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Abstract. Various interpretations of the notion of a trend
in the context of global warming are discussed, contrasting
the difference between viewing a trend as the determinis-
tic response to an external forcing and viewing it as a slow
variation which can be separated from the background spec-
tral continuum of long-range persistent climate noise. The
emphasis in this paper is on the latter notion, and a gen-
eral scheme is presented for testing a multi-parameter trend
model against a null hypothesis which models the observed
climate record as an autocorrelated noise. The scheme is
employed to the instrumental global sea-surface temperature
record and the global land temperature record. A trend model
comprising both monotonic trend and non-monotonic multi-
decadal variability is proposed, represented by a linear plus
an oscillatory trend with period around 70 yr. The statisti-
cal significance of the trends are tested against three differ-
ent null models: first-order autoregressive process, fractional
Gaussian noise, and fractional Brownian motion. The param-
eters of the null models are estimated from the instrumental
record. The estimated linear trend rejects the null indepen-
dent of the strength of the oscillation, but the oscillation am-
plitude rejects the null only if the rising trend is taken as sig-
nificant. The results suggest that the global land record may
be better suited for detection of the global warming signal
than the ocean record.

1 Introduction

At the surface of things, the conceptually simplest approach
to detection of anthropogenic global warming should be the
estimation of trends in global surface temperature through-
out the instrumental observation era starting in the mid-
nineteenth century. These kinds of estimates, however, are
subject to deep controversy and confusion originating from

disagreement about how the notion of a trend should be un-
derstood. In this paper we adopt the view that there are sev-
eral, equally valid, trend definitions. Which one that will
prove most useful depends on the purpose of the analysis and
the availability and quality of observation data.

A central theme in the public debate on climate change has
been how to distinguish anthropogenically forced warming
from natural variability. A complicating factor is that nat-
ural variability has forced as well as internal components.
Power spectra of climatic time series also suggest to separate
internal dynamics into quasiperiodic oscillatory modes and
a continuous and essentially scale-invariant spectral back-
ground. Over a vast range of time scales this background
takes the form of a persistent, fractional noise or motion
(Lovejoy and Schertzer, 2013; Markonis and Koutsoyannis,
2013). Hence, the issue is threefold: (i) to distinguish the cli-
mate response to anthropogenic forcing from the response
to natural forcing, (ii) to distinguish internal dynamics from
forced responses, and (iii) to distinguish oscillatory modes
from the persistent noise background. This conceptual struc-
ture is illustrated by the diagram in Fig. 1a. Figure 1b il-
lustrates three possible trend notions based on this picture.
Fundamental for all is the separation of the observed climate
record into a trend component (also termed the signal) and
a climate noise component. The essential difference between
these notions is how to make this separation.

The widest definition of the trend is to associate it with
all forced variability and oscillatory modes as illustrated by
the upper row in Fig. 1b. With this notion the methodological
challenge will be to develop a systematic approach to extract
the trend from the observed record, and then to demonstrate
that this trend is unlikely to be extracted from a time-record
produced by a persistent noise alone. The physical relevance
of this separation will depend on to what extent we can justify
to interpret the extracted trend as a forced response with in-
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Fig. 1. Diagrams illustrating the interplay between forced, internal,
and natural variability and various definitions of trend. (a): Natu-
ral variability can be both forced and internal. Forced variability
can be both anthropogenic and natural. Internal variability is natu-
ral, but can consist of quasiperiodic oscillatory modes as well as a
continuum of persistent noise. (b): The three different trend notions
discussed in the text.

ternally generated oscillatory modes superposed. If detailed
information on the time evolution of the climate forcing is
not used or is unavailable such a justification is quite diffi-
cult. In this case we will first construct a parameterised model
for the trend based on the appearance of the climate record
at hand and our physical insight about the forcing and the
nature of the dynamics. The next step will be to estimate
the parameters of the trend model by conventional regres-
sion analysis utilising the observed climate record. The justi-
fication of interpreting this trend as something forced and/or
quasiperiodic different from background noise will be done
through a test of the null hypothesis which states that the cli-
mate record can be modelled as a long-range memory (LRM)
stochastic process. Examples of such processes are persistent
fractional Gaussian noises (fGns) or fractional Brownian mo-
tions (fBms). LRM processes exhibit stronger random fluctu-
ations on long time scales than short-memory processes and
hence a null model based on LRM-noise will make it more
difficult to reject the null hypothesis for a given estimated
trend. For comparison we will also test the null hypothesis
against a conventional short-memory notion of climate noise,
the first-order autoregressive process (AR(1)). In general, re-
jection of the null hypothesis is equivalent to stating that the
parameters of the trend model are statistically significant. It
follows that significance can only be proclaimed with refer-
ence to a particular null model. Strictly speaking, rejection of
the null model only tells us that the slow variation of the ob-
served record described by the estimated trend coefficients

are not a part of the background noise, but in combination
with plausible physical mechanisms it will strengthen our
confidence that these trends represent identifiable dynamical
features of the climate system.

A trend can be rendered significant under the AR(1) null
hypothesis, but insignificant under an LRM-hypothesis, and
then it could of course be argued that the value of this
kind of analysis of statistical significance is of little inter-
est, unless one can establish evidence that favours one null
model over another. One can, however, test the null mod-
els against the observation data, and here analysis seems
to favour the fGn/fBm models over short-memory models.
There are dozens of papers that demonstrate scaling prop-
erties consistent with fGn or fBm properties in instrumental
temperature data (see Rypdal et al., 2013, for a short review
and some references). But, since the instrumental records
may be strongly influenced by the increasing trend in anthro-
pogenic forcing, it is difficult to disentangle LRM introduced
by the forcing from that arising from internal, unforced vari-
ability. Detrending methods such as the detrended fluctua-
tion analysis (Kantelhardt et al., 2001) are supposed to do
this, but the short duration of the instrumental records does
not seem to allow us to make an undisputable distinction be-
tween AR(1) and fGn/fBm. We analyse this issue in Sect. 4.2,
where we also comment on the methods and conclusions in
a recent study by Vyushin et al. (2012).

There are also other approaches that favour the LRM mod-
els for description of random internal variability in global
data on time scales from months to centuries. One is based
on analysis of temperature reconstructions for the last millen-
nium prior to the Anthropocene (Rybski et al., 2006; Ryp-
dal et al., 2013). These temperature data are not influenced
by an anthropogenic trend, but exhibit self-similar scaling
properties with spectral exponent β ≈ 1 (to be explained in
Sect. 4.2) on time scales at least up to a century. Short-
memory processes like the AR(1) will typically exhibit scal-
ing with β ∼ 2 up to the autocorrelation time, and a flat
(β ∼ 0) spectrum on time scales longer than this, but this is
not observed in these data. Another line of investigation has
been to use available time-series information about climate
forcing in a parameterised, linear, dynamic-stochastic model
for the climate response (Rypdal and Rypdal, 2014). The
trend then corresponds to the deterministic solution to this
model, i.e. the solution with the known (deterministic) com-
ponent of the forcing. In this model the persistent noise com-
ponent of the temperature record is the response to a white
noise stochastic forcing. In Rypdal and Rypdal (2014) anal-
ysis of the residual obtained by subtracting the deterministic
forced solution from the observed instrumental global tem-
perature record shows scaling properties consistent with an
fGn model and inconsistent with an AR(1) model.

