

Faculty of Science and Technology, Department of Computer Science

Spark-SPELL: Low-latency Query-based Search for
Gene Expression Compendia on Cluster Computers

—
Inge Alexander Raknes
Master thesis in Computer Science INF-3981 – June 2014

1 Abstract

Exploratory analyses are vital to fully realize the potential for scienti�c discov-
eries in large-scale biomedical data compendia. Speci�cally, most biomedical
data analyses require a human expert to interactively explore the data to �nd
novel hypotheses or conclusions. However, recent developments in biotechnology
instruments are generating Tera-scale datasets. No interactive biomedical data
analysis systems scale to such large datasets. We present the design, implemen-
tation and optimization of the SPELL biomedical search algorithm on the Spark
framework. We demonstrate the scalability and interactive performance of our
Spark-SPELL system. In addition, we demonstrate the performance improve-
ments of our optimizations to the SPELL algorithm and the Spark framework.

Acknowledgements

Thanks to Jon Ivar Kristiansen for help with setting up the cluster. We also
thank Kai Li, Olga Troyanskaya and Mathew Hibbs for providing the SPELL
code. We also thank Wenli Zhang for working with DistSpell.

Contents

1 Abstract 1

2 Introduction 4
2.1 Report . 6

3 Architecture 6

4 Background 7
4.1 Compendium . 7

4.1.1 PCL data format . 7
4.2 The Spell Search algorithm . 7

4.2.1 Description of the algorithm 8
4.2.2 The implementation of the algorithm 8

4.3 The Scala programming language 9
4.3.1 Types and generics . 9
4.3.2 Closures . 10
4.3.3 Functions . 11
4.3.4 Java integration . 11

4.4 Libraries used . 12
4.5 Spark . 13

4.5.1 Resilient Distributed Dataset 13
4.5.2 Computational Abstractions 14
4.5.3 Tasks . 14
4.5.4 Broadcast Variable . 14
4.5.5 Accumulators . 15
4.5.6 Streams . 15
4.5.7 Shark SQL . 15

4.6 Pro�lers . 15

1

5 Legacy Spell 15
5.1 Legacy architecture and design 17

5.1.1 The messaging protocol 18

5.2 Legacy code overview . 19

5.2.1 Legacy code dependencies 19

5.2.2 Web Frontend . 20

5.3 Issues . 20

5.3.1 Hard to understand . 21

5.3.2 Hard to use . 21

5.3.3 Hard to change . 21

5.3.4 Hard to test . 21

5.3.5 Performance . 22

5.4 Lessons learned . 22

5.4.1 Don't keep the abstractions. Write a wrapper. 22

5.4.2 Learn from DistSpell . 23

6 Design 23
6.1 Server Design . 23

6.2 Spark Searcher Design . 25

7 Implementation 26
7.1 Code organization . 26

7.1.1 Spell back-end server and client library 26

7.2 Searcher Algorithm Interface . 28

7.2.1 Functional . 28

7.2.2 Abstract data types . 28

7.2.3 High-level Searcher . 28

7.2.4 Low-level Partial Searcher 29

7.2.5 Instantiation . 30

7.3 Spark Searcher Algorithm . 32

7.3.1 Preparing a search . 32

7.3.2 Performing a search . 33

7.4 Interaction with legacy code . 33

7.4.1 Spell searcher algorithm 33

7.4.2 Spell front-end GWT application 34

7.5 Custom SPELL implementation 34

8 Optimization 35
8.1 Memory overhead . 35

8.1.1 Memory footprint . 35

8.1.2 Garbage collection . 35

8.2 Custom data structures . 36

8.2.1 PartialScoresMap . 36

8.2.2 Evaluation . 38

8.3 Tuning Spark . 39

8.3.1 Cache size tuning . 39

8.3.2 Number of partitions . 39

8.3.3 RDD persistence level . 40

2

9 Evaluation 40
9.1 Correctness . 41
9.2 Performance and scalability . 41

9.2.1 Construction of synthetic datasets 41
9.2.2 Presentation of results . 41
9.2.3 Comparison of partial searcher implementations 42
9.2.4 Node scalability . 43
9.2.5 Dataset scalability . 45
9.2.6 RDD Persistence levels and serialization 47

10 Future work 50
10.1 Distributed resources . 50
10.2 Parallelization with respect to genes 50

11 Conclusion 50

References 50

List of Algorithms

1 Di�erent ways to declare a function 11
2 Functions . 11
3 Basic Searcher Usage . 28
4 Basic Searcher De�nition . 29
5 Partial Searcher De�nition . 30
6 Partial Searcher Usage . 30
7 Partial Searcher Factory . 31
8 Searcher dependencies . 31
9 Expression dataset . 31
10 Partial Searcher Instantiation . 32
11 Dataset . 34
12 PrototypePartialSearcher . 34

List of Figures

1 High-level architecture . 6
2 Architecture . 7
3 Spark runtime. Illustration is taken from [19]. 13
4 SpellWeb . 16
5 SpellWeb search result, showing genes, datasets and heat maps.

Note that the search result is provided by the new back-end that
was developed as part of this thesis. 17

6 Legacy architecture . 18
7 Legacy DistSpell master/worker architecture 18
8 Legacy code dependencies . 20
9 GWT code dependencies . 20
10 Detailed architecture . 24
11 Backend server . 24
12 Spark Searcher . 26

3

13 Source code components and their dependencies 27

14 Distributed searcher algorithm 33

15 Calculating an array index for a given ID 37

16 Di�erent merge strategies . 39

17 Comparison of partial searcher implementations. The number
of samples for each con�guration is 1000. The number of RDD
partitions is 72. 42

18 Node scalability using a 20x dataset. Number of nodes along
the x-axis, time along the y-axis. Uses 360 partitions and RDD
persistence level is memory-and-disk. 44

19 Node scalability using a 40x dataset. Number of nodes along
the x-axis, time along the y-axis. Uses 360 partitions and RDD
persistence level is memory-and-disk. 45

20 Dataset scalability . 46

21 RDD persistence levels when using a 30x dataset 48

22 RDD persistence levels when using a 60x dataset 49

List of Tables

1 Di�erent merge strategies . 39

2 Comparison of partial searcher implementations. The number of
samples for each con�guration is 1000. 43

3 Memory consumption for the GEO dataset as reported by the
Spark web console. All data sizes represents the aggregated sum
across all nodes. 43

4 Node scalability using a 20x dataset. All reported sizes represents
the aggregated sum across all active nodes. 44

5 Dataset scalability. All data sizes represents the aggregated sum
across all nodes. 47

6 Timings � RDD persistence levels when using a 30x dataset . . . 48

7 Cache size � RDD persistence levels when using a 30x dataset.
All data sizes represents the aggregated sum across all nodes. . . 48

8 Cache size � RDD persistence levels when using a 60x dataset.
All data sizes represents the aggregated sum across all nodes. . . 49

2 Introduction

Exploratory analysis of large-scale scienti�c datasets is vital for the advance-
ment of knowledge in many �elds. In molecular biology and molecular medicine
the recent advances in omics technologies, such as next-generation sequencing
machines, has the potential of producing data that provide views of biological
processes at di�erent resolutions and conditions, opening a new era in these
�elds[15]. Speci�cally, the cost of next-generation sequencing machines and
analyses has become low enough that it is practical to purchase and operate
these machines in individual labs or clinical care[11]. However, integrated data
analysis and exploration is essential to fully realize the potential in the data
for understanding the biological context of for example cancer[12], or to enable

4

personalized[7] and strati�ed [16] approaches for disease diagnosis and treatment
of cancer patients.

Large-scale integrated data analysis and exploration combine data from ten
thousands of experiments with millions of samples. The data is generated un-
der diverse conditions, and is noisy. An important challenge when developing
a data analysis or exploration method is to ensure that the signal in the aggre-
gated results is not lost in noise. It is therefore necessary to develop algorithms
and approaches that take the biological context of the data into account to re-
duce the number of unknown parameters[12] and hence improve the precision
and accuracy of the results. Such analyses methods are often computationally
intensive, and typically require a human expert to interpret the results. The
analysis must therefore be interactive and hence the results should be computed
in a few seconds.

To our knowledge, no existing system for large-scale data analysis enables
interactive exploration of heterogeneous and noisy biomedical datasets. This
severely limits either the size of the dataset, the methods that can be used
for the analysis, or the interactivity and hence usefulness of the analysis. A
system for interactive exploration using computationally intensive algorithms
will allow development of better analysis approaches, that enable exploratory
analyses that can provide researchers novel hypotheses or conclusions.

We describe the design, implementation, and optimization of the SPELL[9]
algorithm on the Spark [19, 20, 21] system. SPELL is a search algorithm for
functional prediction of large microarray compendia. SPELL is deployed as a
web application that provides search and visual exploration of a large yeast (S.
cerevisiae) compendium, it is used for search in Wormbase[18] (a large C. Ele-
gans compendium), and it is used to explore data in the HIDRA visualization
tool [8]. We believe SPELL is representative for interactive integrated explo-
ration methods for heterogeneous and noisy biomedical data, and that clinical
approaches for personalized and strati�ed diagnosis must perform a similar type
of search in a compendia of previous diagnoses. We describe SPELL in detail in
section 4.2, and we discuss why scaling and making SPELL searches interactive
is di�cult.

Spark is a new system for large-scale data analysis that can provide inter-
active job execution times (less than a second). We believe Spark has multiple
advantages for use in interactive exploration of large-scale biomedical compen-
dia. First, compared to for example Hadoop MapReduce jobs [6], Spark jobs
can complete in less than a second[19]. Second, Spark is well suited for iterative
analysis and therefore well suited for exploratory analysis where a human expert
typically re�nes an analysis by parameter tuning. Third, it enables implemen-
tation of application-, and data speci�c analysis and search algorithms. Spark is
well suited for iterative analysis and therefore well suited for exploratory anal-
ysis where a human expert typically re�nes an analysis by parameter tuning.

We describe how we adapted the sequential SPELL for our Spark implemen-
tation and how we optimized the SPELL code for e�cient parallel execution.
We also provide an experimental evaluation of the interactivity, e�ciency, and
scalability of our implementation. Our results demonstrate that we achieved
search latencies of less than X seconds for a large compendia with Y samples.

Our results contribute with an approach for designing interactive search
algorithms for distributed execution, performance and memory usage optimiza-
tions for biomedical data structures, and lessons learned implementing such

5

algorithms on Spark.

