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Abstract. This thesis focuses on stochastic modeling, and statistical methods, in finance
and in climate science. Two financial markets, short-term interest rates and electricity
prices, are analyzed. We find that the evidence of mean reversion in short-term interest
rates is week, while the “log-returns” of electricity prices have significant anti-correlations.
More importantly, empirical analyses confirm the multifractal nature of these financial
markets, and we propose multifractal models that incorporate the specific conditional mean
reversion and level dependence.

A second topic in the thesis is the analysis of regional (5° x 5° and 2° x 2° latitude-
longitude) globally gridded surface temperature series for the time period 1900-2014, with
respect to a linear trend and long-range dependence. We find statistically significant trends
in most regions. However, we also demonstrate that the existence of a second scaling regime
on decadal time scales will have an impact on trend detection.

The last main result is an approximative maximum likelihood (ML) method for the log-
normal multifractal random walk. It is shown that the ML method has applications beyond
parameter estimation, and can for instance be used to compute various risk measures in
financial markets.
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Introduction

1.1 Overview

This thesis consists of four papers focusing on stochastic modeling and statistical methods,
in finance and climate science. Particular emphasis is on stochastic processes with scale
invariance in the forms of self-similarity or multifractality. The papers to be defended are:

e Paper 1: Multifractal modeling of short-term interest rates. Joint with M. Rypdal

e Paper 2: Approximated maximum likelihood estimation in multifractal random walks.
Joint with M. Rypdal. Published in Physical Review E (2012)

e Paper 3: Modeling electricity spot prices using mean-reverting multifractal processes.
Joint with M. Rypdal. Published in Physica A: Statistical Mechanics and its appli-
cations (2013)

e Paper 4: Significance of local surface temperature trends from globally gridded data.
Joint with M. Rypdal, K. Rypdal and H. B. Fredrikssen.

In the introduction we also refer to the following work, which has also been carried out
during the four-year period as a PhD student:

e Paper Al: Assessing market uncertainty by means of a time-varying intermittency
parameter for asset price fluctuations. Joint with M. Rypdal, K. Rypdal and E.
Sirnes. Published in Physica A: Statistical Mechanics and its applications (2013)

e Paper A2: A multifractal approach towards inference in finance. Joint with M.

Rypdal
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Other scientific contributions from this period include:

e Invited speaker to “Physical Origins of Correlated Extreme Events”, Max Planck
Institute for the Physics of Complex Systems. Two presentations:

— Introductory tutorial: From Bachelier’'s Brownian motion to Mandelbrot’s mul-
tifractal model of asset returns and beyond. Joint with M. Rypdal

— Significance-testing of trends: Long-range dependence and model selection.
Joint with M. Rypdal, K. Rypdal and H. B. Fredrikssen.

e Invited speaker to “Aggregation, Inference and Rare Events in the Natural and Socio-
economic Sciences”, Centre for Complexity Science, University of Warwick. Research
talk entitled “Multifractal inference”. Joint with M. Rypdal.

1.2 Random walks in finance: from Brownian motions
to multifractals

The simplest example of a self-similar process is the Brownian motion. This process was
described mathematically by Thiele (1880), Bachelier (1900) and Einstein (1905). Actually,
Bachelier, in his thesis entitled “Theory of speculation”, proposed Brownian motion as a
model for the temporal fluctuations of the prices of financial assets. As observed by Mitchell
(1915), the magnitude of price changes often depend on the price level P(t) itself, with
higher variability for increasing price levels. The mathematical form of this dependency is
well described by the conditional standard deviation sd(P(t)|P(t) = ) o 7, where 7 > 0
is a parameter which can estimated from the data (paper 1). For many financial time
series one assumes v >~ 1, and in this case a logarithmic transformation will give a process
where the increments are independent of the price levels. The model that describes the
logarithmic prices as a Brownian motion (with a constant drift term), can be seen as a
first refinement of the Bachelier model.

A further improvement is to account for the heavy-tailed distributions of the incre-
ments, i.e. the fact that the empirical distributions of the returns are more leptokurtic
than Gaussian distributions. Staying within the class of self-similar processes, Mandelbrot
(1963) proposed to use Lévy flights. A Lévy flight has increments with a-stable distribu-
tions, with o < 2. These distributions are characterized by probability density functions
(pdfs) p(x) ~ 1/|z|*™ as * — oo. This implies that statistical moments of higher order
than «, do not exist. In particular, the variance is infinite.

Both Brownian motions and Lévy flights have independent increments, while another
important “stylized fact” observed across most markets, is that increments are uncorre-
lated but dependent in time. The property of uncorrelated returns is consistent with the
assumption of an arbitrage-free market, but this principle does not imply independence
of the increments. While the sign of future price movements are not predictable, the
amplitude, to some extent is. Large returns tend to be followed by large returns, and
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vice versa for small returns. Among the first models to incorporate time dependence in
volatility are the auto-regressive conditional variance (ARCH) models (Engle, 1982). In
these processes the volatility (the expected value of squared increments conditioned on the
natural filtration generated by the process) follows an auto-regression of lagged squared
increments. The model is completed by componding the resulting volatility process with
some martingale process, typically with student-¢ or normal distributed innovations.

A first improvement of the ARCH process is to also include past volatility into the
regression. The result is the Generalized ARCH (GARCH) model (Bollerslev, 1986). An
alternative is the stochastic volatility (SV) model of Taylor (1982), where, in continuous-
time, the logarithm of the volatility is described by an Ornstein-Uhlenbeck (OU) process
(Uhlenbeck and Ornstein, 1930). The model is completed by subordinating the result-
ing volatility process with a Brownian motion. However, there is empirical evidence of
long-range dependence (LRD) in the volatility process (e.g. Baillie, 1996) which is not
described by simple SV models, since the OU process has an exponentially decaying au-
tocorrelation function (ACF). The natural modification of the simple SV model are the
multifractal processes, which include LRD in the volatility process. This was first discov-
ered by Ghashghaie et al. (1996), and in 1997 Mandelbrot, Calvet, and Fisher constructed
the Multifractal Model of Asset Return (MMAR), which can be formally written as a
subordinated Brownian motion. Here the inner process is the distribution function of a
multifractal random measure. This random measure is a product of positive random vari-
ables (weights) which are distributed from coarse to fine scales on a b-adic tree. Thus,
unlike simple SV models, changes in the volatility occurs at all time scales (up to some
large integral scale).