The approach in that paper adopts the trend definition de-
scribed in the second row of Fig. 1b. Here the trend is the
forced variability, while all unforced variability is relegated
to the realm of climate noise.
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The lower row in Fig. 1b depicts the trend notion of fore-
most societal relevance; the forced response to anthropogenic
forcing. Once we have estimated the parameters of the forced
response model, we can also compute the deterministic re-
sponse to the anthropogenic forcing separately. One of the
greatest advantages of the forced-response methodology is
that it allows estimation of this anthropogenic trend/response
and prediction of future trends under given forcing scenar-
ios, subject to rigorous estimates of uncertainty. On the other
hand, that method is based on the assumption that the forcing
data employed are correct. The construction of forcing time
series relies heavily on uncertain observations and model-
ing, hence there is an obvious case for complementary ap-
proaches to trend estimation that do not rely on this kind of
information. This is the approach that will be explored in the
present paper.

2 Background and motivation

Our understanding of climate variability relies on numeri-
cal simulations of the general circulation of atmosphere and
ocean. Such general circulation models (GCMs) embody an
accurate treatment of hydrodynamic flows, along with rep-
resentations of turbulent and irreversible fluid processes, ra-
diation and photochemistry, and land and ocean surface pro-
cesses that involve coarser approximations and empirical pa-
rameters.

2.1 Different paradigms of climate variability

The spatiotemporal fields of climatic variables derived from
such climate models, combined with globally gridded instru-
mental and satellite observation data, have been used to iden-
tify a large number of climate modes, or oscillations, on in-
terannual, decadal, and multidecadal time scales (Flato et
al., 2013; Dijkstra, 2013). The methodology of such iden-
tification relies on the assumption, or paradigm, that the
large scale flows can be described as a (nonlinear) dynam-
ical system whose attractor is low-dimensional. The oscil-
latory modes are thought of as weakly unstable limit cy-
cles on this attractor (Dijkstra, 2013; Ghil et al., 2002). This
“mode paradigm” is contrasted by the “scaling paradigm”
which emphasises the scale-invariant spectral continuum rep-
resented by LRM processes. One rationale for the scaling
paradigm is the analogy between GCMs and models for hy-
drodynamic turbulence. The latter are known to exhibit con-
tinuous spectra that satisfy scaling laws. Another rationale,
that may operate for global records on longer than annual
time scales, may be embodied in (essentially linear) energy
balance models that describe the energy exchange between
different parts of the climate system with different response
times (Rypdal and Rypdal, 2014). As long as such models
are linear, they are characterised by multiple exponential re-
sponse times, but the combination of a few exponential re-

sponses may in practice be indistinguishable from a power-
law response function in short time records. In our opinion
there is little reason to favour one paradigm for the other;
there is strong evidence both for low-dimensional dynam-
ics as well as high-dimensional scaling behaviour in the cli-
mate system. What is questionable, however, is the general
assumption made in the “mode literature” that the spectral
continuum should be modelled as a white or red (short mem-
ory) noise (Mann and Lees, 1996; Ghil et al., 2002).

2.2 Mode decomposition

From the viewpoint of dynamical systems theory the most
satisfying approach to decomposing a time series is the sin-
gular spectrum analysis (SSA) (Elsner and Tsonis, 1996;
Ghil et al., 2002). It is based on the method of delays which
allows one to construct from a single time series of length N
an orbit of so-called time-delay vectors in anM <N dimen-
sional embedding space. Takens’ embedding theorem then
implies that this orbit is topologically equivalent to the or-
bit on the attractor of the underlying dynamical system; pro-
vided the dimension of the attractor does not exceed M/2
(Takens, 1981). If this assumption is not satisfied, the SSA
decomposition can still be made, but like Fourier decompo-
sition, it is not much more than a convenient way of repre-
senting the data, without a clear physical interpretation. The
SSA expands the time series of delay vectors into a sum of
M empirical orthogonal functions (EOFs). These are vec-
tors of dimension M which are eigenvectors of the covari-
ance matrix). The expansion coefficients are time dependent
and are called the principal components (PCs). Their esti-
mated variance is equal to the eigenvalues of the covariance
matrix. From the time series of delay vectors we can recon-
struct the original time series by convolving the PCs with the
EOFs, and the contribution from a given PC with its EOF
is called the reconstructed component (RC). The eigenvalue
corresponding to a given RC measures its contribution to the
total variance. The fact that we can add the variances of the
components to obtain the total variance is a consequence of
the orthogonality of the eigenfunctions. It is common to plot
the eigenvalues (variances) ranked with respect to their mag-
nitude, and truncating the expansion by retaining only RCs
corresponding to eigenvalues above a “noise floor” is con-
sidered as a separation of “the signal” from “the noise.”

The instrumental global temperature time series was stud-
ied with SSA by Ghil and Vautard (1991). They perform no
detrending of the data and find that the two first eigenval-
ues account for 62 % of the total variance. The first of these
has an almost constant EOF and the corresponding RC is
a rising trend. The second EOF is a half anharmonic oscil-
lation and gives rise to the 70 yr oscillatory trend. In SSA
a pure oscillation (it may be anharmonic) should show up
as a pair of eigenvalues with EOFs roughly in quadrature,
like a sine-cosine pair. In the analysis of Ghil and Vautard
(1991) the second eigenvalue and EOF does not belong to
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Fig. 2. The IMFs of an empirical mode decomposition of global
temperature. The monotonic curve labelled (10) is not an IMF, but
the residual trend.

such a pair and they therefore consider the superposition of
the two leading RCs as “the trend.” They further find ten
eigenvalues coming in pairs representing pure oscillations
which they consider significant with respect to a white-noise
null hypothesis, among these one bidecadal oscillation of
period of about 20 yr associated with EOFs 3-4, and one
of period around 5 yr attributed to ENSO. Schlesinger and
Ramankutty (1994) made a similar analysis on detrended
data. The detrending was performed by subtracting the mean
signal from an ensemble of climate model simulations (the
residual record is very similar to the residual analysed by
Rypdal and Rypdal (2014) by scaling methods). The detrend-
ing has the effect of presenting the first two EOFs as a pair
in quadrature, and hence the 70 yr feature as a genuine os-
cillation. Elsner and Tsonis (1994) criticised the claims of
statistical significance of this oscillation by pointing out that
SSA applied to realisations of an AR(1) process easily can
present such EOF pairs, and that the rank-ordered eigenval-
ues of the observed record were inside the 95% confidence
intervals produced by an ensemble of AR(1) realisations.
This was only one contribution in a long debate in the litera-
ture on the statistical significance of oscillations detected by
SSA. It is clear that rank-ordering of eigenvalues may not be
a good test statistic, since eigenvalues of a given rank would
represent different EOFs in each realisation, and the debate
illustrated the problems of finding proper test statistics for
an analysis method as complex as the SSA. Moreover, the
discussion never moved beyond considering short-memory
(autoregressive) null models.

