

Faculty of Science and Technology

Department of Computer Science

Sphero NAV
A Robotic Navigation and Control Platform
—
Simon Andreas Engstrøm Nistad
INF-3981 Master’s Thesis in Computer Science, June 2014

University of Tromso 2014 – Sphero NAV

I

I. Abstract
The computer science department at the University of Tromso has in the later
years invested in different robotic platforms for use in their recruitment
program. The recruitment program is responsible for targeting high school
students and open their eyes for the world of computer science. The use of
robots in recruitment is an approach to give a simple demonstration of what
simple programming skills can achieve.

One of the limitations addressed by the administrators of the recruitment
program is the robotic devices lacking possibilities in navigation and
positioning. The devices used by the university are missing sensors that can
obtain data about their accurate position. The administrators has posted
request for a platform that would allow for position tracking of the devices.
The system would make it possible to create richer and attention-grabbing
applications for recruitment events and school visits.

This thesis addresses this request and presents Sphero NAV, a camera based
navigation and control platform for the robotic ball Orbotix Sphero. Sphero
NAV is a Python library that serves as a base for developing new Sphero
applications. The library allows for communication and control of one or
multiple Sphero devices using Sphero’s rich API and functionality. Sphero NAV
implements a tracker system that uses image based position tracking. A
camera mounted in the celling over the tracking area captures a video stream.
The system analyzes the images and locates the devices position.

The evaluation of Sphero NAV shows that the library implements is a simple
but efficient image-based position and control system that developers can use
to create different applications for recruitment purposes.

University of Tromso 2014 – Sphero NAV

III

II. Acknowledgements
This thesis is dedicated to the memory of a beloved family member, Harry
Jardine, who passed away last Christmas.

I would like to thank my advisor, John Markus Bjørndalen for providing
guidance and feedback throughout this project.

I would also like to thank my fellow students and good friends through five
years of study: Alexander Svendsen, Ida Jaklin Johansen, Simen Lomås
Johannessen, Steffen Hageland and Tom Pedersen for good discussions,
support and many good memories during my entire study. I look forward to
work with some of you as colleagues after the summer.

A special thanks goes to Alexander that I have shared office with during the
time of this thesis. Thank you for feedback and good discussions during this
project.

A thank goes to my close family and friends who always supports me and
believes in my decisions.

Finally, special thanks go to Karina Byrkjeland who always knows how to cheer
me up. Thank you for your support and love.

University of Tromso 2014 – Sphero NAV

V

Table of content
I. Abstract .. I

II. Acknowledgements ...III

III. List of figures ... IX

IV. List of tables .. XI

Chapter 1 - Introduction ..1

1.1 Overview ..1

1.2 Problem definition ...3

1.3 Envisioned system ...3

1.4 Contributions ...5

1.5 Limitations ...5

1.6 Outline ...5

Chapter 2 - Related work ...7

2.1 Introduction ...7

2.2 Bouncing Star ...7

2.3 Ping pong plus ...8

2.4 Open Pool ..9

2.5 Pixelbots (Display swarm) ...10

Chapter 3 - Orbotix Sphero ..13

3.1 Introduction ...13

3.2 The device ..14

3.2.1 SDK’s ...15

University of Tromso 2014 – Sphero NAV

VI

3.3 System Design ...16

3.3.1 Client – Server ..16

3.3.2 Virtual devices ..16

3.4 Sphero Overview ...17

3.4.1 RGB light ...18

3.4.2 Coordinate system ...18

3.4.3 Locator ...19

3.4.4 OrbBasic ...20

3.4.5 Macros ..20

3.5 Packet structure ..20

3.5.1 Synchronous packets ...20

3.5.2 Synchronous responses..22

3.5.3 Asynchronous packets ...23

Chapter 4 - Sphero NAV ...25

4.1 Introduction ...25

4.2 Architecture ...26

4.3 Design ..29

4.3.1 Tracker ..29

4.3.2 Sphero Module ...33

4.3.3 PS3 Module ..35

4.4 Use Case ..36

4.4.1 Application ideas ..36

4.4.2 API usage examples ..36

Chapter 5 - Implementation ...43

5.1 Introduction ...43

5.2 Technologies used ...43

5.3 Object Tracking ..44

5.3.1 Algorithm ..44

University of Tromso 2014 – Sphero NAV

VII

5.3.2 Traceable object and sample class ...47

5.3.3 Filter ...48

5.3.4 Camera controller ..48

5.4 Sphero Module ..49

5.4.1 Communication ..49

5.4.2 Sphero Streaming ...51

5.4.3 Sphero Manager ...52

5.4.4 Sphero Calibration..53

5.5 PS3 Module ..55

Chapter 6 - Evaluation ..57

6.1 Introduction ...57

6.2 Experiments ...57

6.2.1 The experimental environment ...57

6.2.2 Communication ..57

6.2.3 Tracking performance ..60

6.2.4 Library test ...62

6.2.5 Video ..63

6.3 Known bugs and issues ..64

6.3.1 Spikes in communication ...64

6.3.2 Microsoft Kinect ...65

6.3.3 Color tracking ...65

6.3.4 Internal reference heading ..65

6.4 Improvements ...66

6.4.1 Support all platforms ...66

6.4.2 Bluetooth lookup is slow ..66

6.4.3 Distributed system ...66

6.4.4 Image evaluation ..67

6.4.5 Improved Tracking ...68

University of Tromso 2014 – Sphero NAV

VIII

6.5 Problem definition solved ...70

Chapter 7 - Conclusion ...73

7.1 Conclusion ...73

7.2 Concluding remarks ...74

7.3 Future work and ideas ...74

Chapter 8 - References ...77

University of Tromso 2014 – Sphero NAV

IX

III. List of figures
Figure 1 - Conceptual architecture ..4
Figure 2 - Shows the Sphero device ...13
Figure 3 - Shows the inside and IMU of the Sphero ..14
Figure 4 - Sphero client --> server model ...16
Figure 5 - Accelerometer and Gyroscope in Sphero ..17
Figure 6 - Sphero angles vs. Euclidean ...19
Figure 7 - Sphero NAV logo ..25
Figure 8 - Architecture of Sphero NAV ...26
Figure 9 - Manager Design pattern used for Sphero and PS3 module28
Figure 10 – Tracker design ...29
Figure 11 – Tracking mask displayed by the tracker ..30
Figure 12 - GUI of the camera settings manager ...31
Figure 13 - Tracker GUI ..32
Figure 14 – Sphero module design...33
Figure 15 - PS3 manager module design ..35
Figure 16 - Shows pseudo code of the tracking algorithm44
Figure 17 - image  filter  mask  position process45
Figure 18 - Filter containing noise ..46
Figure 19 - Coordinate system used by the tracker ...47
Figure 20 - Traceable object ...47
Figure 21 - Data flow Sphero Object ..50
Figure 22 – Sphero calibration ...54
Figure 23 - Client - Sphero RRT ..58
Figure 24 - Graph of streaming speed ...59
Figure 25 – Graph of FPS Tracking ...60
Figure 26 - Graph of CPU tracking ..61
Figure 27 - Follow virtual dot test ..63
Figure 28 - Plotting of round trip samples ...64

University of Tromso 2014 – Sphero NAV

X

Figure 29 - GPU vs CPU processing (figure from) ...67

University of Tromso 2014 – Sphero NAV

XI

IV. List of tables
Table 1 - Client --> Sphero packet format ..21
Table 2 - Client  Sphero packet description ...21
Table 3 - SOP2 bit options ..21
Table 4 - Sphero  client response packet ...22
Table 5 - Sphero  Client response description ...22
Table 6 - Sphero asynchronous packet structure ..23
Table 7 - Sphero asynchronous packet types ..23

University of Tromso 2014 – Sphero NAV
Chapter 1 - Introduction

1

Chapter 1 - Introduction

1.1 Overview
The word Robot arrives from the old Czechoslovakian word robota /
robotnik meaning a slave or a servant1. A robot can be described as a
programmable, self-controlled device capable of carrying out series of actions
automatically, especially actions programmable by a computer.

Universities have used Robot technologies for outreach and recruitment
purposes over the last decades [1], [2], [3]. The computer science (CS)
department at the University of Tromso (UIT)2 has in the later years invested
in different robotic platforms for use in own their recruitment program. The
recruitment program is responsible for targeting high school students and
open their eyes for the world of computer science.

The use of robots in recruitment is an approach to give a demonstration of
what simple programming skills can achieve. Small robotic devices is a good
tool for this purpose because they have the effect of easily capture people’s
attention, especially when they seem to act intelligently in what they do [4]. A
robot allows the audience to observe and interact, and stands out from more
traditional demonstrations (e.g. talks, example systems, graphical
visualizations).

The robot technologies used by UIT include Lego’s robotic platform
Mindstorms3, Quadcopters4 and the recently added robotic ball Sphero [5].
Sphero is a remotely controlled robotic ball developed by the American

1 http://inventors.about.com/od/roboticsrobots/a/RobotDefinition.htm (accessed 11.05.14)
2 http://uit.no/startsida (accessed 07.05.14)
3 http://www.mindstorms.lego.com (accessed 14.05.14)
4 http://quadcopterhq.com/what-is-a-quadcopter/ (accessed 01.06.14)

http://inventors.about.com/od/roboticsrobots/a/RobotDefinition.htm
http://uit.no/startsida
http://www.mindstorms.lego.com/

University of Tromso 2014 – Sphero NAV
Chapter 1 - Introduction

2

company Orbotix5. Inside the spherical shaped body of the device (see page 13
Figure 2) there is an internal core named the internal measurement unit
(IMU). The IMU is similar to a miniature Segway6, and it enables movement
with two wheels that “drives” inside the enclosing hull of the device. Sphero
contains different types of sensors (e.g. Gyroscope, accelerometer) and it uses
a RGB LED to illuminate itself in various colors. iOS7 and Android8 devices are
the mostly used platform to control the Sphero devices and there currently
exists many different applications for the device9.

One of the big limitations addressed by the administrators of the recruitment
program is the robotic devices lacking possibilities in navigation and
positioning. The devices used by the university are missing sensors that can
obtain data about their accurate position and the position of devices in
proximity. The administrators has posted request for a platform that would
allow for position tracking of the devices. The system would make it possible
to create richer and attention-grabbing applications for recruitment events
and school visits.

This thesis addresses this request and presents Sphero NAV, a camera based
navigation and control platform for the robotic ball Orbotix Sphero [5]. Sphero
NAV is a Python [6] library that serves as a base for developing new Sphero
applications. The library allows for communication and control of one or
multiple Sphero devices using Sphero’s rich API [7] and functionality. Sphero
NAV implements a tracker system that uses image based position tracking. A
web camera mounted in the celling over the tracking area captures a video
stream. The system analyzes the images and locates the devices position.

Sphero NAV is a simple but efficient image-based position and control system
and developers can use Sphero NAV to create different applications that utilize
this functionality.

5 http://www.gosphero.com/company/ (accessed 29.05.2014)
6 http://www.segway.com/ (accessed: 20.04.14)
7 https://www.apple.com/no/ios/ (accessed: 20.04.14)
8 http://www.android.com/ (accessed: 20.04.14)
9 https://play.google.com/store/search?q=Sphero (accessed 14.05.2014)

http://www.gosphero.com/company/
http://www.segway.com/
https://www.apple.com/no/ios/
http://www.android.com/
https://play.google.com/store/search?q=Sphero

University of Tromso 2014 – Sphero NAV
Chapter 1 - Introduction

3

1.2 Problem definition
From the problem definition of this thesis:

“Develop a navigation platform for one or more users to control one
or more robots (drones, sensor etc.). The platform should be easy to
use and has to allow robots to operate on different levels of
autonomy. The platform should also be easy to deploy and use both in
the lab and when visiting schools and recruitment fairs.”

The interpretation of the problem definition lead to the project of creating a
system that would allow its users to develop applications that controlled
Sphero devices. The system would implement a positioning system that allows
the application to obtain the position of the devices inside a given area. The
choice of using Sphero was natural because UIT has just added it to its
repository of robotic devices and Sphero had a well-documented API and
functionality suited for a System like Sphero NAV.

1.3 Envisioned system
The envisioned system (Figure 1) of Sphero NAV had two components: The
first was a positioning module that tracked devices by using images obtained
by a camera. The system would analyze and find the (X, Y) coordinates of each
device. The second component was a Sphero library that would implement the
core functionality from Orbotix Sphero API [7] including communication with
devices, necessary calibration and functionality for use with the tracker
module.