The cascade construction in the MMAR model can be generalized in several ways. One
may first note that the inner process has non-stationary increments. However, if one assigns
time intervals of random duration in the cascade construction, rather than fixing these, then
the result is a stochastic process with stationary increments and multifractal properties.
This construction is known as the Poisson multifractal (Calvet and Fisher, 2001). The
discrete-time counterpart is known as the Markov Switching Multifractal (MSM, Calvet
and Fisher, 2004).

Modeling short-term interest rates

For the MSM model with binomial distributions on the weights (volatility components),
the likelihood can be computed exactly, and thus likelihood-based inference can be carried
out. This is the approach used in paper 1, where we model short-term interest rates using a
version of the MSM model (level-MSM), and compare its performance with GARCH-type
of models. A first step in this modeling is to determine the number of levels K to use in
the volatility cascade. Actually, this is a test of multifractality since we can determine, by
means of likelihood-ratios, if large K are significantly better supported by the data than
small values of K. In the paper we conclude that the largest tested value of K (in this
case K =9) is significantly more likely than all smaller values of K. In model comparison
against alternative models we find that the level-MSM model performs as good, and to
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some degree better, than the alternatives considered. The main conclusion is the following:

Multifractal models provide accurate statistical descriptions of short-term interest
rates.

Traditionally, interest rates have been modeled using damping terms (Longstaff et al.,
1992, and references therein). In our study (paper 1) we included the possibility of mean
reversion. However, the estimates of the parameter governing the damping term was not
found to be significantly different from what is expected for a random walk. Thus, another
conclusion drawn in paper 1 is that there is little evidence of mean reversion in short-term
interest rates.

A maximum likelihood estimator for multifractal random walks

While the MSM model is attractive from a statistical point of view, it involves one extra
parameter compared to the multifractal random walk (MRW) introduced by Bacry et al.
(2001). The random measure in the MRW is constructed by randomizing the cascade
in the MMAR model in both the time direction and in the “cascade direction”, as op-
posed to the Poisson multifractal where there is randomization only in time. For a long
time, application of the MRW model in stochastic modeling and practical applications
(e.g. volatility forecasting) was hampered by the fact that exact likelihood computation is
numerical infeasible unless one works with very short time series. In paper 2 we present an
algorithm which solves this problem by using an approximation scheme. The first step is
to use a Laplace approximation for the n-dimensional integral representing the likelihood
(n typically ranges from 10% to 10*). In many statistical problems, using a Laplace ap-
proximation offers a superior, in terms of computation speed, alternative to Markov Chain
Monte Carlo (MCMC) methods (Rue et al., 2009). In particular, this way of approximat-
ing the likelihood has been proposed for simple stochastic volatility models (Skaug and
Yu, 2009; Martino et al., 2011). In the Laplace approximation the Jacobian and Hessian
of the full likelihood are also computed. In the SV model the Markovian property of the
latent AR(1) process implies that these matrices are sparse, while in the MRW model these
are dense. We therefore propose a second approximation which involves a truncation in
the volatility dependency after 7 time lags. The resulting matrices are band-diagonal with
bandwidth equal to 7. Note that, a similar approach, i.e. truncating the dependency, is
used in estimation of the Hurst exponent using the Haslett-Raftery method (Haslett and
Raftery, 1989).

A first application of the approximated likelihood method is to estimate the parameters
in the MRW model using maximum likelihood (ML). The model has three free parameters:
the integral scale R determines the length of the cascade, i.e. the correlation length, in
the time direction. The volatility clustering is determined by the intermittency parameter
A (in the limit A — 0 the MRW converges to a Brownian motion). Finally, the usual
scale parameter o determines the fluctuation level of the outer process. To benchmark the
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ML method we compared its performance with the General Methods of Moments (GMM),
which has been used in previous studies of the MRW model. Overall, the ML method
performs much better (in terms of mean squared error).

The ML estimator for the MRW model is the best estimator (minimum variance)
available at present.

Estimation of the integral scale parameter R turns out to be a difficult task. This
was previously reported for the GMM estimator. In Muzy et al. (2013) an extension of
the MRW model is presented, where the integral scale is removed from the model . We
conjecture that an alternative is to make the likelihood smoother as a function of R. The
idea comes from asymptotic theory where it is common to impose smoothness conditions
on the likelihood, but this conjecture is not yet tested.

The real benefit of the ML estimator comes when one is presented with small sample
sizes. This is demonstrated in paper Al. This work concerns high-frequency (tick-by-tick)
data from the Oslo Stock Exchange. Using the MLE method for the MRW model we are
able to extract meaningful estimates of the intermittency parameter for each month of trad-
ing. These estimates are in turn used to test the hypothesis of time-varying intermittency.
In this paper we also verify the multifractality of the data using standard non-parametric
techniques (due to smaller sample sizes, this is not an easy task when using daily data).

Another application, made possible by the algorithm presented in paper 2, is volatility
forecasting, density forecasting and computation of other risk measures (e.g Value at Risk,
Expected Shortfall and Unexpected Losses). All these statistics can be computed from
the conditional pdf which is, using Bayes rule, proportional to the likelihood. Thus, if we
perform a straight forward extension of the ML algorithm for the MRW model, we can
compute density forecasts, volatility forecasts and other risk measures. This is the focus
of paper A2, where we also apply these methods to real data. In particular, for volatility
forecasts, we compare the results of the MRW model with the simple SV model of Taylor.
For the smallest time scale (daily in this particular case) the forecasts are almost identical
for the two models. However, when we increase the time scale, the forecasts based on these
two models diverge. In the SV model the forecast will increase/decrease as a monotonic
function of the lead time, while in the MRW model we observe a more complex pattern
(e.g. it can increase up to 10 days and then decrease). A similar observation was made for
the MSM model by Calvet and Fisher.