2.1 Report

This report will be structured as follows:

In section �3 I will explain the architecture of the system. In section �4 I
will explain the background for this report which will include descriptions of
the involved techologies. In section �5 I will explain the legacy system: the
general architecture, some necessary design and implementation details, and
some general issues in the implementation. In section �6 I will explain the
design of my system and how the di�erent components relate. In section �7
I will explain the implementation of my system, and the general abstractions
that were used. In section �8 i will explain di�erent optimizations that were
performed on the implemented system in order to make it run faster with larger
data sets. In section �9 I will describe the experimental evaluation of the system.
In section �11 I will provide the conclusion.

3 Architecture

In this section I will describe a general architecture for implementing a gene
search with Spark. The implemented Spell search is an implementation of this
architecture. A brief overview can be seen in �gure 1.

Figure 1: High-level architecture

The general idea is to let a user interact with the search via a web browser
and then have a web server that interacts with a search service that runs the
search on Spark. This is detailed in �gure 2.

6

Figure 2: Architecture

JavaScript client The JavaScript web browser client presents the GUI and
the search results to the user. It also holds all state related to a user's search
session.

Web Server The web server forwards client requests to the Spell Service and
returns the results to the client. The web server's state is scoped to a single
request.

Spell Service The Spell Service is the driver for the Spark cluster and trans-
lates every search query into a Spak job to be run on the cluster. The Spell
Service's state is scoped to a single request.

Spark Cluster The Spark cluster does the actual processing of a Search
Query in order to derive a search result. The Spark cluster's state include
job scheduling, and caching of datasets. This is handled by Spark, and is not
a concern for the consuming service other than it may cause additional latency
for a request if there is a long job queue.

4 Background

4.1 Compendium

4.1.1 PCL data format

The PCL �le format describes a tab delimited �le containing gene expression
values in a dataset. The �rst three columns in a PCL �le contain a unique ID,
a gene name, and the weight of a gene in the dataset. The columns that follows
after the three �rst columns are expression values for the di�erent experiments.

The �rst row contains column headers and names for the experiments in the
dataset. The second row contains weights for the experiments in the dataset.

4.2 The Spell Search algorithm

The Spell search algorithm[9] is an algorithm that can be used to search for
genes in a compendium of datasets, given a set of query genes. When the
search is performed each dataset will be given a weight and each gene in the

7

compendium will be given a score. The genes and datasets are then sorted by
score and weight respectively and returned to the user in the form of a search
result.

4.2.1 Description of the algorithm

The dataset weight is calculated by equation (2), where Q is is the set of query
genes and zqi,qj is the Fisher z-transformed correlations between the two query
genes qi and qj in that particular dataset.

f(x) =

{
x2 if x ≥ 1

0 otherwise
(1)

wd =

(
2

|Q| (|Q| − 1)

) |Q|−1∑

i=1

|Q|∑

j=i+1

f
(
zqi,qj

)
(2)

sx =
1

|Q|∑d∈D wd

∑

d∈D

∑

q∈Q
wdf (zx,q) (3)

The score for a gene sx is given by equation (3).

4.2.2 The implementation of the algorithm

One of the challenges with this algorithm is that the provided implementation is
more complicated than the algorithm that is described in the paper (summarized
in section 4.2.1). In this section I will explain how the provided algorithm can
be interpreted.

In addition to the steps given in section 4.2.1 the algorithm collects some
extra statistics while calculating the dataset weights and the gene scores. These
statistics are then used to clean the �nal search result: some gene scores and
dataset weights are set to either 0 or 1 if certain conditions are met.

Dataset weights Let the sum of the transformed correlations in a dataset d

be de�ned as ud =
∑|Q|−1

i=1

∑|Q|
j=i+1 f

(
zqi,qj

)
. Let pd be the number of query

gene pairs that are present in the dataset. If pd > 0 and sd > 0, then the dataset
is said to be weighted. If less than 3 datasets are weighted or |Q| = 1 then all
dataset weights are set to 1.0. Otherwise the dataset weight is be given by

wd =

{
ud/pd if datase is weighted

0 otherwise
(4)

Note that a dataset weight is not only determined by its own properties in
relation with the query genes, but it also depends on how many of the other
datasets are being weighted.

A relevant fact is that the provided implementation of the Spell algorithm
supports more than one function to compare two genes, that is, the parts in
the equations that read f

(
zqi,qj

)
may be replaced by another function. This

functionality is not used by DistSpell, nor is it described in the paper, however
in this case equation (4) becomes slightly more complicated: instead of letting
wd being equal to 0 when the dataset is not weighted, it will instead be equal

8

to ud. See equation (5) for the generalized version, where M is an arbitrary
function that relates two genes in a dataset, such that �similar� genes has an
higher value.

wd =

{
ud/pd if datase is weighted

ud otherwise
(5)

ud =

|Q|−1∑

i=1

|Q|∑

j=i+1

M(qi, qj) (6)

This represents how the dataset weights are calculated by the implemen-
tation. However when an alternative function is not being used, then f as
de�ned in equation (1) guarantees that ud ≥ 0 and as such a dataset can only
be not weighted in the case when pd = 0 in which case ud will be 0. Therefore
equation (4) represents an accurate simpli�cation of the algorithm.

Gene scores Gene scores are calculated by the formula in equation (3), but
with similar data cleaning modi�cations as Dataset weights.

4.3 The Scala programming language

Scala is used for most of the implementation in this project. Scala is a multi-
paradigm programming language for the JVM[13]. It supports both functional-
and object-oriented programming, and has become a trending language on
the JVM. Companies that use Scala include Twitter, LinkedIn, Novell, The
Guardian, Xerox, FourSquare, Sony, Siemens, and many others[?].

In this section I will explain a small subset of Scala's syntax that is used
in the examples in this report, and that might be unfamiliar to programmers
coming from other languages. Because Scala is a large programming language,
in terms of features, I will only explain the minimum syntax that is required to
understand the examples in this report.

As some of the concepts in this section will be explained in the context of
Java, it is assumed that the reader has a prior basic understanding of the Java
programming language.

4.3.1 Types and generics

Some examples in this report will use Scala's syntax for types and generics. In
this section I will explain the minimum amount of syntax surrounding types
that is used in this report, and describe some relevant semantics.

Scala is a statically typed programming language. While Scala has type
inference, it is sometimes necessary to explicitly annotate types (method argu-
ments is an example). Sometimes type annotations are added for clarity. In
this section I will explain some of the syntax concerning types in Scala. Scala's
type system is quite complicated and a detailed discussion would not be within
the scope of this report.

In Scala type annotations are added after the declaration of a value (or a
variable):

9

va l x : Int = 5
va l x = 5 // type i s i n f e r e d by the compi ler

Generics are described using the following notation (for a List of Integers):

va l l i s t : L i s t [Int] = L i s t (1 , 2 , 3)
va l l i s t = L i s t (1 , 2 , 3) // compi ler i n f e r e s L i s t [Int]

Values vs. variables (mutable vs. immutable) In Scala a val is an
immutable reference (similar to �nal in Java). A var is a mutable variable. For
example:

va l l i s t : L i s t [Int] = . . . // Immutable r e f e r e n c e to a L i s t
var l i s t : L i s t [Int] = . . . // Mutable r e f e r e n c e to a L i s t

In Scala it is idiomatic to use val whenever possible. In addition, all col-
lections are immutable by default. Mutable collections are found in a separate
package. Thus both Lists in the example above are immutable. Transformations
on an immutable collection will result in a new immutable collection.

4.3.2 Closures

Some of the examples that are given later in this report will rely on Scala's sup-
port for closures, and anonymous functions. Below, I will explain the di�erent
closure syntaxes that I use in the examples in this report.

In Scala anonymous functions are known as function literals. I will present a
few examples that are equivalent to each other, but use di�erent syntaxes. If we
assume that we have a method called reduce, on an object named list that takes
a function called reducer as a parameter, and that reducer is a function that
takes two arguments of type Double, and returns a Double. The type signature
for reduce could be de�ned as follows.

de f reduce (reducer : (Double , Double) => Double) : Double

The following ways to call reduce with a reducer are equivalent:

10

Algorithm 1 Di�erent ways to declare a function

// 1 : E xp l i c i t l y d e f i n i n g a func t i on c a l l e d ' reducer '
de f reducer (l h s : Double , rhs : Double) : Double = {

// Last exp r e s s i on i s always returned : no need
// f o r an e x p l i c i t r e turn statement .
l h s + rhs

}
va l r e s u l t = reduce (reducer)

// 2 : Using a func t i on l i t e r a l
va l r e s u l t = reduce ((lhs , rhs) => lh s + rhs)

// 3 : A func t i on l i t e r a l may span mul t ip l e l i n e s i f
// i t ' s enc l o s ed in bracket s
va l r e s u l t = reduce { (lhs , rhs) =>

lh s + rhs
}

// 4 : Shorthand f o r the above : the f i r s t '_' means the f i r s t
// argument , the second '_' means the second argument (and so on) .
va l r e s u l t = reduce (_+_)

In the examples in this report, all four ways of declaring a function will be
used.

4.3.3 Functions

In Scala any object that de�nes a method named apply can have its apply-
method invoked with function-syntax on the object. An example can be seen in
alg. 2.

Algorithm 2 Functions

c l a s s Str ingLength {
de f apply (s t r : S t r ing) = s t r . l ength

}

va l l ength = new Str ingLength
length . apply (" He l lo ") // Standard method invoca t i on .

// Result equa l s 5
l ength (" He l lo ") // Same as above , but with func t i on syntax

4.3.4 Java integration

One of the main bene�ts of Scala is that it integrates with Java code and
libraries. For example, Java classes can be instantiated and extended from
Scala and Java interfaces can be implemented with Scala classes. This makes it
possible reuse legacy Java code in a Scala project.

11

4.4 Libraries used

In this section I will give a short description of the libraries that were used to
create the implementation.

Twitter Finagle1 Twitter Finagle is a general purposes RPC library devel-
oped at Twitter. It supports multiple protocols including HTTP and Thrift.
Finagle is a Scala library, but it can also be used from Java. Finagle is used to
implement RPC between the web server and the back-end.

Apache Thrift2 Apache Thrift is an interface de�nition language and com-
munications protocol. Objects serialized with Thrift are given a compact rep-
resentation and can be parsed in multiple programming languages. A property
of thrift is that changes to the schema may be backwards compatible. Thrift
is used for RPC with Finagle. It is also used to store expression datasets in
HDFS.

Scrooge3 Scrooge is a Thrift parser/generator for Scala. It generates Scala
classes from Thrift IDL and it can also automatically generate service interfaces
for Finagle. Scrooge is used to generate all the Thrift-related objects in this
project. Scrooge integrates with SBT (Simple Build Tool) and runs automati-
cally every time the project is built.

