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Preface 

This thesis is the result of a three year PhD study at the Department of Geology at the Uni-

versity of Tromsø, Norway. It compromises three scientific papers, which were prepared in 

the period between November 2011 and April 2014 at the Geological Survey of Norway 

(NGU) in Trondheim. The project was funded by the European Union and was part of the 

Marie Curie Initial Training Network CASE "The Changing Arctic and Subarctic Environment". 
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close collaboration with eleven other PhD students from nine different European countries 

at the Universities of Bordeaux, Amsterdam, Plymouth, Tromsø and Kiel. The existent work 

was also presented at the Goldschmidt conference in Montreal and Florence as well as at 

the EGU in Vienna. Additionally, The Geological Society provided a travel and accommoda-

tion grant for a conference presentation in London, a research award from Iso-Analytical 

Ltd. supported isotopic analysis, the Research Council of Norway provided a Marie Curie 

"toppfinansiering" and the Stiftung Mercator, part of the European Campus of Excellence 

(ECE), offered the participation in the summer school "Climate Change in the Marine 

Realm" in Bremen and Sylt, Germany.  
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1  Introduction 

How do natural climate variations affect the environmental conditions on Earth`s different 

regions? And how sensitive is Earth`s climate to the alteration of its surface and atmos-

phere by human activity? To answer these basic questions a profound knowledge of the 

climate system is required which can only be developed by studying long term past cli-

matic changes. However, since climate is the statistical evidence of the average weather 

over a longer period of time (decades to millions of years) at a certain point (IPCC, 2007) it 

is not possible to see, feel or directly measure climate. Hence, to estimate climate vari-

abilities over long time scales changes of the internal components of the climate system 

(air, water, ice, land surfaces and vegetation (Ruddiman, 2001)) are reconstructed by us-

ing climate proxies. Thus, it is crucial to identify high-resolution proxy data from key areas 

characterized by specific climate phenomena where instrumental record data are available 

to estimate the relative magnitude of past climatic changes (Abrantes et al., 2009).  

Norwegian fjords meet all these requirements to decipher past climate signals. Their sedi-

ments contain information regarding environmental changes of the hinterland and oceano-

graphic variability on the adjacent continental margins and shelves through water mass 

exchange (Schafer et al., 1983; Syvitski and Schafer, 1985; Hald et al., 2003; Husum and 

Hald, 2004; Forwick and Vorren, 2007; Howe et al., 2010; Hald et al., 2011). Moreover, 

biogenic sedimentation generated in-situ in the fjord through biogeochemical processes 

and primary productivity can also reflect local and global influences on the environment 

(Knies et al., 2003; Knies, 2005). General high sedimentation together with the possibility 

to quantify environmental parameters such as water exchange and freshwater input offer 

an excellent opportunity for studying land-ocean interactions and can provide ultra-high-

resolution records of local responses to short-term variability in the earth’s climate 

(Mikalsen et al., 2001; Kristensen et al., 2004; Paetzel and Dale, 2010).  

Apart from the relatively warm northward flowing North Atlantic Current, the Norwegian 

coastal climate is strongly influenced by the North Atlantic Oscillation (NAO) (e.g. Hurrell, 

1995; Dickson et al., 2000; Cherry et al., 2005). This dominant mode of the atmospheric 

circulation is most pronounced during winter times (Dec-Mar) and is defined as the differ-

ence in atmospheric pressure at sea level between the Icelandic low and the Azorean high 

(Hurrell, 1995). It controls the strength and direction of westerly winds and storm tracks 

across the North Atlantic (Olsen et al., 2012) and swings between two phases: A positive 

(negative) NAO generates periods of warmer and wetter (colder and dryer) climate condi-
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tions in north-western Europe (e.g. Wanner et al., 2001; Fig. 1). Moreover, its strong im-

pact on precipitation, temperature and wind intensity changes along the Norwegian coast 

(Ottersen et al., 2001) affects e.g. energy supply and demand, agricultural, fisheries and 

marine and terrestrial ecological dynamics (Ottersen et al., 2001; Drinkwater et al., 2003; 

Hurrell et al., 2013).  