The envisioned system would make it possible to control and receive
information from the Sphero devices. This included access to sensor data and
operational commands (e.g. Movement, light controls).

Implementing Sphero NAV as a software library allows for other applications
to utilize the retrieved positioning and sensor data from the Sphero devices.

University of Tromso 2014 – Sphero NAV
Chapter 1 - Introduction

4

The two main tasks of the system were:

a) Implement a fully functional python library for controlling and
communication towards the Sphero devices.

b) Implement an image based tracking system that tracks the (X, Y)

coordinates of the device. Coordinates will be obtained by analyzing
images from a live video stream.

Figure 1 - Conceptual architecture

University of Tromso 2014 – Sphero NAV
Chapter 1 - Introduction

5

1.4 Contributions
The contributions made from this thesis are:

• A Sphero control API for Python
• A tracking system that allows for tracking of the Sphero devices
• A PS3 controller module that allows application to take use of game

controllers.
• Evaluation and discussion of the Sphero NAV system
• A Video demonstrating usage of the Sphero NAV system [8]

1.5 Limitations
In the work of this project, some areas are not taking into account.

There has been no focus on the security aspect of the system. Potential
security threats in the implementation of the system has not been evaluated
and the current implementation as not been optimized to handle any potential
threats that may exist.

1.6 Outline
The organization of the remainder of this thesis is as follows:

Chapter 2: Presents related work to the Sphero NAV system
Chapter 3: Present background material for the Sphero device
Chapter 4: Presents Sphero NAV’s architecture, design and usage
Chapter 5: Presents implementation details of the Sphero NAV system
Chapter 6: Evaluates and discusses the Sphero NAV system
Chapter 7: Concluded this thesis and presents future work

University of Tromso 2014 – Sphero NAV
Chapter 2 - Related work

7

Chapter 2 - Related work

2.1 Introduction
This chapter presents work that is related to and/or has similarities with the
Sphero NAV system.

2.2 Bouncing Star
Bouncing star [9] is an entertainment system developed at the University of
Electro-communications in Tokyo Japan (see videos (10,11)). Bouncing star
present a gaming platform that uses a self-developed spherical input device
called a smart ball. A smart ball is a device in the same shape and size of a
tennis ball and contains sensors, communication, computational power and
lights. The developers behind bouncing star have created different ball-based
games suited for the smart ball under the name “digital sports”. To add a new
dimension to the games, the system uses sensor readings, graphical
visualizations (CGI12) and the onboard LED’s to enhance the user experience.

In comparison with Sphero NAV, Bouncing star is an input system where smart
balls are moved physically by the end-users. Sphero NAV is different and is
intended for the end-user to control Sphero devices with game controllers or
watch them perform different visualizations. Note that there exists Sphero
applications that use the Sphero device for input, and by using Sphero NAV’s
data streaming support this kind of support could be implement in new
applications. Bouncing Star is used on academic conferences and museums but
it has also been used for scientific experiments.

10 http://www.youtube.com/watch?v=rZxLO77dtho (accessed 16.05.14)
11 http://www.vogue.is.uec.ac.jp/project/projects-1/bouncing-star (Accessed 14.05.14)
12 http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Computer-
generated_imagery.html (accessed 31.05.2014)

http://www.youtube.com/watch?v=rZxLO77dtho
http://www.vogue.is.uec.ac.jp/project/projects-1/bouncing-star
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Computer-generated_imagery.html
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Computer-generated_imagery.html

University of Tromso 2014 – Sphero NAV
Chapter 2 - Related work

8

The smart ball used in Bouncing Star has similarities to the Sphero device, but
holds no internal actuators for movement. Whereas Sphero uses
Polycarbonate for its body, the bouncing star device is made of a rubber like
finish making the bouncing star bouncier and more suited for ball games. The
developers behind Bouncing star describes the smart ball as an organic user
interface [10]. An organic user interface is an interface that uses a non-planar
shaped object as a display for its primary output and input.

Bouncing star tracks the position of the smart ball by using a fixed camera, this
is similar to the tracking system implemented in Sphero NAV, and the main
difference is that Bouncing Star uses an Infrared camera. The tracking works
by tracking IR light emitted from the onboard IR LEDs in the smart ball. IR light
is not visible to the human eyes and makes it possible for the devices to
display different colors from the normal RGB LED’s without affecting the result
of the tracking. This is not possible with the Sphero because it does not hold IR
diodes. The disadvantage with IR tracking is that direct sunlight would affect
the result and make it impossible to track the devices.

The Bouncing star system serves graphical support. A projector is placed in the
celling pointing down on the area assigned for the smart ball. The projector
displays different types of game graphics affected by the usage of the smart
ball. Combined with sound effects this creates a richer experience for the end
users. The current implementation of Sphero NAV does not implement this
support, but it is noted for one of the things to add in the future.

2.3 Ping pong plus
Ping pong plus (PPP) [11] is a research project from MIT Media Laboratory.
PPP is a gaming system built on top of a standard ping pong table (see
video13). The motivation behind the ping pongs plus project was the interest in
designing a system that sets the use of physical movement from the end users
in focus. The goal is to remove the requirement of using standard input
devices such as mouse, keyboard or joystick.

Ping Pong Plus is a digitally enhanced version of the ping pong game, and the
system is implemented in two parts. A tracking module used for tracking of the

13 http://www.youtube.com/watch?v=AZO8sfmpKIQ (accessed 19.05.14)

http://www.youtube.com/watch?v=AZO8sfmpKIQ

University of Tromso 2014 – Sphero NAV
Chapter 2 - Related work

9

ping pong ball, and a graphic system where a projector is placed over the pool
table and used for displaying in game graphics.

The tracking of ping pong plus is achieved by capturing sound using 8
microphones. The microphones are used to track the sound made from the
touchdown of the ping pong ball. A tracking algorithm calculates the position
of the touchdown by calculate the different time differences in the captured
sound. This is similar to how humans detects location of the sound.

Ping Pong plus has no direct similarities with Sphero NAV, but it is interesting
to see how they perform the tracking of the ping pong ball. The Ping pong
equipment used in PPP is built upon a standard pool table, and the ball holds
no extra technology for enabling tracking. Tracking is performed by differences
in the captured sound. This approach is probably not suited and possible for
tracking of Sphero’s.

One of the things used by Ping Pong Plus that Sphero NAV could use is the
graphical system where a projector is used to display graphics. This is
something used by all the related systems mentioned in this chapter.

2.4 Open Pool
Open pool (see video14) is an open source project that implements an
interactive entertainment system for pool15 tables. The system uses two
Microsoft Kinects and pocket detectors (the holes in the pool table) to track
the position and state of the billiard balls. A projector mounted in the celling is
used to project graphics on the mat of the table. The system is used to give an
interactive experience when playing pool. A depth camera16 onboard the
Kinects is used to obtain the position of the billiard balls. Open Pool focuses on
the graphical experience. The system does not use any special billiard balls or
ques.

Open Pool uses Microsoft Kinect for tracking the position of pool balls. A depth
camera is used for finding the tracked distance to every object. This data can
be used to extract objects on a flat ground. In the early development phase of

14 http://www.youtube.com/watch?v=e3Ywdw8IuG8 (accessed 19.05.14)
15 http://www.theworldgames.org/the-sports/sports/precision-sports/billiard-sports
(accessed 30.05.14)
16 http://www.youtube.com/watch?v=uq9SEJxZiUg (accessed 16.05.14)

http://www.youtube.com/watch?v=e3Ywdw8IuG8
http://www.youtube.com/watch?v=uq9SEJxZiUg

University of Tromso 2014 – Sphero NAV
Chapter 2 - Related work

10

Sphero NAV the idea was to use the same approach and combine the depth
data with the captured image to achieve a more accurate tracking result. This
approach worked relatively well on short distances, but when the Kinect was
placed high above the tracking area, the depth data was too inaccurate to
locate the Sphero’s on the ground. The Kinect was also challenging to setup
and use from python. The tracking of Sphero NAV is for these reasons based
on image tracking alone.

2.5 Pixelbots (Display swarm)
Pixel boots [4] [12] [13] [14] is a research project in cooperation with Disney17.
Pixel boots is a robotic platform that implements a display swarm. A display
swarm is a swarm of small robotic devices where each device presents a pixel
used to create a larger image. Each device in a swarm has the opportunity of
displaying different colors. Patterns are created by having the devices placed
in various positions. The current version of a pixel bot is a small circular robot
with a LED light in the top. The devices are custom built and designed to move
in a planar ground. The devices use magnetic wheels making them possible to
use on avertical magnetic plane.

The pixel boot devices are tracked in a similar approach has the smart ball
presented by Bouncing star, and each pixel boot holds IR lights that are
tracked by a overlooking fixed camera. Pixelbots has also implemented
functionality for using a projector to enhance the visualization of the system.

Typical uses of display swarm are on concerts, sports events, amusement
parks etc. The pixel bot project has also researched on making a display swarm
with small remote controlled helicopter like devices. This would allow for using
a 3D space to create patterns. But this part of the project is still in the early
phase.

The Sphero devices are similar to the robots used by pixelbot. Each Sphero has
the possibility of displaying custom colors with their onboard RGB LED light
and it would probably be possible to create a display swarm application with
the tracking system provided by Sphero NAV. One of the limitations with the
Sphero is that it uses Bluetooth for its communication. A Bluetooth network18

17 http://www.disney.no/ (accessed 31.05.2014)
18 http://www.informit.com/articles/article.aspx?p=21324 (accessed 29.05.2014)

http://www.informit.com/articles/article.aspx?p=21324

University of Tromso 2014 – Sphero NAV
Chapter 2 - Related work

11

(Piconet) has a limitation of only communicating with up to seven devices at
once. This limits the amount of Sphero devices possible to communicate with
from one adapter. Pixelbots uses RF communication and writes that they
successfully support 100 devices with an update rate of 10Hz. The
communication limitation is based on Sphero devices hardware and is not
possible to improve without physical changes performed by Orbotix.

University of Tromso 2014 – Sphero NAV
Chapter 3 - Orbotix Sphero

13

Chapter 3 - Orbotix Sphero

3.1 Introduction
This chapter goes into the details of the robotic device Sphero [5] [15], the
Sphero API and communication protocol. It describes its possibilities and
supported functionality.

Figure 2 - Shows the Sphero device

University of Tromso 2014 – Sphero NAV
Chapter 3 - Orbotix Sphero

14

3.2 The device
The Sphero is a ~150 USD spherical robotic ball created by the American
company Orbotix19 and its co-founder Ian Bernstein describes the Sphero as
the next generation of gaming systems.

The device consists of an internal core with similarities to a tiny Segway6. The
core (Figure 3) holds two electronic motors, a RGB led light, accelerometer and
gyroscope and is controlled over a Bluetooth connection [16]. The core runs
inside a shock resistant and watertight spherical Polycarbonate20 housing. The
movement of the device is accomplished with the same principle as a hamster
running inside a hamster wheel. The two motors are used to control the
movement and heading of the device. A counterweight (induction coil used for
charging) placed in the bottom of the core and a stabilization algorithm
processing data from the onboard sensors holds the core in a horizontal
position. The Sphero is charged using an induction charger.

Figure 3 - Shows the inside and IMU of the Sphero

19 http://www.gosphero.com/company/ (Accessed 21.04.2014)
20 http://www.bpf.co.uk/Plastipedia/Polymers/Polycarbonate.aspx (Accessed 21.04.2014)

http://www.gosphero.com/company/

University of Tromso 2014 – Sphero NAV
Chapter 3 - Orbotix Sphero

15

The housing of Sphero is very robust and made to withstand hard collision and
drops. The device is approved to safely handle droops from up to 0.5m. The
actual limit is probably much higher, and one article21 claims that the Sphero
successfully handled a fall of 7.6 meters without damage. The Sphero housing
is waterproof and the device has good buoyancy, making the Sphero able to
float and drive in water. The Sphero devices could be used with a rubber cover
for gaining better traction. The covers comes in different colors and where
used in Sphero NAV for one approach of tracking the devices.