Other methods of data-adaptive decomposition of the
global instrumental record yield approximately the same ris-
ing + oscillatory trend as obtained with SSA. The first two
components in a wavelet decomposition will typically give
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Fig. 3. Red curve is the global temperature record and the black
curve the sum of curves (9) and (10) in Figure 2. The blue curve
is the AMO-index and the magenta curve the corresponding sum of
the two slower components in the empirical mode decomposition.

such a signal (Polonski, 2008), and so will the residual trend
and the slowest intrinsic mode function (IMF) in an empir-
ical mode decomposition (EMD) (Lee and Ouarda, 2011).
In Figure 2 we show these for the global mean temperature
record. IMF(8) is very similar to the leading RC of the de-
trended signal of Schlesinger and Ramankutty (1994). The
sum of these components is shown as the black curve in Fig-
ure 3 on top of the global temperature record. For compari-
son we also show the sum of the two slow components of the
Atlantic Multidecadal Oscillation (AMO)-index.

The idea that we pursue in the forthcoming sections is to
find very simple test statistics which can be used to assess
the significance of these slow trends under different null-
hypotheses of the noise continuum. In principle, we could
have used any of the decompositions discussed above (SSA,
wavelet, or EMD) and formulate a linear combination of the
two slower components as our trend hypothesis in Sect. 4.2.
In Sect. 4 we could have analysed the residual obtained from
subtracting the slower, monotonic component from the ob-
served record, using a fitted amplitude of the oscillatory com-
ponent as a test variable. What we do in the present paper,
however, is to idealise these trend models to embody a su-
perposition of a linear and a sinusoidal component which is
fitted to the observed record. As can be observed in Figure 4f
this yields a slightly poorer representation of the slow varia-
tions of the record than e.g., the two slow EMD components
shown in Figure 3 , but the difference in the two representa-
tions is too small to significantly affect the probability that
rising and oscillatory trends of this magnitude can arise from
a given null model for the noise.
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Fig. 4. In panels (a-e) the red dots represent the estimated trend
coefficients (Â1, Â2)obs and the dashed, closed curve the 95% con-
fidence contour of the distribution P (Â1, Â2). (a): ocean data and
AR(1) null model. (b): land data and AR(1) null model. (c): ocean
data and fGn null model. (d): land data and fGn null model. (e):
ocean data and fBm null model. (f): Black curves: The global ocean
and land temperature records. Red curves: the linear and sinusoidal
trends.

2.3 Spectral methods

The most commonly used techniques to assess the signifi-
cance of oscillations are known as spectral estimation (Ghil
et al., 2002). The majority of advanced methods are aiming at
reducing bias due to the finiteness of the records which hope-
fully leads to precise detection of spectral lines. Plaut et al.
(1995) analyse the 335 yr long central England temperature
record by a combination of SSA and the maximum entropy
spectral method (MEM). The spectral analysis is applied to
the record detrended by subtracting the two leading EOFs,
and hence they miss the 70 yr oscillation. MEM is a paramet-
ric method which assumes as model for the data an autore-
gressive (AR) process of a given order. The number of lines
appearing in the spectrogram depends on the choice of this
order. Since AR-processes are short memory this method can
never capture an LRM continuum. The same is the case with
classical windowing techniques and the multitaper method,
since these methods truncate the tail of the autocorrelation
function (ACF) and hence influence the low-frequency part
of the spectrum. Since there is no physical reason to expect
that the 70 yr feature is a coherent oscillation its significance
against a given null model can be assessed heuristically by
any technique that evaluates the power in the lower frequen-
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Fig. 5. (a): Grey curve shows the periodogram of the 350 yr CET
record on a log-log scale and black crosses the log-binned version
of this periodogram. The red line is the linear fit to the log-binned
points in the f - range marked by the line segment. The line has sloe
−β = −0.33. The red shaded area is the 95% confidence region for
periodograms computed from an ensemble of fGns with β = 0.33.
The blue vertical lines marks the 70 yr period. (b) Shows the same
features for the DFA2 analysis.

cies. This can be done by applying the technique to a Monte
Carlo ensemble of realisations of the null model and compare
the result with that of the observed record. For this purpose
the un-windowed periodogram works fine. For significance
assessment the variance of the estimate is of course impor-
tant, but can be reduced by smoothing of the periodogram.
For scaling analysis the preferred smoothing is to average
the periodogram in bins that appear of equal length on the
log-scale.

If we fit a straight line to the log-log periodogram of the
global temperature record on time scales up to a decade we
will observe that there is more power on time scales from
a decade up to the length of the record than suggested by
this straight line. If we compute the periodogram of the de-
trended record we end up with a broad bump around a period
of 70 yr. This was demonstrated in a recent paper (Rypdal
et al., 2013). Here we showed also that the ACF-estimate of
the undetrended record is way outside the confidence region
of the fGn-ensemble, and that the third-order polynomially
detrended record exhibits an oscillating ACF whose ampli-
tude exceeds the 95% confidence region for the null ensem-
ble (but only by a small margin). Significance of the 70 yr
time scale variability can also be thought of as significance
of the spectral bump at this period in the detrended record.
A test that can be considered as the spectral analog to the
ACF and to the test described in Section 4 can be made by
creating a null ensemble of fGns with β equal to the slope
of the fitted line in Figure 5, and then compute periodograms
for each realisation. The ensemble of periodograms allows
us to compute 95% confidence intervals for the spectrum.
If the spectral bump lies outside this confidence region, the
null hypothesis is rejected and we may consider the 70 yr
feature significant. The result of this analysis is presented in
Figure 5a, and shows that the bump is located at the edge of
the 95% confidence interval for the log-binned spectrum. In
Figure 5b we perform a similar analysis with another estima-
tor, the second-order detrended fluctuation analysis (DFA2),
which is described in Rypdal et al. (2013). All three estima-
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tors (ACF, periodogram, DFA2) show that the multidecadal
oscillation appears to be at the margin of the 95% confidence
interval for the fGn-null ensemble. Without linear or higher
order polynomial detrending, the low-frequency variability
is way outside the confidence region for the ACF and peri-
odogram, indicating the clear significance of the rising trend.
DFA2 removes linear trends, so for this estimator we do not
have to perform a detrending to assess the significance of the
oscillation. The greatest weakness of these tests is the large
variance of the test variables. This is a major motivation for
searching for a test that is able to separate the large-scale
fluctuations in the noise from the corresponding fluctuation
in the observed signal.

3 Trend detection methodology

3.1 The null models

The noise modeling in this paper makes use of the concept of
long-range memory (LRM), or (equivalently) long-term per-
sistence (LTP) (Beran, 1994). In global temperature records
this has been studied in e.g. Pelletier and Turcotte (1999),
Lennartz and Bunde (2009), Rybski et al. (2006), Rypdal
and Rypdal (2010, 2014), Efstathiou et al. (2011) and Rypdal
et al. (2013). Emanating from these studies is the recogni-
tion that ocean temperature is more persistent than land tem-
perature and that the 20’th century rising trend is stronger
for land than for ocean, confirming results established by
CMIP3/5 climate-model studies. LRM in stationary time-
series is characterized by a time-asymptotic (t→∞) auto-
correlation function (ACF) of power-law form C(t)∼ tβ−1

for which the integral
∫∞

0
C(t)dt diverges. Here β < 1 is

a power-law exponent indicating the degree of persistence.
The corresponding asymptotic (f → 0) power spectral den-
sity (PSD) has the form S(f)∼ f−β , hence β is also called
the spectral index of the LRM process. For 0< β < 1 the
process is stationary and is termed a persistent fGn. For
β > 1 the ACF does not exist, but the spectral density estima-
tor called the periodogram (Beran, 1994) does exist and the
resulting non-stationary process is termed a fractional Brow-
nian motion (fBm). As a short-memory alternative we shall
also consider the AR(1) process which has an exponentially
decaying ACF and is completely characterized by the lag-one
autocorrelation φ (von Storch and Zwiers, 1999).