Twitter Bijection4 Library to manage conversions between related objects/-
types. It uses type classes5 to provide a simple, type safe syntax for conversions.
This library is used to integrate the legacy code with the new code. It is also
used for serialization of objects and to create multiple similar Finagle services
while honoring the DRY principle.

Scallop6 Command line argument parser for Scala. It s used to parse com-
mand line arguments for the various CLI tools that were made during the de-
velopment of this project.

Apache Commons Math7 Math library from Apache. Its Pearson cor-
relation feature is used when implementing the custom Spell implementation
(section 7.5).

ScalaTest8 Testing framework for Scala. All new tests were written with this
framework.

1http://twitter.github.io/finagle/
2http://thrift.apache.org/
3http://twitter.github.io/scrooge/
4https://github.com/twitter/bijection
5Type classes is an advanced concept in Scala and is outside the scope of this report. For

an introduction to type classes and how they are implemented in Scala see [14].
6https://github.com/scallop/scallop
7http://commons.apache.org/proper/commons-math/
8http://www.scalatest.org/

12

ScalaMock9 A mocking library for Scala. Is used for testing.

JUnit10 A unit testing framework for Java. Is used to test the legacy code.

4.5 Spark

Spark is used extensively in this assignment, and the backend implementation
runs on top of Spark. In this section I will explain the most important aspects
of Spark that is related to this assignment.

Spark[20] is a distributed system that is designed for parallel operations
where parts of the data set can be reused in between computations. Spark is
distributed and o�ers an alternative computation model to MapReduce. Spark
builds on top of Mesos which is �a platform for �ne-grained resource sharing in
the data center (Hindman [10])�.

Figure 3: Spark runtime. Illustration is taken from [19].

4.5.1 Resilient Distributed Dataset

The most important abstraction in Spark is the RDD (Resilient Distributed
Dataset). An RDD is an immutable fault tolerant distributed shared memory
abstraction that is based on coarse-grained transformations rather than �ne-
grained updates[19]. An RDD can be explicitly cached in-memory or persisted
to disk (or both).

An RDD is deterministically created by transforming another RDD or by
reading data from stable storage. These operations are called transformations.
Examples of transformations include map and �lter. All transformations are
lazy operations that de�ne a new RDD. There is a second type of operation
on an RDD that is called an action. An action is an operation that launch a
computation in order to return a value to the user (program) or that writes
data to external storage. Transformations and actions are further described in
section 4.5.2.

9http://scalamock.org/
10http://junit.org/

13

An RDD is partitioned into several partitions. These partitions may be
persisted (cached) on worker nodes. When an RDD is transformed the transfor-
mations that are used to build a dataset (its lineage) are logged rather than the
actual data. This means that if some of the partitions of an RDD is lost due to
a failure they may be recomputed quickly rather than using costly replication.

For a deeper understanding of RDD i suggest reading [19].

4.5.2 Computational Abstractions

As mentioned in 4.5.1 Spark has a set of computational abstractions. These
have the capability to de�ne transformations or actions on an RDD. In this
section I will describe some of the most important computational abstractions:

map Maps every element in an RDD by applying a user supplied function to
each element.

�lter Filters elements in an RDD when given a predicate

reduce Combines all elements in an RDD when given a user supplied operator

fold Similar to reduce, except that it requires a user to supply a �zero� or
�neutral� value.

collect Retrieves every element of an RDD and returns it as an array on the
driver node.

A complete list of methods supported on an RDD can be found in the Spark
API documentation[3].

4.5.3 Tasks

In Spark a task is the basic unit of computation. When a transformation is
performed the scheduler creates a task to process each partition. Tasks can be
scheduled based on data locality. Because RDDs are immutable the system can
run backup tasks in order to mitigate slow nodes (stragglers). Sending a task
to a worker requires sending closures to them. To achieve this Spark relies on
the fact that Scala closures are Java objects and can be serialized using Java
serialization.

4.5.4 Broadcast Variable

A broadcast variable is an immutable shared variable that is cached on all the
worker nodes[20]. This is useful for lookup-tables or meta-data. In practice this
means that broadcast variables can be referenced from within a closure instead
of the actual variables themselves. This means that tasks can be made smaller
before they are serialized and sent to the workers. In Tuning Spark [5], under
the headline Broadcasting Large Variables, there is a statement that �in general
tasks larger than about 20 KB are probably worth optimizing (Apache [5])�. In
comparison, for the largest synthetic dataset evaluated in this thesis, the lookup
tables for IDs and statistics are in total 12.5MB.

14

4.5.5 Accumulators

Accumulators �are variables that workers can only �add� to using an associative
operation, and that only the driver can read (...) Accumulators can be de�ned
for any type that has an �add� operation and a �zero� value (Zaharia [20])�.
Accumulators are not used for the implementation of the Spell Search algorithm.

4.5.6 Streams

Spark has support for processing data that is arriving in real time. It does this
by �performing a series of batch computations on small time intervals (Zaharia
[21])�. This functionality is not used in my implementation.

4.5.7 Shark SQL

A system that is related to Spark is Shark SQL[17]. Shark provides an SQL
interface to Spark RDDs.

4.6 Pro�lers

Pro�lers are an invaluable tool when debugging performance issues on the JVM.
During the development of Spark-SPELL a few pro�lers were evaluated. JPro-
�ler an YourKit were the two pro�lers that were mostly used, although Visu-
alVM was also tested.

VisualVM VisualVM is a free pro�ler that comes with the Oracle JDK. It
supports common functionality like locating hot-spots and monitoring memory
consumption.

JPro�ler JPro�ler is a commercial pro�ler for the JVM. It integrates with
IntelliJ (IDE) and it provides a user-friendly interface for a programmer. An
interesting feature of JPro�ler is that it has the ability to view aggregated
incoming references to objects. This makes it easy to identify objects that are
referencing large amounts of data.

YourKit YourKit, like JPro�ler, integrates with IntelliJ.

5 Legacy Spell

In this section I will give a brief overview of the legacy Spell code and its context.
Much of this code has been reused in my project and some of the decisions that
were made in the design and architecture of my project are based on the details
of this inherited code. I will explain in brief the architecture and the design of
the legacy application, some of the fundamental abstractions, and some issues
that motivates some of the decisions that were made in my project which are
described later in this report.

15

Figure 4: SpellWeb

16

Figure 5: SpellWeb search result, showing genes, datasets and heat maps. Note
that the search result is provided by the new back-end that was developed as
part of this thesis.

5.1 Legacy architecture and design

In this section I will describe the legacy architecture and give a high-level
overview of its design and runtime-behavior. This is important as it provides
the context of the borrowed code and some abstractions that were key to my
design are based on this architecture.

At the highest level (�gure 6). There is a client browser application that
communicates with a web front-end which in turn communicates with a dis-
tributed spell search service (aka. DistSpell) (�gure 7) . The web front-end also
communicates with a GoTerm �nder that is used to do meta-data search on Go
Terms. This chapter will focus on the web front-end and DistSpell.

17

Figure 6: Legacy architecture

The distributed Spell service is implemented as a master/worker architec-
ture, where the master partitions the datasets for the workers, schedules searches
and talks to the client. The master communicates with the workers and the
client via a custom binary message passing protocol.

Figure 7: Legacy DistSpell master/worker architecture

DistSpell is parallelized on two levels; �rst datasets are distributed among
the worker nodes. Second, the worker nodes are multi-threaded.

5.1.1 The messaging protocol

While this report will not go into detail about the message passing protocol,
there are a few observations that are important for explaining the reasoning be-
hind my own design. The messaging protocol is organized into two main parts:
client/master communication and master/worker communication. In total there

18

were 24 messages, including heart-beat messages and other administrative mes-
sages (i.e. for loading a dataset on a worker node). While I will not go into detail
about every message, there were a few that were inspirational to the design of
the Spark-SPELL implementation. These have been summarized below

Client/master

Search request Request to initiate a search. Contains dataset IDs (int array),
query gene IDs (int array), organism ID (string)

Search response Response to a search request. Contains number of weighted
datasets (int), dataset weights (array of tuples of dataset ID: Int, weight:
Float), gene scores (tuples of gene ID: Int, score: Float).

Master/worker

Partial search request Request to initiate a partial search. Contains dataset
IDs (int array), query gene IDs (int array).

Partial search response Response to a partial search request. Contains dataset
weights (int array), partial scores (an ordered array of tuples (partial score:
Float, gene weight: Float, dataset count: Int). The tuples are ordered af-
ter a global list of gene IDs that are known to both the master and the
workers)

5.2 Legacy code overview

In this section I will explain some of the basic structure of the legacy code. This
is relevant in order to explain how I reused some of the old code, and why I
choose to use certain abstractions. In sections where I explain my abstractions
and how I were able to optimize my implementation based on these I will refer
back to this section.

5.2.1 Legacy code dependencies

The reasoning behind some of the abstractions I describe later in this report
is in�uenced by the structure of the legacy system. Reusable components were
recognized, factored out and re-used in the new implementation. The separa-
tions of the reusable components were heavily in�uenced by the dependencies
in the legacy code. A coarse overview of the code dependencies can be seen in
�gure 8. The �ner grained structure for the di�erent components is generally
more dense.

19

Figure 8: Legacy code dependencies

5.2.2 Web Frontend

The web front-end is divided into three parts:

GWT browser client This is the code that implements the GUI of the ap-
plication. It communicates with the GWT Servlet in order to perform a search
on the back-end. This is Java code that is compiled to JavaScript by the GWT
compiler.

GWT Servlet This is the server code of the application. In the original
implementation it contains code to communicate with DistSpell.

Shared code Interfaces and classes that are shared the client and the Servlet
are de�ned here.

Figure 9: GWT code dependencies

As can be seen from 9, both the Servlet and the client depend on the common
code, but no code depends directly on the Servlet or the client. This means that
the Servlet can be completely reimplemented in order to integrate with Spark-
SPELL. The Spell client does not need to be modi�ed.

5.3 Issues

In this section I will explain some issues with the legacy code. This section will
motivate some of the decisions made in my own project, including the creation
of a complete wrapper for the Spell Searcher algorithm. Most of the focus is

20

going to be on the Spell Searcher algorithm where most of the issues were. These
issues were carefully avoided in the new implementation.

5.3.1 Hard to understand

There were many issues in the legacy code that made the code di�cult to
understand.

The model described in the legacy search algorithm was more complex than
the model that was needed to perform a search. For example, the code had
classes representing homologies, di�erent organisms and gene families in addi-
tion to the required concepts like genes and data sets.

The legacy search algorithm had several mutable public �elds that were used
by other parts of the code. This made it di�cult to determine when state would
be consistent and when it would be safe to access �elds.