There exist a wide range of applications for controlling and doing different
things with the Sphero devices. Orbotix creates many applications for Sphero
themselves, but since Sphero has such a well-documented API, it seems that it
is very popular for third party developers to create applications as well. This
leads to a wide choice of applications. Orbotix is also active in hosting
hackatons where developers are encouraged to create new Sphero
applications.

3.2.1 SDK’s
Orbotix offers SDK’s [17] for different platforms. The currently provided SDK’s
are android, iOS and windows phone. There are unofficial SDK’s provided by
third party developers including support for Windows8, Node and Ruby. There
also exist an SDK for python [18]. The python API is in its early alpha stages of
development and the API was used as a base for the Sphero library
implemented in Sphero NAV.

21 http://electronics.howstuffworks.com/sphero1.htm

University of Tromso 2014 – Sphero NAV
Chapter 3 - Orbotix Sphero

16

3.3 System Design

3.3.1 Client – Server

Figure 4 - Sphero client --> server model

The communication between the user application and the Sphero device is
performed in a client server fashion [19] (Figure 4). The Sphero device acts as
server where the clients connects and send synchronous messages and receive
responses. Sphero sends asynchronous data back to the clients when one or
more of the asynchronous streaming features it supports are activated by the
client (see Table 7).

3.3.2 Virtual devices
Sphero divides its internal responsibilities into several virtual devices. Orbotix
says that this division was implemented to make the separation of task more
clear [7]. Typical virtual devices of the Sphero are: the control system, the
bootloader and the orbbasic device. The control system handles all the
commands that control the hardware on the device (e.g. heading, speed,
lights). The bootloader is responsible to handle firmware downloads and other
core functions. The OrbBasic (see 3.4.4) interpreter is used to download and
run user created OrbBasic programs on the device. A bitfield set in each
package to the device (Table 2) specifies witch virtual device the packet is
intended for.

University of Tromso 2014 – Sphero NAV
Chapter 3 - Orbotix Sphero

17

3.4 Sphero Overview
Sphero is equipped with a gyroscope and accelerometer, the data from these
sensors including motor information is accessible by the users. Data can be
accessed in raw and aggregated formats.

A gyroscope is a sensor that keeps track of the orientation of the device. An
accelerometer measures the acceleration forces. These sensors are used to
give valuable information about the movement of the device. Figure 5 shows
what the gyroscope and accelerometer can measure.

Figure 5 - Accelerometer and Gyroscope in Sphero

The Sphero is at is base a simple device, and at its most basic level the
hardware implements a small set of raw inputs and outputs [7].

• Raw Inputs
o Three axis rotation rate gyro
o Three axis accelerometer
o Approximate ground speed through motor data
o Data from radio link
o Battery voltage

• Raw Outputs

o Power to left and right drive wheels
o RGB LED color value
o Back LED intensity
o Data to radio link

University of Tromso 2014 – Sphero NAV
Chapter 3 - Orbotix Sphero

18

The internal software inside the device aggregates and uses these raw
hardware I/O elements to construct higher level data systems that are useful
for the application controlling the device. Some of these systems are: heading
control, distance measurement, collision detection, virtual locator system,
data integrators22/differentiators and more.

3.4.1 RGB light
A RGB LED is a light source that consists of three light emitting diodes (LED’s)
in the color: red, green and blue (RGB). By adjusting, the brightness of each
individual LED’s it is possible to create a wide gamut of colors. This approach
for creating different colors is the same as used when mixing colors for
painting.

The Sphero device is equipped with a RGB LED that illuminates the upper part
of Sphero’s body. This allows the device to “glow” in different colors. The color
and intensity of the RGB LED is controlled with commands from the Sphero
API.

The tracking system of Sphero NAV allows for tracking of objects with different
colors. The Sphero’s can dynamically change its body color and this property
can be used when searching for Sphero’s in an image.

3.4.2 Coordinate system
Sphero uses a coordinate system for movement where angle 0° is equal to
drive straight forward in what would equal along the Y-axis positive direction
in a Euclidean coordinate system. The angles are positive in the clockwise
direction. This is different from the Euclidean coordinate system where angle
0° is straight down the positive X-axis and an angle of 90° would be along the
Y-axis. Figure 6 shows a comparison between the Euclidian coordinate system
and the one used by Sphero.

Sphero NAV uses the Euclidian coordinate system for all of its calculations.
Every command that includes use of the coordinate system from Sphero is
therefore translated to and from the different coordinate systems when
communication with the Sphero device. The use of Euclidean coordinates in

22 http://www-01.ibm.com/software/data/integration/ (accessed 27.04.14)

http://www-01.ibm.com/software/data/integration/

University of Tromso 2014 – Sphero NAV
Chapter 3 - Orbotix Sphero

19

Sphero NAV was used to make it easier to perform calculations using existing
mathematical libraries.

Figure 6 - Sphero angles vs. Euclidean

3.4.3 Locator
Sphero holds a service called the Sphero locator [20]. The Sphero Locator is a
system that implements an onboard positioning system to keep track of
Sphero’s movement. The locator uses a virtual planar two-dimensional space
to represent Sphero’s current position. The position is relative to the position
from the startup of the device and the x, y coordinates are measured in cm.

The locator service serves data about Sphero’s current position and velocity
inside the two-dimensional virtual space. The location is calculated by
aggregating data from Sphero’s onboard sensors. The locator service is
relatively accurate, but it is sensitive to collisions and the results get inaccurate
after some time. Sphero’s API allows for operations for booth setting and
getting location data.

University of Tromso 2014 – Sphero NAV
Chapter 3 - Orbotix Sphero

20

The first idea when developing Sphero NAV was to use the locator data and
combine it with the tracking data from Sphero NAV’s tracking system. There
was not enough time to implement this feature. Note that Sphero NAV holds
support for retrieving and setting data from the locator, and even though it’s
not implemented in the tracker system, it still allows the application
developers to use the locator data if needed.

3.4.4 OrbBasic
Orbotix has developed an interpreter for running code snippets directly on the
device. This functionality is called OrbBasic [21] and it implements a simple
Basic23 like interpreter. This thesis does not use this functionality of Sphero,
but it could be extended in the future to also support it. Orbasic allows users
to create programs that are executed on the Sphero Devices.

3.4.5 Macros
Sphero implements functionality for running Macros [22]. A macro is a set of
Sphero commands transferred and executed on the device in bulk. This
functionality allows for the end-users to create a macro the Sphero can
execute when asked to. This feature allows for complex operation on the
Sphero with minimal data transfer between the Sphero and client. Although
this functionality could be used in Sphero NAV, there was not enough time to
implement support for it. Note that the design of the Sphero NAV library
makes it possible to add support for macros in the future.

3.5 Packet structure
Sphero comes with a well-documented communication protocol. This section
goes into the details of the packet structures used for communication with the
Sphero.

3.5.1 Synchronous packets
The client sends synchronous command packets to the Sphero device.
Synchronous packets are used for all communication in the clients  sphero
direction. The normal packet flow is that the client sends a request to the
Sphero device and receives a response packet for this request. Each request
holds a sequence number in the range of 0-255 that is sent back in the

23 http://www.computerhope.com/jargon/b/basic.htm (accessed 18.05.14)

University of Tromso 2014 – Sphero NAV
Chapter 3 - Orbotix Sphero

21

response packets. Responses from the Sphero can be deactivated by setting a
flag in the request packet.

Request packets sent to the sphero includes the necessary data for performing
the command on the device. The format of this data is specified for each
command in the Sphero API.

The request packets are sent in the following format:

Client  Sphero packet format:

SOP1 SOP2 DID CID SEQ DLEN <data> CHK

Table 1 - Client --> Sphero packet format

Meaning of each field:

SOP1 Start of packet #1 Always 0xFF
SOP2 Start of packet #2 Per-message option (see Table 3 - SOP2

bit options)
DID Virtual Device ID The virtual device this packet is intended

for
CID Command ID The id of the command
SEQ Sequence number The sequence number of the packet. 0x00

to 0xFF. Used in the response packet
DLEN Data length The length of the data in this package

<data> Data The data for the command
CHK Checksum The modulo 256 sum of all the bytes from

the DID through the
end of the data payload, bit inverted (1's
complement)

Table 2 - Client  Sphero packet description

SOP2 flags:

Bit 0 Answer When set to 1, send reply to this packet
Bit 1 Reset timeout Reset the Sphero inactivity timer.
Bit 2-7 Future use Always set to 1

Table 3 - SOP2 bit options

University of Tromso 2014 – Sphero NAV
Chapter 3 - Orbotix Sphero

22

3.5.2 Synchronous responses
Every request sent to the Sphero results in a response packet back to the client
(unless disabled). The response packet holds a response code that holds the
status of the request. (Successful or not).

Sphero groups its commands into two categories. Set and Get commands. Set
commands assign some internal state on the device whereas Get commands
get some state or data from the device. The Set commands receives a
response type that is defined as a simple response. The simple response is in
the format as is displayed in Table 5 and holds no data. The Get responses are
used to send data from the device to the client. The format of the data for
each response is specified in the Sphero API. (e.g. sensor data, battery state)
and varies for each response.

The response packets are sent in the following format:

SOP1 SOP2 MRSP SEQ DLEN <data> CHK

Table 4 - Sphero  client response packet

SOP1 Start of packet #1 Always 0xFF
SOP2 Start of packet #2 Set to 0xFF when this is a
MRSP Message response Response Code Successes, failed e.g.
SEQ Sequence number The sequence number of the request

packet this response belongs to
DLEN Data length Length of the response data
<data> Data Data of the response
CHK Checksum The modulo 256 sum of all the bytes from

the DID through the
end of the data payload, bit inverted (1's
complement)

Table 5 - Sphero  Client response description

University of Tromso 2014 – Sphero NAV
Chapter 3 - Orbotix Sphero

23

3.5.3 Asynchronous packets
The Sphero API implements support for asynchronous package streaming. The
streaming of these packages is activated/deactivated with different
synchronous commands from the client. Typical asynchronous packets would
be a notification that the Sphero has collided [23], sensor data, battery levels
etc. The asynchronous packet types supported in Sphero’s current API are
listed in Table 7.

SOP1 SOP2 ID CODE DLEN-
MSB

DLEN-
LSB

<data> CHK

0xFF 0xFE Packet type <msb> <lsb> <data> checksum

Table 6 - Sphero asynchronous packet structure

ID CODE DESCRIPTION
0x01 Power notification The current voltage on the device
0x02 Level one Diagnotics. Send a string of device information.
0x03 Sensor data streaming
0x04 Configuration block content.
0x05 Pre-sleep warning
0x06 Macro markers
0x07 Collision detection
0x08 OrbBasic print msg
0x09 OrbBasic errer message, ASCII
0x0A OrbBasic error message, binary
0x0B Self level result
0x0C Gyro axis limit exceeded
0x0D Sphero soul data
0x0E Level up notification
0x0F Shield damage notification
0x10 XP update notification
0x11 Boost update notification

Table 7 - Sphero asynchronous packet types

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

25

Chapter 4 - Sphero NAV

4.1 Introduction
This chapter presents Sphero NAVs architecture and design. It ends by
outlining use cases and some code examples of how to use the system.

Figure 7 - Sphero NAV logo

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

26

4.2 Architecture
A software library is a library that adds extended functionality for the
application developer. Sphero NAV is a software library that allows for position
tracking and controlling of the Orbotix Sphero. A well written software library
should be easy to use, works flawlessly and provide detailed error information
[24].

Sphero NAV’s architecture uses a modular design24 allowing developers to use
some or all of its provided functionality. The separation of concerns divides the
architecture (Figure 8) vertically into three different software modules: a
Tracker module serving object tracking, a Sphero module for using and
controlling Sphero devices and a PS3 module that implements support for
game controllers. The software modules can be used together or separately.
Sphero NAV also provides a simple utility library that holds useful tools for the
application layer to utilize.

Figure 8 - Architecture of Sphero NAV

24 http://msdn.microsoft.com/en-us/library/gg405479(v=pandp.40).aspx (accessed
29.05.2014)

http://msdn.microsoft.com/en-us/library/gg405479(v=pandp.40).aspx

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

27

The Sphero module consists of two tiers: a manager layer and a Sphero object
layer. The Sphero module allows applications to take use of and control
Sphero devices. Each Sphero device is connected and controlled through a
Sphero object. A Sphero object implements the interface for communicating,
data streaming and control of the Sphero.