In paper 3 we study another financial market; electricity prices and specifically the Nord
Pool spot prices. While these time series share some of the stylized facts described so far,
namely volatility clustering and leptokurtic distributions, an empirical analysis actually
reveals anti-correlations for the increments. Two parsimonious stochastic processes that
reproduce this feature are the OU-process and the fractional Brownian motions (fBm)
with Hurst exponents H < 1/2. While neither of these two alternatives are able to capture
the volatility persistence and the strongly non-Gaussian distribution of returns, we can
include these properties by combining the models with the MRW. The resulting stochastic
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processes are named the damped MRW and fractional MRW. To estimate the parameters
we reformulate the ML algorithm to take into account the anti-correlations.

Algorithms for mazimum likelihood estimation for the damped and fractional Mul-
tifractal Random Walk models are developed.

After estimating the parameters, we perform a Monte Carlo study to see which model
that best reproduces the observed statistics of the Nord Pool data. We find that the
damped MRW model is the preferred model. This implies that there is a characteristic
time scale. Here, one should note that there are several periodicities in the signal (daily,
weakly and yearly). Since we consider signals sampled weakly, we are left with only the
yearly oscillation. It is checked if this periodicity affects the analysis (i.e., if the choice of
the OU process for the conditional mean dynamics is an artifact of the yearly periodicity?)
and we conclude that this is not the case. Another interesting result in this paper is that
the estimates of the intermittency parameter A is higher than found in other financial
markets (e.g. stock indices, FX and interest rates).

1.3 Statistics and climate

The last paper presented in this thesis (paper 4) concerns stochastic modeling of regional
surface temperatures time series. The study is based on gridded temperature records for
the time period 1900-2014, and we examine if the warming in the industrial period (after
year 1900) can be explained as a realization of a stationary process (climate noise) or if
a trend is needed to account for the observed temperature increase. Our hypothesis is
that the climate noise has long-range dependence (LRD), and investigation of the LRD
hypothesis is by itself of great interest in order to understand the “stylized facts” of climate
data.

The idea of long memory in the climate system is not a new one, and many of the
most important ideas date back to Harold Hurst’s work with rescaled-range analysis on
geophysical records in the 1950s. Hurst’s discovery of LRD has been confirmed later, using
more refined statistical methods, and similar characteristics are found in a wide range
of different climatic time series. Nevertheless, there is also a scepticism among climate
scientists. For instance, the latest IPCC report (Stocker et al., 2013, chapter 10) states
that: “Although the evidence for long-range dependence in global temperature data remains
a topic of debate (Mann, 2011; Rea et al., 2011) ...”. Unfortunately, the two studies that
are cited are both flawed: Mann uses an AR(1) process to represent LRD (which is by
definition wrong), while Rea et al. do not take into account that different estimators have
different properties (table 1 in this article summarizes 12 estimates of the Hurst exponent,
using 12 different methods).
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Trend-significance testing with long-range dependent errors

To test the significance of trends in signals with LRD we need to take into account that
there are larger pseudo trends for processes with Hurst exponents H > 0.5, compared to
white noise processes (H = 0.5). In fact, for the linear trend model, the ordinary least-
square (OLS) slope A, is normal distributed with sd(A;) ~ n¥~2. Since the Hurst exponent
and scale parameter are estimated, we apply the small-sample correction proposed in Ko
et al. (2008), to account for the parameter uncertainty.

To estimate the Hurst exponent we use the ML estimator, augmented with de-trended
fluctuation analysis (DFA) of orders two and three, wavelet variance and variograms. The
latter three methods give visual information about the scaling properties, and their appli-
cation can be viewed as robustness tests for the ML estimates. For regional temperature
records we observe that the estimated Hurst exponents using these four different methods
coincide, when taking estimator uncertainty into account.

The estimates (the scale, trend and Hurst exponent) vary with latitude and longitude.
For the Hurst exponents we find significantly higher values in the sea surface compared
to over land areas. The trend estimates are all positive, except for a small region in the
North-Atlantic. From the estimated trends, fluctuation levels and Hurst exponents we can
compute the probability of a f{Gn producing trend estimates larger than the data estimate.
The result is that ~ 68% (~ 47%) of the regional time series have signficant trends at the
5% (1%) significance level. The regions where we do not find significant trends are ENSO
regions (the tropical Pacific and other regions that correlate highly with the ENSO) and
the North-Atlantic. If we assume an AR(1) null hypothesis instead, then the result is that
~ 94% (~ 88%) of the time series have significant trends at the 5% (1%) significance level.
Again, the locations where we do not find significant trends are mostly the ENSO regions
and the North-Atlantic.

The numbers presented above show that significance tests depend crucially on the
chosen null model. However, we know that an AR(1) model is wrong for time series where
we have power law statistics, and vice versa for a f{Gn model. From an empirical analysis we
find that some geographic regions show poor scaling properties. This finding has previously
been reported in several studies (e.g. Huybers and Curry, 2006). To find all such regions
we use the likelihood-ratio test statistic. If we at each grid point choose the null model
preferred by the model selection test, we find that ~ 82% (~ 73%) of the time series have
significant trends at the 5% (1%) level. While this result lies between the AR(1) and fGn
results, it is closer to the AR(1) result. This reflects the fact that AR(1) is the preferred
model in the ENSO region. Based on the previous discussion we conclude that for most
regions:

Warming trends in surface temperatures, in the time period 1900-2014, are detected.

