

FACULTY OF SCIENCE AND TECHNOLOGY

Department of Geology

Hydrothermal Cu-Zn mineralization at Vanna, West Troms Basement Complex:

A geochemical analysis of Archean and Proterozoic rocks with focus on sulfide genesis

Karina Monsen

GEO-3900 Master's Thesis in Geology

August 2014

FACULTY OF SCIENCE AND TECHNOLOGY Department of Geology

Hydrothermal Cu-Zn mineralization at Vanna, West Troms Basement Complex:

A geochemical analysis of Archean and Proterozoic rocks with focus on sulfide genesis

Karina Monsen

GEO-3900 Master's Thesis in Geology August 2014

Acknowledgements

I'm a big fan of long acknowledgements, and since it's often the only thing people read here it goes:

I would like to thank my supervisor professor Kåre Kullerud at UiT, for introducing this specific topic to me, for help with the petrographic studies and mineral chemical analysis, and for general guidance throughout the process. Professor Steffen G. Bergh at UiT, thank you for your help and support during the field work, with the making of geological maps and contagious enthusiasm during all parts of the project. To my external supervisor Harald Hansen at SNG; thank you so much for your invaluable counsel, for help with the whole-rock chemistry and production of lithological logs, and constant reminder of keeping it simple.

Big thanks to Juhani Ojala and Hannu Ahola at SNG for an introduction to the rock cores and logging process, to Trine Dahl and Ingvild Hald at UiT for producing my thin sections, Professor Emeritus Erling Krogh Ravna at UiT for the help with the microscopy, Anna Pryadunenko at UiT for help with the reflective microscopy and Muriel Erambert at UiO for the work with the EMP analyses.

Thanks to all my fellow students in the offices at the building-formerly-known-as-Blåbrakka; The structured office (Ingrid, Tore, Hannah, Leif), The special ones (Kristian, Espen, Cecilie), The furry office (Patrick, Kristoffer, Øystein), The coffee breakers (Daniel, Iselin, Aldo), The internationals (Liz and Roberts), The traitors (Trude and Jessica), The nomads (Kirsti, Sigrun, Solveig), the bachelor students that never dared heading down Lyckliga Gatan, and the Ph.D.-students for enduring me throughout the summer. You've all made my time at IG unforgettable!

A special mention to my fellow office mate Elise for keeping me sane throughout the year, Julia and Ingunn for your "soul food" and heartwarming hugs, Elisabeth – my partner in crime through thick and thin, and Marta for keeping me alive the last week.

To all my friends and family; thank you for all the love and support when I needed it the most, and to my roomies; I'm looking forward to seeing you again at home.

Abstract

The hydrothermal Vannareid Cu-Zn mineralization is located on the island of Vanna, West Troms Basement Complex. It was discovered in 2008 and was subject of Store Norske Gull AS' exploration project in 2012. The mineralization is situated along the border between the Archean granitoid basement intruded by tholeiitic and calc-alkaline dykes, and the overlying Neoproterozoic metasedimentary rocks of the Skipsfjorden Nappe. A Mesozoic normal fault, the Vannareid-Burøysund fault complex, led to the juxtaposition of the two different lithological units. Field work included mapping and descriptions of the rocks in close proximity of the Vannareid Cu-Zn mineralization. Geochemical and mineral chemical analyses were carried out on samples collected from drill cores drilled through the mineralized zone from Store Norske Gull's drilling campaign. These studies showed sulfide enrichment in vein and brecciated rocks affected by hydrothermal alteration suggesting that the mineralization represents the stringer zone of a volcanogenic massive sulfide deposit.

Contents

1	Intro	oduction	. 9
	1.1	Context of the study	. 9
	1.2	Purpose of the study	. 9
	1.3	Geography of the study area	11
	1.4	Regional geology	11
	1.4.	1 Geology of the Fennoscandian Shield	11
	1.4.	2 Geology of the West Troms Basement Complex	12
	1.4.	3 Geology of Vanna	13
	1.5	Earlier Work	15
	1.5.	1 Store Norske Gull AS (SNG) and the Norwegian Geological Survey (NGU)	16
	1.6	Introduction to hydrothermal Cu-Zn-sulfide-forming processes	16
	1.7	Methods	20
	1.7.	1 Fieldwork	20
	1.7.	2 Diamond drilling and naming convention of the rock cores	20
	1.7.	Core logging, sampling and production of thin sections	21
	1.7.	4 Microscopy – transmitted and reflected	21
	1.7.	5 Application softwares	22
2 Petrography		ography	23
	2.1	Overview	23
	2.2	Quartzo-feldspathic igneous rocks	23
	2.2.	1 Unaltered granitoid rocks	25
	2.2.	2 Altered granitoid rocks	26
	2.3	Mafic intrusive rocks	27
	2.3.	1 Diabase	28
	2.3.	2 Mag-diabase	29
	2.4	Mica schists	29
	2.5	Vein and breccia rocks	32
	2.6	Structural geology and tectonostratigraphy	33
3	Who	Whole-rock chemistry	
	3.1	Analytical methods	35
	3.1.	1 X-ray Fluorescence Spectroscopy (XRF)	35
	3.1. Cou	2 Inductively Coupled Plasma – Atomic Emission Spectroscopy (ICP-AES) and Inductive pled Plasma – Mass Spectroscopy (ICP-MS)	ly 35
	3.2	Overview	36
	3.3	Rock core VNR-101	36

3.3.1	Major elements				
3.3.2	Minor elements				
3.3.3	Trace elements				
3.3.4	Base metals				
3.4 R	ock-core VNR-302				
3.4.1	Major elements				
3.4.2	Minor elements				
3.4.3	Trace elements				
3.4.4	Base metals				
3.4.5	Harker variation diagram51				
4 Minera	als and mineral chemistry				
4.1 A	nalytical methods				
4.1.1	Electron Microprobe (EMP)53				
4.2 Si	licates54				
4.2.1	Amphibole				
4.2.2	Light mica54				
4.2.3	Garnet54				
4.2.4	Biotite				
4.2.5	Chlorite				
4.2.6	Quartz				
4.2.7	Feldspar				
4.3 Su	Ilfides				
4.4 Ca	arbonates				
4.5 O	xides				
4.6 A	ccessory minerals				
5 Discus	sion 59				
5.1 N	letamorphism				
5.2 lg	neous basement rocks				
5.3 N	lafic intrusive rocks				
5.4 N	lica schists				
5.5 O	re genesis of Cu-Zn mineralization63				
5.6 St	ructural control and remobilization				
6 Summ	ary and conclusions				
References					
Appendix A					
Appendix B					
 Appendix C	Appendix C101				

1 Introduction

1.1 Context of the study

The rise in global average production on base and precious metals in recent years (British Geological Survey, 2013), has led to renewed interest in metal prospecting in northern Fennoscandia. The Neoarchean-Paleoproterozoic supracrustal belts of the West Troms Basement Complex, northern Norway is considered an area of high potential in the search for metals. At Vannareid, on the island of Vanna, northeast in the West Troms Basement Complex an almost one km long hydrothermal Cu-Zn mineralization has been found, along the Vannareid-Burøysund fault complex (Ojala et al., 2013).

Copper and zinc are both highly chalcophile and are thus often found in nature as sulfides. They frequently appear together, but copper also occurs in its native form as well as in the form of copper carbonates and oxides, while zinc often is associated with lead. Because of copper's high electrical conductivity and malleability its main use is in electrical wiring and electronics. Zinc is primarily used in the galvanizing industry to prevent corrosion of iron and steel.

In the Fennoscandian shield Zn and Cu, often together with Pb \pm Au \pm Ag, make up ores commonly related to hydrothermal processes, such as Volcanogenic Massive Sulfide deposits (VMS) and Sedimentary Exhalative deposits type (SEDEX). These are associated with Paleoproterozoic volcanic arc terrains which accreted onto the old Archean craton, and VMS deposits are currently the most exploited deposit type in this region (Weihed et al., 2005).

Today, there is too little knowledge about the controlling factors for the Cu-Zn enrichment at Vannareid, how and why the processes for the mineralization were activated, and its relation to the Vannareid-Burøysund fault complex. As a cooperation between Store Norske Gull AS and the University of Tromsø, this study constitutes one out of a two-part project intended to shed light on this topic, and to answer questions related to it. The second project will look at the structural aspects related to the study, while this thesis will focus on the sulfide genesis.

1.2 Purpose of the study

The objective of this study is to geologically map and describe the rocks in relation to the Vannareid Cu-Zn mineralization situated along the Permian Vannareid-Burøysund fault zone which separates Archean basement from early Paleoproterozoic cover rocks. Rock cores drilled through the mineralized zone constitutes the sample data base, and mineralogical and geochemical studies will be used to analyze the rocks with special focus on sulfide genesis.

Figure 1-1: Overview of the study area. The area that has been studied in this thesis, shown in Figure 2-1, is marked with a red square. The reference system is WGS1984 UTM Zone 34N.

1.3 Geography of the study area

The study area is located on northern Vanna (Figure 1-1), within the Karlsøy municipality, Troms, northern Norway, and is comprised by the map sheet Helgøya 1535 II in scale 1 : 50 000 (Statens kartverk, 2004). The study location is easily accessible from the road Fv 306 that runs along the low-lying (max. 50 m.a.s.l.) ENE-WSW trending Vannareid mountain pass . Vannareid is about 1 km wide and bordered with gentle mountains to the NW and SE that gets steeper with increasing elevation. The topography gently dips towards the ocean on both continuations of the mountain pass towards a relatively flat coastline, with Burøysund to the ENE and Svartnes to the WSW.

1.4 Regional geology

1.4.1 Geology of the Fennoscandian Shield

The Fennoscandian (Baltic) Shield is the northwestern crustal segment of the East European Craton (Baltica today) and covers large parts of Norway, Sweden, Finland, and Northwest Russia, featuring geochronological zonation, with ages getting younger from the northeast to the southwest (inset Figure 1-2). Due to three major orogenic events the Fennoscandian Shield can be divided into three domains: the Archean Domain in the northeast, the Paleoproterozoic Svecofennian Domain in the center, and the Mesoproterozoic Southwest Scandinavian Domain in the west and southwest (Gaál & Gorbatschev, 1987; Gorbatschev & Bogdanova, 1993).

The Archean Domain of the Fennoscandian Shield is traditionally divided into three crustal provinces, and the rocks are mainly products of the Lopian orogeny. The Belomorian and Kola Peninsula Provinces in the east are high-grade gneiss terrains in NW-trending zones. The Karelian Province to the west is a granite-greenstone belt terrain trending NNW to NW and N-S, with greenstone-belt formation on an older granitoid basement (Gaál & Gorbatschev, 1987). The oldest rocks identified in the Fennoscandian Shield are trondhjemite gneisses from Siurua, in the Archean Pudasjärvi Granulite Belt in Northern Finland, suggesting a magmatic age of ca.3.5Ga (Mutanen & Huhma, 2003), whereas virtually no ages above 3.0 Ga have been found in other Archean areas (Gorbatschev & Bogdanova, 1993).

The Svecofennian Domain occupies the central part of the Fennoscandian shield, constituting rocks mainly formed in the timespan between 1.90 and 1.86 Ga ago, during the Svecofennian orogeny. The Svecofennian Domain is bordered along the Archean Craton to the northeast by a continental-margin volcanic belt. The Central Svecofennian Province consists of greywackoid and metapelitic rocks intruded by large granite plutons. The border towards the Southwest Scandinavian

Domain to the south is made up partly by the coherent Transscandinavian Granite Porphory Belt of felsic volcanites and granitoid plutonic rocks (Gorbatschev & Bogdanova, 1993).

The Southwest Scandinavian Domain is a complex product of intense and repeated alteration with original formation during the Gothian orogeny (1.75-1.5 Ga), and of tectonization, metamorphism and granitic intrusion during the Hallandian (1.5-1.4 Ga), Sveconorwegian-Grenvillian (1.25-0-9 Ga) and Caledonian (0.6-0.4 Ga) orogenic events. The latter two orogenies involved intense crustal reworking in western Scandinavia (Gaál & Gorbatschev, 1987).

Except for a few tectonic windows into the Precambrian the allochthonous nappes of the Scandinavian Caledonides cover large parts of the basement rock completely in Norway. However, in the coastal regions west of the Scandinavian Caledonides small basement provinces occur in Lofoten and Troms, with similar ages as the rocks of The Fennoscandian Shield (Corfu et al., 2003; Bergh et al, 2014).

1.4.2 Geology of the West Troms Basement Complex

The West Troms Basement Complex (WTBC) is a chain of islands along the northern coast of Norway, from Lofoten in the SW to Vanna in the NE, consisting of Neoarchean to Paleoproterozoic tonalitic, trondhjemitic and granitic gneisses (TTG-gneisses) (2.89-2.70 Ga) with intercalated mafic dykes (2.4 Ga) (Figure 1-2). These gneisses are separated by bands of NW-SE trending metasupracrustal rocks (2.4-1.97 Ga) and also contain younger bimodal plutonic suites (1.8-1.76 Ga) (Corfu et al., 2003; Zwaan, 1995; Bergh et al., 2010). The WTBC is separated to the east from the Caledonian nappes by thrusts and Mesozoic normal faults (Andresen & Forslund, 1987; Olesen et al., 1997; Zwaan et al., 1998), and limited to the southwest by the gabbro-anorthosite-mangerite-charnockite-granite suite of Lofoten and Vesterålen (1.87-1.77 Ga) (Griffin et al., 1978; Corfu, 2004).

The rocks of the WTBC were deformed and prograde metamorphosed mainly by the Svecofennian tectonic event (1.8-1.7 Ga), varying from low grade in the NE and up to amphibolite (locally granulite) facies in the sentral and southern parts, followed by retrogressive greenschist facies reworking (Zwaan, 1992). The Svecofennian tectonic event is what led to the juxtaposition of the TTG-gneisses with the NW-SE trending metasupracrustal belts (Armitage & Bergh, 2005) as well as to the intrusion of the bimodal plutonic rocks (1.8-1.76) (Andresen, 1979; Bergh et al., 2010).

Due to its location west of the Scandinavian Caledonides, and relatively week Caledonian overprint, theories have been made on a possible link between the WTBC and Laurentia. However, the WTBC exhibits similarities with the Precambrian of Fennoscandia both in term of ages, lithologies and structural orientations leading to a closer connection to Fennoscandia (Henkel, 1991; Olesen et al., 1997).

Figure 1-2: Bedrock map units of the West Troms Basement Complex (WTBC). The inset in the upper left corner shows a regional tectonic map of the northwestern Fennoscandian shield, while the inset at the bottom shows geological profiles made throughout the WTBC. The area shown in Figure 1-1 is outlined with a red square. Modified after Bergh et al 2010.

1.4.3 Geology of Vanna

The island of Vanna is situated in the county of Troms, North Norway, and consists of Archean and Paleoproterozoic metamorphic, intrusive and metasupracrustal rocks (outlined with a red square in Figure 1-2). The basement rocks are made up of undifferentiated tonalitic gneisses dated by U-Pb zircon determination to 2885 ± 20 Ma (Bergh et al., 2007), with intercalated mafic dykes dated by U-

Pb geochronology of zircon and baddeleyite to 2403 ± 3 Ma (Kullerud et al., 2006a) which are not seen to penetrate the basement-cover contact (Johansen, 1987). Locally, presumable older supracrustal rocks are found as xenoliths within the tonalite (Johansen, 1987).

Unconformably overlying the basement in the south is the Vanna Group metasedimentary sequence (2.4-2.2 Ga) (Bergh et al., 2007). The at least 180 m thick low grade parautochthonous Vanna Group has been subdivided into two informal formations (Binns et al., 1980):

- 1) the lower Tinnvatn formation consisting of arcosic sandstones and siltstones interpreted to have been deposited in a deltaic environment.
- 2) the upper Bukkheia formation consisting of mudstones alternating with quartz- and carbonate-rich sandstones and siltstones interpreted as being deposited in a shallow-marine environment (Johansen, 1987).

The Bukkheia formation is intruded by a diorite sill which is not seen to cross-cut the sedimentary bedding, and has been dated by U-Pb geochronology on zircon and titanite to 2221 ± 3 Ma (Bergh et al., 2007). This age, together with the age of dated mafic sills within the tonalite which do not penetrate the basement-cover contact limits the age of deposition of the sediments.

Detrital zircons from the Vanna Group show systematic ages between 2.9 and 2.7 Ga (Bergh et al., 2007). Together with the 2885 ± 20 Ma U-Pb age for the tonalites dominating the northern WTBC and similar ages for granitic igneous rocks on Ringvassøya (2830 Ma) and Kvaløya (2692 Ma), a local Archean source for the sediments is likely (Corfu et al., 2003, 2006; Kullerud et al., 2006a, b).

In northern Vanna, in the area of Vannareid, an allochthonous cover segment, namely the Skipsfjord Nappe is situated (Pettersen, 1882; Binns et al., 1980; Opheim & Andresen, 1989). It consists of mylonitic tonalitic gneisses with interlayered metasedimentary units, and has been subdivided into three lithotectonic units: a lower and upper mylonite-gneiss sheet separated by the metasedimentary Kvalkjeften group. The Kvalkjeften group is further subdivided into two informal formations: the lower Geitdalen formation composed of metapsammite and calcareous metapelites, and the upper Brattfjell formation dominated by metapelites with some minor quartzite towards the top (Opheim & Andresen, 1989).

The Skipsfjord Nappe is unconformably overlying the basement gneisses to the south, bounded by a thrust fault. To the north the Vannareid-Burøysund fault complex, a major high angle normal fault system striking ENE-WSW, is separating the Skipsfjord Nappe from the tonalites on northern Vanna (Opheim & Andresen, 1989; Grogan & Zwaan, 1997). Davids et al. (2013) radiometrically dated the fault to Permian ages by K-Ar illite analyses, indicating the fault of being a part of a network of post-Caledonian normal faults along the coast from Lofoten in the South (Bergh et al., 2007) to Vanna in the North (Indrevær et al., 2012). However, the fault is complex, with at

least two generations of fault gauge and cataclasites, and has probably experienced several episodes of faulting. It is uncertain which event is reflected in the K-Ar data (Davids et al., 2013).

The regional metamorphism of Vanna generally does not exceed middle greenschist facies (biotite grade) (Johansen, 1987). Within close proximity to the diorite in the south contact metamorphism is sometimes distinct (Binns et al., 1980). The sedimentary sequences of Skipsfjord Nappe is correlated with the Vanna Group sediments despite the large difference in strain between the two (Johansen, 1987; Opheim & Andresen, 1989).

1.5 Earlier Work

Except for a few scattered remarks in B.M. Keilhau's main work Gaea Norvegica (1844), the first geological descriptions of the entire island of Vanna were made by Karl Pettersen (1882, 1887, 1891) during his pioneer work of outlining the geology of Northern Norway. Pettersens work include geological maps and profiles together with geological and geographic descriptions.

Almost a century later a gravity survey of the area was conducted (Chroston, 1974), with the initial results briefly cited by Roberts (1974). Following this work a re-examination of Vanna was done by Binns et al. (1980), with special focus on the Vanna group metasedimentary succession in the southern parts of the island. In the thesis by Johansen (1987), a more detailed study on the relationship between the basement tonalites and the overlying Vanna group was conducted.

The first comprehensive study of the northern part of the Vanna island was done by Opheim & Andresen (1989), where the relationship between the basement tonalites and the Skipsfjord Nappe is in focus. Following this work a discussion about the regional correlation of the Skipsfjord Nappe took place (Rice, 1990; Andresen & Opheim, 1990).

U-Pb age determinations have been conducted on the basement tonalites and intercalated mafic dykes, as well as on a diorite sill in the upper part of the Vanna group (Kullerud et al., 2006a; Bergh et al., 2007). With this work Bergh et al (2007) refined the span on the deposition of the Vanna group sedimentary succession and together with laser ICP-MS U-Pb analyses deduced a possible provenance for the sediments. Several master thesis' have been written about the petrology and structures of the sedimentary succession and diorite on southern Vanna (Knudsen, 2007; Pettersen, 2007; Sen, 2012; Johannessen, 2012).

Davids et al. (2013) radiometrically dated fault gauge and cataclasites from the Vannareid-Burøysund fault zone on northern Vanna, by the K-Ar illite method and correlated it regionally.

The Geological Survey of Norway (NGU) and the exploration company Store Norske Gull AS (SNG AS) have conducted several rounds of work on Vanna. This will be elaborated upon further in the following subsection.

1.5.1 Store Norske Gull AS (SNG) and the Norwegian Geological Survey (NGU)

Store Norske Gull AS is a subsidiary of the coal company Store Norske Spitsbergen Kulkompani (SNSK), and was founded in 2003 to survey and develop the corporate's gold deposits on Svalbard. Until 2013 SNG was also operating in the two northernmost counties on the Norwegian mainland, hence Troms and Finnmark (snsk.no).

The Norwegian Geological Survey (NGU) is the national institution for knowledge on bedrock, mineral resources, surficial deposits and groundwater (ngu.no).

After a zinc showing was discovered in a road cut at Vannareid by professor Kåre Kullerud at the University of Tromsø in 2008, SNG got the exploration permit to the area in 2009.

In 2011 NGU conducted an airborne geophysical survey over Vanna, as part of the MINN project (Mineral resources in North Norway) initiated by the Norwegian government to enhance geological information relevant to assessing the mineral potential of the three northernmost counties (Sandstad et al., 2013). Rodionov & Ofstad (2012) describes and documents the acquisition, processing and visualization of the recorded datasets.

As a cooperation between SNG and NGU geophysical measurements were conducted in 2012 at Vannareid and Fakken. This was to follow up and test the quality of the helicopter-based resistivity and magnetic measurements together with testing the Induced Polarization (IP) method on the mineralization at Vannareid as well as a strong magnetic anomaly at Fakken (Dalsegg & Koziel, 2013). SNG also performed a diamond drilling campaign on Vannareid the same year. This work revealed an at least 250 m long hydrothermal Cu-Zn mineralization close to the Vannareid-Burøysund fault zone (Sandstad et al., 2013; Ojala et al., 2013).

1.6 Introduction to hydrothermal Cu-Zn-sulfide-forming

processes

The majority of sulfide deposits around the world are either a direct product of concentration processes arising from the circulation of hot, aqueous solutions through the Earth's crust, or have been significantly modified by such fluids. The water of hydrothermal fluids may be magmatic, oceanic, meteoric, connate, metamorphic or a mix of the preceding fluid types and become hybrids with more than just a single origin (Robb, 2005).

Hydrothermal solutions contain a wide variety of components, with major constituents being

Figure 1-3: A classic cross-section of a modern black smoker and volcanogenic massive sulfide deposit from the Mid-Atlantic Ridge. The semi-massive to massive sulfide body is underlain with the stockwork of vein systems, or stringer zone, with the associated alteration zone. From Galley et al. (2007).

Na, K, Ca and Cl. Other elements may also be present, for example: Mg, Br, S (as either sulfate, sulfide or both), Sr, and sometimes Fe, Zn, C (as HCO₃⁻ and CO₂), and N. A relatively limited range of minerals, mostly sulfides, are found concentrated within hydrothermal fluids. Ore metals, such as Cu, Pb, Zn, Sn, Mo and Ag, are rarely present as major constituents in solution, but rather at levels up to a few tens or hundreds of parts per million (Skinner, 1997).

Volcanogenic massive sulfide (VMS) deposits are massive sulfide bodies occurring at or near the seafloor due to the focused discharge of metal-enriched hydrothermal fluids circulating in volcanically active environments (Figure 1-3), and are important sources of Cu and Zn \pm Pb \pm Au \pm Ag (Galley et al., 2007; Shanks & Koski, 2012). Sedimentary exhalative (SEDEX) deposits are dominated by a Zn-Pb association and are also related to hydrothermal fluids venting onto the sea floor, but without a direct link to volcanism (Robb, 2005).

VMS deposits consist of a massive sulfide body, often lens-shaped and with a well-developed geochemical zonation, comprising >50% of the host rock, with a interlacing network of small and narrow close-spaced, sulfide-bearing veins in the footwall, often called the stringer zone (Misra, 2000; Koski, 2012). Typical dimensions of VMS deposits are in the size range of 100-500 m, with small

deposits of only tens of thousands of square meters and giant deposits as large as several square kilometers in plan view (Slack, 2012a).

VMS deposits occur in many countries throughout the world and range in age from the Archean to present, with "black smokers" as modern day analogues actively forming in extensional settings on the ocean floor (e.g., mid-ocean ridges, intra-arc rifts, back-arc spreading basins) (Robb, 2005; Allen et al., 2011; Piercey et al., 2011). They are primarily hosted by bimodal, mafic-felsic volcanic successions, and are typically associated with felsic volcanic rocks with specific geochemical characteristics (Figure 1-4) (Hart, 2004).

Different classifications have been used for the deposits (e.g., metal content and type locality), but the most widely accepted classification involves the host rocks and geodynamic setting generalizations. These will be described in the following as by Piercey et al. (2010):

- Mafic-dominated: generally Cu- to Cu-Zn-rich deposits associated with mafic rocks such as ophiolites, commonly of intraoceanic back-arcs or fore-arcs, and mid-ocean ridge origin. These correspond to that of the Cyprus type locality deposit.
- 2) Siliciclastic-mafic: Cu-(Co)-rich deposits associated with mafic and/or ultramafic assemblages and abundant siliciclastic rocks, matching that of the Besshi type deposit.
- 3) Bimodal-mafic: Cu- and Cu-Zn-rich deposits dominated by mafic volcanic rocks, but with the actual deposit hosted by felsic rocks (Noranda type locality).
- 4) Bimodal-felsic: Zn-Pb-Cu-rich deposits dominated by felsic volcanic rocks in bimodal sequences thought to have formed at rifted continental margin arcs and back arcs (Galley et al., 2007), matching that of the Kuroko type locality deposit.
- 5) Siliciclastic-felsic: Zn-Pb-Cu-rich deposits dominated by volcaniclastic rocks and abundant felsic volcanic rocks and sedimentary rocks. They often have features transitional between VMS and SEDEX deposits and correspond to that of the Bathurst type locality.

The first three groups are commonly juvenile and have very little continental crustal influence, while the last two groups are commonly associated with evolved continental crust (Piercey, 2011).

The non-economic components of VMS-deposits, all non-sulfides as well as pyrite and pyrrhotite, are generally considered as gangue minerals, and they vary greatly depending on factors including metamorphic grade, age, and geological setting of the deposits. For those occurring at or below lower greenschist facies the gangue may mainly consist of quartz, chlorite, sericite \pm carbonate \pm barite \pm albite. At higher metamorphic grades quart, garnet, amphibole \pm rutile are typical assemblages (Shanks, 2012; Slack, 2012b).

Figure 1-4: Principal tectonic environments where VMS deposits form. TOP: Representing early Earth evolution, with incipient rifts forming basins of early ocean crust, followed by sediment infill and associated mafic-ultramafic sills. MIDDLE: Formation of ocean basins followed by ocean spreading centers with associated mafic-dominated VMS deposits. Development of subduction zones resulted in oceanic arc formation and associated extensional domains where VMS deposits dominated by bimodal-mafic, bimodal-felsic and mafic assemblages formed. BOTTOM: Formation of mature arc and ocean-continent subduction resulting in arc and continental volcanic arc assemblages hosting most of the felsic-dominated and bimodal siliciclastic deposits. From Galley et al. (2007).

Hydrothermal alteration is by definition, determined as any alteration of rocks or minerals by the reactions of hydrothermal fluid with preexisting solid phases. Typical minerals of alteration at greenschist facies grades can be chlorite, quartz, sericite, carbonate and epidote. Where VMS mineralization occurred by replacement and open space filling in porous and permeable rocks in shallow sub-seafloor zones, the distinction between syngenetic gangue minerals and epigenetic alteration can be difficult. Most alteration zones can be traced about 2-3 times the horizontal dimension of the VMS deposit and extend to depths about 10 times the thickness (Shanks, 2012).

All major VMS deposits in the Fennoscandian Shield formed in the Paleoproterozoic, in extensional settings prior to accretion. The Pyhäsalmi VMS deposit formed in primitive, bimodal arc complexes during arc extension. The Skellefte VMS deposit formed in a strongly extensional intra-arc region developing on continental or mature crust, while the Bergslagen-Uusima belt is interpreted as an intra-continental, or continental margin back-arc, extensional region developed on older continental crust (Weihed et al., 2005).

1.7 Methods

The methods used for this study which are not described in the following subchapters are those of the whole-rock chemistry and the mineral chemistry. These however are described in the section on analytical methods at the introduction of their associated chapters (Chapters 3 and 4 respectively).

1.7.1 Fieldwork

The fieldwork was conducted during four weeks in the summer and fall of 2013 where the rocks in the study area were described and mapped on the basis of lithological changes and structural features.

1.7.2 Diamond drilling and naming convention of the rock cores

Diamond drilling is conducted using a diamond-coated drill bit which is hollow and tubular, leaving the resulting rock sample as a core within the internal cylinder.

The drilling campaign was conducted during the summer of 2012 on order from Store Norske Gull AS (SNG) by the company Arctic Drilling AS. More information on Arctic Drilling AS can be found on their website arcticdrilling.no.

Approximately 880 meters of rock cores, distributed on seven bore holes, were drilled during the campaign and split in half. One half was sent to geochemical analyses, while the other is now stored in boxes containing approximately six meters each, at SNG's storage facility in Karasjok, Northern Norway. The naming convention given to the rock cores are on the basis of VNR-XXX, where VNR is an abbreviation for "Vannareid" and XXX indicates the drill hole number. The different hole numbers are: 101, 102, 201, 301, 302, 303 and 401. Boreholes 101 and 102 were drilled from the same location, but with a difference in inclination of the drill hole. The same goes for boreholes 302 and 303. All the holes were drilled towards the north. An overview with information on coordinates and elevation at the various drill locations as well as length of the different rock cores, azimuth and inclination is found in Table A1, in appendix A. The location of the drill core intersections with the surface are also marked at the lithological map of Vannareid in Figure 2-1.

1.7.3 Core logging, sampling and production of thin sections

The drilled rock cores were studied at Store Norske Gull AS' storage facility in Karasjok, Northern Norway, during a period of three days in the spring of 2013. The cores were logged on the basis of lithological, geochemical and textural changes, and samples were collected with the objective of making thin sections for use with a petrographic microscope.

The parts of the core samples which were chosen for the production of thin sections were given names according to which borehole they were retrieved from together with the depth of the hole. The depth is relative since the boreholes were drilled with inclinations and should be treated with caution. The naming convention is on the basis of VNR-XXX-YYY, where XXX indicates the number of the borehole and YYY the depth. The VNR-101-core is most representative of what has been found in all of the cores, resulting in most thin sections produced from this core, seventeen altogether. Five thin sections were made from the 102-core and three from the 302-core, resulting in twenty five thin sections all-in-all. An overview with information on rock core ID, the relative depth and the associated lithology of the different thin sections is found in Table A.2, in appendix A.

The samples collected from the drill cores were cut to appropriate sizes according to the requirements of the laboratory at the Geological Department at the University of Tromsø, Norway, where the samples were subsequently prepared and polished into thin sections. The thin sections were made without a cover-slip so that they would be able to study with the mineral chemistry technique which makes use of the electron microprobe (EMP).

1.7.4 Microscopy – transmitted and reflected

The thin sections have been studied and with the aid of a Leica DMLP petrographic microscope in plane- and cross-polarized light to describe the different mineral phases and their relationships. For

the thin sections containing sulfides and oxides the additional reflected-light method was used. Photographs were taken with a Canon EOS 650D camera mounted onto the microscope.

1.7.5 Application softwares

The photos and maps presented in this thesis were digitalized and edited with CorelDRAW Graphics Suite X5 and necessary georeferencing was executed using ArcMap 10.2, ArcGIS, with the reference system being WGS1984 UTM Zone 34N. The strip logs presented in chapter 3 on the whole-rock data were produced using the geology software Target, and the different diagrams shown in chapter 5 with the discussion were made with the ioGAS-software for geochemical exploratory data analyses.

2 Petrography

2.1 Overview

The Vannareidet Cu-Zn mineralization is located north on the island of Vanna, between Svartnes at the western coast and Burøysund at the eastern coast, and is easily accessible from the road Fv 306 (Figure 1-1).

The bedrock cropping out in the study area consist of quartzo-feldspathic igneous rocks, with intruding mafic dykes, which stratigraphically make up the basement rocks. These are unconformably overlain by mica schists, separated by a south-dipping, ENE-WSW trending zone of normal faults, the Vannareid-Burøysund fault complex. The rocks in close proximity of the fault zone constitutes the basement-cover contact, and are highly brecciated, with an intricate system of quartz and carbonate veins containing Cu and Zn bearing minerals (Figure 2-1).

The mineral abbreviations are those after Kretz (1983), with newer mineral abbreviations added by Siivola & Schmid (2007).

2.2 Quartzo-feldspathic igneous rocks

The most prominent rock in the study area is the quartzo-feldspathic ignous bedrock which is exposed north of the Vannareid-Burøysund fault complex (Figure 2-1). It varies in composition from granitic to granodioritic, and will further be referred to with the collective term granitoid rock. The degree of exposure varies greatly, from being completely covered by soil and low vegetation to no cover at all, making up a patchwork of outcrops throughout the study area. Weathered surfaces have a grey color and are being overgrown by lichens and moss. Some places quartz veining is extensive. Quartz is known to be resistant to chemical weathering and the braided quartz veins thus stand out from the surrounding weathered granitoid surfaces. The rocks have a very fractured appearance in field view, probably due to frost shattering.

The degree of foliation within the granitoids is very week throughout the study area, but shows an approximately N-S trend made up by parallel oriented dark micas. The foliation traces are shown only in the areas of the geological map of Vannareid where the measurements were taken.

Figure 2-1: Geological map of the area around the Vannareid Cu-Zn mineralization. The outline of this map is marked with a red square in Figure 1-1. The reference system is WGS1984 UTM Zone 34N. VBFZ = Vannareid-Burøysund Fault Zone. The road crossing the map view is the Fv 306. Slip direction on the observed fault plane is indicated with an arrow along the trace of the WTBC.

In field view the granitoid rocks were not differentiated upon, but within the rock cores they clearly appear in two structurally different manners; one relatively undeformed and unfoliated, while the other is more sheared and has an altered appearance. These two will be described separately in the two following subsections. The granitoid rocks are found in the rocks cores of all the seven boreholes, at the bottom of the cores.

Figure 2-2: Unaltered granitoid rock. a) Dry, split rock cores of the unaltered granitoid rocks at approximately 97 meters depth in borehole VNR-302. The field of view is approximately 50 cm. b) Figure 2-2 a) in wet condition. c) Unaltered granitoid rock in plane-polarized light, thin section VNR-302-74.1. d) Figure 2-2 c) in crossed-polarized light.

2.2.1 Unaltered granitoid rocks

The fresh surfaces of the relatively unaltered granitoid rocks vary a lot in color, from white to light grey to beige, and they generally appear massive and are medium to coarse grained. In some outcrops however, they have a rather "sugary" appearance, consisting of only felsic minerals. Figure 2-2 a) and b) shows how the typical unaltered granitoid appears within the rock cores. Brecciated sections are also observed. Only one thin section has been made from these rocks, at 74.1m depth within rock core VNR-302 (Figure 2-2 c) and d)).

In thin section the relatively unaltered granitoid rocks appear with anhedral mineral grains lacking a preferred orientation, mainly consisting of undulatory quartz and highly sericitized plagioclase in the size range of 1-3 mm. However, microcline grains of approximately 0.5-1 mm with the characteristic tartan plaid pattern constitutes approximately 15-20 % of the felsic minerals, putting this exact sample within the granodioritic category of the well-known QAPF diagram by

Figure 2-3: Altered granitoid rocks. a) Dry, split rock cores of the altered granitoid rocks at approximately 163 meters depth in borehole VNR-101. The field of view is approximately 50 cm. b) Figure 2-3 a) in wet condition. c) Altered granitoid rock in plane-polarized light, thin section VNR-101-164.6. d) Figure 2-3 c) in crossed-polarized light.

Streckeisen, as presented in Le Maitre (2002). 1-2 mm large grains of biotite is replaced by chlorite along cleavage planes and constitutes a rather large part of the mineral composition, while clinozoisite appears as an accessory mineral.

2.2.2 Altered granitoid rocks

The fresh surfaces of the altered granitoid rocks are generally light grey, sometimes with a tint of pale green. Opposed to the relatively unaltered granitoids they are sheared and micaceous minerals make up the foliation Figure 2-3 a) and b). They are generally found within areas of the rock cores in close proximity to the mafic intrusions or where hydrothermal veining is prominent. Two thin sections have been made from these rocks; one from 164.4 meters depth in rock core VNR-101 (Figure 2-3 c) and d))., and the other from120.4 meters depth in rock core VNR-102.

In thin section the altered granitoid rocks appear with anhedral inequigranular minerals, with a foliation made up of very fine-grained light mica and chlorite grains. They consist mainly of quartz with varying grain sizes from only tens of microns in totally recrystallized areas to 1-2 mm large undulatory grains, and highly sericitized plagioclase of 0,5 – 3mm size. Light mica and chlorite also appear as single-standing grains apart from the foliation bands in sizes of around 0.1-1 mm, and apatite appear as tiny accessory minerals overgrowing quartz. Opposed to the relatively unaltered granitoid rocks, there were not observed any biotite nor alkali feldspar in these rocks. According to Nesse (2000), biotite often alters to chlorite, and alkali feldspar to sericite, which with the mineral assemblage observed within the thin sections is a possibility.

2.3 Mafic intrusive rocks

Mafic intrusive rocks are observed north of the Vannareid-Burøysund fault zone (VBFZ), intruding into the granitoid rocks, and not observed at all within the mica schist units south of the VBFZ at Vannareid. They appear as discordant, tabular bodies which in some areas are more or less parallel to the weak approximately N-S trending granitoid foliation, while in other areas they cut the foliation at an angle (Figure 2-1). They seem to be more resistant to weathering than the surrounding rock since some of the dikes form residual ridges standing out from the surrounding bedrock. As with the plutonic rocks, the weathered surfaces of the mafic intrusives are covered in moss and lichens, however, the diabases have a darker grey color. Quartz veining is some places extensive within the diabases, making a braided pattern of veins standing out from the surrounding weathered surfaces of the mafic rocks.

The mafic dykes range in thickness from a few to tens of meters thick, and some of the larger dykes can be traced along strike for hundreds of meters, while other smaller dykes poke out only here and there from beneath the vegetation. A direct contact between the basement quartzo-feldspathic rocks and the intrusive mafic dykes is not observed due to soil and vegetation cover, but are in some areas considered certain in the range of a few meters and in other areas just inferred. The dykes are observed to be displaced by what seems to be ductile shear features with a sinistral shear sense, striking approximately WNW-ESE. Only one of these shear zones are observable in the field, and is containing a high degree of micaceous minerals making up the trace of the ductile foliation, the other shear zones are interpreted features. In areas where the mafic rocks are well exposed it is possible to observe that the margins of the dykes are chilled; there is a change in crystal size with larger grains sitting in the inner parts and getting more fine-grained towards the margins.

In map view the mafic dykes are not differentiated upon compositionally. However, the whole-rock data indicates that there are at least two chemically different types of mafic dykes:

27

Figure 2-4: Diabase rocks. a) Dry, split rock cores of the diabase rocks at approximately 37 meters depth in borehole VNR-302. The field of view is approximately 25 cm. b) Figure 2-4 a) in wet condition. c) Diabase rock in plane-polarized light, thin section VNR-302-31. d) Figure 2-4 c) in crossed-polarized light.

"regular" diabase and magnetite rich diabase (mag-diabase), which are described separately in the following two subchapters. The diabase is found within the rock cores of drill hole VNR-102, VNR-301, VNR-302 and VNR-303, while the mag-diabase is located mainly within VNR- 101, but also as a few meters as mag-diabase breccia in VNR-102.

2.3.1 Diabase

In rock core samples, the diabase appears as fine-medium grained, dark grey rocks with a greenish tint (Figure 2-4 a and b). Only two thin section have been made from the regular diabase, retrieved from 97.3 meters depth in the VNR-102 rock core and from 31 meters depth in the VNR-302 core. These thin sections show parts of the diabases that are very brecciated and with hydrothermal mineralized veins cutting through them. Due to the high fracturing and influence from hydrothermal veins, these thin sections do not show any primary minerals. Quartz crystals are recrystallized and very fine grained (approximately 40 microns), while the few plagioclase grains present are sericitized. The samples also contain some chlorite, and rutile appears as brown, small blebs within the thin section (Figure 2-4 c) and d)).

The diabase rocks have a section at the bottom of rock core VNR-301 which contain more calcium than the other diabase sections found throughout within the rock cores. This might be a third type of diabase, or it might have experienced more carbonaceous alteration than the other diabase sections. It is somewhat higher in Ca and Sr values.

2.3.2 Mag-diabase

Looking at the rock core samples the mag-diabase appears darker and with finer grain sizes than the diabase rocks (Figure 2-5 a) and b)). Mineralized hydrothermal veins with well-developed crystal shapes cut through the mag-diabases. However, it seems like the mineralization is mainly found as disseminated sulfides within these mag-diabases, as opposed to the diabase rocks where the mineralization is mainly found within hydrothermal veins.

The thin sections consist mainly of hornblende amphibole, sericitized plagioclase and quartz. Chlorite is abundant in thin bands and the amphiboles are some places breaking down to chlorite. In some parts epidote-rich and hematite-rich veins are cutting the foliation observed within the magdiabases. Garnets without deformation structures are also observed, both in connection with amphiboles as well with chlorite. Magnetite appears as disseminated mineralizations throughout the rocks (Figure 2-5 c) and d)).

2.4 Mica schists

Mica schists occur south of the Vannareid-Burøysund fault zone (Figure 2-1). They are considered the uppermost part of the stratigraphy, unconformably overlying the basement rocks, separated by the VBFZ. The degree of exposure is sparse since vegetation and soil cover is high south of the fault zone, and the rocks crop out only in a small area around borehole 101 and 102.

In field view the color of the mica schists vary from light grey, to sandy beige, to reddishbrown. The rocks consist mainly of light mica together with quartz and feldspar and they have a very shiny luster due to the high content of micaceous minerals. This also leads to the mica schists showing a clear, gently dipping foliation, and the specimens cropping out in field view easily break apart along the foliation plane. Chlorite is also found in relatively high amounts within the mica schists, giving a greenish tint to the rock samples. Both in hand specimens and thin sections it is possible to observe that the foliation has been folded. It also has been refolded making up crenulation lineations. The mica schist unit is exposed only in the upper approximately 20 m of the

Figure 2-5: Mag-diabase rocks. a) Dry, split rock cores of the mag-diabase rocks at approximately 92 meters depth in borehole VNR-101. The field of view is approximately 25 cm. b) Figure 2-5 a) in wet condition. c) Mag-diabase rock in plane-polarized light, thin section VNR-101-113.8. d) Figure 2-5 c) in crossed-polarized light.

101- and 102-cores (Figure 2-6 a) and b)). Two thin sections were made from the mica schist rocks, both are from drill core VNR-101, at 13.5 and 15.5 meters depth.

The thin section from 13.5 meters display a very sericite-rich part of the mica schists (Figure 2-6 c) and d). The light mica has a very fibrous appearance with the average length of a single mica grain at approximately 5-10 microns (μ m), and width of ~1-3 μ m. They often appear in bands from one grain thick up to to 4-5 mm, but are also observed as sericite overgrowth in feldspar. The feldspar is pure plagioclase, in the range from tens of microns up to 0,6mm sized subhedral grains. Quartz is also abundant in the sample, as subhedral grains on the size range from tens of microns and up to 1mm, generally with undulatory extinction. Calcite, in the same size range, generally appear as anhedral blobs filling the spaces in between other mineral grains. Accessory pyrite and epidote is also observed.

The thin section from 15.5 meters displays a more chlorite- and tourmaline-rich part of the mica schists (Figure 2-6 e) and f). It consists mostly of carbonate, undulatory quartz and twinned plagioclase, while chlorite, with anomalous blue and green interference colors occur throughout the section in thin bands together with tourmaline. The outline of single tourmaline

Figure 2-6: Mica schist rocks. a) Dry, split rock cores of the mica schist rocks at approximately 10 meters depth in borehole VNR-101. The field of view is approximately 50 cm. b) Figure 2-6 a) in wet condition. c) Sericite-dominated mica schist rock in plane-polarized light, thin section VNR-101-13.5 d) Figure 2-6 c) in crossed-polarized light. e) Tourmaline-rich mica schist in plane-polarized light, thin section VNR-101-15-5. f) Figure 2-6 e) in crossed-polarized light.

grains are highlighted with a white "stapled" line to better show the typical grain shape in both "length" and "cross" view.

The textural appearance of the mica schists is of the mylonitic kind. Single crystals as well as aggregates of recrystallized quartz have sigmoidal shapes and the pressure shadows make up well-developed tails of very fine-grained material. Mica fish with the same sense of shear are also observed.

Figure 2-7: Vein and breccia rocks. a) Dry, split rock cores of the vein and breccia rocks in rock core VNR-101. The field of view is approximately 50 cm. b) Figure 2-7 a) in wet condition. c) Carbonate-cominated veins in plane-polarized light, thin section VNR-302-19.2 d) Figure 2-7 c) in crossed-polarized light.

2.5 Vein and breccia rocks

Along the Vannareid-Burøysund fault zone the nearby rocks are highly brecciated, containing an intricate system of quartz and carbonate veins that range in thickness from millimeters to several decimeters. The vein system contains cavities and well-formed crystals of quartz and carbonate as well as Cu and Zn sulfides. The brecciated host rock is so crushed and fine-grained that a determination of the rock type is very difficult. Due to the relatively dark and greenish color of the host rocks observed in the field and the highly fractured appearance the collective term mafic cataclasites is given to the vein and breccia rocks marked in the lithological map (Figure 2-1). Some rock surfaces have a rusty red color, diagnostic of oxidizing iron bearing rocks, while malachite, a weathered product of copper minerals, is also observed. Epidote is also found on fractural surfaces.

Within the drilled rock cores, a differentiated between carbonate-dominated and quartzdominated veins and breccias are made. These rocks contain fragments of both volcanic as well as granitoid rocks, and generally exhibits a greenish hue. The occurrence of these fragments are also

Figure 2-8: A fault plane from the Vannareid-Burøysund fault zone. Symbols as in figure 2-1. Picture taken towards the north.

reflected in the whole-rock data (Appendix B), with the large range in element values for the classified vein and breccia rocks. The rock fragments of granitoids and intrusive rocks within the vein and breccia rocks are highly sericitized and chloritized.

The vein rocks contain a significant amount of sulfides. Pyrite acts as the major sulfide observed within the thin sections, followed by sphalerite, chalcopyrite and galena.

2.6 Structural geology and tectonostratigraphy

Structural features observed in the area around Vannareid are drawn in on the lithological map in Figure 2-1.

Throughout the study area a weak, approximately N-S trending foliation made up by biotite aggregates is observed within the basement rocks. It is semi parallel to the strike of the younger diabase bodies cutting through the granitoids. No foliation is observed within the diabases themselves in field view, but in the drilled rock cores disseminated sulfide minerals make up a distinct foliation. The mafic dykes are in turn affected by a set of WNW-ESE striking sinistral shear displacements. The actual trace of the ductile shear displacement is made up by micaceous minerals observed directly at only one locality within the study area, and inferred for the others due to vegetation and soil cover. The mica schists display a strong, gently dipping foliation, mostly sub-horizontal, but with a few steeper measurements shown in Figure 2-1. The foliation is made up of white mica and chlorite. Due to the lack of outcrops a detailed mapping of these sections were difficult, however it was possible to observe that that the foliation was folded, but without a distinct direction for the fold axes.

Directly north of the mafic cataclasites in field view, a south-dipping, approximately ENE-WSW fault plane is cropping out, constituting a back wall of the vein and breccia rocks. It is assumed as being the surface expression of the complex Vannareid-Burøysund fault zone at Vannareid, while the vein and breccia rocks within the drilled rocks cores constitutes the zone beneath the surface.

A ductile foliation made up by chlorite-rich associations is observed parallel to the fault plane. Rust and malachite are observed on weathered surfaces. Upon the fault plane itself, a few measurements of slickenlines have been made and are shown within Figure 2-8. They indicate a normal movement of the fault blocks, with a dextral component. The contact between the basement rocks and the mica schists is a brittle/semi-ductile tectonic feature, and the normal fault movement with the rocks on the southern side of the fault downthrown relative to the northern is probably the reason to the juxtaposition of basement rocks with cover rocks.

3 Whole-rock chemistry

3.1 Analytical methods

Geochemical analyses on the rock core samples have been carried out by ALS Geochemistry, a service branch under ALS Global. Details on sample preparation and detection limits for the different methods are found on their web page (alsglobal.com). Where values from the analyses were below the detection limit, the values have been set to half the detection limit.

The methods used will be described briefly in the two following subsections based on Winter (2002) and Blatt et al. (2006).

It is worth noting that the columns which represent the subdivision of the lithological logs and their associated geochemistry shown in the figures within this chapter show the average of a given element within one meter of core. As an example this means that even though rock core sections of 10 cm length contain 100 wt% CaO, this might not be apparent from the figures alone since geochemical data is only shown for entire meters of core.

3.1.1 X-ray Fluorescence Spectroscopy (XRF)

The prepared samples have been analyzed for major and minor elements by getting irradiated with high energy X-rays, making the constituent elements excited. This in turn leads to an emission of fluorescent X-rays from the sample. The X-ray emissions are dispersed into a characteristic spectrum depending on the elements present. Quantitative analyses involves measuring the intensities of the emissions and comparing these with standard samples.

3.1.2 Inductively Coupled Plasma – Atomic Emission Spectroscopy (ICP-AES) and Inductively Coupled Plasma – Mass Spectroscopy (ICP-MS)

The samples have been analyzed for major and trace elements using ICP-MS and ICP-AES. The sample is first powdered, then mixed with argon gas and further excited into a plasma (ICP). The plasma can then be directed into an atomic emission spectrometer (AES) where it is used to produce thermally excited electrons from the outer shell of the elements in the sample. These emit electromagnetic radiation at wavelengths characteristic of the element, and the intensity of the emission is indicative of the concentration of the element within the sample (usgs.gov).

Following the ICP-AES method, the samples are further analyzed by ICP-MS which involves directing the plasma into a mass spectrometer (MS). Isotopes are resolved by mass within the instrument and relative abundances of different isotopes can be calculated by comparison with standard samples.

3.2 Overview

Rock cores VNR-101 and VNR-302 together represent all the lithologies present within all of the seven rock cores, and also exhibits the best the distribution of the Vannareid Cu-Zn mineralization. These two cores will thus be presented in the following and described based on the content of major, minor and selected trace elements as well as the base metals Cu, Zn, Pb and Ni.

The whole-rock data is a continuous dataset, except for a hiatus of a few meters within the mica schist in VNR-101 and approximately one meter at the bottom of the carbonate vein area in VNR-302. This is due to core loss during diamond drilling. Approximately thirty meters of rock core within the mag-diabase area of VNR-101 is also missing. This hiatus however is due to the homogenous appearance of the mag-diabase which led to only parts of the core being analyzed, and the remaining parts assumed as having the same geochemistry as the surrounding rock.

3.3 Rock core VNR-101

3.3.1 Major elements

The distribution of major elements in rock core VNR-101 is shown in Figure 3-1 and 3-2. The analyses have been recalculated to volatile-free form and are given in Table B.1, Appendix B.

SiO₂: The content of silica throughout the stratigraphy varies greatly from miniscule 5 up to a total of 98 wt%. Within the altered granitoids there is a steady value of 69-74 wt%, except for the upper two meters that border towards the mag-diabase with values around 60 wt%. The mag-diabase varies within 45-55 wt% with peaks up to 63 wt%, while its brecciated areas have peaks as high as 79 wt% SiO₂. The quartz veins and their brecciated sections have values of 70-98 wt%. The carbonate veins and breccias are those that vary the most in SiO₂-content, but generally range within 44-83 wt%. Two sections at lengths shorter than a meter with minimum values at 5 and 22 wt%, respectively occur at depths of 78.5-79 meters and 157.5-157.8 meters (Table B.1, Appendix B). The mica schist varies within 52-68 wt%.