The Sphero manager is used to manage multiple Sphero’s and provides easy
search and discovery services of nearby devices. Sphero objects are passed to
the application layer via the Sphero manager.

The tracker module is used in applications where position data of devices is
needed. The tracker handles video capture and object tracking. The camera
manager is used for configuration of the connected camera.

The architecture of the tracker module is divided vertically into two
components, where the tracker holds all functionality for tracking and the
camera manger is used for configuring settings on the camera. The two
components hold no connections to each other.

The PS3 module uses the same two-tiered architecture as the Sphero module.
The PS3 module allows applications to take use of input from one or multiple
PS3 game controllers. Each game controller is connected through a Controller
object. A controller object allows the developer to map application
functionality to the interface of each controller with registering callbacks. The
PS3 manager holds an event-handler and events from the controllers are
passed to the application in the form of callbacks.

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

28

Figure 9 - Manager Design pattern used for Sphero and PS3 module

The architecture of both the Sphero and PS3 modules consist of a manager
layer. The managers makes it easier for developers to use each resource, and
the need of boiler plate code for getting the system up and running is reduced
(e.g. searching, event handling). The manager design (Figure 9) allows for
handling of the different resource objects (Sphero’s and PS3 controllers).

The vertical division of Sphero NAV’s architecture into separate modules
enforces a separation of functionality for each respected field (e.g. Sphero,
Tracking, PS3 controller). All code for each subject is held inside its respected
module and the modules holds no direct coupling to each other. This
architecture was used to make it easier for developers of Sphero NAV to
extend, modify and add new modules in the future.

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

29

4.3 Design

4.3.1 Tracker

Figure 10 – Tracker design

The tracker implements support for applications to retrieve position of devices
inside a tracked area. The tracker supports tracking of multiple heterogeneous
devices. A requirement is that a Traceable Object represents each device
tracked. The application would activate a tracking of objects by using the
trackers method track_objects (5.3.1). track_objects takes a list of traceable
object as parameter. The position of each traceable object is found in the

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

30

tracker by an algorithm based on image analyzing (5.3.1). After the objects
position is found, the result is returned back to the application. Note that
traceable objects are passed to the tracker on every tracking call. This design
allows the developer to determine the objects to track for each tracking call.

Traceable objects are designed to serve as containers for storing tracking data
and includes a tracking API. The tracking API is the interface for accessing
tracked position, time, speed and direction and allows the application to
access data from previous tracking’s.

A filter held in the traceable object implements logic for distinguishing a device
in an image (e.g. color, shape). The filter is used to create a tracking masks (see
Figure 11 and Figure 17) used by the tracker. Masks are used in the process for
determining the position of each device (5.3.1). The tracker supports different
types of filters and the system is designed so developers can create custom
filters for distinguishing different objects by inheriting the filter class.

Figure 11 – Tracking mask displayed by the tracker

The design with Traceable objects and filters was used to make the system
configurable and dynamic. This design allows developers to override and
extend functionality to suit their particular application.

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

31

Traceable Sphero is an object that extends the interface of the traceable
object. Traceable Sphero serves as a “bridge” between the Sphero and tracker
module and holds functionality used exclusively for tracking Sphero’s.
Additional functionality in Traceable Sphero includes Sphero Calibration (5.4.4)
and support for drawing Sphero related graphics to the tracker display (e.g.
sensor data, device name) (see Figure 13).

.

Figure 12 - GUI of the camera settings manager

A camera positioned over the tracking area captures a video stream used for
tracking of objects. The camera manager allows developers to control the
settings on the camera (e.g. white-balance, focus, zoom, exposure). Sphero
NAV was designed for use in different locations and factors like lighting and
the placement of the camera differs and affects the capture. The camera
manager has two possibilities for usage: first, a simple GUI (Figure 12) for
manual adjustment. Second, an API that allows for control of camera settings
directly from the application (Figure 10). The current version of the settings
manager is limited to the Logitech C920 web camera25

25 http://www.logitech.com/no-no/product/hd-pro-webcam-c920 (accessed 29.05.2014)

http://www.logitech.com/no-no/product/hd-pro-webcam-c920

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

32

The tracker serves a graphical user interface (GUI) to displays the video stream
and tracker related graphics. The tracker module includes a graphic library
allowing developers to draw graphic on the tracker GUI. This functionality is
accessible through the traceable object class. The default graphics
implemented in Sphero NAV includes graphic for the position and direction of
each object, FPS and device information (e.g. sensor data). The masks used for
the tracking is displayed in a separate window (Figure 11). This is useful for the
users to determine if the masks are masking out the objects correctly. Figure
13 shows a screen dump from the tracker windows where two Sphero devices
are tracked. The blue line shows the direction of the internal core of the
Sphero (streamed from the Sphero) and the red line shows the tracked
position and heading of the device. The white Sphero is stationary so it has no
red line for indication its current direction of movement.

Figure 13 - Tracker GUI

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

33

4.3.2 Sphero Module

Figure 14 – Sphero module design

The Sphero Module holds functionality for applications to use and control
Sphero devices. Every Sphero used in an application communicates through its
own Sphero object. A Sphero object is the interface for all actions regarding a
Sphero device. The Sphero objects implements methods for connecting,
controlling, and receiving data. The design of the Sphero object was built upon
the Python Sphero API library [18], but much of the code has been re-
implemented. This was necessary for implementing support for, dynamic
Sphero discovery, streaming, multiple devices etc. A Sphero object allows the
application developer to access Sphero’s functionality and it implements
functions from the Orbotix Sphero API (e.g. Movements, lights, sensor

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

34

streaming). Due to the timeframe of this thesis, it was not possible to
implement the full API from Orbotix. The core and most useful functionality
from the Sphero API was therefore prioritized.

The sphero objects implements support for a streaming service where
applications can receive data asynchronous from the Sphero (e.g.
Accelerometer, gyroscope, collisions detection, battery level). Data streaming
is used in application where data from the Sphero is necessary. The streaming
interface implements some of the asynchronous functionality from the Orbotix
Sphero API (Table 7). Data streaming is used by the application with registered
callbacks that are triggered by the Sphero object whenever data is received
from the device.

The design of using a Sphero Object for each Sphero is based on the code from
the Python API [18]. The design of using Sphero Objects enforces that all logic
for using a device is held in one place. This design makes the Sphero devices
trivial for the developers to use.

The Sphero manager allows for the developer to easily search and use Sphero
devices. The manager supports synchronous and asynchronous Sphero
discovery. Synchronous discovery allows the developer to manually search for
new devices. Asynchronous discovery allows the developer to register a
callback that is triggered whenever a new device is found. Asynchronous
discovery of Sphero devices runs in its own separate thread and is activated
and started by the application (Example 2). In both cases of async/sync
discovery a Sphero objects are served back to the application.

A vector controller is provided to control the Sphero devices in a more game
like fashion. The vector controllers allow the developer to control the direction
and speed with the use of a 2D vector class provided from the utility library. A
calibration step (5.4.4) is used to align Sphero internal controls system with
the coordinate system used by the tracker and the vector controller. This
calibration is necessary when using the vector controller.

A successful calibration would mean that setting vector controller to
vectorController.speed.y = 255 would results in the Sphero driving up the y-axis
of the tracked image, and just not in some random direction.

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

35

4.3.3 PS3 Module

Figure 15 - PS3 manager module design

The PS3 module allows the application to take use of PS3 game controllers.
Each game controller is connected with its respected Controller Object. A
controller object has an interface that allows developers to register callbacks
triggered on user input. A typical use case for a PS3 controller would be
manual controlling of Sphero devices by the end-users.

The PS3 manager is used to serve controller objects to the application and
holds an internal event handler. The event handler runs in a separate thread
and receives input events from the connected PS3 controllers. When a button
on a controller is pressed the callbacks registered in the responding controller
object is called and the application is notified of the input. There are three

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

36

types of events supported for each button on a PS3 controller: On-press, on-
release and on-axis. On-axis is used for returning the position of a joystick or
the pressure used on a button. All events to a controller must be set on the
same Controller objects, but it is possible to pass this object around. This
allows the application to use the same controller in multiple places. The
current implementation supports one callback per button event and no
parameters for the callbacks. This is something that could be added in the
future.

4.4 Use Case

4.4.1 Application ideas
Typical applications that would take use of the Sphero NAV library would be
different types of games and visualizations. One of the early ideas for a fully
autonomous Sphero NAV application was to implement Craig Reynolds famous
Boids simulation26, 27. Each Sphero would represent a boid, and the application
would control the Sphero devices to drive inside the tracking area in a herd
like behavior.

For a semi-autonomous application, one idea was to create an application that
would implement virtual borders. During recruitments fairs, virtual borders
could be used to create a restriction, so manual control of the Sphero’s was
only possible inside the traceable area. A virtual border would stop runaway
devices and restricting the demo to the designated area.

4.4.2 API usage examples
This section shows examples of how to use the Sphero NAV library. Since
Sphero NAV is a software library, the easiest way to show its usage is by
showing code snippets. The following examples shows working Python code
and demonstrate how to use some of Sphero NAV’s core functionality.

Note: To simplify the examples no exceptions are handled.

26 http://www.red3d.com/cwr/boids/ (accessed 14.05.2014)
27 https://www.youtube.com/watch?v=39Fktr5zaIY (accessed 30.05.2014)

http://www.red3d.com/cwr/boids/
https://www.youtube.com/watch?v=39Fktr5zaIY

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

37

• Synchronous device discovery and usage

Example 1 - Basic usage of the Sphero

Example 1 demonstrates the usage of a single Sphero device and the
synchronous search functionality of the Sphero Manager. The device is
discovered and returned as a Sphero Object by the Sphero manager (line 7). A
connection must be established before any commands can be sent to the
device (line 10). In line 13, 17, 21 the application sends movements commands
to the connected device. The device is disconnected before the program
terminates.

This example would have the Sphero drive in one direction for 2 second turn
180° and drive for another 2 second before ending in a full stop.

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

38

• Asynchronous device discovery

Example 2 - Asynchronous discovery of Sphero devices

Example 2 shows how to find multiple Sphero devices by using the
asynchronous discovery support from the Sphero Manager.

A callback is registered (line 14) with the Sphero manager and this callback is
triggered whenever a new device is discovered by the manager. The
discovered devices is in this example are append to a list. The asynchronous
Sphero discovery service runs in its own thread and the discovery service is
started by the application in line 10.

This example would start the asynchronous discovery service and run a search
for nearby Sphero’s for one minute before terminating.

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

39

• Asynchronous data streaming

Example 3 - Activate streaming from Sphero device

The streaming support in Sphero NAV is a feature that allows easy access to
sensor data onboard the Sphero devices. Example 3 shows how to activate
streaming from a Sphero device. Sensor streaming is an asynchronous feature
where sensor data is given to the application in the form of a registered
callback (line 13).

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

40

To configure the data to stream from the device a SensorStreamingConfig
objects is used (SSC). The SCC holds settings for the data to stream, the
frequency and the number of packets. In this example, streaming of the GYRO
sensor is activated (line 25). When the Sphero object receives data from the
device it triggers the registered callback with the sensor data passed as
parameter. The data is given as a SensorStreamingResponse object (SSR). The
SSR allow for easy access of the received data. In this example the angle of
gyro x is retrieved in degrees and printed (line 10).

This example would connect to a device and print the Gyro x angle 10 times
per second before terminating after 60 seconds.

• Object tracker
Example 4 shows how to use the tracker. Traceable object instances are
created for two objects to track (line 7, 8). A filter for each objet is created and
configured to find colors inside a blue and orange color range (line 11  18).

In this example, the color ranges are set in HSV (Hue, saturation,
brightness/value) format. HSV is a more intuitive format of setting color
ranges, and is the format normally used in tracking systems. The brightness
value of HSV makes it easier for setting the color range to track. Note that the
filter supports colors in other formats. (e.g. filter.lower.rgb = (0, 0, 5))

The objects to track are passed to the tracker in line 39, and the tracking is
performed in an infinite loop. The position, heading and speed of the tracked
object are printed for each iteration.

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

41

Example 4 - Tracker code example

University of Tromso 2014 – Sphero NAV
Chapter 4 - Sphero NAV

42

• Set and use events on PS3 controller

Example 5 - Simple PS3 controller usage

Example 5 shows how to use the PS3 manager to retrieve a PS3 object. Events
are bind to the controller in the form of callbacks. The PS3 object support
multiple approaches for adding event callback. Events can be added one by
one for the different event types (line 16, 19, 22) or added altogether (line 25-
34).