The conclusion here should be viewed as a hypothesis, which needs to be further tested.
In fact, in the same study (paper 4) we demonstrate that the existence of a LRD on time
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scales longer than ~ 20 years will change our conclusions about the significance of linear
trends in many regions.



Stochastic processes

We review some important notions and mathematical objects central to this thesis. We
define the class of self-similar and multifractal stochastic processes, and look at some
characteristic properties of these. In papers 2 and 3 the multifractal random walk (MRW)
plays a central role. In section 2.4 and 2.5 we review the more general class of infinitely

divisible cascades (IDCs) of Bacry and Muzy (2003). A short description of the IDC
construction is also given in paper 2.

15
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We recall that a stochastic process {X(t),t € T} is a family of random variables
defined on the same probability space (2, F, ). We consider univariate time series, so
X(t) : Q— R, where the real line is equipped with the Borel o-algebra. Initially, we work
with processes in continuous time, so the set 7 is the real line.

2.1 Correlations and the Hurst exponent

The variance of a cumulative sum of ¢ uncorrelated and identically distributed random
variables is proportional to t. As a generalization, consider a centered stochastic process
X (t) with stationary increments. If the variogram is a power law, then we define the Hurst

exponent H by
EX ()% o< t2H. (2.1)

Uncorrelated and identical distributed increments implies H = 1/2. However, many time
series are well described by the scaling relation (2.1) with H # 1/2. We note that for
stationary processes, with finite second moments, the variogram is constant. In this case,
if the cumulative sum scales as a power law, one can associate the Hurst exponent of
the cumulative sum with the stationary process. There are different conventions used in
different fields of science, but it is usually clear from the context which definition of the
Hurst exponent that is used.

The Hurst exponent determines the correlation at all time scales. Let us first consider
the covariances of the process itself. We have

2X (1) X(s) = X(t)? + X(s)* — {X(t) — X(s)}*.
The property of stationary increments implies
2X ()X (s) ~ X(8)° + X (s)* = X(|t = s])*,
from which we infer
EX(0)X(5) = 5 {7+ i — |t — 5"} (22)
From (2.2) the auto-correlation function of the increments follows. Defining x; = X () —
X(t—1),forT>0:

Exix, 1
p(T) = —xléa:;l =_{(r+1*" —27*" 4 (1 —1)*"}. (2.3)
7 2

Observe that H = 1/2 implies uncorrelated increments, while for H # 1/2 we have

4 o 2H—2

p(T) ~ Wt =2H(H — )T :
as T — 0o. Thus, H # 1/2 implies dependent increments. Choosing 0 < H < 1/2 results
in negatively correlated increments, while for H > 1/2 the increments are persistent.
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Moreover, in the persistent case, the ACF decays so slowly that the series > > _ p(7)
diverges. Two classes of stochastic processes with well-defined Hurst exponents are the
self-similar and the multifractal processes with existing second moments. The Ornstein-

Uhlenbeck process, defined as the solution to stochastic differential equation
dX(t) = —vX(t)dt + dB(t),

where B(t) is Brownian motion and v > 0, does not satisfy the scaling relation (2.1). How-
ever, an Ornstein-Uhlenbeck process scales asymptotically. When v — 0, X (¢) converges
to a Brownian motion, i.e. H =1/2, and as v — oo the process X (¢) is a Gaussian white
noise.

2.2 Self-similarity

If we assume that the structure functions E|X (¢)|? are power laws in ¢ one can define a
scaling function ((¢) (also known as the zeta-function) by the relation

E| X (£)]7 oc @)

Here, we usually assume that the relation above holds for all ¢-values for which the ¢th
moments are finite, and in most examples we will assume finite moments on a half-infinite
interval, e.g. ¢ € (—1,00). The zeta-function is always concave (this follows from Hélder’s
inequality), and a strictly concave scaling function is the property that distinguishes a
multifractal from a selfsimilar process.

A stochastic process X(t) is said to be self-similar (or self-affine) if

Va > 0: X(at) £ a" X (t) (2.4)

Notation 1 The symbol < means equality in distribution for stochastic processes, i.e. all

finite dimensional marginals coincide, while < denotes equality in distribution for random
variables. We drop the brackets, and denote a stochastic process {X(t)} simply as X(t).
This notation does not distinguish between a stochastic process and its one dimensional
marginals (the random variables X (t)), but to which object we are referring should be clear
from the context.

Condition (2.4) defines a large class of stochastic processes, e.g. fractional Brownian mo-
tions, fractional Lévy flights and Hermitte-Rosenblatt processes.. From (2.4) it is easily

seen that X (t) & t"X(1). This implies
EIX(1)|9 o t", q<a=sup{r:EX(1)|" < oo},
and, assuming that the probability density functions (pdfs) exist:

Vo € R: t"px (vt") = pxu)(z), (2.5)
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with v = h. Selfsimilarity implies that the zeta-function is linear:

C(q) =hqg, q<a.

It is seen that if a > 2, then the Hurst exponent equals the selfsimilarity exponent. From
(2.5) we see that the pdfs at different time scales coincide under a suitable rescaling. Note
that for a selfsimilar process, the pdfs evaluated at origo is a power-law function in time-
scale:

Px(p(0) ~ 17"

The properties discussed above are illustrated in figure (2.1).
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Figure 2.1: Properties of a h-selfsimilar processes X(t): a) Densities of X (At) at several
time scales At. b) The power law pxar(0) ~ At™". c) Rescaled densities At"px(ay (zAt")
coincide. d) Structurfunctions S,(At) = E|X(At)|? are power laws. e) Linear scaling
function ((q).