 Al_2O_3 : The altered granitoids have 14-16 wt% aluminum, with peaks at 19 and 20 wt% for the upper two meters. The mag-diabase and its breccia rock vary within the range of 9-14 wt% with

Figure 3-1: Distribution of major elements in rock core VNR-101.

Figure 3-2: Distribution of major and minor elements in rock core VNR-101

three lower values at 4, 7 and 8 wt%. The quartz and carbonate veins, as well as their brecciated sections vary within 0.3-11 wt% with most values either at 1-2 wt% or at 6-8 wt%. The mica schists contain 12-15 wt% Al_2O_3 .

 Fe_2O_3 : The total iron content within the altered granitoids vary within 2-4 wt%, with peaks up towards 7 wt%. For all other lithologies except the mag-diabase rocks the total iron content is generally below 7 wt%, with a few peeks up towards 11 wt%. The mag-diabase has values within 15-24 wt%, while a few samples of the mag-diabase breccia show values as low as 8 and 11 wt%.

CaO: The altered granitoids have values below 2 wt% calcium, with a peak at 3.5 wt%. The other lithologies however, except the carbonate vein rocks, have below 10 wt% CaO. Mag-diabase varies around 4-9 wt%, with values getting as low as 1.5 wt% at the contacts towards the neighboring lithologies. Quartz vein and quartz vein breccias generally have below 5 wt%, with a few peaks up towards 12 wt%, and mica schist contains 6-15 wt%. The carbonate veins vary within the range of 12-35 wt% CaO, with peak values at 94 and 76 wt% which correspond to the two samples with low silica content mentioned in the SiO₂-section .

MgO: Magnesium has an almost identical distribution trend to that of iron. For all lithologies except the mag-diabase rocks, the content of MgO generally lies below 3 wt% with peaks up towards 4.8 wt% for the vein rocks and 5, 7 and 10 wt% for the more iron-rich parts of the mica schists. The mag-diabase rocks however vary within the range of 4-7 wt%, with a few peaks up towards 9 wt% and a couple of lower values for the mag-diabase breccias at 2.7 and 4.6 wt%.

Na₂O: The altered granitoids vary in the range of 4.4-8.5 wt% sodium. The values of Na₂O for the mag-diabase lie around 2 wt% with one peak up towards 3 wt%, and lower values down towards 0.07 wt% in the brecciates sections as well as at the contacts towards neighboring lithologies. All the vein rocks generally have values below 3 wt%, while the quartz vein breccias vary between 3-4 wt and the carbonated veins have peaks at 4 and 5.2 wt%. The mica schist have levels at 2.3-4.3 wt% with two lower values around 1 wt% and two higher at 6.1 and 7.7 wt%.

 K_2O : The altered granitoids have potassium-values at around 1.5 wt%, but decreasing as the Na₂O-values increase towards contact to the mag-diabase. The mag-diabase and its breccia rocks vary between 0.6 and 1.3 wt%, with two lower values at 0.2 and 0.4 wt%. The breccia rocks vary within the range of 0.02-0.93 wt%. Mica schist vary in the range of 1.6-3.6 wt%, with lower values at 0.3 and 1 wt%, and a peak at 4.9 wt%.

39

3.3.2 Minor elements

The variation of minor elements in rock core VNR-101 is shown in Figure 3-2. The values are recalculated to volatile-free form and are given in Table B.1, Appendix B.

 TiO_2 : The titanium content range within 0.2-0.5 wt% for the altered granitoids, and within 0.3-0.6 wt% for the mica schists. The mag-diabase rocks generally vary around 3.5 wt% with peaks up towards 4.1 wt%, and values decreasing to 0.9 wt% for the brecciated parts as well as the parts bordering towards the quartz vein rocks. The vein rocks have values below 0.3 wt% TiO₂, with a few peaks between 1-1.6 wt%.

MnO: Manganese shows the same type of distribution throughout the lithostratigraphy as iron and magnesium. Except for the mag-diabase rocks the values generally lie around 0.1 wt% for all lithologies with a few peaks up towards 0.45 wt%. The mag-diabase rocks generally lie in the range of 0.3-0.5 wt% with peaks towards 0.86 wt% and lows down to around 0.2 wt% MnO.

 P_2O_5 : The distribution trend of phosphorus through the entire stratigraphy is more or less identical to that of titanium. The altered granitoids and the mica schists contain P_2O_5 in the range of 0.05-0.08 wt% with peaks at 0.13 wt%, while the vein rocks generally have lower values, not often exceeding 0.05 wt% except for the carbonate veins which peak at 0.2 wt%. The mag-diabase rocks show the highest values, generally within 0.25-0.45 wt% P_2O_5 .

The rock cores were also analyzed for Cr_2O_3 , but these values are not shown within the lithological or geochemical logs since most samples were under the detection limit, and only around hundred samples distributed on all lithologies showed values between 0.02 and 0.04 wt% chromium. However, there are some higher values of 0.07, 0.08, 0.15 and 0.18 wt% within the mica schists in VNR-101 and VNR-102 (Table B.1, Appendix B.)

3.3.3 Trace elements

The distribution of selected trace elements from the analyses of rock core VNR-101 is illustrated in Figure 3-3, and values are given in Table B.2, Appendix B.

Ba: Barium shows an almost identical distribution trend as potassium (Figure 3-2). The altered granitoids have levels mostly between 300 and 400 ppm, which decrease when getting closer to the contact towards the mafic intrusives. For the mag-diabase rocks the values generally lie around 100 ± 40 ppm, with a few peaks around 200 ppm. The carbonate vein rocks vary greatly from 5 to 100 ppm, and for the quartz vein rocks the range is within 5-200 ppm. For the mica schists there is a steady increase upwards in the stratigraphy from 20 to 670 ppm, except for the upper two meters which contain 290 and 340 ppm Ba.

Figure 3-3: Distribution of trace elements in rock core VNR-101.

Figure 3-4: Distribution of base metals in rock core VNR-101.

Sr: The altered granitoids have strontium levels around 80 ppm, with values increasing up to around 200 ppm when getting closer to the intrusive contact. The mag-diabases vary within 15-120 ppm Sr with a peak at 207 ppm, and the brecciated areas containing the smallest values. The vein rocks and mica schist have values below 88 ppm, and mostly in the range of 10-60 ppm.

Zr and Hf: Zirconium and hafnium show somewhat similar distribution trends through the lithostratigraphy. Both have low values within the granitoids and vein rocks, 0.25-25 ppm Zr and 0.05-0.7 ppm Hf, except for one peak within a 30cm rock core sequence dominated by carbonate veining at the contact towards the mica schists with 71.4 ppm Zr and 1.9 ppm Hf. The mag-diabases have values mainly in the range of 38-63 ppm Zr and 0.8-1.2 ppm Hf, both with somewhat lower values downwards in the stratigraphy towards the altered granitoid. The highest values are found within the mica schists with 73-102 ppm Zr and 2.1-3.2 ppm Hf.

Nb and Y: niobium and yttrium have almost identical distribution trends throughout the stratigraphic column. Within the altered granitoids Nb show steady values around 4 ppm and Y at 4-9 ppm. Vein rocks and mica schists generally do not exceed Nb-levels at 5 ppm except for a few peaks at 6-8 ppm, and the levels of Y range from 0.4 to 45 ppm with one peak at 70.6 ppm. The magdiabases show the highest values for both elements, generally 15-25 ppm Nb and 35-77 ppm Y.

U: The uranium content ranges within 0.4-1 ppm in the altered granitoids, except for one peak at 5.7 ppm. The levels are about the same for the mag-diabases as for the granitoids with a few higher values at around 1.5 ppm. The vein rocks generally don't exceed uranium values of 0.6 ppm except for a few peaks in the range of 0.8-2.5 ppm. The highest levels are found within the mica schists at 1.3-2 ppm uranium, and peaks at 2.3 and 3.6 ppm.

3.3.4 Base metals

The variation in base metals in rock core VNR-101 is given in Figure 3-4 and Table B.2, Appendix B.

Cu: Copper levels are below 100 ppm for the altered granitoids, and for the mica schists they don't even reach 5 ppm. There is a steady increase for the mag-diabases going up through the stratigraphic column from around 100 ppm to around 700 ppm with a maximum value of 3400 ppm within a 20cm section at 114.8-115 meter depth, and some peaks in the range of 900-2300 ppm. For the quartz veins the lowest values as low as 200 ppm, are in the central part, but increasing towards the contact to the neighboring lithologies to around 3000-5000 ppm with peaks around 6000 ppm and even one as high as 11150 ppm at 92.4-92.75 m depth. For the carbonate veins the values are in the range of 1000-6000 ppm except for two values at around 100 ppm and one at 500 ppm.

Zn: As with copper the zinc levels are low for the altered granitoids and mica schists, not exceeding 50 ppm Zn. The mag-diabases have values in the range of 50-250 ppm, and one peak at

900 ppm in a brecciated part. The carbonate and quartz veins have a few samples with peak values at 1000 and 1400 ppm, while others are almost barren. However, some of the areas of the brecciated quartz veins contain zinc grades at around 13000 ppm and 24000 ppm, and within a twenty cm section at 72.45-72.65 meter depth there is approximately 73000 ppm of zinc.

Pb: The lead content within altered granitoids and mica schists are below 4 ppm except for one peak at 7.5 ppm. The mag-diabases range at 1-8 ppm with two peaks at 13 and 26.5 ppm, and the values for the vein rocks are found within 1-102.5 ppm. Pb correlates fairly well with Zn.

Ni: The nickel values in the altered granitoids increase from 2.8 ppm to maximum 18.2 ppm towards the intrusive mafic contact. The mag-diabases contain 16-49 ppm, decreasing upwards in the stratigraphy. The vein rocks generally do not exceed 5 ppm, but have a few peaks up towards 16 ppm. The nickel values found within the mica schists vary within 7-36 ppm, with one peak at 80.9 ppm.

3.4 Rock-core VNR-302

3.4.1 Major elements

The distribution of major elements in rock core VNR-302 is shown in Figure 3-5 and 3-6. The analyses have been recalculated to volatile-free form and are given in Table B.1, Appendix B.

 SiO_2 : The silica content is at 74-78 wt% for the granitoid rocks and thus a little higher than for the granitoids within rock core VNR-101, with a few values steadily decreasing to 69 wt% getting closer to the intrusive contact. The diabase rocks gently increase from 55 to 66 wt% going up in the stratigraphy, getting more brecciated and containing a few peaks around 70 wt%. Quartz vein breccias have values at 74-84 wt%, and the carbonate vein rocks vary greatly within 25-75 wt% with the highest values found within the brecciated carbonate veins.

 Al_2O_3 : The granitoid rocks contain 11-15 wt%. The aluminum content steadily decreases from 15 to 7.8 wt% for the diabase rocks, as the silica content increases, with the lowest values found in the brecciated parts. The carbonate vein rocks have values within 0.2-7.2 wt%, while the brecciated quartz and carbonate veins are at 7.6-11 wt% with a peak at 14 wt% and a low at 4 wt%.

 Fe_2O_3 : The total iron content within the granitoids and vein rocks are generally between 1.3 and 3.3 wt%, with a few peaks up towards 5.5 wt% and lows down at 0.6 wt%. The diabase rocks contain 10-15 wt% iron, which however is only half of what the values found in the mag-diabase in VNR-101 are.

Figure 3-5: Distribution of major elements in rock core VNR-302.

Figure 3-6: Distribution of major and minor elements in rock core VNR-302.

CaO: The calcium content within granitoids, diabase rocks and the quartz vein breccias generally ranges between 0.75 and 4 wt%, with a few peaks up towards 7.7 wt%. The carbonate vein rocks vary greatly between 4.8 and 74 wt%, with the lowest values for the brecciated parts.

MgO: As for VNR-101 magnesium has an almost identical distribution trend to that of iron. The values for granitoids and vein rocks do not exceed 2 wt%, but generally lie in the range of 0.4-1 wt%. The magnesium content for the diabase rocks are within 4.7-6.5 wt%.

 Na_2O : The sodium content for the granitoid rocks lies on a steady 3.8-4.8 wt% with a couple of lower values down towards 3 wt%. For the remaining lithologies the values generally lie in the range of 0.5-3.5 wt%, with a few lower values down towards 0.06 wt% and a few peaks up towards 4.3 wt% Na_2O .

 K_2O : The granitoid and diabase rocks have a potassium content in the range of 0.9-3 wt%, with peaks up towards 3.9 wt% for the granitoids and 6 wt% for the diabase rocks. The vein rocks contain 0.4-2 wt% with peaks towards 3.3 wt%. The potassium content in the granitoids is almost the double of what is found in VNR-101, and almost four times as much for the diabase rocks in this core as that for the mag-diabases in VNR-101.

3.4.2 Minor elements

The distribution of the volatile-free minor elements in rock core VNR-302 is illustrated in Figure 3-6, and the values are found in Table B.1, Appendix B.

 TiO_2 : The distribution of titanium follows the same trend as that of iron and magnesium. The levels in the diabase rocks vary between 0.45 and 0.97 wt%, while for all other lithologies the values don't exceed 0.31 wt%. The titanium content in the diabase in this rock core only constitutes one fourth of that in the mag-diabase in VNR-101.

MnO: The granitoids have manganese values of 0.02-0.05 wt%, with one peak at 0.09 wt%. The diabase rocks vary within the range of 0.19-0.3 wt% and the vein rocks within: 0.03-0.3 wt%, with the smallest values in the breccias. The manganese content in the diabase is about half of that for the mag-diabase in VNR-101.

 P_2O_5 : Phosphorous seems to follow the same distribution trend as that of titanium. The granitoid rocks vary in the range of 0.03-0.08 wt%, the diabases within 0.09-0.17 wt% with the lowest values in the breccias, and the vein rocks don't exceed levels of 0.06 wt%. The phosphorous values within the diabase only seem to constitute one half or one third of the values in the VNR-101 mag-diabase.

3.4.3 Trace elements

The distribution of selected trace elements from the analyses of rock core VNR-302 is illustrated in Figure 3-7, and values are given in Table B.2, Appendix B.

Ba: The barium level within the granitoid and diabase rocks vary greatly within 240-740 ppm, with one peak at 870 ppm for the granitoids and peaks up towards 1060 ppm for the diabase rocks. The vein rocks have levels around 80-450 ppm, with a few values as low as 10 ppm and some peaks between 620 and 960 ppm. As in VNR-101, the distribution trend of barium follows that of potassium. The barium levels however are two-three times larger for the diabase and vein rocks found in this rock core than for the mag-diabase and vein rocks found in VNR-101.

Sr: The granitoid rocks have strontium levels between 94 and 200 ppm. Except for a few peaks at 200-300 ppm, the diabase rocks decrease upwards in the stratigraphy from around 160 ppm to 15 ppm towards the contact to the carbonate rocks. The vein rocks vary within 17-90 ppm, with a peak at 150 ppm.

Zr and Hf: As for VNR-101 zirconium and hafnium show somewhat similar distribution trends through the lithostratigraphy, even though a little less obvious in this core. The granitoids and diabase rocks vary in the range of 10-44 ppm Zr and 0.4-1.7 ppm Hf. The vein rocks contain lower values around 0.5-15.5 ppm Zr and 0.05-0.6 ppm Hf, with one peak within a sample of quartz vein breccia at 39 ppm Zr and 1.4 ppm Hf.

Nb: The values for niobium are approximately the same for all lithologies through the stratigraphy. None of them exceed 6 ppm, but the lowest values are found within the vein rocks, and the highest within the diabase rocks. These diabase rocks however contain only one half or one third of the niobium present within the mag-diabase rocks of VNR-101.

Y: The granitoids don't exceed 10 ppm yttrium, while the diabase rocks decrease from around 15 to 3 ppm going upwards in the stratigraphic column. The mica schists vary within 3.7-15.9 ppm, with peaks at 20.5 and 26.4 ppm. The yttrium values for the diabase rocks in this core are many times smaller than the ones within the mag-diabase in VNR-101.

U: Uranium varies within the range of 0.1-1.1 ppm for all lithologies, except for a few peaks within the range of 1.6-4.1 ppm for the granitoid rocks.

3.4.4 Base metals

The distribution of base metals from the analyses of rock core VNR-302 is illustrated in Figure 3-8, and values are given in Table B.2, Appendix B.

Relative depth(m)	Litholoav	Ba (ppm)	Sr (ppm)	Zr (ppm)	Hf (ppm)	Nb (ppm)	Y (mag)	(mag) U	Elevation (m.a.s.l.)	
0 0		е Е	Ø-	e E		e E	e E	e E	- 35	Legend
									- 30	Overburden Carbonate vein breccia
20 -	A P								- 25	Quartz vein breccia
					Ē		Ę		- 20	Granitoid breccia
	R								- 15	Granitoid
40 -									- 10	
									- 5	
	A B B						·····		0	
60 -	A								5	
									10	
									- 15	
80 -	· · ·								20	
									25	
				THAT					- 30	
100-									- 35	
									- 40	
		00 00	8 8 8 8	0		0	0			

Figure 3-7: Distribution of trace elements in rock core VNR-302.

Figure 3-8: Distribution of base metals in rock core VNR-302.

Cu: For the granitoid rocks, copper generally doesn't exceed 300 ppm, however there are a few peaks within the altered granitoids and granitoid breccias reaching up to 870 ppm. The diabase rocks vary within 1000-3000 ppm, with some smaller values getting as low as 40 ppm at the contact towards the granitoid rocks, but also with a few peaks reaching 4200 ppm. The vein rocks have values in the range off 200-1000 ppm with one peak at 4650 ppm for a section of quartz vein breccia. In this core the Cu-mineralization is mainly situated within the diabase rocks, while in the VNR-101 it is mainly found within the quartz vein rocks.

Zn: The granitoid rocks have zinc values below 60 ppm, except for a couple of smaller peaks at 117 and 277 ppm and one larger peak at 1920 ppm. The diabase rocks vary within the range of 77-182 ppm, with one peak at 3430 ppm within the diabase breccia at the contact towards the carbonate vein rocks. The vein rocks generally have values within 7600-18900 ppm, with a few lower ones down towards 650 ppm, and a few samples with really high Zn-grades with peaks between 29500 and 47500 ppm. In this core it is clear that zinc has a correlation with the vein rocks, especially the carbonated ones.

Pb: The granitoids and diabase rocks have lead values within the range of 1.9-8.3 ppm, with two peaks at 10.1 and 19.7 ppm for the diabases. The vein rocks are the one with the highest values, with a general range of 2.8-38.3 ppm, with peaks around 50, 60 and 80 ppm. As with VNR-101 Pb is associated with Zn-rich sections.

Ni: The granitoid and vein rocks have nickel values between 0.1 and 4.9 ppm, with the vein rocks showing the lowest values. One granitoid sample shows a peak at 8.8 ppm at the contact towards the diabase rocks, which have values around 17-30 ppm.

3.4.5 Harker variation diagram

The values of the major and minor elements from the rock cores retrieved from all the seven bore holes at Vannareid are also plotted in a classic Harker variation diagram, with SiO_2 along the abscissa to show the trends mentioned within this entire chapter in another manner (Figure 3-9).

Figure 3-9: Harker variation diagram of the major and minor elements within the samples from all the seven rock cores retrieved at Vannareid

4 Minerals and mineral chemistry

Little or no work has previously been done on the rocks in the immediate proximity of the Vannareid Cu-Zn association. Thus, mineral chemical analysis has been performed to verify observations done with the optical microscope. The results are presented in Appendix C, and cation normalization has been used to recalculate the mineral formula.

4.1 Analytical methods

Mineral chemical analyses on the prepared thin sections were carried out with an electron microprobe (EMP) at the geochemical laboratory at the Department of Geology, University of Oslo.

The method used will be described briefly in the following subsection based on Winter (2002) and Blatt et al. (2006).

4.1.1 Electron Microprobe (EMP)

The electron microprobe is a tool with the ability to determine the chemical composition of areas on the sample surface as small as $1 \mu m$, making it possible to analyze single mineral grains or even parts of grains. The sample gets bombarded with a focused beam of high-energy electrons and emits fluorescent x-rays at different wavelengths characteristic of the different elements being analyzed.

The EMP-machine also produces a signal of back-scattered electrons (BSE). This technique is based upon the fact that heavier atoms are being scattered differently than lighter ones. It produces a BSE-image where the denser minerals appear lighter and the less dense appear darker, and can among other things be used to determine compositional changes.

Altogether sixty-three quantitative analyses of silicates and sulfides were conducted on minerals in twelve thin sections with a CAMECA SX100, where eleven samples are from the VNR-101-core and one is from the VNR-302-core. The operating conditions were 15 kV accelerating voltage and a beam current of 15 nA. Quantitative analyses were performed with a focused beam with the wavelength dispersive system (WDS) and qualitative analyses were performed with the energy dispersive system (EDS). The standards used for calibration for the quantitative analyses are as follows (with the elements which were calibrated for in brackets): wollastonite (for the calibration of Si and Ca), Al₂O₃ (Al), MgO (Mg), pyrophanite (Ti and Mn), albite (Na), orthoclase (K), Cr₂O₃ (Cr), ZnS (Zn and S), PbS (Pb) plus the metals Fe, Cu, Co and Ag.

4.2 Silicates

4.2.1 Amphibole

Amphiboles are only observed within the mag-diabase rocks, and eight analyses were performed on amphiboles within the thin sections of the mag-diabase section in rock core VNR-101 (Table C.1, Appendix C). In thin section the amphiboles appear as elongated grains which are green in plane-polarized light (Figure 2-5 c) and d)). They are high in Ca-content, and thus are classified within the calcic clinoamphiboles (Nesse, 2000). Fe, Mg and K are also abundant, so these amphiboles are most likely iron-rich hornblendes.

4.2.2 Light mica

The analyses of the light micas have been taken from the granitoids in rock core VNR-302, as well as the mica schist and quartz vein breccias in VNR-101 (Table C.2, Appendix C). Light mica appears within all the lithologies present at Vannareid. Grains on the scale of 0.1-0.5mm are observed, but they are commonly observed as very fine grained varieties overgrowing grains of plagioclase, or in bands ranging from microns to several millimeters thick (Figure 2-3 c) and d) and Figure 2-6 c) and d)). Fine-grained light mica is also called sericite, and is commonly produced by the hydrothermal alteration of feldspar or other K- and/or Al-bearing minerals (Nesse 2000).

4.2.3 Garnet

Garnets were observed within the mag-diabase rocks, coexisting with hornblende in some thin sections, while coexisting with chlorite in others (Figure 2-5 c) and d)). Thirteen analyses were done on garnets within the mag-diabase section in rock core VNR-101 (Table C.3, Appendix C). In thin section they appear as pale yellow in plane-polarized view with nice undeformed crystal habits, a good indicator to post-deformational growth. The garnets are iron and calcium rich varieties, and Mn also constitutes a significant part of the mineral chemistry. These garnets are most likely of the andradite-type, with Mn substituting for Fe (Nesse, 2000).

4.2.4 Biotite

Biotite was only observed in the unaltered granitoid rocks within the thin section from the bottom of rock core VNR-302, at 74.1 meters relative depth (Figure 2-2), and only two analyses were taken of these (Table C.4, Appendix C). The biotites are breaking down to chlorite along fracture surfaces and

Figure 4-1: Silicate minerals from Vannareid. a) BSE-image of inhomogeneous chlorite, thin section VNR-101-15.5. b) Euhedral quartz with a radial outer rim in plane-polarized light, VNR-102-39.6. c) Figure 4-1 b) in cross-polarized light

grain boundaries, and they show characteristic pleochroic alteration haloes within the grains due to radioactive inclusions (Nesse, 2000).

4.2.5 Chlorite

Chlorite is observed within all lithologies present at Vannareid (Figure 2-3 c) and d), Figure 2-6 e) and f)). In the mica schist and diabase rocks they often appear in bands making up the foliation in the rock, and they have an inhomogeneous composition (Figure 4-1a). Within the granitoids they were

observed as alteration products on grains of biotite, along grain boundaries and fracture surfaces. Altogether sixteen analyses were done on chlorite from mica schists, vein rocks and mag-diabases from rock core VNR-101 as well as granitoids in rock core VNR-302 (Table C.5, Appendix C). The chlorites within the diabase and granitoids appear as Fe-rich varieties with some Mn present. In the mica schist they are more Mg-rich, and in the quartz vein breccias they have a composition lying somewhere in between the two.

4.2.6 Quartz

Quartz is found within all lithologies present in the rocks at Vannareid, often as anhedral recrystallized varieties with undulatory extinction within the schists, diabases and granitoids (Figures 2-2 to 2-7). In the veins however they show perfect primary crystallization structures. However, they also exhibit a type of zonation that appears as an unaltered core, surrounded by an inner rim with a radiant appearance, followed by an unaltered outer rim (Figure 4-1 b) and c)).

4.2.7 Feldspar

Feldspar minerals are found within all thin sections from the rock cores at Vannareid. In the mica schists, intrusive rocks and fragments of the vein rocks the feldspar appeared as plagioclase. Plagioclase grains within the thin sections were not analyzed quantitatively, but rather determined qualitatively with the energy dispersive system (EDS) of being pure albite. Within the unaltered granitoid rocks, some 15-20 % alkali feldspar with the distinctive tartan plaid pattern was observed (Figure 2-2 c) and d)). This is typical of microcline crystals (Nesse, 2000).

4.3 Sulfides

Sulfides occur mainly in close relation to the hydrothermal veins in rock samples from Vannareid. They appear as disseminated minerals mainly within the mag-diabases, but are also observed within the diabase rocks. Accessory pyrite is found within micaceous bands in the mica schists. Fifteen analyses of sulfides were made from the quartz vein rocks and mag-diabases in rock core VNR-101. They are given in (Table C.6, Appendix C) in atomic weight percent as well as normalized values to obtain the mineral formulas of the different sulfides.

From observations within the optical microscope (Figure 4-2 a) through f)) the major sulfide appearing within the samples is pyrite, followed by sphalerite and chalcopyrite. Galena is also often

Figure 4-2: Sulfides from Vannareid. a) Chalcopyrite and pyrite within quartz taken in cross-polarized light, thin section VNR-101-50.5 b) Figure 4-2 b) in reflected light. c) Sphalerite, pyrite and galena in cross-polarized light, thin section VNR-302-19.2 d) Figure 4-2 c) in reflected light. e) BSE-image of sphalerite, pyrite, chalcopyrite and arsenopyrite within quartz. Accessory apatite is also present. Thin section VNR-101-72.5 f) BSE-image of homogeneous sphalerite in quartz, thin section VNR-101-72.5

observed, and arsenopyrite is found in accessory amounts. No relative crystalizing order is possible to obtain, since all sulfides are found as grains within or along the rim of the other sulfides. However, arsenopyrite is the only sulfide occurring along the rims of larger pyrite grains, suggesting is crystallized late in the process.

4.4 Carbonates

Carbonates are found within all lithologies at Vannareid either in close relation to hydrothermal veins or as blobs filling spaces between other mineral grains (Figure 2-7 c) and d)). The crystals vary from euhedral to anhedral, and with sizes ranging from tens of microns up to several millimeters. No quantitative analyses were done of the carbonates present within the samples. However, qualitative determination was done with the EDS, and all grains that were checked turned out to be pure calcite.

4.5 Oxides

Magnetite appears mainly within the mag-diabase rocks (Figure 2-5 c) and d)). Along with some of the sulfides they align in an oriented manner within the rocks, resembling some sort of foliation. Ilmenite was detected with the EMP in the mag-diabase rocks, and hematite often appears as needle-like mineral shapes in veins together with or neighboring to epidote veins.

4.6 Accessory minerals

The accessory minerals observed within the thin sections of the rock cores from Vannareid will briefly be described in the following.

Tourmaline: Tourmaline is found within chlorite rich varieties of the mica schist (Figure 2-6 e) and f)). They appear green in plane-polarized light and either with prismatic or triangular grain shapes depending on the grain orientation. They show a clear zonation with a darker core and lighter rim, and on the EDS they appear as Fe, Mg and Na-rich

Epidote/clinozoisite: The epidote group minerals appear in accessory amounts. In the granitoids they appear as clinozoisite and are in the size range of 0.1-0.5 mm (Figure 2-2 c) and d)). The epidote variety with the distinct pistachio color often occur as fracture filling veins cutting through the diabase and mag-diabase rocks. Some places they also occur as tiny epidote crystals in close relation to chlorite-rich bands.

Apatite and titanite: Apatite has been observed as accessory minerals within the granitoid rocks, while titanite was detected with the EDS within the mag-diabase rocks.

5 Discussion

5.1 Metamorphism

The metamorphic grades within the northern part of Vanna has not exceeded greenschist facies within the granitoid rocks and mica schist sections as indicated by the mineral assemblage of quartz, plagioclase, white mica, biotite and chlorite (Opheim & Andresen, 1989). This is consistent with the mineral assemblages observed within the lithologies at Vannareid.

For the mafic rocks on northern Vanna the common mineral assemblage is hornblende, biotite, epidote, plagioclase and garnet, indicating conditions typical of upper greenschist facies and/or lower amphibolite facies (Opheim & Andresen, 1989). Based on observations within the optical microscope within the mafic sections from the rock core samples collected at Vannareid, the same mineral assemblages are observed, though with lesser epidote and biotite.

Due to the high influence of hydrothermal activity within the rocks in close proximity of the Vannareid-Burøysund fault zone at Vanna, it is difficult to distinguish if chloritization and sericitization is due to metamorphic alteration or hydrothermal alteration.

5.2 Igneous basement rocks

The application of major element chemistry is widely used in the classification of rocks within igneous petrology. According to Rollinson (1993), the best major element diagram to use for plutonic rocks is the R1-R2 plutonic chemical variation diagram by De La Roche et al. (1980), where values for the major elements are recalculated to cations. It uses the entire major element chemistry of the rock in the classification.

In the R1-R2 diagram the samples from the plutonic rocks at Vannareid generally plot within the granite and granodioritic field (Figure 5-1a). Three of the samples plot within the syenitic field. These are the altered granitoids in rock core VNR-101 which are close to the contact towards the mafic intrusion (Figures 3-1 through 3-4). Their chemical composition probably differ so much from the rest of the samples due to contact metamorphism caused by the mafic intrusion. Previous workers have classified the plutonic rocks on northern Vanna as undifferentiated tonalites (Binns et al., 1980; Johansen, 1987; Opheim & Andresen, 1989) while only two samples from the rock cores at Vannareid plot within the tonalitic field. Some samples plot outside the given fields of the R1-R2 diagram. These are the ones that have high contents of quartz and carbonate veins, but still were

Figure 5-1: Classification diagrams for plutonic rocks. a) the R1-R2 plutonic chemical variation diagram by De La Roche et al. (1980). b) the Y+Nb vs. Rb discrimination diagram by Pearce et al. (1984), where ORG = Ocean-ridge granites, VAG = Volcanic-arc granites, WPG = Within-plate granites, COLG = Collisional granites. Symbols as in Figure 3-9.

classified as granitoids during the logging. The observations made with optical microscopy also point to the rocks being of granitic to granodioritic composition. The range in classification might be due to fractional crystallization of the pluton, or possibly variation in due to inhomogeneous alteration.

When plotting trace element values from the granitoid rocks in the Y+Nb vs. Rb discrimination diagram by Pearce et al. (1984), the samples all plot within the field of volcanic-arc granites (VAG), which include granites in oceanic arcs dominated either by tholeiitic or calc-alkalic basalts as well as granites in active continental margins.

5.3 Mafic intrusive rocks

Data from the whole-rock analyses of the intrusive rocks within the drill cores retrieved at Vannareid have been plotted in different variation, discrimination and normalized multi-element diagrams.

There are two different intrusive rocks appearing within the rocks cores from Vannareid. The one called mag-diabase is high in Fe, Mg, Ti, Mn and P. Within thin sections is consists generally of hornblende, and can thus be called an amphibolite, and is probably an altered basalt. The other intrusive rock is called only diabase, but the thin sections made from these rocks are so brecciated and affected by alteration that it is difficult to say anything about the original rock. However, based on silica content the diabase rocks can be classified as more mafic-intermediate than mafic, and are thus more likely to end up in the more andesitic field.

Figure 5-2: Classification diagrams for volcanic rocks. a) The AFM-diagram. b) The La-Y-Nb diagram of Cabanis and Lecolle (1989). c) The mid-ocean ridge basalt (MORB) diagram with normalizing values by Pierce (1983). The calues for Sc and Cr are from Pearce (1982). The Vannareid rock cores were not analyzed for Sm and Yb. d) The TiO_2 vs. Zr/P_2O_5 discrimination diagram of Winchester & Floyd (1976). e) The TiO_2 vs. Y/Nb discrimination diagram of Floyd & Winchester (1975). Symbols and symbol colors for Figures 5-2 a), b) and c) as in Figure 3-9. Symbols for Figure 5-2 d) and e): Plagioclase phyric dykes are large open black circles and gabbronoritic dykes are shown in large filled squares (Kullerud et al., 2006). The brown symbols are those of the calc-alkalic diabase rocks which generally are shown in black-colored symbols, while the green symbols are those of the tholeiitic mag-diabase rocks.

The large difference in Fe, Ti and Mg in the two diabases might be because fractionation processes. However, when plotting their major element values in the classical AFM-diagram they plot in different trend fields, leading to the assumption that they are not from the same event. The magdiabases plot within the tholeiitic field with the dividing lines both from Kuno (1968) and Irvine and Baragar (1971). The diabase-values are on the border of both dividing lines, but the majority of samples plot in the calc-alkaline field (Figure 5-2 a).

In the La-Y-Nb diagram of Cabanis and Lecolle (1989), the mag-diabase plots in the field of late- to post-orogenic intra continental domains, and the diabase within the arc calc-alkaline field, pointing to a continental signature of the rocks (Figure 5-2 b). The studied mafic rocks in Kullerud et al. (2006) plot in the same fields.

Normalized multi-element diagrams are histograms that plots the abundance of a set of elements in a sample relative to that in a known standard. However, the variation in the pattern of the relative abundances are more important than the abundances themselves, and these diagrams are particularly useful of depicting basalt chemistry (Rollinson, 1993), and can be used to distinguish the source areas of different magmas (Blatt et al., 2006). The widely used mid-ocean ridge basalt (MORB) diagram with normalizing values by Pierce (1983) has been chosen to show the variation within the mafic rocks at Vannareid (Figure 5-2 c). Within the MORB-normalized diagram the elements are ordered with large ion lithophile elements (LILE) on the left and high field strength elements (HFSE) on the right, with the compatibility increasing outwards from Ba-Th. The calcalkaline rocks show a jagged pattern and are enriched in the alkali elements and depleted in Nb-Ta and Zr-Hf. This is a typical mature arc signature (Rollinson, 1993). The Mag-diabase rocks are more enriched in the alkali elements. The only prominent depletion within the mag-diabase rocks is within Zr and Hf. The mag-diabase show more of an intra-continental plate basalt signature (Rollinson, 1993).

In Figure 5-2 d) and e), the values from the intrusive rocks at Vannareid are compared to the mafic dykes at Ringvassøya (Kullerud et al., 2006a). The plots are the TiO_2 vs. Zr/P_2O_5 discrimination diagram of Winchester & Floyd (1976) and the TiO_2 vs. Y/Nb discrimination diagram of Floyd & Winchester (1975). In figure 5-2 d), both the diabases from Vannareid plot within the tholeiitic field, while in figure e the mag-diabases plot just outside the continental tholeiitic field due to high TiO_2 -values, while most of the diabase samples plot within both the mid-ocean ridge basalt field as well as the continental tholeiitic field.

5.4 Mica schists

The mica schists sections at Vannareid were first described by Pettersen (1882), where he named them Tromsø mica schist. Binns et al. (1980) interpreted these schistose rocks of being highly sheared basement orthogneisses. Johansen (1987) correlated them with the metasedimentary formations in southern Vanna, the Vanna group, however the rocks in the south are substantially less deformed than the schist in northern Vanna. Opheim & Andresen (1989) interprets these rocks of being part of a mylonitized gneiss sheet with interlayered metasedimentary rocks, and names them the Skipsfjord Nappe. If these sericitized schists are mylonitized basement rocks or have a sedimentary origin is difficult to say due to the strong ductile deformation, which have sheared and altered the rock. The mica schist are possibly a part of the Skipsfjord Nappe sequence described by Opheim & Andresen (1989). However as they describe it as mylonitic tonalite, the observations and geochemistry points toward a sedimentary origin, especially due to the high levels of chromium which might have been caused by incorporated volcanites since enriched levels of Cr is generally due to the presence of mafic/ultramafic rocks (Blatt et al., 2006).

The correlation with the Vanna Group in southern Vanna is very likely and it also supports the theory about deformation with foreland fold and thrust belts (Bergh et al., 2007).

5.5 Ore genesis of Cu-Zn mineralization

Not unexpectedly, there is no considerable mineralization within the granitoid rocks. Maybe in brecciated areas where there are quartz and carbonate veins, but not as dissemination mineralization within the rock itself. The same goes for the mica schists. The mineralization is localized in the vein and breccia rocks, as well as within the mafic dykes, as dissemination mineralization.

The mineralization grade seems to go up at the contacts between different lithologies (Figures 3-4 and 3-8). It also seems like the Cu-mineralization mainly is hosted within quartzdominated vein systems and that the Zn-mineralization mainly is hosted within the carbonatedominated vein systems (Figures 3-4 and 3-8). In Figure 5-3 the variation of Cu, Zn and Pb is plotted against the content of SiO₂ and CO₂ within the vein rocks and mafic intrusives. It does look like there is a positive correlation between Cu and SiO₂ for the quartz vein rocks. However it also looks like there is a very steep positive correlation between Cu and CaO for the carbonate vein rocks. The highest Zn values are found within the quartz vein rocks, while the highest Pb-values are found within the carbonate veins. There is no correlation of the SiO₂- and CaO-levels within the mafic intrusives and the content of Cu and Zn.

Figure 5-3: Variation diagrams showing Cu, Zn and Pb plotted against the content of SiO₂ and CO₂ within the vein rocks and mafic intrusives. Symbols as in Figure 3-9.

The gangue minerals mainly consist of quartz and calcite with nice crystal shapes, possible due to open pore spaces or due to reduced pressure allowing the crystals to grow thus indicating a shallow crustal level. The major sulfides within the hydrothermal veins are pyrite, sphalerite, chalcopyrite, galena and accessory arsenopyrite.

The associated rocks of the Vannareid Cu-Zn mineralization are dominated by chlorite-quartz assemblages and sericite-quartz assemblages. This is quite typical of volcanogenic massive sulfide (VMS) deposit hydrothermal systems (Robb, 2005). However, no massive sulfide is observed within the study area, just sulfide mineralizations within an anastomosing system of quartz and carbonate veins with extensively chloritized and sericitized host rocks. A possible hypothesis on the nature of the mineralization suggests that the mineralized zone is the stockwork of a VMS deposit. This is also supported by Ojala et al. (2013). Also, according to Priyatkina et al. (2011) intrusive rocks on the southwestern side of Vanna were forcefully injected with a CO₂-bearing fluid that resulted in brecciation and alteration of the host rock. The rocks were also infiltrated at an earlier stage by a

hydrous fluid. However, the completely carbonated rock is now composed of albite, carbonate, quartz, and rutile. This might be a syngenetic event with the event causing the Cu-Zn mineralization at Vannareid.

The presence of mafic intrusives with mica schists, which quite likely are metasedimentary units, supports the geological environmental aspect of the VMS-hypothesis. The intrusives in the study are mafic-intermediate in composition. Even though the massive sulfide isn't present alongside the rest of the mineralization, an attempt of classifying the deposit would put it in the bimodal-felsic: deposits which are Cu-Zn-Pb rich and dominated by felsic volcanic rocks in a bimodal sequences thought to have formed at rifted continental margin arcs and back arcs (Galley et al., 2007), which is supported by the continental signature of the intrusive rocks (Figure 5-2). This matches that of the Kuroko type locality deposit.

In general Fennoscandian VMS-deposits are of great economic importance. However, at this point the Vannareid Cu-Zn VMS is not considered economic.

5.6 Structural control and remobilization

The Vannareid-Burøysund fault zone (VBFZ) is a brittle-ductile normal fault located on the northern part of Vanna (Opheim & Andresen, 1989; Grogan & Zwaan, 1997). The observations of the parallelism of foliation and fault plane in field view supports this idea. It might also have been a ductile shear zone which is locally reactivated by brittle deformation. Ductile shear zones of presumable Svecofennian age (approximately 1.75 Ga) are prominent features on Vanna (Bergh et al. 2007), and might have had a controlling effect on the localization of the VBFZ. According to Davids et al. (2013) parts of the semi-ductile fault zone is Permian. The normal-fault aspect of the VBFZ might have led to the assumed massive sulfide of the VMS deposit being downthrown and hid 3 km under the surface (Opheim & Andresen, 1989). The basement/cover contact is in fact a zone of weakness, and it is of tectonic origin. If the localization of the mineralization is primarily a petrographic feature is difficult to figure out, both are likely. However, the idea of the mineralization being remobilized due to the location of the VBFZ is favored.

6 Summary and conclusions

The Vannareid Cu-Zn deposit is situated in the northeastern part of the West Troms Basement Complex along the Vannareid-Burøysund fault zone, which separates basement rocks from cover rocks. The basement rocks are of granitic to granodioritic composition and were formed within a volcanic arc environment. In drill cores they appear as two structurally different rocks, one relatively unaltered type while the other is more sheared and altered. The granitoid rocks are intruded with mafic-intermediate dykes, where one type is tholeiitic and the other is calc-alkaline, both with a continental signature. The protolith of the mica schist cover-rocks is most likely of sedimentary origin, and the correlation with the metasedimentary rocks in southern Vanna is supported.

The economically important sulfide minerals appearing in the anastomosing network of quartz and carbonate veins within host rocks of the Vannareid Cu-Zn mineralization is sphalerite, chalcopyrite and galena. Arsenopyrite appears in accessory amount. The Cu-sulfides mostly appear within quartz-dominated vein systems while the Zn-sulfides mostly appear within carbonate-dominated vein systems. The host rocks are dominated by chlorite-quartz assemblages and sericite-quartz assemblages. The rocks at Vannareid have been subjected to greenschist facies to lower amphibolite facies metamorphism as well as hydrothermal alteration.

Field observations, geochemical and mineralogical analyses points toward the Vannareid Cu-Zn mineralization as being the stringer zone of a volcanogenic massive sulfide deposit. However, at this point it is not considered economic.
References

- Allen, R.L., Tornos, F., Peter, J.M. (2011): A thematic issue on the geological setting and genesis of volcanogenic massive sulfide (VMS) deposits. Mineralium Deposita, 46 (5-6), 429-430.
- Alsglobal.com: <u>http://www.alsglobal.com/Our-Services/Minerals/Geochemistry/Downloads</u> (Accessed on May 30th)
- Andresen, A. (1979): The age of the Precambrian basement in western Troms, Norway. Geologiska Föreningens I Stockholm Förhandlingar, 101, 291-298.
- Andresen, A. & Forslund, T. (1987): Post-Caledonian brittle faults in Troms: Geometry, age and tectonic significance. (Abstract). The Caledonian and Related Geology of Scandinavia. Symposium, Cardiff.
- Andresen, A. & Opheim, J.A. (1990): A reply: Basement-cover relationships on northern Vanna, Troms, Norway. Norsk Geologisk Tidsskrift 70, 185-186.
- Armitage, P.E.B., & Bergh, S.G. (2005): Structural development of the Mjelde-Skorelvvatn Zone on Kvaløya, Troms: a metasupracrustal shear belt in the Precambrian West Troms Basement Complex, North Norway. Norwegian Journal of Geology, 85, 117–132.

Arcticdrilling.no: <u>http://arcticdrilling.no/</u>(Accessed on March 13th, 2014)

- Bergh, S.G., Kullerud, K., Corfu, F., Armitage, P.E.B., Davidsen, B., Johansen, H.W., Pettersen, T. & Knudsen, S. (2007): Low-grade sedimentary rocks on Vanna, North Norway: a new occurrence of a Palaeoproterozoic (2.4-2.2 Ga) cover succession in northern Fennoscandia. Norwegian Journal of Geology, 87, 301–318.
- Bergh, S.G., Kullerud, K., Armitage, P.E.B., Zwaan, K.B., Corfu, F., Ravna, E.J.K. & Myhre, P.I. (2010): Neoarchaean to Svecofennian tectono-magmatic evolution of the West Troms Basement Complex, North Norway. Norwegian Journal of Geology, 90, 21–48.
- Bergh, S.G., Kullerud, K., Myhre, P.I., Corfu, F., Armitage, P.E.B., Zwaan, K.B. and Ravna, E.J.K. (2014): Architecture, Evolution and Possible Correlation with Fennoscandia. In Dilek, Y. and Furnes, H. (eds.), Evolution of Archean Crust and Early Life, Modern Approaches in Solid Earth Sciences. Springer, Dordrecht. 103-126.
- Binns, R.E., Chroston, P.N. & Matthews, D.W. (1980): Low-grade sediments on Precambrian Gneiss on Vanna, Troms, Northern Norway. Norges geologiske Undersøkelse, 359, 61-70.
- Blatt, H., Tracy, R.J. and Owens, B.E. (2006): Petrology: Igneous, Sedimentary and Metamorphic. Third Edition. W.H. Freeman and Company, New York. 530 pp.
- British Geological Survey. (2013): World Mineral Production 2007-2011. Keyworth, Nottingham: British Geological Survey. 76 pp.

- Cabanis, B. & Lecolle, M. (1989): Le diagramma La/10-Y/15-Nb/8: un outil pour la discrimination der series volcaniques et la mise en evidence des processus de mélange et/ou de contamination crustale. C.R. Acad. Sci. Ser. II 309, 2023-2029.
- Chroston, P.N. (1974): Geological Interpretation of Gravity Data between Tromsø and Øksfjord (Finnmark). Norges geologiske Undersøkelse, 312, 59-90.
- Corfu, F., Armitage, P.E.B., Kullerud, K., & Bergh, S.G. (2003): Preliminary U-Pb geochronology in the West Troms Basement Complex, North Norway: Archaean and Palaeoproterozoic events and younger overprints. Norges Geologiske Undersøkelse Bulletin, 441, 61–72.
- Corfu, F. (2004): U-Pb Age, setting and tectonic significance of the anorthosite-mangeritecharnockite-granite suite, Lofoten-Vesterålen, Norway. Journal of Petrology, 45, 1799–1819.
- Corfu, F., Kullerud, K. & Bergh, S.G. (2006): U-Pb constraints on the Late Palaeoproterozoic evolution of the West Troms Basement Complex, northern Norway (Abstract). Geological Society of Finland Bulletin, Special Issue 1, p.23.
- Dalsegg, E., & Koziel, J. (2013): Geofysiske målinger Vannareid og Fakken, Vanna, Karlsøy kommune, Troms. NGU rapport 2012.060. 38 pp.
- Davids, C., Wemmer, K., Zwingmann, H., Kohlmann, F., Jacobs, J., & Bergh, S.G. (2013): K–Ar illite and apatite fission track constraints on brittle faulting and the evolution of the northern Norwegian passive margin. Tectonophysics, 608, 196–211.
- De la Roche, H., Leterrier, J., Grande, C.P. and Marchal M. (1980): A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses its relationships and current nomenclature. Chem. Geol., 29, 183-210.
- Gaál, G., & Gorbatschev, R. (1987): An outline of the Precambrian evolution of the Baltic Shield. Precambrian Research, 35, 15–52.
- Galley, A.G., Hannington, M.D. & Jonasson, I.R. (2007): Volganogenic massive sulphide deposits, in Goodfellow, W.D., (ed.), Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods.
 Geological Association of Canada, Mineral Deposits Division, Special Publication, 5, 141-161.
- Gorbatschev, R., & Bogdanova, S. (1993): Frontiers in the Baltic Shield. Precambrian Research, 64, 3–21.
- Griffin, W.L., Taylor, P.N., Hakkinen, J.W., Heier, K.S., Iden, I.K., Krogh, E.J., Malm, O., Olsen, K.I., Omraasen, D.E. & Tveten, E. (1978): Archaean and Proterozoic crustal evolution in Lofoten– Vesterålen, N.Norway. Journal of the Geological Society, 135, 629–647.
- Grogan, P.W. og Zwaan, K.B. (1997): Geologisk kart over Norge, berggrunnskart Helgøy, M 1:250.000. Norges geologiske undersøkelse.
- Hart, T.R., Gibson, H.L. and Lesher, C.M. (2004): Trace element geochemistry and petrogenesis of felsic volcanic rocks associated with volcanogenic massive Cu-Zn-Pb sulfide deposits. Economic Geology ,99, 1003-1013.

- Henkel, H. (1991): Magnetic crustal structures in northern Fennoscandia. Tectonophysics 192 (1-2), 57-66, 69-79.
- Indrevær, K., Bergh, S.G., Kohl, J-B., Stunitz, H., Ingebrigtsen, A. & Hansen, J.A. 2012: Onshoreoffshore fault correlation in northern Troms and western Finnmark, Barents Sea shelf, using seismic, bathymetry and field data: Implications for fault characteristics and kinematics. Abstracts and Proceedings of the Geological Society of Norway, 2, p. 34.
- Irvine, T.N. & Baragar, W.R.A. (1971): A guide to geochemical classification of the common volcanic rocks. Can. J. Eartg Sci., 8, 523-548.
- Johannessen, H. (2012): Tinnvatnformasjonen i Vannas proterozoiske lagrekke: Sedimentære facies og avsetningsmiljø. Unpublished Master's thesis, University of Tromsø, Norway. 96 pp.
- Johansen, H. (1987): Forholdet mellom det prekambriske underlaget og overliggende sedimentære bergarte sørøst på Vanna, Troms. Unpublished Cand.Scient. thesis, University of Tromsø, Norway. 129 pp.
- Keilhau, B.M. (1844): Gaea Norvegica, Zweite lieferung. Verlag von Johann Dahl, Christiania. 340 pp.
- Knudsen, S. (2007). Strukturgeologi og petrologi i palaeoproteroziske metasedimentære og intrusive bergarter på Vanna, Troms. Unpublished Master's thesis, University of Tromsø, Norway. 113 pp.
- Koski, R.A. (2012): Hypogene ore characteristics in volcanogenic massive sulfide occurrence model. U.S. Geological Survey Scientific Investigations Report 2010–5070–C, chap. 8, 10 pp.
- Kretz, R. (1983): Symbols for rock-forming minerals. American Mineralogist, 68, 277-279.
- Kullerud, K., Skjerlie, K.P., Corfu, F., & de la Rosa, J.D. (2006a): The 2.40 Ga Ringvassøy mafic dykes, West Troms Basement Complex, Norway: The concluding act of early Palaeoproterozoic continental breakup. Precambrian Research, 150, 183–200.
- Kullerud, K., Corfu, F., Bergh, S.G., Davidsen, B. & Ravna, E.J.K. (2006b): U-Pb constraints on the Archean and Early Proterozoic evolution of the West Troms Basement Complex, North Norway (Abstract). Bulletin of the Geological Society of Finland Special Issue I, p.79.
- Kuno, H. (1968): Differentiation of basalt magmas. In: Hess, H.H. and Poldervaart, A. (eds.), Basalts: The Poldervaart treatise on rocks of basaltic composition, 2. Interscience, New York. 623-688.
- Le Maitre, R.W. (ed.) (2002): Igneous Rocks: A classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Ignous Rocks. 2nd edition. Cambridge, New York. 236 pp.
- Misra, K.C. (2000): Understanding Mineral Deposits. Kluwer Academic Publishers, Dordrecht. 847 pp.
- Mutanen, T., & Huhma, H. (2003): The 3.5 Ga Siurua trondhjemite gneiss in the Archaean Pudasjärvi Granulite Belt, northern Finland. Bulletin of the Geological Society of Finland, 75(1-2), 51–68.

Nesse, W.D. (2000): Introduction to Mineralogy. Oxford University Press, New York. 442 pp.