3.2 Previous work using LRM null models

Bloomfield and Nychka (1992) studied the significance of
a linear trend in 128 years of global temperature assuming
different stochastic models, including fractionally integrated
white noise. They found that the trend in the record could not
be explained as natural variability by any of the models.

Significance of linear trends under various null models,
some exhibiting LRM, was also studied by Cohn and Lins
(2005). One of their main points was that trends classified as

statistically significant under a short-memory null hypothe-
sis might end up as insignificant under an LRM hypothesis.
The paper is a theoretical study of trend significance and is
motivated by the strong persistence which is known to ex-
ist in hydroclimatic records. As an example they study the
Northern Hemisphere (NH) temperature record and find that
their test renders the trend insignificant under the LRM null
hypothesis. They conclude that the trend might be due to nat-
ural dynamics. Analyses with similar and other methodolo-
gies on other records indicate that the global trend signal is
significant in spite of LRM (Gil-Alana, 2005; Rybski et al.,
2006; Lennartz and Bunde, 2009; Halley and Kugiumtzis,
2011; Rypdal et al., 2013). We show in the present paper
that the global land temperature record turns out to exhibit
a stronger trend and weaker LRM than the NH temperature
which is sufficient to establish trend significance. In contrast,
the weaker trend and stronger LRM of global ocean temper-
ature yield a less significant trend for this signal.

Some recent papers on LRM and trends are Fatichi et al.
(2009), Rybski and Bunde (2009), Franzke (2009, 2010,
2012a,b), Franzke and Woollings (2011) and Franzke et al.
(2012). Fatichi et al. (2009) and Rybski and Bunde (2009)
study station temperatures under different LRM null hy-
potheses, and find significant linear trends in some, but not
all, of the records. Franzke (2012b) applies a methodology
similar to that of Cohn and Lins (2005) to single-station tem-
perature records in the Arctic Eurasian region. He empha-
sises that almost all stations show a positive trend, and that
the melting of Arctic sea ice leaves no doubt about the reality
of an anthropogenic warming signal in the Arctic. By evalu-
ating all station data together, for instance by analysing the
regional averaged temperature, one would most likely arrive
at a significant trend. His point is that the natural variability
for single stations is so large and long-range correlated that
it may mask the warming signal at the majority of individual
stations at the present stage of global warming. We believe
that his is an important message to convey to policymakers.

3.3 Hypothesis testing methodology

In the present paper our main objective is to assess the signif-
icance of a multidecadal oscillation-like variability in global
temperature, which appears to have larger amplitude than one
can expect from a coloured noise whose parameters are de-
termined from the short-time scale statistics of the observed
record. The observational basis for the existence of such
an oscillation has recently been extended by Crowley et al.
(2014), who developed a global multiproxy reconstruction
for the period 1782–1984 AD. By subtracting the regressed
response to the reconstructed greenhouse-gas forcing, the os-
cillation appears in a persuasive fashion and strongly cor-
related with the AMO-index. A secondary objective is to
quantify the linear trend significance of the global land and
ocean data sets under short-range as well as long-range cor-
related null models. The significance assessment of the linear



L. Østvand et al.: Statistical significance of trends in global temperature 7

trend is the motivation for introducing the linear+oscillatory
trend model in this section. Acknowledging the existing over-
whelming evidence for an anthropogenic rising trend from
physical as well as statistical evaluation of observation data,
a model that takes this trend as given is chosen in Sect. 4
for a more informed assessment of significance of the mul-
tidecadal oscillation. From the studies discussed above, we
know that there are many temperature records from which
this significance cannot be established under an LRM null
hypothesis, so we should search for a signal that is optimal
for trend detection. Such an optimal signal seems to be the in-
strumental global land temperature record CRUTEM4 (Jones
et al., 2012). We will contrast this with analysis of the global
ocean record HadSST3 (Kennedy et al., 2011). These records
are land-air and sea-surface temperature anomalies relative
to the period 1961-90, with monthly resolution from 1850 to
date. The analysis is made using a trend model which con-
tains a linear plus a sinusoidal trend, although the methodol-
ogy developed works for any parameterised trend model. We
test this model against the null model that the full tempera-
ture record is a realization of an AR(1) process, an fGn, or
an fBm (the fBm model is of interest only for the strongly
persistent ocean data).

The significance tests are based on generation of an en-
semble of synthetic realisations of the null models; AR(1)
processes (φ < 1), fGns (0< β < 1), and fBms (1< β < 3).
Each realisation is fully characterized by a pair of param-
eters; θ ≡ (σ,φ) for AR(1) and θ ≡ (σ,β) for fGn and fBm,
where σ is the standard deviation of the stationary AR(1) and
fGn processes and the standard deviation of the differenced
fBm. For an LRM null model the estimated value of β̂ de-
pends on which null model (fGn or fBm) one adopts. As we
will show below, for ocean data, it is not so clear whether
an fGn or an fBm is the most proper model (Lennartz and
Bunde, 2009; Rypdal et al., 2013), so we will test the signif-
icance of the trends under both hypotheses.

The standard method for establishing a trend in time-series
data is to adopt a parameterised model T (A; t) for the trend,
e.g. a linear model A1 +A2t with parameters A= (A1,A2),
and estimate the model parameters by a least-square fit of the
model to the data. Another method, which brings along addi-
tional meaning to the trend concept, is the MLE method. This
method adopts a model for the stochastic process; x(t) =
T (A; t) +σw(t), where w(t) is a correlated or uncorrelated
random process and establishes the set of model parameters
A for which the likelihood of the stochastic model to pro-
duce the observed data attains its maximum. The method ap-
plied to uncorrelated and Gaussian noise models is described
in many standard statistics texts (von Storch and Zwiers,
1999), and its application to fGns is described in McLeod
et al. (2007). If w(t) is a Gaussian, independent and identi-
cally distributed (i.i.d.) random process, the MLE is equiv-
alent to the least-square fit. If w(t) is a strongly correlated
(e.g. LRM) process, and the trend model provides a poor
description of the large-scale structures in the data, MLE

may assign more weight to the random process (greater σ)
than the least-square method. On the other hand, if the trend
model is chosen such that it can be fitted to yield a good
description of the large-scale structure, the parameters esti-
mated by the two methods are quite similar, even ifw(t) used
in the MLE method is an LRM process. In this case we can
use least-square fit to establish the trend parameters without
worrying about whether the residual noise obtained after sub-
tracting the estimated trend can be modelled as a Gaussian,
i.i.d. random process.