University of Tromso 2014 – Sphero NAV
Chapter 5 - Implementation

43

Chapter 5 - Implementation

5.1 Introduction
This chapter goes into implementation details from the core functionality of
Sphero NAV.

5.2 Technologies used
Python was used as the implementation language of Sphero NAV. Python is a
productive language and for a system with a main purpose to be used in the
recruitment program the author considers this is good choice. Developers that
use the system would most likely have limited time to spare for new demos,
and python allows for applications to be implemented rapidly. Python is also a
much used and well known language at the University of Tromso.

Object tracking, video capture and visualization is implemented with support
from Open CV. Open CV28 (Open Source Computer Vision Library) is a
computer vision and machine learning software library. The Open CV library
has over 2500 implemented algorithms and tools for computer vision and
machine learning. The algorithms can be used to track and identify objects,
faces, movements any much more. Open CV has C++, C, Python, Java and
MATLAB interfaces and it is supported on Windows, Linux, Android and Mac
OS.

The Camera settings manager GUI was created using python Kivy29. Kivy is an
open source Python framework that allows for easy implementation of
functional graphical user interfaces.

28 http://opencv.org/about.html (accessed 13.05.2014)
29 http://kivy.org/#home (accessed 13.05.2014)

http://opencv.org/about.html
http://kivy.org/#home

University of Tromso 2014 – Sphero NAV
Chapter 5 - Implementation

44

5.3 Object Tracking

5.3.1 Algorithm
The pseudo code in Figure 16 shows an overview of the tracking algorithm
used by the tracker to locate objects.

Figure 16 - Shows pseudo code of the tracking algorithm

The tracker takes a list of traceable objects as input. Each object represents a
device to track and must inherit the TraceableObject class. Tracking of objects
is performed on the same image to ensure the correct position between each
device relative to time. A timestamp set for each tracking allows users to
access the capture time of the images used. Image capturing is performed with
support from the OpenCV library.

University of Tromso 2014 – Sphero NAV
Chapter 5 - Implementation

45

Each traceable object holds a tracking filter. Filters contain logic for a
binaryzation process used to create masks (see Figure 17). A mask is a two-
dimensional Numpy30 array containing black and white pixels. White pixels
represent the areas (blobs) of the image that has passed the filter criteria. A
perfectly configured filter should return a mask that holds one blob equal to
the shape and position of the object it is supposed to mask out.

Sphero NAV allows developers to write custom filters. All filters must inherit
the BaseFilter class. The filter is used by the tracker by passing an image to its
create_mask method. Create mask analyzes the image and returns the mask
that masks out the object.

Figure 17 - image  filter  mask  position process

The filters currently used in Sphero NAV uses a color-based tracking. This
approach finds pixels inside a given color-range (see Figure 17). When using
color-based tracking, there is high chance of the mask containing noise. Noise
appears when the captured image contains other objects or light that match
the criteria of the filter (Figure 18). Noise in an image will create aditional

30 http://www.numpy.org/ (accessed 30.05.2014)

http://www.numpy.org/

University of Tromso 2014 – Sphero NAV
Chapter 5 - Implementation

46

blobs in the mask. A noise reduction step is used to limit the amount of blobs
created from noise. A two-stepped approach where eroding and dilating
(shrinks and grows) the edges of the blobs are used. This is performed with
supported from OpenCV. Erode removes a specified size of the borders of
every blob, blobs smaller than the eroded area are removed. Eroding will
remove pixels from all blobs in the mask, including the blob that represents
the device. Dilate is the reverse of eroding and is used to replaces the pixels
that was removed from the blobs still in the mask.

Figure 18 - Filter containing noise

Despite the noise reduction step, there is most likely more than one blob still
in the mask. A chain code algorithm31 from OpenCV finds the position and size
of all blobs remaining in the mask. The tracker assumes that the largest of
these blob is the object it should track. The x, y coordinates of the center of
the blob is set as the traced position. Positions used in Sphero NAV are based
on the size of the image used for the tracking. See Figure 19 for the coordinate
system Sphero NAV implements.

31http://docs.opencv.org/trunk/doc/py_tutorials/py_imgproc/py_contours/py_contours_begi
n/py_contours_begin.html (accessed 31.05.2014)

http://docs.opencv.org/trunk/doc/py_tutorials/py_imgproc/py_contours/py_contours_begin/py_contours_begin.html
http://docs.opencv.org/trunk/doc/py_tutorials/py_imgproc/py_contours/py_contours_begin/py_contours_begin.html

University of Tromso 2014 – Sphero NAV
Chapter 5 - Implementation

47

Figure 19 - Coordinate system used by the tracker

5.3.2 Traceable object and sample class
The TracableObject class (Figure 20) is the class that holds logic and stores
data for trackings performed on an objects (e.g. Sphero). Every tracking of an
object would result in a new sample added to a list of “tracking samples” held
by the traceable object. For memory purposes, the users can specify the
maximal number of samples to store.

Figure 20 - Traceable object

A tracking sample stores the position, timestamp, and the state of the tracking
(Successful or Non-Successful tracking). Every sample holds a reference to the
sample prior to itself. This makes functionality that can calculate the angle,
distance and speed between two samples easy. Calculations are performed
with help from Vector2D objects created for Sphero NAV.

The vector2D class is a class that implements a representation of a 2D vector.
This class holds different operations to use on the vector (e.g. normalize

University of Tromso 2014 – Sphero NAV
Chapter 5 - Implementation

48

magnitude, rotate, get angle ++). The Vector 2D class can be used by the
application trough the utility library provided by Sphero NAV.

5.3.3 Filter
The filter class currently implemented in Sphero NAV are Color-filters. The
filters are used for masking out pixels inside a given pixel range. The filter is
implemented with support from OpenCV and Numpy. The filter holds two
Color instances for its upper and lower range of pixels to mask out. An OpenCV
method for finding pixels inside a given range is used to create the tracking
mask.

The color class is a generic object that was created to allow easy usage of
colors in Sphero NAV (e.g. graphics, filters ranges). The class allows for setting
and getting of colors in different formats (e.g. RGB, HSV, HEX). Color objects
can be used trough the utilitly library.

5.3.4 Camera controller
The camera controller was implemented by using the linux command line tool
V4L-utils32 (video for Linux). V4L allows control of web-camera setting trough
the command line. The camera controller uses this functionality by sending
system commands with pythons sub process library. The commands used for
each web camera may differ and this restricts the current implementation of
the camera controller to Logitech C920 web camera.

Even though the camera controller currently only supports the C920, it was
designed to be configurable to other cameras as well. Each supported setting
of a web camera is represented by V4L as properties (e.g. Exposure, auto
focus, white balance). The settings of the connected camera are controlled by
writing/reading of values for each property trough V4L. Other camera models
could be used if its properties are mapped to a new camera controller object.

The graphical user interface (GUI) of the camera controller was implemented
with support from Kivy. The GUI controls the camera settings by using the
interface of the camera controller class.

32 http://www.linuxtv.org/wiki/index.php/Main_Page (accessed 30.05.2014)

http://www.linuxtv.org/wiki/index.php/Main_Page

University of Tromso 2014 – Sphero NAV
Chapter 5 - Implementation

49

5.4 Sphero Module

5.4.1 Communication
All communication with the Sphero is performed over a Bluetooth connection.
The Sphero object implements the interface where the application can send
and receive data. Pybluez33 was used on the client side as the library for
handling Bluetooth communication. The Sphero object is designed so it is
possible for multiple threads to communicate with the same Sphero device.
This is useful for occasion where multiple threads perform different actions on
the same device (e.g. movement, lights, vector controller, sensor readings). On
top of this the Sphero object also supports asynchronous data. All
communication is performed on the same RFCOOM34 socket, address and
port. RFCOOM is a Bluetooth protocol similar to TCP35.

An asynchronous packet receiver (Figure 21) was created for handling both
asynchronous and synchronous communication on the same socket. The
receiver runs in its own thread and receives all incoming data from the device.
The receiver is responsible for receiving incoming data, parse it into suited
response objects or asynchronous packets and then notify the correct party.

When a thread sends a command by using the Sphero object it is blocked until
the response for that message is received or timed out. A timeout will result in
an exception passed to the application. All data received from the Sphero are
parsed into response objects. There exist different types of response objects,
and the request type sent to the device determines this. Simple python
reflection is uses to parse the data into the correct response classes. A
response class is an object that parses the raw response data and allows the
application to access this data in aggregated or raw form.

33 https://code.google.com/p/pybluez/ (accessed 25.05.2014)
34 https://developer.bluetooth.org/TechnologyOverview/Pages/RFCOMM.aspx (accessed
25.04.2014)
35 http://www.ietf.org/rfc/rfc793.txt (accessed 25.05.2014)

https://code.google.com/p/pybluez/
https://developer.bluetooth.org/TechnologyOverview/Pages/RFCOMM.aspx
http://www.ietf.org/rfc/rfc793.txt

University of Tromso 2014 – Sphero NAV
Chapter 5 - Implementation

50

Figure 21 - Data flow Sphero Object

Asynchronous messages (e.g. sensor streaming, collision detection) are
distributed back to the application in the form of pre-registered callbacks. The
current implementation supports callbacks for sensor streaming, collision
detection and power state notification. The Sphero object could easily be
extended to support more of the functionality, but this was not prioritized in
this project.

Parsing of data for all packets is handled with the use of python’s struct
library36. The library is used to parse binary data to and from python
primitives.

The receiver runs in its own thread and reads incomming data from the
Bluetooth socket. As discussed in the Sphero chapter, asynchronous and
synchronous packets are sent in different formats. The receiver uses this
structure to distinguish asynchronous and synchronous packets and it looks at

36 https://docs.python.org/2/library/struct.html (accessed 25.05.2014)

https://docs.python.org/2/library/struct.html

University of Tromso 2014 – Sphero NAV
Chapter 5 - Implementation

51

the data field for knowing how much data to read from the socket for each
packet.

5.4.2 Sphero Streaming
Allot of work was put into the sensor streaming support provided by Sphero
NAV. A full streaming library that allows for configuration and streaming of
sensors data from the Sphero device was implemented. The streaming support
implements the Orbotix sensor Streaming API [7] [20].

A Sensor Streaming Config (SSC) object is used by the application to configure
the sensor data to stream. Streaming of sensor data is activated on the Sphero
with the synchronous command set_data_streaming(). The command
normally takes two 32-bit strings as parameters. Each bit represents a data
type to stream (e.g. Accelerometer, gyroscope, motor data). The SSC
implements this setup in a more user-friendly approach. The SSC holds an
interface containing methods for activating and deactivating sensors to
stream. At the time where sensor streaming is activated by the application,
the SSC is used to generate the raw bitmasks that is used in the request for
activating streaming. This approach hides the low-level details from the
developers and allows for easier activation of the streaming service.

Sensor data is received as asynchronous packages from the device. A Sensor
streaming response class (SSR) is used to parse the sensor data. Raw data is
parsed in the SSR by using the sensor-streaming configuration to check which
sensors that are activated for streaming. The data is parsed into designated
sensor classes held by the SSR. Each sensor class implements logic for
formatting the raw sensor data. This allows the developer easy access to
sensor data in various forms and hides the raw data received from the device.

University of Tromso 2014 – Sphero NAV
Chapter 5 - Implementation

52

5.4.3 Sphero Manager
The Sphero manager is implemented by using PyBluez Bluetooth discovery
support. PyBluez allows for easy discovery of nearby device. A Bluetooth
search would return a list of all discovered nearby devices in the form of
Bluetooth addresses. Note that a search result would include previous
discovered devices. To single out Sphero’s from the search, a name lookup to
each device is used. Devices that have a Bluetooth name that start with
"Sphero-" are considered to be Orbotix Sphero’s. Even though this has not
given any problems so far, it is probably not the best approach. Other devices
are allowed to set their own Bluetooth names, and if a device decided to use a
name starting with “Sphero-*” it would be picked up by the Sphero manager
as a Sphero device.