If we, in addition to self-similarity and stationary increments, requires that the process
is Gaussian the result is a fractional Brownian motion (fBm). Alternatively, we can define
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a fBm By (t) directly as a centered Gaussian process with covariances:
o’ 2H 2H 2H
BBy (1) Bi(s) = S {Jsf + 1P — |t — s}

where o > 0 determines the fluctuation level, and H € (0,1) is the Hurst exponent. The
increments of a fractional Brownian motion is known as fractional Gaussian noise (fGn),

2.3 Multifractals

In this thesis we refer to multifractal stochastic processes as processes with well-defined
and strictly concave scaling function ((gq). For financial time series two stylized facts are
uncorrelated and strongly dependent increments, where the dependence is in the volatility
rather than the directions of the fluctuations. A process with a strictly concave scaling
function can explain the phenomena of volatility clustering, while we can incorporate the
stylized fact of uncorrelated returns by imposing the restriction ((2) = 1, i.e. a Hurst
exponent H = 1/2. Some properties of multifractal processes are illustrated in figure (2.2).

2.4 Infinitely divisible multifractal measures

A rigorous treatment of the IDC construction is given in Bacry and Muzy (2003). A
special case known as the log-normal multifractal random walk was introduced in Bacry
et al. (2001).

Denote by ST the upper half plane {(z,y) € R?|y > 0} equipped with the measure
dp(dt, dr) = r~2dtdr. On the measure space (ST, 1) we define a random measure P. We
assume P to be independently scattered and infinitely divisible. We recall that a random
variable is infinitely divisible if, for all n € N, it is equal in distribution to a sum of n iid
random variables.

Definition 1 A real-valued random variable X is infinitely divisible if there for alln € N
exists a random variable X /™) such that

XA XMy x ),
where Xl(l/"), XY e independent copies of X1/™).

An infinite divisible variable can be charachertrized by a measure v, known as the Lévy
measure, together with the location and scale parameters a and A:

Theorem 1 (Lévy Khintchine) A random variable X infinitely divisible if and only if
it can be written on the form

¢x(s) = exp(p(s)),
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Figure 2.2: Properties of a multifractal processes X(t): a) Densities of X (At) at several
time scales At. b) The power law px(ar(0) ~ At™". ¢) Rescaled densities At"px(ay (zAth)
do not coincide. d) Structure functions S,(At) = E|X (At)|? are power-laws. e) Non-linear
scaling function ((q).

with

N . . ,
o) = aai =50+ [ (explian) ~av(e) + [ (exlign) —1 —igr)iv(e),

lz|<1
A=VA2>0,a€R, v({0}) =0 and [ min{l,2*}dv(z) < co.

Definition 2 )P is independently scattered if, for any disjoint sets Ay, ..., A, C ST, the
random variables

P(.A1>, .. .,P(.An)

are independent.
ii) P is infinite divisible if for any p-measurable set A C ST, P(A) is infinite divisible with
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characteristic function

dpay(s) = exp{p(s)u(A)}, (2.6)
Definition 3 For all r > 0 with r fived we define a stochastic process h,.(t) by
helt) = PA(D)),
where
Al = { (e € 571y 2 o —of < PRI 27)
and R > 0 s a parameter in the model.

Definition 4 Let dM,(dt) = exp(h,(t))dt, meaning that

M(1) = [ expli (b)) (28)
I
for all Lebesque-measureable sets I, and

o(—1) = 0. (2.9)
The multifractal random measure M is defined as the limit

dM (dt) = lim dM,(dt).
r—0
The condition (2.9) implies that Eexp[h,(¢)] = 1, which in turn can be used to prove the
existence of the multifractal random measure. The choice of cone-like domains in (2.7) will
lead to the following exact stochastic scale-invariance:

M([0, at]) £ W,M([0,1]). (2.10)

Note the generality in the construction. We are free to choose any log-infinitely divisible
random variable, or equivalently specify any Lévy measure, under the constraint that the
first moment exists. In the sequel we verify (2.10), and for this purpose it is useful to
calculate the integrals in p (A, (t) N A, (t + 7)). This gives the identity, for 7 > 0 :

logZ4+1-2 ifr<r,
pr(7) = p (A NA(t+ 7)) =< log if r <7 <R,
0 if 7> R,

and p,(=7) = pr(7).

We consider first the particular case where ¢(s) is the characteristic function of a normal
random variable. In this case h,(t) are Gaussian processes, and the limiting measures are
known as the log-normal multifractal random measures. Condition (2.9) implies that

)\2

©(q) = —Tz(i +4q),
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which together with (2.6) can be used to find expressions for the mean and covariances of
h,(t). For this purpose, we divide A, (t) and A,(s) into disjoint sets which enables us to
factorize the expectation:

E exp[iP(A:(t))q1 + iP(Ar(s)) 2]

= Eexp[iP({A.(t) \ A.(s)} U{A.(t) N A.(s)}) g1+
iP({A(s) \ A (1)} U{A(s) N A(t)})ge]
= Eexp[iP(A.(t) \ A:(s))q1+
iP(A(5) \ Ar(t))ga +iP(A:(t) N A(s)}) (@1 + g2)]
= Eexp[iP(A.(t) \ A:(s))q1] %
Eexp[iP(A,(s) \ A (t))q@]EexpliP(A.(t) N A.(s)}) (g1 + ¢2)]
= exp((q1)pr(0) + [p(q1 + q2) — p(a1) — w(a2)lp:(Is — t]) + ©(q1)p-(0))
= exp (p,(0) [—iN/2(q1 + q2) — N*/2 (6 + @3)] — pr(|s — t])N?) (2.11)
This gives
Vi Bhy (1) = 5 p,(0)
and

Y(t,s) : Cov(h,(t), h.(s)) = Np,(|s —t]).

