) 5.8 72.5 
1992 40.5 6.8 (1.9) 16,9 (4.5) 4.4 159.9 
1993 67.9 23.8 (0.1) 35.1(14.6) 8.8 234.9 
1994 28.3 2.7 (0.8) 9.4 (2.6) 2.9 53.4 
1995 19.4 1.1 (0.5) 5.9 (2.4) 2.4 36.2 
1996 28.7 0.8 (0.2) 2.6 (0.6) 1.7 6.2 
1997 34.7 0.7 (0.1) 2.0 (0.2) 1.1 2.1 
1999 45.3 2.9 (1.1) 6.3 (2.4) 2.7 64.8 
2001 24.2 0.6 (0.2) 2.3 (0.4) 0.7 3.0 
2002 10.7 0.2 (0.1) 1.6 (0.6) 0.9 3.1 
2003 28.6 0.7 (0.2) 2.6 (0.4) 2.4 2.9 
2004 13.3 0.3 (0.1) 2.3 (0.7) 1.2 3.3 
2005 37.3 1.7 (0.8) 4.6 (1.9) 1.8 22.6 
2006 31.9 1.1 (0.4) 3.4 (1.0) 3.3 8.7 
2007 13.8 0.4 (0.2) 2.9 (0.9) 2.2 4.6 
2008 21.3 0.3 (0.1) 1.5 (0.2) 0.7 40.7 
2009 8.5 0.2 (0.1) 1.7 (0.4) 0.8 2.0 
2010 14.1 0.3 (0.1) 1.8 (0.3) 0.4 2.2 
2011 9.8 0.7 (0.5) 7.3 (5.0) 0.8 23.6 
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Appendix fig. 1.  Relative intensity, on a natural logarithmic scale, with linear regression lines for D 
ditremum (black dots, dashed line) and D. dendriticum (Grey dots, solid line) infecting Arctic charr. 
For years sampled between 1980 and 2011.  
 
 
 
 
 

 
Appendix fig. 2. Population density scores for littoral three-spined sticklebacks in Takvatn in the 
period 1979-1999. From Klemetsen et al. 2002. 
 
 
 
 
 
 
 
 
 

Year

Lo
g 

re
la

tiv
e 

in
te

ns
ity

−1

0

1

2

3

4

1980 1990 2000 2010