Ngu.no: http://www.ngu.no/no/tm/Om-NGU/ (Accessed on March 13th, 2014)

- Ojala, J., Hansen, H., & Ahola, H. (2013): Cu-Zn mineralisation at Vannareid, West Troms Basement Complex: a new Palaeoproterozoic VMS occurrence in the northern Fennoscandian Shield. (Abstract). Proceedings of the 12th Biennial SGA Meeting, Uppsala, Sweden. 562-563.
- Olesen, O., Torsvik, T., Tveten, E., Zwaan, K.B., Løseth, H. & Henningsen, T. (1997): Basement structure of the continental margin in the Lofoten-Lopphavet area, northern Norway: constraints from potential field data, on-land structural mapping and paleomagnetic data. Norsk geologisk tidsskrift 77, 15-30.
- Opheim, J.A. & Andresen, A. (1989): Basement-cover relationships on northern Vanna, Troms, Norway. Norsk Geologisk Tidsskrift, 69, 67-81.
- Pettersen, K.J. (1882): Bidrag til de norske kyststrøgs geologi. Archiv for Mathematik og Naturvidenskab, Syvende Bind. Cammermeyer, Kristiania. 363-442.
- Pettersen, K.J. (1887): Den nord-norske fjeldbygning I. Tromsø Museums Aarshefter 10. 174 pp.
- Pettersen, K.J. (1891): Geologisk kart over Tromsø amt. Tromsø Museums Aarshefter 14. Appendix.
- Pettersen, T.W. (2007): Strukturell analyse av metasedimentære bergarter på Vanna, Troms. Unpublished Master's thesis, University of Tromsø, Norway. 104 pp.
- Pearce, J.A. (1982): Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, R.S. (ed.), Andesites. Wiley, Chichester- 525-548.
- Pearce, J.A. (1983): Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C.J. & Norry, M.J. (eds.), Continental basalts and mantle xenoliths. Shiva, Nantwich, 230-249.
- Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984): Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25, 956-983
- Piercey, S.J., Peter, J.M., Goodfellow, W.D., Herrington, R.M. (2010): Zinc-rich Volcanogenic Massive Sulphide (VMS) deposits. Proceedings of the Zinc 2010 Meeting, Irish Association for Economic Geology, 122-125.
- Piercey, S.J. (2011): The setting, style and role of magmatism in the formation of volcanogenig massive sulfide deposits. Miner Deposita 46, 449-471.
- Priyatkina, N.S., Kullerud, K., Bergh, S.G., Ravna, E.J.K. and Armitage, P.E.B. (2011): CO2-sequestration during interactions between fluid and mafic to intermediate intrusive rocks on Vannøya Island, West Troms Basement Complex, North Norway. In Maarten A.T.M. Broekmans (ed.):
 Proceedings of the 10th International Congress for Applied Mineralogy (ICAM). 549-557.
- Rice, A.H.N. (1990): A discussion: Basement-cover relationships on northern Vanna, Troms, Norway. Norsk Geologisk Tidsskrift 70, 179-184.
- Robb, L. (2005): Introduction to ore-forming processes. Blackwell Publishing, Victoria.373 pp.
- Roberts, D. (1974): Kartblad Hammerfest. Beskrivelse til det 1:250 000 berggrunnsgeologiske kart. Norges geologiske undersøkelse Bulletin, 301, 66 pp.

- Rodionov, A., & Ofstad, F. (2012): Helicopter-borne magnetic, electromagnetic and radiometric geophysical survey of Vanna, Karlsøy, Troms. NGU Report 2012.021. 23 pp.
- Rollinson, H.R. (1993): Using geochemical data: evaluation, presentation, interpretation. Longman Scientific & Technical, Harlow. 352 pp.
- Sandstad, J.S., Dahl, R., Ebbing, J., Finne, T.E., Flem, Belinda, Gautneb, H., Henderson, I., Ihlen, P.M., Løvø, G., Olesen, O. & Schiellerup, H. (2013): MINN - Mineralressurser i Nord-Norge. Statusrapport pr. 31.12.2012. NGU rapport 2012.016. 64 pp.
- Sen, J.A. (2012): Elementmobilitet under metasomatiske prosesser i dioritt på Vannøya. Unpublished Master's thesis, University of Tromsø, Norway. 120 pp.
- Shanks III, W.C.P. (2012): Hydrothermal alteration in volcanogenic massive sulfide occurrence model. U.S. Geological Survey Scientific Investigations Report 2010–5070–C, chap. 11, 12 pp.
- Shanks, III, W.C.P. & Koski, R.A. (2012). Introduction to volcanogenic massive sulfide occurrence model. U.S. Geological Survey Scientific Investigations Report 2010–5070–C, chap. 1, 4 pp.
- Siivola, J., & Schmid, R. (2007): 12.List of Mineral Abbreviations. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 01.02.07. <u>http://www.bgs.ac.uk/scmr/docs/papers/paper_12.pdf</u>
- Skinner, B.J. (1997): Hydrothermal Mineral Deposits: What We Don and Don't Know, in Barnes, H.L. (ed.), Geochemistry of Hydrothermal Ore Deposits, Third Edition. John Wiley & Sons, Inc., USA. 1-29.
- Slack, J.F. (2012a): Physical description of deposits. U.S. Geological Survey Scientific Investigations Report 2010–5070–C, chap. 6, 8 pp.
- Slack, J.F. (2012b): Hypogene gangue characteristics in volcanogenic massive sulfide occurrence model. U.S. Geological Survey Scientific Investigations Report 2010–5070–C, chap. 9, 4 pp.
- Snsk.no: http://www.snsk.no/store-norske-gull-as.147130.en.html (Accessed on March 13th, 2014)
- Statens kartverk. (2004): Helgøya, Norge, 1:50 000.
- Weihed, P., Arndt, N., Billström, K., Duchesne, J.-C., Eilu, P., Martinsson, O., Papunen, H. & Lahtinen, R. (2005): 8: Precambrian geodynamics and ore formation: The Fennoscandian Shield. Ore Geology Reviews, 27, 273–322.
- Winter, J.D. (2002): An Introduction to Igneous and Metamorphic Petrology, 1st (first) Edition. Prentice Hall. 697 pp.

Usgs.gov: http://minerals.cr.usgs.gov/gips/na/5process.html (Accessed on May 30th, 2014)

Zwaan, K.B. (1992) Database for alle geologiske opplysninger om forkastninger og skjærsoner som opptrer på kartblade 1:250 000. Unpublished report. Norges geologiske undersøkelse, report 92.107. 24 pp.

- Zwaan, K.B. (1995): Geology of the West Troms Basement Complex, northern Norway, with emphasis on the Senja Shear Belt: a preliminary account. Norges Geologiske Undersøkelse, Bulletin 427, 33-36.
- Zwaan, K.B., Fareth, E. & Grogan, P.W. (1998); Geologisk kart over Norge, berggrunnskart TROMSØ, M 1: 250 000. Norges geologiske undersøkelse.

Appendix A

Drill holes and thin sections

Coordinate Elevation at drill Planned Planned Hole ID Length (m) Map index system (Nat) Northing (Nat) Easting (Nat) location(m.a.s.l.) WGS84N azimuth WGS84E dip UTM Z 34 N VNR-101 167,20 1535 II 7790391,29 449819,7 35* 70,2149481 19,6716092 0 45 VNR-102 125,30 1535 II UTM Z 34 N 7790390,68 449819,64 34* 70,2149427 19,6716079 0 60 VNR-201 97,00 1535 II UTM Z 34 N 7790443,11 449945,36 35* 70,2154372 19,6749046 0 45 VNR-301 211,60 1535 II UTM Z 34 N 7790459,43 450021,69 70,2155984 19,6769153 45 38,62 10 70,2153715 19,6767757 VNR-302 111,10 1535 II UTM Z 34 N 7790434,24 450015,87 36,79 45 10 VNR-303 113,20 1535 II UTM Z 34 N 7790433,57 450015,74 36,84 70,2153654 19,6767727 10 60 VNR-401 54,80 1535 II UTM Z 34 N 7790436,29 70,2154 450067,99 33,17 19,6781539 10 45 Total 880,20

Table A.1: Drill hole data. Note that the values for the elevation marked with * are estimates as these were measured without a base station.

Table A.2: Thin sections data.

Thin section ID	Lithology
Drill core VNR-101:	
VNR-101-13,5	Mica schist
VNR-101-15,5	Mica schist
VNR-101-34	Quartz vein breccia
VNR-101-58,2	Quartz vein breccia
VNR-101-60,9	Quartz vein breccia
VNR-101-70,5	Quartz vein breccia
VNR-101-72,5	Quartz vein breccia
VNR-101-81,5	Quartz vein breccia
VNR-101-93	Mag-diabase
VNR-101-100,9	Mag-diabase
VNR-101-104,2	Mag-diabase
VNR-101-111,3	Mag-diabase
VNR-101-112,7	Mag-diabase
VNR-101-113,8	Mag-diabase
VNR-101-115	Mag-diabase
VNR-101-135,1	Mag-diabase
VNR-101-164,6	Altered granitoid
Drill core VNR-102:	
VNR-102-39,6	Quartz vein breccia
VNR-102-63,5A	Quartz vein breccia
VNR-102-63,5B	Quartz vein breccia
VNR-102-97,3	Diabase breccia
VNR-102-120,4	Altered granitoid
Drill core VNR-302:	
VNR-302-19,2	Carbonate vein
VNR-302-31	Diabase breccia
VNR-302-74,1	Granitoid

Appendix B

Whole-rock chemistry

Table B.1: XRF-analysis of the major and minor elements from the rock cores retrieved at Vannareid. The values are recalculated to volatile-free form and are given in weight percent (wt%)

HOLEID	From depth (m)	To depth (m)	Lithology	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	К2О	Cr2O3	TiO2	MnO	P2O5
Drill core V	/NR-101:	()												
VNR-101	8,5	9	Mica schist	52,03	12,19	4,79	14,52	9,89	2,34	3,63	0,01	0,39	0,12	0,10
VNR-101	9	10	Mica schist	68,29	12,81	2,78	5,86	3,27	4,07	2,44	0,02	0,31	0,05	0,09
VNR-101	10	11	Mica schist	58,76	14,04	4,70	10,61	5,28	1,04	4,85	0,01	0,49	0,12	0,10
VNR-101	13	14	Mica schist	66,92	13,40	2,77	7,87	2,49	2,75	3,30	0,02	0,34	0,06	0,08
VNR-101	14	15	Mica schist	61,91	14,70	5,51	7,97	3,17	2,62	3,30	0,02	0,63	0,07	0,10
VNR-101	15	15,9	Mica schist	56,30	12,67	7,14	13,01	6,85	1,15	2,03	0,07	0,59	0,10	0,10
VNR-101	19,29	20	Mica schist	62,36	13,36	4,58	10,64	2,90	3,06	2,44	0,01	0,45	0,08	0,11
VNR-101	20	21	Mica schist	63,34	14,01	4,39	8,76	2,56	4,34	1,93	0,02	0,48	0,07	0,11
VNR-101	21	21,4	Mica schist	67,20	12,25	3,41	9,10	1,76	4,11	1,64	0,01	0,36	0,07	0,09
VNR-101	22,2	22,7	Mica schist	60,47	13,48	3,61	13,48	1,13	6,14	1,02	0,02	0,47	0,09	0,09
VNR-101	25	25,9	Mica schist	62,74	14,21	3,07	10,55	0,83	7,73	0,28	0,01	0,39	0,07	0,12
VNR-101	28,6	29	Carbonate vein	58,72	10,00	2,03	22,02	1,90	4,05	0,69	0,01	0,31	0,18	0,10
VNR-101	29	30	Quartz vein breccia	81,19	1,97	3,00	11,43	1,57	0,03	0,02	0,01	0,01	0,10	0,02
VNR-101	30	31	Quartz vein breccia	81,51	2,38	3,21	10,94	1,51	0,20	0,09	0,02	0,02	0,10	0,02
VNR-101	22	22	Quartz vein breccia	84.02	1,01	3,03	4,00	1,29	0,04	0,00	0,01	0,01	0,00	0,01
VNR-101	22	24	Quartz vein breccia	04,02	1 01	2,32	0.65	1 16	0,02	0,02	0,02	0,01	0,03	0,01
VNR-101	34	35	Quartz vein breccia	86.83	4 17	4 35	1 46	1 97	0,22	0,04	0.02	0,02	0,04	0.02
VNR-101	35	36	Quartz vein breeela	96.00	0.81	1 24	1,40	0.44	0,70	0,51	0.02	0,05	0,07	0,03
VNR-101	36	37	Quartz vein	95.17	0.82	1.16	2.24	0.44	0.04	0.08	0.02	0.01	0.02	0.01
VNR-101	37	38	Quartz vein breccia	91.59	2.13	2.35	2.40	1.06	0.29	0.08	0.02	0.01	0.04	0.02
VNR-101	38	39	Quartz vein breccia	85.70	3.81	3.25	4.59	1.50	0.80	0.18	0.01	0.06	0.07	0.03
VNR-101	39	40	Quartz vein	95,09	1,14	1,45	1,50	0,62	0,09	0,04	0,02	0,01	0,02	0,01
VNR-101	40	41	Quartz vein	97,74	0,40	0,58	1,12	0,11	0,02	0,01	0,01	0,01	0,01	0,01
VNR-101	41	42	Quartz vein breccia	90,36	2,56	3,29	1,82	1,40	0,30	0,14	0,02	0,03	0,05	0,02
VNR-101	42	43	Quartz vein breccia	84,64	7,09	3,46	0,38	1,57	2,02	0,57	0,01	0,16	0,05	0,05
VNR-101	43	44	Quartz vein breccia	82,93	6,48	5,60	0,40	2,72	1,18	0,43	0,02	0,10	0,09	0,04
VNR-101	44	45	Quartz vein breccia	78,28	9,74	3,78	2,15	1,77	3,17	0,77	0,01	0,22	0,06	0,06
VNR-101	45	45,25	Quartz vein breccia	80,35	9,64	3,62	0,36	1,69	3,28	0,69	0,02	0,23	0,05	0,06
VNR-101	45,25	45,7	Quartz vein	97,83	0,97	0,58	0,11	0,22	0,21	0,05	0,01	0,01	0,01	0,01
VNR-101	45,7	46	Quartz vein breccia	78,11	8,97	5,09	1,74	2,76	2,63	0,37	0,02	0,17	0,08	0,06
VNR-101	46	47	Quartz vein breccia	81,20	7,98	4,40	1,27	1,99	2,40	0,47	0,01	0,15	0,07	0,05
VNR-101	47	48	Quartz vein breccia	88,07	4,76	2,63	1,40	1,56	0,97	0,44	0,02	0,07	0,04	0,03
VNR-101	48	49	Quartz vein breccia	81,15	7,50	5,50	0,56	2,90	1,61	0,50	0,01	0,11	0,10	0,04
VNR-101	49	50	Quartz vein breccia	87,09	5,99	2,84	0,33	1,38	1,78	0,41	0,03	0,08	0,04	0,03
VNR-101	50	51	Quartz vein breccia	81,72	7,96	4,80	0,21	2,60	1,83	0,61	0,01	0,13	0,08	0,05
VINK-101	51	52	Quartz vein breccia	81,84 77 E0	8,15 9 / 1	4,42	1 72	2,24	2,28	0,52	0,02	0,11	0,07	0,04
VNR-101	52	55	Quartz vein breccia	77,50 85.61	5 05	27/	1,72	5,40 1 0/	1,73	0,47	0,01	0,12	0,12	0,03
VNR-101	54	55	Quartz vein breccia	79.09	9,95 9 1 9	3,74	1 92	2 20	3 05	0,37	0,02	0,07	0,00	0,05
VNR-101	55	56	Quartz vein breccia	81 38	9 13	3,00	0.39	1 89	3,05	0,52	0.01	0,12	0.05	0.03
VNR-101	56	57	Quartz vein breccia	70.06	6 41	8 31	10 15	3 99	0.58	0,50	0.02	0.07	0,03	0.03
VNR-101	57	58	Quartz vein breccia	72.56	10.84	8.52	0.47	4.68	1.71	0.85	0.01	0.16	0.15	0.06
VNR-101	58	58.3	Quartz vein breccia	74.40	9.32	8.65	0.75	4.84	1.08	0.65	0.01	0.13	0.15	0.04
VNR-101	58,3	59	Carbonate vein breccia	77,25	0,54	0,62	21,19	0,24	0,02	0,02	0,01	0,01	0,09	0,01
VNR-101	59	60	Carbonate vein	63,25	0,74	0,60	34,77	0,31	0,14	0,01	0,01	0,01	0,15	0,01
VNR-101	60	60,8	Quartz vein breccia	93,08	2,06	0,99	2,57	0,46	0,71	0,09	0,01	0,01	0,02	0,01
VNR-101	60,8	61	Quartz vein breccia	78,13	10,48	3,91	0,72	2,27	3,72	0,54	0,01	0,12	0,06	0,04
VNR-101	61	62	Quartz vein breccia	82,10	7,20	5,28	0,19	2,88	1,89	0,25	0,01	0,09	0,08	0,03
VNR-101	62	63	Quartz vein breccia	83,37	5,45	3,34	4,07	1,81	1,51	0,29	0,02	0,06	0,06	0,03
VNR-101	63	64	Quartz vein breccia	81,06	8,63	3,26	1,45	2,00	2,77	0,62	0,01	0,12	0,05	0,04
VNR-101	64	65	Quartz vein breccia	77,40	11,12	3,92	0,35	2,50	3,65	0,83	0,01	0,12	0,06	0,04
VNR-101	65	66	Quartz vein breccia	80,15	9,41	3,72	0,63	2,10	3,09	0,67	0,01	0,12	0,06	0,04
VNR-101	66	67	Quartz vein breccia	81,11	9,52	3,01	0,48	1,61	3,07	0,93	0,02	0,14	0,04	0,05
VNR-101	67	68	Quartz vein breccia	81,67	8,83	2,46	1,60	1,29	3,08	0,84	0,01	0,14	0,04	0,05
VNR-101	68	69	Quartz vein breccia	86,39	5,27	2,39	2,55	1,25	1,60	0,39	0,02	0,08	0,04	0,03
VNR-101	69	70	Carbonate vein breccia	74,76	4,10	4,45	13,45	2,27	0,61	0,14	0,01	0,06	0,15	0,02
VNR-101	70	71	Quartz vein breccia	86,51	4,54	4,13	1,44	2,14	0,83	0,22	0,02	0,07	0,07	0,03
VNR-101	/1	72	Quartz vein breccia	//,63	6,14	6,83	4,60	3,45	0,88	0,18	0,01	0,10	0,15	0,04
VNR-101	72	72,45	Quartz vein breccia	88,17	5,25	2,72	0,43	1,27	1,80	0,20	0,03	0,06	0,05	0,02
VNR-101	72,45	72,65	Quartz vein breccia	88,48	0,64	1,78	8,46	0,42	0,06	0,05	0,02	0,01	0,06	0,02
VINK-101	72,05 72	73	Qualitz vein Quartz vein bressia	95,20 97 60	0,41	0,71	3,28 10 60	0,22	0,00	0,02	0,01	0,01	0,02	0,01
VINT-101	75	74	Carbonate vein brossie	07,00 01,10	0,42	1 05	10,09	0,18	0,20	0,01	0,02	0,01	0,05	0,01
VNR_101	74	76	Quartz vein breccia	24,42 20 00	1 75	2,05	5 01	0,41	0,00	0,04	0,01	0,01	0,14	0,01
VNR_101	76	70	Qualitz vein Diettia	0 <i>3,</i> 30 Q/ 21	1,73 N 97	2,02	2 20	0,00	0,51	0,07	0,02	0,01	0,05	0,01
VNR-101	77	78	Quartz vein	93 1/	1 60	2,71	1 36	1 11	0,03	0,01	0,01	0,01	0,03	0,01
VNR-101	78	78.5	Quartz vein breccia	88.96	1.51	2,93	5.26	1.21	0.03	0.01	0.01	0.01	0.06	0.01
VNR-101	78.5	79	Carbonate vein	5.02	0.01	0.07	94.32	0.09	0.01	0.01	0.01	0.01	0.45	0.01
VNR-101	79	79.35	Carbonate vein breccia	75.41	0.50	1.12	22.40	0.33	0.08	0.02	0.01	0.01	0.11	0.01
VNR-101	79,35	80	Carbonate vein breccia	82,57	0,65	1,70	14,44	0,47	0,06	0,01	0,01	0,01	0,08	0,01
VNR-101	80	81	Quartz vein breccia	91,89	0,66	2,14	4,76	0,45	0,03	0,01	0,01	0,01	0,03	0,01

	From	То												
HOLEID	depth	depth	Lithology	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	Cr2O3	TiO2	MnO	P2O5
	(m)	(m)												
VNR-101	81	82	Quartz vein breccia	96,04	0,69	1,63	1,05	0,45	0,06	0,02	0,03	0,01	0,01	0,01
VNR-101	82	83	Quartz vein breccia	94,56	1,31	2,54	0,44	1,00	0,07	0,01	0,01	0,01	0,04	0,01
VNR-101	83	84	Quartz vein breccia	90,45	2,28	3,73	1,55	1,71	0,09	0,03	0,02	0,04	0,07	0,02
VNR-101	84	84,65	Quartz vein breccia	89,88	2,72	4,67	0,33	2,03	0,15	0,04	0,01	0,06	0,09	0,02
VNR-101	84,65	85	Quartz vein breccia	81,97	4,93	8,17	0,32	3,81	0,09	0,27	0,02	0,22	0,16	0,04
VNR-101	85	86	Quartz vein breccia	80,53	5,45	8,42	0,75	4,28	0,16	0,10	0,01	0,09	0,16	0,03
VNR-101	86	86,85	Quartz vein breccia	78,50	5,81	8,72	0,68	4,36	0,37	0,30	0,02	0,98	0,14	0,12
VNR-101	86,85	87	Mag-diabase breccia	60,98	10,66	16,04	1,50	6,38	0,89	0,76	0,01	2,19	0,25	0,34
VNR-101	87	88	Mag-diabase breccia	65,94	9,07	13,57	1,42	6,54	0,29	0,76	0,01	1,92	0,21	0,27
VNR-101	88	89	Mag-diabase breccia	62,69	9,88	15,20	1,68	5,79	0,89	0,76	0,01	2,47	0,23	0,41
VNR-101	89	90	Mag-diabase breccia	67,96	8,14	12,73	2,26	4,96	0,51	0,92	0,01	2,03	0,19	0,29
VNR-101	90	91	Mag-diabase	61.14	10.09	15.46	2.82	5.13	0.80	1.10	0.01	2.78	0.30	0.36
VNR-101	91	92	Mag-diabase	54.51	11.63	18.64	2.26	7.16	0.79	0.78	0.01	3.46	0.34	0.41
VNR-101	92	92.4	Mag-diabase	53 23	11 91	19 73	2 24	6 75	0.75	1.08	0.01	3 51	0.36	0 44
VNR-101	92.4	92.75	Quartz vein	74.01	4.47	9.16	7.44	3.41	0.08	0.13	0.01	1.03	0.14	0.12
VNR-101	92 75	93	Mag-diabase	53 36	11 69	19 73	2 14	7 56	0.46	0 79	0.01	3 56	0 33	0.37
VNR-101	93	94	Mag-diabase	53.88	10.91	19.69	3 47	6 52	0 44	0 79	0.01	3 51	0.40	0.39
VNR-101	94	95	Mag-diabase	51 70	11 97	19 50	4 37	5.85	0.97	1 31	0.01	3 47	0.44	0.43
VNR-101	95	96	Mag-diabase	58 1/	10.20	16.93	3.68	6 10	0.55	0.80	0.01	2 80	0 32	0,45
VNR-101	96	90	Mag-diabase	52 39	11 11	20.59	3,00	6 65	0,33	0,80	0,01	2,89	0,32	0,35
VNR-101	07	08	Mag diabase	55 20	10.67	19.29	4 02	6.00	0,72	0,75	0,01	2 21	0,44	0.20
VNR-101	08	00	Mag-diabase	60.00	0.61	15,50	4,02	5.46	0,72	0,82	0,01	2 00	0,38	0,35
VINK-101	30	100	Mag diabase	57.41	3,01	15,70	4,00	3,40	1 50	0,90	0,01	2,90	0,52	0,50
VINR-101	99 100	100		57,41	11,17	15,79	4,00	4,85	1,50	0,90	0,01	2,74	0,40	0,35
VNR-101	100	101	Mag-diabase	49,14	13,50	18,06	7,06	3,83	2,70	1,33	0,01	3,32	0,64	0,40
VNR-101	101	102	Mag-diabase	50,78	12,00	18,73	6,79	5,00	1,58	0,86	0,01	3,31	0,55	0,38
VNR-101	102	103	Mag-diabase	48,33	13,09	20,13	5,69	5,72	1,83	0,76	0,01	3,51	0,51	0,42
VNR-101	103	104	Mag-diabase	52,60	12,38	17,69	4,99	6,20	1,44	1,21	0,01	2,79	0,31	0,39
VNR-101	104	105	Mag-diabase	50,62	11,16	18,13	8,45	5,58	1,16	0,92	0,01	3,17	0,44	0,36
VNR-101	110	111	Mag-diabase	47,19	11,79	20,88	8,30	4,44	1,82	0,84	0,02	3,66	0,70	0,36
VNR-101	111	112	Mag-diabase	47,26	11,64	20,09	9,04	4,65	1,73	0,87	0,01	3,65	0,66	0,41
VNR-101	112	113	Mag-diabase	48,07	11,94	20,56	7,27	4,51	1,82	0,81	0,02	3,71	0,86	0,43
VNR-101	113	114	Mag-diabase	47,69	12,39	18,99	8,97	4,69	2,17	0,84	0,01	3,35	0,53	0,38
VNR-101	114	114,65	Mag-diabase	49,00	12,42	22,05	3,25	6,88	0,65	1,09	0,01	3,83	0,46	0,36
VNR-101	114,65	114,8	Quartz vein	92,08	0,69	3,42	3,19	0,46	0,04	0,02	0,01	0,05	0,03	0,02
VNR-101	114,8	115	Mag-diabase	62,83	7,17	17,17	4,95	4,07	0,08	1,05	0,03	2,22	0,21	0,22
VNR-101	115	115,4	Mag-diabase	46,67	13,12	22,90	2,70	7,74	0,68	1,22	0,01	4,06	0,48	0,42
VNR-101	115,4	115,55	Carbonate vein	44,44	5,47	10,46	33,21	3,53	0,13	0,67	0,01	1,60	0,29	0,19
VNR-101	115,55	116	Mag-diabase	47,74	11,86	20,56	7,85	4,99	1,52	0,91	0,01	3,62	0,55	0,40
VNR-101	116	117	Mag-diabase	47,52	11,74	20,68	8,45	4,28	1,94	0,69	0,02	3,64	0,62	0,39
VNR-101	117	118	Mag-diabase	47,36	11,71	20,88	8,35	4,44	1,88	0,71	0,01	3,66	0,60	0,39
VNR-101	118	119	Mag-diabase	48,15	11,28	21,33	7,10	5,17	1,34	0,64	0,01	3,94	0,61	0,42
VNR-101	134	135	Mag-diabase	46,65	12,26	20,09	9,06	4,81	1,79	0,78	0,01	3,71	0,46	0,39
VNR-101	135	136	Mag-diabase	50,06	11,67	18,73	8,78	4,16	1,96	0,68	0,01	3,22	0,38	0,37
VNR-101	136	137	Mag-diabase	51,10	12,27	17,86	8,21	3,65	2,38	0,60	0,01	3,08	0,41	0,44
VNR-101	137	137.2	Carbonate vein	47.28	4.36	11.20	32.22	2.47	0.40	0.46	0.01	1.16	0.26	0.19
VNR-101	137.2	138	Mag-diabase	48,70	12.97	19.74	6.94	4.26	2.21	0.70	0.01	3.49	0.51	0.48
VNR-101	138	139	Mag-diabase	50.45	11.96	18.50	7.36	4.58	1.97	0.82	0.01	3.37	0.58	0.40
VNR-101	148	149	Mag-diabase	47 62	11 46	20.68	8 99	4 89	1 33	0.64	0.02	3 54	0.48	0.36
VNR-101	149	150	Mag-diabase	48 18	11 41	19 91	8 76	5 32	1 18	0.86	0.02	3 5 2	0.49	0.36
VNR-101	150	150 7	Mag-diabase	45 48	12 47	21 50	7 19	6 4 6	0.99	0.85	0.02	3 94	0.69	0.42
VNR-101	150 7	151	Mag-diabase breccia	79 / 5	/ 18	7 72	3 73	2 69	0.15	0.22	0.02	1 29	0,05	0.32
VNR-101	151	151 35	Mag-diabase breccia	71 03	7 5 2	11 77	2 12	1 59	0,15	1 18	0,02	0.89	0,25	0,32
VINIC-101	151 25	151,55	Mag diabase Dieccia	10,05	12.05	22 12	2,42	9,35	0,00	0 56	0,01	0,03	0,15	0,35
VINIC-101	151,55	152	Mag diabase	40,40	12,05	23,42	1 76	0,70	0,11	0,50	0,02	2,74	0,30	0,47
VINIC-101	152	155	Mag diabase	40,82	12,57	24,21	1,70	7.07	0,07	1 02	0,01	2 70	0,47	0,40
VINK-101	155	154	Mag diabase	47,92	12,70	21,55	4,09	6.02	0,51	1,02	0,02	3,79	0,55	0,56
VNR-101	154	155	Mag-diabase	44,81	12,49	22,26	7,11	0,83	0,77	0,70	0,01	4,07	0,54	0,41
VNR-101	155	155,15	Altered granitoid	60,62	18,83	6,72	1,65	2,76	7,71	0,96	0,01	0,50	0,12	0,13
VNR-101	155,15	156	Altered granitoid	60,29	19,48	6,58	1,20	2,54	8,36	0,91	0,01	0,42	0,12	0,10
VNR-101	156	157	Altered granitoid	60,09	19,75	6,44	1,22	2,51	8,52	0,87	0,01	0,35	0,12	0,11
VNR-101	157	157,5	Carbonate vein breccia	65,96	11,31	3,25	12,17	1,53	5,23	0,21	0,01	0,20	0,08	0,06
VNR-101	157,5	157,8	Carbonate vein	22,11	0,29	0,82	76,10	0,24	0,08	0,01	0,02	0,01	0,31	0,01
VNR-101	157,8	158	Altered granitoid	70,26	15,66	3,37	0,74	1,81	7,34	0,41	0,01	0,28	0,03	0,08
VNR-101	158	159	Altered granitoid	69,15	15,87	3,90	1,02	1,86	7,33	0,43	0,01	0,30	0,04	0,07
VNR-101	159	160	Altered granitoid	72,64	14,22	3,59	0,65	1,70	6,56	0,24	0,01	0,28	0,04	0,07
VNR-101	160	161	Altered granitoid	72,30	14,68	3,24	0,60	1,82	6,67	0,30	0,01	0,28	0,02	0,08
VNR-101	161	162	Altered granitoid	72,84	14,34	2,91	1,40	1,34	6,03	0,75	0,01	0,27	0,03	0,08
VNR-101	162	163	Altered granitoid	72,01	14,64	2,89	1,83	1,61	5,08	1,53	0,01	0,27	0,05	0,08
VNR-101	163	164	Altered granitoid	72,66	14,22	2,94	1,85	1,71	4,37	1,87	0,01	0,26	0,05	0,07
VNR-101	164	165	Altered granitoid	71,84	13,87	2,83	3,45	1,50	4,54	1,62	0,01	0,22	0,06	0,06
VNR-101	165	166	Altered granitoid	74,08	14,05	2,66	1,06	1,52	4,70	1,60	0,01	0,21	0,04	0,06
VNR-101	166	167	Altered granitoid	73,13	14,58	3,02	0,64	1,65	5,10	1,57	0,01	0,20	0,04	0,06
VNR-101	167	167,2	Altered granitoid	72,82	15,00	2,21	1,58	0,91	5,77	1,33	0,01	0,26	0,04	0,07
			J	,-	,		,					, -		, -
Drill core VI	NR-102:													
VNR-102	6	7	Mica schist	66.10	12.18	2.88	7.86	4.31	3,81	2.40	0.01	0.30	0.07	0.08
VNR-102	7	7,6	Mica schist	61.42	12.72	4.53	11.14	4.92	0.52	4.08	0.01	0.47	0.10	0.09
VNR-102	10.4	11	Mica schist	59.97	13.75	4.44	11.43	3.68	1.85	4.16	0.01	0.51	0.10	0.10
VNR-102	11	11.6	Mica schist	54 51	13 17	4 66	17 54	4 25	0.61	4 52	0.01	0 47	0 17	0 00
		,0		5 1,51	10,17	1,00	1,54	.,25	0,01	.,52	0,01	0,47	0,17	5,65

	From	То												
HOLEID	depth	depth	Lithology	SiO2	AI2O3	Fe2O3	CaO	MgO	Na2O	K2O	Cr2O3	TiO2	MnO	P2O5
	(m)	(m)												
VNR-102	13.1	14	Mica schist	52 57	13.06	10 79	9.68	11 / 2	1 61	0.27	0.08	0.30	0.09	0.04
VINIC 102	10,1	17	Carbonata voin	52,57	11.04	IU,75	15.00	4 5 2	2,01	1 21	0,00	0,35	0,05	0,04
VINR-102	10	17	Carbonate vein	57,84	11,94	5,51	15,45	4,52	2,87	1,21	0,01	0,40	0,14	0,10
VNR-102	23,3	23,7	Carbonate vein	56,09	10,81	4,81	19,70	4,25	0,59	3,09	0,01	0,38	0,17	0,10
VNR-102	26,2	26,8	Carbonate vein	50,64	10,05	3,97	26,29	4,47	2,45	1,45	0,01	0,35	0,22	0,10
VNR-102	28,5	29	Carbonate vein	48,18	11,60	3,28	28,03	3,09	3,58	1,41	0,01	0,45	0,24	0,13
VNR-102	29	29,4	Carbonate vein	49,22	11,28	3,13	27,71	2,93	3,85	1,10	0,01	0,41	0,22	0,12
VNR-102	30.4	31	Mica schist	52 51	6 74	12 62	15 89	10 36	0.07	0 01	0 15	1 40	0 17	0.09
VNR 102	21	21.2	Mica schist	40 54	6 76	12.02	17.65	10.19	0.06	0.01	0.19	1 20	0.10	0.10
VINK-102	51	51,5		49,54	0,70	15,92	17,05	10,18	0,00	0,01	0,18	1,59	0,19	0,10
VNR-102	32,3	33	Quartz vein breccia	70,33	12,69	6,42	1,70	4,74	1,52	1,89	0,01	0,52	0,06	0,11
VNR-102	33	34	Quartz vein breccia	80,94	2,44	4,35	10,08	1,91	0,06	0,03	0,01	0,07	0,10	0,02
VNR-102	34	35	Quartz vein breccia	90,15	1,82	2,92	3,57	1,33	0,05	0,06	0,01	0,02	0,05	0,01
VNR-102	35	36	Quartz vein breccia	90.02	0.97	1.55	6.68	0.56	0.10	0.04	0.02	0.01	0.04	0.01
VNP-102	26	27	Carbonate vein breccia	66 71	0 00	2.07	20.21	0.77	0.04	0.01	0.01	0.01	0 10	0.01
VINI-102	20	37		00,71	0,99	2,07	29,21	0,77	0,04	0,01	0,01	0,01	0,19	0,01
VINR-102	3/	38	Quartz vein	94,37	1,72	1,83	0,90	0,66	0,22	0,27	0,01	0,01	0,01	0,01
VNR-102	38	39	Quartz vein	94,79	1,09	2,10	1,23	0,66	0,04	0,05	0,01	0,01	0,02	0,01
VNR-102	39	40	Quartz vein breccia	83,92	1,41	2,73	10,79	0,91	0,04	0,08	0,01	0,02	0,08	0,01
VNR-102	40	41	Quartz vein	94,81	1,33	2,20	0,62	0,87	0,05	0,07	0,01	0,01	0,02	0,01
VNR-102	41	42	Quartz vein	97.15	0.91	1.01	0.31	0.47	0.09	0.02	0.01	0.01	0.01	0.01
VNP-102	12	12	Quartz vein	88.82	0 02	0.80	8 77	0.25	0.12	0.05	0.01	0.01	0.04	0.01
VINIC-102	42	43	Quartz vein brassis	86,03	6 71	0,09	0,77	0,35	0,12	0,05	0,01	0,01	0,04	0,01
VINK-102	43	44	Quartz vein breccia	80,54	0,71	2,20	0,49	0,95	2,14	0,71	0,01	0,12	0,03	0,04
VNR-102	44	45	Quartz vein	97,37	0,83	0,93	0,21	0,38	0,18	0,06	0,01	0,01	0,01	0,01
VNR-102	45	46	Quartz vein	95,74	0,55	0,63	2,68	0,26	0,07	0,03	0,01	0,01	0,01	0,01
VNR-102	46	47	Quartz vein	98,53	0,51	0,49	0,16	0,17	0,04	0,07	0,01	0,01	0,01	0,01
VNR-102	47	48	Quartz vein	90.54	1.01	1.69	5.95	0.64	0.04	0.06	0.01	0.01	0.04	0.01
VNR-102	18	19	Quartz vein breccia	76.42	8 13	5 61	1 12	2 97	1 98	0 / 2	0.01	0.17	0 12	0.05
VINIC 102	40	4J F0	Quartz vein	97.70	1 05	1 20	7,12	2,57	0,41	0,42	0,01	0,17	0,12	0,05
VINK-102	49	50	Quartz vein	87,79	1,85	1,39	7,70	0,65	0,41	0,11	0,01	0,02	0,05	0,02
VNR-102	50	51	Quartz vein breccia	88,08	4,33	3,58	0,85	1,82	1,04	0,10	0,01	0,09	0,06	0,03
VNR-102	51	52	Quartz vein breccia	85,51	4,60	3,18	3,52	1,55	1,29	0,17	0,01	0,08	0,06	0,03
VNR-102	52	53	Quartz vein breccia	85,94	4,00	3,81	3,22	1,93	0,76	0,18	0,01	0,05	0,07	0,03
VNR-102	53	54	Quartz vein breccia	87 48	3 83	3 91	1 81	2 02	0.68	0 12	0.01	0.04	0.06	0.02
VNR-102	50	55	Quartz vein breccia	80.72	1 0/	2 24	1,01	1 15	0,00	0.02	0.01	0,04	0.04	0.01
VINIC-102	54	55	Qualitz Velli breccia	75.00	1,54	2,24	4,33	1,15	0,13	0,08	0,01	0,01	0,04	0,01
VINR-102	55	50	Carbonate vein	75,99	0,90	1,07	21,23	0,45	0,13	0,08	0,01	0,01	0,12	0,01
VNR-102	56	57	Quartz vein	86,58	0,42	0,26	12,51	0,10	0,04	0,01	0,01	0,01	0,06	0,01
VNR-102	57	58	Quartz vein breccia	89,96	4,00	2,54	0,70	1,47	0,91	0,27	0,01	0,07	0,04	0,03
VNR-102	58	59	Carbonate vein	71,99	4,21	6,18	13,88	3,26	0,13	0,05	0,02	0,07	0,18	0,03
VNR-102	59	60	Quartz vein breccia	79.21	6.76	7.97	0.66	4.16	0.67	0.29	0.01	0.10	0.15	0.03
VNP-102	60	61	Carbonate vein	71 56	2 1 9	2 / 5	10 12	1 00	0.47	0.08	0.01	0.04	0.19	0.02
VINIC 102	00 C1	62		71,50	4.02	5,45	10,12	1,50	0,47	0,00	0,01	0,04	0,10	0,02
VINK-102	01	62	Quartz vein breccia	84,10	4,93	5,15	1,84	2,90	0,57	0,21	0,01	0,07	0,09	0,03
VNR-102	62	63	Quartz vein breccia	79,49	7,26	4,29	3,89	2,51	2,00	0,34	0,01	0,11	0,08	0,04
VNR-102	63	64	Quartz vein breccia	79,17	7,75	4,50	3,04	2,69	2,28	0,29	0,01	0,14	0,08	0,05
VNR-102	64	65	Quartz vein breccia	83,03	7,56	2,37	2,44	1,15	2,63	0,58	0,01	0,15	0,04	0,05
VNR-102	65	66	Quartz vein breccia	80.58	8.73	4.44	0.40	2.47	2.50	0.56	0.01	0.16	0.08	0.05
VNP-102	66	67	Quartz vein breccia	82.65	7 29	2.64	1 60	1 27	2,60	0 /1	0.01	0.15	0.05	0.05
VINI-102	67	07		83,03	7,30	2,04	1,00	1,37	2,09	0,41	0,01	0,13	0,05	0,05
VINK-102	67	68	Quartz vein breccia	83,73	5,98	4,29	1,65	2,44	1,49	0,20	0,01	0,10	0,08	0,04
VNR-102	68	69	Quartz vein	93,42	2,40	2,21	0,16	1,19	0,41	0,12	0,01	0,02	0,03	0,02
VNR-102	69	70	Quartz vein breccia	85,82	6,36	2,68	1,01	1,53	1,94	0,48	0,01	0,09	0,04	0,04
VNR-102	70	71	Quartz vein breccia	80,71	7,88	2,78	3,82	1,34	2,75	0,52	0,01	0,10	0,05	0,04
VNR-102	71	72	Quartz vein breccia	85.22	5,99	2.78	2.17	1.32	2.01	0.31	0.01	0.11	0.05	0.02
VNR-102	72	73	Quartz vein breccia	83.24	7 75	2 16	2 25	1 00	2 95	0.45	0.01	0.12	0.04	0.04
VINIC 102	72	73	Quartz vein breesia	86.22	6.25	2,10	0.45	1 47	1.90	0,45	0,01	0,12	0,04	0,04
VINK-102	/3	74	Quartz vein breccia	80,23	0,25	3,12	0,45	1,47	1,82	0,40	0,01	0,10	0,05	0,04
VNR-102	74	75	Quartz vein breccia	84,62	6,89	3,46	0,62	1,65	2,08	0,45	0,01	0,12	0,06	0,04
VNR-102	75	76	Quartz vein breccia	86,47	3,95	2,42	4,59	1,14	1,00	0,26	0,01	0,06	0,05	0,03
VNR-102	76	77	Quartz vein breccia	87,45	5,21	3,65	0,16	1,72	1,37	0,27	0,01	0,08	0,06	0,02
VNR-102	77	78	Quartz vein breccia	85,98	5,65	4,21	0,28	2,04	1,34	0,30	0,01	0,09	0,06	0,03
VNR-102	78	79	Quartz vein breccia	82.61	3.74	3,87	7.01	1.76	0.67	0.15	0.01	0.06	0.10	0.03
VNR-102	70	80	Quartz vein breccia	88 00	5,.,	2 51	0.22	1 26	1 92	0 22	0.01	0 07	0.04	0.02
VINIC 102	00	00	Quartz vein breesia	82.10	7 50	4 1 2	0,22	2,20	1,05	0,55	0,01	0,07	0,04	0,03
VINR-102	80	81	Quartz vein breccia	83,10	7,58	4,12	0,22	2,28	1,81	0,68	0,01	0,10	0,07	0,03
VNR-102	81	82	Quartz vein breccia	86,68	4,53	4,94	0,44	2,44	0,65	0,16	0,01	0,05	0,08	0,02
VNR-102	82	83	Quartz vein breccia	89,99	2,95	4,50	0,13	2,12	0,13	0,04	0,01	0,03	0,07	0,02
VNR-102	83	84	Quartz vein breccia	90,31	2,61	3,92	1,02	1,88	0,10	0,04	0,01	0,01	0,07	0,02
VNR-102	84	85	Quartz vein breccia	86.64	2.13	3.57	5.83	1.63	0.06	0.02	0.01	0.01	0.07	0.01
VNR-102	85	86	Quartz vein	95 33	0.84	0.91	2 36	0 38	0 10	0 03	0.01	0 01	0.02	0.01
VNP-102	86	87	Carbonate vein	82.02	0.67	0.67	16 12	0.25	0.14	0.02	0.01	0.01	0.02	0.01
VINIC 102	00	07		02,05	0,07	1,10	10,12	0,25	0,14	0,02	0,01	0,01	0,00	0,01
VINK-102	o/ 00	00		91,18	0,80	1,18	0,19	0,50	0,07	0,01	0,01	0,01	0,04	0,01
VNR-102	88	89	Quartz vein	94,23	2,16	1,68	0,51	0,73	0,54	0,08	0,01	0,03	0,02	0,02
VNR-102	89	90	Quartz vein	95,83	1,13	1,48	0,78	0,53	0,18	0,03	0,01	0,01	0,01	0,01
VNR-102	90	91	Carbonate vein	82,84	0,50	1,04	15,15	0,30	0,06	0,02	0,01	0,01	0,07	0,01
VNR-102	91	92	Quartz vein breccia	86.55	0.72	2.29	9.65	0.49	0.20	0.03	0.01	0.01	0.04	0.01
VNR-102	92	03	Quartz vein breccia	86 10	1 02	2 /1	8 77	0 72	0.38	0.06	0.01	0.01	0.06	0.01
VIND 102	02	55		00,10	1,05	2,41	0,22	0,72	0,00	0,00	0,01	0,01	0,00	0,01
VINK-102	93	94		93,14	1,23	2,37	2,01	0,92	0,24	0,01	0,01	0,01	0,04	0,01
VNR-102	94	95	Quartz vein breccia	88,53	3,21	5,14	0,36	2,48	0,04	0,04	0,01	0,05	0,10	0,02
VNR-102	95	96	Diabase breccia	81,81	4,70	7,35	2,04	3,74	0,04	0,07	0,01	0,05	0,16	0,03
VNR-102	96	97	Diabase breccia	79,92	5,16	8,20	2,22	4,13	0,03	0,06	0,01	0,06	0,18	0,03
VNR-102	97	98	Diabase breccia	74.96	7.06	10.74	1.22	5.49	0.04	0.05	0.01	0.14	0.25	0.05
VNR-102	98	99	Diabase breccia	76 12	6.87	10 52	0.58	5 20	0.03	0.05	0.01	0.14	0.24	0.05
VNP 102	00	100	Diabase brocsis	76.00	0,07 2 77	10,32	0,00	5,35	0,05	0,05	0,01	0,14	0.24	0,05
VINK-102	39	100		70,00	0,//	10,35	0,97	5,28	0,05	0,10	0,02	0,11	0,24	0,04
VNR-102	100	101	Diabase breccia	/4,33	7,48	11,46	0,29	5,89	0,04	0,05	0,01	0,15	0,26	0,05
VNR-102	101	102	Diabase breccia	71,59	7,53	11,41	2,91	5,87	0,10	0,12	0,01	0,15	0,28	0,05