Since the first and second moments are independent of time, h,(t) are covariance stationary,
and combined with the fact that h,(t) are Gaussian processes, it follows that they are
stationarity. If we assume the following scale invariance:

M, ([0, at]) < WaM,.(10,]), (2.12)
then passing to the limit » — 0 we obtain (2.10). If we assume (2.12), then

My, ([0, at]) =W, M, ([0, 1))
)
/ exp(ha, (t'))dt' W, / exp(h,(t'))dt’
)
a/ exp(har (at'))dt' £W, / exp(h,(t"))dt’
0 1
Bar(at) 2 + D, (1), (2.13)

with W, = aexp(€,). Choosing 2, to be normal and independent of h,(t), implies that
both processes in (2.13) are Gaussian. Thus, to prove (2.13), upon specifying the moments
of ,, we only need to verify that the means and covariances coincide. Taking expectations,
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we see that EQ, = \/2loga leads to equality in means. To compare covariances, observe
that
par(aT) = —loga+ p.(7), 0<7<Ra<l, (2.14)

and thus, the choice var(€2,) = —A\?loga leads to the same second-order statistics of the
two stochastic processes. This completes the proof of (2.13), (2.12) and (2.10). Note that
the Gaussian requirement was only used to verify (2.13). Thus, to generalize the proof to
the case of an arbitrary Lévy measure with the constraint (2.9), we only need to deduce the
distribution of €, and show (2.13). This is achieved by comparing characteristic functions.
This can be done using the following identity:

N N
E exp z’ZP(Ar(tk))qk] = exp lizzg(k,j)pr(\tk — ], (2.15)
k=1 k=1 j=1
where
a(j, k) = p(rr;) + e(rrri—1) — ©(rei-1) — @(reeig)
and

oS k<
7 0 otherwise

This is derived in (2.11) for the case N =2 (for N € N a proof can be found in Bacry and
Muzy (2003, Appendix A)). Let us assume that €, is independent of the process h,(t).
Inserting (2.15) into (2.13) we see, with the help of (2.14), that (2.13) indeed holds if €,
is distributed according to

Eexp(i Quq) = exp(—p(q) log a). (2.16)
Thus, we have shown the following theorem:
Theorem 2 (Exact scaling of MRM) Let

W, = aexp(£,),

where Q, is the random variable defined in (2.16). The multifractal random measure satisfy
the stochastic scale-invariance

Va € (0,1): M([0,at]) £ W,M([0,t]), 0<t<R, (2.17)

with W, independent of the process M(t).

The exact scaling of the MRM implies that M ([0, ¢]) < Wy rM([0, R]), for 0 < t < R, from
which we can easily calculate the g-order moments.
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Theorem 3 (Moments of MRM) Define o = sup{r : EM([0, R])|” < oo}. The q-
order moments of the multifractal random measure, with 0 < q < «, are given by

EM ([0, 1])* = ¢ t*@,
with
C(q) = q— p(—iq)
and

cg = EM([0, R])? R—¢(@.

In particular, note that EM([0,¢]) = ¢. From a given Lévy-measure we can study the
zeta-function. For the log-normal MRM measure the scaling function takes the quadratic
form ((q) = q(1 + A\?/2) — ¢*A?/2 (here all non-negative moments exists, i.e. a = 00).

2.5 Multifracal random walks

Let ©(t) = M([0,t]) be the distribution function of the multifractal random measure, and
B(t) a Brownian motion independent of O(t). A multifractal random walk (MRW) X (¢)
is defined by

X(t) = B(O(1)).

Let M,([0,t]) be the measures defined in (2.8) and B(t) a Brownian motion independent
of the processes M, (]0,t]). A MRW has the Wiener-integral representation

t

X(t) =lim [ N([0,8))dB(t),

r—0 0

in the sense that X (£) £ X (t). Theorem 2, combined with the selfsimilarity of the Brownian
motion, implies the scale invariance

X(at) = WH2X (1),
for t < R and 0 < a < 1. The scaling function (x(¢q) for the MRW process is given by

Cx(q) = Colq/2),

where (g(q) is the scaling function for the distribution function of the corresponding mul-
tifractal random measure. For the log-normal MRW, we have

(x(q) = q/2(1 4 X?/2) — ¢*\?/8.
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In this chapter we describe the statistical methods that are applied in paper 4. In particular,
we consider significance testing of linear trends under a fractional Gaussian noise (fGn)
null hypothesis. A more general treatment of statistical inference for long-range dependent
processes can be found in Palma (2007) and Beran et al. (2013) .

3.1 Linear trend model with fGn

Counsider n observations from the linear trend model

Y;j :a0+a1t—|—Xt, (31)
where the error term process X; is a fGn with scale parameter var(X;) = o2 and Hurst
exponent H. The random vector X = (X,..., X,,)T is multivariate normal distributed

X ~N(0,T),

where the (n x n) covariance matrix I' is the Toeplitz matrix of the auto-covariances
(7(0),...,v(n —1)). The Toeplitz property means that the elements (i, j) of I are on the
form ~(|i — j|). Denote by Ry the correlation matrix of X and note that I' = 02 Ry. Tt is
convenient to write the linear trend model on vector form:

Y =BTa+ X,

where a = (ag,a;)” and B is the (2 x n) design matrix with 1s on the first row and the
sampling times (1,2,...,n) as the second row.

25
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3.1.1 Ordinary least squares

The ordinary least square (OLS) estimator of a can then be written as
vdet (~ ~N\T -1
A% (Ao, Ar) = (BB") ' BY . (3.2)

Since Gaussian vectors are closed under linear transformations, the estimator A is
(bivariate) normal distributed. This observation is useful for more complex mean speci-
fications since linear estimators of the mean, e.g. weighted least squares and OLS, will
be normal distributed as long as the mean specification is linear in the parameters. An
example is a nth order polynomial trend.

Computation of the first two moments shows that the OLS estimator is unbiased, i.e.
EA = a, with covariance matrix

Cov(A) = C(H)o?, (3.3)

with 1
C(H) = (BB")"' BRyB" (BBT) .

If we define ¢(H) to be element (2,2) of the correlation matrix C(H), then the estimator

for the slope is distributed as A; & N (ay, 02¢(H)), i.e.