There was also a large amount of duplication. Parts of the code had been
copied to multiple places with only small di�erences that had been made to the
code at each place. A consequence of the duplicated code was methods that
were spanning several hundred lines. This made the code much larger than it
needed to be and it made it more di�cult to understand the implementation.

5.3.2 Hard to use

Instantiating and performing a search using the old code is complicated and
non-obvious. The required objects had several �le system dependencies as well
as dependencies on each other that needed to be resolved upon instantiation.
When the search result were ready, di�erent parts of the result was represented
as sequences which had signi�cant ordering based on other �elds or sequences.

In addition to these issues, parts of the parallel algorithm was embedded in
DistSpell in ways which made them impossible to reuse without reimplementing.

The collection of these issues made it a di�cult and error-prone process to
reuse the old code in a new project.

5.3.3 Hard to change

The legacy search algorithm did not come with a good test suite. This made
it di�cult to safely change or refactor. Because of this, no large changes were
made to the legacy search algorithm. Instead a wrapper was built around it
and only minor changes, like changing the visibility of �elds, were done in order
to accommodate the wrapper. The abstractions chosen for the wrapper was
inspired by the DistSpell message passing protocol, as well as the input �le
formats and are described in section 7.2.

5.3.4 Hard to test

In order to make it practical to refactor it was considered to write unit tests for
the legacy search algorithm. These plans were discarded at an early stage for
the following reasons:

21

No proper speci�cation While there was a paper describing the SPELL al-
gorithm the actual implementation was di�erent from the description in
the paper; certain data cleaning steps had been added and these were
intimately embedded in the rest of the code. Individual methods were
large, had many branches and accessed multiple public �elds. This made
it di�cult to determine what was the �correct behavior� of the algorithm.
The only practical way to evaluate whether the algorithm was being used
correctly was to compare example queries with example results that had
been generated with DistSpell.

No clean separation of components As mentioned in 5.3.1 the legacy search
algorithm had many classes with public �elds which were accessed from
other classes. A consequence of this is that it would be very di�cult to
test components in isolation.

Instantiation relies on outside world As mentioned in 5.3.2 instantiating
the legacy searcher algorithm required �le system dependencies. While
this is a problem that had to be worked around in order to run on Spark
by �nding alternative ways to initialize the objects, I mention them here
because it also makes the code more di�cult to test.

While no unit-tests were written for the legacy code, tests were made for the
code that wraps it. The tests compares output of the algorithm with examples
that are known to be correct.

5.3.5 Performance

In the legacy search implementation, there are objects that are referencing sev-
eral hash maps that are used to store di�erent views of the same data. The
most signi�cant consequence of this is wasted memory. Later in this report I
will show that memory consumption is the most signi�cant bottleneck of Spark-
SPELL (section �9) and that the objects needed to represent a search can be
stored more than 4 times as e�ciently with a custom implementation of the
search algorithm (section 9.2.3).

5.4 Lessons learned

5.4.1 Don't keep the abstractions. Write a wrapper.

In order to abstract away the problems with the legacy search algorithm it was
decided to write a wrapper for it and to keep all direct references to the legacy
code out of the new code base. Provided a good abstraction, this would enable
simple client code without having to refactor the legacy code. It would also
ensure that all code that interacts with the legacy algorithm is kept in a single
place, thereby making it easier to debug and understand. A working abstraction
was inspired by the message passing protocol of DistSpell and the �le formats
(section 7.2).

Abstracting away the legacy Spell algorithm turned out to be one of the
most important decisions in this project. It enabled the re-implementation of
the algorithm without requiring any changes to the Spark implementation. Since
tests were written against the interface of the wrapper, the same test code could
also be used to test the new implementation.

22

5.4.2 Learn from DistSpell

The messaging protocol de�ne a functioning abstraction for using the
underlying search algorithm As stated above, one of the �rst challenges
that i encountered was to �nd a good abstraction for de�ning a search. The fact
that the message passing protocol had already been successfully used in Dist-
Spell meant that the abstraction that it de�nes had already been demonstrated
to work.

Most of the messages are organized in a request/reply pattern This
suggests that most of the Spell functionality can be invoked using simple method
invocation where the request-messages de�ne the arguments and the reply-
messages de�ne the return types.

Performing a search does not modify any persistent state While this
is a more subtle point, it greatly simpli�es the reasoning about how to use the
algorithm. For example a Spark RDD is assumed to be immutable, and as
such it is required that any data structure that is stored inside an RDD is also
immutable. State-less code naturally maps to those constraints.

6 Design

In this section I will explain the overall design of Spark-SPELL.

6.1 Server Design

In this section I will describe the high-level design of the services that implements
the back-end system. A detailed overview of the architecture can be seen in
�gure 10. The front-end server and the Spark-SPELL service will run on the
cluster front-end machine, whereas the spark workers will run on the cluster
compute nodes.

23

Figure 10: Detailed architecture

The server process that runs the Spell services can be seen in �gure 11. A
detailed description is given below.

Figure 11: Backend server

Search Service This service provides the core search functionality and is the
most important part of this project. Speci�cally it takes a set of gene IDs,
performs a search, and returns a set of ranked gene IDs and ranked dataset
IDs. When the result is returned it is up to the client to resolve the IDs into
human-readable names that can be displayed to the user. The GWT Servlet
will do this by calling the Gene Resolver Service. Other clients, such as the
automated Search Service benchmark, do not care about the human-readable
names and will not resolve them after obtaining the search result.

Expression Datasets Service The Expression Datasets Service lets the
client obtain the expression values for speci�c genes in speci�c datasets. This is

24

used by the GWT Servlet in order to let the GWT browser client render- and
display the expression values. Values returned by this service will never change,
and can be safely cached by the client.

Dataset Meta Service Locates meta data about a dataset so that it can be
displayed by the client. Meta data includes publication name, year, authors,
description, etc.. Values will never change, and can be safely cached by the
client.

Gene Resolver Service Translates between gene IDs and human readable
gene names. This service may be called twice during a search; �rst to resolve
the gene names speci�ed in the query into gene IDs, then a second time when
the search return in order to translate the gene IDs returned in the search result
to human-readable gene names. Results will never change, and can be safely
cached by the client.

6.2 Spark Searcher Design

The Spell algorithm can be parallelized by partitioning the the input data by
individual datasets. A partial search is then performed within each dataset, in
parallel, and the partial search results are then cleaned and merged into a �nal
result.

The datasets are stored in a sequence �le on HDFS where the key is a
dataset identi�er and the value is a textual PCL representation of the data
(later optimized to use Thrift). The sequence �le is represented as s Spark
RDD. Upon a search request, the driver node will order the workers to map
each partition of the RDD to a partial search result and �nally, it will merge all
the partial search results into a single result and return it to the client.

When the datasets are read from HDFS and have been parsed, they will be
cached locally on the worker nodes in order to speed up subsequent searches.
The caching is an essential part of the design because the time it takes to read
data from HDFS and parse it is too long for interactive analysis.

25

Figure 12: Spark Searcher

7 Implementation

In this section I will explain the implementation challenges that were encoun-
tered during the development of this project. I Will also discuss some key
decisions that enabled the optimizations that are explained in section �8.

A wrapper was built for the old SPELL algorithm. The purpose of this
wrapper was to hide the complexities of the original implementation behind a
simple, testable interface. The wrapper was tested against examples of known
query/result pairs in order to evaluate its correctness. This wrapper was also
convenient for generating examples when I later on created my own optimized
implementation of the SPELL algorithm.

7.1 Code organization

In this section I will explain the overall organization of the source code.

7.1.1 Spell back-end server and client library

The main components of the back-end server and their dependencies are shown
in �gure 13.

26

Figure 13: Source code components and their dependencies

Core The core contains an interface for the search algorithm (section 7.2). It
contains all the classes that are necessary to describe the data dependencies of
a Spell search, and it also contains an alternative implementation of the Spell
search algorithm.

Service The service component contains all the parts that are necessary in
order to make the spell search available to clients. It contains RPC client
libraries as well as the services that are necessary to perform a search (as shown
in �g. 11 on page 24). Note that the service component itself does not directly
depend on a Spark implementation nor any speci�c searcher algorithm, instead
these concrete implementations are provided upon instantiation. The service
component also contains code to simplify the integration with the Spell GWT
front-end. The service component is shared between the front-end server and
the back-end.

Legacy algorithm wrapper This is a wrapper for the legacy Spell algorithm.
It implements the interface that is described in section 7.2 and thereby simpli�es
how the original algorithm can be used from within the Spark implementation.

Spark Searcher Implementation This is the component that de�nes the
Spark algorithm for the Spell search. The concrete Spell searcher algorithm
implementation is provided upon instantiation. This algorithm will in turn be
applied to the data sets that are stored on the cluster upon subsequent search
requests (section 7.3).

Server void main() The main entry point for the server will instantiate and
wire all the components together upon server startup.

The components Core, Service, Legacy Wrapper, and Spark Searcher are
organized both as individual libraries and as sub-projects. The Server process is
a client of these libraries. The sub-project dependencies are managed explicitly
by SBT(Simple Build Tool)11.

11In the project source tree, the components are named slightly di�erently. Core is known
as spell-search and Server (named SparkSearchService) is a part of cli-tools which contains a
collection of tools that are run from the command line and uses the Spell libraries.

27

7.2 Searcher Algorithm Interface

As described in section 5.3 the given abstractions for the search algorithm were
di�cult to use and test. In this section I will explain how I designed a di�erent
interface for using the search algorithm and how I created a wrapper for the
legacy implementation. The main goal was to hide the most important problems
with the legacy code and to create a simple and safe usage pattern for the
algorithm that could be used from within a Spark implementation. I also wanted
to make it possible to change the implementation of the algorithm in order to
both facilitate testing and my own optimized implementation.

As described in 5.4.2 it was initially a challenge to �nd a suitable abstrac-
tion for using the algorithm. I also outline some options for de�ning such an
abstraction. In this section I will describe how this abstraction is de�ned and
materialized in the code.

As suggested in 5.4.2 I use the messaging protocol as inspiration.

Two implementations of the search algorithm interface were developed: a
wrapper that wraps the search algorithm from DistSpell and a from-scratch
complete re-implementation that is more e�cient in terms of memory.

7.2.1 Functional

The observations described in 5.1.1 suggests an interface that is modeled as a
function that maps a search query to a search result, and that is free of side-
e�ects.

7.2.2 Abstract data types

In the legacy implementation queries and results were represented by explicit
concrete data types. In my implementation more abstract representations were
chosen in order to ease programming and facilitate optimizations.

7.2.3 High-level Searcher

The desired level of abstraction is a simple function that maps a query to a
search result, as seen in alg. 3.