 

Fig. 1: During a negative NAO phase (left) both, the Azorean high and the Icelandic low are weaker and the 

Westerlies flow further south which results in colder and drier conditions in Norway. During a positive NAO 

phase (right), both pressure areas are well developed, the Westerlies are "pushed" further north transporting 

moisture and heat to Norway resulting in warmer and wetter conditions. The red square is the location of the 

study area, the Trondheimsfjord. Yellow arrows indicate the North Atlantic Current transporting relative warm 

water towards the north and the Norwegian Coastal Current (NCC).  

To better understand NAO variability and to estimate not only the range of possible fluc-

tuations but also assess their predictability and possible shifts associated with ongoing 

global warming, long term NAO reconstructions are crucial, but until today rare and often 

inconsistent (Pinto and Raible, 2012). The general challenges for NAO reconstructions are 

its possible non-stationarity (a spatial shift of the atmospheric pressure areas) and its 

strong alteration on very short time scales requiring high resolution (winter) paleoclimatic 

records which can provide the essential knowledge for its prediction and the quantification 

of possible anthropogenic induced changes. Reconstructions based on early instrumental 

and documentary proxy data, tree rings, speleothems, and ice core data gave best results 

so far (Jones et al., 1997; Appenzeller et al., 1998; Glueck and Stockton, 2001; 

Luterbacher et al., 2001; Cook et al., 2002; Vinther et al., 2003) but only for the past 

950 years (Trouet et al., 2009). Recently, Olsen et al. (2012) extended the NAO record to 

5,200 years using a multi-proxy geochemical record from lake sediments in Greenland. 

However, this record still covers only half the Holocene and needs support from additional 

studies.  

Changes in precipitation and temperature associated with the NAO are assumed to alter 

the constitution of fluvial sediment flux from land towards ocean basins generated by 
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weathering and erosion of bedrock and soils (e.g. White and Blum, 1995; Lamy et al., 

2001; Govin et al., 2012). Exploring such a relationship between terrigenous input and 

changes in environmental conditions requires detailed knowledge of the transport mecha-

nisms dominating particle supply (e.g. Zabel et al., 2001). To date no systematic organic 

and inorganic geochemical investigation of the marine sediments as a basis for long term 

paleoclimate studies has been conducted in any Norwegian fjord. As for most Norwegian 

fjords, studies from the Trondheimsfjord in central Norway (Fig. 1 and 2) focus on biologi-

cal processes (e.g. Haug et al., 1973; Sakshaug and Myklestad, 1973; Børsheim et al., 1999; 

Sakshaug and Sneli, 2000; Öztürk et al., 2002), sedimentary and mass-wasting processes 

(Bøe et al., 2003; Bøe et al., 2004; Rise et al., 2006; Lyså et al., 2008; L'Heureux et al., 

2009; L'Heureux et al., 2010; Hansen et al., 2011; L'Heureux et al., 2011) and oceanogra-

phy (Wendelbo, 1970; Jacobson, 1983).  

The objective of this PhD project is to (a) detect sources of particular sediment compo-

nents to identify environmental mechanisms controlling their supply and distribution, (b) 

to identify geochemical proxies for terrestrial input/river discharge and finally (c) apply 

these findings on Holocene sequences to reconstruct the variability of the North Atlantic 

Oscillation (NAO) for the last 2,800 years. For this purpose we establish a multiproxy data 

set from various sediment cores and surface sediment samples from the Trondheimsfjord 

and compare the results with instrumental data of air temperature, precipitation and river 

discharge as well as with geochemical bedrock and overbank sediment data from the adja-

cent drainage area.  
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2  Study Area 

The Trondheimsfjord 

The temperate Trondheimsfjord is located in the central part of Norway (Fig.1 and 2) and, 

with a length of approximately 135 km, it is the third longest fjord in the country 

(Jacobson, 1983). Like many fjords, its complex morphology is characterised by relatively 

wide and shallow areas, narrow trenches and steep slopes, up to 30-40 degrees (Bøe et al., 

2003). Three sills, the Agdenes Sill at the entrance (max. 330 m water depth), the Tautra 

Ridge in the middle section (max. 100 m water depth) and the Skarnsund in the inner part 

(max. water depth 100 m) divide the Trondheimsfjord into four main basins: Stjørnfjord, 

Seaward basin, Middle fjord and Beistadfjord (Fig. 2).  