7 def Al —a

T,,(H,0,A) N L N(0,1). (3.4)

A closed-form expression for the factor ¢(H) is given by (Lee and Lund, 2004)

_ > ru(j)w;
o(H)=1+ 2W’ (3.5)

where ¢t = (n+ 1)/2 and

n? —2jn — 252 —1
nn+1)(n—1)

w; = (n—j)

We also have the asymptotic result (e.g. Baillie and Chung, 2002)

c(H)UZ ~ 2

3.1.2 BLUE

For Gaussian white noise the maximum likelihood (ML) and OLS estimator coincide. More-
over, they have the lowest possible variance in the class of unbiased estimators. However,
for H # 1/2 the OLS estimator is no longer the best linear unbiased estimator (BLUE),
while the MLE is. Here, the maximum likelihood estimator takes the form

A= Cy(H)BR;'Y, Cwi(H)= (BR;'B")™". (3.6)
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Figure 3.1: The factor ¢)(H) is the increased uncertainty, measured by the standard devi-
ation, in the slope coeffisient by using OLS compared to MLE. Sample length is n = 2000
in this figure.

As for OLS the MLE of a is unbiased and Gaussian, but the maximum likelihood method
takes into account the correlations of the noise process in estimating the parameters. The
covariance matrix of A is given by Cov(A) = C,, (H)o? and in particular var(A;) =
o?cy(H), where ey, (H) is element (2,2) of the correlation matrix Cyy(H). By using

OLS, compared to ML, the uncertainty in the slope coefficient is increased by the factor

oom = () 5

The function ¢ (H) is plotted in figure 3.1. The sample length is chosen to be n = 2000
and the function is evaluated for 0.01 < H < 0.99. Since the OLS and MLE coincide
for white noise we have ¥ (1/2) = 1. For H > 1/2 we observe that ¢/(H) is increasing
monotonically, and the value at the endpoint is (0.99) ~ 1.06. When the noise process
is anti-persistent, the difference in efficiency is increased for H < 0.5 compared to the
long-range dependent (LRD) case. Since our primary concern is H > 1/2; there is, in our
opinion, little efficiency gained from using the computational more demanding ML estima-
tor for the slope parameter. Hence, we will restrict our attention to the OLS estimator.

3.1.3 MLE scale and Hurst exponent

To estimate the Hurst-exponent and scale parameter we use the maximum likelihood (ML)
method. For the random fGn vector X the likelihood L(z|H, o) is given by

1 1 _
log L(H,olz) = —nlogo — 3 log |Ry| — TﬂxTRHla:.

The ML estimates are defined as the global maxima of L, and it is easy to see that the ML

estimate of o2 is .
6% = ExTRglx, (3.8)
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where h is the ML estimate of the Hurst exponent:

A~

1
h = arg max {—g logz" Ry'a — §log ]RH\} .

Typically h is found by a numerical optimization. In Dahlhaus (1989, 2006) it is shown
that the ML estimator H is asymptotically efficient .

A small-sample Monte Carlo study of the ML estimator H is summarized in table 3.1.
Here we have considered three mean specifications: a constant mean, linear and quadratic
trend. The table summarizes the bias and uncertainty. An important observation is that
the ML estimator is very accurate for small sample lengths. We also note that the bias
can be corrected by using that H — EH = f(H) is strictly increasing and thus invertible.
A corrected estimator H, is found by the inverse map

~

H, = fY(H).

3.1.4 Trend significance

Consider again the linear trend model (3.1). Based on the sample y we are interested in
rejecting one of the following hypotheses:

Hy:a, =0
Hpi:ay #0

The significance of the estimated slope can be assessed by means of p-values. We can
think of these as the probability of a fGn, with scale parameter o and Hurst exponent H,
having trend estimates larger than the observed estimate a;. More precisely, using the test
statistic in (3.4), we have

p=2P(To(H, o, Al) > |to(H,0,a1)|) = 2(1 — ®(|te(H, 0,a41)]), (3.9)

where ®(-) is the cumulative distribution function of the standard normal distribution.
Replacing (H, o) with estimators (H, ) implies that the test statistic

A

TO(H7 27 Al)

is not normal. A similar situation arises if we assume H = 0.5, in which case it is well known
that the resulting distribution is student-t. However, the distribution of 7| o(lf[ 5 Al) is
unknown and depends on H in a non-trivial way. A possible approximation is simply to use
the normal distribution. This approach can be justified based on asymptotic properties.
If {(]:I ,f])}n is a consistent sequence of estimators, then as n — oo, the test statistic T’
converges to a standard normal distribution. To take into account parameter uncertainty
one can use the bootstrap method, see e.g. Bglviken (2014).



3.1. LINEAR TREND MODEL WITH FGN

H const lin quad

n = 200
0.5 0.49 (0.047) 0.48 (0.049) 0.47 (0.05)
0.6 0.59 (0.048) 0.57 (0.05)  0.56 (0.05)
0.7 0.68 (0.049) 0.67 (0.053) 0.66 (0.052)
0.75 0.73 (0.05)  0.72 (0.051) 0.71 (0.055)
0.8 0.78 (0.051) 0.77 (0.052) 0.76 (0.053)
0.85 0.83 (0.048) 0.82 (0.05) 0.8 (0.052)
0.9 0.87(0.045) 0.86 (0.049) 0.85 (0.05)
0.95 0.92 (0.041) 0.9 (0.044) 0.9 (0.047)
0.99 0.94 (0.033) 0.94 (0.037) 0.92 (0.042)

n = 500
0.5 0.49 (0.028) 0.49 (0.029) 0.49 (0.03)
0.6 0.59 (0.029) 0.59 (0.03) 0.58 (0.031)
0.7 0.69 (0.031) 0.69 (0.031) 0.68 (0.031)
0.75 0.74 (0.03)  0.74 (0.031) 0.73 (0.032)
0.8 0.79 (0.03) 0.79 (0.032) 0.78 (0.032)
0.85 0.84 (0.031) 0.84 (0.03) 0.83 (0.031)
0.9 0.89(0.03) 0.88 (0.032) 0.88 (0.031)
0.95 0.93 (0.027) 0.93 (0.028) 0.93 (0.029)
0.99 0.96 (0.02) 0.96 (0.022) 0.96 (0.023)