In the following, we make some definitions and outline
the methodology we adopt to assess the significance of the
estimated trend. Concepts defined are named with bold-face
fonts. Our methodology is based on standard hypothesis test-
ing, where the trend hypothesis (termed the “alternative hy-
pothesis”) is said to be statistically significant by rejection of
a “null hypothesis.” Failure of rejection of the null hypothesis
implies that the alternative hypothesis, and hence the trend,
will be characterised as insignificant under this null hypoth-
esis. Hence, it is clear that the outcome of the significance
test will depend on the choice of alternative hypothesis (trend
model) as well as on the null hypothesis (noise model).

Let us take the pragmatic point of view that a trend is a
simple and slowly varying (compared to a predefined time
scale τ ) function T (A; t) of t, parameterised by the trend co-
efficients A= (A1, . . . ,An). It is also required that for the
optimal choice of parameters, A= Âobs the trend T (Âobs; t)
makes a good fit to the large-scale structure of the data
record. In practice, this means that the trend should be close
to a low-pass filtered version of the signal, for instance a
moving average over time-scale τ . The trend is significant
with respect to a particular null model if the fitted T (Âobs; t)
is very unlikely to be realised in an ensemble of fits T (Â; t)
to realisations of the null model.

The alternative hypothesis can be formulated as follows:
The observed record x(t) is a realisation of the stochastic
process

T (A; t) +σw(t), (1)

where the trend T (A; t) is a specified function of t depend-
ing on the trend coefficients A= (A1, . . . ,An), and w(t) is
a Gaussian stationary random process of unit variance. These
coefficients are estimated from a least-square fit to x(t) and
have the values Âobs. We assume that the trend model can be
fitted so well to the data that MLE-estimates of A with dif-
ferent noise models (white noise vs. strongly persistent fGn)
give approximately the same Âobs.

The null hypothesis states that the record x(t) is a realisa-
tion of a stochastic process

ε(θ; t), (2)

e.g. an AR(1), fGn, or fBm process. The parameters θ are
close to the values θ̂obs found from estimating it from fitting
the null model (2) to the data record by means of MLE. What
this means is explained below.
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In the heuristic estimates described in Sect. 2.3 (Figure 5)
we formed the null ensemble with the estimated parameters
θ̂obs. This does not account for the uncertainty of that esti-
mate. In order to obtain a more representative null ensem-
ble it should be created from drawing θ from a distribution
P (θ|θ̂obs) centered around θ̂obs representing this uncertainty.
This distribution can be found using the bootstrap method,
which assumes that the error in the parameter estimates in the
null model with the true parameters θtrue can be well approx-
imated by the corresponding errors for the null model with
parameters θ̂obs. We obtain the distribution by creating the
Monte Carlo null ensemble xi(θ̂obs) , i= 1,2, . . . When esti-
mation errors are quantified one can easily adjust for these in
the hypothesis tests.

Pseudotrend estimates Â(i) are the coefficients obtained
by least-square fit of the trend model T (A; t) to the realisa-
tions xi(θ; t) of the null ensemble.

Pseudotrend distribution is the n-dimensional PDF
P (Â) over the null ensemble.

Null-hypothesis confidence region is the region Ω in n-
dimensional A-space for which P (A)> Pthr, where Pthr is
chosen such that

∫
Ω
P (A)dA= 0.95.

Significance of the trend model is established if the null
hypothesis is rejected, e.g., the full n-dimensional trend is
95% significant if Âobs /∈ Ω.

If the null hypothesis is rejected by this procedure, we are
rejecting only those qualities of the null model that are rel-
evant to the full trend model. More precisely, we are testing
only the coefficients (Â1, Â2) for the pseudotrends estimated
for the null ensemble, i.e., for the slow variability of the reali-
sations of that ensemble. Hence, we do not test for the short-
term variability, so rejection of the null does not mean that
we reject that the null can describe correctly the short-term
variability. This is an important point, because the short-term
variability of the observed record is used to estimate the pa-
rameters of the null model. Here MLE is the appropriate es-
timation method, since this method puts stronger weight on
the short time scales for which we have better statistics.

3.4 The trend model explored in this work

We will apply the method described in the previous subsec-
tion to global temperature record using the following trend
model:

T (A; t) = δ+A1t+A2 sin(2πft+ϕ). (3)

When estimating pseudotrends it has little meaning to let f
be a free parameter, since the synthetic noise records contain
no preferred frequencies. We rather treat f as a fixed quan-
tity which is an inherent part of the alternative hypothesis. In
practice we select f from a least-square fit of the trend model
to the observed record varying all five parameters including
f , but this is not essential. We could just as well have hypoth-
esized a reasonable value of f by inspection of the record or
from other evidence of this oscillation presented in the litera-

ture. The important thing to keep in mind is that the value of
f is part of the hypothesis. Of the estimated pseudotrend co-
efficients (Â1, Â2, δ̂, ϕ̂) only (Â1, Â2) quantify the strength
of the trend, so the relevant pseudotrend distribution to es-
tablish is P (Â1, Â2) irrespective of the values of irrelevant
parameters (δ̂, ϕ̂).

Table 1 shows the estimated θ̂obs according to the null
model in Eq. (2) using AR(1), fGn and fBm as the stochastic
process ε(θ; t). Also in this table are the estimated trend pa-
rameters (Â1, Â2) from applying the trend model in Eq. (3)
and the period T = 1/f of the oscillatory trend. Since, as
mentioned above, this period has been selected from a fitting
procedure it has slightly different values for the ocean and
land records.

3.5 Results

The results of the analysis are shown in Fig. 4. We observe
that the trend parameters (Â1, Â2)obs are outside the null-
hypothesis 95 % confidence region for all three noise models
and for ocean as well as land records. But we also observe
that the significance is more evident for land than for ocean,
and is reduced as more strongly persistent noise models are
employed. For the fBm model applied to ocean data the trend
is barely outside the 95 % confidence region.

It is the full trend model (Eq. 3) that is rendered signif-
icant by this test, but something can also be said about the
separate significance of the individual trends represented by
the individual trend coefficients from the pseudotrend distri-
bution P (Â1, Â2). For the AR(1) and fGn null models it is
apparent from Fig. 4a–d that the linear trend is highly signif-
icant since Â1,obs is located far to the right of the confidence
region. On the other hand, except for the AR(1) model ap-
plied to land data in Fig. 4b, A2,obs is not totally above the
confidence region. This means that the linear pseudotrends
observed in the null ensemble has negligible chance of get-
ting near the observed trend, while there is some chance to
find oscillatory trends in the null ensemble which are as large
as Â2,obs. The significance of those separate trends against
these null models is determined by forming the separate one-
dimensional PDFs,P (Â1)≡

∫
P (Â1, Â2)dÂ2 andP (Â2)≡∫

P (Â1, Â2)dÂ1 and form the confidence intervals in the
standard way. In Fig. 6 we have formed the corresponding
one-dimensional cumulative distribution functions (CDFs)
from the two-dimensional PDFs for ocean data shown in
Fig. 4a, c, and e. We observe that the linear trend is signifi-
cant for the AR(1) and fGn null models, but barely significant
for the fBm model. The oscillatory trend is insignificant for
all models.