A problem noticed during development, was that some devices including the
Sphero was terribly slow on name lookups. To gain some performance on each
discovery iteration, a name cache was added. The names of previously
discovered devices are stored in a hash map (python dictionary). This allows
the Sphero manager to only lookup names for newly discovered devices. This
approach gave some speed-up to the Bluetooth search. The application has
access to flush the name cache if this should be desired.

Whenever a new Sphero device is discovered, the manager creates a Sphero
Object that represents the that device. Sphero objects are held in a list in the
manager. Sphero Objects stores the Bluetooth name and address of the
device. The Bluetooth address is used later when the application wants to
establish a connection to the Sphero device by using the connect method.

When the manager is used in asynchronous mode, the Bluetooth discovery
service is ran in its own separate thread. For every Bluetooth discovery
performed, the manager checks if any new Sphero devices is discovered, new
devices are returned back to the application as Sphero Object using a callback
registered by the application.

When the manager is used in synchronous mode, discovered devices are set as
the return value of the search method.

University of Tromso 2014 – Sphero NAV
Chapter 5 - Implementation

53

5.4.4 Sphero Calibration
The movement of Sphero is controlled by using a Roll command from the
Sphero Object. The roll command takes speed and heading as parameters.
Sphero uses an Internal Reference heading to determine the real world
direction that should be used for heading 0°. The heading passed to the Roll
command is always relative to this. The Reference heading is set to 0° on
Sphero startup. This means that the real world direction of the reference
heading is the same as the angle of the Sphero core (IMU) on startup, and will
differ from every usage.

The set heading command is used to reconfigure the real world direction used
as the reference heading. The IMU is turned to the preferred direction, and
the set heading command sets this angle as the new the reference heading for
the Sphero to use.

To combine the vector controller and the positions from the tracker it is
necessary to align the reference heading with the coordinate system used by
the tracker. Aligned systems mean that when giving the Sphero device a roll
command of 0° it should run in a straight line down the Y-axis of the tracked
image. To achieve this, Sphero NAV supports a simple calibration algorithm to
align the device and the tracker as best as possible. Figure 22 shows the six-
stepped calibration algorithm implemented in the system.

Note: 0° in Figure 22 is drawn in Sphero coordinates and would equal 90° if it
were drawn in Sphero NAV coordinates (Euclidian).

The six steps of Sphero calibration:

1. Turn the IMU to its current internal reference heading
2. Track the position of the device
3. Drive Sphero in a straight line with heading 0°
4. Track the position of the device
5. Calculate the tracked direction and tracked distance
6. (A) Turn the Sphero device equal degrees as the opposite of the

tracked direction. The IMU has now the angle equal to 0° of the tracker
system. (B) Set this angle as Sphero reference heading. The reference
heading is now aligned with the trackers heading 0°.

University of Tromso 2014 – Sphero NAV
Chapter 5 - Implementation

54

Figure 22 – Sphero calibration

University of Tromso 2014 – Sphero NAV
Chapter 5 - Implementation

55

The calibration support is implemented in the Traceable Sphero Object (4.3.2).
It is the application that determines when to run a calibration, and this is
triggered trough the calibrate method provided in the Traceable Sphero
Object.

The six step calibration is the approach currently used in Sphero NAV. This
approach was used to align the sensors and the internal locator system of the
device discussed in the Sphero chapter (3.4.2) as well. Aligning of all system
makes it easier for the developer to use sensor data and the internal locator
data from the Sphero can be utilized if wanted by the application.

Another approach that could have been used that would not need a
calibration step would be for the tracker to continually keep an internal offset
between the Sphero and the tracker coordinate system. By adding this offset
to Sphero’s Roll commands the same result is achieved. The limitation is that
the onboard systems on Sphero are not aligned and would also ned to be
recalculatet for each usage.

5.5 PS3 Module
The PS3 module was implemented with support from Pygame37. Pygame is a
python library that holds among many other things, support for connecting
and using game controllers.

A PS3 object class was implemented as a wrapper for handling events from the
game controllers. The PS3 class holds a list of registered callbacks that is
mapped to the interface of the controller. This mapping is performed by the
application.

The PS3 manager is used to discover connected controllers and handle events.
Events are handled in an event loop running in its own thread. Whenever an
event from a PS3 controller is captured, the manger will serve this event to the
responding controller object. The controller object will parse the event and
trigger the correct callback back to the application.

37 http://www.pygame.org/news.html (accessed 31.05.2014)

http://www.pygame.org/news.html

University of Tromso 2014 – Sphero NAV
Chapter 6 - Evaluation

57

Chapter 6 - Evaluation

6.1 Introduction
This chapter starts with by evaluating the Sphero NAV system. It discusses
issues with the current design and solutions to improve the system.

6.2 Experiments

6.2.1 The experimental environment
The experiments was performed on a desktop machine running on an quad
core Intel i7-3770 CPU with 3.4Ghz 16GB RAM and Linux mint Petra running
Native. Bluetooth was performed over a Star Tech USB Bluetooth dongle. Up
to three Orbotix Sphero devices where used in the experiments. A Logitech
C920 web camera was used for tracking.

6.2.2 Communication
Sphero devices are operated by commands sent from the client. It is therefore
crucial that the round trip time (RTT) and update rate of the commands is
good enough so applications can control the devices without any problems. A
measure of the RTT from the client to the Sphero was performed to
benchmark the performance of the communication channel to and from a
device.

Each test was performed with 1 000 iterations and the average time of these
samples was used as the result. Two tests where used for testing the RTT, both
tests performed a Ping command [7] to the device. A ping command sends a
request to the device and a result package is sent back to the client. The
packets sent was 7 Bytes in size. The time of each ping was used as a measure
for the RTT of one command. The first test was performed with data streaming
disabled on the device. The second was performed where data from all

University of Tromso 2014 – Sphero NAV
Chapter 6 - Evaluation

58

sensors was streamed back from the device asynchrony with a velocity of 20
packets per second (20Hz). Each packet streamed from the device was 67
Bytes in size. Figure 23 shows the average RTT of the tests performed.

Figure 23 - Client - Sphero RRT

The result from the RTT measures shows that it is possible to send ~55 packets
per second when streaming is disabled and ~43 packets when streaming is
activated. This update rate is more than enough in both cases to operate the
Sphero device without any problems.

The Sphero allows for streaming of sensor data. Application can use this data
and the streaming speed is configurable by the application. In most cases, it is
desired to get this data in a fixed interval, this allows for the update rate to be
used in calculations that uses the sensor data. It is therefore necessary that
the update rate is as stable as possible.

A test for measuring the performance of the streaming service was performed.
The test benchmarked the max streaming speed the Sphero NAV system could
achieve and still keep a stable update rate to the application. The test was
performed 3 times with one, two and three connected devices. Each test was
performed with eight different streaming speed activated on the Sphero’s.

18.434 ms

23.914 ms

0.000 ms

5.000 ms

10.000 ms

15.000 ms

20.000 ms

25.000 ms

30.000 ms

1 Sphero

Client - Sphero, Round trip time

Streaming disabled

Streaming 20Hz activated

University of Tromso 2014 – Sphero NAV
Chapter 6 - Evaluation

59

Each iteration measured the time it took to receive 10 000 asynchronous
streaming packets from each device. The total time used for each device was
divided by the number of packets received. This result was used to calculate
the transfer rate in Hz. Figure 24 shows the results of the test.

Figure 24 - Graph of streaming speed

The achieved streaming speed indicates that Sphero NAV handles stable
streaming speeds for three devices up to approximately 50Hz. Orbotix says in
their API that a streaming speed of 20Hz is enough for getting accurate sensor
information in most cases. These result shows that the streaming service has
good enough performance to be used for applications that want to take use of
sensor data.

Note: The testing environment used for these test was polluted with many
different Bluetooth devices and Wi-Fi networks. This could have affected the
result of the measurements.

0 Hz

20 Hz

40 Hz

60 Hz

80 Hz

100 Hz

120 Hz

140 Hz

160 Hz

180 Hz

200 Hz

0 Hz 50 Hz 100 Hz 150 Hz 200 Hz

M
EA

SU
RE

D
 S

TR
EA

M
IN

G

SP
EE

D

SPHERO STREAMING SPEED

Sensor streaming

IDEAL

1 Sphero

2 Sphero

3 Sphero

University of Tromso 2014 – Sphero NAV
Chapter 6 - Evaluation

60

6.2.3 Tracking performance
The applications that would use position data from the tracking of devices
would in almost all cases want updates of positions as fast as possible. The
performance of the tracker was to measure how many frames/tracking’s per
second (FPS) it could achieve with different settings. The tests were run with
four different image resolutions. Each test was tested with 0 to 3 devices to
track. Each configuration was run for ~1000 iteration, and the average FPS of
each test was used as the result. The CPU load for each test was tracked by
using the LINUX command line tool TOP38. The achieved FPS of each
configuration is displayed in Figure 25. The CPU load is displayed in Figure 26.

Figure 25 – Graph of FPS Tracking

38 http://linux.about.com/od/commands/l/blcmdl1_top.htm (accessed 31.05.2014)

0 FPS

5 FPS

10 FPS

15 FPS

20 FPS

25 FPS

0 Spheros 1 Spheros 2 Spheros 3 Spheros

FPS TRACKING

352 x 288

640 x 480

1280 x 720

1920 x 1080

IMAGE SIZE:

http://linux.about.com/od/commands/l/blcmdl1_top.htm

University of Tromso 2014 – Sphero NAV
Chapter 6 - Evaluation

61

Figure 26 - Graph of CPU tracking

The results from the performance tracking shows that increasing the number
of objects to track and/or the size of the images captured by the camera
decreases the performance of the tracker rapidly.

The frame size used during development and testing of the system is 640x480.
With three devices and this image resolution, the system achieves
approximately 10 FPS. This is a sufficient update rate of the devices position to
use in application, but higher FPS is of course wanted.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

0 Spheros 1 Spheros 2 Spheros 3 Spheros

CPU LOAD DURING TRACKING

352x288

640x480

1280x720

1920x1080

IMAGE SIZE:

University of Tromso 2014 – Sphero NAV
Chapter 6 - Evaluation

62

6.2.4 Library test
To test each component of the Sphero NAV library a test application was
created. The application used every component provided from the library and
was used to check if the library worked as intended.

The application used two devices. The tracker tracked each device successfully
and the retrieved position was used in the application for adding different
functionality.

Each Sphero devices was controlled by using the PS3 module. Axis events
where used together with the vector controller to test manual steering of the
Sphero’s. Different functionality from the Sphero API where mapped to the
PS3 interface (e.g. Light, ping, data reading). This worked as intended and both
Sphero’s was successfully controlled simultaneously with its own PS3 game
controller.

The application implemented a simple demonstration of adding virtual
borders. The Sphero’s drove around autonomously in a bouncing ball like
fashion. When a device was tracked near one of the edges, the heading of the
Sphero was changed to the center of the image. This functionality worked
successfully, but the virtual borders had to be placed within a good range of
the edges of the image for having the devices turn before they were outside
the tracking area.

Virtual point functionality was created for testing semi-autonomous usage.
The virtual point was a point in the tracking image that the Sphero it belonged
to where drawn towards (see Figure 27). The point was moved manually by
using a PS3 controller. The heading of the Sphero was always directed toward
this point, and the roll speed was determined by the distance from the virtual
point to the Sphero. This approach of controlling the devices was very
successful and proved itself as an easy way to control the Sphero. The author
believes that this way of controlling the devices is a good approach an could
be used in other applications as well.

Another test involving virtual points was to control on Sphero manually and
have the other follow the first one. The position of a virtual dot used by the
second Sphero was always updated to position of the manual controlled

University of Tromso 2014 – Sphero NAV
Chapter 6 - Evaluation

63

Sphero. This created a slave like behavior where the second Sphero was
always drawn toward the manual controlled device.

Figure 27 - Follow virtual dot test

The test application demonstrates that Sphero NAV can be used to create
different types of application and that it is a usable library.

6.2.5 Video
A video of the functionality described in the previous section and a
demonstration of the Sphero NAV system can be found at the following site
[8]. The video demonstrates that the Sphero NAV system works as inteneded.