Fig. 2: Map of the Trondheimsfjord showing the three sills (red lines) dividing the fjord into four main basins as 

well as the six main rivers entering the fjord from the south/southeast. Inset upper right corner: Location of 

the Trondheimsfjord in central Norway.  
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The average tide in the Trondheimsfjord is 1.8 m, the average water depth is 165 m and 

the maximum water depth (620 m) is found at the mouth of the Seaward basin (Sakshaug 

and Sneli, 2000 and references therein). The total drainage area is approximately 

20 000 km2 (Rise et al., 2006) with a mean precipitation in the north-west area 

(1700 mm/year) that is twice as high as in the south-east region (855 mm/year). Moreover, 

the maritime climate in the Trondheimsfjord region is strongly influenced by the North 

Atlantic Oscillation (NAO) (Wanner et al., 2001), causing warm and wet (+NAO) or cold and 

dry (-NAO) weather conditions especially during winter times. Additionally, the relative 

warm (about 7.5°C) Atlantic water flowing into the Trondheimsfjord modulates seasonal 

air temperatures over the fjord region, resulting in lower (higher) air temperatures in 

summer (winter) and a strong temperature gradient from the fjord towards the hinterland 

can be observed, especially during winter months.  

Oceanography 

In general, interactions between forces governing the fjord circulation, coupled with the 

complex bottom topography and coastline, result in a complicated flow pattern and distri-

bution of different water masses within the fjord system (Svendsen et al., 2002). The sea-

sonal variation of freshwater supply from the six main rivers entering into the fjord (Gaula, 

Orkla, Nidelva, Stjørdalselva, Verdalselva and Steinkjerelva; Fig. 2) affect the surface sa-

linity and the three sills hinder a free exchange of water with the open ocean. The water 

masses in the fjord are, therefore, often stratified and three layers can often be identified 

(Fig. 3): a brackish water layer on top; an intermediate layer down to the height of the sill 

top and a deep water/basin water layer beneath the sill height which is usually renewed 

twice a year (Jacobson, 1983). The level of stratification is the balance between the buoy-

ancy flux, set up by the discharge of freshwater, and processes that work to homogenize 

the water masses such as tidal mixing and wind acting on the surface layer (Syvitski, 1989). 

The overall water circulation is marked by the outward flowing brackish water above an 

 Fig. 3: Sketch of the estuarine circulation of a fjord (modified after Jacobson, 1983) 
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inward moving compensating marine current with almost constant temperature and salinity 

of approximately 7.5°C and 34.8, respectively, around the entire year (Sakshaug and Sneli, 

2000). The mixing of these two main currents produces a residual compensating current 

below the surface layer (Jacobson, 1983). This current system is known as the “estuarine 

circulation” and is shown schematically in Figure 3.  

 

The Coriolis effect deflects surface currents towards the right, especially in the Seaward 

basin. Ocean water entering the fjord, therefore, always flows along the south side of the 

fjord, while outward currents always flow along the north side (Fig. 4). As a result, large 

volumes of the riverine water recirculate and mix into each basin before leaving the 

Trondheimsfjord after a residence time of ca. 20 days (Jacobson, 1983).  