	From	То												
HOLEID	depth	depth	Lithology	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	Cr2O3	TiO2	MnO	P2O5
	(m)	(m)						•						
V/ND 102	102	102.4	Quanta unia has sais	77.02	7 1 2	6.44	2.04	2.20	1.01	0.20	0.01	0.1.4	0.12	0.05
VINR-102	102	102,4	Quartz vein breccia	77,92	7,12	6,44	3,04	3,30	1,61	0,20	0,01	0,14	0,13	0,05
VNR-102	102,7	103	Quartz vein breccia	74,38	11,72	5,38	0,56	2,84	4,50	0,23	0,01	0,22	0,10	0,06
VNR-102	103	104	Quartz vein breccia	77,98	8,61	5,64	1,50	2,82	3,02	0,13	0,01	0,15	0,10	0,05
VNR-102	104	105	Diabase breccia	72.76	7.15	9.78	3.39	5.06	0.52	0.17	0.01	0.89	0.18	0.10
VNP-102	105	106	Quartz vein breccia	76.80	8 01	4 95	4 47	2 12	3.06	0.07	0.01	0.26	0.07	0.07
VINIX-102	105	100		70,89	8,01	4,95	4,47	2,13	3,00	0,07	0,01	0,20	0,07	0,07
VNR-102	106	107	Mag-diabase breccia	68,87	8,97	11,10	1,80	5,47	1,04	0,39	0,01	1,92	0,16	0,26
VNR-102	107	108	Mag-diabase breccia	56,41	10,85	17,70	2,83	7,49	0,13	0,73	0,02	3,24	0,28	0,33
VNR-102	108	109	Quartz vein breccia	71,07	12,88	5,99	1,00	2,62	5,17	0,45	0,01	0,62	0,09	0,10
VNR-102	109	110	Mag-diabase breccia	59 89	1/ 11	12 21	2 02	5 53	3 55	0 47	0.01	1 80	0,20	0 21
VNR 102	110	111	Mag diabase breesia	72,20	0.64	0 5 6	1.04	4.09	1 41	0,47	0,01	1 54	0,20	0,21
VINK-102	110	111	wag-ulabase preccia	72,30	8,04	8,50	1,94	4,98	1,41	0,33	0,01	1,54	0,11	0,17
VNR-102	111	112	Granitoid breccia	74,04	11,18	6,34	0,41	3,33	3,97	0,33	0,01	0,24	0,10	0,06
VNR-102	112	113	Quartz vein breccia	71,52	10,37	4,01	7,21	2,00	4,47	0,10	0,01	0,19	0,06	0,06
VNR-102	113	114	Granitoid breccia	72.68	12.19	4.56	2.15	2.85	4.87	0.31	0.01	0.23	0.07	0.07
VNR-102	11/	115	Granitoid breccia	74 40	12 21	3 / 2	0.46	2 11	5 13	0.57	0.01	0.25	0.04	0.07
VNR 102	117	110	Granitoid breesia	74,40	15,21	2,42	0,40	2,77	6 40	0,57	0,01	0,25	0,04	0,07
VINK-102	115	110		71,24	15,40	2,64	0,39	2,50	0,49	0,56	0,01	0,59	0,02	0,09
VNR-102	116	11/	Granitoid breccia	/3,53	13,59	2,92	1,12	2,22	5,98	0,27	0,01	0,28	0,03	0,07
VNR-102	117	118	Altered granitoid	73,18	13,22	2,95	2,12	2,14	5,81	0,23	0,01	0,25	0,03	0,07
VNR-102	118	118.8	Altered granitoid	75.41	12.01	2.81	1.99	2.01	5.35	0.15	0.01	0.20	0.03	0.06
VNR-102	119 1	120	Altered granitoid	70 04	13 13	3 19	4 91	2 40	5 77	0 18	0.01	0.25	0 04	0.07
VNR 102	120	120	Altered granitoid	70,04	14.02	2 24	0.69	2,40	E 20	0,10	0,01	0.25	0,07	0,07
VINK-102	120	121	Altereu granitolu	73,70	14,02	2,64	0,08	2,10	3,20	0,69	0,01	0,20	0,02	0,08
VNR-102	121	122	Altered granitoid	//,23	12,12	2,59	0,95	1,94	3,44	1,43	0,01	0,21	0,02	0,07
VNR-102	122	123	Altered granitoid	74,59	13,83	2,75	0,44	2,08	4,51	1,44	0,01	0,27	0,02	0,07
VNR-102	123	124	Altered granitoid	71,62	14,64	2,82	1,76	2,27	5,47	1,03	0,01	0,27	0,03	0,08
VNR-102	124	125	Altered granitoid	76 11	11 96	3 15	1 14	2 19	4 10	0 97	0.01	0.24	0.04	0.09
VNR 102	127	125 2	Altered granitaid	71,61	14 71	2.24	0.62	2,15	-,10 F 70	0,57	0,01	0,24	0,07	0,05
VINK-102	125	125,5	Altered granitold	/1,01	14,71	3,34	0,63	2,60	5,73	0,80	0,01	0,33	0,03	0,10
Drill core VI	NR-201:													
VNR-201	17,7	17,9	Quartz vein breccia	73,19	15,55	0,87	1,12	0,62	6,89	1,34	0,01	0,32	0,01	0,09
VNR-201	17 9	18 95	Quartz vein breccia	74 68	6.02	6.02	8 84	2 69	1 04	0 41	0.01	0 11	0 14	0.04
VNR 201	10.05	10,55	Carbanata vain	64.20	0,02	0,02	22.74	0.21	0.05	0,41	0,01	0,11	0,14	0,04
VINR-201	18,95	19,3	Carbonate vein	64,30	0,47	0,94	33,74	0,31	0,05	0,01	0,01	0,01	0,16	0,01
VNR-201	19,3	20	Quartz vein breccia	72,88	7,08	5,57	9,47	2,63	1,53	0,48	0,01	0,18	0,12	0,06
VNR-201	20	21	Quartz vein breccia	74,03	9,38	5,27	5,23	2,29	2,62	0,78	0,01	0,22	0,11	0,07
VNR-201	21	22	Quartz vein breccia	70,20	11,22	6,68	4,52	3,06	3,05	0,78	0,01	0,27	0,13	0,08
VNR-201	22	22.3	Carbonate vein	70 37	5 40	4 63	15 50	2 10	1 65	0.06	0.01	0 11	0 13	0.04
VINIC 201	22 2	22,5	Carbonate vein	20,57	1.00	4,05	15,50	2,10	1,05	0,00	0,01	0,11	0,15	0,04
VINR-201	22,3	22,8	Carbonate vein	39,61	1,08	1,70	56,41	0,62	0,21	0,06	0,01	0,01	0,28	0,01
VNR-201	22,8	23	Carbonate vein breccia	67,64	4,57	7,65	16,12	3,26	0,14	0,35	0,01	0,05	0,19	0,03
VNR-201	23	24	Quartz vein breccia	77,30	7,28	5,26	5,00	2,50	1,81	0,52	0,01	0,17	0,11	0,05
VNR-201	24	25	Carbonate vein breccia	67.65	8.49	5.01	13.12	2.31	2.69	0.37	0.01	0.15	0.15	0.05
VNR-201	25	26	Quartz vein breccia	70.94	7 59	5 66	10.46	2 69	1 98	0.32	0.01	0.16	0.14	0.05
VINIC 201	25	20	Carbanata wain	70,54 C0,7C	2,40	3,00	21,02	1.00	1,50	0,52	0,01	0,10	0,14	0,05
VINR-201	26	26,9	Carbonate vein	68,76	3,48	3,99	21,03	1,82	0,53	0,14	0,01	0,05	0,16	0,03
VNR-201	26,9	27,3	Carbonate vein	78,01	0,50	1,96	19,03	0,29	0,03	0,06	0,01	0,01	0,10	0,01
VNR-201	27,3	28	Carbonate vein	40,49	0,21	0,71	58,11	0,14	0,05	0,02	0,01	0,01	0,26	0,01
VNR-201	28	28.6	Quartz vein breccia	89.31	0.78	2.35	6.96	0.49	0.02	0.02	0.01	0.01	0.05	0.01
VNP-201	28.6	20	Quartz vein breccia	77 / 2	0 / 7	2 22	4.04	1 46	2,40	0 72	0.01	0.15	0.06	0.05
VINI-201	20,0	29		77,43	5,47	3,22	4,04	1,40	3,40	0,72	0,01	0,13	0,00	0,05
VNR-201	29	30	Quartz vein breccia	74,86	6,42	4,68	9,48	2,19	1,/1	0,40	0,01	0,10	0,12	0,04
VNR-201	30	32	Carbonate vein breccia	70,75	5,11	4,06	16,27	1,76	1,10	0,70	0,01	0,07	0,15	0,03
VNR-201	32	33	Quartz vein breccia	77,59	4,46	5,85	8,57	2,58	0,51	0,21	0,01	0,06	0,14	0,02
VNR-201	33	34	Carbonate vein breccia	68.66	2.89	4.88	21.16	2.05	0.04	0.08	0.01	0.05	0.18	0.02
VNP-201	24	24.5	Carbonate vein breccia	68 27	2 11	6.04	10.22	2 56	0.02	0.02	0.01	0.08	0.10	0.02
VINIC 201	24 5	34,5		00,57	5,44	0,04	15,25	2,50	1,02	0,02	0,01	0,00	0,13	0,05
VINR-201	34,5	35	Quartz vein breccia	83,04	5,47	6,34	0,70	2,97	1,20	0,05	0,01	0,08	0,11	0,03
VNR-201	35	35,2	Quartz vein breccia	75,28	6,69	6,17	6,70	3,28	1,57	0,03	0,01	0,11	0,13	0,04
VNR-201	35,2	35,5	Quartz vein breccia	93,90	1,49	3,23	0,16	1,06	0,03	0,03	0,01	0,04	0,04	0,02
VNR-201	35,5	36	Quartz vein breccia	89,01	1,12	1,81	7,25	0,62	0,05	0,05	0,01	0,01	0,05	0,01
VNR-201	36	37	Quartz vein breccia	91 89	2 14	3 38	0.83	1 42	0.03	0 19	0.01	0.04	0,06	0.02
VND 201	27	27.05	Quartz vein breesia	01.07	2,11	2,00	0,05	1.00	0.05	0.20	0,01	0,02	0.00	0,02
VINI-ZUI	37 05	20,15		91,07	2,33	3,30	0,50	1,00	0,05	0,50	0,01	0,05	0,00	0,02
VNR-201	37,85	38,45	Granitoid breccia	81,23	8,94	2,73	0,30	1,18	2,23	3,27	0,01	0,04	0,05	0,02
VNR-201	38,45	39	Granitoid breccia	77,65	9,95	4,79	0,72	2,16	3,39	1,02	0,01	0,15	0,09	0,05
VNR-201	39	40	Granitoid breccia	73,52	9,78	5,40	4,04	2,50	2,63	1,86	0,01	0,09	0,13	0,03
VNR-201	40	41	Granitoid breccia	77.05	10 56	4 26	0 34	1 95	2 99	2 64	0.01	0.08	0.08	0.03
VNR 201	11	42	Granitoid broccia	76 59	10 12	5 5 2	0.67	2,00	2,00	1 51	0.01	0.16	0.10	0.05
VINK-201	41	42		70,58	10,15	5,52	0,07	2,50	2,90	1,51	0,01	0,10	0,10	0,05
VNR-201	42	43	Granitoid breccia	/3,81	13,06	3,80	0,50	1,69	3,58	3,19	0,01	0,20	0,06	0,09
VNR-201	43	44	Granitoid breccia	72,89	13,80	3,73	0,56	1,58	4,51	2,55	0,01	0,23	0,05	0,11
VNR-201	44	45	Granitoid breccia	76,43	9,44	6,35	0,55	2,91	1,85	2,19	0,01	0,10	0,13	0,03
VNR-201	45	46	Granitoid breccia	75.75	12.52	3.12	0.50	1.41	4.47	2.00	0.01	0.14	0.05	0.03
VNR-201	46	47	Granitoid breccia	77 71	12 01	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 66	1 02	/ 21	2,00	0.01	0.11	0 02	0.02
VINI-201	47	40	Granitaid breast	76.24	12,01	2,52	0,00	1,02	+,21	2,30	0,01	0,11	0,05	0,05
VINK-201	4/	48	Granitoid preccia	76,34	12,44	2,68	0,35	1,1/	4,46	2,33	0,01	0,13	0,04	0,04
VNR-201	48	49	Granitoid breccia	78,54	11,30	2,49	0,30	1,11	4,05	2,00	0,01	0,12	0,04	0,03
VNR-201	49	50	Granitoid breccia	77,69	11,51	2,69	0,61	1,20	3,94	2,17	0,01	0,11	0,04	0,03
VNR-201	50	51	Granitoid breccia	76.81	11.96	2.97	0.42	1.31	4.20	2.10	0.01	0.14	0.05	0.04
VNP-201	51	52	Granitoid breccia	70 67	0 01	2,5,	1 05	1 60	2 2 2 2	1 60	0.01	0 10	0 07	0.03
VININ-ZUI	51	52		70,02	3,81	3,00	1,05	1,08	5,52	1,03	0,01	0,10	0,07	0,03
VINK-201	52	53	Granitoid preccia	76,95	12,26	2,28	0,61	1,02	4,32	2,34	0,01	0,14	0,03	0,03
VNR-201	53	54	Granitoid breccia	76,57	12,24	2,71	0,65	1,19	4,12	2,27	0,01	0,16	0,04	0,04
VNR-201	54	55	Granitoid breccia	76,96	12,56	2,18	0,53	0,92	4,33	2,32	0,01	0,13	0,03	0,04
VNR-201	55	56	Granitoid breccia	76.04	12.34	2.70	0.85	1.21	4.46	2.19	0.01	0.12	0.04	0.04
VNR-201	56	57	Granitoid breccia	7/ //	12 66	2 20	0.91	1 10	1 12	2 11	0.01	0.12	0.04	0.04
VINI-201		57	Granitaid breast	74,44	12.00	2,00	0,01	1,13	4,43	2,44	0,01	0,15	0,04	0,04
VNK-201	5/	58	Granitoid preccia	/5,85	13,04	2,22	0,62	0,99	4,76	2,32	0,01	0,13	0,03	0,04
VNR-201	58	59	Granitoid breccia	75,39	13,11	2,46	0,81	1,02	4,57	2,45	0,01	0,13	0,03	0,04
VNR-201	59	60	Granitoid breccia	79,25	10,10	2,46	1,67	1,07	3,36	1,89	0,01	0,11	0,04	0,03

	From	То												
HOLEID	depth	depth	Lithology	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	Cr2O3	TiO2	MnO	P2O5
	(m)	(m)												
VNR-201	60	61	Altered granitoid	77.23	12.41	2.01	0.55	0.76	3.96	2.92	0.01	0.12	0.02	0.03
VNR-201	61	62	Altered granitoid	74 64	14 03	1 90	0.97	0.68	4 54	3 02	0.01	0.15	0.02	0.04
VNR-201	62	63	Altered granitoid	75 53	13/18	1 87	1 22	0.62	/ 30	2 78	0.01	0.14	0.02	0.04
VNR-201	62	64	Altered granitoid	74 70	14.07	1 02	1 20	0,02	1 / 2	2,70	0,01	0.15	0,02	0,04
VINIC-201	03	04	Altered granitold	74,70	12.07	2,30	1,30	0,00	4,40	2,57	0,01	0,13	0,03	0,05
VNR-201	64	65	Altered granitoid	/5,38	12,97	2,12	2,03	0,79	4,39	2,10	0,01	0,14	0,04	0,04
VNR-201	65	66	Altered granitoid	75,77	12,96	2,14	1,42	0,78	4,34	2,38	0,02	0,13	0,03	0,03
VNR-201	66	67	Altered granitoid	76,63	12,74	2,13	1,10	0,75	4,13	2,31	0,02	0,13	0,03	0,03
VNR-201	67	68	Altered granitoid	79,01	11,40	2,22	0,47	0,82	3,89	1,97	0,04	0,12	0,03	0,03
VNR-201	68	69	Altered granitoid	77,29	11,80	2,29	1,64	0,80	3,82	2,16	0,01	0,12	0,04	0,03
VNR-201	69	70	Altered granitoid	75,80	13,12	2,39	0,88	0,89	4,27	2,47	0,01	0,13	0,03	0,03
VNR-201	70	71	Altered granitoid	77.70	11.25	2.45	1.79	0.88	3.57	2.18	0.01	0.11	0.04	0.02
VNR-201	71	72	Altered granitoid	77 29	12 62	1 85	1 02	0.62	4 02	2 37	0.01	0.15	0.02	0.03
VNR-201	72	72	Granitoid	77 / 1	12,02	1 70	1 40	0.57	2 91	2,37	0.01	0 10	0.02	0.04
VINI-201	72	75	Granitoid	77,41	12,55	1,75	2,40	0,57	4.22	2,41	0,01	0,19	0,03	0,04
VNR-201	73	74	Granitoid	74,72	13,61	1,71	2,48	0,52	4,22	2,52	0,01	0,14	0,03	0,04
VNR-201	74	/5	Granitoid	78,59	11,98	1,68	0,96	0,60	3,80	2,13	0,01	0,14	0,02	0,03
VNR-201	75	76	Granitoid	75,69	12,96	2,03	1,81	0,66	4,11	2,51	0,01	0,17	0,03	0,04
VNR-201	76	77	Granitoid	75 <i>,</i> 00	13,26	1,57	2,16	0,45	3,88	3,46	0,01	0,15	0,03	0,03
VNR-201	77	78	Granitoid	74,64	14,05	1,53	1,79	0,44	4,18	3,19	0,01	0,14	0,02	0,02
VNR-201	78	79	Granitoid	75,42	13,56	1,63	1,90	0,54	4,17	2,56	0,01	0,16	0,03	0,03
VNR-201	79	80	Granitoid	74,66	14,10	1,62	1,77	0,52	4,24	2,85	0,01	0,17	0,03	0,03
VNR-201	80	81	Granitoid	74.77	14.22	1.51	1.60	0.46	4.28	2.93	0.01	0.18	0.02	0.03
VNR-201	81	82	Granitoid	77 41	12 13	1 92	1 26	0 74	3 84	2 52	0.01	0 13	0.03	0.02
VNR-201	82	82.2	Granitoid	7/ 21	1/ 20	1 72	1 2 2	0.58	1 29	2,52	0.01	0.16	0,03	0.02
VINIC-201	02 0	82,2	Granitoid	74,51	12 57	1,73	1,52	0,58	4,38	3,07	0,01	0,10	0,03	0,03
VNR-201	83,3	84	Granitoid	74,67	13,57	1,88	1,82	0,67	4,02	3,14	0,01	0,15	0,03	0,03
VNR-201	84	85	Granitoid	/5,21	13,28	2,04	1,67	0,72	4,17	2,68	0,01	0,15	0,03	0,03
VNR-201	85	86	Granitoid	75,01	13,78	1,85	1,26	0,63	4,14	3,12	0,01	0,15	0,03	0,03
VNR-201	86	87	Granitoid	75,21	13,66	1,78	1,44	0,58	4,12	3,00	0,01	0,14	0,03	0,03
VNR-201	87	88	Granitoid	74,41	13,43	1,84	2,77	0,62	4,04	2,63	0,01	0,17	0,04	0,04
VNR-201	88	89	Altered granitoid	74,66	13,30	2,45	2,31	0,86	4,21	1,90	0,01	0,20	0,04	0,06
VNR-201	89	90	Altered granitoid	73.31	12.68	2.54	4.55	0.88	3.98	1.70	0.01	0.23	0.05	0.07
VNR-201	90	90.65	Altered granitoid	73.25	14.09	2.20	2.87	0.69	4.40	2,15	0.01	0.24	0.04	0.07
VNR-201	90.65	91	Carbonate vein	68 52	2 37	0 99	26 39	0.31	0.71	0.50	0.01	0.04	0 14	0.02
VNR-201	01	02	Altered granitoid	72 11	14.05	2 11	20,35	0.76	1 20	1 96	0.01	0.25	0.04	0.02
VINI-201	02	02	Altered granitoid	73,44	14,05	2,44	2,70	0,70	4,35	1,00	0,01	0,25	0,04	0,07
VINR-201	92	93	Altered granitold	73,02	14,71	2,42	2,12	0,77	4,59	1,98	0,01	0,25	0,04	0,08
VNR-201	93	94	Altered granitoid	/4,26	13,14	2,42	2,91	0,80	4,07	2,08	0,01	0,22	0,05	0,06
VNR-201	94	94,45	Altered granitoid	/3,41	13,26	2,56	3,46	0,91	4,45	1,59	0,01	0,23	0,05	0,07
VNR-201	94,45	94,7	Carbonate vein	78,95	3,46	2,20	12,72	0,83	0,41	1,26	0,01	0,06	0,09	0,03
VNR-201	94,7	95	Altered granitoid	73,95	12,94	2,31	3,86	0,80	4,44	1,36	0,01	0,22	0,04	0,07
VNR-201	95	96	Altered granitoid	74,03	13,88	2,35	2,48	0,78	4,35	1,79	0,01	0,23	0,04	0,08
VNR-201	96	97	Altered granitoid	74.89	12.70	2.43	3.08	0.79	3.88	1.91	0.01	0.22	0.04	0.06
			6	,	,	,	,	,	,	,	,	,	,	,
Drill core VI	NR-301:													
VNR-301	15	6	Carbonate vein breccia	69.45	7 95	3 77	13 //	1 28	2 36	1 //5	0.01	0.12	0 13	0.03
VINI-301	4,J	7	Quarta vaia brassia	72 14	0,00	3,77 4 1 F	0.24	1,20	2,30	1,45	0,01	0,12	0,13	0,03
VINR-301	0 7	/		72,14	0,00	4,15	9,24	1,51	3,13	1,00	0,01	0,13	0,12	0,04
VNR-301	/	8	Carbonate vein	68,08	6,77	4,14	16,16	1,44	1,79	1,35	0,01	0,09	0,15	0,03
VNR-301	8	9	Quartz vein breccia	80,98	4,96	7,11	3,21	2,25	0,49	0,78	0,01	0,07	0,13	0,02
VNR-301	9	10	Quartz vein breccia	88,83	3,75	4,50	0,11	1,89	0,61	0,12	0,01	0,07	0,09	0,02
VNR-301	10	11	Quartz vein breccia	78,03	6,49	5,26	4,83	2,24	0,39	2,52	0,01	0,06	0,15	0,02
VNR-301	11	12	Quartz vein breccia	76,30	9,76	5,55	1,36	2,42	2,64	1,71	0,01	0,10	0,13	0,02
VNR-301	12	13	Quartz vein breccia	76,62	10,99	4,13	0,71	1,74	3,60	1,90	0,01	0,16	0,09	0,04
VNR-301	13	14	Quartz vein breccia	82.07	8.30	3.57	0.25	1.50	2.33	1.75	0.01	0.11	0.07	0.03
VNR-301	14	15	Diabase breccia	65 54	10.84	12 83	1 71	5 27	0.98	1 86	0.01	0.61	0.25	0 10
VNR-301	15	16	Diabase	65 74	11 54	11.06	2 04	1 58	1 56	2 / 2	0.01	0.71	0.22	0.12
VNR 301	16	17	Diabase	57 22	11,54	12.75	2,04		2 05	1 56	0,01	0,71	0,22	0,12
VINI-301	17	10	Diabase	57,55	14,04	12,75	3,80	5,54	3,05	1,30	0,02	0,91	0,24	0,10
VIND 201	10	10	Diabase	50,21	14,54	13,02	2,20	5,55	5,20	1,27	0,02	0,92	0,29	0,10
VNR-301	18	19	Diabase	58,04	14,56	13,83	1,76	5,51	2,83	2,09	0,02	0,92	0,29	0,16
VNR-301	19	20	Diabase	61,16	13,59	12,67	1,28	4,99	2,42	2,64	0,02	0,83	0,25	0,14
VNR-301	20	21	Diabase	63,42	11,12	11,60	4,73	4,24	1,92	1,96	0,01	0,67	0,22	0,12
VNR-301	21	22	Diabase	64,21	11,29	11,85	3,14	4,22	1,65	2,57	0,01	0,71	0,23	0,12
VNR-301	22	23	Diabase	56,69	15,26	14,06	1,63	5,58	2,97	2,37	0,02	0,97	0,29	0,16
VNR-301	23	24	Diabase	55,19	15,51	14,04	2,98	5,66	2,94	2,22	0,02	0,99	0,29	0,16
VNR-301	24	25	Diabase breccia	56.88	14.18	13.09	3.22	5.40	0.90	5.08	0.02	0.83	0.26	0.14
VNR-301	25	26	Diabase breccia	72 00	7 98	8 54	4 17	3 45	0.14	3 10	0.01	0 38	0 18	0.06
VNR-301	26	27	Diabase breccia	58 76	1/ 1/	13.68	1 27	5 50	1 70	3 69	0.02	0.82	0.27	0.14
VNR 301	20	20	Diabase	62 56	12 45	12 21	1 62	4.05	2 21	1 77	0,02	0,02	0,27	0,14
VININ-SUL	2/	20 20	Diabase	05,50	14 50	12,31	1,02	4,30	2,21	1,//	0,01	0,77	0,23	0,12
VINK-3UI	28	29	Didudse	58,26	14,59	13,60	1,74	5,52	2,86	2,05	0,02	0,92	0,27	0,16
VNR-301	29	30	Diabase	54,59	15,47	14,14	2,96	5,54	2,31	3,55	0,02	0,97	0,29	0,17
VNR-301	30	31	Diabase	64,00	12,71	11,92	1,69	4,57	3,24	0,67	0,02	0,81	0,22	0,14
VNR-301	31	32	Diabase	67,95	11,19	10,62	1,61	4,25	2,64	0,69	0,02	0,71	0,20	0,12
VNR-301	32	33	Diabase breccia	73,52	7,66	8,20	3,92	3,35	0,82	1,83	0,01	0,45	0,16	0,08
VNR-301	33	34	Granitoid breccia	78,12	9,41	3,97	2,53	1,65	2,69	1,25	0,01	0,24	0,08	0,05
VNR-301	34	35	Granitoid breccia	76,13	12,08	2,44	2,52	0,93	4,09	1,51	0,01	0,18	0,05	0,05
VNR-301	35	36	Granitoid breccia	72.33	11.26	2.01	8.10	0.75	3.59	1.65	0.01	0.18	0.07	0.04
VNR-301	36	37	Altered granitoid	71 93	14 71	2 40	2 20	0 94	4 58	2 70	0.01	0.26	0.04	0.23
VNR_201	37	38	Altered granitoid	72 20	13 05	2,40	2,20	0.24	1 50	1 77	0.01	0.20	0.04	0.05
VIND 201	37 20	20	Altorod granitaid	73,00	11 04	2,23	2,43	0,04	3 1 7	1,//	0,01	0,20	0,04	0,05
VING-SUL	30	39	Altered granitold	77,41	12.55	1,18	1,0/	0,49	3,12	4,17	0,01	0,06	0,03	0,03
VNR-301	39	40	Altered granitoid	/5,08	13,57	2,40	1,37	0,94	4,44	1,92	0,01	0,18	0,04	0,05
VNR-301	40	41	Altered granitoid	75,10	13,50	1,95	2,20	0,75	4,36	1,87	0,01	0,17	0,04	0,04

	From	То		6:00	41202	5 202				1/20	6 2 6 2	T :00		6205
HOLEID	depth	depth (m)	Lithology	5102	AI203	Fe203	CaO	MgO	Na2O	K20	Cr203	1102	MnO	P205
VND 201	(11)	(11)	Altorod grapitaid	75.01	12.20	2.62	1.67	1.01	4 5 2	1 50	0.01	0.20	0.05	0.05
VNR-301	41	42	Altered granitoid	75,01	13,30	2,02	1,07	1,01	4,52 2.05	2,50	0,01	0,20	0,05	0,05
VNR-301	42	45	Altered granitoid	70,01	12,70	2,07	2 01	0,80	1 20	2,12	0,01	0,10	0,04	0,05
VNR-301	43	44	Altered granitoid	73,13	14 35	2,35	2,01	0,92	4,35	1,37	0,02	0,24	0,05	0,00
VNR-301	45	46	Altered granitoid	76,27	12.69	2.28	1.88	0.85	3.95	1.76	0.01	0.20	0.05	0.06
VNR-301	46	47	Altered granitoid	74.57	13.76	2.33	1.97	0.83	4.26	1.95	0.01	0.22	0.04	0.06
VNR-301	47	48	Altered granitoid	74.65	13.53	2.50	1.53	0.98	4.29	2.14	0.01	0.25	0.05	0.06
VNR-301	48	49	Altered granitoid	73,40	14,02	2,34	2,56	0,90	4,11	2,33	0,01	0,21	0,05	0,06
VNR-301	49	50	Granitoid	73,12	14,28	2,43	2,31	0,92	4,21	2,39	0,01	0,21	0,05	0,06
VNR-301	50	51	Granitoid	73,99	13,75	2,37	2,29	0,89	3,99	2,38	0,01	0,21	0,05	0,06
VNR-301	51	52	Granitoid	79,47	10,65	2,45	1,08	0,88	3,49	1,73	0,01	0,16	0,04	0,05
VNR-301	52	53	Granitoid	74,02	13,99	2,33	1,81	0,89	4,06	2,59	0,01	0,20	0,05	0,05
VNR-301	53	54	Granitoid	72,72	14,67	2,35	2,42	0,86	4,29	2,37	0,01	0,22	0,05	0,06
VNR-301	54	55	Granitoid	74,48	13,80	2,18	2,20	0,81	4,11	2,09	0,01	0,21	0,05	0,05
VNR-301	55	56	Granitoid	74,27	13,88	2,31	2,30	0,86	4,16	1,89	0,01	0,22	0,05	0,06
VNR-301	61	62	Granitoid	73,05	14,40	2,53	2,03	1,04	4,32	2,29	0,01	0,22	0,06	0,05
VNR-301	62	63	Granitoid	73,63	12,59	2,34	4,36	0,94	3,61	2,21	0,01	0,20	0,06	0,05
VNR-301	63	64	Granitoid	74,27	13,70	2,27	2,14	0,87	4,25	2,17	0,01	0,22	0,05	0,04
VNR-301	64	65	Quartz vein breccia	74,96	12,71	2,42	2,22	0,93	3,67	2,81	0,01	0,17	0,05	0,04
VNR-301	65	66	Granitoid	74,08	13,80	2,33	1,87	0,90	4,13	2,60	0,01	0,19	0,05	0,05
VINR-301	60	67	Granitolu	72,01	14,24	2,33	3,08	1.05	4,27	2,24	0,01	0,20	0,05	0,05
VINR-301	67 69	00 60	Granitolu Granitold	72,07	14,15	2,58	3,42	1,05	4,20	2,10	0,01	0,21	0,06	0,06
VNR-301	60	70	Granitoid	73,00	12 4/10	2,21	2 80	1 1 2	4,52	2,70	0,01	0,17	0,03	0,04
VNR-301	70	70	Granitoid	75,56	14 70	2,00	5,69 7 1 /	1,10	4,07	1,95	0,01	0,10	0,07	0,04
VNR-301	70	71	Granitoid	70,95	14,70	2 76	2,14	1,00	4,59	1,70	0,01	0,20	0,09	0,04
VNR-301	72	72	Granitoid	79,02	13.06	2,70	4 78	0.87	4 10	1 93	0,01	0,14	0,00	0.05
VNR-301	73	74	Granitoid	73 24	13,00	2,15	2 14	1 14	4 37	2 33	0.01	0.19	0.05	0.05
VNR-301	74	75	Granitoid	72.59	14.58	2.66	2.01	1.04	4.31	2.44	0.01	0.24	0.05	0.07
VNR-301	75	76	Granitoid	72.88	14.72	2.28	2.09	0.88	4.51	2.31	0.01	0.20	0.05	0.05
VNR-301	76	77	Granitoid	71,43	13,51	2,36	5,44	0,90	4,16	1,87	0,01	0,21	0,06	0,06
VNR-301	77	78	Altered granitoid	75,02	12,80	2,32	2,26	1,00	4,15	2,19	0,01	0,17	0,04	0,04
VNR-301	78	79	Altered granitoid	73,99	12,73	2,63	2,93	1,11	3,97	2,35	0,01	0,18	0,05	0,05
VNR-301	79	80	Altered granitoid	73,32	14,56	2,48	1,58	1,03	4,69	2,03	0,01	0,20	0,04	0,05
VNR-301	80	81	Quartz vein breccia	76,38	12,50	1,82	1,36	0,73	3,52	3,48	0,01	0,11	0,04	0,04
VNR-301	81	82	Altered granitoid	72,60	14,96	2,31	2,42	0,86	4,72	1,76	0,01	0,24	0,05	0,06
VNR-301	82	83	Altered granitoid	72,68	14,64	2,50	2,15	0,96	4,45	2,27	0,01	0,22	0,05	0,06
VNR-301	83	84	Granitoid	74,07	12,74	2,42	3,69	0,92	3,86	1,95	0,02	0,21	0,06	0,05
VNR-301	84	85	Granitoid	73,35	14,34	2,25	2,13	0,91	4,66	2,05	0,01	0,20	0,05	0,05
VNR-301	85	86	Granitoid	73,33	14,46	2,35	1,84	0,91	4,42	2,37	0,01	0,20	0,04	0,06
VNR-301	86	87	Granitoid	72,47	14,90	2,34	2,53	0,88	4,54	1,98	0,01	0,23	0,05	0,06
VNR-301	87	88	Granitoid	71,67	14,89	2,55	3,09	0,97	4,61	1,85	0,01	0,24	0,05	0,07
VNR-301	88	89	Granitoid	72,64	14,46	2,44	2,99	0,91	4,51	1,70	0,01	0,22	0,05	0,06
VNR-301	89	90	Granitoid	72,38	15,06	2,37	2,57	0,87	4,63	1,76	0,01	0,24	0,05	0,06
VNR-301	90	91	Granitoid	72,49	14,69	2,29	2,88	0,86	4,55	1,90	0,01	0,22	0,05	0,06
VNR-301	91	92	Altered granitoid	72,94	12 74	2,47	1,65	1 22	4,59	2,10	0,01	0,22	0,04	0,06
VNR-301	92	93	Altered granitoid	73,48	14 62	2,57	1.88	0.86	4,47	2,00	0,01	0,20	0,05	0,05
VNR-301	94	95	Altered granitoid	73 34	14,02	2,25	1 71	1 04	4 50	2,22	0.01	0.21	0.05	0.05
VNR-301	95	96	Altered granitoid	73.01	14.18	2.89	1.64	1.16	4.69	2.12	0.01	0.19	0.05	0.05
VNR-301	96	97	Altered granitoid	73.15	12.70	2.72	4.13	1.10	4.20	1.68	0.01	0.20	0.06	0.05
VNR-301	97	98	Altered granitoid	72,63	14,11	2,82	2,65	1,02	4,43	1,95	0,01	0,25	0,06	0,06
VNR-301	98	99	Granitoid	72,14	14,80	2,18	3,14	0,79	4,68	1,93	0,01	0,21	0,05	0,06
VNR-301	99	100	Granitoid	72,80	14,56	2,48	2,14	0,98	4,64	2,08	0,01	0,19	0,05	0,07
VNR-301	100	101	Granitoid	74,19	13,94	2,35	1,66	0,96	4,68	1,93	0,01	0,18	0,04	0,05
VNR-301	101	102	Quartz vein	75,59	13,38	0,58	1,14	0,23	3,28	5,71	0,01	0,02	0,02	0,02
VNR-301	102	103	Quartz vein	74,73	13,88	1,09	1,38	0,38	4,00	4,42	0,01	0,06	0,03	0,03
VNR-301	103	104	Granitoid	72,84	14,71	2,33	2,30	0,89	4,94	1,65	0,01	0,21	0,05	0,05
VNR-301	104	105	Granitoid	73,47	14,35	2,25	2,08	0,88	4,46	2,20	0,01	0,20	0,04	0,05
VNR-301	105	106	Granitoid	73,51	14,68	1,96	2,11	0,73	4,49	2,23	0,01	0,20	0,04	0,04
VNR-301	106	107	Granitoid	73,20	14,61	2,20	1,94	0,84	4,55	2,35	0,01	0,20	0,04	0,05
VNR-301	107	108	Granitoid	73,48	14,36	2,27	1,85	0,87	4,41	2,48	0,01	0,18	0,04	0,05
VNR-301	108	109	Granitoid	72,96	14,56	2,22	2,75	0,80	4,67	1,72	0,01	0,21	0,04	0,05
VNR-301	109	110	Granitoid	72,64	13,30	2,32	4,45	0,91	4,47	1,60	0,01	0,19	0,06	0,05
VNR-301	110	111	Altered granitoid	72,94	12,52	2,38	5,33	0,85	4,26	1,41	0,01	0,19	0,06	0,05
VNR-301	111	112	Altered granitoid	/3,53	12,49	2,52	4,46	0,98	4,25	1,45	0,01	0,20	0,06	0,05
VINK-301	112	113	Altered granitoid	68,62	11,58	3,05	9,90	1,18	3,30	2,04	0,01	0,16	0,12	0,04
VINE 201	114	115	Antereu grafiitolo	72,02	14,//	2,59	1,80	1,01	4,07	2,15	0,01	0,21	0,05	0,05
VINR-301	114 115	116	Granitoid	/2,0/ 72 21	14,88 14.06	2,29	2,41	0,88 0 07	4,08 1 90	1,8/ 17/	0,01	0,22	0,04	0,05
VINE-201	116	117	Granitoid	72,21	14,90 11 CO	2,40	∠,⊃∪ วว⊑	0,97	4,8U 1 60	1,74 2.02	0,01	0,23	0,05	0,00
VNR-201	117	118	Granitoid	72,03	15 12	∠,+o 2 22	2,20	0,00	4,00	2,05 1 Q1	0.01	0,23	0,05	0,00
VNR-301	118	119	Granitoid	72,23	15,15	2,22	2,01	0.79	4 64	2,51	0.01	0.23	0.05	0.06
VNR-301	119	120	Granitoid	72.77	14.68	2.34	2.41	0.74	4.60	2.08	0.01	0.25	0.05	0.06
VNR-301	120	121	Granitoid	72.72	14.66	2.61	2.28	0.83	4.62	1.88	0.01	0.27	0.05	0.07
VNR-301	121	122	Granitoid	72.61	14.61	2.81	2.05	0.89	4.75	1.88	0.01	0.26	0.06	0.07
VNR-301	122	123	Granitoid	73,01	14,18	2,35	3,09	0,73	4,65	1,64	0,01	0,23	0,05	0,06
VNR-301	123	124	Granitoid	73,08	14,62	2,05	2,12	0,65	4,24	2,93	0,01	0,20	0,04	0,06

	From	То												
HOLEID	depth	depth	Lithology	SiO2	AI2O3	Fe2O3	CaO	MgO	Na2O	K2O	Cr2O3	TiO2	MnO	P2O5
	(m)	(m)												
VNR-301	124	125	Granitoid	73.13	14.81	2.20	1.67	0.80	4.55	2.52	0.01	0.21	0.05	0.05
VNR-301	125	126	Granitoid	73 60	1/ 10	2.46	1.8/	0 91	1 8/	1 78	0.01	0.25	0.05	0.06
VINI-301	125	120		73,00	10.00	2,40	1,04	1.05	4,04	1,70	0,01	0,25	0,05	0,00
VINR-301	126	127	Altered granitoid	73,92	10,89	2,80	5,78	1,05	3,68	1,54	0,01	0,19	0,08	0,05
VNR-301	127	128	Altered granitoid	/3,59	13,92	2,95	1,25	1,08	4,75	2,11	0,01	0,24	0,05	0,06
VNR-301	128	129	Altered granitoid	72,71	14,72	2,56	2,16	0,86	4,64	1,98	0,01	0,25	0,05	0,07
VNR-301	129	130	Altered granitoid	72,07	15,11	2,49	2,65	0,76	4,77	1,75	0,01	0,27	0,05	0,07
VNR-301	130	131	Granitoid	72,75	14,51	2,73	2,00	0,93	4,38	2,33	0,01	0,24	0,06	0,06
VNR-301	131	132	Granitoid	72.27	14.91	2.61	2.43	0.82	4.73	1.83	0.01	0.27	0.05	0.07
VNR-301	132	133	Granitoid	72.03	14 61	2 95	2 28	1.04	4 50	2 22	0.01	0.24	0.06	0.06
VNR 201	122	124	Granitoid	72,05	14,01	2,55	2,20	0.70	4,50	1 02	0,01	0.24	0,00	0,00
VINK-501	155	134		72,99	14,00	2,45	2,25	0,78	4,00	1,92	0,01	0,25	0,05	0,00
VNR-301	134	135	Granitoid	/2,81	14,55	2,81	2,02	0,98	4,54	1,96	0,01	0,23	0,05	0,05
VNR-301	135	136	Granitoid	72,96	14,53	2,64	2,21	0,85	4,61	1,81	0,01	0,26	0,05	0,07
VNR-301	136	137	Granitoid	74,18	14,19	2,13	1,91	0,72	4,75	1,82	0,01	0,20	0,04	0,06
VNR-301	137	138	Granitoid	74,47	12,17	3,98	2,04	1,44	3,68	1,91	0,01	0,17	0,08	0,05
VNR-301	138	139	Altered granitoid	74.31	14.07	1.99	2.17	0.71	4.64	1.84	0.01	0.17	0.04	0.05
VNR-301	139	140	Altered granitoid	73 85	14 50	2 04	1 88	0.69	4 60	2 14	0.01	0,20	0.04	0.05
VNR 201	140	1/1	Altered granitoid	66 OF	16 22	6.25	1 10	2 74	=,00 E E 2	1 62	0.01	0,20	0,04	0.05
VINK-501	140	141	Altered granitold	00,05	10,25	0,55	1,10	2,74	5,52	1,05	0,01	0,21	0,11	0,05
VNR-301	141	142	Altered granitoid	74,46	13,77	3,08	0,58	1,21	4,88	1,70	0,01	0,20	0,04	0,06
VNR-301	142	143	Altered granitoid	75,40	13,33	2,79	0,57	1,11	4,75	1,75	0,01	0,19	0,04	0,05
VNR-301	143	144	Altered granitoid	74,54	14,16	2,46	0,65	1,00	5,16	1,76	0,01	0,18	0,04	0,05
VNR-301	144	145	Altered granitoid	75,18	14,07	2,13	1,11	0,80	4,68	1,78	0,01	0,15	0,04	0,05
VNR-301	145	146	Altered granitoid	72.21	15.00	2.46	2.52	0.85	4.93	1.64	0.01	0.27	0.05	0.07
VNR-301	146	147	Granitoid	73 75	14 31	2 10	2 33	0.68	4 55	2 00	0.01	0 19	0.04	0.05
VNR 201	147	1/0	Granitoid	73,75	14.15	2,10	1 75	0,00	4,55	2,00	0.01	0,15	0.05	0.06
VINR-301	147	148	Granitolu	73,97	14,15	2,34	1,75	0,81	4,55	2,10	0,01	0,22	0,05	0,06
VNR-301	148	149	Granitoid	/2,0/	14,//	3,10	1,68	1,20	4,66	2,09	0,01	0,29	0,06	0,08
VNR-301	149	150	Granitoid	73,57	14,63	2,07	1,90	0,72	4,48	2,32	0,01	0,21	0,04	0,05
VNR-301	150	151	Granitoid	74,45	14,25	1,64	1,59	0,63	4,37	2,83	0,01	0,17	0,03	0,04
VNR-301	151	152	Granitoid	72,54	14,86	2,54	2,40	0,83	4,66	1,75	0,01	0,28	0,05	0,08
VNR-301	152	153	Granitoid	72.79	14.33	2.98	1.99	1.10	4.80	1.58	0.01	0.29	0.06	0.08
VNR-301	153	15/	Granitoid	72 12	14 57	2.66	2 5 8	1.04	5 25	1 /0	0.01	0.26	0.05	0.07
VNR 201	153	155	Granitoid	72,12	12 61	2,00	1 00	0.96	5,25	1 40	0,01	0,20	0,03	0,07
VINK-501	154	155		74,00	15,01	2,19	1,09	0,80	3,00	1,49	0,01	0,20	0,04	0,05
VNR-301	155	156	Granitoid	/5,5/	12,36	2,98	2,35	0,99	4,08	1,32	0,01	0,22	0,06	0,06
VNR-301	156	157	Granitoid	72,71	14,61	2,98	1,99	1,04	4,85	1,43	0,01	0,24	0,06	0,07
VNR-301	157	158	Granitoid	75,00	13,32	2,80	1,59	1,02	4,91	1,01	0,02	0,22	0,05	0,07
VNR-301	158	159	Diabase breccia	66,08	11,88	10,27	3,17	4,51	2,06	0,91	0,02	0,73	0,23	0,13
VNR-301	159	160	Diabase	56.59	15.25	11.85	5.69	5.10	3.26	0.87	0.02	0.95	0.25	0.17
VNR-301	160	161	Diabase	58.04	1/ 93	12 23	3 95	1 91	3,61	0.94	0.02	0.91	0.25	0.17
VNR 201	161	162	Diabase	56,04	15 60	12,23	5,55 E 11	4.05	2 70	0,54	0,02	0,51	0,25	0,17
VINK-501	101	102	Diabase	55,90	15,09	12,51	5,11	4,95	5,76	0,64	0,02	0,97	0,20	0,17
VNR-301	162	163	Diabase	55,92	15,11	11,68	6,17	5,16	3,48	1,16	0,02	0,93	0,22	0,16
VNR-301	163	164	Diabase	56,98	15,25	11,80	4,67	5,08	3,85	0,99	0,02	0,95	0,24	0,17
VNR-301	164	165	Diabase	57,78	15,01	12,40	4,27	4,80	3,57	0,79	0,02	0,94	0,25	0,16
VNR-301	165	166	Diabase	55,95	15,41	13,97	3,53	5,39	3,64	0,66	0,02	0,96	0,30	0,17
VNR-301	166	167	Diabase	55.29	15.20	11.16	7.45	5.13	3.11	1.30	0.02	0.95	0.24	0.16
VNR-301	167	168	Diabase	55 92	15 00	11 56	6.42	5 12	2 97	1 65	0.02	0.94	0.23	0.16
VNR 201	160	160	Diabase	55,52	14 75	11,50	7 67	5,12	2,57	1 / E	0,02	0,07	0.25	0.16
VINK-501	100	109	Diabase	53,09	14,75	11,05	7,07	5,05	3,01	1,45	0,02	0,92	0,20	0,10
VNR-301	169	170	Diabase	54,93	15,27	10,86	7,52	5,53	3,01	1,55	0,02	0,95	0,20	0,16
VNR-301	170	171	Diabase	54,97	15,31	11,04	7,40	5,35	3,00	1,60	0,02	0,94	0,20	0,16
VNR-301	171	172	Diabase	55,09	15,26	10,88	7,52	5,33	3,09	1,52	0,02	0,94	0,19	0,16
VNR-301	172	173	Diabase	54,48	15,91	13,18	4,54	5,42	3,26	1,83	0,02	0,94	0,27	0,16
VNR-301	173	174	Diabase	54.65	15.55	11.33	7.01	5.41	3.17	1.58	0.02	0.90	0.23	0.15
VNR-301	174	175	Diabase	54 77	15 35	10.69	7 78	5 49	3 16	1 49	0.02	0.91	0.19	0 15
VNR-201	175	176	Diabase	55.04	15 17	10,05	7 92	5,45	2 02	1 54	0.02	0.02	0 10	0.16
VNR 301	170	177	Diabase	55,04	15,17	10,51	7,02	5,20	2,55	1,54	0,02	0,55	0,10	0,10
VINR-301	1/0	1//	Diabase	55,55	15,20	10,94	7,22	5,51	3,00	1,03	0,02	0,94	0,19	0,10
VNK-301	1//	1/8	Diabase	55,08	15,14	10,83	1,11	5,23	3,05	1,60	0,02	0,93	0,18	0,16
VNR-301	178	179	Diabase	56,28	14,95	11,58	5,95	5,21	2,84	1,89	0,02	0,93	0,21	0,16
VNR-301	179	180	Diabase	56,03	14,93	11,64	6,66	4,73	2,79	1,88	0,02	0,92	0,23	0,16
VNR-301	180	181	Diabase	55,30	14,97	11,07	7,61	5,13	3,03	1,57	0,02	0,93	0,20	0,16
VNR-301	181	182	Diabase	55.09	15.19	11.03	7.42	5.31	2.94	1.68	0.02	0.94	0.21	0.16
VNR-301	182	183	Diabase	55 36	15 01	10.86	7 30	5 3 3	3 13	1 63	0.02	0.91	0.19	0.16
VNR 201	102	10/	Diabase	EA 99	15,01	10,00	7,55	E 24	2 10	1 55	0,02	0.04	0,15	0.16
VINK-501	105	104	Diabase	54,00	15,21	10,95	7,07	5,54	3,10	1,55	0,02	0,94	0,20	0,10
VNR-301	184	185	Diabase	54,94	15,26	10,77	7,69	5,43	3,01	1,58	0,02	0,94	0,19	0,16
VNR-301	185	186	Diabase	55,73	15,17	11,76	6,07	5,10	3,23	1,55	0,02	0,95	0,26	0,16
VNR-301	186	187	Diabase	56,09	15,40	14,54	2,85	4,89	3,20	1,53	0,02	0,97	0,33	0,17
VNR-301	187	188	Diabase	53,76	15,76	12,06	6,97	5,05	3,46	1,51	0,02	0,98	0,26	0,18
VNR-301	188	189	Diabase	54.88	15.38	11.21	7.15	5.22	3.13	1.65	0.02	0.97	0.22	0.17
VNR-301	189	190	Diabase	55 19	15 29	10.88	7 3/	5 21	3 21	1 50	0.02	0.96	0.23	0.17
VINK-501	109	190	Diabase	55,19	15,29	10,66	7,54	5,21	5,21	1,50	0,02	0,90	0,25	0,17
VINK-301	190	191	Diabase	54,98	15,40	10,56	8,01	5,35	2,/1	1,63	0,02	0,97	0,21	0,17
VNR-301	191	192	Diabase breccia	68,72	12,65	8,23	1,85	3,35	2,91	1,47	0,01	0,54	0,13	0,12
VNR-301	192	193	Granitoid breccia	73,01	14,62	2,60	1,66	0,97	5,86	0,92	0,01	0,23	0,05	0,06
VNR-301	193	194	Altered granitoid	70,47	15,58	3,62	1,62	1,44	5,08	1,81	0,01	0,23	0,07	0,06
VNR-301	194	195	Altered granitoid	73.90	14.28	2.17	2,33	0.71	4.79	1.48	0.01	0.24	0.04	0.06
VNR-301	195	196	Altered granitoid	73.96	14.26	2 22	2 22	0 71	4 87	1 41	0.01	0.24	0.04	0.06
VNR_201	106	107	Altered granitoid	73,50	1/ 20	2,22	2,25	0 71	1 50	1 0 2	0.01	0.24	0.04	0.06
VING-301	107	100	Altered granitold	73,05	14,30	2,28	2,20	0,71	4,55	1,92	0,01	0,24	0,04	0,06
VINK-301	191	198	Altered granitoid	/4,06	14,23	1,94	1,90	0,63	4,50	2,44	0,01	0,20	0,04	0,06
VNR-301	198	199	Altered granitoid	74,08	14,24	1,87	1,91	0,58	4,25	2,79	0,01	0,19	0,04	0,05
VNR-301	199	200	Altered granitoid	72,86	14,70	2,30	2,13	0,74	4,81	2,10	0,01	0,24	0,05	0,06
VNR-301	200	201	Altered granitoid	71,90	14,30	2,61	3,66	0,82	4,53	1,76	0,01	0,27	0,06	0,07
VNR-301	201	202	Granitoid	72 51	14 55	2 63	2 54	0.85	4 52	1 99	0.02	0.27	0.05	0.07
301	-01	-02	5.6	, 2,31	±-,55	2,00	2,34	0,00	7,52	1,55	0,02	0,21	3,05	0,07