University of Tromso 2014 – Sphero NAV
Chapter 6 - Evaluation

64

6.3 Known bugs and issues

6.3.1 Spikes in communication

Figure 28 - Plotting of round trip samples

During the performance testing of the communication, a strange bug was
discovered. Figure 28 shows all the samples used in the test for measuring the
RRT from the client to the Sphero. As shown, some strange spikes occur in a
fixed interval. The spikes are longer when streaming is disabled, but can be
noticed when streaming is activated as well. The spikes appeared on multiple
reruns of the experiment. Unfortunately, there was no time left before the
deadline of this thesis to look into this result. However, one thing noticed is
that this happens for every 255 packet sent to the device. The author believes
that the results has something to do with the sequence number used in the
packages sent to the device. The range of sequence numbers used by the
Sphero API packets goes from 0 - 255. The number is increased for every
packet by the client and wraps around to 0 when all number are used. One
bug discovered in the client was the frequency number wrapped around on

0.10 sec

0.30 sec

0.50 sec

0.70 sec

0.90 sec

1.10 sec

0 sec 5 sec 10 sec 15 sec 20 sec 25 sec

Client - Sphero, Round trip samples

Streaming disabled

Streaming 20Hz
activated

University of Tromso 2014 – Sphero NAV
Chapter 6 - Evaluation

65

244. There was not enough time to run a new test, but this issue could have
created a hiccup on the Sphero.

6.3.2 Microsoft Kinect
One of the first ides was to use the same tracking approach as used in Open
Pool 2.4. Open pool uses the depth camera from Microsoft Kinect for tracking
the position of the billiard balls. This approach was first used in Sphero NAV,
but was discarded for various reasons. The Kinect was difficult to use with
python and needed drivers that where demanding to install and get to work
correctly. When the Kinect was up and running it was successfully used for
tracking of object on short distances, but when it was placed in the desired
height above the tracking area, it was almost impossible to distinguish the
balls from floor by using the depth data. Sphero NAV is therefore based on a
pure image based approach.

6.3.3 Color tracking
There exist many approaches for object tracking. Sphero NAV currently uses
Color tracking to distinguish objects. A limitation with color tracking is that it
only allows for tracking of one object in the same color. Color tracking is also
highly sensitive for getting noise from other objects and ambient light.

Other approaches was tested during development. Using a Kinect depth
camera worked good on short distances but could not be used for tracking of
Sphero’s when the distance was too great. An algorithm for finding circular
objects was also tested; this approach was unstable and limited the tracking to
only finding Sphero’s, and it was impossible to distinguish different devices.
Last, a strobe tracking system was tested. The Sphero’s was tracked in in turn
by separate images. The Sphero that should be tracked in an image was
glowing and the others would turn their lights off. This approached worked
well and it was easy to locate the Sphero’s. The problem was that it was
terribly slow.

6.3.4 Internal reference heading
An issue discovered during the development of the system demonstrated that
the Sphero devices internal set reference heading gets inaccurate after a
couple of minutes of driving. This means that after ~3 - 5min of drive time the
device’s reference heading is so of from its calibrated reference heading, and
needs to be recalibrated. This issue lies within the Sphero and will probably be

University of Tromso 2014 – Sphero NAV
Chapter 6 - Evaluation

66

improved in future firmware versions for the device. The solution as of today is
to rerun the calibration periodically.

6.4 Improvements

6.4.1 Support all platforms
The current version of Sphero NAV is only tested in Linux. All libraries used in
Sphero NAV are supported in Windows and OS X and with minor modification,
the system should be able to be ported to these platforms as well.

6.4.2 Bluetooth lookup is slow
The current version of the Sphero manager uses a slow approach for finding
new devices. The asynchronous Bluetooth-discovery service used in the
current version is implemented by first looking for new devices for a given
period of time (typically 10sec). The application is not informed of new devices
until this search is finished. This means that if the Bluetooth-discovery last for
10 seconds for each search, it would take at least 10 seconds before the first
Sphero device is discovered.

The author has found a better approach39, but had not enough time to
implement this improvement. This approach support intermediate callbacks
when new devices are found. By improving the Bluetooth-discovery system in
the Sphero manager, the application could be notified instantly when a new
device is discovered. This would decrease the discovery time for new devices.

6.4.3 Distributed system
One of the issues that the evaluation of Sphero NAV indicates is that the
performance of the tracker decreases rapidly when tracing multiple Sphero’s.
Python was probably not the best language to use for Sphero NAV. The issue
lies with the problem that when adding more devices there will be more
threads to execute and more pixels to evaluate. Python’s interpreter has
currently no support for running threads in true parallel, thus limiting
performance that could have been gained on multiprocessing machines [25]
[26].

39 http://people.csail.mit.edu/albert/bluez-intro/x339.html#pbz-adv-async (accessed
28.05.2014)

http://people.csail.mit.edu/albert/bluez-intro/x339.html#pbz-adv-async

University of Tromso 2014 – Sphero NAV
Chapter 6 - Evaluation

67

The author sees in retrospect that the system should have been implemented
as a distributed system where each module was implemented as separate
processes. The modules could have been connected through a RESTful [27]
web interface and data could be transferred between the components in the
form of JSON40. This approach would be more suited and make it possible to
use different programming platforms for each component. This design would
give additional overhead time due to communication between the different
modules, but the author believes that the speed-up gained by using more
suited technologies for each function would be higher.

A distributed system would also allow for a separation of functionality to
several units. One approach could be to control Sphero devices from the end-
users smart phones, and the position and coordination of the devices would
be obtained by a tracking service running on a separate machine.

6.4.4 Image evaluation
The current implementation of the tracking system iterates over every pixel in
each captured image, this happens one time for every object traced. This gives
high overhead times when tracing multiple objects, and it decreases the
number of frames tracked per second rapidly.

Figure 29 - GPU vs CPU processing (figure from41)

A solution for speedup could be to combine all of the tracking filters used in
one tracking to a combined filter. The combined filter is used to subtract the
matching pixel areas of the captured image. Each area could then be split up

40 http://www.json.org/ (accessed 01.06.2014)
41 http://opencv.org/platforms/cuda.html (accessed 25.05.2014)

http://www.json.org/
http://opencv.org/platforms/cuda.html

University of Tromso 2014 – Sphero NAV
Chapter 6 - Evaluation

68

and identified separately to match each object that should be traced. This
approach would minimize the number of pixels that would need to be iterated
for each object, and could give some additional speed-up of the tracking
system.

To really improve the performance of the tracking system, image processing
should have been implemented with CUDA support [28]. CUDA42 allows for
offloading of computations to the Graphical processing Unit43 (GPU). A GPU is
designed to perform calculations on images in parallel. The tracking algorithm
used in the tracker evaluates pixels independently making it an embarrassingly
parallel problem44. Performing the calculations on a GPU would speed up the
tracking significantly45. Figure 29 shows the massive speed up gained by using
the GPU compared to a CPU based approach.

Open CV holds C and C++ support for taking use of the GPU in its calculations.
This is something that should have been looked into to increase the
performance of the tracker. There was not enough time to do this.

6.4.5 Improved Tracking
During the development phase of Sphero NAV, unforeseen issues with
external devices and Bluetooth connections took up much time of the project.
The python Sphero API took much longer time to get up and running than
expected. Much of the code was rewritten for at all be able to connect to the
Sphero device. This gave less time for improvements and optimization of the
tracking part of the system.

The current implementation of Sphero NAV tracks devices successfully, but
there are still allot of potential modifications that could be implemented.

There should be an easier way for the developers to create filters for tracking.
An approach found in another system that uses object tracking allows for the
user to interactively click on the object to track in the video capture46. A
system like this could be extended into the tracking module, and the end-users

42 http://www.nvidia.com/object/cuda_home_new.html (accessed 25.05.2014)
43 http://www.nvidia.com/object/what-is-gpu-computing.html (accessed 25.05.2014)
44 http://www.cs.nthu.edu.tw/~ychung/slides/para_programming/slides3.pdf (accessed
25.05.2014)
45 http://www.youtube.com/watch?v=-P28LKWTzrI#t=56 (accessed 25.05.2014)
46 http://www.virtual-drums.com/frozen-cameleon.php (accessed 20.05.2014)

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.cs.nthu.edu.tw/~ychung/slides/para_programming/slides3.pdf
http://www.youtube.com/watch?v=-P28LKWTzrI#t=56
http://www.virtual-drums.com/frozen-cameleon.php

University of Tromso 2014 – Sphero NAV
Chapter 6 - Evaluation

69

of the system could just click on the desired Sphero to track in the captured
image, and a filter for that object would be created.

The current version of the video capture requires that the users of the system
manually adjust the settings of the image capture. This is done through the
camera settings manager. An extension of the tracker that could perform auto
adjustments of the video stream would be a useful feature, and would make
the system easier to use for the developer.

Open CV implements good support for camera calibration47. This functionality
should have been added to remove distortion in the images used for tracking.
This would give a more precise result of the tracked positions. Radial distortion
will typically appear in images from an uncelebrated camera. Radial distortion
would make straight lines in an image appear curved; especially at the corner
of the images. Radial distortion will affect the position of the tracked devices
in some degree.

There exist many approaches for objects tracking that have not been tested in
this thesis. The tracking system itself is a field big enough to be written as its
own project. The remainder of this section gives some examples of other
approaches that could have been used to improve the tracking of objects in
Sphero NAV.

Background subtraction
Sphero uses a stationary camera to capture images. Background subtraction48
(BS) is an approach that is used to remove the background of a tracking area.
An image where only the background of the tracking area is present is
captured. This image is subtracted from all other images removing the
background. After a successful background subtraction, the tracked objects
should be the only objects present in the picture.

47 http://docs.opencv.org/trunk/doc/py_tutorials/py_calib3d/py_calibration/py_calibration.html
(accessed 28.05.2014)
48http://docs.opencv.org/trunk/doc/py_tutorials/py_video/py_bg_subtraction/py_bg_subtrac
tion.html (accessed 01.06.2014)

http://docs.opencv.org/trunk/doc/py_tutorials/py_calib3d/py_calibration/py_calibration.html
http://docs.opencv.org/trunk/doc/py_tutorials/py_video/py_bg_subtraction/py_bg_subtraction.html
http://docs.opencv.org/trunk/doc/py_tutorials/py_video/py_bg_subtraction/py_bg_subtraction.html

University of Tromso 2014 – Sphero NAV
Chapter 6 - Evaluation

70

Template matching
Template matching49 is an approach that uses template images to locate
objects. The template of the object to track is used by the tracking system to
look for objects similar to the template. The tracker could use templates of
Sphero’s glowing in different colors for tracking multiple devices.

Machine learning
TLD (Tracking-Learning-Detection) is a real-time algorithm for tracking
unknown objects in a live video stream [29]. TLD uses Machine learning to
locate objects. The author has not used much time for researching this
approach, but it seems that this is something that could be used in the tracking
system of Sphero NAV.

6.5 Problem definition solved
From the problem definition of this thesis presented in the introduction
chapter (1.2):

“Develop a navigation platform for one or more users to control one
or more robots (drones, sensor etc.). The platform should be easy to
use and has to allow robots to operate on different levels of
autonomy. The platform should also be easy to deploy and use both in
the lab and when visiting schools and recruitment fairs.”

The remainder of this chapter explains how Sphero NAV has solved the
problem definition of this project.

“Develop a navigation platform for one or more users to control one or
more robots (drones, sensor etc.).”

Sphero NAV implements a library that allows for tracking and control of one or
multiple Sphero devices. The current version of Sphero NAV is restricted to
tracking of the Sphero. However, its design and architecture allows developers
to extend its functionality by writing custom filters and traceable object that
allows for tracking of other types of devices.

49 http://opencv-python-
tutroals.readthedocs.org/en/latest/py_tutorials/py_imgproc/py_template_matching/py_temp
late_matching.html (accessed 01.06.2014)

http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html

University of Tromso 2014 – Sphero NAV
Chapter 6 - Evaluation

71

“The platform should be easy to use and has to allow robots to operate
on different levels of autonomy”

There has not been time to get feedback from other developers to test Sphero
NAV’s ease of use. However, the author believes with background in the test
application, and the code examples demonstrated that the Sphero NAV library
is easy for developers with Python experience to use for new applications.

Sphero NAV has demonstrated trough the test application that the library can
be used to control Sphero devices in a fully autonomous, semi-autonomous
and manual mode. This demonstration proves that the Sphero NAV library
allows the devices to be controlled on different levels of autonomy.

“The platform should also be easy to deploy and use both in the lab and
when visiting schools and recruitment fairs.”