The corresponding CDFs for land data are shown in Fig. 7.
The linear trend is even more significant than for ocean data,
while the oscillatory trend is significant for the AR(1) model,
but barely significant for the fGn model.

One important lesson to learn from this analysis is that the
stronger persistence in the ocean temperature record makes
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Table 1. Estimated noise parameters θ̂obs from the null hypotheses in Eq. (2) and trend parameters Âobs estimated from the trend model
(Eq. 3). The units for the trend estimation are months for τ̂obs, 10−3 ◦C yr−1 for Â1,2,obs, and yr for the oscillation period T .

AR(1) fGn fBm Trend
τ̂obs β̂obs σ̂obs β̂obs σ̂obs Â1,obs Â2,obs T

Ocean 21.3 0.994 0.25 1.45 0.086 4.21 0.128 69.7
Land 3.43 0.654 0.49 6.34 0.186 73.4
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Fig. 6. Curved lines are CDFs for trend coeffecients Â1 and Â2

established from the null model ensemble for ocean data. Vertical
dashed line marks the upper 95% confidence limit. Vertical solid
line marks Â1,2,obs. (a) and (b): AR(1) null model. (c) and (d): fGn
null model. (e) and (f): fBm null model.

it harder to detect significant trends as compared to the land
record. This effect outweighs the increased trend significance
from the lower noise levels in the ocean record compared to
the land record. Another is that the land record analysis es-
tablishes beyond doubt that there is a significant global linear
trend throughout the last century, and that the reality of an
oscillatory trend is probable, but not beyond the 95 % con-
fidence limit. The latter conclusion should be taken with a
grain of salt, however, since according to Figure 4 it is based
on a null hypothesis that has already been rejected by the
data; a null model that seeks to explain all variability as a
noise process has been rejected (at least in land data) by
a highly significant linear trend. Hence, for a more precise
evaluation of the significance of the oscillation we should
choose a null model that is not already rejected by the ob-
served linear trend.

-6 -4 -2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

A1 +10-3 ÎCsyear/

C
D
F

-0.1 0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

A2 +ÎC/

C
D
F

-6 -4 -2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

A1 +10-3 ÎCsyear/
C
D
F

-0.1 0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

A2 +ÎC/

C
D
F

(a) (b)

(c) (d)

Fig. 7. Curved lines are CDFs for trend coeffecients Â1 and Â2

established from the null model ensemble for land data. Vertical
dashed line marks the upper 95% confidence limit. Vertical solid
lines mark Â1,2,obs. (a) and (b): AR(1) null model. (c) and (d): fGn
null model.

4 Constraining and evaluating the null hypothesis

The simplest approach when studying the stationary compo-
nent of a time series is to subtract an estimated linear trend.
In effect this is what we do in the next subsection, although
we allow for uncertainty in this trend through pseudotrends
in the Monte Carlo ensemble.

4.1 A constrained null model yields significant oscilla-
tion

A more constrained null hypothesis is obtained by including
the estimated trend in the null hypothesis:

δ̂obs + Â1,obst+ ε(θ; t) (4)

We now first estimate a new θ̂obs by fitting the new null model
(4) to the observed land record.

The new estimated noise parameters are shown in Table 2,
and we observe that all noise parameters are reduced com-
pared to Table 1. Then we produce a new null ensemble of
records from the null model by drawing θ from the condi-
tional distribution P (θ|θ̂obs). Finally we fit the trend model
(3) to each realisation in the ensemble and form P (Â1, Â2).
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Table 2. Estimated noise parameters θ̂obs from the new null hy-
potheses in Eq. (4). The units are same as in Table 1.

AR(1) fGn
τ̂obs β̂obs σ̂obs

Land 2.04 0.584 0.391
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Fig. 8. (a): The 95% confidence contour of the distribution
P (Â1, Â2) for land data obtained by the new null model (4) with
ε(θ; t) an fGn process. (b): The CDF derived from P (Â2) for this
null model, with upper 95% confidence limit marked as dotted ver-
tical line.

The result is shown for land data and ε(θ; t) modelled as an
fGn in Figure 8a. The inclusion of the linear trend in the
null model will imply that we shall fit ε(θ; t) to the record
x̃(t)≡ x(t)− (δ̂obs + Â1,obst) rather than to x(t), i.e, that we
estimate noise parameters from linearly detrended data. The
variability of x̃(t) is considerably less than the variability of
x(t) and hence the new estimated noise parameters θ̂obs cor-
respond to smaller σ̂obs and β̂obs than we obtained for the
original null model. This reduction in noise parameters leads
to narrowing of P (Â1, Â2), and a narrower CDF for the os-
cillation trend parameter Â2, as shown in Figure 8b. This new
test suggests that the oscillatory trend is also significant. It is
easy to to show that if we use the same parameters θ in the
noise process ε(θ; t) for the two null models, the only differ-
ence between Figure 4 and Figure 8 would be a shift to right
of the confidence contour by an amount Â1,obs, and there
would be no change in significance of the oscillating trend.
Hence the only reason for such a change is the reassessment
of the noise parameters after detrending. The MLE method
used to estimate these parameters should be rather insensitive
to a linear trend, but in this case the sensitivity is sufficient to
make difference.

4.2 Evaluation of the null model

The long-range memory associated with fractional noises
and motions gives rise to larger fluctuations on long time
scales that allows description of such variability as part of
the noise background rather as trends. The implication is that
variability which has to be described as significant trends un-
der white noise or short-memory noise hypotheses may have

to be classified as insignificant trends under an LRM null
hypothesis. The issue of the most proper choice of null hy-
pothesis was touched upon in Sect. , but let us re-examine the
issue in the light of the results we have obtained so far.

One way to deal with this issue is to apply an estimator
that characterizes the correlation structure of the observed
record and compare the outcome with those arising from ap-
plying the same estimator to different models for the climate-
noise background. There are several estimators, for instance
wavelet variances and detrended fluctuation analysis, that are
well suited for extracting the scaling properties of a time se-
ries and estimating a β-exponent. For LRM processes such as
fBm and fGn (which are respectively self-similar processes
and the differences of self-similar processes) the fluctuation
level of a time series varies as a power law vs. time scale τ ,
and one can therefore analyse data using double-logarithmic
plots of the so-called fluctuation functions. For processes
with a characteristic time scale τc, such as the AR(1) pro-
cesses, the fluctuation functions will not be power laws, and
this can be seen from the estimated fluctuation functions. For
an AR(1) process, which has an autocorrelation function on
the form e−t/τc , the time series behaves like a Brownian mo-
tion (β = 2) for time scales t� τc and a white noise process
(β = 0) for t� τc. If a time series is sufficiently long, the
crossover between these two scaling regimes is clearly vis-
ible in the estimated fluctuation functions, and since we do
not observe such crossovers in global temperature records,
we can use fluctuation functions to illustrate that LRM pro-
cesses are better suited than AR(1) processes as models for
the global temperature. This idea is pursued in Rypdal and
Rypdal (2014), where detrended fluctuation analysis is em-
ployed to show that a residual signal (constructed by sub-
tracting the deterministic response to the external forcing) is
inconsistent with an AR(1) process, but consistent with an
LRM process.