Sedimentary processes  

Depending on the river discharge, which varies with season, rivers can transport all types 

of grain sizes into the fjords. The coarse component is usually deposited close to the river 

estuary and the re-sedimentation of these sediments may occur as slide and debris flow 

Fig. 4: Surface water circulation pat-

tern during high tide phase A) and low 

tide phase B) (modified after Jacobson, 

1983; and Bierach, 1989). 
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events (Bøe et al., 2003; Bøe et al., 2004; Lyså et al., 2008; L'Heureux et al., 2009; 

L'Heureux et al., 2010; Hansen et al., 2011; L'Heureux et al., 2011). However, the finest 

component of the inorganic fraction may be transported over long distances even beyond 

the fjord. The transport takes place in the brackish surface plume (Fig. 3), above the halo-

cline (Hoskin et al., 1978). Thus, the distance a particle is carried out into the fjord de-

pends on its size, the velocity of the surface current and the stratification of the water 

column. As mentioned above one of the main causes for the surface-layer velocity is the 

freshwater discharge. During periods of high discharge e.g. due to the snow melt in spring, 

the velocity of the fjord's surface water is also high and the water column is well strati-

fied. As a result the suspended material can be transported over long distances. Accord-

ingly, although the fjord is partly very deep, the water masses below the estuarine circula-

tion cell can be described as an energetically relatively low environment and the distribu-

tion of sediments within the fjord are, therefore, largely controlled by the circulation in 

the upper part of the water column (Wendelbo, 1970; Syvitski, 1989). 

Geology 

The geology in the Trondheimsfjord region is characterised by Caledonian nappes along its 

south-eastern side, autochthonous Precambrian granitoid gneisses and Caledonian slivers 

along its north-western side, and a basement window (Tømmerås anticline) exposing Pre-

cambrian volcanic rocks near its north-eastern end (Roberts, 1997). The Caledonian nappes 

belong to the Middle and Upper Allochthon and consist mainly of schist, metagreywacke 

and ophiolitic greenstone, intruded by gabbroic to tonalitic rocks. During the Quaternary, 

glaciers eroded deeply into the bedrock, forming a 1100-1300 m deep basin between 

Trondheim and the Agdenes sill (Rise et al., 2006). The hemipelagic sediments of mostly 

pre-Holocene age have a maximum thickness of up to 750 m (Bøe et al., 2003; Rise et al., 

2006).  
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3  Materials  and methods  

The results presented and discussed in this thesis were obtained by extensive, mostly geo-

chemical but also mineralogical and sedimentological analyses of sixty surface sediment 

samples collected across the entire Trondheimsfjord, plus one entire multicore (MC99-3) 

and the first five meter of a giant piston core (MD99-2292; see also Bøe et al., 2003) both 

recovered from the same location in the fjords Seaward Basin (Fig. 2).  

Organic carbon, bulk elemental geochemistry and grain size analyses 

The elemental composition of the surface- and the multicore sediment samples, retrieved 

from different multicores sliced in 1 cm intervals, were analysed at the ACME Ltd. labora-

tory in Vancouver, British Columbia Canada. Determination was performed by inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) following a four-acid digestion, 

which is considered to be a total digestion method. Prior to sediment sampling the ele-

mental composition of the sediment core MD99-2292 was measured in 0.5 cm steps using 

an Avaatech X-ray fluorescence (XRF) core scanner at EPOC, CNRS/University of Bordeaux 

1, France. Subsequently, sediment slices (1 cm deep, 1.5 cm wide, 7 cm long) were taken 

in a 4 cm interval for further analyses. 

Analyses for total carbon (TC), total organic carbon (Corg) and grain size were performed at 

the Laboratory of the Geological Survey of Norway (NGU). Weight percentages (wt. %) of 

Corg and TC were determined with a LECO SC-444 and Carbonate content was calculated as 

CaCO3 = (TC - Corg) x 8.33. The determination of grain size distribution was performed by 

laser diffraction using a Coulter LS 200 instrument. The analysis was carried out on mate-

rial within a particle diameter range of 0.4–2000 µm.  

Total nitrogen and stable carbon isotope analyses 

Total nitrogen (Ntot in wt%) was determined using a Carlo Erba NC2500 Isoprime elemental 

analyzer isotope ratio mass spectrometer at EPOC, CNRS/University of Bordeaux 1, France. 