	From	То												
HOLEID	depth	depth	Lithology	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	К2О	Cr2O3	TiO2	MnO	P2O5
	(m)	(m)	-											
VND 201	202	202	Granitaid	71.06	15.00	2 5 0	264	0.76	1 69	1 90	0.01	0.20	0.05	0.07
VINK-301	202	205	Granitolu	71,90	15,09	2,50	2,04	0,70	4,08	1,09	0,01	0,20	0,05	0,07
VNR-301	203	204	Granitoid	/2,9/	14,42	2,57	2,46	0,79	4,56	1,78	0,02	0,30	0,05	0,07
VNR-301	204	205	Granitoid	73,31	14,29	2,50	2,33	0,74	4,54	1,90	0,01	0,26	0,05	0,07
VNR-301	205	206	Granitoid	72,73	14,62	2,58	2,40	0,80	4,58	1,87	0,02	0,28	0,05	0,07
VNR-301	206	207	Granitoid	72,77	14,60	2,55	2,54	0,75	4,52	1,85	0,01	0,27	0,05	0,07
VNR-301	207	208	Granitoid	72.38	14.82	2.59	2.38	0.80	4.80	1.80	0.02	0.29	0.05	0.07
				,	,= _	_,	_,	-,	.,	_,	-,	-)	-,	-,
Drill coro V	ND 202.													
Drill core v	INK-302:													
VNR-302	10,5	11	Carbonate vein	36,17	0,21	0,60	62,51	0,13	0,06	0,03	0,01	0,01	0,26	0,01
VNR-302	11	12	Carbonate vein	24,99	0,21	0,70	73,52	0,16	0,07	0,03	0,01	0,01	0,30	0,01
VNR-302	12	13	Carbonate vein	44,98	3,81	1,81	46,93	0,60	1,14	0,43	0,01	0,04	0,22	0,03
VNR-302	13	14	Carbonate vein breccia	71,28	10,50	2,73	9,39	0,99	3,56	1,25	0,01	0,17	0,08	0,06
VNR-302	14	15	Carbonate vein breccia	69,04	8,13	3,78	14,17	1,41	2,31	0,89	0,01	0,10	0,11	0,04
VNR-302	15	16	Carbonate vein breccia	75 87	10 58	2 66	4 85	0 91	3 48	1 41	0.01	0 14	0.05	0.04
VNR-302	16	17	Carbonate vein breccia	70 75	8 3 3	2 99	12 60	0.96	2.68	1 / 2	0.01	0 10	0 10	0.04
VNR 302	17	10	Carbonate vein breesia	70,75	0,55	2,55	11 61	0,50	2,00	1 54	0,01	0,10	0,10	0,04
VINK-302	17	10		71,79	0,01	2,50	11,01	0,82	2,02	1,54	0,01	0,11	0,09	0,04
VNR-302	18	19	Carbonate vein	66,01	7,19	3,25	18,74	0,78	1,93	1,85	0,01	0,08	0,13	0,04
VNR-302	19	20	Carbonate vein	56,70	5,58	1,96	31,70	0,59	1,31	1,89	0,01	0,05	0,19	0,03
VNR-302	20	21	Carbonate vein breccia	68,23	8,95	2,58	13,66	0,81	2,16	3,33	0,01	0,12	0,10	0,05
VNR-302	21	22	Carbonate vein breccia	68,03	7,60	2,73	15,81	0,81	1,69	3,09	0,01	0,10	0,11	0,04
VNR-302	22	23	Carbonate vein breccia	68.57	8.10	3.00	14.03	0.89	2.14	2.96	0.01	0.15	0.11	0.04
VNR-302	23	24.6	Carbonate vein	64 43	5.85	5 47	20.18	1.85	1 22	0 73	0.01	0.06	0 18	0.03
VNR 202	25	27,0	Quarta voin broccia	04,45 94 10	4 00	4 60	4.00	1 70	0 55	0 51	0,01	0.04	0,10	0,03
VINK-302	20	27		04,19	4,00	4,09	4,09	1,70	0,33	0,51	0,01	0,04	0,10	0,05
VNR-302	27	28	Diabase breccia	70,15	9,12	11,31	0,74	5,69	0,43	1,76	0,01	0,50	0,20	0,10
VNR-302	28	29	Diabase breccia	73,36	7,74	10,56	1,19	4,74	0,13	1,51	0,02	0,45	0,21	0,09
VNR-302	29	30	Diabase breccia	65,05	11,18	12,97	0,92	6,02	1,31	1,51	0,01	0,68	0,23	0,13
VNR-302	30	31	Diabase breccia	70,32	9,51	10,81	0,84	4,78	0,89	1,98	0,02	0,56	0,19	0,10
VNR-302	31	32	Diabase breccia	66.36	10.87	11.77	1.36	5.12	0.92	2.60	0.01	0.66	0.23	0.12
VNR-302	32	33	Diabase breccia	59 54	13 94	13.08	2 05	5 46	2 89	1 74	0.02	0.87	0.26	0.15
VNR 302	22	24	Diabase	55,54	12.24	12.00	2,05	5,40	2,05	1.04	0,02	0,07	0,20	0,15
VINR-302	33	34	Diabase	57,60	13,24	12,59	5,59	5,55	2,59	1,04	0,01	0,81	0,27	0,15
VNR-302	34	35	Diabase	62,17	13,07	12,21	1,38	5,23	1,95	2,82	0,01	0,79	0,23	0,14
VNR-302	35	36	Diabase	64,06	12,14	12,14	1,20	5,12	1,58	2,59	0,01	0,79	0,23	0,14
VNR-302	36	37	Diabase	66,16	11,09	11,28	1,60	4,68	1,03	3,12	0,02	0,67	0,22	0,12
VNR-302	37	38	Diabase	60,57	13,58	13,23	1,10	5,54	2,06	2,71	0,01	0,81	0,25	0,14
VNR-302	38	39	Diabase	62.97	12.30	12.59	1.79	5.22	1.84	2.20	0.02	0.70	0.24	0.13
VNR-302	39	40	Diabase	57 01	14 16	12 81	3 71	5 34	1 51	4 19	0.01	0.84	0.26	0 15
VNR-202	40	/1	Diabase	60.10	12.01	12 15	1 47	5 80	0.12	5.09	0.02	0.75	0.26	0.12
VINI-302	40	41	Diabase	56.55	14.20	15,15	1,47	5,80	0,13	3,00	0,02	0,75	0,20	0,15
VINR-302	41	42	Diabase	50,55	14,20	15,21	0,90	0,54	0,64	4,52	0,01	0,80	0,30	0,15
VNR-302	42	43	Diabase	58,14	13,82	12,96	2,14	5,48	0,20	6,03	0,02	0,80	0,26	0,15
VNR-302	43	44	Diabase	65,72	10,14	11,81	3,55	4,81	1,16	1,81	0,01	0,64	0,23	0,12
VNR-302	44	45	Diabase	61,55	12,42	12,24	3,93	5,01	2,55	1,10	0,01	0,79	0,25	0,14
VNR-302	45	46	Diabase	57,24	14,73	13,23	2,78	5,45	2,54	2,69	0,01	0,90	0,26	0,17
VNR-302	46	47	Diabase	56.11	14,70	13.48	4.11	5.50	2.90	1.83	0.01	0.91	0.29	0.16
VNR-302	47	18	Diabase	59.65	13 92	13.00	2 7/	5 11	2 73	1 56	0.01	0.87	0.26	0.15
VNR 202	10	40	Diabase	55,05	14.02	12 10	E 16	E 22	2,73	1 06	0,01	0.02	0.24	0.17
VINK-302	40	49	Diabase	50,20	14,92	12,19	5,10	5,25	5,04	1,00	0,01	0,95	0,24	0,17
VNR-302	49	50	Diabase	55,26	13,81	12,05	7,71	5,34	2,54	2,02	0,01	0,86	0,26	0,15
VNR-302	50	51	Diabase	55,19	15,28	11,34	6,40	5,69	3,85	0,90	0,01	0,95	0,22	0,17
VNR-302	51	52	Diabase	57,26	13,99	12,29	5,47	5,18	3,06	1,47	0,01	0,87	0,24	0,15
VNR-302	52	53	Diabase	54,96	15,34	11,32	6,65	5,77	3,29	1,31	0,01	0,97	0,20	0,17
VNR-302	53	54	Granitoid breccia	69,01	13,59	4,96	3,78	2,01	4,24	1,91	0,01	0,31	0,09	0,08
VNR-302	54	55	Granitoid breccia	73.76	14.23	2.43	1.37	0.94	4.64	2.33	0.01	0.20	0.03	0.06
VNR-302	55	56	Granitoid breccia	72 69	14 29	2 52	2 23	0.91	4 50	2 54	0.01	0.20	0.04	0.06
VNR 202	55	50	Granitoid breesia	71.05	12 16	2,32	2,23	0.01	4,50	2,34	0,01	0,20	0.05	0.06
VNR-302	50	57	Granitoid breecia	71,95	12,40	2,41	0.77	1.25	4,15	3,21	0,01	0,19	0,05	0,00
VINR-302	57	58	Granitoid breccia	75,03	12,89	3,19	0,77	1,25	4,02	2,54	0,01	0,19	0,05	0,06
VNR-302	58	59	Granitoid breccia	/3,49	14,23	2,56	0,85	1,00	4,57	3,01	0,01	0,18	0,04	0,06
VNR-302	59	60	Quartz vein breccia	74,17	13,97	2,52	1,32	0,89	4,26	2,58	0,01	0,19	0,04	0,06
VNR-302	60	61	Altered granitoid	74,91	13,58	2,21	1,21	0,83	3,98	3,03	0,01	0,15	0,04	0,05
VNR-302	61	62	Altered granitoid	74,42	13,81	2,23	1,81	0,79	4,14	2,52	0,01	0,18	0,04	0,05
VNR-302	62	63	Altered granitoid	74.49	13.79	2.47	1.45	0.90	4.18	2.44	0.01	0.17	0.05	0.05
VNR-302	63	64	Granitoid	74 39	14 15	2 01	1 92	0.65	4 46	2 18	0.01	0 17	0.03	0.05
VNR-202	64	65	Granitoid	74.64	12 07	2,05	1 90	0.66	1 24	2 14	0,01	0.21	0.02	0.06
VNR-302	04	05	Granitoid	74,04	14.07	2,00	1,09	0,00	4,54	2,14	0,01	0,21	0,03	0,00
VNR-302	65	66	Granitoid	74,09	14,07	2,44	1,/1	0,82	4,52	2,03	0,01	0,21	0,04	0,06
VNR-302	66	6/	Granitoid	75,32	13,49	2,21	1,68	0,70	4,27	2,04	0,01	0,20	0,04	0,06
VNR-302	67	68	Granitoid	78,41	11,15	1,46	2,08	0,47	3,06	3,18	0,01	0,11	0,03	0,04
VNR-302	68	69	Granitoid	76,08	12,82	2,04	1,57	0,68	4,06	2,49	0,01	0,16	0,03	0,05
VNR-302	69	70	Granitoid	76,19	13,36	1,81	0,75	0,64	4,53	2,53	0,01	0,13	0,02	0,05
VNR-302	70	71	Quartz vein breccia	77.77	10.98	2.18	2.18	0.73	3.66	2.28	0.01	0.12	0.03	0.04
VNR-302	71	72	Altered granitoid	76 99	12 / 2	2,10	1 70	0.65	4 01	1 86	0.01	0.15	0.03	0.05
V/ND 202	71 72	72	Granitoid	70,33	12 60	1 07	2,13	0,00	1 10	1.00	0,01	0,17	0,05	0,05
VINK-3UZ	72	/3	Granitai	75,07	13,09	1,87	2,14	0,58	4,43	1,90	0,01	0,17	0,03	0,05
VNR-302	/3	/4	Granitoid	/6,99	12,90	1,52	1,87	0,47	4,35	1,71	0,01	0,11	0,03	0,04
VNR-302	74	75	Granitoid	74,33	13,73	1,83	2,64	0,54	4,21	2,47	0,01	0,16	0,04	0,05
VNR-302	75	76	Granitoid	74,38	13,65	2,00	2,50	0,62	4,21	2,37	0,01	0,17	0,04	0,05
VNR-302	76	77	Granitoid	74,22	14,25	1,80	2,06	0,58	4,78	2,03	0,01	0,20	0,03	0,05
VNR-302	77	78	Altered granitoid	75,63	13,39	1,87	1,75	0,60	4,26	2,26	0,01	0,15	0,03	0,05
VNR-302	78	79	Altered granitoid	75 10	13 43	2 22	1 57	0 77	4 74	2 28	0.01	0.18	0.04	0.05
VND_202	70	80 80	Altered granitoid	72 70	1/ //	1 07	2,37	0 577	1 24	2,50	0,01	0.14	0.04	0,05
VINT-SUZ	13	00	Antereu granntolu	75,70	12 74	1,0/	2,22	0,37	4,54	2,00	0,01	0,10	0,04	0,05
VINK-302	δU	81	Granitoid	/2,10	13,/1	1,98	4,80	0,60	4,11	2,41	0,01	0,19	0,05	0,05
VNR-302	81	82	Granitoid	73,25	14,88	1,85	1,88	0,53	4,56	2,80	0,01	0,17	0,03	0,05

	From	То												
HOLEID	depth	depth	Lithology	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	К2О	Cr2O3	TiO2	MnO	P2O5
	(m)	(m)	0,					0						
1000 202	(111)	(11)	0 :: : !	74.00	44.05	4 70	2.44	0.54	4.20	0.74	0.04	0.45	0.02	0.05
VNR-302	82	83	Granitoid	74,03	14,05	1,73	2,44	0,51	4,29	2,71	0,01	0,15	0,03	0,05
VNR-302	83	84	Altered granitoid	74,96	12,64	2,70	2,00	1,02	3,80	2,57	0,01	0,19	0,05	0,06
VNR-302	84	85	Granitoid	73.44	14.48	2.16	2.51	0.64	4.45	1.97	0.01	0.25	0.04	0.06
VNR-302	85	86	Granitoid	73 37	14 62	2 23	2 27	0.67	1 52	1 95	0.01	0.25	0.04	0.06
VNR 302	00	07	Granitaid	73,57	12.00	2,23	2,27	1.04	4,52	2,00	0,01	0,23	0,04	0,00
VNR-302	86	87	Granitoid	73,64	13,88	2,82	1,90	1,04	4,18	2,20	0,01	0,22	0,05	0,07
VNR-302	87	88	Granitoid	74,47	13,88	2,34	1,92	0,72	4,37	1,96	0,01	0,23	0,04	0,06
VNR-302	88	89	Altered granitoid	77,87	11,40	2,25	2,29	0,75	3,52	1,65	0,01	0,17	0,04	0,05
VNR-302	80	90	Altered granitoid	74 58	13,10	2 19	2,24	0.83	1 10	1 76	0.01	0,21	0.04	0.05
VINIC 302	05	50		74,50	13,40	2,45	2,24	0,00	4,40	1,70	0,01	0,21	0,04	0,05
VNR-302	90	91	Altered granitoid	/3,1/	13,79	2,47	2,41	0,82	4,01	2,99	0,01	0,24	0,04	0,06
VNR-302	91	92	Granitoid	73,93	14,17	2,25	2,13	0,68	4,42	2,08	0,01	0,23	0,04	0,06
VNR-302	92	93	Granitoid	74,95	13,71	1,60	1,40	0,51	3,74	3,91	0,01	0,12	0,02	0,04
VNR-302	93	94	Granitoid	73 12	14 47	2 68	1 96	0.87	4 54	2 00	0.01	0 24	0.05	0.07
VNR 302	04	05	Granitaid	73,12	15.01	2,00	2,50	0,07	4,54	2,00	0,01	0,24	0,03	0,07
VINK-302	94	95	Granitolu	72,42	15,01	2,41	2,07	0,77	4,58	2,30	0,01	0,26	0,04	0,07
VNR-302	95	96	Granitoid	72,21	14,93	2,37	2,48	0,71	4,51	2,41	0,01	0,26	0,04	0,07
VNR-302	96	97	Granitoid	72,89	14,68	2,46	1,88	0,78	4,50	2,44	0,01	0,24	0,04	0,06
VNR-302	97	98	Granitoid	76 69	12 92	1 54	1 47	0.45	3 82	2 93	0.01	0.12	0.02	0.04
VNR 202	00	00	Granitoid	76 61	12.00	1 22	1 61	0.26	2 02	2 00	0.01	0.14	0,02	0.04
VINK-502	30	99	Granitolu	70,01	15,09	1,55	1,01	0,50	5,62	2,90	0,01	0,14	0,02	0,04
VNR-302	99	100	Granitoid	76,34	13,12	1,60	1,53	0,46	3,92	2,82	0,01	0,13	0,03	0,04
VNR-302	100	101	Altered granitoid	76,12	13,36	1,45	1,36	0,45	4,02	3,05	0,01	0,12	0,03	0,04
VNR-302	101	102	Altered granitoid	75.11	12.07	2.15	3.87	0.72	3.87	2.00	0.01	0.11	0.05	0.04
VNR-302	102	103	Altered granitoid	75 95	13 3/	1 59	2.04	0.47	/ 31	2 12	0.01	0 13	0.03	0.03
VINI 302	102	105		75,55	13,34	1,55	2,04	0,47	4,51	2,12	0,01	0,13	0,05	0,05
VNR-302	103	104	Altered granitoid	74,71	14,33	1,58	1,80	0,44	4,66	2,29	0,01	0,13	0,02	0,03
VNR-302	104	105	Altered granitoid	75,41	13,55	1,66	2,01	0,53	4,37	2,28	0,01	0,12	0,03	0,04
VNR-302	105	106	Altered granitoid	74,13	14,28	2,14	1,48	0,63	4,35	2,69	0,01	0,19	0,03	0,06
VNR-302	106	107	Granitoid	73 37	1/ 07	2 3/	2.96	0.69	1 59	1.64	0.01	0.22	0.05	0.07
VINI-302	100	107	Granitoid	73,37	12.00	2,34	2,30	0,03	4,55	1,04	0,01	0,22	0,03	0,07
VNR-302	107	108	Granitoid	74,14	13,80	2,51	2,26	0,78	4,55	1,63	0,01	0,23	0,04	0,07
VNR-302	108	109	Granitoid	74,17	14,13	2,25	1,97	0,67	4,43	2,05	0,01	0,22	0,04	0,06
VNR-302	109	110	Granitoid	73.98	13.98	2.20	2.27	0.68	4.41	2.16	0.01	0.20	0.04	0.06
VNR-302	110	111 1	Granitoid	73 81	1/ 13	2 08	2,00	0.62	1 21	2 8/	0.01	0.20	0.04	0.06
VINI 302	110	111,1	Granitola	75,01	14,15	2,00	2,00	0,02	4,21	2,04	0,01	0,20	0,04	0,00
Drill core VI	VR-303:													
VNR-303	8,4	9	Carbonate vein	63,97	5,68	3,06	23,41	1,22	2,06	0,33	0,01	0,08	0,16	0,03
VNR-303	9	10	Carbonate vein	62 12	3 72	3 26	28 14	1 32	0.96	0.22	0.01	0.05	0 17	0.02
VND 202	10	11	Carbonate vein	F1 22	1 4 4	1.20	44.80	0,42	0,30	0.10	0,01	0,03	0,22	0.01
VINK-303	10	11	Carbonate ven	51,32	1,44	1,20	44,80	0,42	0,41	0,10	0,01	0,01	0,22	0,01
VNR-303	11	12	Carbonate vein	26,04	0,23	0,64	72,48	0,20	0,07	0,02	0,01	0,01	0,31	0,01
VNR-303	12	13	Carbonate vein breccia	69,37	8,60	3,50	12,47	1,21	2,24	2,31	0,01	0,14	0,10	0,05
VNR-303	13	14	Carbonate vein breccia	73 93	10 16	3 79	5 34	1 32	2 58	2 55	0.01	0.18	0.08	0.06
VNR 202	14	15	Carbonate voin broccia	70,00	7 16	2 01	10.40	1 20	1 00	1 60	0.01	0.12	0 10	0.05
VINI-303	14	15		72,00	7,40	3,91	10,40	1,39	1,55	1,09	0,01	0,13	0,10	0,05
VNR-303	15	16	Carbonate vein	45,30	3,36	2,06	46,72	0,71	0,87	0,68	0,01	0,04	0,23	0,03
VNR-303	16	17	Carbonate vein	36,68	1,51	1,30	59,14	0,39	0,33	0,36	0,01	0,02	0,25	0,02
VNR-303	17	18	Carbonate vein	23.53	0.14	0.52	75.23	0.12	0.12	0.02	0.02	0.01	0.29	0.01
VNP-202	19	10.25	Carbonate vein	12 22	1 1 2	1.62	52.86	0,60	0.00	0 12	0.01	0.01	0.22	0.01
VINI-303	10 25	19,25		43,32	1,12	1,03	32,80	0,00	0,09	0,12	0,01	0,01	0,23	0,01
VNR-303	19,25	20	Carbonate vein breccia	/1,69	8,15	2,59	11,55	0,82	1,//	3,20	0,01	0,10	0,09	0,04
VNR-303	20	21	Carbonate vein breccia	67,10	7,47	2,97	16,57	0,94	1,28	3,41	0,01	0,10	0,11	0,04
VNR-303	21	22	Carbonate vein breccia	62.64	6.18	2.24	23.80	0.68	0.67	3.52	0.01	0.07	0.14	0.03
VNR-303	22	23	Carbonate vein breccia	67.67	6.84	2,82	17 53	0.85	1 /7	2 58	0.01	0.08	0 12	0.04
VINI-303	22	23	Carbonate vein breccia	67,07	0,04	2,82	17,55	1.20	1,47	2,30	0,01	0,08	0,12	0,04
VNR-303	23	24	Carbonate vein breccia	69,29	8,60	4,26	12,17	1,39	2,46	1,55	0,01	0,11	0,12	0,04
VNR-303	24	25	Carbonate vein breccia	69,34	7,09	4,51	14,47	1,65	2,01	0,65	0,01	0,09	0,14	0,04
VNR-303	25	26,3	Carbonate vein	55,32	4,39	3,53	33,48	1,22	0,98	0,79	0,01	0,04	0,22	0,02
VNR-303	27 3	28	Quartz vein breccia	85 87	3 43	5 18	2 72	2 10	0.23	0 30	0.01	0.04	0 11	0.02
VNR 202	20,5	20	Diabasa brassia	80.17	5,45 F 74	7.07	1.62	2,10	0,25	1 60	0,01	0.25	0,11	0,02
VINR-303	28	29	Diabase breccia	80,17	5,74	7,07	1,62	3,21	0,06	1,69	0,01	0,25	0,14	0,06
VNR-303	29	30	Diabase breccia	70,44	8,75	11,33	0,93	5,53	0,07	2,10	0,01	0,53	0,21	0,10
VNR-303	30	31	Diabase breccia	67,40	9,84	12,29	1,49	5,35	0,61	2,02	0,01	0,63	0,24	0,12
VNR-303	31	32	Diabase breccia	66,14	9,75	12,12	2,96	5,38	0,23	2,44	0,01	0,61	0,25	0,11
VNR-303	32	33	Diabase breccia	60,80	12,06	13,90	1 84	6 21	0.07	3 95	0.01	0 75	0 29	0 13
VNR 202	22	24	Diabase biceela	60,60	11.00	12,50	2,04	5.00	0,07	1,07	0,01	0,75	0,25	0,13
VINR-303	33	34	Diabase breccia	61,64	11,80	13,27	2,02	5,80	0,09	4,07	0,01	0,77	0,27	0,14
VNR-303	34	35	Diabase breccia	68,03	9,45	10,36	3,06	4,57	0,51	3,09	0,01	0,58	0,22	0,10
VNR-303	35	36	Diabase breccia	60,47	13,06	13,06	2,50	5,64	2,23	1,78	0,01	0,83	0,27	0,15
VNR-303	36	37	Diabase breccia	61.43	13.25	13.22	1.04	5.58	2.41	1.81	0.01	0.84	0.27	0.14
VNP-202	27	29	Diabase breccia	50.27	1/ 15	12/0	1 2 2	5.06	2.62	1 75	0.01	0.80	0.27	0.15
VINK-303	57	50	Diabase Dieccia	59,57	14,15	15,49	1,52	5,90	2,05	1,75	0,01	0,69	0,27	0,15
VNR-303	38	39	Diabase breccia	60,01	13,/2	13,62	1,45	5,76	2,54	1,65	0,01	0,82	0,28	0,14
VNR-303	39	40	Diabase breccia	56,02	13,13	13,63	5,35	5,78	1,03	3,83	0,01	0,77	0,30	0,13
VNR-303	40	41	Diabase	53.07	14.48	13.48	6.84	5.77	2.73	2.28	0.01	0.91	0.28	0.16
VNP-202	/1	12	Diabase	56 10	1/ 95	12.25	2,61	5 07	2,20	1 /7	0.01	0.02	0.26	0.16
	42	42	Diabase	50,13	12.04	14 20	4 77	5,57	3,20	1,47	0,01	0,95	0,20	0,10
VINK-303	42	43	Diabase	59,07	13,84	14,28	1,//	5,54	2,72	1,41	0,01	0,86	0,33	0,15
VNR-303	43	44	Diabase	59,94	12,28	12,31	5,71	4,91	2,55	1,10	0,01	0,77	0,28	0,14
VNR-303	44	45	Carbonate vein	57.59	9.71	9.61	15.27	3.98	2.00	0.84	0.01	0.60	0.26	0.12
VNR-303	45	46	Diabase	56 27	1/ 75	11 70	6 02	5 22	2 1 9	1 04	0.01	0 01	0.22	0.16
VINI-303	40	47	Dishase	50,27	14,/3	11,23	0,33	5,25	3,10	1,04	0,01	0,91	0,25	0,10
VNR-303	46	4/	uabase	56,69	14,51	11,64	5,45	5,61	3,09	1,68	0,01	0,92	0,24	0,16
VNR-303	47	48	Diabase	58,50	14,15	13,26	2,28	5,41	2,10	2,95	0,01	0,91	0,25	0,16
VNR-303	48	49	Diabase	57.51	13.85	13.16	3.68	5.18	1,74	3.55	0.01	0.88	0.28	0.16
VNR-303	49	50	Diabase	56 55	14 10	1/ 20	3 66	5 50	2 52	1 97	0.01	0.86	0.27	0.16
VINI-303		50	Dishase	50,33	14,10	14,33	5,00	3,30	2,35	1,51	0,01	0,00	0,27	0,10
VINK-303	50	51	Diabase	60,67	11,35	11,67	6,99	4,/1	1,90	1,64	0,01	0,70	0,23	0,13
VNR-303	51	52	Granitoid breccia	67,84	11,15	6,13	7,14	2,50	2,70	2,02	0,01	0,30	0,15	0,07
VNR-303	52	53	Granitoid breccia	76,46	12,07	2,38	2,21	0,92	4,13	1,59	0,01	0,15	0,04	0,05
VNR-303	53	54	Granitoid breccia	78 31	11 76	2 21	1 08	0 89	4 74	1 27	0 01	0 15	0 03	0.05
VND 202	E /	5.	Altored granitaid	72.25	1/ 20	2 45	1 67	0.00	1.00	2,2,	0.01	0 10	0.04	0.00
VINT-3U3	54	55	Antereu granitolu	13,35	14,30	2,45	1,0/	0,90	4,00	2,32	0,01	0,18	0,04	0,00
VNR-303	55	56	Altered granitoid	74,21	13,69	2,87	1,27	1,12	4,25	2,33	0,01	0,15	0,04	0,05

	From	То												
HOLEID	depth	depth	Lithology	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	Cr2O3	TiO2	MnO	P2O5
	(m)	(m)												
VNR-303	56	57	Altered granitoid	73 65	1/1 3()	2/13	1 51	0 92	4.63	2.28	0.01	0.19	0.03	0.06
	50	57	Altered graniteid	79,05	11 00	2,45	1 40	0,52	2,05	1 00	0,01	0,15	0,03	0,00
VINR-303	57	58	Altered granitold	78,13	11,88	2,01	1,46	0,71	3,67	1,90	0,01	0,15	0,03	0,05
VNR-303	58	59	Altered granitoid	73,23	14,70	2,44	1,50	0,90	4,72	2,22	0,01	0,19	0,04	0,06
VNR-303	59	60	Altered granitoid	73,49	14,37	2,42	1,89	0,84	4,53	2,17	0,01	0,19	0,04	0,06
VNR-303	60	61	Altered granitoid	74,42	13,67	2,17	1,59	0,81	3,95	3,11	0,01	0,18	0,03	0,06
VNR-303	61	62	Altered granitoid	73,78	14,40	2,18	1,80	0,76	4,29	2,50	0,01	0,19	0,04	0,06
VNR-303	62	63	Altered granitoid	7/ 22	13 95	2,38	1 66	0.88	132	2 31	0.01	0.18	0.04	0.05
VNR 202	62	05	Altered granitoid	74,22	12.21	2,50	1,00	0,00	4,52	2,51	0,01	0,10	0,04	0,05
VNR-303	63	64	Altered granitoid	76,42	12,31	2,16	1,75	0,76	3,96	2,37	0,01	0,17	0,04	0,05
VNR-303	64	65	Altered granitoid	72,18	13,54	2,99	3,66	0,95	4,26	2,00	0,01	0,28	0,06	0,08
VNR-303	65	66	Altered granitoid	73,42	14,11	2,77	1,75	0,95	4,31	2,30	0,01	0,28	0,04	0,08
VNR-303	66	67	Altered granitoid	74.85	13.48	2.63	1.44	0.91	4.12	2.20	0.01	0.26	0.04	0.07
VNP-202	67	68	Altered granitoid	74.20	12 21	2 5 2	2 10	0.97	2 01	2 54	0.01	0.22	0.04	0.07
VINI-303	60	08		74,30	13,31	2,55	2,19	0,07	3,91	2,34	0,01	0,25	0,04	0,07
VNR-303	68	69	Granitoid	/2,15	14,47	2,53	3,00	0,83	4,42	2,23	0,01	0,25	0,04	0,07
VNR-303	69	70	Granitoid	73,01	13,89	2,72	2,39	0,92	3,95	2,75	0,01	0,24	0,05	0,07
VNR-303	70	71	Granitoid	72,80	14,60	2,38	2,25	0,70	4,24	2,67	0,01	0,24	0,04	0,07
VNR-303	71	72	Granitoid	72.79	14.70	2.56	1.53	0.80	4.23	3.04	0.01	0.23	0.04	0.07
VNR-303	72	73	Granitoid	69 63	12 62	2 17	8 15	0.67	3 59	2 82	0.01	0 10	0.07	0.06
VNR 202	72	73	Granitaid	72.64	14.00	2,17	1.27	0,07	3,35	2,02	0,01	0,15	0,07	0,00
VINR-303	73	74	Granitoid	73,64	14,06	2,61	1,27	0,85	4,42	2,81	0,01	0,21	0,04	0,07
VNR-303	74	75	Granitoid	73,54	13,20	2,74	2,52	0,91	4,03	2,71	0,01	0,23	0,04	0,07
VNR-303	75	76	Granitoid	73,69	14,08	2,87	1,68	0,94	4,43	1,93	0,01	0,26	0,04	0,08
VNR-303	76	77	Granitoid	74,12	13,38	2,97	1,99	0,97	4,21	2,02	0,01	0,24	0,04	0,07
VNR-303	77	78	Granitoid breccia	73 74	12 01	2 36	3 48	0,89	3 71	3 60	0 01	0 11	0.05	0.04
VNR 202	70	70	Granitaid brassia	73,74	12,01	2,50	2,70	0,05	2.07	2,00	0,01	0,11	0,05	0,04
VINR-303	/8	79		73,22	13,14	2,59	2,79	0,95	3,87	3,09	0,01	0,20	0,05	0,10
VNR-303	79	80	Granitoid breccia	/2,89	13,41	3,22	2,48	1,28	4,18	2,18	0,01	0,21	0,06	0,08
VNR-303	80	81	Granitoid breccia	73,63	11,47	4,19	3,14	1,70	3,71	1,85	0,01	0,18	0,08	0,06
VNR-303	81	82	Granitoid breccia	72,96	13,89	3,34	1,24	1,28	4,64	2,30	0,01	0,23	0,05	0,06
VNR-303	82	83	Granitoid breccia	72 96	13 63	2 30	2,89	0.74	4,30	2.93	0.01	0.16	0.04	0.04
VNP-202	82	8/	Granitoid broccia	74 00	12 1 2	1 1 1	1 94	0.24	2 20	5 11	0.01	0.04	0.07	0 07
VINK-303	05	04		74,99	15,15	1,11	1,64	0,54	5,59	5,11	0,01	0,04	0,02	0,02
VNR-303	84	85	Granitoid breccia	/3,39	14,50	2,80	1,56	0,92	4,99	1,52	0,01	0,23	0,04	0,06
VNR-303	85	86	Granitoid	72,88	14,66	2,55	1,77	0,83	4,54	2,39	0,01	0,28	0,03	0,07
VNR-303	86	87	Granitoid	72,80	14,82	2,55	1,80	0,80	4,64	2,23	0,01	0,23	0,04	0,07
VNR-303	87	88	Granitoid	72 62	14 73	2 70	1 66	0,90	4 59	2 43	0 01	0 24	0.04	0 07
VNR 202	00	80	Granitoid	72,02	1475	2,70	1 01	0,00	4.60	2,10	0.01	0.22	0.04	0.07
VINK-303	00	09	Granitolu	72,95	14,75	2,40	1,01	0,62	4,02	2,24	0,01	0,25	0,04	0,07
VNR-303	89	90	Granitoid	74,34	13,35	2,57	1,76	0,90	4,01	2,76	0,01	0,19	0,04	0,07
VNR-303	90	91	Granitoid	72,94	14,48	2,71	1,06	0,98	4,53	2,94	0,01	0,22	0,04	0,08
VNR-303	91	92	Granitoid	74,11	13,89	2,61	1,12	0,92	4,31	2,75	0,01	0,19	0,04	0,06
VNR-303	92	93	Altered granitoid	74 88	13 38	2 41	0.93	0.96	4 52	2 66	0.01	0 17	0.03	0.05
VNR 202	02	04	Altored granitoid	76.04	12 62	2,11	1 20	0.06	2.05	2,00	0.01	0.14	0.04	0.04
VINK-303	95	94	Altered granitold	76,04	12,02	2,34	1,20	0,90	5,95	2,50	0,01	0,14	0,04	0,04
VNR-303	94	95	Altered granitoid	75,53	11,37	2,08	4,27	0,78	3,42	2,35	0,01	0,09	0,05	0,03
VNR-303	95	96	Altered granitoid	75,73	12,13	2,04	2,64	0,77	3,64	2,84	0,01	0,11	0,04	0,04
VNR-303	96	97,25	Altered granitoid	76,16	12,30	1,77	2,46	0,64	3,70	2,77	0,01	0,11	0,03	0,04
VNR-303	97.25	98	Granitoid	74.45	13,93	2.52	1.52	0.85	4.52	1.97	0.01	0.15	0.04	0.05
VNR 202	00	00	Granitoid	74 47	1/ 20	1 70	2,02	0 5 2	1 40	1 00	0.01	0.17	0.04	0.05
VINK-303	30	99	Granitolu	74,47	14,20	1,79	2,10	0,52	4,49	1,99	0,01	0,17	0,04	0,03
VNR-303	99	100	Granitoid	75,52	13,42	1,97	2,11	0,60	4,27	1,81	0,01	0,19	0,04	0,05
VNR-303	100	101	Granitoid	77,62	12,44	1,86	1,28	0,64	3,95	1,99	0,01	0,15	0,03	0,04
VNR-303	101	102	Granitoid	74,67	14,11	1,91	1,73	0,60	4,43	2,30	0,01	0,16	0,03	0,05
VNR-303	102	103	Granitoid	75.88	13.32	1.72	1.94	0.54	4.16	2.22	0.01	0.13	0.03	0.04
VNP-202	102	104	Granitoid	75 70	12 22	1 9/	1 57	0.61	1 10	2 /0	0.01	0 11	0.02	0.03
VINI-303	103	104		75,75	13,35	1,04	1,57	0,01	4,13	2,49	0,01	0,11	0,03	0,03
VINR-303	104	105	Granitoid	75,59	13,74	1,60	1,/1	0,49	4,34	2,30	0,01	0,11	0,02	0,04
VNR-303	105	106	Granitoid	73,07	15,00	1,57	2,50	0,49	4,60	2,54	0,01	0,13	0,03	0,06
VNR-303	106	107	Granitoid	73,14	14,58	2,45	1,83	0,81	4,37	2,42	0,01	0,26	0,04	0,08
VNR-303	107	108	Granitoid	73.69	14.36	2.36	1.84	0.77	4.41	2.26	0.01	0.21	0.04	0.06
VNR-303	108	109	Granitoid	74 51	13 75	2 25	1.68	0 74	4 32	2 43	0.01	0 21	0.04	0.06
VNR 202	100	110	Granitaid	74,51	14.05	1.62	1,00	0,74	4,52	2,45	0,01	0.15	0,07	0,00
VINK-303	109	110	Granitolu	74,03	14,05	1,05	1,72	0,49	4,10	5,09	0,01	0,15	0,05	0,03
VNR-303	110	111	Granitoid	/3,59	14,68	1,78	1,60	0,56	4,33	3,22	0,01	0,16	0,03	0,04
VNR-303	111	112	Granitoid	73,93	13,98	2,90	1,11	1,15	4,47	2,11	0,01	0,22	0,05	0,06
VNR-303	112	113,2	Granitoid	73,28	14,69	2,23	1,88	0,74	4,56	2,29	0,01	0,23	0,04	0,06
Drill core VI	NR-401													
	44.0	10	Carlaganta unin	65.00	F 70	4 77	10.27	2.07	0.70	1 10	0.01	0.1.4	0.17	0.02
VINR-401	11,3	12	Carbonate vein	65,88	5,78	4,77	19,27	2,07	0,70	1,19	0,01	0,14	0,17	0,03
VNR-401	13	14	Carbonate vein	64,32	7,32	5,05	18,22	2,18	1,62	0,90	0,01	0,17	0,17	0,04
VNR-401	14	15	Carbonate vein	61,63	8,02	3,58	21,47	1,46	2,70	0,73	0,01	0,19	0,16	0,05
VNR-401	15	16	Carbonate vein breccia	66.10	8.57	3.90	15.84	1.58	2.70	0.92	0.01	0.20	0.14	0.05
VNR-401	16	17	Carbonate vein breccia	71 78	11 1/	4 35	5 80	1 9/	3 57	0 00	0.01	0.26	0 00	0.07
	17	10	Carbonate vein breecia	, 1,70 CC 27	0.20	7,55	14.50	1,34	2,01	0,55	0,01	0,20	0,05	0,07
VINK-401	1/	18	Carbonate vein breccia	66,37	9,38	3,74	14,50	1,75	3,01	0,85	0,01	0,21	0,14	0,06
VNR-401	18	19	Carbonate vein	61,71	9,06	3,50	20,08	1,35	3,04	0,87	0,01	0,19	0,15	0,05
VNR-401	19	20	Carbonate vein	58,44	7,31	4,03	25,40	1,42	2,42	0,60	0,01	0,14	0,18	0,04
VNR-401	20	21	Carbonate vein breccia	70.72	10.81	4.54	7,36	1,63	3,02	1,52	0,01	0,22	0,11	0,06
VNR-401	21	22.2	Carbonate vein	65 74	6 68	5.06	17 93	1 7/	1.64	0.84	0.01	0.16	0.16	0.04
VININ-401	22 2	22,2	Carbonate velli	16.00	0,00	0.07	11,33	1,74	0.20	0,04	0,01	0,10	0,10	0,04
VINK-4U1	22,Z	22,1	Carbonate vein	10,90	0,93	0,97	8U,11	0,18	0,36	0,10	0,01	0,02	0,36	0,01
VNR-401	22,7	24	Carbonate vein breccia	68,68	11,50	3,46	9,56	1,28	3,82	1,35	0,01	0,18	0,10	0,06
VNR-401	25,3	27,2	Carbonate vein	55,60	7,37	3,05	29,19	1,07	2,48	0,90	0,01	0,12	0,19	0,04
VNR-401	28,6	29,75	Carbonate vein	37,56	1,56	1,37	58,14	0,48	0,29	0,26	0,01	0,03	0,29	0,01
VNR-401	29 75	31	Carbonate vein breccia	73 23	11 15	3 85	3 91	1 66	3 46	2 33	0.01	0 17	0.10	0.04
VNP 401	21	27	Granitoid broccia	74.00	0 10	2,00	7 20	1 10	2,-0	1 77	0.01	0.10	0 10	0,07
VININ-4UL	22	32		74,90	9,10	2,02	1,20	1,10	5,03	1,//	0,01	0,10	0,10	0,02
VNK-401	32	33	Granitoid breccia	/6,41	12,22	2,14	1,44	0,88	4,17	2,53	0,01	0,12	0,05	0,03
VNR-401	33	34	Granitoid breccia	76,99	11,87	2,18	1,46	0,88	4,11	2,28	0,01	0,13	0,05	0,03
VNR-401	34	35	Granitoid breccia	75,99	12,64	2,38	1,01	0,92	4,18	2,64	0,01	0,14	0,05	0,03

	From	То												
HOLEID	depth	depth	Lithology	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	Cr2O3	TiO2	MnO	P2O5
	(m)	(m)												
VNR-401	35	36	Granitoid breccia	78,99	10,90	2,23	0,88	0,86	3,60	2,33	0,01	0,12	0,05	0,02
VNR-401	36	37	Granitoid breccia	76,67	12,48	2,10	1,00	0,79	4,03	2,73	0,01	0,13	0,04	0,02
VNR-401	37	38	Granitoid breccia	76,22	12,18	2,54	1,03	0,94	3,61	3,26	0,01	0,13	0,05	0,03
VNR-401	38	39	Quartz vein breccia	84,69	6,18	2,58	2,16	1,03	1,45	1,76	0,01	0,06	0,06	0,02
VNR-401	39	40	Granitoid breccia	77,09	12,25	2,16	0,75	0,84	3,90	2,80	0,01	0,13	0,04	0,03
VNR-401	40	41	Granitoid	75,70	12,00	3,58	0,50	1,47	3,59	2,95	0,01	0,12	0,07	0,03
VNR-401	41	42	Granitoid	75,08	13,46	2,19	0,86	0,84	4,33	3,02	0,01	0,14	0,04	0,03
VNR-401	42	43	Granitoid	75,15	13,08	2,67	0,63	1,08	4,17	2,99	0,01	0,14	0,05	0,03
VNR-401	43	44	Granitoid	75,96	11,18	4,17	0,99	1,68	3,12	2,64	0,01	0,15	0,08	0,02
VNR-401	44	45	Granitoid	76,99	12,04	2,70	0,62	1,07	3,97	2,40	0,01	0,13	0,05	0,02
VNR-401	45	46	Granitoid	77,30	10,88	3,31	1,54	1,38	3,53	1,84	0,01	0,12	0,07	0,02
VNR-401	46	47	Granitoid	76,77	10,47	2,43	3,60	0,96	3,26	2,31	0,01	0,11	0,06	0,02
VNR-401	47	48	Granitoid	75,56	11,45	2,30	3,24	0,88	3,71	2,65	0,01	0,14	0,05	0,02
VNR-401	48	49	Granitoid	76,41	12,14	2,20	1,94	0,85	4,01	2,20	0,01	0,15	0,05	0,03
VNR-401	49	50	Granitoid	75,78	12,82	2,29	1,61	0,89	4,13	2,22	0,01	0,15	0,05	0,04
VNR-401	50	51	Quartz vein breccia	76,80	11,44	2,88	1,65	0,96	3,62	2,42	0,01	0,14	0,05	0,04
VNR-401	51	52	Quartz vein breccia	77,34	10,63	3,15	2,04	1,22	3,52	1,82	0,01	0,15	0,07	0,04
VNR-401	52	53	Altered granitoid	73,78	14,13	2,55	1,30	0,95	4,56	2,38	0,01	0,22	0,05	0,07
VNR-401	53	54	Altered granitoid	73,82	14,18	2,08	1,17	0,82	4,39	3,31	0,01	0,14	0,04	0,04
VNR-401	54	54,8	Altered granitoid	74,20	14,38	1,66	1,34	0,66	4,35	3,20	0,01	0,13	0,03	0,04

	From	To																		
HOLFID	depth (m)	depth (m)	Lithology	Ba	Sr	7r	Нf	Nb	Ŷ	U	Cu	Zn	Ph	Ni	Rh	Th	Та	Ce	Sc	Cr
Drill coro V/N	P 101.	(,	21(11010);	50	5.	-			· ·		00	211	1.5		110		10	00	50	0.
VND 101	0 5	0	Miss schist	240	64	76.4	2.2	F 0	12 7	1 5	0.0	1	1 5	22.1	05.2	0.0	0.49	F0 1	7.0	41
VNR-101	8,5	9	Mica schist	340	64	76,4	2,3	5,9	13,7	1,5	0,9	1	1,5	23,1	85,2	8,9	0,48	58,1	7,8	41
VNR-101	9	10	Mica schist	290	37,3	91,7	2,8	4,3	9,5	2,3	2,3	2	2,2	18,7	62,3	8,1	0,33	47,7	6,1	116
VNR-101	10	11	Mica schist	670	52,5	102	3,2	8	16,9	3,6	4,4	8	1,3	27,7	133	12	0,61	61,9	9,6	55
VNR-101	13	14	Mica schist	520	31,9	81	2,4	4,2	8,6	1,6	1,5	5	1,5	16,5	82,8	6,3	0,32	34	5,8	122
VNR-101	14	15	Mica schist	370	43,7	81,5	2,4	4,3	10,7	1,3	4,4	9	1,6	36,5	91	6,2	0,33	33,7	11,3	72
VNR-101	15	15,9	Mica schist	170	53,2	59,4	1,7	2,6	18	1,7	2,3	19	1,2	80,9	72,8	5,1	0,19	81,5	17,1	281
VNR-101	19,29	20	Mica schist	120	49,7	91,6	2,7	1,8	10,7	2	1,8	7	1,5	18	67,2	9,5	0,16	11,75	7,5	50
VNR-101	20	21	Mica schist	90	42,9	98,7	2,9	2,2	9,5	1,8	2,4	6	1,1	16,7	52	7,1	0,18	9,27	7,1	131
VNR-101	21	21,4	Mica schist	80	34	73,3	2,1	1,6	9,5	1,5	2,5	3	0,9	13	46,2	5,1	0,13	8,91	6,4	46
VNR-101	22,2	22,7	Mica schist	50	44,9	91,1	2,6	2,6	13,7	1,9	1,5	1	1	12,8	28,7	8,5	0,22	41,6	8,8	112
VNR-101	25	25,9	Mica schist	20	39,1	85,1	2,4	2,6	11	1,3	1,1	2	0,9	7,4	4,5	6,8	0,23	17,8	5,9	45
VNR-101	28.6	29	Carbonate vein	60	67	71.4	1.9	2.1	23.6	1.5	109.5	8	1.3	8.9	20.4	6.8	0.19	34.5	7.5	81
VNR-101	29	30	Quartz vein breccia	10	29.7	1.7	0.05	0.3	37.4	2.5	5370	30	27.6	3.4	0.8	0.2	0.0025	146	1.5	8
VNR-101	30	31	Quartz vein breccia	20	27.1	17	0.1	0.5	26.7	0.8	2820	54	93	3.8	2.2	03	0.06	10.4	19	127
VNR-101	31	32	Quartz vein breccia	20	15 1	-,,	0.05	0.4	95	0.1	4320	33	3,5	6.9	-,-	0.1	0.0025	3 59	1 2	31
VNR-101	22	22	Quartz vein breccia	10	20 5	0.6	0,05	0,4	20.0	0,1	4320	55	26.0	2.2	0.0	0,1	0,0025	10 6	1,2	120
VINK-101	32	24	Quartz vein breccia	20	29,5	0,0	0,05	0,2	30,9	0,1	3320	32	20,9	3,2	0,9	0,1	0,0025	10,0	1	139
VINR-101	33	34	Quartz vein breccia	20	0,0 12.0	1,4	0,05	0,5	2,4	0,2	2250	250	9,9	2,0	1,0	0,5	0,0025	1,58	0,8	23
VNR-101	34	35	Quartz vein breccia	80	12,9	2,6	0,1	1,4	4,6	0,5	2350	61	8,6	5,4	7,6	0,8	0,13	3,98	1,4	1/3
VNR-101	35	36	Quartz vein	20	10,4	0,25	0,05	0,3	3,8	0,1	2390	111	10,6	1,7	2,2	0,1	0,0025	0,94	0,5	26
VNR-101	36	37	Quartz vein	20	12,8	0,5	0,05	0,4	4	0,1	1725	60	9,7	2,9	2,6	0,1	0,0025	2,02	0,5	208
VNR-101	37	38	Quartz vein breccia	30	12,9	1,6	0,1	0,6	5,3	0,2	1210	29	3,7	3,9	2,8	0,3	0,07	4,1	1	186
VNR-101	38	39	Quartz vein breccia	50	20,7	2,8	0,1	1,1	8,6	0,2	1060	33	3,3	3,4	5,1	0,4	0,12	6,38	1,6	21
VNR-101	39	40	Quartz vein	20	11,7	0,8	0,05	0,3	3,7	0,1	1185	25	11,3	3,1	1,7	0,1	0,0025	6,53	0,6	192
VNR-101	40	41	Quartz vein	10	11,5	0,25	0,05	0,2	2,4	0,05	2050	23	12,8	1,1	1,1	0,1	0,0025	0,64	0,2	30
VNR-101	41	42	Quartz vein breccia	40	11,7	2,8	0,1	0,7	6,8	0,3	3480	66	4,3	4,6	3,8	0,5	0,09	2,01	1	193
VNR-101	42	43	Quartz vein breccia	170	36	5,7	0,2	2,3	2,4	0,4	889	29	2,4	3,5	13,7	1,3	0,26	7,4	2,2	17
VNR-101	43	44	Quartz vein breccia	110	14,4	7	0,2	1,4	2,9	0,7	929	47	2	5,6	10,8	0,9	0,18	2,28	1,9	161
VNR-101	44	45	Quartz vein breccia	200	56.6	11.8	0.4	2.3	10.5	0.4	991	139	2.8	4.3	21.8	1.7	0.29	14.95	2.7	20
VNR-101	45	45.25	Quartz vein breccia	170	47.3	10.8	0.3	2.3	3.6	0.4	292	28	1.5	4.8	18.5	, 1.6	0.27	11.25	2.7	137
VNR-101	45 25	45.7	Quartz vein	20	11 7	0.8	0.05	0.4	0.4	0.1	545		1.6	0.9	,-	0.1	0.0025	0.71	03	29
VNR-101	45.7	46	Quartz vein breccia	100	30.9	11 3	0.3	1.8	7.8	13	329	40	2,0	5.4	96	1 2	0.23	2 89	2 5	124
VNR-101	45,7	40	Quartz vein breccia	120	27.2	0.0	0,5	1.0	7,0 E 0	1,5	1275	24	2,1	2,4	12	1 1	0,23	1 07	2,5	124
VINR-101	40	47	Quartz vein breccia	130	32,5	0,0	0,5	1,0	5,9	0,8	1275	54	3,0	3,9	12	1,1	0,25	4,87	2,1	1/
VNR-101	47	48	Quartz vein breccia	100	20,3	8,1	0,2	1,3	5,9	0,4	1370	18	7,8	3,6	10,9	0,7	0,11	2,98	1,9	165
VNR-101	48	49	Quartz vein breccia	120	26	11,3	0,3	2	3,7	0,6	1210	213	8,9	5,1	13,1	0,9	0,17	2,6	2,2	19
VNR-101	49	50	Quartz vein breccia	90	39,5	7,9	0,2	1,5	1,9	0,2	1070	27	2,8	3,9	11,2	0,9	0,15	5,46	1,4	169
VNR-101	50	51	Quartz vein breccia	140	29,8	16	0,5	2,3	2,1	0,5	232	39	2,2	4,9	15,3	1,3	0,21	2,2	2,1	22
VNR-101	51	52	Quartz vein breccia	120	50,7	12,6	0,4	2	2,3	0,4	747	53	3	5,2	13,5	1	0,2	8,27	1,9	152
VNR-101	52	53	Quartz vein breccia	100	27,6	12	0,4	2,2	3,8	0,8	433	50	1,6	5,4	11,7	1,2	0,2	1,51	2,3	14
VNR-101	53	54	Quartz vein breccia	70	26	10,1	0,3	1,6	2,4	0,4	2910	35	10,8	4,4	9,7	0,8	0,16	5,44	1,6	167
VNR-101	54	55	Quartz vein breccia	90	39,1	22,5	0,7	2,6	5,1	0,8	396	30	2,5	3,5	13,9	1,4	0,43	10,75	2,2	13
VNR-101	55	56	Quartz vein breccia	100	43,4	19,7	0,6	2,5	3,7	0,8	477	35	1,8	2,9	15,5	1,1	0,37	10,75	2	16
VNR-101	56	57	Quartz vein breccia	30	27,3	12,4	0,4	1,5	13,5	0,6	1800	60	16,5	7,4	4,8	0,8	0,17	4,64	2,4	116
VNR-101	57	58	Quartz vein breccia	150	39,6	20,2	0,7	2,7	2,7	0,7	597	60	2,4	6,5	24,3	1,6	0,26	3,8	2,5	15
VNR-101	58	58.3	Quartz vein breccia	120	20.4	15.5	0.5	2.2	2.4	0.7	803	63	3.2	7.3	18.7	1.4	0.2	0.87	2.2	105
VNR-101	583	59	Carbonate vein breccia	10	31.7	0.25	0.05	0.2	79	0.05	1005	5	53	1.6	16	0.1	0.0025	1 4 9	0.9	10
VNR-101	50,5	60	Carbonate vein	10	16.0	1 /	0,05	0,2	17	0,05	533	5	3,5	2,0	1,0	0,1	0.0025	2 72	13	84
VNR-101	55	60.9	Quartz voin broccia	20	16.0	1,4	0,1	0,2	2.2	0,1	555	0	5,4	1.6	0,0	0,1	0,0025	1 2	1,5	72
VINE-101	60.8	00,8	Quartz vein breccia	20	10,5	4,7	0,2	0,0	3,2	0,1	500	0 20	20	1,0	2,7	1.4	0,0023	1,5	17	124
VINR-101	60,8	61	Quartz vein breccia	90	40,4	19,6	0,6	2,1	2,0	0,4	2020	50	2,0	4,2	15,5	1,4	0,25	1,95	1,7	124
VNR-101	61	62	Quartz vein breccia	50	22,9	11,6	0,4	1,6	1,8	0,5	2820	44	4,7	4,9	6,5	0,7	0,17	1,31	1,5	1/
VNR-101	62	63	Quartz vein breccia	50	23,7	7,7	0,3	1,2	3,8	0,3	2300	218	12,5	4,4	7,3	0,7	0,12	1,58	1,1	141
VNR-101	63	64	Quartz vein breccia	110	37,9	19,3	0,5	2,7	3,4	0,4	343	36	3	3,4	17,8	1,3	0,31	0,86	1,7	13
VNR-101	64	65	Quartz vein breccia	130	46,7	25,6	0,7	2,8	2,6	0,5	412	47	2,2	5,4	25,1	1,6	0,45	1,05	2	122
VNR-101	65	66	Quartz vein breccia	120	46	9,3	0,3	2,5	2,3	0,2	860	34	2,7	3,9	18,6	1,1	0,17	7,87	1,3	11
VNR-101	66	67	Quartz vein breccia	170	52,8	12,6	0,3	3	2,4	0,3	1245	42	3,7	4	26,1	1,3	0,23	9,39	1,5	138
VNR-101	67	68	Quartz vein breccia	140	58,7	10,9	0,3	3,1	5,6	0,3	829	110	2,1	2,9	23,8	1,4	0,24	14,15	1,7	14
VNR-101	68	69	Quartz vein breccia	70	27,8	5	0,1	1,7	6	0,2	709	192	3,9	3,6	10,7	0,7	0,1	4,2	1,9	137
VNR-101	69	70	Carbonate vein breccia	20	26,3	4,6	0,1	1,1	11,3	0,3	1055	156	9	4,2	3,4	0,5	0,08	2,13	2,2	9
VNR-101	70	71	Quartz vein breccia	50	15,4	5,5	0,2	1,2	3,2	0,3	1280	35	4,1	5,6	5,6	0,6	0,1	1,02	1,7	163
VNR-101	71	72	Quartz vein breccia	40	21,2	5,5	0,2	1,7	12,5	0,5	985	54	7,6	6,4	4,8	0,9	0,12	2,38	3,2	14
VNR-101	72	72,45	Quartz vein breccia	50	23.5	4.6	0.1	1.2	1.3	0.2	786	36	3.1	3.7	5.8	0.3	0.08	1,63	0.8	157
VNR-101	72.45	72.65	Quartz vein breccia	10	18.4	0.25	0.05	0.2	11 1	0.05	2720	72900	18.8	23	0.8	0.1	0.0025	3,36	13	160
VNR-101	72 65	73	Quartz vein	10	12 4	0.25	0.05	0.3	,_ 7	0.05	1790	1050	15.6	1 1	0,0 0 9	0.1	0.0025	1 52	0.6	200
VNR_101	73	74	Quartz vein breccia	10	72 5	0.25	0.05	0,5	,, 12 /	0.05	2640	1000	35.0	10	1	0,1	0.0025	3.05	1	140
VNP 101	73	75	Carbonato voin brossic	10	23,3 777	0,25	0,05	0,2	12,4 25 7	0.05	1440	4350	10.2	1,7	1 6	0,1	0,0025	5,05	1 7 4	140
VIND 101	74	75	Quarta voia bas	10	3/,/	0,0	0,05	0,5	23,1	0,05	1445	901	13,3	1,5	1,0	0,1	0,0025	1 55	2,4	104
VINK-101	75	70	Quartz vein breccia	20	15,8	2,6	0,1	0,5	b,3	0,1	2540	51	24,2	3,1	2	0,2	0,0025	1,55	1	164
VNR-101	76	77	Quartz vein	10	9,8	1,1	0,05	0,3	3	0,1	2940	32	7,2	1,7	0,8	0,1	0,0025	0,84	0,7	23
VNR-101	77	78	Quartz vein	10	8,2	1,4	0,05	0,4	2,1	0,1	2560	34	6,6	3,6	1,3	0,2	0,0025	0,8	0,7	185
VNR-101	78	78,5	Quartz vein breccia	5	12,7	0,5	0,05	0,4	5,4	0,2	3850	103	35,8	2,9	0,6	0,1	0,0025	0,97	1,2	23
VNR-101	78,5	79	Carbonate vein	5	72,1	0,25	0,05	0,2	43,7	0,05	96,6	6	1,7	1,9	0,1	0,1	0,0025	3,47	2,9	0,5

Table B.2: ICP-analysis of selected trace elements and base metals from the rock cores retrieved at Vannareid. All values are given in ppm (parts per million).