Algorithm 3 Basic Searcher Usage

va l search : Searcher = . . .
va l r e s u l t : SearchResult = search (query)

A de�nition for a searcher that cover all the client use-cases was inspired by
the DistSpell master/client message passing protocol and can be seen in alg. 4.
GeneID and DatasetID are (at runtime) represented by standard Java integers.

28

Algorithm 4 Basic Searcher De�nition

type Searcher = SearchQuery => SearchResult

case c l a s s SearchQuery (
genes : Seq [GeneId] ,
organism : OrganismId ,
ove r r i deData s e t s : Option [Seq [DatasetId]]

)

case c l a s s SearchResult (
geneScores : Map[GeneId , Float] ,
datasetWeights : Map[DatasetId , Float]

)

The abstraction level is slightly higher than the legacy implementation of
the sequential Spell algorithm. Abstract maps are chosen instead of relying on
the implicit ordering of arrays, and a SearchQuery class is chosen instead of a
long list of method parameters. This has the following bene�ts:

• Maps are easy and safe to use as opposed to the implicitly ordered arrays
that were used in the legacy code.

• A Map in Scala is abstract and therefore a lot of �exibility is retained with
respect to its concrete representation. In addition to allow for the same
optimizations that were achieved with ordered arrays in the legacy code
it also allows for alternative optimizations without requiring a change to
the code that is using the maps. This is discussed in section 8.2.

• A Map in Scala is immutable. That means that we avoid the uncertainties
that were present in the legacy code about which parts of the program
modi�es the data. It also means that we can safely pass them by reference
to di�erent parts of the program without having to make defensive copies
or worry about synchronization or data races. This is a big bene�t in a
multi-threaded program.

7.2.4 Low-level Partial Searcher

A drawback of the Searcher de�nition described in section 7.2.3 is that it leaves
concurrency as an implementation detail. This means that by itself it does not
solve the stated goal of providing a simple and safe usage pattern that can be
used from within a Spark implementation. In order to solve this an interface at
a lower abstraction level is required.

DistSpell shows how the algorithm can be parallelized by partitioning the
datasets onto di�erent workers and the DistSpell master/worker message passing
protocol shows which data is needed for each step of the computation. An
interface modeled after the message passing protocol can be seen in alg. 5. The
abstraction level was raised slightly from the level of the protocol for the same
reasons that were stated in 7.2.3.

29

Algorithm 5 Partial Searcher De�nition

type Pa r t i a l S ea r che r = SearchQuery => Par t i a lS ea r chResu l t

case c l a s s Par t i a lS ea r chResu l t (
geneScores : Map[GeneId , Pa r t i a l S co r e] ,
datasetWeights : Map[DatasetId , Float]

)

case c l a s s Pa r t i a l S co r e (
s co r e : Float ,
weight : Float ,
numDatasets : Int

)

Given the abstraction in alg. 5 we can map a query to a result by performing
the steps in alg. 6. Note that each step is a transformation of the data produced
in the previous step and that no state is modi�ed in any part of the algorithm.
The de�nition of merge, clean and convert is left to the user of the interface.

Algorithm 6 Partial Searcher Usage

va l query = . . .

va l p a r t i a l S e a r c h e r s : L i s t [Pa r t i a l S ea r che r] = . . .

va l p a r t i a lR e s u l t s : L i s t [Pa r t i a lS ea r chResu l t] =
pa r t i a l S e a r c h e r s .map(s ea r che r => sea r che r (query))

va l merged : Par t i a lS ea r chResu l t = merge (p a r t i a lR e s u l t s)
va l c l eaned : Par t i a lS ea r chResu l t = c l ean (merged)

va l r e s u l t : SearchResult = convert (c l eaned)

How the Searcher and the Partial Searcher abstractions relates is visible in
�g. 14 on page 33.

7.2.5 Instantiation

As described in 5.3 one of the issues with the legacy implementation was that
it was complicated to correctly instantiate all the objects that were required to
perform a search. In the Spark implementation the searcher would have to be
instantiated from elements in an RDD. In unit tests the searcher would have to
be instantiated from in-memory examples or from �les. This suggests that the
instantiation of the searcher should be abstracted in a way that allows for all
these use-cases in a simple manner. Ideally we want an abstraction that is not
only agnostic about the purpose of the searcher, but one that is also agnostic
about the searcher implementation itself. If we can achieve the latter then we

30

can also provide our own (optimized) searcher implementation without changing
the other parts of the code.

The chosen strategy for for abstracting the instantiation of a searcher was
to recognize all its data dependencies and then de�ne a function that maps the
data dependencies to a searcher. A type signature for such a function can be
seen in alg. 7.

Algorithm 7 Partial Searcher Factory

type Par t i a lSea r che rFac to ry =
SearcherDependencies => Par t i a l S ea r che r

The legacy implementation was analyzed and the following dependencies
were recognized: organism id, set of genes (with ID's), expression datasets and
expression dataset statistics (alg. 8). The in-memory representation of these
dependencies were inspired by the data �les that were used by the legacy system.
The data �les were chosen as a reference because they de�ne an abstraction for
instantiating a searcher that had already been demonstrated to work.

Algorithm 8 Searcher dependencies

case c l a s s SearcherDependencies (
id : OrganismId ,
genes : Set [Gene] ,
da ta s e t s : Map[DatasetId , Express ionDataset] ,
s t a t s : Map[DatasetId , Expres s ionDatase tStat s]

)

The PCL datasets are represented by the ExpressionDataset class which is
designed to be close to the PCL format. That is essentially just a sequence
of records containing basic information about a gene and its expression values.
This can be seen in alg. 9.

Algorithm 9 Expression dataset

case c l a s s Express ionDataset (r e co rd s : Seq [Express ionRecord])
case c l a s s Express ionRecord (

yo r f : Str ing ,
name : Str ing ,
weight : Float ,
experimentData : Array [Float]

)

The process of instantiating a partial searcher with explanation of each step
can be seen in alg. 10.

31

Algorithm 10 Partial Searcher Instantiation

va l pa r t i a l S ea r che rFac to ry = {
// A concre t e implemetat ion
// o f Par t i a lSea r che rFac to ry .
// This can be a wrapper f o r the l egacy
// code or i t can be a custom implementation .
// The concre t e implementation i s s e l e c t e d
// on program star tup and i s then
// i n j e c t e d from a higher scope .
. . .

}

va l searcherDependenc ies = {
// The data dependenc ies f o r a s ea r che r . This can
// be i n s t a n t i a t e d from :
// − e lements in an RDD
// − f i l e s on hard dr iv e
// − examples from uni t t e s t
// S ince SearcherDependencies i s pure data / s e r i a l i z a b l e
// i t can be s a f e l y p e r s i s t e d in an RDD.
. . .

}

// The s ea r che r can be i n s t an t i a t e d when the user performs a search .
// I f the Searcher implementation i s s e r i a l i z e a b l e then i t can a l s o
// be p e r s i s t e d in an RDD between invoca t i on s .
va l search = par t i a l S ea r che rFac to ry (searcherDependenc ie s)

va l p a r t i a lR e s u l t = search (query)

7.3 Spark Searcher Algorithm

In this section I will explain the basic workings of the Spark implementation
of the algorithm. The explanation in this section builds on the abstractions
described in 7.2.

As mentioned in section 4.5.4 Spark has an abstraction called a broadcast
variable that can be used to broadcast data to all the worker nodes in a cluster.
In the Spark Searcher implementation the expression datasets are read from
HDFS and stored in an RDD, while all the meta-data (gene names, dataset
IDs, etc.) are broadcast using a broadcast variable.

7.3.1 Preparing a search

As I described in section 7.2.5 a SearcherDependencies object is passed to a
PartialSearcherFactory in order to create a new PartialSearcher. In order to
instantiate a SearcherDependencies object, and thereby a PartialSearcher, a

32

map operation is performed on the RDD that contains the expression datasets.
This map operation combines the expression data sets that are stored in the
RDD with the meta data that is stored in the broadcast variable in order to
instantiate a SearcherDependencies object. From this object a PartialSearcher
is instantiated by the method described in 7.2.5.

By looking at how a PartialSearcher is instantiated we can immediately see
a possible trade-o� with regards to caching: Should the expression data sets
be cached, or is it better to cache the fully instantiated PartialSearchers? As
mentioned in 7.2.5 both are possible. The performance implications of these
two approaches are described in section �8 and section �9.

7.3.2 Performing a search

As described in 7.2.4 a PartialSearcher is simply a function that maps a Query
to a PartialSearchResult. As described in 7.3.1 the PartialSearcher objects are
stored in an RDD. When a search is performed the query is broadcast to the
worker nodes using a broadcast variable. We obtain an RDD of PartialSearchResult
by mapping the RDD with the partial searchers and apply every partial searcher
to the given query. The resulting RDD is then reduced to a single PartialSearchResult
which is cleaned and converted to a SearchResult that can be consumed by the
user. This process is analogous to the algorithm described in alg. 6 and the
end result is equivalent to directly applying a Searcher to a Query. This is
illustrated in 14.

Figure 14: Distributed searcher algorithm

The map and reduce operations happens on Spark, whereas the clean and
convert happens in the client library. An interesting property of the chosen
abstractions is that all the steps that are performed on Spark amounts to map-
ping a Query to a PartialSearchResult. That is functionally the same as what
a PartialSearcher does. This makes it possible to merge the partial results from
multiple Spark clusters in the same way as they are merged in a single Spark job.
An actual implementation of a system that uses multiple clusters to perform a
search is left for future work.

7.4 Interaction with legacy code

7.4.1 Spell searcher algorithm

As mentioned in section 5.3, the legacy Spell searcher algorithm had a some us-
ability issues: both instantiating the required objects and performing a search
required the programmer to set up some complicated instantiation code. The
legacy implementation assumed �le system dependencies (that wouldn't be
available within a Spark context) and search queries had to be built by nav-
igating a complicated object graph. As these issues were assumed to be di�cult

33

to debug in a distributed setting a wrapper was created that implements the
interface that is described in section 7.2. This made it easy to use the search
classes from within the Spark algorithm, and it also made it easy to test my
assumptions about the Spell algorithm without involving a distributed system.

7.4.2 Spell front-end GWT application

The Spark Spell implementation was integrated with the existing front-end
GWT application. The Servlet part of the existing GWT application was mostly
removed and replaced with code that would use the new Spell RPC client li-
brary (explained in section 7.1) to interact with the backend. Helper functions
were written in Scala in order to help transform between the data structures
that were used by the Servlet and the Spell service. The client part of the GWT
application was only slightly modi�ed by adding a few log-statements in order
to understand how it communicates with the Servlet.