The inorganic nitrogen (Ninorg) content was analysed on sediment subsamples treated with 

KOBr-KOH solution to remove organic nitrogen (see Knies et al. (2007) for details) using an 

EA-IRMS (Iso-Analytical Ltd., UK). The organic proportion of the total nitrogen content was 

calculated by subtracting the Ninorg fraction from Ntot. Stable carbon isotopes of the Corg 

fraction (δ13Corg) were measured on decarbonated (10 % HCl) aliquots using an EA-IRMS (Iso-

Analytical Ltd., UK). δ13Corg values are given in per mil vs. Vienna-PDB.  
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Bulk mineral assemblage analyses 

Bulk mineral assemblages were measured via X-ray diffraction (XRD) using a Philips X’Pert 

Pro MD, Cu-radiation (k(alpha) 1.541, 45 kV, 40 mA) and X’Celerator detector system at 

the Central Laboratory for Crystallography and Applied Material Sciences (ZEKAM), Univer-

sity of Bremen, Germany. Quantification of the mineral content was carried out with 

Quantitative Phase-Analysis with X-ray Powder Diffraction (QUAX) (details are given in Vogt 

et al., 2002).  

Chronology 

The chronology of the multicore MC99-3 is based on 210Pb and 137Cs content on neighbouring 

sediment core in the multi-corer rack (MC99-1). 210Pb and 137Cs measurements were per-

formed in a low background, high efficiency, well-shaped γ-detector at EPOC, 

CNRS/University of Bordeaux 1, France. According to the age model of Milzer et al. (2013), 

the sedimentation rate is 0.49 cm/year and the core base age is 1959. The dating error 

increases gradually down core from ±0.07 to ±3.53 years. As changes in sedimentation 

rate, degree of sediment compaction, sediment remobilisation as well as biological activity 

and diffusion can influence the accuracy of the 210Pb analysis, the artificial nuclide 137Cs 

was used to validate the chronology. Distinct 137Cs increases have been found at core 

depths of 12.5 cm and 36.5 cm. According to the age model these depths correspond to 

1986 (±1.7 yr) and 1963 (±3.4 yr), respectively (Milzer et al., 2013). Hence they are in good 

agreement with the nuclear weapon tests fallouts (max. in 1963) and the power plant ac-

cident of Chernobyl in 1986. 

The age model of the upper five meters of the MD99-2292 is based on eight accelerator 

mass spectrometry (AMS) radiocarbon (14C) date measurements and polynomial regression 

between the dates. The 14C-AMS dates were determined on carbonate shell material at the 

Leibniz Laboratory (University of Kiel, Germany) and at the Laboratoire de Mesure du Car-

bone 14 (Gif sur Yvette Cedex, France). We applied a reservoir correction of 400 years 

(ΔR = 0) and converted the radiocarbon dates into calibrated years with the Calib 6.0.1 

software (Stuiver and Reimer, 1993).  

Additional geochemical and instrumental data used 

To identify geochemical proxies for terrestrial input and river discharge in the Trondheims-

fjord we used two additional geochemical data sets including overbank sediments and bed-

rock analyses from the drainage area. The bedrock analyses reflects the chemical composi-

tion of geological units. Overbank sediments (also called alluvial soil, levée or floodplain 

sediments) accumulate during active widespread erosion related to flooding episodes. They 
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are considered to represent the average lithological input of a whole catchment area up-

stream from the sampling site (Ottesen et al., 1989). 

In order to compare our results with the recent climate variability, seasonal and annual 

mean air temperature and precipitation records for the Trondheimsfjord region since 1900 

were obtained from the Norwegian Meteorological Institute (www.eklima.no). Moreover, 

time series (1963 - present) of river discharge for the six largest rivers entering the Trond-

heimsfjord, Gaula, Orkla, Nidelva, Stjørdalselva, Verdalselva and Steinkjerelva (Fig. 2) 

were obtained from the Norwegian Water Resource and Energy Directorate (www.nve.no).  
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4  Summary of papers  

Paper I 

Faust, J.C., Knies, J., Slagstad, T., Vogt, C., Milzer, G., Giraudeau, J., (in review). 