	From	To																		
HOLEID	(m)	(m)	Lithology	Ва	Sr	Zr	Hf	Nb	Y	U	Cu	Zn	Pb	Ni	Rb	Th	Та	Ce	Sc	Cr
VNR-101	79	79.35	Carbonate vein breccia	5	35	0.25	0.05	0.3	18.3	0.1	2950	1400	97.5	1.3	0.4	0.1	0.0025	2.56	0.9	5
VNR-101	79.35	80	Carbonate vein breccia	10	27.6	0.5	0.05	0.2	11.5	0.1	5930	747	37.6	2.5	0.7	0.1	0.0025	_,= =	0.9	103
VNR-101	80	81	Quartz vein breccia	10	12.4	0.5	0.05	0.4	5.2	0.1	8370	11900	63.7	2.2	0.7	0.1	0.0025	2.78	0.6	48
VNR-101	81	82	Quartz vein breccia	10	7.2	0.25	0.05	0.3	2.5	0.1	3880	24400	34.9	3.4	1	0.1	0.0025	1.17	0.4	213
VNR-101	82	83	Quartz vein breccia	10	6.2	1.2	0.05	0.4	_,=	0.1	2860	13300	102.5	3.2	0.6	0.1	0.0025	0.77	0.7	24
VNR-101	83	84	Quartz vein breccia	10	8.4	27	0.1	0.7	27	0.2	1700	1370	11 5	5 1	14	03	0.05	2.06	1	165
VNR-101	84	84.65	Quartz vein breccia	10	6.2	4 1	0,1	1	1.6	0,2	2810	2780	17.1	5,1	17	0,5	0.07	3.07	1 /	200
VNR-101	04 04 CE	04,0J 0E	Quartz vein breccia	20	6.2	4,1	0,1	2	2,0	0,5	2010	160	25.4	11.0	7.0	0,4	0.15	3,07	2,4	146
VNR-101	04,0J	00	Quartz vein breccia	30	0,5	9,0 0 F	0,5	1 5	2,7	0,0	1590	109	25,4	11,0	7,0	0,0	0,13	3,20	3,0	140
VNR-101	85	80	Quartz vein breccia	20	6,1	8,5	0,3	1,5	3,2	0,5	1580	142	16,1	9,6	3,4	0,6	0,14	4,24	2,8	17
VNR-101	86	86,85	Quartz vein breccia	40	9	16,3	0,4	6	15	1,3	1195	5090	16	15,5	7,5	1,3	0,4	11,7	10,2	157
VNR-101	86,85	87	Mag-diabase breccia	90	34,2	63,2	1,5	22,1	28,7	1,3	88,2	96	13	16,9	20,7	4	1,43	38	21,3	26
VNR-101	87	88	Mag-diabase breccia	90	17,9	39,5	1	14,9	26,8	1	927	81	5,7	18,8	18,7	2,5	0,93	19,45	21,4	35
VNR-101	88	89	Mag-diabase breccia	110	42,3	62,3	1,6	19,6	43,6	1	618	85	5,1	18,8	21,7	3,4	1,28	44,7	25,5	82
VNR-101	89	90	Mag-diabase breccia	140	31	39,8	1,1	14,9	37,9	0,7	2440	904	8	18	26,1	2,4	0,94	35,3	20,9	22
VNR-101	90	91	Mag-diabase	210	58,3	49,5	1,2	17,9	57	1,1	1470	108	6	21	33,5	3,1	1,19	66,2	27,8	75
VNR-101	91	92	Mag-diabase	130	45	53,2	1,4	19,3	67,5	1,6	675	114	5	31,1	21,8	3,2	1,25	77,3	35,7	35
VNR-101	92	92,4	Mag-diabase	190	47,1	51,9	1,4	20,6	70,6	1,2	483	112	5,1	33	32,6	3,8	1,41	77,6	37,4	65
VNR-101	92,4	92,75	Quartz vein	20	17,7	15,3	0,4	5,1	20,7	0,6	11150	126	12,8	11,2	3,7	0,9	0,34	15	9,7	12
VNR-101	92,75	93	Mag-diabase	150	32,3	44,1	1,3	18,4	55	1,2	340	115	5,8	27,6	25,5	3,1	1,22	47,5	32,6	48
VNR-101	93	94	Mag-diabase	130	43,8	41,3	1,2	17,2	62,5	1	2290	122	8,6	24,1	24,5	3	1,16	69,7	32,8	23
VNR-101	94	95	Mag-diabase	180	80,6	41,2	1,2	21,1	70	1	1025	265	6	26,3	39,7	3,6	1,4	85,9	34,4	52
VNR-101	95	96	Mag-diabase	140	45,9	44	1,2	16,4	58,4	1,5	903	90	4,2	23	22,9	3	1,06	70,3	29	21
VNR-101	96	97	Mag-diabase	130	44,3	49,9	1,4	19,1	60	1,1	1075	112	2,5	29,2	22,9	3,4	1,28	77,9	38,1	49
VNR-101	97	98	Mag-diabase	130	52,4	47,3	1,3	18,4	59,2	1,2	1130	102	3,2	24,2	24,4	3	1,21	67,3	31,6	20
VNR-101	98	99	Mag-diabase	170	43,8	38,5	1,1	16,8	46,5	1,2	974	91	3,4	21,7	27,4	2,7	1,11	60,1	28,7	67
VNR-101	99	100	Mag-diabase	160	92,7	39,3	1	17	55	0,9	937	99	3,8	20,8	26,3	2,7	1,13	62,1	27,5	19
VNR-101	100	101	Mag-diabase	190	207	55,6	1,5	23,2	69,1	0,8	398	139	4,7	24,9	42,8	3,6	1,47	79,3	35,9	55
VNR-101	101	102	Mag-diabase	140	126	38.7	1	20	63.8	0.7	361	115	4.3	25.7	25.5	3.2	1.26	80	34.5	26
VNR-101	102	103	Mag-diabase	110	113	49.1	1.3	23.7	70.9	0.8	749	136	4	29.6	22	3.6	1.49	78.7	36.8	48
VNR-101	103	104	Mag-diabase	160	54	48.5	12	18.9	55.3	11	1065	112	85	21.7	34.7	3 1	1 21	65.5	28.7	17
VNR-101	104	105	Mag-diabase	130	70.4	43	1.2	18	66.4	1 1	1375	130	8.2	29.1	26	3,1	1 17	69.8	32.6	52
VNR-101	110	111	Mag-diabase	100	00,4	43.7	1 2	20	62.4	0.7	6/6	175	1.8	30 /	17.2	33	1 2 2	71	10.9	65
VNR-101	110	112	Mag-diabase	100	106	52.0	1,5	20	72 7	0,7	656	162	4,0	35,4	22 8	3,5	1,52	83	40,5	33
VNR-101	111	112	Mag-diabase	100	110	55,5	1,5	25	75,7	0,8	524	102	4,5	33,4	18.0	2,7	1,45	00 0	40,7	55
VNR-101	112	115	Mag diabase	100	115	01,7	1,/	24,1	72,7	0,8	324	100	4,7	33,3	10,9	3,0	1,0	00,0 75.6	39,5	27
VNR-101	115	114	Mag-ulabase	120	115	44,1	1,5	20,1	50,7	0,7	1050	142	5,2	20.4	22,0	3,3	1,5	75,0	37,2	2/
VNR-101	114	114,65	Mag-diabase	180	43,8	38,8	1,2	20,2	59,2	0,8	1/3,5	115	2,8	38,4	36,3	3,1	1,29	55,9	40,3	56
VNR-101	114,65	114,8	Quartz vein	10	7,8	1	0,05	0,6	4,1	0,1	4460	125	19,4	4,4	1,1		0,0025	7,93	1,2	21
VNR-101	114,8	115	Mag-diabase	210	19,7	26,8	0,8	11,3	49,3	0,7	3400	59	26,5	22,1	29	1,9	0,74	177,5	21,3	122
VNR-101	115	115,4	Mag-diabase	210	48,2	56	1,5	22	66,9	0,9	227	132	4	38,3	40,6	3,8	1,46	72,8	40,8	42
VNR-101	115,4	115,55	Carbonate vein	90	66,2	22,6	0,6	7,8	70,6	0,7	5040	153	43,6	15,9	18,3	1,3	0,49	58,4	18,4	58
VNR-101	115,55	116	Mag-diabase	120	89,2	43	1,3	22,7	70,5	0,8	419	163	4	37,8	24,4	3,5	1,42	79,2	40,2	33
VNR-101	116	117	Mag-diabase	60	103	49,2	1,4	22,4	68,1	0,7	601	177	4,6	37,2	10	3,5	1,41	77,1	39,9	71
VNR-101	117	118	Mag-diabase	70	102	45,3	1,3	21,5	65,7	0,8	584	185	4,9	36,7	11,6	3,5	1,39	78,2	40,8	37
VNR-101	118	119	Mag-diabase	70	77,3	49	1,4	23,6	71,8	0,8	660	169	5	38,2	13,2	3,6	1,53	81,4	41,1	62
VNR-101	134	135	Mag-diabase	90	115	44,3	1,3	22,6	69,8	0,8	634	176	4,4	35,4	15,9	3,7	1,43	75,9	41,9	32
VNR-101	135	136	Mag-diabase	80	121	38,5	1,1	20,3	62,9	0,7	1640	170	5,5	48,9	13,5	3,2	1,28	68,7	34,6	58
VNR-101	136	137	Mag-diabase	70	124	44,8	1,2	23,5	72,9	0,8	429	133	4,6	22,2	9,7	3,7	1,5	86,6	33,1	14
VNR-101	137	137,2	Carbonate vein	100	52,4	17,7	0,4	7,5	45,4	0,6	5950	37	9,9	11,1	11,3	1,1	0,47	36,4	11,5	57
VNR-101	137,2	138	Mag-diabase	90	105	54	1,3	25	77,6	1	437	133	4	22,4	14,1	4,2	1,58	92	35,4	15
VNR-101	138	139	Mag-diabase	120	92,5	55,6	1,5	22,1	65,9	0,9	533	144	4,3	24,8	19,1	3,8	1,44	80	34,3	48
VNR-101	148	149	Mag-diabase	50	76,6	22,9	0,7	18,1	64,4	0,7	615	179	3,9	47,9	11,9	3,3	1,15	73,3	43,4	63
VNR-101	149	150	Mag-diabase	100	105	19,7	0,6	16,4	60,8	0,7	332	174	4	44,4	26,4	3,1	1,06	69,6	41	94
VNR-101	150	150,7	Mag-diabase	120	98,9	20,4	0,7	20,7	65,6	0,8	177	156	3,6	44,1	28	3,5	1,34	75	46,1	65
VNR-101	150,7	151	Mag-diabase breccia	40	35,6	5,4	0,2	6,2	19,7	0,3	94,7	55	1,7	15,4	8,6	1	0,43	22,5	14,4	98
VNR-101	151	151,35	Mag-diabase breccia	100	15,4	2,6	0,1	4,5	11,7	0,2	240	63	1	25,7	25,3	0,5	0,22	17,75	9,8	27
VNR-101	151,35	152	Mag-diabase	60	20,3	10	0,4	10,6	34	0,7	158	117	2	48,3	12,1	1,8	0,63	36,1	30	85
VNR-101	152	153	Mag-diabase	60	22,7	21	0,9	16	58,4	1,3	46,3	126	2,5	44,9	11,3	3,1	1,06	73,8	45,7	73
VNR-101	153	154	Mag-diabase	110	41,8	26,9	0,9	17,9	60,1	1,4	88,3	111	2,8	40,3	24,7	3,1	1,14	59,7	43,7	91
VNR-101	154	155	Mag-diabase	80	75,2	23,7	0,8	19,2	63,4	0,8	135,5	153	3,2	42,6	21,9	3,5	1,2	70,5	48,6	60
VNR-101	155	155,15	Altered granitoid	230	183	14,2	0,5	4	9,3	0,5	95,9	37	3,6	15,2	21,6	2,9	0,38	23,7	4,9	58
VNR-101	155.15	156	Altered granitoid	210	194	, 17.7	0.7	3.5	6.3	0.6	43.5	44	3.7	18.2	20.6	2.5	0.4	22.7	2.7	6
VNR-101	156	157	Altered granitoid	190	183	, 16	0.6	3.4	6.1	0.8	76.3	48	3.6	15.9	20.1	29	0.43	28.8	31	71
VNR-101	157	157 5	Carbonate vein breccia	30	87.9	87	0.4	2.8	13	0.4	1180	1390	18.1	2 5	43	1 2	0.29	10.65	3,1	4
VNR-101	157 5	157.8	Carbonate vein	5	68.7	0.25	0.05	0.1	34.9	0.05	1135	338	49.1	0.6	0.2	0.1	0.0025	12	29	23
VNR-101	157.8	158	Altered granitoid	2	179	12 9	05	۵, <u>۱</u>	6	0.4	92	36	22	2,0 4.6	0,2 Q	16	0.48	14 45	2,5	5
VNP-101	158	150	Altered granitoid	90 90	1/1	12 1	0,5	-+,1 27	77	0,4	2,2 21 2	20	2,2	4,0 7 7	5 0 E	1,U 2	0,40	-+,+J 2∩ 0	2 1	5 74
VNP 101	150	160	Altered granitaid	50	122	12,1	0,5	3,1 3,6	7,1	0,0	21,3 33 F	20	2,3	1,1 C C	5,5 E 4	2	0,41	20,0	3,1	/4
VINE 101	100	161	Altored granital	50	142	13,ŏ	0,5	3,D	7,9	U,5	23,5	38	2	0,0 4 7	5,4 - 7	2	0,38	25,8	2,9	9
VINK-101	100	101	Altered granitold	60	142	13,9	0,6	4,1	٥,8 د ۲	5,/	υ,/ 26.5	30	2,5	4,/	5,/	2,1	0,41	20,8	3,3	94
VINK-101	101	102	Altered granitoid	220	222	14,7	0,6	3,9	ъ,2	0,8	36,4	31	3,5	3,4	19	1,8	0,38	20,4	3,4	10
VINR-101	102	103	Altered granitoid	440	138	12,7	0,5	4	ь,4 г.о	0,7	29	38	3,3	3,9	31,3	1,7	0,41	20	3,7	83
VNR-101	163	164	Altered granitoid	400	/6,6	13,2	0,5	4	5,8	1	13,7	24	2,5	3,2	38,1	1,8	0,41	12,15	3,4	8
VNR-101	164	165	Altered granitoid	360	83,4	15,6	0,6	3,8	8,1	0,9	35,3	20	2,9	3,7	34,1	1,9	0,39	22	3,4	93
VNR-101	165	166	Altered granitoid	370	72	13,9	0,6	4,1	4	0,5	11,6	16	7,5	2,6	33,5	1,5	0,36	8,09	2,9	8
VNR-101	166	167	Altered granitoid	340	81,1	14,1	0,6	3,2	4,7	0.6	6.1	21	2.1	4.6	33.8	1,6	0,28	12,35	2,9	97
	100							,			-,-		_,_	.,=		· .				-

	From	To																		
HOLEID	(m)	(m)	Lithology	Ba	Sr	Zr	Hf	Nb	Y	U	Cu	Zn	Pb	Ni	Rb	Th	Та	Ce	Sc	Cr
	. /		0,																	
Drill core VN	R-102:																			
VNR-102	6	7	Mica schist	280	44.8	72.6	2.3	3.3	10	2.2	1.2	3	1.3	19.8	67.1	8.3	0.26	55.2	6.2	58
VNR-102	7	7.6	Mica schist	560	48.7	82.2	2.6	4.9	16.9	3.3	1.8	14	2.4	34.9	116.5	10.1	0.35	59	9.1	74
VNR-102	10.4	11	Mica schist	600	53.3	94	3	5.1	13.9	3	0.8	10	1.6	31	116	11.3	0.32	62.9	9.3	89
VNR-102	11	11.6	Mica schist	630	59.4	80.8	2.5	6.3	15.4	2.9	0.9	10	1.2	28.9	127.5	10.7	0.49	53.7	8.7	61
VNR-102	13.1	14	Mica schist	20	33.6	10.5	0.4	0.6	9.7	0.7	1.6	25	1.5	138.5	13.5	0.8	0.05	20.8	33.2	348
VNR-102	16	17	Carbonate vein	70	58.6	64.5	2	2	11.9	1.4	-,-	16	1.1	25.8	33.9	7.5	0.2	11.05	8.4	71
VNR-102	23 3	23.7	Carbonate vein	140	58.9	61.3	19	36	15.3	2,1	22	7	1 1	25,3	91.2	82	0.31	33	73	84
VNR-102	26.2	26.8	Carbonate vein	80	71 5	57	1.8	24	22 1	19	15	8	0.9	19	41 7	67	0.21	17 75	12	53
VNR-102	28.5	29	Carbonate vein	130	83.4	66.7	2.2	19	26.6	21	1 2	9	1 1	14.6	36.3	9, <i>i</i>	0.17	10.6	11.4	72
VNR-102	20,5	29.4	Carbonate vein	70	80.1	65.5	2,2	19	20,0	2,1	0.9	9	1,1	11	27.1	88	0.18	11.6	95	52
VNR-102	30.4	31	Mica schist	10	72.4	44.8	12	4.8	16 1	0.4	107	51	07	229	0.8	15	0.33	31.4	34.7	655
VNR-102	31	31 3	Mica schist	10	82.6	41 1	1.4	4.6	17.9	0.4	42.5	53	0,7	220	0,0	1 7	0,33	34.1	37.8	770
VNR-102	323	33	Quartz vein breccia	180	61.8	18.9	0.5	3.6	11.6	0.8	285	57	3.8	17.1	132.5	27	0.27	99.7	97,0 Q	39
VNR-102	33	34	Quartz vein breccia	10	31	1.8	0.1	0.4	26.7	0.9	6140	22	68.8	5.9	1 7	03	0.0025	26.5	24	33
VNR-102	34	35	Quartz vein breccia	20	14.8	1 2	0.1	03	11	0.5	4110	82	25.2	3.8	1.8	0.2	0.05	7 29	1.2	44
VNR-102	35	36	Quartz vein breccia	10	22.9	0.9	0.05	0.1	14.4	0.2	4440	16	11 3	2.2	2,0	0.2	0.0025	6.98	1 2	62
VNR-102	36	37	Carbonate vein breccia	10	55.5	0.25	0.05	0.1	66 1	0.1	4750	24	19.1	2,2	0.7	0.1	0.0025	61 1	2.6	16
VNR-102	37	38	Quartz vein	60	10.4	0,25	0.05	0,1	1 5	0.1	4380	48	10	2,2	69	0,1	0.0025	0.88	0.7	77
VNR-102	38	39	Quartz vein	10	10,4	0.25	0.05	0.1	1.9	0.1	5790	30	14.4	3.2	1.8	0,1	0.0025	0.43	1	44
VNR-102	39	40	Quartz vein breccia	20	24.6	0.25	0.05	0.1	15	0.1	6760	44	28.2	4.2	2.4	0,1	0.0025	12.4	15	80
VNR-102	40	40	Quartz vein breeelu	20	10.6	0.25	0.05	0.1	19	0.1	4370	179	10.1	-, <u>-</u> 5.6	2,4	0,1	0.0025	0.46	0.9	107
VNR-102	40	41	Quartz vein	10	20,0	0,25	0,05	0,1	0.7	0.05	4370	51	3.4	1.8	1 1	0,1	0,0025	0,40	0,5	107
VNR-102	41	42	Quartz vein	20	0,2 20 E	0.25	0,05	0,1	20.7	0,03	1750	51	5,4	1,0	2.2	0,1	0,0025	0,50	0,5	40
VNR-102	42	45	Quartz vein broccia	170	20,5	12.7	0,05	2.2	29,7	0,1	2730	201	5,1	1,0	2,2	1.2	0,0023	9,01	0,7	20
VNR-102	45	44	Quartz vein breccia	20	40	0.25	0,5	2,5	4,0	01	1255	201	6,0	1.0	10	1,2	0,00	0,57	5,1	01
VNR-102	44	45	Quartz vein	20	122	0,25	0,05	0,1	0,7	0,1	001	1200	0,9	1,0	1,0	0,1	0,0025	1 55	0,5	26
VNR-102	45	40	Quartz vein	20	12,5	0,25	0,05	0,1	9,2	0,05	1265	102	6,5 E 0	1,2	1,5	0,1	0,0025	1,55	0,2	00
VNR-102	40	47	Quartz vein	20	9 10.0	0,25	0,05	0,03	20,5	0,03	2210	202	5,5	1,5	2,1	0,1	0,0025	2 65	0,1	00 27
VINR-102	47	40	Quartz vein	20	19,9	0,25	0,05	17	28,2	1 5	5510	205	5,1 10.2	1,9	1,7	0,1	0,0025	5,05	0,0	57
VINR-102	40	49	Quartz vein breccia	90	23,5	2,3	0,2	1,/	0 20 1	1,5	691	57	10,5	5,1	9,9	1	0,19	0,30	2,4	20
VINR-102	49	50	Quartz vein	40	12.2	1,2	0,1	0,5	29,1	0,1	679	10	3,1	1,5	3,3	0,2	0,0025	5,27	0,9	20
VINR-102	50	51	Quartz vein breccia	50	21.0	4,7	0,2	0,9	5,1 10 2	0,4	802	40	2,5	3,9	2,5	0,0	0,11	1,//	1,5	04 27
VINR-102	21	52	Quartz vein breccia	50	21,9	4,7	0,1	1	10,2	0,5	2120	21	2,0	3,1	4,4	0,7	0,14	4,17	1,7	3/
VINR-102	52	55	Quartz vein breccia	40	13,4	5	0,2	0,8	11,9	0,4	2150	25	7,0 220	3,4	4,4	0,5	0,1	2,64	1,5	54
VINR-102	55	54	Quartz vein breccia	30	12,5	5,1	0,2	0,7	0,1 10.4	0,5	44 <u>2</u> 0	27	239	3,7	3,2	0,4	0,08	2,25	1,0	74
VINR-102	54	55	Quartz vein breccia	10	10,9	2	0,1	0,5	10,4 42 F	0,5	2100	20	7,0	2,2	2,7	0,5	0,0025	3,23	1,1	40
VINR-102	55	50	Carbonate ven	10	44,1	0,0	0,05	0,05	43,5	0,1	2340	52	14,6	1,4	2,5	0,1	0,0025	0,95	4	44
VNR-102	50	57	Quartz vein	10	23,3	0,25	0,05	0,05	8,3	0,05	010	1	3,8	0,7	1	0,1	0,0025	1,14	1 2	24
VNR-102	57	58	Quartz vein breccia	50	15,1	4,4	0,1	1	1,9	0,3	397	16	2,7	2,8	6,6	0,5	0,09	1,84	1,2	76
VNR-102	58	59	Carbonate vein	10	29	3,9	0,2	0,6	39,3	0,5	1025	41	12,2	4,8	1,3	0,5	0,06	7,63	2	26
VNR-102	59	60	Quartz vein breccia	50	10,9	13,1	0,5	1,4	2,7	0,8	1445	60	5,5	7,3	6,9	0,9	0,18	0,37	2,1	//
VNR-102	60	61	Carbonate vein	10	32,3	4,6	0,1	0,6	24,6	0,2	526	24	3,6	3,3	1,9	0,4	0,06	11,05	2,8	54
VNR-102	61	62	Quartz vein breccia	40	12,5	9,1	0,3	1,1	3,9	0,9	1380	39	13,8	5,8	5,4	1	0,12	0,75	1,6	69
VNR-102	62	63	Quartz vein breccia	60	30	10,5	0,4	1,5	19,9	0,5	496	34	2,4	4,5	8,2	1,3	0,19	4,01	1,7	29
VNR-102	63	64	Quartz vein breccia	50	30,3	9,7	0,3	1,9	10,2	0,6	942	36	5,3	5,1	7	1,1	0,2	2,88	1,7	66
VNR-102	64	65	Quartz vein breccia	100	57,3	8,9	0,3	2,3	5	0,2	965	16	3,1	2,9	15,6	1,1	0,24	10,6	1,5	35
VNR-102	65	66	Quartz vein breccia	130	41,6	8,7	0,3	2,3	2,7	0,5	405	144	2,5	4,7	14,1	1,2	0,24	4,65	1,6	69
VNR-102	66	67	Quartz vein breccia	70	40,5	7,1	0,2	2,2	3,3	0,3	1235	35	22,7	3,1	10	1	0,27	3,66	1,1	33
VNR-102	67	68	Quartz vein breccia	40	18,8	7,2	0,3	1,5	3,8	0,5	511	39	3,4	4,7	4,9	0,7	0,17	1,69	1,5	74
VNR-102	68	69	Quartz vein	170	8,9	2,2	0,1	0,4	1	0,2	713	23	2,6	3,3	3,2	0,2	0,0025	0,61	0,7	43
VNR-102	69	70	Quartz vein breccia	150	25,6	7,3	0,2	1,4	4,1	0,2	439	22	1,8	3,5	13	0,8	0,15	3,63	1,2	79
VNR-102	70	71	Quartz vein breccia	110	50,3	7,1	0,2	1,8	14,9	0,3	1350	19	1,9	3,3	14,6	0,9	0,16	6	1,4	33
VNR-102	71	72	Quartz vein breccia	70	31,1	5,7	0,2	1,8	9,1	0,2	1040	20	1,8	3,5	9,1	0,6	0,2	3,43	1,1	76
VNR-102	72	73	Quartz vein breccia	100	58,8	6,5	0,2	2,1	6,3	0,3	1350	15	5,5	2,6	12,6	1	0,21	6,44	1,3	34
VNR-102	73	74	Quartz vein breccia	100	36,5	7,6	0,2	1,6	2,4	0,3	1190	22	2,5	3,6	12,8	0,9	0,16	6,06	1,4	80
VNR-102	74	75	Quartz vein breccia	100	29,5	7,3	0,2	1,8	2,7	0,3	839	24	1,4	3,8	12,1	1,1	0,17	5,96	1,3	31
VNR-102	75	76	Quartz vein breccia	60	27,6	3,4	0,1	1	6,8	0,2	1240	44	2,9	3,6	7,8	0,6	0,09	4,28	1,5	73
VNR-102	76	77	Quartz vein breccia	60	17,9	4,3	0,1	1,2	1,2	0,3	1390	50	2,7	3,9	7	0,9	0,14	1,33	1,1	37
VNR-102	77	78	Quartz vein breccia	70	19,7	6,2	0,2	1,4	1,8	0,4	2250	30	2,9	4,9	7,7	1	0,15	2,19	1,5	84
VNR-102	78	79	Quartz vein breccia	30	20,4	3,8	0,1	0,9	7,7	0,3	2550	157	7,6	4,2	4,5	0,5	0,09	2,03	2	31
VNR-102	79	80	Quartz vein breccia	70	27,7	7,6	0,3	1	1,4	0,2	947	155	2,1	3,3	8,8	0,5	0,1	3,21	1	74
VNR-102	80	81	Quartz vein breccia	170	30	8,8	0,3	1,5	1,7	0,4	569	214	4,9	4,4	16,4	1,1	0,16	1,97	1,5	73
VNR-102	81	82	Quartz vein breccia	40	12,1	3,5	0,1	0,8	1,8	0,4	1410	42	12,8	5,9	4,8	0,4	0,09	0,28	1,4	36
VNR-102	82	83	Quartz vein breccia	10	5,8	3,5	0,1	0,7	1,3	0,3	1920	35	6,3	6,7	1,6	0,5	0,08	0,2	1,2	85
VNR-102	83	84	Quartz vein breccia	10	8	1,9	0,1	0,3	2,6	0,2	1980	32	10,4	4,9	1,5	0,3	0,0025	0,65	1,2	40
VNR-102	84	85	Quartz vein breccia	10	13,5	1,6	0,1	0,3	9,2	0,1	3760	60	9,6	4,7	1	0,1	0,0025	1,89	1,6	72
VNR-102	85	86	Quartz vein	10	10	0,5	0,05	0,1	1,7	0,05	1250	10	7,6	1,4	1,3	0,1	0,0025	0,51	0,4	40
VNR-102	86	87	Carbonate vein	10	24,8	0,25	0,05	0,1	12,8	0,05	1760	131	14,1	0,8	1	0,1	0,0025	2,64	1,5	43
VNR-102	87	88	Quartz vein	10	14,9	0,6	0,05	0,1	8,3	0,1	1800	384	12	1,7	0,8	0,1	0,0025	2,07	1,1	32
VNR-102	88	89	Quartz vein	20	11,5	2,7	0,1	0,3	1,1	0,1	2980	22	7,7	1,9	2,6	0,3	0,0025	0,62	0,6	43
VNR-102	89	90	Quartz vein	10	8,4	1	0,05	0,2	1,2	0,1	3500	34	14,5	1,9	1,3	0,1	0,0025	0,58	0,4	91
VNR-102	90	91	Carbonate vein	5	26,6	0,25	0,05	0,1	13	0,1	3610	407	43,4	1	0,6	0,1	0,0025	2,09	1,2	51
VNR-102	91	92	Quartz vein breccia	10	20,3	0,8	0,05	0,1	8,7	0,1	9720	4440	230	1,7	0,9	0,1	0,0025	3,06	0,8	28
VNR-102	92	93	Quartz vein breccia	120	19,3	0,9	0,05	0,2	13,1	0,1	13950	9530	504	3	1,8	0,1	0,0025	9,01	0,6	79

	From	To																		
HOLFID	depth (m)	depth (m)	Lithology	Ba	Sr	7r	Нf	Nb	Y	U	Cu	Zn	Ph	Ni	Rb	Th	Та	Ce	Sc	Cr
VNR-102	02	0/	Quartz vein breccia	30	9/	1	0.05	0.2	3.6	0.1	3830	6830	63.5	3.8	1	0.1	0.0025	2 5 2	0.5	80
VNR-102	94	95	Quartz vein breccia	10	5.4	3.4	0,05	0,2	15	0,1	1710	104	10.2	6.7	16	0,1	0,0025	2,55	1.2	37
VNR-102	05	96	Diabase breccia	20	7.6	3,4	0,1	0,0	2,5	0,5	1/10	80	17.0	83	2.4	1 2	0,00	3,30	1,2	52
VNR-102	95	90	Diabase breccia	10	7,0	3,5	0,1	0,8	1.8	0,4	1000	121	22.6	83	2,4	0.5	0,05	2,2	1,0	24
VNR-102	07	00	Diabase breccia	10	6.2	4,4	0,2	1.6	2 1	0,5	627	121	22,0	6,5	2	0,5	0,05	7 6 9	1,/ 2	24
VNR-102	97	90	Diabase breccia	10	0,2 F 1	0,0	0,2	1,0	3,1 1 4	0,9	257	400	20,4	6,5	1.0	0,9	0,10	7,00	2	44
VNR-102	98	99	Diabase breccia	10	5,1	7,4	0,2	1,6	1,4	0,7	355	90	15,2	6,2	1,8	0,9	0,16	1,14	2	21
VNR-102	99	100	Diabase breccia	20	6,6	6,9	0,2	1,4	2,9	0,9	1150	4/3	31,1	7,1	3	0,8	0,15	2,62	1,9	/9
VNR-102	100	101	Diabase breccia	10	5,1	7,4	0,2	1,7	1,4	0,7	952	133	70	7	2	1	0,18	2,03	2,1	23
VNR-102	101	102	Diabase breccia	10	9,5	9,2	0,3	1,7	6,4	0,8	777	99	44,3	8,2	3,5	0,9	0,19	5,39	2,7	43
VNR-102	102	102,4	Quartz vein breccia	30	17	9,8	0,3	1,8	5,4	0,4	927	48	25,8	9,9	5,8	0,9	0,2	39,4	2,2	35
VNR-102	102,7	103	Quartz vein breccia	60	29,9	11,2	0,4	2,5	9,1	0,4	39,4	42	4	5,6	6,7	1,4	0,25	123	2,2	44
VNR-102	103	104	Quartz vein breccia	40	23,5	9,8	0,3	1,9	8,9	0,4	1500	5510	41,5	6	3,1	1,1	0,23	85,4	1,8	23
VNR-102	104	105	Diabase breccia	20	12,1	12,8	0,4	4,1	13,7	0,9	975	166	43	13,8	4,1	1,1	0,32	7,59	9,1	46
VNR-102	105	106	Quartz vein breccia	10	60,8	5,2	0,2	1,7	8,6	0,4	3390	546	32,9	10	1,7	1	0,15	7,53	3,2	26
VNR-102	106	107	Mag-diabase breccia	50	28,6	14,9	0,5	9,5	24,7	0,6	204	77	8,6	30,1	8,5	1,8	0,64	11,7	20,1	56
VNR-102	107	108	Mag-diabase breccia	90	17,1	17	0,4	16,2	43,7	0,7	308	129	10,3	42,8	14,8	2,6	0,99	42,6	36,4	60
VNR-102	108	109	Quartz vein breccia	60	82.1	15.6	0.6	4.6	9.6	0.8	505	57	7.6	13.1	9.6	1.7	0.52	13.6	7.6	39
VNR-102	109	110	Mag-diabase breccia	60	66.8	11 3	0.5	92	23.8	14	419	146	22	29.2	10.1	25	0.69	12 95	15.6	41
VNR-102	110	111	Mag-diabase breccia	40	31.2	15.6	0.5	87	21.1	13	2770	74	18.7	19.2	7.4	1.8	0.64	6 5 1	9.1	67
VNR-102	111	112	Granitoid breccia	40	51.7	14.4	0,5	23	20	0.6	1/18	57	10,7	76	7,4	1,0	0,04	1 10	3.2	30
VNR-102	112	112	Quartz voin broccia	20	06.7	12.2	0,5	2,5	12.1	0,0	2500	006	40.4	20	1.0	1,5	0,5	7.06	3,0	15
VNR-102	112	115	Qualitz velli breccia	20	72.0	15,2	0,4	2,5	12,1	1	3390	300	49,4	5,6	1,9	1,5	0,5	7,00	2,7	15
VNR-102	113	114	Granitoid breccia	50	72,9	18,9	0,6	2,4	7,3	0,8	346	/4/	14	5	6,2	1,8	0,21	6,73	2,7	32
VNR-102	114	115	Granitoid breccia	150	97,6	16,7	0,5	2,8	4,8	0,6	20,4	42	2,2	4,2	11,1	1,/	0,33	10,85	3,1	1/
VNR-102	115	116	Granitoid breccia	160	132	18,6	0,6	3,6	5,6	0,6	10,3	50	3,3	4,1	12	2,5	0,37	27,6	3,9	33
VNR-102	116	117	Granitoid breccia	60	108	16,8	0,6	3	5,7	0,5	14,6	48	4,3	3,8	5,8	1,8	0,3	23,4	3,2	21
VNR-102	117	118	Altered granitoid	50	101	18,9	0,7	3	5,9	0,5	208	92	5,4	4,3	4,6	1,8	0,3	11,45	3,2	36
VNR-102	118	118,8	Altered granitoid	30	90,9	17	0,6	2	5,9	0,8	88,1	45	8	4	2,9	1,3	0,19	15,1	2,7	18
VNR-102	119,1	120	Altered granitoid	40	105	18,3	0,6	2,6	7,7	1	552	840	12,6	4,5	2,9	1,4	0,23	4,14	3	28
VNR-102	120	121	Altered granitoid	260	99,2	11,2	0,4	3,4	3,7	0,5	337	111	3,9	3,3	17	1,9	0,26	14,95	3,7	20
VNR-102	121	122	Altered granitoid	490	74,4	15,8	0,5	3,5	4,4	0,7	821	104	9,5	3,2	28,9	1,7	0,36	9,79	3,3	36
VNR-102	122	123	Altered granitoid	450	96,5	23	0,8	3,9	5,3	1,6	225	102	13,1	3,3	29,8	1,9	0,49	19	3,8	18
VNR-102	123	124	Altered granitoid	330	107	12,9	0,5	3,7	5,1	0,8	270	58	9,1	3	18,5	1,9	0,32	6,16	3,5	25
VNR-102	124	125	Altered granitoid	300	85	13,4	0,4	3,7	4,2	0,9	79,9	36	14,1	3,3	19,1	1,7	0,28	14,1	2,9	22
VNR-102	125	125.3	Altered granitoid	240	106	22.1	0.6	4.8	7.8	0.9	653	44	, 12.7	3.4	18	3.2	0.4	63.1	3.3	34
						,_	-,-	.,=	.,=	-)-			,.	-,.		-)-	-, -	,-	-,-	
Drill core VN	IR-201																			
VNR 201	17.7	17.0	Quartz voin braccia	260	E2 2	10.6	0.4	2.4	EG	0.5	12 7	226	0.0	0.0	70 7	2.1	0.24	27.7	2.0	E A
VNR-201	17,7	10.05	Quartz vein breccia	200	33,Z	10,0	0,4	2,4	0.0	0,5	15,7	550	15	5,5 2.4	20,7	5,1	0,24	57,7	3,5	10
VNR-201	17,9	10,95	Quartz vein breccia	80	22,5	3,1	0,1	1	9,2	0,5	1600	7220	20 5	5,4	8,5	0,8	0,05	0,22	1,5	10
VNR-201	18,95	19,3	Carbonate vein	10	44,4	0,25	0,05	0,05	16,5	0,1	2160	/330	30,5	0,8	0,6	0,1	0,025	3,5	0,8	31
VNR-201	19,3	20	Quartz vein breccia	110	31,9	4,1	0,1	1,6	7,7	0,5	1380	1190	17,7	4,3	11,2	1,1	0,14	5,18	1,8	24
VNR-201	20	21	Quartz vein breccia	180	39,2	5,1	0,2	2,3	5,2	0,5	1080	113	4,8	4,3	17,8	1,4	0,21	9,16	2,5	57
VNR-201	21	22	Quartz vein breccia	170	42,1	5,3	0,2	2,3	7	0,6	440	70	3,2	4,9	17,5	1,7	0,19	9,42	2,9	28
VNR-201	22	22,3	Carbonate vein	10	35,4	4,4	0,1	0,8	7,4	0,2	131	22300	6,9	3,2	1,1	0,5	0,1	3,62	1,5	44
VNR-201	22,3	22,8	Carbonate vein	10	56,3	0,8	0,05	0,1	31,3	0,1	2110	8240	81,7	0,4	1,1	0,1	0,025	5,92	1,7	5
VNR-201	22,8	23	Carbonate vein breccia	60	27,3	2	0,1	0,5	12,8	0,4	7050	392	76,8	4,8	6,5	0,3	0,025	2,77	1,9	52
VNR-201	23	24	Quartz vein breccia	110	22,7	2,8	0,1	1,3	3,1	0,8	180,5	254	5,8	8,1	10	1,2	0,12	3,15	1,9	32
VNR-201	24	25	Carbonate vein breccia	80	42,5	6,9	0,2	1	8,7	0,5	816	826	10,6	4,1	7,1	1	0,11	2,88	2	46
VNR-201	25	26	Quartz vein breccia	60	35,2	6,2	0,4	1,1	9	0,5	627	211	22,6	4,5	7,1	0,9	0,08	3,49	1,9	25
VNR-201	26	26,9	Carbonate vein	30	34	1,6	0,1	0,5	15,2	0,3	2210	8900	25,3	2,7	3,1	0,4	0,025	3,32	1,9	42
VNR-201	26.9	27.3	Carbonate vein	10	27.3	0.25	0.05	0.05	13.2	0.05	4680	84400	32	1	1.3	0.1	0.025	0.95	0.8	28
VNR-201	27.3	28	Carbonate vein	5	62.9	0.25	0.05	0.05	29.7	0.05	2490	4350	31.9	04	0.4	0.1	0.025	2.96	24	16
VNR-201	28	28.6	Quartz vein breccia	10	15.8	0.25	0.05	0.1	69	0.05	6480	56300	56.9	2,1	11	0.1	0.025	1.85	0.7	30
VNR-201	28.6	20,0	Quartz vein breccia	210	35.0	13 /	0.5	2 2	43	0.4	605	278	33	2,2	12.6	1 2	0.10	4.08	1 2	41
VNR-201	20,0	20	Quartz vein breccia	210	24.0	7.6	0,5	2,5	7 1	0,4	747	2/0	5,5	2,5	20,0	1,2	0,10	7 56	1,5	26
VNR-201	29	30	Qualitz velli breccia	120	24,0	7,0	0,5	1,7	12.4	0,5	1175	5400	0,5	2,5	0, 9 12.1	0,9	0,15	2,50	1,5	20
VNR-201	30	32		150	29,7	0,0	0,5	1,5	12,4	0,5	11/5	5400	21	2,5	15,1	0,5	0,15	3,44	1,4	40
VNR-201	32	33	Quartz vein breccia	40	18,3	6,2	0,2	0,9	6,9	0,5	1230	12200	65,6	3,3	4,4	0,6	0,1	1,88	1	29
VNR-201	33	34	Carbonate vein breccia	20	35,2	3,9	0,1	0,7	17,4	0,4	1460	1670	98,6	3,5	2	0,4	0,07	2,74	1,4	45
VNR-201	34	34,5	Carbonate vein breccia	10	30,6	4,2	0,2	0,8	10	0,3	887	16400	252	3,5	0,6	0,4	0,06	1,66	1,3	12
VNR-201	34,5	35	Quartz vein breccia	10	12,5	8,8	0,3	1,4	2	0,5	790	60400	62	4,9	1,1	0,7	0,13	0,92	1,4	73
VNR-201	35	35,2	Quartz vein breccia	5	28,8	10,4	0,4	2,1	5,2	0,4	1110	1760	21,6	6,9	0,5	1,2	0,2	1,76	1,8	16
VNR-201	35,2	35,5	Quartz vein breccia	10	2,8	1,9	0,1	0,4	0,9	0,1	1565	109500	16,7	2,3	0,6	0,1	0,025	0,54	0,6	60
VNR-201	35,5	36	Quartz vein breccia	20	18,6	1,1	0,05	0,3	9,2	0,05	3670	10900	41,1	1,7	1,9	0,1	0,025	4,91	0,4	55
VNR-201	36	37	Quartz vein breccia	30	7,6	2,7	0,1	0,5	1,4	0,1	3550	1560	12,9	4,5	4,3	0,3	0,025	1,24	0,9	35
VNR-201	37	37,85	Quartz vein breccia	40	7,5	2,9	0,1	0,5	0,9	0,1	3470	14400	7,3	4,5	6,5	0,2	0,025	1,23	0,9	79
VNR-201	37,85	38,45	Granitoid breccia	530	37,8	7	0,3	1,5	2	0,2	83,1	50	6,2	2,3	65	0,6	0,21	4	0,8	32
VNR-201	38,45	39	Granitoid breccia	140	23	14.1	0.6	3	4.1	0.4	337	85	4.1	3.8	21.5	1.7	0.27	9,91	1.7	84
VNR-201	39	40	Granitoid breccia	280	31.3	26.8	1.1	2.5	45	0.5	334	1280	22.6	3.4	35.8	1.8	0.23	5.09	1.7	21
VNR_201	40	.с 41	Granitoid breccia	410	375	21 2	_,_ ∩ 0	2,5	.,5 7 A	05	265	16	5 2	2,7	25,0 25 2	2,0	0.20	5 62	-,, 1 /	72
VNP_201	 Д1	42	Granitoid breccia	270	21	10 /	0,5	2,1 2 A	-,+ ∧ ⊃	0,5	1150	1200	26.0	3,2	20 5	<u>د</u> 1 ۸	0,2	2,02	1,4 0 1	21
VND 201	41	42	Granitoid broccia	270	31 720	10	0,0	2,J 1 1	+,∠ 7 0	10	1120	1000	20,0	4 2 4	50,5 60 0	1,4 1 0	0,20	22,1	2,1	54 67
VIND 201	42	45	Granitoid brees!-	0/0	12,0	10 71 7	0,7	4,4	7,5	1,0	105 5	200	0,Z	3,4	U0,9	4,9	0,09	20,2	2,0	20
VINK-201	43	44	Granitolo preccia	520	69	21,/	0,8	4,5	9	1,5	185,5	30	4,8	3,2	54,8	3,3	0,61	32,6	2,8	30
VNR-201	44	45	Granitoid breccia	330	26,6	21,8	0,9	2,5	3,7	0,7	458	53	6,9	4,4	47,6	1,4	0,37	25,4	2	74
VNR-201	45	46	Granitoid breccia	370	51,6	32,2	1,3	3,7	3,3	0,7	92,4	24	2,7	3,2	45,1	2,1	0,41	14,55	2,2	30
VNR-201	46	47	Granitoid breccia	500	55,5	29,1	1,3	3,2	3,4	0,5	115	19	3,7	2,5	51,8	2,7	0,27	12,25	1,7	59
VNR-201	47	48	Granitoid breccia	460	53,2	32,1	1,3	3,5	3,8	0,6	176	21	3,1	2,5	51,3	2,7	0,34	15,75	2	27