7.5 Custom SPELL implementation

During the implementation phase of the project I made my own implementation
of the Spell algorithm that is simpli�ed and optimized towards low memory
usage.

The custom Spell implementation implements what is referred to as PartialSearcher
in section 7.2.4. The custom PartialSearcher is designed to be cached in an RDD
(as described in section 7.2.5) with a relatively low memory overhead compared
to the original Spell implementation. It achieves a reduced memory footprint
by only referencing data that is required in order to perform a search. In this
implementation an expression dataset is represented by the class given in alg.
11. In addition to the �elds shown in alg. 11 it also contains methods for
calculating the dataset weight when given a set of query genes.

Algorithm 11 Dataset

c l a s s Dataset (
va l id : DatasetId ,
va l expre s s i onVa lues : Map[GeneId , Array [Double]] ,
va l s t a t s : Expres s ionDatasetStat s

) extends S e r i a l i z a b l e {
// Methods to c a l c u l a t e datase t weights and
// p a r t i a l s c o r e s f o r genes goes here

}

Algorithm 12 PrototypePartialSearcher

c l a s s Pro to typePar t i a lSea rche r (da ta s e t s : Seq [Dataset])
extends Pa r t i a l S ea r che r with S e r i a l i z a b l e {

ove r r i d e de f apply (query : SearchQuery) = . . .
}

34

A PartialSearcherFactory, as described in section 7.2.5, instantiates the
PrototypePartialSearcher and the Dataset objects when given an instance of
SearcherDependencies. This makes it easy to swap the implementations of the
algorithm such that the new and the old implementations can be compared.

The legacy code is still used to compute the dataset statistics, but the actual
search is performed by the new implementation. The new implementation also
uses Apache Commons Math for calculating the Pearson's correlations instead
of re-implementing the algorithm like the old code does.

The correctness of the custom implementation was evaluated by running
example queries in both the new implementation and the legacy implementation
and then compare the results. Performance comparisons of the implementations
can be seen in 9.2.3 on page 42.

8 Optimization

8.1 Memory overhead

The most important point to optimize was the memory usage. The most im-
portant memory issues are space and allocations.

8.1.1 Memory footprint

The most important optimization is the caching of the data sets. In order for
as much data as possible to �t into the cache it needs to be represented in an
e�cient manner. The basic techniques were used in order to achieve this:

Use arrays of primitives where possible The largest single category of
data are the expression values. These can be expressed e�ciently as arrays of
�oats.

Use interning of strings The PCL format contains string identi�ers for
every gene. While there are many records containing gene identi�ers, only
about 70,000 of them are unique. Therefore interning gene IDs saves a large
amount of memory.

8.1.2 Garbage collection

Some of the most challenging performance issues encountered when implement-
ing were related to garbage collector pauses. The most signi�cant kind of pauses
were caused by full GC collections. This in turn would cause the jobs to fail
as an OutOfMemoryException is throw when to much time is spent collect-
ing garbage[1]. As stated in Java SE 6 HotSpot[tm] Virtual Machine Garbage
Collection Tuning :

The parallel collector will throw an OutOfMemoryError if too
much time is being spent in garbage collection: if more than 98%
of the total time is spent in garbage collection and less than 2%
of the heap is recovered, an OutOfMemoryError will be thrown.
This feature is designed to prevent applications from running for an

35

extended period of time while making little or no progress because
the heap is too small. (Oracle [1])

There are a few techniques to solve this problem, many of which are outlined in
Tuning Spark [5] and Java SE 6 HotSpot[tm] Virtual Machine Garbage Collec-
tion Tuning [1].

In order to diagnose GC issues on Spark there are a few tools that are par-
ticularly useful: the Spark web console has a Stage view that lets the operator
inspect the executed stages and their tasks. This view includes information
about individual task execution time as well as how much of the time was spent
on garbage collection. Another useful tool is the JVM built in reporting of GC
details. These can be enabled by starting the JVM with the following �ags
−verbose:gc −XX:+PrintGCDetails −XX:+PrintGCTimeStamps. Spark can
pass �ags to the JVM via the environment variable named SPARK_JAVA_OPTS
as described in [5]. Output from the JVM GC details is available on stdout on
the di�erent nodes which is accessible via the Spark web console.

The most e�cient solutions to GC issues for this implementation were to
increase the number of Spark partitions and to reduce the total amount of
allocated objects (by storing data in arrays). Changing GC parameters were
also found to be e�cient at �rst, but as other optimizations were made the
bene�t of GC tuning became less apparent: the time it took to perform the �rst
search, which includes the time it takes to read and parse the datasets and �ll
the cache, were found to be 25% faster when survivor spaces were increased,
but the time it took to perform subsequent searches were not notably di�erent.

8.2 Custom data structures

8.2.1 PartialScoresMap

When a partial search result (see alg. 5) is instantiated from a search within a
subset of the datasets, then the largest portion of the partial result is going to
be the map between gene IDs and their partial scores. The type of this map
is Map[GeneId, PartialScore]. The map implementations that are found in the
standard library are general-purpose and not optimized for the particular data
types and usage patterns of this map. Since this particular map is used quite
intensively it makes sense to make some optimizations. In order to understand
how it can be optimized we need to start by looking at its usage patterns. The
map is used in the following ways:

• It is constructed by a large number of items for each dataset (thousands).

• A large number of maps are merged when merging the partial results of a
search. When the same gene id is found in two maps their partial scores
are added.

• The map is serialized before it is sent to the driver node.

• It is iterated a �nal time when the PartialSearchResult is converted to a
SearchResult.

The following non-uses can also be noted:

• There are no random look-ups

36

• The map is fully constructed before any values are read from it (it is
immutable)

These requirements suggest that we can implement a map that is optimized for
fast merge and low memory overhead without having to optimize for random
look-ups or inserts after the map has been instantiated.

As explained in section 8.1.1 it is more space e�cient to store arrays of
primitives when possible. As explained in section 7.2.4 GeneID is represented
by an Integer and PartialScore is an object with 3 �elds: two �oats and one
integer.

The problem of implementing the optimized map is broken down into the
following parts:

• Field-to-array optimization for the partial scores. Each PartialScore ob-
ject is represented by an index into three arrays that contain its �elds.

• Mapping each gene id to the correct index in the arrays.

Constructing a PartialScore object from the arrays when given an index is triv-
ial. Therefore I will instead focus on how the IDs are mapped to array indices.
A relevant observation is that since gene IDs are represented by integers they
have a de�ned ordering and can be sorted. Because of this we can represent
contiguous intervals of gene IDs as tuples of min/max values. We can then
calculate an index based on an ID by calculating the number of elements rep-
resented by all the intervals with a lower ID, and then add the o�set into the
interval that contains the given ID. An example of this approach is illustrated
in �gure 15.

Figure 15: Calculating an array index for a given ID

The minimum and maximum values can be stored in two integer arrays.
The time to locate an index given an ID would be proportional to the number
of contiguous ID intervals (i.e. relatively slow compared to a standard Map),
however it is very fast to iterate the values in sorted order and the use of arrays
of primitives makes it very e�cient as opposed to trees or hash tables pointing
to a large amount of objects. This is used to implement fast merge of multiple
maps: by always performing the next iteration on the map that will yield the
lowest ID it becomes possible to iterate multiple maps in sorted order and thus
build a new map.

37

8.2.2 Evaluation

The optimized map was evaluated with the following experiments (seen in �g-
ure 16 and table 1):

Unoptimized In the unoptimized version the default map from Scala's stan-
dard library is used to hold the data. In order to merge two maps, a and b, the
key sets of a and b are merged and then every key is looked up in a and b. If
a key exists in both maps they are merged using a resolver function, otherwise
if the key exists in only one of the maps then the corresponding value is kept
unmodi�ed.

Using this method, maps are merged two-by-two as part of a fold operation
on an RDD.

Optimized The custom data structure is used to hold the map. For each
dataset a partial search result is produced. These are then merged two-by-two
as part of a fold, using the custom merge algorithm described in section 8.2.1.

Builder-1 The Spark implementation of the algorithm is modi�ed such that
a single partial searcher can hold a whole RDD partition of datasets (instead
of just one). The custom prototype implementation of the Spell algorithm is
modi�ed such that instead of returning a partial scores map for each dataset
the algorithm is set to accept a builder. This results in fewer maps that needs
to be merged (1 pr. partition).

A builder class is created in order to instantiate the optimized map. Merge
in this case happens automatically upon insert. Since lookups (as described in
section 8.2.1) are relatively slow we cache the ID-to-array-index lookups during
the build phase by using the Scala standard library's IntMap.

Builder-2 In this experiment the builder class has been slightly modi�ed.
Instead of using an IntMap to cache the array indices the builder will allocate
temporary arrays for a larger sequence of gene IDs, some of which will not be
contained in the �nal map. The temporary arrays are de�ned such that the
index into the arrays can be calculated simply by adding an o�set to the ID.
Upon build all the unused values are discarded together with the temporary
arrays.

38

Figure 16: Di�erent merge strategies

Experiment Mean Median Std.dev.
Unoptimized 3762 3756 153
Optimized 1404 1415 231
Builder-1 931 901 205
Builder-2 737 732 44

Table 1: Di�erent merge strategies

8.3 Tuning Spark

In this section I will explain some tuning parameters that are available to a Spark
job. These parameters are explained in the Tuning Spark[5] part of the Spark
documentation. What I will focus on in this section is how these parameters
relates to the Spell implementation.

8.3.1 Cache size tuning

When persisting data in an RDD it is possible to select the cache size, or the
amount of data that should be cached in memory of the JVM. As explained in
Tuning Spark[5] it is possible to reduce GC pressure by reducing the amount of
data that is cached in memory.

8.3.2 Number of partitions

In Spark the number of partitions of an RDD can be set by the programmer.
As explained in section 4.5.3 each partition is mapped to a task, and as a
consequence the number of partitions speci�es the maximum amount of par-
allelism for a job. The cost of using many partitions is that they need to be

39

merged at the master node12. This increases the sequential part of the algo-
rithm. A consequence of having to few partitions is that a task may fail with
an OutOfMemoryException as a result of not having enough heap space.

8.3.3 RDD persistence level

As explained in section 4.5.1 and [19, 1], Spark lets the programmer decide
explicitly when to cache data that is stored in an RDD in between computations.
In Spark a generalization of this concept is described as persistence, for which
there are several persistence levels. Here I will explain the persistence levels
that are supported by Spark:

MEMORY_ONLY This is the default persistence level when caching data
in spark. It will store the data in-memory as deserialized Java objects.
If the amount of data in the RDD is larger than the amount of available
memory then some partitions will not be cached; instead they will be
recomputed. For the Spell algorithm it is quite expensive to recompute
data that has been dropped from an RDD: PCL datasets will have to be
read from HDFS and parsed before any search can be performed. For the
GEO dataset �lling the cache takes about 50 seconds, whereas subsequent
searches take about 500ms.