Geochemical composition of Trondheimsfjord surface sediments: Sources and spatial 

variability of marine and terrigenous components. Continental Shelf Research 

This first paper aims to investigate the inorganic/organic geochemistry of surface sedi-

ments and to identify geochemical proxies for terrestrial input and river discharge in the 

Trondheimsfjord, central Norway. Sixty evenly distributed surface sediment samples were 

analysed for their elemental composition, total organic carbon (Corg), nitrogen (Norg) and 

organic carbon stable isotopes (δ13Corg), bulk mineral composition and grain size distribu-

tion. The results indicate carbonate marine productivity to be the main CaCO3 source. A 

strong decreasing gradient of marine-derived organic matter from the entrance towards 

the fjord inner part is consistent with modern primary production data. We show that the 

origin of the organic matter, as well as the distribution of CaCO3 in Trondheimsfjord sedi-

ments can be used as a proxy for the variable inflow of Atlantic water and changes in river 

runoff. Furthermore, the comparison of grain size independent Al-based trace element 

ratios with geochemical analyses from terrigenous sediments and bedrocks provides evi-

dence that the distribution of K/Al, Ni/Al and K/Ni in the fjord sediments reflecte regional 

sources of K and Ni in the northern and southern drainage basin of the Trondheimsfjord, 

respectively. We propose that the application of these findings to temporally well-

constrained sediment records will provide a robust reconstruction of past climate changes 

in central Norway and potentially illuminate both the variability of the North Atlantic Cur-

rent and the North Atlantic Oscillation since the last deglaciation. 

Paper II 

Faust, J.C., Knies, J., Milzer, G., Giraudeau, J., (in review). Terrigenous input to a 

fjord in central Norway records the environmental response to the North Atlantic Oscil-

lation over the past 50 years. The Holocene 

In the second paper we examine instrumental time series and show that the dominant 

mode of the atmospheric circulation in the North Atlantic region, the North Atlantic Oscil-

lation (NAO), has a strong impact on river discharge, temperature, and precipitation in 

central Norway. In addition, elemental composition analysis of a short sediment core re-



Summary of papers  - 19 - 

veals that from 1959 to 2010 winter precipitation and temperature changes are recorded 

by changes in the inorganic geochemical composition of Trondheimsfjord sediments. Ele-

mental ratios of Al/Zr and K/Ni in the sediment core MC99-3 show a close relation to small 

scale, high frequency climate variations and large-scale changes in the Northern Hemi-

sphere climate. Thus, terrigenous input and related erosional processes in the fjord hinter-

land are highly sensitive to atmospheric circulation variability in the North Atlantic region. 

A comparison between the elemental ratio of Al/Zr and NAO records derived from ice ac-

cumulation rates of Norwegian glaciers, western Greenland ice sheets and river discharge 

anomalies in the Eurasian Arctic, supports our assumption that it is possible to reconstruct 

long term NAO variations from sedimentary archives in central Norwegian fjords. 

Paper III 

Faust, J.C., Fabian, K., Milzer, G., Giraudeau, J. Knies, J., (in prep.). North Atlantic 

Oscillation dynamics recorded in central Norwegian fjord sediments during the past 

2800 years. To be submitted to Nature Geoscience  

The objective of the third paper is to establish the first reconstruction of the North At-

lantic Oscillation from marine sediments. By comparing geochemical measurements from a 

short sediment core from the Trondheimsfjord, central Norway with instrumental data we 

show that marine primary productivity proxies are sensitive to NAO changes during the past 

50 years. This result is used to link a 2800 years paleoproductivity record to a reliable 500-

year long winter NAO reconstruction based on early instrumental and documentary proxy 

data and establish a late Holocene high resolution NAO record. We show that NAO variabili-

ties coincide with climatically associated changes in paleo-demographics, northern hemi-

sphere (NH) glacier advances and compared to the recent (300 years or so) NAO variabili-

ties positive/negative phases are more persistent. Furthermore, a strong volcanic eruption 

may have induced the onset of the Little Ice Age (LIA), which is marked by a rapid transi-

tion from a stable positive to a stable negative NAO phase. 
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5  Synthesis  

Fjord deposits have a great potential for providing high-resolution sedimentary records 

that reflect local terrestrial and marine processes and, therefore, offer unique opportuni-

ties for the investigation of sedimentological and geochemical climatically induced proc-

esses. However, the complexity of fjord systems in terms of bathymetry, oceanography 

and sedimentary processes requires a profound knowledge of the fjord constitution before 

starting to interpret climatic signals in Holocene sediment sequences. For this reason, we 

first attempt to provide a comprehensive overview of the Trondheimsfjord environmental 

system by applying a geochemical multiproxy analysis on sixty surface sediment samples 

and compare our findings with available geochemical data from the fjords drainage area. 