The test described above utilizes a method designed to es-
timate the scaling exponent β in LRM processes. As an al-
ternative, we can use a test based on an estimator for the
correlation time τc in an AR(1) process. For this test we
should think of our time series as a discrete-time sampling
of a continuous-time stochastic process. The continuous-time
analog of an AR(1) process is the Ornstein–Uhlenbeck (OU)
process. If a time series Tk is obtained from an OU process
by sampling it at times tk = k∆t, then the one-lag autocor-
relation of Tk is φ(∆t) = e−∆t/τc . We can obtain a standard
sample estimate φ̂(∆t) of the lag-one autocorrelation, and
from this we obtain an estimate of the correlation time:

τ̂c =
∆t

− log φ̂(∆t)
. (5)

Monte Carlo simulations show that this estimate is indepen-
dent of ∆t, as long as ∆t < τc. However, if the process
is an fGn rather than an OU process, then the autocorrela-
tion function of the time series Tk is approximated well by
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(β+ 1)β(k∆t)β−1, and hence the lag-one autocorrelation is

φ(∆t) ≈ (β+ 1)β∆tβ−1 .

If τc is defined via τc = ∆t/(− logφ(∆t)), then

τc =
∆t

− log(β+ 1)β− (β− 1) log∆t
.

This shows that OU processes and fGns can be distinguished
by how an estimator of the correlation length depends on the
sampling rate for the time series: For an OU process the es-
timate of τc is independent of ∆t as long as ∆t < τc, and
for fGns the estimates of τc grow with ∆t. In Figs. 9 and 10
we have plotted the estimates of τc according to Eq. (5) for
ocean and land temperatures respectively, with and without
linear detrending. For the land temperature, full detrending
(removing the trend Eq. 3) is also included. The estimates
are shown as the circular plot markers in the figures. There
is a clear increase in the τc estimate as ∆t varies from 1 to
30 months. We have compared the results with Monte Carlo
simulation of a white noise process, OU processes, fGns and
fBms. Here the synthetic temperature series are constructed
using parameters obtained by MLE. For the ocean tempera-
ture without detrending the test shows that the data is most
consistent with a nonstationary fBm, and after linear detrend-
ing it is more consistent with an fGn than with an OU pro-
cess. For the land temperature we observe that neither of the
processes fit the data unless we perform a detrending, and
for the detrended data there are only small differences be-
tween a white noise process, an OU process and the fGn with
β = 0.54. The reason for this is that the ML estimate of τc is
so small (close to the monthly time resolution of the tempera-
ture record) that the model OU process is effectively reduced
to a white noise on all resolved time scales. The white noise
process is a special case of an fGn, so the fGn class of pro-
cesses is clearly preferred in this case as well, although the
test presented here is not suitable for estimating the β expo-
nent. There are other tests that are better suited for accurate
estimation of β, and if we apply these we will see that a per-
sistent process (β > 0) is a better model for detrended land
temperatures than white noise (β = 0) (Rypdal et al., 2013).

The model selection test we have described here illustrates
the important point that if one decides to model global tem-
perature fluctuations as OU processes, then the choice of op-
timal model depends strongly on the time resolution of the
time series. The same is not true for fGns and fBms, and this
reflects the fact that global temperature data to a good ap-
proximation are scale invariant.

The method presented here can be seen as a generalization
of the method presented by Vyushin et al. (2012), who at-
tempt to distinguish between scale-free processes and AR(1)
processes by considering estimates of φ(∆t) for two different
time resolutions ∆t (monthly and annual). However, our re-
sults show that this test fails if the estimated τc is less than
a year, which turns out to be the case for the land record.
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Fig. 9. Panels (a) and (b) show the stimated decorrelation time τc
as a function of sampling time ∆t for the ocean temperature (black
circles) and for ensembles of synthetic realisations of three differ-
ent stochastic processes: An OU process (cyan) in panel (a), and
fGns (red) and fBms (green) in panel (b). The synthetic processes
are generated with parameters estimated from the observed record
by the MLE method, and the colored areas are the 95% confidence
regions for these estimates. The gray area in panel (a) is the con-
fidence region for τc for a white noise process. Panels (c) and (d)
show the decorrelation time of the linearly detrended ocean temper-
ature and for the synthetic realisations of the processes generated
from the new null model; equation (4).

Vyushin et al. (2012) analyse a large number of local and
regional time series and find that some are consistent with
fGns, other with AR(1)s, but most are inconsistent with both.
It is reasonable to expect that many of these records are in the
category for which the test fails.

5 Conclusions

In this paper we have attempted to classify the various pos-
sible ways to understand the notion of a trend in the climate
context, and then we have focused on the detection of a com-
bination of a rising and oscillatory trend in global ocean and
land instrumental data when no information about the cli-
mate forcing is used. It is well known that the statistical sig-
nificance of the trends depends on the degree of autocorre-
lation (memory) assumed for the random noise component
of the climate record (Cohn and Lins, 2005; Rybski et al.,
2006; Rybski and Bunde, 2009). It is also known that the lin-
ear trends are easier to detect and appear to be more signifi-
cant in global than in local data (Lennartz and Bunde, 2009),
although local records exhibit weaker long-term persistence
than global records. Despite this fact, much effort is spent on
establishing trends and their significance in data from local
stations (e.g. Franzke, 2012b) with variable results. The fail-
ure of detecting consistent trends in local data records reflects
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Fig. 10. Panels (a) and (b) show the estimated decorrelation time τc
as a function of sampling time ∆t for the land temperature (black
circles) and for ensembles of synthetic realisations of three different
stochastic processes: An OU process (cyan) in panel (a), and fGns
(red) in panel (b). The synthetic processes are generated with pa-
rameters estimated from the observed record by the MLE method,
and the colored areas are the 95% confidence regions for these es-
timates. The gray area in panel (a) is the confidence region for τc
from a white noise process. Panels (c) and (d) show the decorre-
lation time of the linearly detrended land temperature and for the
synthetic realisations of the processes generated from the new null
model; equation (4). Panels (e) and (f) show the decorrelation time
of the land temperature after removing the full trend; equation (3),
and for the synthetic realisations of the processes generated from
the detrended record by the MLE method.

the tendency of internal spatiotemporal variability to mask
the trend that signals global warming, and we believe there-
fore that investigation of such trends should be performed
on globally averaged data. For global data records our study
demonstrates very clearly that the long-range memory ob-
served in sea-surface temperature data leads to lower signifi-
cance of detected trends compared to land data. This does not
mean, of course, that the global warming signal and internal
oscillations are not present in all of those records. It is just
not possible to establish the statistical significance of these
trends from these records alone, since the large short-range
weather noise in local temperatures and the slower fluctua-
tions in ocean temperature both reduce the possibilities of
trend detection. Hence, one needs to search for the optimal
climate record to analyse for detection of the global warming

signal, and our results suggest that the global land tempera-
ture signal may be the best candidate for such trend studies.

While a linear trend is only marginally significant un-
der the long-range memory null hypothesis in ocean data,
it is clearly significant in land data. Hence, there should be
no doubt about the significance of a global warming signal
over the last 160 years even under null hypotheses presum-
ing strong long-range persistence of the climate noise.