	From	То																		
HOLEID	depth (m)	depth (m)	Lithology	Ba	Sr	7r	ыf	Nb	v		Cu	Zn	Ph	Ni	Ph	Th	Тэ	Ce	Sc	Cr
HOLEID	(11)	(11)	Lithology	Dd	51	21		UNI	T	0	Cu	20	PD	INI	RD	10	Id	Ce	50	Cr
VNR-201	48	49	Granitoid breccia	430	44,9	27,4	1,1	3,2	3,3	0,5	52,5	22	2,8	2,5	43,1	2,3	0,31	15,85	1,8	62
VNR-201	49	50	Granitoid breccia	490	52,9	25,3	1,1	3,1	3,7	0,5	95,5	27	11,8	2,4	48,2	2,4	0,27	18,3	1,9	61
VNR-201	50	51	Granitoid breccia	460	49,2	28,6	1,2	3,4	3,7	0,6	79,7	34	3,7	2,7	44,3	2,6	0,32	18,9	1,9	31
VNR-201	51	52	Granitoid breccia	290	28	20,2	0,9	2,3	3,4	0,4	54,8	29	4,6	2,7	29,6	2	0,21	11,4	1,4	54
VNR-201	52	53	Granitoid breccia	520	59,2	27,3	1,2	3,2	3,5	0,6	204	20	3,2	2,3	48,5	2,3	0,38	16,1	1,7	28
VNR-201	53	54	Granitoid breccia	500	60,4	23,3	1	3,3	3,3	0,7	454	23	3,1	2,7	50,3	2,3	0,38	16,95	2	54
VNR-201	54	55	Granitoid breccia	510	65,9	20,9	0,9	3,3	3,3	0,4	92,8	20	2,4	2,4	52,1	2,1	0,24	17,6	1,9	26
VNR-201	55	56	Granitoid breccia	460	49,2	21,1	0,9	3,2	8,2	0,5	113	22	11,7	2,9	44,1	2,4	0,26	104,5	1,6	56
VNR-201	56	57	Granitoid breccia	560	95.8	33.8	1.2	3.5	3.6	0.5	88	24	5.2	3	51.9	2.5	0.28	16.35	2	30
VNR-201	57	58	Granitoid breccia	510	67.9	32.4	1.1	3.5	3	0.4	129	20	4.7	2.4	51.1	2.6	0.28	11.45	1.5	64
VNR-201	59	50	Granitoid breccia	560	74.6	35.4	1 2	3,5	30	0.6	111 5	28	45	2,5	50.0	2,0	0.25	16 35	17	26
VNR-201	50	55	Granitoid breccia	200	F2 0	27.6	1,5	3,0	3,5	0,0	271	10	2.4	2,5	20 5	2,0	0,33	16.05	1 5	70
VNR-201	59	60	Alternal ana site id	560	52,9	27,0	1 2	2,7	3,0	0,4	2/1	19	5,4	2,4	39,5	2,5	0,24	10,95	1,5	70
VNR-201	60	61	Altered granitoid	650	92,9	32,5	1,2	3,4	3,3	0,5	323	16	4,5	2,1	67,8	2,4	0,29	14,7	1,/	32
VNR-201	61	62	Altered granitoid	710	132	41,4	1,5	3,9	4,6	0,6	42,6	15	5,9	2,4	74,5	3	0,32	21,1	2,2	53
VNR-201	62	63	Altered granitoid	670	121	36,9	1,3	3,8	4,4	0,6	133,5	219	6	2	56,2	2,7	0,33	17,4	1,9	26
VNR-201	63	64	Altered granitoid	640	137	32,6	1,2	4,1	4,8	0,5	141,5	21	5,7	2,3	58,9	2,9	0,36	23,8	2,3	55
VNR-201	64	65	Altered granitoid	510	104	33,8	1,2	3,5	4,7	0,4	220	18	4,2	2,4	47	2,1	0,33	15,85	2,2	28
VNR-201	65	66	Altered granitoid	570	98,2	32,5	1,2	3,4	4,3	0,7	162	19	4,8	2,3	50,1	3,2	0,35	19,4	2	58
VNR-201	66	67	Altered granitoid	570	104	31,5	1,1	3,3	3,4	0,5	139,5	36	4,2	2,2	53,2	3	0,28	18,5	1,9	29
VNR-201	67	68	Altered granitoid	470	68,4	25,2	0,9	2,9	2,5	0,3	120,5	19	3	2,2	44,6	2,3	0,23	18,95	1,9	64
VNR-201	68	69	Altered granitoid	550	104	27,7	1	2,9	4,6	0,4	431	30	4,9	2,2	46,3	2,8	0,25	22,2	2,1	35
VNR-201	69	70	Altered granitoid	590	97.8	30.9	1.1	3.5	4.1	0.8	222	73	4.5	2.8	58.1	3.8	0.38	22.4	2	60
VNR-201	70	71	Altered granitoid	520	93.1	25.5	0.9	29	.,_	0.5	1000	1510	5.1	23	49.3	2.2	03	14.4	18	34
VNR 201	70	71	Altered granitoid	520	112	23,5	1	2,5	20	0,5	142	1010	5,1	2,5	= 1,5	2,2	0.25	10.2	1.0	60
VNR-201	71	72	Altered grafitold	570	115	27,5	1	3,2	3,9	0,8	142	25	5,4	2,4	54,5	2,0	0,35	19,5	1,0	00
VNR-201	72	/3	Granitoid	580	132	26,6	1	3,2	4,3	0,4	118	31	6,4	2,3	49,8	2,9	0,26	22,9	2	32
VNR-201	73	74	Granitoid	620	159	31,3	1,2	3,4	5,7	0,4	239	120	11,2	2,1	50,9	2,7	0,29	24,8	2,1	53
VNR-201	74	75	Granitoid	490	101	29,9	1	3,3	3,7	0,4	75,4	21	12,2	2	53,3	2,6	0,27	17,5	1,8	25
VNR-201	75	76	Granitoid	550	125	32,1	1,2	3,5	5,3	0,6	491	21	5,9	2,3	52,8	2,5	0,36	24,4	2,2	58
VNR-201	76	77	Granitoid	650	142	35,9	1,4	2,6	5,3	0,6	55,6	25	7,7	1,6	65	3	0,19	20,5	1,7	30
VNR-201	77	78	Granitoid	680	167	36,1	1,5	2,8	4,6	0,6	28,2	36	7,7	2	64,8	2,7	0,18	22,9	2	56
VNR-201	78	79	Granitoid	600	166	38,1	1,4	2,9	4,9	0,5	37,5	29	6,7	2,2	54,8	2,1	0,24	16,75	2,1	24
VNR-201	79	80	Granitoid	720	184	39,2	1,4	3,4	5,5	0,5	76,6	29	7,1	2,4	61,1	2,4	0,25	19,05	2,2	53
VNR-201	80	81	Granitoid	720	177	37,2	1,4	3,7	4,3	0,7	81,5	32	8,8	2,2	65,2	2,5	0,34	22	2,2	30
VNR-201	81	82	Granitoid	610	93,5	32,7	1,2	3	3,6	0,4	265	34	5,5	2,4	55,4	2,3	0,3	9,99	1,7	58
VNR-201	82	82.2	Granitoid	790	173	37.2	1.4	3.5	6.3	0.6	56.6	16	6.7	2.3	70.5	3	0.33	20.9	2.3	29
VNR-201	83.3	84	Granitoid	720	137	31.6	1.2	3.2	49	0.5	69.7	15	6.5	2.8	63.3	23	0.36	15 55	_,= 2	51
VNR 201	03,5 04	04	Granitoid	500	110	22 E	1 2	3,2	4,5	0,5	110 E	16	4.0	2,0	E0 2	2,5	0,50	15,55	21	20
VNR-201	04	00	Granitolu	590	119	33,3 22 7	1,2	- 4	4,0	0,4	110,5	10	4,9	2,7	59,2	2,5	0,55	15	2,1	20
VNR-201	85	80	Granitoid	680	140	33,7	1,3	3,9	4,3	0,5	147,5	1/	5,8	2,7	68,1	2,3	0,37	15,7	2	52
VNR-201	86	87	Granitoid	680	146	33,6	1,2	3,4	4,9	0,5	133	18	5,8	5	62,9	2,6	0,3	18,15	2	29
VNR-201	87	88	Granitoid	590	166	34,9	1,2	3,7	5,3	0,5	150	33	5,6	3	53,5	1,9	0,3	16,35	2,3	47
VNR-201	88	89	Altered granitoid	450	144	25,4	0,9	4,4	5,4	0,4	261	33	5	3,3	46,8	2,1	0,42	16,8	2,6	31
VNR-201	89	90	Altered granitoid	420	143	17,8	0,6	4,2	8,3	0,4	496	37	4,9	3	41,4	2	0,42	19,6	2,9	53
VNR-201	90	90,65	Altered granitoid	490	164	21,1	0,7	4,8	7,3	1,4	270	28	6	2,5	48,4	2,1	0,63	17,15	2,9	26
VNR-201	90,65	91	Carbonate vein	90	49,6	3,4	0,1	0,7	19,7	0,1	1200	13400	25,4	1,1	12,9	0,5	0,07	6,31	2,6	41
VNR-201	91	92	Altered granitoid	420	178	24,2	0,9	4,7	7,4	0,6	107,5	1300	6,4	3,4	48,9	2,6	0,53	29,2	4,2	27
VNR-201	92	93	Altered granitoid	420	179	24.7	0.8	5.7	8.5	1.2	120	49	6.1	3.4	53.1	2.6	0.84	25.4	4.3	48
VNR-201	93	94	Altered granitoid	380	140	24.4	0.9	49	93	23	136 5	51	74	3	45.7	2 1	0.8	19.1	3.9	27
VNR-201	93	94 /15	Altered granitoid	330	120	24,4	0,5	-,J 5 1	7.6	1 3	345	22	/,-	32	40.0	2,1	0.62	10 1	3,5	25
VNR-201	54 04 45	54,45	Altereu granitolu	220	20.0	24,5	0,8	3,1	11.2	1,5	545	25	4,5	3,2	40,9	2,5	0,02	7.0	3,5	25
VNR-201	94,45	94,7	Carbonate vein	220	30,8	4,2	0,1	1	11,2	0,2	600	697	2,5	1,9	31,9	0,4	0,09	7,8	2	46
VNR-201	94,7	95	Altered granitoid	270	143	15,3	0,5	3,5	6	0,4	351	329	5,1	3	33,3	1,5	0,37	15,7	3,2	2/
VNR-201	95	96	Altered granitoid	400	158	23,9	0,8	4,3	6,5	0,5	171,5	34	4,7	3,2	49,1	2,3	0,47	24,5	4	53
VNR-201	96	97	Altered granitoid	440	145	17,7	0,6	3,5	6,4	0,5	371	27	4	3,2	45,5	1,6	0,3	16,6	3,5	26
Drill core VN	IR-301:																			
VNR-301	4,5	6	Carbonate vein breccia	280	37,6	12,7	0,4	1,4	7,6	0,4	759	2770	41,2	1,6	31	0,8	0,15	2,88	1,4	2
VNR-301	6	7	Quartz vein breccia	220	35	14	0,5	2	5,1	0,5	955	8820	20,2	2,4	23,5	1,1	0,28	3,26	1,5	5
VNR-301	7	8	Carbonate vein	290	38	9,7	0,3	1,1	11,4	0,3	1095	4870	19,9	1,7	26,9	0,7	0,1	2,9	1,2	1
VNR-301	8	9	Quartz vein breccia	170	12,7	8,1	0,2	1	3,8	0,8	8840	17050	18	3,4	16	0,7	0,1	1,55	1,3	4
VNR-301	9	10	Quartz vein breccia	30	7	6	0.2	1	1.3	0.4	2520	214	3.9	3.8	2.6	0.5	0.1	2.15	1.3	9
VNR-301	10	11	Quartz vein breccia	530	28.7	18.2	0.6	15	5.8	0.4	1200	580	12.9	3.2	55	-,-	0.17	5 25	1.8	5
VNR 201	11	12	Quartz voin broccia	200	20,7	10,2	0,0	2,5	3,0	0,4	207	500	12,5 E E	3,2	40	1 2	0,17	1 96	2,0	5
VNR-301	11	12		360	20,5	10	0,8	2,1	2,2	0,5	257	33	5,5	4	40	1,5	0,21	4,60	2,5	-
VNR-301	12	13	Quartz vein breccia	340	37,6	24,6	1	2,7	2,4	0,4	563	209	6,2	4,5	47,8	1,8	0,27	8,16	3,3	/
VNR-301	13	14	Quartz vein breccia	390	30,4	17,6	0,7	1,9	1,6	0,3	443	38	1,5	4	46,2	1,7	0,17	12,95	2,9	7
VNR-301	14	15	Diabase breccia	340	33,8	12	0,5	3,6	4,1	0,4	3370	128	4,8	19,2	46,9	2,6	0,21	19,9	14,4	51
VNR-301	15	16	Diabase	600	81,1	18,1	0,8	4,1	7,2	0,4	2420	93	2,9	20,9	65,7	3,2	0,26	37,5	16,6	63
VNR-301	16	17	Diabase	440	184	22	1	5,5	11,2	0,6	1350	100	3,7	28,1	46,9	4,1	0,31	44,3	23	76
VNR-301	17	18	Diabase	340	113	22,3	1,1	5,6	8,5	0,5	1465	131	2,1	28,1	30,7	3,9	0,32	26,1	22,2	79
VNR-301	18	19	Diabase	590	73,8	23,6	1,3	5,4	8,1	0,5	569	108	2	26,8	52,2	3,8	0,3	43,3	22,6	79
VNR-301	19	20	Diabase	590	42,3	25,9	1,3	5,1	4,9	0,4	2580	136	3,2	26	71,7	3,8	0,3	11,1	19,1	80
VNR-301	20	21	Diabase	420	43.2	21,6	0,7	3,9	6,5	0,4	2440	15750	26,2	21,3	51,7	3,1	0,22	20,5	17,3	61
VNR-301	21	22	Diabase	530	, 33.4	23.2	0.8	4.2	7.4	0.4	6580	105	1.6	22.1	70.5	3.1	0.24	49.3	19.3	67
VNR-301	22	23	Diabase	650	76 1	26.4	-,0	6	82	0.6	492	118	2 4	30.1	59.2	Δ1	0 37	45	25.6	83
VNR-301	23	24	Diabase	700	1/10	26 1	1	50	10 0	0.6	6/5	11/	2.2	31 7	54 1	30	0.24	45	28,0	83
VNP_201	20	25	Diabase breccia	1110	26 0	20,1	1 7	10	10,5	0,0	1515	114	15 0	27.2 27.2	120	27	0,04	-0,5 21 C	20,4	80 00
VIND 201	24	25		1110	10.0	24,0 17.0	1,2	4,0	7,5	0,0	2220	209	13,8	27,2	122	5,/ 1 7	0,29	24,0	20,8	20
VINK-3U1	20	20	Dignase preccia	200	18,Z	т7,9	υ,8	∠,⊥	0,9	0,5	2770	2690	13,5	13,4	80	1,/	0,13	9,94	٥,٥	39

	From	То																		
HOLFID	depth (m)	depth (m)	Lithology	Ba	Sr	Zr	Hf	Nb	Y	U	Cu	Zn	Pb	Ni	Rb	Th	Та	Ce	Sc	Cr
VNR-301	26	27	Diabase breccia	920	41.1	27.9	0.9	4.8	73	0.5	535	102	3	27	96.7	3.6	0.28	50	19.8	74
VNR-301	20	28	Diabase	440	60.6	26.1	0.8	4,0	63	0,5	1040	89	2	24	48.2	3,0	0,20	31.6	18.9	70
VNR-301	28	29	Diabase	480	71 4	20,1	0,0	53	7.6	0,5	1125	94	27	26.5	39.4	3.4	0,20	42.8	21.2	81
VNR-301	29	30	Diabase	730	64	24.3	1	5 5	12 3	0.7	1335	111	2,,, 7 5	26.5	88.7	4	0.33	68.4	24.4	78
VNR-301	30	31	Diabase	150	88.5	18.6	0.7	4.9	8.3	0.5	282	3350	7.5	24.1	18.6	3.5	0.27	34.6	19.7	69
VNR-301	31	32	Diabase	140	68.5	24.1	0.9	4.2	7.1	0.5	1505	725	4.6	21.6	17.9	3.2	0.25	32.3	17.1	62
VNR-301	32	33	Diabase breccia	350	19.2	17	0.6	2.8	5.4	0.3	1390	9500	4.4	15	50.3	2	0.16	23.6	9.7	40
VNR-301	33	34	Granitoid breccia	410	73	18.8	0.7	2.6	3.8	0.6	171.5	50	3.4	5.9	34.9	1.7	0.25	17.35	4.1	18
VNR-301	34	35	Granitoid breccia	400	114	24.7	-,.	3.1	5	0.6	443	29	2.5	3.4	48.2	2.2	0.36	25.1	3	8
VNR-301	35	36	Granitoid breccia	390	131	24.2	1	2.7	10.5	0.6	349	129	2.9	2.9	49.5	2.1	0.32	30.1	3.1	7
VNR-301	36	37	Altered granitoid	590	162	27.7	1.1	5.6	10.2	0.7	56.5	21	4.4	4.3	82.3	, 1.7	0.53	23.3	2.8	10
VNR-301	37	38	Altered granitoid	400	169	32.3	, 1.3	3.9	5.2	0.8	313	913	5.1	3.8	60.8	2.4	0.42	25.5	2.8	8
VNR-301	38	39	Altered granitoid	950	84.7	19.3	1	1.4	3.3	0.5	204	12	3.7	1.4	86.9	0.8	0.15	8.19	1.3	6
VNR-301	39	40	Altered granitoid	390	129	32.8	1.3	4.1	4.6	1.6	156.5	220	3.3	3.5	61.4	1.7	0.61	12.75	2.6	8
VNR-301	40	41	Altered granitoid	390	170	36.5	1.5	3.8	4.6	3.8	70.9	27	4.9	3.6	52.8	1.5	0.53	13.05	2.4	8
VNR-301	41	42	Altered granitoid	340	146	29,9	1,2	3,7	3,8	0,5	76,3	27	3,6	3,9	46,7	1,4	0,4	13,75	2,6	8
VNR-301	42	43	Altered granitoid	590	161	22,4	0,9	3	3,5	0,5	70,9	31	4,2	3,1	51,1	1,7	0,29	14,6	2	7
VNR-301	43	44	Altered granitoid	340	173	26,1	1,1	3,5	5	0,8	208	30	3,5	3,5	43	2,4	0,42	30,9	2,7	8
VNR-301	44	45	Altered granitoid	420	200	30,2	, 1,3	3,4	4,8	0,8	54,2	31	4,1	3,8	48,3	2,5	0,41	25,2	2,6	10
VNR-301	45	46	Altered granitoid	480	163	29,5	1,2	3,1	4,1	0,6	153,5	27	4,3	4	51	2,4	0,41	17,45	2,4	10
VNR-301	46	47	Altered granitoid	530	188	30.8	, 1.3	3.2	4.2	0.6	303	104	4.9	3.8	57.3	2.1	0.38	20.8	2.5	8
VNR-301	47	48	Altered granitoid	510	142	30.5	0.9	3	4.1	0.5	199	22	4.2	4.1	60.3	2.1	0.34	19.75	2.6	8
VNR-301	48	49	Altered granitoid	670	190	34	1.1	3.2	5	0.6	126	25	3.9	4.1	59.9	2.4	0.38	21.8	2.6	9
VNR-301	49	50	Granitoid	740	192	36.1	1.2	3.7	5.4	0.6	161	34	4.7	3.9	61.6	2.2	0.46	22.3	2.8	8
VNR-301	50	51	Granitoid	800	193	36.7	1.2	3.6	5.2	0.5	17.1	35	4.7	3.9	61.8	1.9	0.45	19.4	2.9	8
VNR-301	51	52	Granitoid	430	101	24.6	0.8	2.6	3.3	0.4	732	22	3.1	3.6	52.9	1.4	0.29	13.55	2.4	11
VNR-301	52	53	Granitoid	910	177	34.1	-,-	3.2	4.4	0.5	50.7	27	4.4	3.8	64.8	2.1	0.39	22.8	2.6	9
VNR-301	53	54	Granitoid	800	230	38.6	1.2	3.2	4.8	0.6	7.2	44	6	4.4	63.9	_/_	0.38	20.9	2.8	9
VNR-301	54	55	Granitoid	680	207	36	1.2	2.9	4.4	0.7	43.4	39	5.1	4.1	54.8	2.1	0.34	21.9	2.7	10
VNR-301	55	56	Granitoid	590	206	32.1	-,-	2.8	4	0.7	55.9	36	4.4	3.9	46.2	2.2	0.31	21.2	2.6	10
VNR-301	61	62	Granitoid	740	192	36.6	1.1	3.9	5	0.6	48.4	36	5.2	18	61.4	2.1	0.41	21.9	3.6	36
VNR-301	62	63	Granitoid	700	151	39,4	, 1,1	3,5	7,3	0,5	102	38	5,5	13,8	49,8	, 1,4	0,41	15,85	3,2	25
VNR-301	63	64	Granitoid	590	160	51.5	, 1.7	3.7	3.9	0.5	76.9	27	4.3	8.7	53.2	, 1	0.37	10.8	3.2	18
VNR-301	64	65	Quartz vein breccia	960	148	32.3	1	3.8	5.7	0.3	104	3460	5	6.6	72.5	1.9	0.36	18.35	3	12
VNR-301	65	66	Granitoid	800	170	35	1.1	4.1	5.5	0.4	18.1	30	5.3	5.1	68.5	1.8	0.37	17.95	3.1	9
VNR-301	66	67	Granitoid	750	209	40.5	, 1.2	4	5.7	0.5	47.1	30	5.2	6.9	55.1	1.8	0.35	17.9	3.3	9
VNR-301	67	68	Granitoid	670	205	40.9	1.2	4	5.7	0.6	59.8	51	-,-	13.3	49.9	2	0.39	19.35	3.6	22
VNR-301	68	69	Granitoid	780	167	28.1	0.9	3	4.6	0.7	81.8	22	5.5	3.6	64.3	2.4	0.23	23.7	2.7	7
VNR-301	69	70	Granitoid	510	115	28.6	0.9	3.2	6.7	0.3	129	26	4.6	4.3	43.1	1.8	0.32	27.3	2.6	8
VNR-301	70	71	Granitoid	480	176	39.2	1.2	4	4.9	0.6	54.6	53	4.6	5.9	44.2	1.8	0.35	17.05	3.5	8
VNR-301	71	72	Granitoid	400	128	29.4	-,-	2.9	4.8	0.5	119.5	24	2.9	4	42.2	1.9	0.31	19.2	2.3	7
VNR-301	72	73	Granitoid	540	171	32.7	1	33	55	03	290	209	49	43	38.2	1.6	03	18.3	2,3	9
VNR-301	73	74	Granitoid	600	130	35	11	4.2	47	0.4	146	298	.,5	53	64 5	2,0	0.4	17 55	2.9	9
VNR-301	74	75	Granitoid	760	183	42.6	13	5.2	67	0.7	24.8	31	51	5.4	60.8	27	0.57	26.5	3.6	9
VNR-301	75	76	Granitoid	670	198	39.2	1.2	4 5	5.8	0.6	2 .,0	26	5	49	62.9	2.6	0.5	26,3	3 1	9
VNR-301	76	77	Granitoid	490	185	32 3	1	43	5.8	0,0	179	34	47	4.6	37 3	14	0.44	16 55	3,1	6
VNR-301	70	78	Altered granitoid	430 540	103	32,5	1	32	44	0,5	123 5	21	3.4	4,0	66.6	2,4	0,44	10,55	23	7
VNR-301	78	79	Altered granitoid	660	110	27.8	0.8	3,2	43	0.4	462	128	53	43	54.9	17	0.28	12 5	2,5	ý
VNR-301	79	80	Altered granitoid	470	157	39.7	1 2	4	4.8	0,4	27	20	3,5	4,5	58.7	23	0,20	21.6	2,5	9
VNR-301	80	81	Quartz vein breccia	430	99.4	18.9	0.8	24	43	0.4	38.3	15	47	2.6	76.3	2,5	0.17	10 55	1.8	7
VNR-301	81	82	Altered granitoid	550	229	30	0,0	4 1	5.2	0,4	76.9	40	5.4	2,0	50.6	22	0.41	24.7	3.2	, 10
VNR-301	82	83	Altered granitoid	660	197	28.1	0.9	4.6	5.4	0,0	36.8	35	47	51	70.3	2,2	0.45	24,7	3,2	8
VNR-301	83	84	Granitoid	680	179	28.2	0,9	35	5.4	0.4	333	73	55	4.8	48.1	17	0,45	14 15	3.4	8
VNR-301	84	85	Granitoid	460	155	35.2	1 2	4.4	67	3.4	232	22	47	4,0	58.1	23	0.58	23.1	3.6	7
VNR-301	85	86	Granitoid	630	175	29.4	0.9	4.2	9.7	0.6	207	30	65	5.2	62.5	2,5	0.37	87.4	3.8	9
VNR-301	86	87	Granitoid	700	224	29.6	0.9	3.8	5	0.5	129 5	35	5.6	5.9	52.7	2,0	0.32	25.7	4	10
VNR-301	87	88	Granitoid	530	219	31	0.9	3.9	78	0.6	107 5	31	4.8	5,5	53.6	2 1	0.28	51 3	43	-0
VNR-301	88	89	Granitoid	550	221	30.4	0.9	37	4.8	0.5	103	36	47	5.8	49 1	1.8	0.31	18 15	4 3	8
VNR-301	89	90	Granitoid	570	263	33.4	1	3.9	65	1 1	13.2	43	73	11.8	50.3	23	0.43	24.4	3.8	q
VNR-301	90	91	Granitoid	590	205	35.2	12	4 1	6	0.6	46.6		5 1	5.6	52.8	2,5	0,45	24,4 21 Q	4.4	8
VNR-301	91	92	Granitoid	550	184	36.3	1 2	-, <u>-</u> 4	54	0.7	40,0 60 1	19	43	5.8	69 69	24	0.37	26.9	4.2	11
VNR-301	02	03	Altered granitoid	480	122	36.6	1 2	12	5,4	0,7	50.7	25	2,5	5,0	73 5	2,7	0.42	18.85	3.2	0
VNR_201	93	94	Altered granitoid	400	100	30,0 37 9	12	,∠ 1 2	5,5	0,0	20,7 20 0	25	2,/ 1 /	5,5	78 C	2,5 7 /	0,42	-0,05	3,2	0 10
VNR-301	95	94 0E	Altered granitoid	650	171	37,0 41 E	1,5	4,0	5,4	0,0	25,5	20	4,4	5,1	70,2	2,4	0,35	10.6	5,4 2.4	10
VNR-201	95	96	Altered granitoid	630	127	32 8	1,4 1	ч,о л	,∠ ∧7	0,0	40,4 26 0	24	4 1 Q	5,2	, 1,4 62 2	2,5	0,40	19,0 21 1	3,4	5
VNP_201	95	90	Altered granitoid	200	100	32,0 ≬∩ ว	1 /	4 1 2	+,/ 67	0,5	20,7	24 71	+,0 20	5,4	52,2	∠,⊃ ว⊃	0,57	21,1 17 7	3,1	5
VINE 201	30 07	20 21	Altered granitoid	39U 570	100	40,3	1,4	4,5 E 1	0,/ 6 7	0,5	262	/1	2,9 A.C	5,9 E 4	55 60 1	2,3 2,6	0,42	11,2	3,4 37	11
VNP-201	98	90 QQ	Granitoid	570	130 251	01 A	1 C	э,1 л 1	0,2 7 0	0,0 A 0	505 71 0	49	4,0 5 0	3,4 1 °	50,1	∠,0 วา	0,40	22,0	3,/	-
VNP-201		33 100	Granitoid	650	120	-+++,4 5.2 2	1,5 17	4,1 Л Э	7,5 7 /	0,0	/⊥,∠ 129 ⊑	40	э,9 л с	4,0 1 0	22	2,2	0,39	23,1	3,5 2 7	/ 7
VNR. 201	33 100	101	Granitoid	100	150	30.0	1,/	4,5 1/2	7,4 57	11	120,3	20	4,0 1	4,9	62.2	5,⊥ 2 ⊆	0,4	24,9 10.0	2,∠ 20	/ 0
VNR. 201	100	101	Quartz vein	400	104 70.1	25,0 26 1	1,4 1 /	4,2	5,1 E 0	1,1	21.2	- 22	4 7 2	4,5	03,2	∠,¤ 2 °	0,47	17.9E	2,9	0 7
VNR. 201	101	102	Quartz vein	020	79,1 01 E	20,1	1,4 1 C	0,5 2 4	2,3 6 1	0,5	31,∠ 122 ⊑	10	7,3 6 E	1 4	92,0 00.2	2,0 1 1	0,025	17,80 21.0	1,1 2 2	/ E
VINE 201	102	104	Graniteid	3/0	30.2	54,5 101	1,0	∠,4 л 1	0,1	0,0	120,5	20	0,5 A C	1,D	3U,3 EA 0	4,⊥ ⊃ 1	0,11	21,8	2,2	5
VNP-201	103	104	Granitoid	420	104	42,1 25.2	1,5 1 /	4,1 //	0 E	0,7	12U 91 0	29	4,0 5,0	4,/ 1 0	54,9 67 0	5,⊥ 1 0	0,41	24,0 15 25	3,1 2	/ 7
VNR. 201	104	105	Granitoid	33U 720	720	35,2	1,4 1 E	4,4 1	5 5 7	0,0	01,2 50 /	CC AC	5,2 6 7	4,5	62 6	1,9 2 2	0,54	19,20	3 70	/ 0
VINC-DUL	103	100	Granicolu	720	220	30,5	т,Э	4,1	5,2	0,7	50,4	30	0,2	4,4	05,0	2,2	0,44	10,40	2,0	Э

	From	То																		
	depth (m)	depth (m)	Lithology	Ba	Sr	7r	ыf	Nb	v		Cu	Zn	Ph	Ni	Ph	Th	Тэ	Ce	Sc	Cr
HOLEID	(11)	(11)	Lithology	Dd	31	21			1	0	Cu	20	P0		RU	10	I d	Ce	30	Cr
VNR-301	106	107	Granitoid	640	191	39,5	1,4	5,1	7,6	2,9	/6,2	22	5,7	3,6	70,8	2,8	0,96	21	3,2	6
VNR-301	107	108	Granitoid	700	173	38,3	1,4	4,2	6	4,1	68,7	22	5,8	3,5	70,1	2,2	0,65	17,65	2,8	7
VNR-301	108	109	Granitoid	480	216	28,1	1	4	5,1	0,5	213	31	4,6	4	50	2,6	0,39	21,9	3	7
VNR-301	109	110	Granitoid	390	138	24,2	0,9	3,1	5,3	0,4	360	22	2,5	3,2	40,3	2,4	0,28	15,5	2,4	5
VNR-301	110	111	Altered granitoid	360	168	22,8	0,8	3,4	5,9	0,3	724	70	3	3,6	30,7	1,7	0,33	15,05	2,3	5
VNR-301	111	112	Altered granitoid	390	171	24,5	0,9	3,6	6,1	0,4	440	28	3	3,7	37,1	1,9	0,34	18,15	2,6	6
VNR-301	112	113	Altered granitoid	450	131	19,8	0,8	2,9	18,1	0,8	743	108	3	3,4	54,8	2,2	0,33	42,3	2,9	4
VNR-301	113	114	Altered granitoid	480	192	33,9	1,2	4,8	7,1	2,4	6,7	34	4,7	4,4	61,7	2,6	0,75	21,9	3	6
VNR-301	114	115	Granitoid	470	230	24,2	0,9	3,8	5,3	0,5	18,5	40	4,9	4,5	54,6	2,7	0,34	31,8	3,1	7
VNR-301	115	116	Granitoid	420	235	29	1	4,3	5,6	0,7	7,9	56	4,8	5	54,2	2,6	0,41	22,7	3,3	8
VNR-301	116	117	Granitoid	410	176	38,5	1,3	5,2	6	1,3	9,4	42	5	4,3	54,2	1,9	0,68	15,3	3,1	7
VNR-301	117	118	Granitoid	500	252	36,9	1,3	4,9	6,2	0,9	9,4	55	6,7	4,9	61,1	2,9	0,5	26,6	3,5	8
VNR-301	118	119	Granitoid	650	247	36,8	1,3	4,3	5,3	0,7	11,3	48	5,8	4,7	66,4	2,5	0,44	23,9	3,2	9
VNR-301	119	120	Granitoid	470	204	32,5	1,1	4,4	5,3	0,6	38	53	6,3	3,8	54,2	1,9	0,4	20,3	3,6	9
VNR-301	120	121	Granitoid	400	191	28,1	1	4,7	6,3	0,6	30,2	42	5,5	3,3	47,6	2,2	0,48	26	3,8	7
VNR-301	121	122	Granitoid	400	173	20,9	0,8	4,6	5,6	0,4	37,5	37	4,4	3,5	48,9	1,9	0,4	21,6	3,8	8
VNR-301	122	123	Granitoid	340	186	30,4	1	4,2	7,7	0,5	129	46	5,1	3,1	37,7	1,5	0,41	41,6	3,5	7
VNR-301	123	124	Granitoid	670	189	19,4	0,8	3,4	4,9	0,3	17,4	33	5,9	2,6	61,5	1,4	0,3	18,8	2,9	6
VNR-301	124	125	Granitoid	560	159	20,2	0,8	3,8	5,3	0,8	25,5	31	4,6	2,5	55,9	1,6	0,44	17,55	3,1	5
VNR-301	125	126	Granitoid	370	150	11	0,4	4,2	5,6	0,3	34,3	37	4,9	3,2	46,7	1,9	0,38	26,7	3,5	7
VNR-301	126	127	Altered granitoid	270	70,5	11,4	0,4	2,8	7	0,3	230	18	2,2	2,7	36,6	1,4	0,24	19,15	2,9	4
VNR-301	127	128	Altered granitoid	410	115	17,6	0,6	3,8	5,1	0,4	83,8	25	5	3,4	45,2	1,8	0,35	23,4	3,3	8
VNR-301	128	129	Altered granitoid	450	198	13	0,5	3,9	5,7	0,3	66,4	30	4,6	4,5	48,2	2,1	0,32	27,2	3,6	9
VNR-301	129	130	Altered granitoid	390	227	12,7	0,5	4,5	5,5	0,3	26,1	49	5,8	4,3	45,1	1,8	0,37	24,7	3,7	8
VNR-301	130	131	Granitoid	570	185	13.7	0.5	3.8	5.6	0.4	6.7	31	5.6	4.1	53.2	1.8	0.31	24.9	3.4	8
VNR-301	131	132	Granitoid	460	207	25.3	0.9	4.5	6.1	0.6	6.1	52	6.2	5	48	2.2	0.39	27.8	3.7	10
VNR-301	132	133	Granitoid	530	177	19.7	0.8	4	5.8	0.5	5	36	4.8	3.9	54.1	1.9	0.37	22.8	3.6	
VNR-301	133	134	Granitoid	420	193	16.7	0.7	4.3	6	0.8	2.6	39	5.8	4.1	49.6	2.3	0.41	25.7	3.5	8
VNR-301	134	135	Granitoid	420	174	12.2	0.5	3.8	5.3	0.8	13.1	29	4.5	3.9	45.3	2.1	0.4	25.4	3.3	8
VNR-301	135	136	Granitoid	350	185	18	0.7	4 2	6	0.6	67	33	4.6	47	44.8	2 1	0.43	24.4	3.6	10
VNR-301	136	137	Granitoid	370	183	17.9	0.7	33	56	0.5	55.4	29	47	.,,	46.1	1.8	0.29	20.8	3	
VNR-301	137	138	Granitoid	400	95.8	14.9	0,7	2.8	4 5	0.4	1030	25	-,, 2 4	39	43,1	1.5	0.28	15 35	29	7
VNR-301	128	130	Altered granitoid	380	177	15.8	0,0	2,0	4,5	0,4	51.2	20	2,4	3,5	43,1	1.2	0.28	12.1	2,5	, 9
VNR-301	130	140	Altered granitoid	480	192	15,0	0,0	2,5	4,4 5.4	0,5	17.6	27	13	2 1	51.2	17	0,20	10.25	2,5	7
VNR-301	140	140	Altered granitoid	320	73 /	16.3	0,0	3,7	3,4	0,5	665	52	31	10	33.4	1.1	0.34	12 75	26	,
VNR-301	140	141	Altered granitoid	220	73,4	21.1	0,0	2,4	4.2	0,5	409	25	3,1	4,5	35,4 AE 2	1,4	0,34	0.22	2,0	4
VNR-301	141	142	Altered granitoid	350	71,7	15.0	0,8	3,4 2.2	4,2	0,0	450	25	2,7	3,0	43,5	2.1	0,55	5,25	2,5	45
VNR-301	142	145	Altered granitoid	340	71,0	13,0	0,0	2,2	26	0,0	92,1	10	3,2	3,2	47	2,1	0,5	10,2	2,7	5
VINR-301	145	144	Altered granitoid	540	64,5	14,4	0,6	3,2	3,0	0,4	69,7	10	2	2,0	44,2	1,6	0,51	0,07	2,5	55
VNR-301	144	145	Altered granitoid	400	114	11,6	0,5	2,3	4	0,3	51,8	20	2,7	2,1	45,7	1	0,19	9,28	2,2	5
VNR-301	145	146	Altered granitold	320	194	18,3	0,7	4,1	6,7	0,4	93,8	33	5,3	3,4	40,1	1,5	0,37	17,7	3,5	39
VNR-301	146	147	Granitoid	400	182	15,7	0,6	3,3	5,5	0,8	34,1	31	6,1	2,6	42,4	1,5	0,33	1/	2,7	/
VNR-301	147	148	Granitoid	410	152	19,8	0,8	3,7	5,1	0,6	52	21	4,6	3	46,8	1,6	0,35	21	3,1	40
VNR-301	148	149	Granitoid	400	146	25,7	0,8	5	6,8	0,6	9,2	27	4,2	3,8	53,3	2,2	0,49	27,5	4	5
VNR-301	149	150	Granitoid	460	174	17,8	0,7	3,6	4,5	0,6	22,3	25	4,8	2,6	53,8	1,1	0,33	13,25	3	39
VNR-301	150	151	Granitoid	590	155	13,3	0,5	2,6	3,4	0,5	20,5	20	4,8	2	55,3	1	0,23	12,9	2,2	5
VNR-301	151	152	Granitoid	370	195	20,1	0,7	4,8	6,6	0,6	21,3	39	4,5	3,6	44,5	2,2	0,45	24,7	3,8	36
VNR-301	152	153	Granitoid	380	150	18,6	0,7	4,8	6,7	0,4	133,5	24	3	3,6	37,2	2,3	0,45	26,7	3,9	6
VNR-301	153	154	Granitoid	350	149	18,9	0,7	4,3	7	0,4	67,6	23	2,8	3,1	29,7	2,2	0,42	27,1	3,5	33
VNR-301	154	155	Granitoid	370	138	18,3	0,8	3,4	5,3	0,6	148	19	2,8	2,3	29,8	1,7	0,43	18,75	2,7	6
VNR-301	155	156	Granitoid	370	134	21	0,7	4,2	6,9	0,8	260	26	3,3	3,6	37,3	2,1	0,52	22,5	3,1	41
VNR-301	156	157	Granitoid	460	179	22,8	0,8	4,8	7,5	0,8	76,2	24	4	3,6	37	2,2	0,57	23,5	3,5	7
VNR-301	157	158	Granitoid	390	157	18,2	0,6	4,2	7	0,7	40,9	23	3,1	4	27,8	2,3	0,46	25	3,4	51
VNR-301	158	159	Diabase breccia	180	182	8,3	0,3	5	13,9	0,6	74,8	89	3,4	22,9	28,7	3,6	0,31	38,5	20	61
VNR-301	159	160	Diabase	180	290	17	0,6	6,5	17	0,7	137	103	4,7	30,3	13,1	3,8	0,39	42,3	23,8	82
VNR-301	160	161	Diabase	200	207	21,6	0,7	6,7	15,9	0,7	692	93	2,9	27,3	18,9	4	0,4	38,4	22,4	68
VNR-301	161	162	Diabase	210	282	23,2	0,8	6,9	17,6	0,7	127,5	105	3,9	29,5	14,1	4	0,42	42,1	25,2	74
VNR-301	162	163	Diabase	330	319	21,4	0,7	6,6	17,9	0,7	427	106	4,7	31,6	22,4	4,2	0,4	43	24,3	71
VNR-301	163	164	Diabase	280	254	24	0,7	6,8	15,9	0,7	170,5	109	3,7	32,1	15,3	3,7	0,42	40,2	24,4	75
VNR-301	164	165	Diabase	210	227	23,9	0,8	6,6	16,6	0,7	211	89	3,1	30,3	12,9	3,7	0,4	42,3	23,6	70
VNR-301	165	166	Diabase	150	171	27,5	0,8	7	15,3	0,7	61,6	96	2,4	31	9,2	3,9	0,41	37,4	23,3	74
VNR-301	166	167	Diabase	460	365	24	0,8	6,6	18,8	0,7	29,6	112	5,8	31,9	24,5	4	0,4	44,8	23,9	69
VNR-301	167	168	Diabase	520	313	25,5	0,8	6,7	16,1	0,7	130	119	5,1	29,6	30,8	3,8	0,41	40,5	23,2	72
VNR-301	168	169	Diabase	510	275	24,5	0,7	6,3	20	0,7	229	128	4,6	30,3	37,7	4,3	0,38	44,6	24	66
VNR-301	169	170	Diabase	600	380	24,2	0,8	6,5	17,9	0,7	24,4	126	6,9	33,3	27,8	3,9	0,4	43,7	24,3	72
VNR-301	170	171	Diabase	600	378	24,2	0,8	6,1	16	0,6	24,8	159	6	30,4	38,1	4,3	0,36	47,6	25,3	71
VNR-301	171	172	Diabase	540	380	29,4	0,9	6,7	19,5	0,7	21,9	143	6,1	30,7	31,2	4,1	0,4	46,1	25,9	72
VNR-301	172	173	Diabase	480	198	26,3	0,8	6,6	22,7	0,8	199	108	3,4	30,5	28,3	3,5	0,4	118	22,5	83
VNR-301	173	174	Diabase	530	322	24,4	0,8	6,1	17,4	0,6	39,5	121	5,3	34,9	28	3,5	0,38	40,5	24,7	78
VNR-301	174	175	Diabase	520	373	24,1	0,8	6,2	17,8	0,7	27,7	138	6,4	35	24,6	3,8	0,39	43,6	23,9	75
VNR-301	175	176	Diabase	560	373	25,3	0,8	6,6	19,5	0,7	111	134	6,3	33,4	30,6	3,8	0,39	45,5	25	70
VNR-301	176	177	Diabase	610	358	26,7	0,8	6,6	18,3	0,7	33,3	106	6,2	33,9	30,8	3,9	0,4	43,8	24,4	74
VNR-301	177	178	Diabase	600	374	27	0,8	6,7	19	0,7	35,7	99	6,7	33,5	30,4	3,9	0,41	44,8	24,1	70
VNR-301	178	179	Diabase	630	289	25,7	0,8	6,6	16	0,7	18,7	95	5,2	32,4	32,8	3,7	0,41	38,3	22,7	76
VNR-301	179	180	Diabase	640	252	24,8	0,8	6,3	20,1	0,7	206	98	4,7	33,9	46,6	4,3	0,39	45,8	24,4	69
VNR-301	180	181	Diabase	580	346	28,1	0,8	6,8	20,3	0,7	223	104	6,1	34,5	35	4,2	0,42	45,9	25	71

	From	То																		
HOLFID	depth (m)	depth (m)	Lithology	Ba	Sr	Zr	Нf	Nb	Y	U	Cu	Zn	Pb	Ni	Rb	Th	Та	Ce	Sc	Cr
VNR-301	181	182	Diabase	680	380	25.7	0.8	6.7	19.7	0.7	35	109	6.9	34	35.6	4.2	0.42	47.2	24.9	72
VNR-301	182	183	Diabase	600	354	29,5	0,9	6,8	20,8	0,7	17,8	109	6,3	33,3	35,4	4,2	0,42	47,4	25,1	72
VNR-301	183	184	Diabase	580	369	29	0,9	6,8	19,3	0,7	31,7	112	7,2	33,5	28,8	3,9	0,42	45,1	24,2	69
VNR-301	184	185	Diabase	610	382	30,4	0,9	6,9	19,6	0,7	42,4	147	6,9	30,4	29	4	0,42	46,7	24,4	69
VNR-301	185	186	Diabase	530	267	31,6	1	6,6	17,2	0,7	31,4	131	5,2	31,9	25,6	3,8	0,41	41,3	24	70
VNR-301	186	187	Diabase	380	141	31,6	1	6,9	13,2	0,7	183,5	116	3,1	27,2	25,7	4,1	0,41	33,1	23,1	74
VNR-301	187	188	Diabase	470	292	26,5	0,9	7	19,8	0,7	425	106	5,2	28,7	29,3	4,2	0,43	51,2	25,8	70
VNR-301	188	189	Diabase	500	344	27,1	0,9	6,8	19,8	0,8	27	115	6,8	30,6	30,9	4,2	0,42	47,6	25,1	72
VNR-301	189	190	Diabase	400	365	25,6	0,8	6,8	20,1	0,8	24,2	126	7,2	29,7	33,3	4,5	0,42	48,9	25,5	68
VNR-301	190	191	Diabase	370	400	17,1	0,6	6,9	20,4	0,7	39,8	120	7,6	29,5	33,6	4,2	0,43	48,9	25,2	66
VNR-301	191	192	Diabase breccia	340	125	7,3	0,3	5	7,9	0,5	4,9	45	2,5	15,7	33,9	2,9	0,35	25	10,4	43
VNR-301	192	193	Granitoid breccia	460	173	13,2	0,5	3,9	5	0,4	4,6	20	4,5	3	19,5	1,9	0,33	21,7	3,3	7
VNR-301	193	194	Altered granitoid	710	168	13,2	0,5	4,2	5,7	0,6	3,7	28	3,4	3,8	41,9	2,3	0,38	25,2	3,8	5
VNR-301	194	195	Altered granitoid	600	227	17	0,6	4,1	5,6	0,5	5,6	23	4,7	2,7	32,7	2,6	0,34	29,5	3,2	7
VNR-301	195	196	Altered granitoid	480	205	14,9	0,6	3,9	5,1	0,4	14,8	30	4,6	2,8	33,5	2,3	0,31	26,6	3,2	7
VNR-301	196	197	Altered granitoid	520	216	16,9	0,6	4,2	5,2	0,4	6	35	5,2	2,7	41,4	2,3	0,33	28,6	3,3	6
VNR-301	197	198	Altered granitoid	590	193	32,7	1,2	3,6	5,2	0,9	6,2	26	5,7	2,3	48,7	1,9	0,34	18,3	2,7	6
VNR-301	198	199	Altered granitoid	630	188	20,8	0,8	3,3	4,3	0,6	51,4	27	6,3	2,3	49,6	1,6	0,29	18,25	2,5	8
VNR-301	199	200	Altered granitoid	450	186	16,9	0,6	4,1	5,2	0,5	15,2	36	6,3	2,8	46,7	2,2	0,36	25,5	3,2	5
VNR-301	200	201	Altered granitoid	350	193	13,4	0,5	4,4	6,1	0,4	79,5	42	5	3	40,3	1,9	0,37	22,9	3,5	6
VNR-301	201	202	Granitoid	420	197	17,9	0,7	4,5	5,9	0,6	97	47	6,9	4,1	49,4	2,4	0,39	26,5	3,7	93
VNR-301	202	203	Granitoid	380	223	15,5	0,6	4,7	5,4	0,4	16,3	50	6,8	3,4	51,1	2,2	0,38	24,4	3,6	6
VNR-301	203	204	Granitoid	380	209	23,7	0,8	4,9	6,8	0,7	4,6	48	6,4	3,9	47,3	3,1	0,48	32,1	3,7	95
VNR-301	204	205	Granitoid	480	206	20,5	0,8	4,7	6,4	0,8	5,9	42	6,7	3,1	46,3	2,7	0,53	29,9	3,4	/
VINK-301	205	206	Granitoid	390	209	15,3	0,6	4,7	5,0	0,6	7,8	49	6,1	3,8	49,7	2,1	0,39	23,1	3,3	92
VINK-501	200	207	Granitoid	400	227	10,0	0,7	4,7	5,7	0,5	24,2 E 4	47	0,2 E 0	3,3	52	2,4	0,41	20,6 20 E	3,4	0 76
VINI-301	207	208	Granicold	400	205	10,0	0,7	4,5	5,6	0,5	5,4	40	5,6	3,5	51	2,0	0,4	20,5	3,7	70
Drill core VN	R-302:																			
VNR-302	10.5	11	Carbonate vein	10	70.6	0.5	0.05	0.05	15.9	0.2	258	46700	9	0.2	1	0.1	0.025	1.45	0.4	6
VNR-302	11	12	Carbonate vein	10	76,7	0,5	0,05	0,1	20,5	0,1	209	47500	11,9	0,1	0,6	0,1	0,025	1,16	0,4	0,5
VNR-302	12	13	Carbonate vein	80	64,3	4,2	0,1	0,8	12,1	0,2	458	29500	13,4	0,7	7,9	0,4	0,07	3,02	0,7	15
VNR-302	13	14	Carbonate vein breccia	330	65,7	10,7	0,3	2,5	5,1	0,4	666	2440	2,8	2,1	28,5	1,3	0,27	9,75	1,8	17
VNR-302	14	15	Carbonate vein breccia	200	50	10	0,3	1,5	9,6	0,4	1090	13600	38,3	2,5	18	0,9	0,11	5,31	1,3	39
VNR-302	15	16	Carbonate vein breccia	370	60,1	16,5	0,6	2,2	5,6	0,3	457	647	13,4	2	33,6	1,2	0,18	7,1	1,5	21
VNR-302	16	17	Carbonate vein breccia	330	49,1	14,7	0,5	1,6	7,2	0,5	573	7970	17	2,1	30,7	1,1	0,14	5,27	1,4	41
VNR-302	17	18	Carbonate vein breccia	350	50,3	13,2	0,4	1,7	5,3	0,7	580	14600	7,1	1,7	33,9	0,8	0,14	4,09	1,2	19
VNR-302	18	19	Carbonate vein	450	60,6	10,1	0,3	1,4	11,3	0,4	692	9230	36,5	1,5	39	0,5	0,09	5,11	1,3	33
VNR-302	19	20	Carbonate vein	420	62,2	8,2	0,3	1,1	26,4	0,4	968	2850	61,8	0,9	37,2	0,3	0,12	10,45	1,3	11
VNR-302	20	21	Carbonate vein breccia	960	64,8	13,8	0,5	1,9	14,3	0,6	343	7640	15,5	1,8	70,2	0,6	0,14	7,5	1,4	49
VNR-302	21	22	Carbonate vein breccia	700	49	14,8	0,5	1,7	10,1	0,6	350	8520	22,7	1,3	63,2	0,5	0,24	3,62	1,5	15
VNR-302	22	23	Carbonate vein breccia	650	43,7	10,8	0,4	1,5	7,3	0,3	794	11500	82,1	1,5	58,5	0,6	0,11	1,35	1,4	38
VNR-302	23	24,6	Carbonate vein	130	37,5	6,9	0,2	0,9	12,7	0,4	801	16100	62	2	14,5	0,5	0,09	2,6	1,1	17
VNR-302	26	27	Quartz vein breccia	90	16,9	6,2	0,2	1	4,9	0,3	4650	13800	53,5	3,5	11	0,4	0,15	1,98	1,2	70
VNR-302	27	28	Diabase breccia	300	15,2	14,6	0,6	3,1	3,4	0,4	1600	3430	10,1	17,7	40,1	2,3	0,18	16,3	10,4	62
VNR-302	28	29	Diabase breccia	250	13,7	11	0,4	2,7	3	0,3	2130	129	3,1	17,1	33,4	2	0,16	14,6	9,4	103
VNR-302	29	30	Diabase breccia	240	22,9	17,7	0,6	4	3,8	0,4	2690	137	5	22,5	33,3	2,9	0,23	23,3	14,2	72
VNR-302	30	31	Diabase breccia	360	17,4	16,1	0,6	3,4	3,5	0,4	3430	85	5,2	19,4	45,6	2,6	0,21	26,8	13,5	109
VNR-302	31	32	Diabase breccia	510	25,7	15,9	0,6	4	4,3	0,5	1980	165	5,7	21,7	59,4	2,9	0,24	22,1	14,3	78
VNR-302	32	33	Diabase breccia	400	48,5	21	0,8	5,2	7,8	0,4	1015	88	2,3	27,6	36,7	3,5	0,32	45,8	18,8	88
VNR-302	33	34	Diabase	340	51,7	19,9	0,9	4,7	11,2	0,4	812	85	2,1	24,4	33	3,3	0,29	25,1	21,4	65
VNR-302	34	35	Diabase	600	33,2	20,2	0,7	5	5,2	0,4	1330	79	2,8	25,8	63	3,3	0,28	32,6	19,1	99
VNR-302	35	36	Diabase	510	24,1	20,3	0,8	4,6	4,4	0,3	2610	83	4,1	23,7	55,5	3,2	0,26	36,9	19,1	82
VINK-302	30 37	39	Diabase	05U EEO	21,4 26 2	1/ 21 4	U,6	3,8 1 0	3,6 4 F	0,3	1005	//	/ 75	21,9	05,1 E0 2	2,b 2 2	0,22	14,1 27 1	10,2 21.2	0- T08
VNR-302	20	20	Diabase	460	20,5	21,4	0,8	4,0	4,5	0,4	2030	91	7,5	27,0	35,2 4E 0	د,د د	0,27	27,1	21,2	100
VNR-302	30	39 40	Diabase	400	54,5	21,4	0,8	4,4	7.6	0,4	1260	94 111	69	25,0	43,9	35	0,23	227	21,4	109
VNR-302	40	40	Diabase	1020	25.1	25	1 1	44	7,0 4	0,5	245	88	5 1	25.4	109.5	29	0,28	14.7	19.7	113
VNR-302	40	42	Diabase	830	26.8	26.9	11	-,- 5 1	41	0.6	1160	102	5,1	29,4	98.4	35	0.29	16.2	22.8	93
VNR-302	42	43	Diabase	1060	23.2	24.1	1 1	49	.,1	0.6	2620	96	19.7	24.7	128	3.4	0.27	27.1	19.2	108
VNR-302	43	44	Diabase	340	23.8	14.5	0.7	3.7	5.5	0.3	4240	93	6.7	20.7	36.1	2.6	0.21	31.1	15.2	72
VNR-302	44	45	Diabase	290	70	19.2	0.7	4.8	6.7	0.5	2370	106	3.1	24.7	23.9	3.2	0.27	28.7	21.6	92
VNR-302	45	46	Diabase	810	91.7	29.9	0.9	5.8	7.5	0.6	727	91	2.2	28	63.1	3.9	0.32	26.6	24.7	87
VNR-302	46	47	Diabase	670	118	29.1	1.2	5.8	11.8	0.7	598	97	1.9	29.7	44.4	4	0.33	39.2	26.6	94
VNR-302	47	48	Diabase	500	140	23,4	, 0,7	5,3	11	, 0,6	3680	182	3,5	26,3	, 36,5	3,6	0,29	55,6	23,8	79
VNR-302	48	49	Diabase	560	199	29,7	1,1	5,9	13,8	0,6	390	116	3,5	28,6	43,6	3,9	0,32	63,1	25,9	92
VNR-302	49	50	Diabase	480	166	36,9	1,7	5,3	18,7	0,6	596	100	8,3	26,1	44,5	3,6	0,3	40,8	23,1	68
VNR-302	50	51	Diabase	280	289	27,7	1	5,7	14,9	0,6	38,9	93	4,2	28,8	18,9	3,8	0,33	50,2	25,9	85
VNR-302	51	52	Diabase	330	141	29,1	1,1	5,2	11,8	0,5	1235	85	2,5	26,2	31,9	3,6	0,3	42,1	23	72
VNR-302	52	53	Diabase	360	308	20	0,7	6	15,4	0,7	101,5	81	7,8	29,1	31,9	4	0,36	51,9	27,1	84
VNR-302	53	54	Granitoid breccia	440	123	24,6	0,9	4	6,9	0,6	869	37	2,6	8,8	50,4	2,2	0,36	22,3	8,2	35
VNR-302	54	55	Granitoid breccia	530	138	33	1,3	4,1	4,5	0,8	135	18	2,9	4,9	63,2	2,4	0,45	17,8	2,9	47
VNR-302	55	56	Granitoid breccia	490	162	31,2	1,2	4,4	6,1	0,6	363	19	3,8	4,4	69	2,4	0,42	18,55	3,4	26
VNR-302	56	57	Granitoid breccia	600	138	32,9	1,2	3,4	8	0,6	291	15	4,7	4,3	88	2,5	0,37	19,75	2,8	47
VNR-302	57	58	Granitoid breccia	520	99,8	32,8	1,2	4	4,6	0,5	134,5	21	4,3	4,9	70,9	2,1	0,45	22,6	3,1	26