Next, we use the gained knowledge to identify possible organic and inorganic geochemical 

climate proxies. The consistency of these proxies is evident from a fifty year long geo-

chemical record paralleled with instrumental data of regional temperature, precipitation, 

river discharge and the NAO. The ultimate result is the first high resolution NAO recon-

struction established on marine sediments based on a 2,800 year long paleoproductivity 

record.   

The main conclusions of this study are:  

 The inorganic geochemical composition of Trondheimsfjord sediments reflects re-

gional differences in the geology of the terrestrial source area. Specifically, green-

stones and metagreywackes located along the southern side of the fjord are the 

main Ni source in Trondheimsfjord sediments. Thus, Ni enters the Trondheimsfjord 

mainly via the rivers Orkla, Gaula and Nidelva directly into the Seaward Basin. On 

the other hand, K and Zr originate largely from Precambrian felsic volcanic rocks 

related to a tectonic window called Tømmerås anticline (see Roberts, 1997 for 

details) in the north-eastern hinterland.  

 Changes in the inorganic geochemical composition of the Trondheimsfjord sedi-

ments are closely related to the variability of Trondheimsfjord regional winter-

spring river runoff, winter air temperature and precipitation which in turn are 

strongly related to changes of the NAO. In particular, K, Ni, Zr and Al are proxies 

for temporal changes in the supply of terrigenous material induced by river runoff, 

air temperature and precipitation and record both small scale, high frequency, and 

large scale long term shifts in Northern Hemisphere climate. 
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 Due to its strong impact on changes of wind, temperature and precipitation in Nor-

way the NAO strongly affects marine primary productivity changes within the 

Trondheimsfjord. Hence, marine primary productivity proxies such as Ca and CaCO3 

can be used to reconstruct NAO variability. 

 Finally, the NAO reconstruction based on marine primary productivity changes re-

veals that late Holocene NAO variability coincides with climatically associated 

changes in paleo-demographics, and Northern Hemisphere glacier advances. Fur-

thermore, a strong volcanic eruption may have induced the onset of the Little Ice 

Age, which is marked by a rapid transition from a stable positive to a stable nega-

tive NAO phase. 
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6  Outlook  

This study shows that Trondheimsfjord sediments have a great potential for high resolution 

climate reconstruction. Further investigations should focus on the inorganic geochemical 

climate proxies presented in this study and test their reliability for long term reconstruc-

tions. In this context, a detailed elemental source to sink study in the Trondheimsfjord 

region could provide important knowledge about the transport mechanisms of individual 

elements from the hinterland into the fjord. Among others, this would help to identify the 

response time of the different proxies and provide a better understanding of the seasonal 

variation of the sediment supply from the main rivers entering the fjord.  

Long-term observation of primary productivity in the Trondheimsfjord could reveal season-

al and NAO induced changes in more detail. Furthermore, a detailed study of the connec-

tion between planktic and benthic marine productivity and their relation to CaCO3 produc-

tion and sedimentation could help to provide a better understanding of the proposed link 

between NAO and CaCO3 in Trondheimsfjord sediments.  

Moreover, Trondheimsfjord sediments should be used to expand the NAO record for the 

entire Holocene. Also, the application of physical modeling studies of the NAO could help 

to constrain potential triggers and main amplifiers for the reconstructed large scale cli-

matic changes.  

As shown in this study, fjord sediments provide the possibility to unveil past atmospheric 

processes. Hence, further investigations of fjord sediments from other parts of the world 

may reveal other atmospheric modes for example the NAO related Arctic Oscillation (AO). 

By combining the findings from different fjords from different continents past atmospheric 

changes can be revealed on a global scale. 
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