Assessment of the statistical significance of a linear trend
is of course not the only way to detect the global warming
signal in temperature records. An alternative hypothesis in
the form of a second- or third-order polynomial trend would
give a more precise, but more technically complex assess-
ment. Other approaches are not based on trend estimates at
all. Some methods compare spatiotemporal observations to
patterns of natural variability obtained from global climate
models. These patterns represent the null model, and the de-
tection is typically performed through “fingerprint methods”
rather than using just single observable such as the global
temperature (Hasselmann, 1993; Hegerl, 1996). The validity
of the method depends, of course, on the assumption that the
climate model correctly describes the relevant aspects of the
pattern of natural variability, e.g. the long-range correlation
structure in space and time. This is not an obvious assump-
tion, since there are significant differences between climate
models in this respect (Govindan et al., 2001; Blender and
Fraedrich, 2003).

Other methods are based on null models like those con-
sidered in the present paper, but rather than estimating trends
one estimates the probability of observing the recent cluster-
ing of record-breaking temperatures at the end of the instru-
mental record (Zorita et al., 2008). The method is concep-
tually and technically simpler than the trend assessment, but
it depends crucially on the assumption that the null model
is strictly true on the shortest inter-annual time scales, since
it assumes that the probability of variation from one year to
the next is determined by this model. In contrast, the trend as-
sessment emphasizes the properties of the null model on time
scales up to a century, so it rather assumes the null model
is strictly true on multi-decadal to century scales. The two
approaches are complementary, but we believe the trend ap-
proach is better designed to detect the smooth, monotonic
global warming signal, since it will be insensitive to particu-
lar interannual to decadal variability such as ENSO, or vari-
ability due to forcing from clusters of volcanic eruptions or
solar-cycle variations. The elimination of these variabilities
may be important for detection of the anthropogenic trend, as
was shown by multiple regression techniques by Foster and
Rahmstorf (2011) and Lean and Rind (2009). Moreover, in
the approach of Zorita et al. (2008) inclusion of the 70 year
oscillation in the null model would lead to enhanced proba-
bility of clustering of record-breaking temperatures at the end
of the twentieth century, and hence a reduction of the signifi-
cance of the warming signal. These are examples illustrating
that one may arrive at misleading results without careful se-
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lection of the alternative as well as null models based on the
data at hand and existing knowledge.

Our initial analysis leaves some doubt about the signifi-
cance of the 70 year oscillatory mode in the global signal,
as shown in Figs. 6d, f and 7d. However, utilizing the es-
tablished significance of a linear trend to formulate a con-
strained null hypothesis, we are able to establish statistical
significance of the oscillatory trend in the land data record.
We believe this is an important result, because it means that
we cannot dismiss this oscillation as a spontaneous random
fluctuation in the climate noise background. By the analysis
presented here we cannot decide whether this oscillation is an
internal mode in the climate system or an oscillation forced
by some external influence. Such insights can be obtained
from a generalization of the response model of Rypdal and
Rypdal (2014) by employing information about the climate
forcing, and will be the subject of a forthcoming paper. There
are various published hypotheses about the nature of this os-
cillation. The least controversial is that this is a global man-
ifestation of the Atlantic Multidecadal Oscillation (AMO)
which is essentially an internal climate mode (Schlesinger
and Ramankutty, 1994). Some authors go further and sug-
gest that this oscillation is synchronized and phase locked
with some astronomical influence (Scafetta, 2011, 2012). Al-
though some of these suggestions seem very speculative,
there are some quite well-documented connections between
periodic tidal effects on the Sun from the motion of the gi-
ant planets and radioisotope paleorecord proxies for solar ac-
tivity on century and millennium time scales (Abreu et al.,
2012). So far there exists no solid evidence that these, and
multidecadal, variations in solar activity have a strong influ-
ence on terrestrial climate, but the issue will probably be in
the frontline of research on natural climate variability in the
time to come. The work presented here cannot shed light on
the physical cause of this oscillation, but it presents evidence
that it is a phenomenon that stands out from the long-memory
background of random temperature fluctuations. As pointed
out by Crowley et al. (2014), its importance for our assess-
ment of anthropogenic global warming is obvious from the
observation that the oscillation seems to peak at the turn of
the millennium and hence provides a possible explanation of
the current hiatus in global temperature.

Appendix A

Generation of synthetic fGns/fBms

Technically, we make use of the R package by McLeod
et al. (2007) to generate synthetic fGns and to perform a
maximum-likelihood estimation of β. Since generation of
fBms is not included in this package, synthetic fBms with
memory exponent 1< β < 3 are produced by generating an
fGn with exponent β− 2 and then forming the cumulative
sum of that process. This is justified because the one-step dif-
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0.0

0.5

1.0

1.5

2.0

b

b`

Fig. A1. The red symbols and 95% confidence intervals represent
the maximum-likelihood estimate β̂ for realisations of fGns/fBms
with memory parameter β by adopting an fGn model. Hence, for
β > 1 we find the estimate β̂ from a realisation of an fBm with a
model that assumes that it is an fGn. The green symbols represent
the corresponding estimate by adopting an fBm model, i.e., for β <
1 we find the estimate β̂ from a realisation of an fGn with a model
that assumes that it is an fBm. “Adopting an fBm model” means
that the synthetic record is differentiated, then analysed as an fGn
by the methods of McLeod et al. (2007) to obtain β̂incr, and then
finally β = β̂incr + 2.

ferenced fBm with 1< β < 3 is an fGn with memory expo-
nent β−2 (Beran, 1994). Maximum-likelihood estimation of
β for synthetic fBms and observed data records modelled as
an fBm is done by forming the one-time-step increment (dif-
ferentiation) process, estimate the memory exponent βincr for
that process and find β = βincr + 2. There are some problems
with this method when β ≈ 1. Suppose we have a data record
(like the global ocean record) and we don’t know whether
β < 1 or β > 1. For all estimation methods there are large er-
rors and biases for short data records of fGns/fBms for β ≈ 1
(Rypdal et al., 2013). This means that there is an ambiguity
as to whether a record is a realisation of an fGn or an fBm
when we obtain estimates of β in the vicinity of 1.

For the MLE method this ambiguity becomes apparent
from Fig. A1. Here we have plotted the MLE estimate β̂
with error bars for an ensemble of realisations of fGns (for
0< β < 1) and of fBms (1< β < 2) with 2000 data points.
The red symbols are obtained by adopting an fGn model
when β is estimated. Hence, for β > 1 we find the estimate β̂
from a realisation of an fBm with a model that assumes that
it is an fGn. It would be expected that the analysis would give
β̂ ≈ 1 for an fBm, but we observe that it gives β̂ considerably
less than 1 in the range 1< β < 1.4, so if we observe a β̂ in
the vicinity of 1 by this analysis we cannot know whether it is
an fGn or an fBm. The ambiguity remains by estimating with
a model that assumes that the record is an fBm, because this
yields a corresponding positive bias as shown by the green
symbols when the record is an fGn. This ambiguity seems
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difficult to resolve for ocean data as short as the monthly in-
strumental record.
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