	From	То																		
	depth (m)	depth (m)	Lithology	Po	C r	7r	цf	Nb	v		C 11	70	Dh	Ni	Ph	Th	Та	60	Se	Cr
	(III) E 9	E0	Grapitoid broccia	E 90	124	27.6	1.4	110	1 2	0.7	110	117	2.0	1.0	04	2.1	0.45	14.2	2.2	20
VNR-302	50	59	Quartz voin broccia	500	154	37,0 20 0	1,4	4,5	4,5	0,7	215	12000	3,5	4,0	64	2,1	0,43	14,5	3,2 2 1	
VINR-302	59	60	Altered grapiteid	620	142	30,0 24.4	1,4	4,5	3	0,5	215	19900	4,0	4,0	00,8	2,2	0,42	10,0	3,1	20
VNR-302	61	62	Altered granitoid	720	145	34,4	1,4	3,3	4,0	0,7	106	12	5,5	4,5	61 1	2	0,51	10.0	2,0	21
VINR-302	61	62	Altered granitoid	720	1/9	40	1,5	3,0	5,5	0,6	100	45	5,5	4,0	51,1	2,2	0,54	19,9	3,2	40
VNR-302	62	63	Altered granitoid	630	151	33,1	1,3	3,7	4,4	0,6	88,0	29	5,8	4,7	57,9	1,8	0,33	16,3	2,9	49
VNR-302	63	64	Granitoid	450	157	20,7	0,9	3,5	3,8	0,3	86,7	49	5,2	2,9	46,8	1,/	0,26	16,45	2,5	26
VNR-302	64	65	Granitoid	440	156	11	0,5	3,8	4,6	0,3	85,1	59	5,3	2,6	48,8	1,6	0,3	17,3	2,8	53
VNR-302	65	66	Granitoid	390	137	14,6	0,7	4,2	5,8	0,8	153,5	27	4,6	2,8	46	2,3	0,49	20,1	3,2	28
VNR-302	66	67	Granitoid	440	148	15,9	0,8	3,9	5	0,8	165	27	4,4	2,7	46,2	2	0,36	17,8	2,8	52
VNR-302	67	68	Granitoid	670	108	11,3	0,6	2,1	3,4	0,2	167	13	4	1,7	55,3	0,8	0,23	7,36	1,9	24
VNR-302	68	69	Granitoid	540	121	22,8	0,8	3,1	4,8	0,4	218	31	4,5	2,8	55,9	2,1	0,26	16,45	2,3	58
VNR-302	69	70	Granitoid	610	109	28,9	0,9	2,7	3,1	0,5	181,5	18	4,2	2	55,7	2,6	0,21	11,05	1,8	26
VNR-302	70	71	Quartz vein breccia	450	89,3	10,3	0,5	2,3	3,7	0,2	896	7630	4,5	2,1	45,2	1,5	0,18	12,3	1,8	53
VNR-302	71	72	Altered granitoid	400	128	13	0,5	3	3,8	0,4	374	27	3,7	2,3	45,2	1,4	0,27	13,85	2,2	29
VNR-302	72	73	Granitoid	410	155	20,4	0,8	3,3	4,5	0,5	132,5	31	4,2	2,3	47,4	1,5	0,33	14,05	2,3	55
VNR-302	73	74	Granitoid	410	148	13,7	0,5	2,1	3,6	0,2	177,5	28	4,2	1,8	40,5	1,2	0,2	11,9	1,7	33
VNR-302	74	75	Granitoid	610	170	24,4	1	2,9	5,3	0,4	61,5	1920	5,8	2,2	51,1	1,8	0,28	17,8	2,4	61
VNR-302	75	76	Granitoid	510	151	21,8	0,9	3,1	5,9	0,4	231	36	5,1	2,2	51,5	2	0,33	16,75	2,5	27
VNR-302	76	77	Granitoid	430	147	28,2	1,1	4	6,5	1,6	93,1	30	5,7	2,1	48,2	2	0,52	15,8	2,7	50
VNR-302	77	78	Altered granitoid	540	150	23,5	1	3,1	4,1	0,4	211	27	5	2,4	50,9	1,8	0,32	12,7	2,3	29
VNR-302	78	79	Altered granitoid	590	131	25,9	1	3,4	4,6	0,4	120,5	22	4,3	2,6	54,3	1,9	0,31	12,7	2,5	53
VNR-302	79	80	Altered granitoid	700	186	26,8	1,1	3,4	6,1	0,6	101,5	31	6,3	2,4	57,1	2,5	0,36	20,5	2,6	30
VNR-302	80	81	Granitoid	650	182	25,6	1	3,4	10,3	0,9	208	37	6,2	2,3	50,1	1,9	0,38	20,9	3,1	53
VNR-302	81	82	Granitoid	710	181	28,4	1,1	3,3	5	0,6	75,8	39	6,3	2,2	61,7	2,5	0,34	23,7	2,5	29
VNR-302	82	83	Granitoid	720	170	32,8	1,2	2,9	4,6	0,4	141	23	5,4	2,1	58,2	1,4	0,26	13,75	2,3	55
VNR-302	83	84	Altered granitoid	730	94,2	14,5	0,6	3	4,4	0,3	748	31	4,3	2,9	58,9	2	0,27	16,45	2,4	34
VNR-302	84	85	Granitoid	510	201	16.5	0.7	3.8	4.7	0.3	55.8	46	5.7	2.9	46.6	1.9	0.32	22.2	3.2	59
VNR-302	85	86	Granitoid	500	198	10.7	0.4	4	4.6	0.3	30.1	38	5.5	3	48.9	2.2	0.36	28.9	3.4	28
VNR-302	86	87	Granitoid	560	144	11.7	0.5	3.8	6.8	0.3	154	26	4.2	3.6	52.2	2.3	0.35	46.3	3.1	54
VNR-302	87	88	Granitoid	450	162	17 1	0.7	4.2	4 1	03	52.6	36	49	2.9	52.5	17	0.36	20	3.2	27
VNR-302	88	89	Altered granitoid	380	117	16.7	0.7	3.1	5	03	300	23	3.4	2.6	38.9	1.6	0.27	19.4	27	57
VNR-302	89	90	Altered granitoid	320	122	28.6	1	3.6	38	0,5	106	20	3,4	2,0	53.2	1.4	0.33	14.5	2,,	27
VNR-302	90	01	Altered granitoid	680	1/2	16.1	06	3,0	5,0	0,5	78	18	1 1	2,0	83.4	1,4 2 2	0,33	10.2	2,0	51
VNR-302	01	02	Granitoid	570	140	25.2	0,0	3,5	4.5	0,5	122	34	-+,1 5.8	3,1	56.2	17	0,32	16.85	31	20
VNR-302	91	92	Granitoid	970	105	23,5	1.2	24	4,5	0,4	70.2	10	5,6	3,5	70,2	1,7	0,50	10,65	3,1	29
VINR-302	92	95	Granitoid	670	144	27,0	1,5	2,4	5,1	0,5	151 5	10	6,7	2	79,0	1,1	0,25	9,95	1,0	20
VINR-302	95	94	Granitoid	450	100	20,5	0,9	2	5,6	0,5	151,5	20	0,3	3,2	51,2	2,2	0,47	25,8	3,5	50
VNR-302	94	95	Granitoid	650	198	17,2	0,7	4,7	5,7	0,3	18,7	59	6	3,2	60,8	2,1	0,39	28,8	3,5	43
VNR-302	95	96	Granitoid	680	189	26,3	0,9	5,1		0,4	29,2	39	6,3	3	60,6	2,6	0,46	34	4	28
VNR-302	96	97	Granitoid	660	160	28,4	1,1	5,2	7,9	0,9	30,7	29	5,5	3,1	65,6	2,6	0,71	30,6	3,9	47
VNR-302	97	98	Granitoid	770	147	32,9	1,3	2,7	4,4	0,5	13,9	21	6,3	1,8	66,5	0,6	0,32	6,15	2	28
VNR-302	98	99	Granitoid	740	160	28,5	1,1	2,6	4,2	0,8	9,2	26	7,5	1,8	65,4	0,2	0,36	3,27	1,9	56
VNR-302	99	100	Granitoid	700	142	28,4	1,1	2,5	3,8	0,3	18,3	26	6,2	1,9	61,7	0,4	0,21	5,64	2	33
VNR-302	100	101	Altered granitoid	720	143	32,8	1,3	2,3	4,6	0,5	21,8	17	6	1,8	68,4	0,6	0,27	5,55	1,9	53
VNR-302	101	102	Altered granitoid	440	118	25,6	1	3,1	6,1	1,1	426	277	5,4	2,2	45,8	1	0,52	7,84	2,2	29
VNR-302	102	103	Altered granitoid	460	159	41,8	1,5	3	4,4	1	104,5	23	5	1,8	52,1	0,8	0,49	6,35	2,1	52
VNR-302	103	104	Altered granitoid	440	169	34,3	1,4	3,6	5,1	2	45,4	29	6,7	1,7	60,9	1,8	0,69	14,15	2,3	25
VNR-302	104	105	Altered granitoid	420	128	44,1	1,4	3,5	5,8	1,6	53,9	18	3,7	2,2	57,2	1,2	0,59	9,78	2,3	45
VNR-302	105	106	Altered granitoid	610	155	40,8	1,2	3,9	5,9	0,7	38,6	22	4,3	2,6	70,3	1,8	0,34	17,65	3,3	24
VNR-302	106	107	Granitoid	340	175	36,1	1,1	4,5	7,4	0,5	177,5	30	4,6	2,8	43,2	1,9	0,41	21,4	3,7	45
VNR-302	107	108	Granitoid	280	151	37,3	1,1	5,1	7,6	2,3	151,5	31	4,7	3,1	46,9	2,7	0,63	23,1	3,8	27
VNR-302	108	109	Granitoid	400	166	36,4	1,1	5,1	7,1	4,1	90,3	39	6,2	3,2	55,9	2,1	0,68	17,85	3,8	46
VNR-302	109	110	Granitoid	460	160	38,4	1,2	4,8	7,2	2,3	92,6	30	6,1	2,7	53,1	1,9	0,7	17,65	3,6	24
VNR-302	110	111,1	Granitoid	620	166	22,7	0,8	4	6	0,4	43,4	40	6,1	2,7	63	1,6	0,4	18,8	3,3	46
Drill core VN	IR-303:																			
VNR-303	8,4	9	Carbonate vein	90	54,2	16,7	0,5	1,6	12,7	0,5	569	7220	42,2	1,5	7,4	1	0,22	5,31	1,6	1
VNR-303	9	10	Carbonate vein	50	52	6	0,2	0,8	21	0,4	1420	5110	39,3	1,8	5,4	0,4	0,06	11,35	1,3	0,5
VNR-303	10	11	Carbonate vein	20	60	2	0,1	0,4	21,1	0,1	1090	32700	34,8	1,3	2,7	0,1	0,025	3,82	1	0,5
VNR-303	11	12	Carbonate vein	5	81,7	0,5	0,05	0,2	33,5	0,1	704	23600	42,8	0,6	0,5	0,1	0,025	3,09	1,2	0,5
VNR-303	12	13	Carbonate vein breccia	520	48,1	13	0,4	2,4	8,1	0,3	1230	5480	41	2,9	48,4	1,1	0,22	5,96	2,3	4
VNR-303	13	14	Carbonate vein breccia	680	48,9	18,9	0,5	3,3	7,2	0,4	800	500	8,6	3,1	57,3	1,8	0,36	6,67	2,6	8
VNR-303	14	15	Carbonate vein breccia	350	38.3	9.5	0.3	2.1	8.7	0.3	2070	6050	21	3	35.7	1.1	0.18	3.72	2	5
VNR-303	15	16	Carbonate vein	130	63.6	3.2	0.1	0.8	21.2	0.1	776	23200	17	1.6	12.8	0.3	0.06	4.94	1.4	0.5
VNR-303	16	17	Carbonate vein	60	69.6	1.3	0.05	0.5	15.5	0.1	441	30100	18.2	1.1	6.5	0.1	0.025	1.14	0.7	0.5
VNR-303	17	18	Carbonate vein	5	76.8	0.25	0.05	0.2	23.2	0.2	336	31900	19.3	-,-	0.5	0.1	0.025	1.54	0.5	05
VNR-303	18	19 25	Carbonate vein	20	63.9	1 २	0.05	0.3	19.1	0.1	452	21600	13 5	<u>,</u>	23	0.1	0.025	1 56	0.5	05
VNR-202	19.25	20	Carbonate vein breccia	8/10	55,5	17 Q	0,05	16	7 /	0,1	72/	22000	12.2	1 0	68 5	0,1	0,025	2,50	1 2	0,5 A
VNID-202	20	20	Carbonate vein breccia	010	55,5 60 E	1/1 2	0,4	17	1/ 4	0,5	/ 34 EC/	5220	10 5	1,5 2 1	76.2	0,7	0,1	2,41 5.04	1 2	4
VND-202	20	21 22	Carbonate vein Diettia	920	70.7	14,2 15 1	0,4	1,/ 1 C	14,4 27 0	0,5	504 ∧77	11500	10,5	2,1 1/ E	70,3	0,0	0,11	3, 3 4	1.3	4
VINE 202	22	22	Carbonate vein Diettia	500	70,7 E1 F	11 0	0,4	1,0	10 4	0,2	4//	11200	40.0	14,5	11,9 E0 7	0,5	0,11	10,9	1,5	20
VINE 202	22	23 24	Carbonate vein Dreccia	040)1,5 /2 F	17.0	0,5	1,D	19,4 77	0,2	011	9250	49,9	2	20,7	0,4	0,1	9,02	1,4	5
VINK-SUS	25	24	Carbonate vein breccia	300	43,5	11,5	0,5	2,2	1,1	0,4	814	2310	26,4	2,8	33,/	0,9	0,29	2,51	1,5	4
VNR-303	24	25	Carbonate vein breccia	160	38,3	11,6	0,3	1,6	11,3	0,4	640	734	33,7	2,7	15,3	1	0,13	2,76	1,3	3
VNR-303	25	26,3	Carbonate vein	150	61,3	9	0,2	1	35,5	0,3	1080	2240	61,9	2,6	15,3	0,4	0,11	9,95	1,4	0,5
VNR-303	27,3	28	Quartz vein breccia	60	12,8	7,1	0,2	0,9	4,6	0,5	2520	18700	18,2	4,8	7,3	0,4	0,08	2,28	1,2	9
vink-303	28	29	Diabase preccia	240	11,6	13,4	0,3	2	3	0,5	3700	696	10,6	11	36,7	1,2	0,11	7,46	5,3	37

	From	To																		
HOLEID	depth (m)	depth (m)	Lithology	Ва	Sr	Zr	Hf	Nb	Y	U	Cu	Zn	Pb	Ni	Rb	Th	Та	Ce	Sc	Cr
VNR-303	29	30	Diabase breccia	300	10.1	16.7	0.5	3.5	3.7	0.6	431	221	6.4	19.8	45.7	2.5	0.2	14.5	11.3	51
VNR-303	30	31	Diabase breccia	340	15.8	16.8	0.5	4	3.9	0.3	2600	125	5.7	21.7	43.2	2.9	0.23	17.85	16.2	57
VNR-303	31	32	Diabase breccia	410	17.3	20.6	0.5	4	4.8	0.5	1730	93	10.9	21.8	53.1	2.9	0.22	18.1	15.8	58
VNR-303	32	33	Diabase breccia	650	17.2	24.8	0.7	4.7	4.9	0.4	1940	103	8.8	22.5	84.2	3.4	0.27	16.75	18.3	70
VNR-303	33	34	Diabase breccia	670	, 17.7	24.1	0.6	4.9	5.2	0.4	1730	100	9.7	23.3	86.1	3.6	0.26	30.7	20.7	69
VNR-303	34	35	Diabase breccia	540	24	22.1	0.6	3.8	6.3	0.5	1220	8540	8.7	19.9	66.2	2.7	0.2	13.05	13.4	56
VNR-303	35	36	Diabase breccia	390	60.2	26.2	0.7	5.6	7.7	0.5	726	109	4.4	29.4	41.8	3.9	0.3	21.5	19.9	66
VNR-303	36	37	Diabase breccia	380	46.5	26.2	0.7	5.9	5.4	0.4	1450	109	5.6	30.7	44.6	3.6	0.31	18.4	20.4	72
VNR-303	37	38	Diabase breccia	400	75 1	22.8	0.8	6	64	0.6	275	93	85	28.6	27.8	33	0 34	29.9	22.2	79
VNR-303	38	39	Diabase breccia	350	69.7	25	0.7	55	79	0.5	774	92	6.1	29,0	48	3.9	0.32	33.8	22,2	75
VNR-303	39	40	Diabase breccia	700	39.1	23.1	0.8	5,5	11.8	0.7	2100	100	9.7	24.4	86.3	37	0.29	28.1	20.7	65
VNR-303	40	41	Diabase	410	68 7	27 1	0.9	59	11.6	0.6	270	93	39	26.8	47 7	3.6	0.33	22 3	21.2	67
VNR-303	41	42	Diabase	370	149	28.3	0.9	65	12.6	0.7	607	98	3,5	28,0	31.2	4	0.37	49 3	27.5	76
VNR-303	42	43	Diabase	290	793	29.7	0.9	5.9	79	0.6	515	105	27	26.9	39.7	43	0 33	29.1	24.2	68
VNR-303	43	44	Diabase	250	78.7	26.9	0.8	5.4	11.9	0.5	1340	86	27	23.6	31.5	3.9	03	32 3	21.5	64
VNR-303	44	45	Carbonate vein	170	74.2	21.6	0.6	4	20.9	0.4	774	73	4.6	16.9	22.8	2.8	0.23	24.5	17.4	44
VNR-303	45	46	Diabase	340	315	25.2	0.8	65	16.6	07	415	166	65	27.5	18 1	3.9	0.37	54 1	25.9	71
VNR-303	46	47	Diabase	550	244	28.1	0.9	6.2	13.5	0.6	650	3260	44	27.6	32.8	3.8	0.36	48.4	27.1	71
VNR-303	47	48	Diabase	790	115	32.5	1	6.2	11.4	0.6	783	636	9.6	27.4	86.9	4 4	0.36	71.6	25.4	74
VNR-303	48	49	Diabase	820	78	30	1	6.2	91	0.5	616	747	3,5	26.3	103 5	44	0.35	25.2	24.9	71
VNR-303	49	50	Diabase	490	127	26.2	0 9	61	12	0.6	1240	3690	9.2	27.6	61.4	.,. д д	0.35	46.5	25.7	69
VNR-303	50	51	Diabase	320	77.6	17.4	0.6	4.8	10.9	0.5	4460	524	4.2	21.1	48.4	3.4	0.26	35.6	19.8	60
VNR-303	50	52	Granitoid breccia	460	103	24	0.8	3.8	15 1	0,5	1600	72	-, <u>-</u> 6.1	97	59.3	2.6	0,20	35.4	13,0 Q Q	22
VNR-303	52	53	Granitoid breccia	440	127	37.6	13	4 5	6.4	0.7	300	400	35	43	52.9	2,0	0.49	18 5	3.8	15
VNR-303	52	54	Granitoid breccia	340	115	37,0	13	4,5	0,4 1 1	0,7	104 5	400	3,5	4,5	10.2	2,0	0,45	12.2	3,0	14
VNR-303	50	55	Altered granitoid	520	152	12.7	1,5	52	5.0	0,7	104,5	21	6.1	4,1	40,2 60.2	2,5	0,41	22.2	3,1	11
VNR-303	55	55	Altered granitoid	500	136	35.7	1 2	1.2	1.8	0,5	158	21	6.6	4,0	65.3	2,0	0,35	16 55	3,6	14
VNR-303	55	57	Altered granitoid	430	156	40.2	1.4	4,2	5 7	0,0	92.6	20	1.8	4,5	76.0	2,5	0,43	22.2	3,0	15
VNR-303	57	58	Altered granitoid	390	156	31	11	3.9	5.4	0,0	814	219	4,5	39	61.9	2,0	0,47	23,5	3.6	15
VNR-303	58	59	Altered granitoid	430	145	33.6	1 2	5,5	53	0,5	105	215	39	3.6	73.3	2,5	0,55	27,5	3,0	13
VNR-303	59	60	Altered granitoid	440	171	35.9	13	53	5,5	0,0	66	19	47	4.4	71 5	2,,	0,55	19.45	4 1	9
VNR-303	60	61	Altered granitoid	700	168	41 5	1.5	4.4	5,0	0,5	111	16	5.2	-,- 4	96.4	2,5	0.46	19,45	3.6	12
VNR-303	61	62	Altered granitoid	600	188	43.9	1.5	53	63	0,0	28	27	6.2	4.6	75 7	2,0	0,40	23	4.2	16
VNR-303	62	63	Altered granitoid	490	155	37.5	13	53	6.4	0,0	113	21	49	4,0	71	19	0.46	19.4	3.8	12
VNR-303	63	64	Altered granitoid	480	110	28.5	1 1	3,5 4	4.6	0.4	154.5	17	39	2.6	69.5	1.6	0,40	15,4	3.4	15
VNR-303	64	65	Altered granitoid	400	161	18.6	0.7	4	4,0 Q /	0,4	302	72	73	2,0	68.2	2.4	0,25	12,0	46	12
VNR-303	65	66	Altered granitoid	450	142	20.2	0,7	5.6	75	0,4	102	20	/,5	20	69.8	2,4	0,45	42,J	4,0	12
VNR-303	66	67	Altered granitoid	490	122	17.5	0,7	3,0	61	0,0	84.8	20	4,5	2,5	62.1	2,5	0,02	29,5	4,2	12
VNR-303	67	67 69	Altered granitoid	490	140	24.4	0,0	4,0	7 0	0,4	04,0	10	4,4	2,0	72.2	2,0	0,40	27,2	3,0	11
VNR-303	69	60	Granitoid	600	190	24,4	0,8	4,0	7,0 0 C	0,4	04,0 117 E	10	4	2,7	73,2 65.2	1 0	0,51	23,1	5,7	14
VNR-303	60	70	Granitoid	840	171	10 1	0,8	4,4	6,0 6 E	0,5	1525	21	4,2	2,0	03,2 00.2	1,0	0,42	24,5	20	14
VNR-303	70	70	Granitoid	770	207	21.1	0,0	4,2 E 2	6,5	0,4	24.7	21	4,9	3,5	00,5	2,1	0,56	24	3,5	12
VINR-505	70	71	Granitoid	770	105	21,1	0,8	5,2	0,0	0,4	24,7	40	5,5	2,9	61,1 0C F	2,2	0,55	20,2	4,1	15
VINR-505	71	72	Granitoid	790	165	21,7	0,8	4,9	12.0	0,5	122	23	4,9	2,0	90,5	2,3	0,52	30,5	4,5	9
VINR-505	72	75	Granitoid	690	100	20,7	0,8	4,1	12,9	0,5	152	57	5,6	2,4	85,9 74.0	1,9	0,44	27,5	3,0	17
VINR-505	75	74	Granitoid	620	125	19,1	0,7	3,9	4,4	0,4	/1,0	10	5,7	2,0	74,9	1,7	0,54	15,95	2,7	17
VINR-505	74	75	Granitoid	400	121	20,5	0,8	3,0 4 F	5,6	0,4	161 5	1/	3,2	2,9	//,Z	1,7	0,35	17,2	2,9	12
VINR-505	75	70	Granitoid	400	111	19,4	0,8	4,5	5,0	0,5	101,5	19	2,5	5,1 2 1	60,7	2,1	0,37	27,2	3,2	10
VNR-303	70	77	Granitoid broccia	550	66.2	20,7	0,8	4,5 2 E	0,5	0,0	221	35 14	2,2	3,1	05,1	1,5	0,41	25,5	3,1	10
VNR-303	70	70	Granitoid breccia	650	106	23,0	0,9	2,5	4	0,5	167	14	2,7 E 2	2,2	53,7	2.0	0,24	21.7	2	9
VINK-505	70	79 80	Granitoid breccia	410	00 0	23,5	0,9	4,2	9,0 E 0	0,9	200	24	5,5	22	56,9 54.6	3,9	0,48	31,7 15 75	3,3 2 4	9
VINR-505	79	80	Granitoid breesia	410	00,0 F7 7	22,0	0,9	4,2	5,9	0,5	269	24	2,0	3,3	54,0 20.2	2,1	0,39	15,75	3,4	10
VNR-303	0U 01	01	Granitoid breccia	200	02.2	25,0	11	5,0	4,0 C	0,5	112	20	3,5	2,0 2 1	53,2	1,5	0,40	12.0	2,5	10
VNR-303	01	02	Granitoid breccia	460	112	27,1	1,1	4.2	E 0	1.6	00.0	17	3,0	3,1	07,2	1,7	0,61	11.05	20	0
VNR-202	83	84	Granitoid breccia	550	81 6	33,1	1,4 1.6	+,2 1.6	50	1,0 0 0	55,5 61 1	10	د, ب م	2,5 1 1	101	2 /	0,02	12.22	2,5 1 /	o Q
VNR-303	0.0	04 9E	Granitoid breccia	220	120	24.7	1,0	1,0 E 2	5,5	0,9	22.4	20	22	2.4	101	2,4	0,2	12,2	2,4	0 11
VINR-505	04 07	85	Granitoid Dreccia	220	150	34,7	1,5	5,2	5,2	0,9	22,4	20	3,2	3,4	47,0	1,5	0,55	12,05	3,0	11
VINR-505	85 86	00 07	Granitoid	490	100	22,9	0,9	4,5	0,0	0,9	27,4	10	4,4	2,9	605,8	1,9	0,55	22,5	3,2	14
VINR-505	00	6/ 00	Granitoid	450	141	25,4	1	5,2	7,4	0,7	9,7	21	4,0	3,2	04 CC 9	2,2	0,67	24,7	3,0	14
VINR-505	07	80	Granitoid	470	141	10,2	0,7	4,7	5,7	0,6	35,0	10	4,1	3,4	60,8	2,2	0,45	20,7	3,3	9
VNR-303	88	89	Granitoid	470	164	19,5	0,8	4,8	6,4	0,6	21,5	21	4,7	2,9	60,7	2,4	0,51	28,1	3,6	11
VINR-505	00	90	Granitoid	540	115	19,5	0,7	4,0	0,1	0,4	43,8	19	4,1	5,1	70.0	2,4	0,45	21,5	3,0	12
VNR-303	90	91	Granitoid	530	106	1/	0,7	4,9	5,5	0,4	12,6	19	4,1	3,1	70,9	2,9	0,42	20,6	3,2	16
VNR-303	91	92	Granitold	510	112	16,4	0,7	4,2	4,3	0,4	58,3	1/	3,3	2,8	70,7	1,8	0,35	16,9	3,2	/
VNR-303	92	93	Altered granitoid	500	83,3	23,9	1	3,3	3,3	0,4	14,2	16	2,6	3	61,7	1	0,32	8,19	2,6	10
VINR-303	93	94	Altered granitoid	450	83,1	25,3	1	2,9	3,3	0,5	/8,4	20	1,9	2,1	ъU,3	0,9	0,31	4,/5	2,3	8
VINR-303	94	95	Altered granitoid	490	98,2	24,5	1	2,2	4,4	0,4	365	132	3,8	1,8	53,6	0,7	0,22	6,17	2,5	10
VNR-303	95	96	Altered granitoid	620	84,4	27	1,1	2,4	3,5	0,4	187,5	17	3,7	1,9	59,1	0,7	0,23	3,24	2,2	10
VNR-303	96	97,25	Aitered granitoid	590	107	26,4	1,1	2,7	5,9	1	152,5	15	4,2	1,7	56,5	1,5	0,34	6,31	2,1	8
VNR-303	97,25	98	Granitoid	430	140	24,4	1,1	4	5,9	1,1	693	22	4,1	2,3	45,6	1,6	0,61	13,25	2,8	10
VNR-303	98	99	Granitoid	530	198	26,3	1,1	3,9	6,1	0,8	29,9	30	5,6	2	45	1,7	0,41	16,5	2,8	9
VNR-303	99	100	Granitoid	430	164	22,4	1	3,6	5,5	0,4	110	30	4,8	2,5	42,5	1,3	0,32	13,6	2,7	12
VNR-303	100	101	Granitoid	460	127	18,5	0,8	3,2	4,6	0,4	117,5	19	3,9	2,3	47,7	1,2	0,3	10,75	2,4	13
VNR-303	101	102	Granitoid	550	162	21,9	1	3,6	5,1	0,4	14,3	18	4,5	2,2	53,9	1,6	0,31	12,2	2,5	11
VNR-303	102	103	Granitoid	490	153	23,4	1	2,8	5,6	0,3	143,5	207	5,2	1,9	46,7	1,3	0,23	10,25	2,3	10
VNR-303	103	104	Granitoid	500	125	29,3	1,3	2,3	4,4	0,4	193,5	16	4,3	1,9	51,9	0,7	0,22	6,04	2	11

HOLFID	From depth (m)	To depth (m)	Lithology	Ba	Sr	Zr	Hf	Nb	Y	U	Cu	Zn	Pb	Ni	Rb	Th	Та	Ce	Sc	Cr
VNR-303	104	105	Granitoid	490	146	26	11	23	3.6	0.4	52.5	24	5	1.6	48.4	12	0.17	10.8	1.8	15
VNR-303	105	106	Granitoid	510	170	18.7	0.7	23	5 7	03	93.1	20	53	15	48.9	2 1	0.19	21.9	19	
VNR-303	106	107	Granitoid	490	156	25.6	1 1	44	5.7	0.6	59.7	20	45	2,3	53.2	1.6	0.4	13 95	3.2	12
VNR-303	107	108	Granitoid	480	150	22.2	0.9	4.3	5.2	0.6	42	25	4.4	2.5	54.5	1.7	0.45	14.65	3	17
VNR-303	108	109	Granitoid	490	130	20.9	0.9	3.9	5.3	0.9	27.6	30	4.8	2,3	56.3	1.8	0.39	12.2	3	11
VNR-303	109	110	Granitoid	610	157	17.8	0.7	-,-	4.1	0.4	68	25	7.2	2.3	69.5	1.5	0.24	10.75	2.1	17
VNR-303	110	111	Granitoid	580	153	24	-,:	3.5	5.7	1.9	43.3	18	6	_,=	63.5	2	0.52	12.55	2.5	12
VNR-303	111	112	Granitoid	380	99.1	20.8	0.8	4.1	5.6	0.7	89.1	22	3.8	2.6	56.6	2.2	0.39	28.3	3.1	
VNR-303	112	113.2	Granitoid	450	156	22.9	0.8	4.2	5.4	0.8	17.2	24	5.1	2.5	53.2	2.3	0.49	20	3.1	9
		,-				,-	-)-	.,=	-,.	-,-	,_		-,-	_,=		_,-	0,10		-)-	
Drill core VN	IR-401:																			
VNR-401	11,3	12	Carbonate vein	180	46,4	10,2	0,3	1	16,1	0,5	254	155	17,3	0,5	23,8	0,7	0,08	9,49	1,7	3
VNR-401	13	14	Carbonate vein	140	48	10,3	0,3	1,3	17,4	0,6	1060	224	30,8	0,7	18,6	1,1	0,09	17,35	1,9	2
VNR-401	14	15	Carbonate vein	130	56,4	8,3	0,2	1,3	26,7	0,5	1120	2680	32	0,1	16,4	0,9	0,08	68,2	2,6	0,5
VNR-401	15	16	Carbonate vein breccia	150	45	12,5	0,3	1,5	15,9	0,7	1070	1790	14,3	1,3	19,3	1,3	0,12	11,7	1,7	1
VNR-401	16	17	Carbonate vein breccia	210	41	14,5	0,4	1,9	5,8	0,8	515	241	5,3	2,2	22,9	1,9	0,14	8,73	1,9	3
VNR-401	17	18	Carbonate vein breccia	150	49,7	13,6	0,3	1,7	15,8	0,9	812	213	11,8	0,8	19	1,4	0,15	8,82	2	0,5
VNR-401	18	19	Carbonate vein	170	61,2	14	0,4	1,6	17	0,8	2050	2030	15,1	0,1	19,3	1,1	0,22	12,65	2,1	0,5
VNR-401	19	20	Carbonate vein	120	63,2	10,3	0,3	1,3	19,3	0,8	1540	4240	30,3	0,1	13,9	0,9	0,15	9,39	1,9	0,5
VNR-401	20	21	Carbonate vein breccia	300	45,2	10,3	0,3	1,7	7,9	0,7	1310	241	9,5	1,5	34,1	1,8	0,09	6,53	1,9	2
VNR-401	21	22,2	Carbonate vein	110	41,9	7,8	0,2	1,2	15,5	0,5	1675	1760	17,7	0,7	18,1	0,8	0,06	6,66	1,7	0,5
VNR-401	22,2	22,7	Carbonate vein	20	90,9	0,8	0,05	0,1	46,4	0,1	2800	3060	45,6	0,6	2	0,1	0,025	10,4	0,9	0,5
VNR-401	22,7	24	Carbonate vein breccia	300	66,8	10,4	0,3	2,4	9,3	0,4	406	453	7,3	1,9	34,2	1,4	0,13	18,8	2	2
VNR-401	25,3	27,2	Carbonate vein	150	66,7	6,5	0,2	1,3	20	0,4	1170	3850	44,7	1,6	18,7	0,9	0,1	10,4	1,4	0,5
VNR-401	28,6	29,75	Carbonate vein	40	73,8	1,8	0,1	0,3	25,1	0,3	1515	11350	28,2	0,6	6,6	0,2	0,025	22,1	0,9	0,5
VNR-401	29,75	31	Carbonate vein breccia	550	49,8	24,4	0,9	2,3	11,6	0,6	487	59	9,7	2,8	47	1,6	0,21	73,9	2,4	5
VNR-401	31	32	Granitoid breccia	470	50,1	29,5	0,9	2	10	0,6	253	25	4,9	1,8	35,6	1,9	0,19	39,1	2,2	4
VNR-401	32	33	Granitoid breccia	690	73,5	30,7	1	2,7	3,7	0,4	121	20	4	1,8	53,5	2,4	0,29	12,95	1,9	7
VNR-401	33	34	Granitoid breccia	580	67,8	28,7	1	2,8	3,9	0,4	136	19	4	2,2	51,2	2,6	0,27	24,8	1,9	8
VNR-401	34	35	Granitoid breccia	770	83,9	37,3	1,3	3	4,5	0,7	65,4	20	4,1	2,4	60	2,1	0,3	32,6	2,2	9
VNR-401	35	36	Granitoid breccia	640	67,8	31,4	1,1	2,4	3	0,5	111	19	3,7	2,8	53,1	2,1	0,24	16,6	1,9	10
VNR-401	36	37	Granitoid breccia	800	90,3	39,2	1,5	3,3	4	0,9	103,5	20	5,2	2,9	65,8	2,3	0,53	15,65	2,3	11
VNR-401	37	38	Granitoid breccia	1000	83,9	34,8	1,2	3	3,7	0,6	24,5	22	3,9	2,2	71,6	2,5	0,31	20,5	2,1	11
VNR-401	38	39	Quartz vein breccia	500	35,1	15,3	0,5	1,5	2,8	0,3	82,7	30	1,4	2,3	39,2	1,1	0,15	10,9	1,3	11
VNR-401	39	40	Granitoid breccia	810	70,5	30	1	2,7	3,3	0,4	36	20	2,8	2,1	65,4	2,7	0,3	17,05	2	10
VNR-401	40	41	Granitoid	750	56,6	36,2	1,2	2,8	3	0,5	45,3	30	2,9	3,2	67,6	2,4	0,3	14,35	2,1	8
VNR-401	41	42	Granitoid	910	102	33,2	1,1	3,1	3,7	0,4	66,7	17	4,3	2,2	70	2,7	0,27	21,4	2,1	9
VNR-401	42	43	Granitoid	810	81,4	34,1	1,1	3,1	3,1	0,5	117,5	25	3,7	2,7	67,6	2,5	0,33	14,75	2,3	9
VNR-401	43	44	Granitoid	620	52	31,2	1,2	3	3,2	0,5	271	38	2,7	3,9	58,6	1,8	0,3	13	2,4	6
VNR-401	44	45	Granitoid	640	69,2	31	1,1	2,7	2,9	0,5	302	21	2,7	2,3	55,6	2,2	0,25	16,65	2	9
VNR-401	45	46	Granitoid	410	46	23,4	0,8	2,2	3,5	0,4	192,5	174	2,1	2,4	40,7	1,8	0,23	17,3	2,2	10
VNR-401	46	47	Granitoid	610	66,2	28,5	1	2,3	6,2	0,4	204	92	3,2	2	50,7	1,8	0,2	21,1	2,2	8
VNK-401	47	48	Granitoid	/00	73,7	32,8	1,1	2,5	b,1	0,5	232	19	5,5	2,1	59,3	1,9	0,24	18,2	2,2	8
VNR-401	48	49	Granitoid	540	72,2	27,7	0,9	2,6	4,8	0,4	343	21	3,6	1,7	54,8	1,9	0,27	20,4	2,5	5
VNK-401	49	50	Granitoid	520	ь/,3 то г	29,3	1	3	5	0,4	233	26	3	2,1	58,7	2,1	0,3	22	2,7	9
VNK-401	50	51	Quartz vein breccia	570	70,5	32,5	1,2	2,5	4,7	0,5	2650	31	4,3	2,5	56,9	1,8	0,3	18,1	2,2	8
VNK-401	51	52	Quartz vein breccia	420	64,4	1/,1	U,6	2,5	4,1	0,3	604	4490	5,7	3,2	41,8	1,2	0,23	10,65	2,2	7
VNK-401	52	53	Altered granitoid	590	128	19,3	U,7	4,3	6	0,4	74	26	7,2	2,9	61	2,7	0,42	29,1	3	9
VNR-401	53	54	Altered granitoid	830	133	25	0,9	3,2	4,7	1,2	253	1900	9,4	2	76,9	2,2	0,49	17,25	2,2	6
VNR-401	54	54,8	Altered granitoid	890	162	29,8	1,1	3,1	5,3	2,3	44,1	20	8,5	2	73,8	2,2	0,5	14,45	2,1	8

Appendix C

Mineral chemistry

	1	2	3	4	5	6	7	8
SiO2	41,35	41,24	41,45	42,58	42,57	42,41	40,63	40,81
Al2O3	14,13	14,66	13,50	12,81	13,51	13,87	14,45	14,84
TiO2	0,39	0,25	0,37	0,25	0,25	0,31	0,49	0,33
Cr2O3	0,00	0,00	0,02	0,00	0,02	0,00	0,00	0,00
FeO	21,53	22,04	21,60	21,85	22,42	21,35	21,98	21,77
MnO	0,22	0,31	0,31	0,28	0,24	0,40	0,28	0,22
MgO	6,03	5,52	6,05	6,22	5,84	6,17	5,48	5,39
CaO	11,11	11,04	10,98	11,42	11,33	10,17	11,09	11,03
Na2O	1,86	1,72	1,79	1,65	1,71	2,19	1,85	1,86
К2О	0,76	0,81	0,66	0,60	0,66	0,70	0,90	0,87
Total	97,39	97,60	96,74	97,64	98,54	97,53	97,15	97,10
Mineral	formulas nor	malized to	13 cations					
Si	6,289	6,260	6,339	6,464	6,409	6,383	6,228	6,243
Al	2,532	2,623	2,433	2,291	2,397	2,461	2,610	2,676
Ti	0,044	0,029	0,042	0,028	0,028	0,035	0,057	0,038
Cr	0,000	0,000	0,002	0,000	0,002	0,000	0,000	0,000
Fe	2,738	2,798	2,762	2,774	2,822	2,688	2,818	2,785
Mn	0,029	0,040	0,041	0,037	0,031	0,051	0,036	0,028
Mg	1,368	1,250	1,380	1,407	1,311	1,383	1,252	1,229
Ca	1,810	1,796	1,799	1,857	1,828	1,640	1,822	1,807
Na	0,549	0,505	0,530	0,487	0,498	0,639	0,549	0,551
К	0,147	0,158	0,130	0,117	0,126	0,133	0,176	0,171
1-4:	VNR-101-1	.06,2						

Table C.1: EMP analyses of elements in amphiboles. Values for the elements are given in wt% of the given element-oxide.

5: 6-8: VNR-101-111,3

VNR-101-112,7

Table C.2: EMP analyses of elements in light micas. Values for the elements are given in wt% of the given element-oxide.

	1	2	3	4	5	6	7	8	9
SiO2	47,24	48,06	47,81	49,14	47,74	48,00	48,55	47,08	48,01
Al2O3	33 <i>,</i> 58	32,47	24,64	24,66	24,58	24,28	24,84	32,78	32,35
TiO2	0,07	0,20	1,17	1,25	1,19	1,09	1,19	0,42	0,43
Cr2O3	0,01	0,01	0,04	0,04	0,03	0,00	0,04	0,02	0,01
FeO	2,34	2,48	5,45	4,96	6,27	5,93	5,85	1,96	2,35
MnO	0,01	0,01	0,00	0,00	0,04	0,00	0,00	0,01	0,02
MgO	1,29	1,56	3,53	3,78	3,55	4,42	3,70	2,02	1,93
CaO	0,00	0,00	0,04	0,01	0,05	0,00	0,04	0,00	0,00
Na2O	0,20	0,20	0,10	0,07	0,19	0,13	0,15	0,73	0,64
К2О	11,14	11,04	10,66	10,80	10,44	10,90	10,58	10,08	10,61
Total	95 <i>,</i> 83	96,01	93,42	94,71	94,08	94,66	94,92	95 <i>,</i> 08	96,30
Mineral	formulas nor	malized to	7 cations						
Si	3,139	3,193	3,301	3,344	3,280	3,258	3,301	3,139	3,168
Al	2,629	2,543	2,005	1,978	1,990	1,942	1,991	2,576	2,516
Ti	0,003	0,010	0,061	0,064	0,061	0,056	0,061	0,021	0,021
Cr	0,000	0,000	0,002	0,002	0,001	0,000	0,002	0,001	0,000
Fe	0,130	0,138	0,314	0,282	0,360	0,337	0,332	0,109	0,130
Mn	0,001	0,001	0,000	0,000	0,002	0,000	0,000	0,001	0,001
Mg	0,128	0,154	0,364	0,383	0,363	0,447	0,375	0,201	0,189
Na	0,026	0,026	0,013	0,010	0,026	0,018	0,020	0,095	0,081
К	0,945	0,936	0,939	0,937	0,915	0,944	0,918	0,857	0,893
1-2:	VNR-302-7	74,1							

3-7: VNR-101-13,5

8-9: VNR-101-70,5

	1	2	3	4	5	6	7	8	9	10	11	12	13
SiO2	37,54	37,58	37,43	37,42	37,14	37,28	37,31	37,28	37,16	37,40	37,57	37,43	37,39
Al2O3	21,05	20,98	20,90	20,76	20,86	21,03	20,93	20,78	20,58	20,70	21,05	20,81	20,68
TiO2	0,12	0,17	0,09	0,22	0,14	0,12	0,11	0,12	0,17	0,17	0,06	0,15	0,17
Cr2O3	0,00	0,00	0,01	0,00	0,02	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,02
FeO	25,89	24,98	25,78	24,97	25,20	25,93	25,91	26,08	25,63	25,68	25,91	25,84	25,61
MnO	6,63	7,52	6,08	6,92	6,89	6,65	6,14	5,55	7,47	5,97	5,58	5,96	6,66
MgO	0,74	0,71	0,88	0,63	0,64	0,75	0,79	0,84	0,66	0,76	0,83	0,81	0,72
CaO	9,47	9,53	9,40	10,05	9,87	9,58	9,84	9,75	8,96	9,84	9,65	9,75	9,51
Na2O	0,00	0,00	0,03	0,01	0,00	0,00	0,01	0,01	0,03	0,00	0,00	0,04	0,00
К2О	0,00	0,00	0,02	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,00
Total	101,43	101,44	100,64	100,98	100,75	101,32	101,02	100,40	100,64	100,53	100,65	100,77	100,76
Mineral	formulas no	ormalized to	o 8 cations										
Si	2,974	2,978	2,987	2,979	2,963	2,957	2,965	2,981	2,976	2,988	2,994	2,983	2,984
Al	1,966	1,959	1,966	1,948	1,961	1,966	1,960	1,958	1,943	1,949	1,977	1,955	1,945
Ti	0,007	0,010	0,006	0,013	0,008	0,007	0,007	0,007	0,010	0,010	0,004	0,009	0,010
Cr	0,000	0,000	0,001	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001
Fe	1,716	1,655	1,721	1,662	1,681	1,720	1,722	1,744	1,717	1,716	1,726	1,722	1,709
Mn	0,445	0,505	0,411	0,466	0,465	0,447	0,414	0,376	0,507	0,404	0,377	0,402	0,450
Mg	0,087	0,084	0,104	0,075	0,077	0,089	0,093	0,100	0,079	0,091	0,098	0,096	0,086
Ca	0,804	0,809	0,804	0,857	0,844	0,814	0,838	0,835	0,769	0,843	0,824	0,833	0,813
1-2:		VNR-101-	106,2										
3:		VNR-101-	111,3										
1-10 8.1	7-12.	V/NP_101_	1127										

Table C.3: EMP analyses of elements in garnets. Values for the elements are given in wt% of the given element-oxide.

4-10 & 12-13: VNR-101-112,7 11: VNR-101-113,8 11:

Table C.4: EMP analyses of elements in biotites. Values for the elements are given in wt% of the given element-oxide.

	1	2
SiO2	35,31	35,51
Al2O3	17,04	17,13
TiO2	2,36	2,40
Cr2O3	0,06	0,02
FeO	23,90	24,49
MnO	0,13	0,14
MgO	6,53	6,52
CaO	0,00	0,00
Na2O	0,09	0,04
K2O	9,51	9,68
Total	94,90	95,90
Mineral forn	nulas normalized t	08
cations		
Si	2,843	2,833
Al	1,617	1,611
Ti	0,143	0,144
Cr	0,004	0,001
Fe	1,609	1,634
Mn	0,009	0,009
Mg	0,784	0,775
Na	0,013	0,007
К	0,977	0,985
1-3:	VNR-302-74,1	

Table C.5: EMP analyses of elements in chlorites. Values for the elements are given in wt% of the given element-oxide.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SiO2	29,39	35,56	29,82	30,47	30,23	26,19	26,82	27,09	27,08	26,96	25,02	36,76	37,78	26,20	26,22	26,37
Al2O3	19,47	30,73	21,86	18,72	17,15	21,15	21,21	16,62	16,65	16,60	16,90	20,80	20,94	17,14	16,82	17,91
TiO2	0,00	0,03	0,01	0,05	0,02	0,03	0,05	0,03	0,04	0,04	0,02	0,16	0,09	0,02	0,04	0,16
Cr2O3	0,00	0,01	0,00	0,22	0,06	0,03	0,00	0,00	0,00	0,00	0,00	0,03	0,01	0,01	0,01	0,03
FeO	15,13	4,44	14,77	14,39	16,35	20,25	20,37	31,11	31,27	31,84	36,34	25,32	25,68	33,36	31,08	32,18
MnO	0,00	0,00	0,03	0,04	0,01	0,28	0,22	0,83	0,74	0,75	0,45	6,48	6,44	0,60	0,65	0,48
MgO	22,98	15,76	20,00	23,25	23,21	18,91	19,39	11,91	12,24	11,58	7,89	0,72	0,79	10,61	11,69	9,83
CaO	0,03	0,09	0,09	0,04	0,05	0,03	0,01	0,05	0,03	0,05	0,07	9,18	9,17	0,04	0,05	0,03
Na2O	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,01	0,00	0,03	0,00	0,02	0,03	0,02	0,00	0,00
К2О	0,00	0,04	0,01	0,20	0,02	0,00	0,01	0,01	0,00	0,01	0,02	0,00	0,00	0,00	0,02	0,50
Total	86,98	86,66	86,58	87,38	87,10	86,86	88,02	87,65	88,01	87,84	86,71	99,48	100,93	88,00	86,56	87,49
Mineral	formulas nor	rmalized to	0 10 cations	5												
Si	2,960	3,588	3,047	3,062	3,058	2,712	2,737	2,969	2,951	2,958	2,858	3,714	3,760	2,889	2,909	2,942
Al	2,311	3,654	2,632	2,217	2,045	2,581	2,551	2,148	2,137	2,147	2,275	2,476	2,456	2,228	2,200	2,355
Ti	0,000	0,002	0,001	0,004	0,001	0,002	0,004	0,002	0,003	0,003	0,001	0,012	0,007	0,002	0,004	0,014
Cr	0,000	0,001	0,000	0,017	0,005	0,002	0,000	0,000	0,000	0,000	0,000	0,002	0,001	0,001	0,001	0,002
Fe	1,275	0,375	1,262	1,209	1,384	1,754	1,738	2,852	2,849	2,922	3,471	2,139	2,137	3,076	2,884	3,002
Mn	0,000	0,000	0,003	0,004	0,001	0,024	0,019	0,077	0,069	0,070	0,044	0,555	0,543	0,056	0,062	0,045
Mg	3,450	2,371	3,046	3,483	3,501	2,919	2,950	1,946	1,987	1,895	1,343	0,108	0,118	1,743	1,934	1,634
1-5:	VNR-101-1	15,5														

6-7: VNR-101-70,5

8-11: VNR-101-112,7

12-15: VNR-101-100,9

16: VNR-302-74,1
Table C.6: EMP analyses of elements in sulfides. Values for the	e elements are given in atomic %.
---	-----------------------------------

	1	2	3	4	5	6	7		8	9	10	11	12	13	14	15
Fe	24,74	1,95	33,40	2,06	25,07	33,72	1,75	3	33,90	25,17	0,10	25,32	25,35	33,72	25,26	33,92
Ni	0,00	0,01	0,00	0,00	0,02	0,01	0,01		0,01	0,00	0,00	0,00	0,00	0,02	0,01	0,00
Zn	0,03	47,87	0,03	47,81	0,08	0,00	48,38		0,00	0,07	0,05	0,11	0,03	0,00	0,04	0,00
Cu	24,61	0,04	0,00	0,01	24,55	0,30	0,01		0,07	24,62	0,06	24,71	24,96	0,17	24,94	0,03
Ag	0,00	0,00	0,00	0,00	0,01	0,00	0,00		0,00	0,01	1,30	0,03	0,00	0,00	0,00	0,00
Pb	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00	48,60	0,00	0,00	0,00	0,00	0,00
Со	0,00	0,03	0,00	0,02	0,00	0,00	0,01		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
S	50,63	50,10	66,57	50,11	50,28	65,98	49,85	6	66,03	50,13	49,87	49,83	49,66	66,10	49,76	66,04
Total	100,00	100,00	100,00	100,00	100,00	100,00	100,00	10	00,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
Mineral form	nula for sulfides r	normalized to 2 S for	chaclopyri	te and pyrite, a	nd 1 S for sphale	erite and galena.										
Fe	0,977	0,039	1,004	0,041	0,997	1,022	0,035	1	1,027	1,004	0,002	1,016	1,021	1,020	1,016	1,027
Ni	0,000	0,000	0,000	0,000	0,001	0,000	0,000	(0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000
Zn	0,001	0,955	0,001	0,954	0,003	0,000	0,970	(0,000	0,003	0,001	0,005	0,001	0,000	0,001	0,000
Cu	0,972	0,001	0,000	0,000	0,976	0,009	0,000	(0,002	0,982	0,001	0,992	1,005	0,005	1,002	0,001
Ag	0,000	0,000	0,000	0,000	0,000	0,000	0,000	(0,000	0,000	0,026	0,001	0,000	0,000	0,000	0,000
Pb	0,000	0,000	0,000	0,000	0,000	0,000	0,000	(0,000	0,000	0,974	0,000	0,000	0,000	0,000	0,000
Со	0,000	0,001	0,000	0,000	0,000	0,000	0,000	(0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
S	2,000	1,000	2,000	1,000	2,000	2,000	1,000	2	2,000	2,000	1,000	2,000	2,000	2,000	2,000	2,000
1 & 5:	Chalcopyrite	VNR-101-72,5		8 & 13:	Pyrite	VNR-101-93		15:		Pyrite	VNR-101-70,5					
2 & 4:	Sphalerite	VNR-101-72,5		9, 11, 12:	Chalcopyrite	VNR-101-93										
3 & 6:	Pyrite	VNR-101-72,5		10:	Galena	VNR-101-93										
7:	Sphalerite	VNR-101-81,5		14:	Chalcopyrite	VNR-101-70,5										