Sphero NAV was implemented with Python. Python is a language that requires
little work from the developer to get up and running. The Sphero NAV system
implements a camera controller that allows its users to control and adjust the
setting of the video stream. This support was created with respect for making
the system dynamic and possible to use in different setting.

One of the limitations with the system may be that it is required to mount a
camera in the celling over the tracking area. This can be difficult in some
venues. However, if the University could invest in some sort of camera rig this
should be a quick fix.

Based on the evaluation and testing of the Sphero NAV system the author
believes that the Sphero NAV system has solved the problem definition and
allows developers to create richer demonstration for recruitment purposes.

University of Tromso 2014 – Sphero NAV
Chapter 7 - Conclusion

73

Chapter 7 - Conclusion

7.1 Conclusion
This thesis has outlined Sphero NAV – a software library for creating richer
Sphero applications for use in recruitment. Sphero NAV provides functionality
for tracking and controlling of multiple Sphero devices. Control of devices is
possible either through pre-programed control systems or with the use of PS3
controllers.

Sphero NAV was evaluated and it was concluded that the project had solved
the problem definition of this thesis. The evaluation of Sphero NAV
demonstrated that it is possible to use Sphero NAV to create applications that
uses tracker data to add extended functionality for demonstrations of the
Orbotix Sphero.

In the end, the author is satisfied with the results of the project given the
limited timeframe of this thesis.

University of Tromso 2014 – Sphero NAV
Chapter 7 - Conclusion

74

7.2 Concluding remarks
One of the big issues in the development phase of Sphero NAV was to work
with external devices. Countless hours have been used for establishing
connections, debugging and using the devices. Programing with external
devices really tests one’s patience.

Creating programs for physical devices that moves in the real world is not the
same as programming a game where all the physics are hard coded and can be
controlled by the developer.

Real devices moves differently and the movement is affected by real world
physics. A bouncing ball created in graphics visualization can change direction
immediately; the direction of a driving Sphero on the other hand would need a
good amount of breaking distance before it can turn. These types of
calculations have to be taken into account when creating visualization or
games that take uses of physical devices.

A bouncing ball in graphics visualization is programed to move in a straight line
and is not affected by its underlying surface. A physical device on the other
hand is affected by its surface and this makes the devices wobble from side to
side changing its heading and position randomly.

7.3 Future work and ideas
Although Sphero NAV solves the problem definition there are still many
opportunities for future work and improvements.

Some of the related systems outlined in this thesis have similarities to Sphero
NAV in the approach they use for tracking the devices. The main difference is
that the other systems uses Infrared (IR) tracking to find the devices. IR
tracking is a good approach because it does not limit the physical appearance
of device in the same way as color based tracking would. IR is invisible to the
human eye and the tracking is not polluted from other objects in the same
level as with color tracking. The problem is that the Sphero device does not
currently hold any IR LED’s, and this restricts this approach for Sphero NAV. It
may be that Orbotix decides to add this to future versions of the Sphero. If
they do, this should be tested as a new tracking approach for Sphero NAV.

University of Tromso 2014 – Sphero NAV
Chapter 7 - Conclusion

75

Another feature used by the related systems is the use of a projector to
display graphics on the floor where the devices are used. This is a feature the
author dreamed of implementing, but had to drop because there simply was
no time for development and money for equipment. The author hope that this
is one of the things that could be added in the future.

The Sphero devices have by default the possibility to stream all of its sensor
data to its connected client. A graphical user interface displaying this data
would make it easier for developers to know what goes on inside the device.
The Kivy framework could be used to create a Sphero widget that could display
all onboard data from the Sphero.

Last as mentioned earlier there was not enough time to implement the
tracking module of Sphero NAV to the level desired by the author. The tracking
module has a high potential for optimization and extra features and better
tracking algorithms should be added.

University of Tromso 2014 – Sphero NAV
Chapter 8 - References

77

Chapter 8 - References

[1] R. Godman, A. Eguchi and E. Sklar, "Using educational robotics to
engage inner-city students with technology," in Depth of computer
science, Universiy of cambridge, Cambridge CB2 1QA, uk, 2003, pp.
214-221.

[2] E. D. Oppliger, "University - pre college interaction through first
robotics competition," in Session 6D3 - International Conference on
Engineering Education, 2001, pp. 11-16.

[3] R. Mitchell, K. Warwick, N. W. Browne, N. M. Gasson and J. Wyatt,
"Engaging Robots: Innovative Outreach for Attracting," IEEE
TRANSACTIONS ON EDUCATION, vol. 1, no. 53, pp. 105-113, 2010.

[4] J. Alonso-Mora, A. Breitenmoser, M. Rufli, S. Haag, G. Caprari, R.
Siegwart and P. Beardsley, DisplaySwarm: A robot swarm displaying
images, IROS 2011 open research demonstration, 2011.

[5] Orbotix, "Sphero Home page," [Online]. Available:
http://www.gosphero.com/sphero-2-0/. [Accessed 20 4 2014].

[6] Python, "Python Programming language," [Online]. Available:
https://www.python.org/. [Accessed 20 4 2014].

[7] Orbotix, "Sphero API 1.5 Documentation," 20 8 2013. [Online].
Available:
https://github.com/orbotix/DeveloperResources/blob/master/docs/Sp

University of Tromso 2014 – Sphero NAV
Chapter 8 - References

78

hero_API_1.50.pdf. [Accessed 20 4 2014].

[8] S. Nistad, "Sphero NAV demo VIDEO," Youtube.com, 29 5 2014.
[Online]. Available: https://www.youtube.com/watch?v=KlWZrcMtZzI.
[Accessed 31 5 31].

[9] K. Sachiko, S. Toshiki and K. Hideki, "Smart Ball and a NewDynamic
Form of Entertainment," in Playful User interfaces, Gaming Media and
Social Effects, Springer Science, Businnes Media Singapore, 2014, pp.
141-160.

[10] D. Holman and R. Vertegal, "Organic user interfaces: Designing
computers in any way, shape, or form," Communication of the ACM,
vol. 2008, no. 6 - vol. 51, pp. 48 - 55, 2008.

[11] C. Wisneski, J. Orbanes and I. Hiroshi, PingPongPlus: Augmentation and
transformation of athletic interpersonal interaction, MIT Media
Laboratory: MIT, 1998.

[12] J. Alonso-Mora, A. Breitenmoser, P. Beardsley and R. Siegwart,
Reciprocal collision avoidance for multiple car-like robots.

[13] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley and R.
Siegwart, Optimal reciprocal collision avoidance for multiple non-
holonomic robots, Disney research zurich.

[14] J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart and P.
Beardsley, Multi-robot system for artistic pattern formation.

[15] Orbotix, "Sphero whitelist process," 10 12 2012. [Online]. Available:
https://github.com/orbotix/DeveloperResources/blob/master/docs/Sp
hero_Whitelist_Process.pdf. [Accessed 20 4 2014].

[16] K. Hall-Geisler, "How Sphero works," [Online]. Available:
http://electronics.howstuffworks.com/sphero.htm. [Accessed 20 4
2014].

University of Tromso 2014 – Sphero NAV
Chapter 8 - References

79

[17] Orbotix, "Sphero developer site," Orbotix, [Online]. Available:
https://developer.gosphero.com/. [Accessed 18 5 2014].

[18] Faulkner, "Github, Python Sphero API," Faulkner, 2012. [Online].
Available: https://github.com/faulkner/sphero. [Accessed 20 4 2014].

[19] H. S. Oluwatosin, "Client-Server Model," IOSR Journal of Computer
Engineering, no. 16, pp. 57-71, 2014.

[20] Orbotix, "Sphero locator documentation," 29 8 2012. [Online].
Available:
https://github.com/orbotix/DeveloperResources/blob/master/docs/Sp
hero%20Locator%201.2.pdf. [Accessed 20 4 2014].

[21] Orbotix, "Sphero OrbBasic Interpreter," 06 5 2013. [Online]. Available:
https://github.com/orbotix/DeveloperResources/blob/master/docs/or
bBasic_1.07.pdf. [Accessed 20 4 2014].

[22] Orbotix, "Sphero Macros documentation v0.99," 8 4 2013. [Online].
Available:
https://github.com/orbotix/DeveloperResources/blob/master/docs/Sp
hero_Macros_0.99.pdf. [Accessed 20 4 2014].

[23] Orbotix, "Sphero collision detection," 25 2 2013. [Online]. Available:
https://github.com/orbotix/DeveloperResources/blob/master/docs/Co
llision%20detection%201.2.pdf. [Accessed 20 4 2014].

[24] R. Tougher, "Creating reusable software libraries," Linux gazette,
August 2002.

[25] D. Beazley, "Understanding the Python GIL," 2010. [Online]. Available:
http://dabeaz.com/python/UnderstandingGIL.pdf. [Accessed 18 5
2014].

[26] N. Matloff and H. Francis, utorial on Threads Programming with
Python, University of California, Davis: University of California, Davis,
2007.

University of Tromso 2014 – Sphero NAV
Chapter 8 - References

80

[27] T. R. Fielding, Architectural Styles and the Design of Network-based
Software Architectures (chapter 5), University of California, Irvine,
2000.

[28] J. Huang, S. P. Ponce, S. I. Park, Y. Cao and F. Quek, GPU-Accelerated
Computation for Robust Motion Tracking Using the CUDA Framework,
Center of Human Computer Interaction: Virginia Polytechnic Institute
and State University.

[29] Z. Kalal, M. Krystian and M. Jiri, "Tracking-Learning-Detection," IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,
vol. 2012, no. 7, pp. 1409-1422, 7 2012.

	Forside
	blank
	MasterThesisFERDIG
	I. Abstract
	II. Acknowledgements
	III. List of figures
	IV. List of tables
	Chapter 1 - Introduction
	1.1 Overview
	1.2 Problem definition
	1.3 Envisioned system
	1.4 Contributions
	1.5 Limitations
	1.6 Outline

	Chapter 2 - Related work
	2.1 Introduction
	2.2 Bouncing Star
	2.3 Ping pong plus
	2.4 Open Pool
	2.5 Pixelbots (Display swarm)

	Chapter 3 - Orbotix Sphero
	3.1 Introduction
	3.2 The device
	3.2.1 SDK’s

	3.3 System Design
	3.3.1 Client – Server
	3.3.2 Virtual devices

	3.4 Sphero Overview
	3.4.1 RGB light
	3.4.2 Coordinate system
	3.4.3 Locator
	3.4.4 OrbBasic
	3.4.5 Macros

	3.5 Packet structure
	3.5.1 Synchronous packets
	3.5.2 Synchronous responses
	3.5.3 Asynchronous packets

	Chapter 4 - Sphero NAV
	4.1 Introduction
	4.2 Architecture
	4.3 Design
	4.3.1 Tracker
	4.3.2 Sphero Module
	4.3.3 PS3 Module

	4.4 Use Case
	4.4.1 Application ideas
	4.4.2 API usage examples
	• Synchronous device discovery and usage
	• Asynchronous device discovery
	• Asynchronous data streaming
	• Object tracker
	• Set and use events on PS3 controller

	Chapter 5 - Implementation
	5.1 Introduction
	5.2 Technologies used
	5.3 Object Tracking
	5.3.1 Algorithm
	5.3.2 Traceable object and sample class
	5.3.3 Filter
	5.3.4 Camera controller

	5.4 Sphero Module
	5.4.1 Communication
	5.4.2 Sphero Streaming
	5.4.3 Sphero Manager
	5.4.4 Sphero Calibration

	5.5 PS3 Module

	Chapter 6 - Evaluation
	6.1 Introduction
	6.2 Experiments
	6.2.1 The experimental environment
	6.2.2 Communication
	6.2.3 Tracking performance
	6.2.4 Library test
	6.2.5 Video

	6.3 Known bugs and issues
	6.3.1 Spikes in communication
	6.3.2 Microsoft Kinect
	6.3.3 Color tracking
	6.3.4 Internal reference heading

	6.4 Improvements
	6.4.1 Support all platforms
	6.4.2 Bluetooth lookup is slow
	6.4.3 Distributed system
	6.4.4 Image evaluation
	6.4.5 Improved Tracking
	Background subtraction
	Template matching
	Machine learning

	6.5 Problem definition solved

	Chapter 7 - Conclusion
	7.1 Conclusion
	7.2 Concluding remarks
	7.3 Future work and ideas

	Chapter 8 - References