MEMORY_AND_DISK This persistence level is similar toMEMORY_ONLY
in that it stores deserialized Java objects in memory. However instead of
dropping partitions when it runs out of memory it will spill data to disk
instead. For the Spell algorithm spilling to disk is much cheaper than
recomputing lost partitions.

MEMORY_ONLY_SER, MEMORY_AND_DISK_SER Same asMEM-
ORY_ONLY and MEMORY_AND_DISK except that the Java objects
that are stored in-memory are serialized. This leads to a smaller memory-
footprint at the cost of CPU cycles. It is also possible to specify that the
objects should be serialized with the Kryo serializer, and that the serial-
ized objects should be compressed[2, 5]. For the Spell algorithm serializing
the data in-memory did not seem to provide a performance bene�t.

DISK_ONLY All of the RDD's data is written to disk.

MEMORY_ONLY_2, etc. Same as the levels above, but the data is repli-
cated across multiple cluster nodes. This can be used for fast fault recov-
ery.

9 Evaluation

In this section I will explain the evaluation of my implementation. I will explain
how the correctness was evaluated and I will explain how the implementation
performs under di�erent conditions.

12This can be seen in the Spark Source code on GitHub[4] (core/src/main/scala/org/a-
pache/spark/rdd/RDD.scala method fold, line 693-701)

40

9.1 Correctness

The correctness of the algorithm was evaluated by comparing search results
against a set of examples that were known to be correct. The examples consists
of search queries and their correct result. A challenge with comparing search
results is that values are represented by �oating point numbers. The rounding
of these numbers are not deterministic in a distributed system, thus it becomes
necessary to compare

When Spark-SPELL was run with the legacy search algorithm the results
came out to be equal to the examples.

9.2 Performance and scalability

In this section I will explain the performance evaluation of the implementation.
Human datasets from GEO Omnibus is used as a reference for the performance
benchmarks. The raw data set consists of 9.0 GB of gzipped SOFT �les, which
was converted to PCL �les and stored in an HDFS sequence �le. This amounts
to 1335 datasets. The number of genes that are known to the system is 24410.

The sequence �le uses zlib compression and has a �nal size of 2.91GB.
The evaluation was run on a 9 node cluster with the following hardware:

• 8 core Intel Xeon E5-1620 3.6GHz

• 32 GB RAM

• 2 hard drives, 2 TB each.

• A single 1 Gbps Ethernet card connected to a shared switch

9.2.1 Construction of synthetic datasets

The scalability of the system was tested with synthetic datasets. These were
generated by creating multiple copies of the original data set. Noise was then
applied to the expression values of the synthetic data. The synthetic data was
then shu�ed and written into a new sequence �le.

Synthetic datasets were generated with di�erent sizes, rangeng from 20 to
100 times the size of the original GEO dataset. For the rest of this chapter I
will refer to the synthetic datasets by their multiplication factor; that is, a 20x
dataset will refer to 20 copies of the GEO Omnibus dataset, 40x will refer to
40 copies and so on.

9.2.2 Presentation of results

All timings in the evaluation are measured in milliseconds. Box plots have been
used. The box extends from the upper to the lower quartiles of the measured
values. The red line shows the median. The length of the whiskers extend to
the most extreme data point within the data range13.

For tables containing mean values of measured timings, the �rst search (i.e.
the time it takes to �ll the cache) has not been included. The time it takes to

13For a full description of the box-plot, see http://matplotlib.org/1.3.1/api/pyplot_

api.html#matplotlib.pyplot.boxplot

41

�ll the cache is mentioned separately when it is relevant. The time it takes to
�ll the cache varies mostly with the size of the dataset.

For tables containing memory and disk consumption the values represent
the aggregated sums on all nodes.

9.2.3 Comparison of partial searcher implementations

In this subsection I will compare the legacy partial searcher implementation
with my own prototype, using the GEO dataset. I will compare both the time it
takes to perform a search, as well as the total memory consumed by the di�erent
implementations. I will also compare di�erent caching strategies, like caching
the datasets vs. caching the fully instantiated partial searchers (section 7.2.5).
The times to perform a search can be seen in �gure 17 and table 2. The memory
consumption for the di�erent caching strategies can be seen in table 3.

Figure 17: Comparison of partial searcher implementations. The number of
samples for each con�guration is 1000. The number of RDD partitions is 72.

We can see from the �rst plot in �gure 17 that when we are instantiating
a prototype searcher from an expression dataset there is a long tail in the per-
formance measurements. This is likely due to garbage collection, as indicated
by GC debugging output. Fast instantiation was not considered an important
feature for the prototype searcher as it consumes less memory than the PCL
data objects (see table 3), and as such, this was not optimized for.

From the plot in �gure 17 we can make the following observations:

• Instantiating a searcher is relatively expensive compared to performing a
search. This means that it's more performant to cache the fully instanti-
ated searchers rather than the raw expression data sets.

• The legacy implementation and the prototype perform similarly when in-
stantiated, with the legacy implementation being marginally faster.

42

• The prototype searcher is slow to instantiate. The prototype searcher
was designed to be cached in an RDD and thus fast instantiation was not
optimized for.

Experiment Mean Median Std.dev.
Proto. cache datasets 8633 5054 8570
Legacy cache datasets 1697 1685 94
Proto. cache searcher 789 784 31
Legacy. cache searcher 728 715 50

Table 2: Comparison of partial searcher implementations. The number of sam-
ples for each con�guration is 1000.

While the prototype implementation is not much faster than the legacy im-
plementation it consumes much less memory. Comparison of the memory con-
sumptions under di�erent con�gurations can be seen in table 3. As we shall see
later in this evaluation, memory consumption becomes the main performance
issue for larger datasets, which in turn gives the prototype searcher a big advan-
tage over the legacy implementation. Because of this, all experiments described
later in this report was performed with the prototype searcher.

Con�guration Size in memory Size on disk
Cached datasets 10.3 GB 0 B
Cached prototype searcher 4.8 GB 0 B
Cached legacy searcher 20.7 GB 0 B

Table 3: Memory consumption for the GEO dataset as reported by the Spark
web console. All data sizes represents the aggregated sum across all nodes.

9.2.4 Node scalability

In this section I will evaluate how well the system scales with respect to the
number of worker nodes. This evaluation is needed in order to show whether
it's possible to reduce search latency by adding more nodes.

A 20x dataset was chosen, as this is the largest of the generated dataset that
�ts in memory on the 9 node cluster without serializing the searcher objects.
This means that it is the largest dataset for which we can expect fast, interactive
queries. The results can be seen in �gure 19.

43

Figure 18: Node scalability using a 20x dataset. Number of nodes along the
x-axis, time along the y-axis. Uses 360 partitions and RDD persistence level is
memory-and-disk.

Number of nodes Size in memory Size on disk
1 - GB - GB
2 28.3 GB 45.5 GB
3 42.4 GB 35.7 GB
4 56.3 GB 26.0 GB
5 70.4 GB 16.2 GB
6 84.0 GB 6.7 GB
7 93.3 GB 0.27 GB
8 93.7 GB 0 B
9 93.7 GB 0 B

Table 4: Node scalability using a 20x dataset. All reported sizes represents the
aggregated sum across all active nodes.

As we can see the computation scales well up until 6-7 nodes where it stops
scaling. As we can see in table 4 the running times is closely related to the
amount of data that is stored in memory vs. disk. While this seems like a
plausible explanation for why a 20x dataset stops scaling, we were also interested
in seeing how well the Spark-SPELL scales with a larger dataset that does not �t
in memory on the cluster. A 40x dataset does not �t in memory of the cluster.
However, we still run into scalability issues at around 8 nodes (�gure 19).

44

Figure 19: Node scalability using a 40x dataset. Number of nodes along the
x-axis, time along the y-axis. Uses 360 partitions and RDD persistence level is
memory-and-disk.

There are two di�erent explanations for why this might be the case

Stragglers When benchmarking large datasets it was observed via the Spark
console that some tasks su�ered from long GC pauses. These would typ-
ically occur at 1 node at a time, for 1 individual search at a time. As a
long GC pause would likely increase the sequential part of the algorithm
it is believed that this is the main cause of the observed e�ect. As we shall
see in section 9.2.5 performance is lost as the JVM heap �lls up, which
is consistent with the observation that scalability su�ers, even with larger
datasets.

Bottleneck at the driver This is the most obvious possibility. There are two
things that could be causing such a bottleneck: communications overhead
(all aggregated partial results are sent to the driver) and ine�cient merging
of results at the driver node. While the communications overhead would
increase with the number of partitions, the amount of transferred data is
nearly constant with respect to the number of datasets as whole partitions
are merged at a time. Therefore it seems reasonable that by adding more
datasets one would observe better node scalability as more computation
would be required at the worker nodes. This, however, was not the case,
thus making it less likely that the bottleneck is at the driver.

9.2.5 Dataset scalability

In this section I will explain how well the algorithm scales with respect to
the number of datasets. This is relevant in order to show how performance
characteristics change as more data is added to the system.

45

The di�erent parameters, like number of RDD partition and persistence
levels are tuned to make each dataset as fast as possible. For example, the
20x dataset is using 360 partitions and memory+disk persistence, whereas the
100x dataset is using 7200 partitions and memory-and-disk-serialized persis-
tence. Evaluation of di�erent persistence levels can be seen in section 9.2.6.

One of the most di�cult aspects with scaling the algorithm is that di�erent
settings are better suited for di�erent dataset size. For example, if we try to
run the 100x dataset with 360 partitions, the computation will fail with an
OutOfMemoryException. On the other hand, if we try to run the 20x dataset
with 7200 partitions we will slow down the �nal merge of the datasets. In
general, it seems that for the Spark-SPELL algorithm fewer partitions are better,
and avoiding serialization is better in the case where the deserialized objects �t
in memory (this last point is discussed in 9.2.6). The best achieved performance
for the di�erent dataset sizes can be seen in 20. The amount of data cached in
memory and on disk can be seen in 5.

Figure 20: Dataset scalability

As we can see from �gure 20 performance decrease rapidly as we increase the
dataset size. We can see that performing a search on the 30x dataset is almost 7
times slower than performing the same search on the 20x dataset. This is most
likely due to a change in persistence level parameter, where the 30x dataset
needs to be serialized in order to �t into DRAM 14.

If we compare the 30x and the 40x dataset, we see that running a search on
the 40x dataset is almost twice as slow as on the 30x dataset. If we study 5 we
can see two things that are di�erent from when running the 30x dataset:

• Some of the data is now cached on local disk instead of in DRAM.

14For a discussion about what happens if we don't change the persistence level, see sec-
tion 9.2.6

46

• We are now using 124.9 GB of total JVM heap (as opposed to 97.8)

As we shall see in section 9.2.6 storing such small amounts of data on disk
does not make a big di�erence, as compared to deserializing the data. Another
observation is that GC overhead becomes signi�cant when the JVM heap is
running close to full. The Tuning Spark[5] guide suggests to reduce the cache
size as a possible solution, as it may speed up task execution times. However,
due to time constraints, this possibility was not further investigated.

Experiment Size in memory Size on disk
20x 93.7 GB 0 B
30x 97.8 GB 0 B
40x 124.9 GB 5.4 GB
60x 127.1 GB 69.3 GB
100x 127.0 GB 200.9 GB

Table 5: Dataset scalability. All data sizes represents the aggregated sum across
all nodes.

To search the 100x dataset takes about three times as much as the time to
search a 60x dataset. This is explained by the fact that the dataset is almost
twice as big, and that a larger portion of the dataset is stored on disk (ref.
table 5).

9.2.6 RDD Persistence levels and serialization

As explained in section 8.3.3 one of the tunable parameters of Spark is the RDD's
persistence level. In this section I will explain how di�erent persistence levels
a�ects performance of the Spark-SPELL algorithm. The goal of this evaluation
is to discover which persistence level is best for running Spark-SPELL.

In the �rst series of experiments the dataset size was chosen such that the
serialized objects would �t in memory on the cluster nodes whereas the dese-
rialized objects would spill to disk. Since memory access is much faster that
disk access one might intuitively believe that it is always preferable to serialize
data in memory rather than storing some of the data on disk. As we can see in
�gure 21, this is not always the case.

47

Figure 21: RDD persistence levels when using a 30x dataset

While determining the exact reason for this behavior is di�cult, it seems
reasonable that since the data that is stored in memory is much larger than the
data that is stored on disk the deserialization overhead becomes larger than the
extra IO overhead. To reduce the CPU overhead of Java serialization Spark also
supports serialization with Kryo. We did not, however, manage to get better
performance with Kryo serialization. The disk vs memory consumption can be
seen in table 7. Another factor is that the OS block cache may be a source of
error for the reported memory and disk usage; while Spark is reporting to store a
certain amount of data on disk it might be the case that the OS is caching some
of that data in memory. In order to investigate this further a second series of
experiments were run with twice the amount of data (�gure 22). An experiment
where all data was stored on disk was also performed.

Experiment Mean Median Std.dev.
Reference 742 735 33
30x M&D (memory and disk) 71802 71780 6734
30x M&D serialized 65589 65162 2901
30x M&D serialized (Kryo) 84785 86568 8676

Table 6: Timings � RDD persistence levels when using a 30x dataset

Experiment Size in memory Size on disk
30x M&D (memory and disk) 125.9 GB 9.9 GB
30x M&D serialized 97.8 GB 0 B
30x M&D serialized (Kryo) 91.3 GB 0 B

Table 7: Cache size � RDD persistence levels when using a 30x dataset. All
data sizes represents the aggregated sum across all nodes.

48

As can be seen in �gure 22 and table 8, even with twice the amount of data
the di�erence between caching serialized and deserialized objects in memory
is not signi�cant. The only signi�cant change is in the standard deviations of
the measurements, where the deserialized objects come out as favorable with a
smaller standard deviation. Another interesting observation is that storing the
data on disk is only 1/3 more expensive than storing the same data in memory.
The small di�erence may in part be caused by the OS block cache, or it may
also in part be caused by reduced GC pressure as a result of not caching any
data15.

Figure 22: RDD persistence levels when using a 60x dataset

Experiment Size in memory Size on disk
60x M&D (memory and disk) 127.1 GB 109.2 GB
60x M&D serialized 127.1 GB 69.3 GB
60x Disk only 0 B 196.5 GB

Table 8: Cache size � RDD persistence levels when using a 60x dataset. All
data sizes represents the aggregated sum across all nodes.

Another possible explanation for the similar results is that scalability issues
in the implementation trumps some of the performance bene�ts that would
otherwise be expected from serializing the data, thereby making the perfor-
mance di�erence seem relatively smaller. This could seem consistent with
the scalability-issues that are discovered in section 9.2.4. However, since the
40GB di�erence between the serialized and the deserialized (60x) dataset is
comparable- and larger than some of the data size di�erences that are discussed

15Ref. the Spark Tuning[5] guide advice on reducing cache size in order to speed up task
execution times.

49

in section 9.2.5 this seems unlikely, as the algorithm is demonstrated to scale
with respect to dataset size.

For datasets that don't �t in memory when deserialized, Memory and disk
serialized is the better choice for Spark-SPELL. For datasets that do �t in
memory, Memory and disk is faster.

10 Future work

10.1 Distributed resources

As described in section 7.3 it is possible to use the created abstractions to
perform a search on multiple Spark clusters. More generally, it is possible to
use the same abstractions to search multiple resources that can be either local or
remote. This would make it possible for Spell to search both public and private
data within a single search.

10.2 Parallelization with respect to genes

The current implementation is parallelized with respect to datasets. Since there
are many genes in each dataset the result is that every worker needs to send
partial scores about every gene to the driver node. We believe that it is possible
to parallelize the algorithm with respect to genes in each dataset. In this case
each workers would be responsible for a set of genes instead of a set of datasets.
It is likely that this would reduce communications overhead.

11 Conclusion

Spark seems to be a well suited for implementing a biological search infrastruc-
ture. Its ability to load large datasets from HDFS and cache them in memory
for future computations makes it a �tting technology for implementing a biolog-
ical search infrastructure. Its simple programming model also makes it a useful
tool for rapid prototyping of such a service.

The scalability of Spark-SPELL depends on the size of the dataset. For
small compendia of only a few GB there is no bene�t from running on multiple
nodes. However, for compendia exceeding 100GB in size massive improvements
can be seen from using multiple nodes in a cluster.

The main performance issues when implementing Spark-SPELL were caused
by the garbage collector. Long GC runs would cause computations to be delayed
and increase the latency experienced by the user. Numerous optimizations were
applied in order to mitigate this problem. While some optimizations, like �eld-
to-array optimizations, provided a bene�t on all dataset sizes, the bene�t of
other optimizations, like increasing the number of RDD partitions, were highly
dependent on the dataset size.

Legacy code written for biological analysis may be poorly tested and imple-
mented. This motivates building custom abstractions for interacting with the
code, as well as reimplementing certain algorithms.

Spark-SPELL enables low-latency query-based search for large-scale gene
expression compendia on cluster computers

50

References

[1] Java se 6 hotspot[tm] virtual machine garbage collection tuning. http:

//www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.

html, 2012.

[2] Spark con�guration. http://spark.apache.org/docs/0.9.0/

configuration.html, 2014.

[3] Spark scaladoc. http://spark.apache.org/docs/0.9.0/api/core/

index.html, 2014.

[4] Spark source code (tag v0.9.1, github). https://github.com/apache/

spark/tree/v0.9.1, 2014.

[5] Tuning spark. http://spark.apache.org/docs/0.9.0/tuning.html,
2014.

[6] Je�rey Dean and Sanjay Ghemawat. Mapreduce: a �exible data processing
tool. Communications of the ACM, 53(1):72�77, 2010.

[7] Eric D Green, Mark S Guyer, National Human Genome Research Institute,
et al. Charting a course for genomic medicine from base pairs to bedside.
Nature, 470(7333):204�213, 2011.

[8] Matthew Hibbs, Grant Wallace, Maitreya Dunham, Kai Li, and Olga Troy-
anskaya. Viewing the larger context of genomic data through horizontal
integration. In Information Visualization, 2007. IV'07. 11th International
Conference, pages 326�334. IEEE, 2007.

[9] Matthew A. Hibbs, David C. Hess, Chad L. Myers, Curtis Huttenhower,
Kai Li, and Olga G. Troyanskaya. Exploring the functional landscape of
gene expression: directed search of large microarray compendia. Bioinfor-
matics, 23(20):2692�2699, 2007.

[10] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A
platform for �ne-grained resource sharing in the data center. In Proceedings
of the 8th USENIX conference on Networked systems design and implemen-
tation, pages 22�22, 2011.

[11] Scott D Kahn. On the future of genomic data. Science, 331(6018):728�729,
2011.

[12] Vessela N Kristensen, Ole Christian Lingjærde, Hege G Russnes, Hans Kris-
tian M Vollan, Arnoldo Frigessi, and Anne-Lise Børresen-Dale. Principles
and methods of integrative genomic analyses in cancer. Nature Reviews
Cancer, 14(5):299�313, 2014.

[13] Martin Odersky, Lex Spoon, and Bill Venners. Programming in scala. Ar-
tima Inc, 2008.

[14] Bruno CdS Oliveira, Adriaan Moors, and Martin Odersky. Type classes as
objects and implicits. In ACM Sigplan Notices, volume 45, pages 341�360.
ACM, 2010.

51

[15] Stephan C Schuster. Next-generation sequencing transforms today's biol-
ogy. Nature, 200(8), 2007.

[16] Mark R Trusheim, Ernst R Berndt, and Frank L Douglas. Strati�ed
medicine: strategic and economic implications of combining drugs and clin-
ical biomarkers. Nature Reviews Drug Discovery, 6(4):287�293, 2007.

[17] Reynold S Xin, Josh Rosen, Matei Zaharia, Michael J Franklin, Scott
Shenker, and Ion Stoica. Shark: Sql and rich analytics at scale. In Proceed-
ings of the 2013 international conference on Management of data, pages
13�24. ACM, 2013.

[18] Karen Yook, Todd W Harris, Tamberlyn Bieri, Abigail Cabunoc, Juan-
carlos Chan, Wen J Chen, Paul Davis, Norie De La Cruz, Adrian Duong,
Ruihua Fang, et al. Wormbase 2012: more genomes, more data, new web-
site. Nucleic acids research, 40(D1):D735�D741, 2012.

[19] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, pages 2�2. USENIX Associa-
tion, 2012.

[20] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. Spark: cluster computing with working sets. In Proceedings
of the 2nd USENIX conference on Hot topics in cloud computing, pages 10�
10, 2010.

[21] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Sto-
ica. Discretized streams: an e�cient and fault-tolerant model for stream
processing on large clusters. In Proceedings of the 4th USENIX conference
on Hot Topics in Cloud Ccomputing, pages 10�10. USENIX Association,
2012.

52