n = 1000
0.5 0.5 (0.02) 0.49 (0.02)  0.49 (0.021)
0.6 0.6 (0.021) 0.59 (0.021) 0.59 (0.021)
0.7 0.7 (0.021) 0.69 (0.022) 0.69 (0.022)
0.75 0.75 (0.021) 0.74 (0.021) 0.74 (0.022)
0.8 0.8(0.022) 0.79 (0.022) 0.79 (0.022)
0.85 0.84 (0.021) 0.84 (0.021) 0.84 (0.022)
0.9 0.89 (0.021) 0.89 (0.021) 0.89 (0.021)
0.95 0.94 (0.02) 0.94 (0.021) 0.94 (0.021)
0.99 0.97 (0.014) 0.97 (0.015) 0.97 (0.016)

29

Table 3.1: Mean value for maximum likelihood estimates of the Hurst-exponent. In paren-

theses the standard deviations.

In the columns const, lin and quad the sample mean, a

linear and quadratic trend, respectively, is subtracted before estimating the Hurst expo-
nent. The data-generating process is fGn with sample length n and Hurst exponent H
listed in the first column. The number of Monte Carlo runs is n.,. = 2000. Note that the
estimator is highly skewed for H close to 1.

Another alternative is the small-sample correction proposed in Ko et al. (2008). In this
case H is a biased-corrected estimate of the Hurst exponent, and S is the corresponding
ML estimate. This means that we are using (3.8) with the bias-corrected Hurst exponent.
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Figure 3.2: a)p-values of slope parameter. The data-generating process is a fGn with
sample length n = 340 and Hurst-exponent H = 0.85. The number of Monte Carlo runs
is Nyme = 2000. b) nye = 2000 realizations from the uniform [0, 1] distribution.

The p-values are now computed as
p=2P(Ty(H, S, A) > |to(h,&,a1)|) ~ 2(1 — ®(|to(h, 6, a1)], fre — 2), (3.10)

where ®(-,n) is the cumulative student-¢ distribution with n degrees of freedom, and

Ne = N——

5, = no1/2) 311
o) (3.11)

In Ko et al. (2008) the error term model is a fractional differenced noise, while we use a
fGn model. A small-sample Monte Carlo study, summarized in table 3.2 verifies that this
methodology also works for f{Gns. In table we 3.2 report the results in terms of confidence
intervals. Alternatively, we can use the result that p-values are uniformly distributed on
[0, 1], or approximately so (Casella and Berger, 2002). An example is shown in figure 3.2,
which again confirms the method.

3.2 Noise misspecification and robustness

3.2.1 Semi-heavy tails

A first guard against model misspecification is a comprehensive empirical analysis, which
will typically restrict the class of stochastic models we use. Nevertheless, there is a likeli-
hood of missing, or ignoring, some features in the data in a preliminary analysis. Assume
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that the second-order statistics are power laws, but the 1-d pdfs have heavier tails than the
normal distribution. For instance we can consider student-¢ distributed innovations with
v degrees of freedom. Denote by X; a fGn and F; = Z({X}._,), with Fy = (), the natural
filtration generated by the process. If we define m; = E[X;|F;_1] and P, = var(X;|F,_1), a
fGn can be written on the form

X, =m, + P'?U, (3.12)

where U, is standard (unit variance) Gaussian white noise. We introduce non-Gaussian
distributions by replacing the distributional assumption on the sequence U;. Let

Ut = \l VT_257&> (313)

with ¢; being a sequence of independent student-t¢ distributed innovations with v > 2
degrees of freedom. The pre-factor in (3.13) makes o the standard deviation of the process.
Let us note that as v — oo, the process is again a fGn. The (excess) kurtosis is a measure
of how leptokurtic the pdfs are. For the student-¢ distribution the kurtosis is 6/(v — 4) for
v > 4, which can be compared to the zero kurtosis for the normal distribution. Sample
paths from the fractional noise with student-t innovations are shown in figure 3.3. Figure
3.4 shows the p-values of the slopes under the (incorrect) assumption of a fGn, when the
data-generating process is in fact a fractional student-¢ noise. It is seen that in this case,
the deviance from normality has a negligible effect with respect to trend significance.

3.2.2 Short-range memory statistics and model selection

To take into account possible short-memory statistics, consider a first order auto-regressive
(AR(1)) process z;, defined as the stationary and causal solution to the stochastic difference
equation

2= Q21+ vy, (3.14)

where v; is Gaussian white noise with var(v;) = o2. Stationarity implies |¢| # 1 and

with the additional requirement of causality we have ¢ € (—1,1). We will restrict our
attention to the persistent regime, i.e. ¢ € (0,1), and the aim here is to separate between
an AR(1) and a fGn representation of the error term. For this purpose we suggest to use
the likelihood-ratio (LR) test statistic. Let py(x¢|zy ..., 24-1,7) be the conditional density
of z|[{z1 = z1,..., 221 = 2,1} with parameters v = (¢, 0,), and let pp(a,|z; ..., 2,1, 0)
be the corresponding conditional density for a fGn with parameters § = (H, o). Denote by
4 and @ the ML estimators for the random vector Y = (Y1,...,Y,) and

~

pr(YilY1...,Yi4,0)
pg(YHYl . 7}@—17’?)‘

The standard LR-statistic is the sum over the terms a;. However, we find it useful to
normalize to a more familiar scale, so we define the LR statistic by

(3.15)

a; = log

n

L(Y)= ﬁ%* > ay, (3.16)
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Figure 3.3: a) Sample path of fractional Gaussian noise with Hurst exponent H = 0.85. b)
Sample path of fractional student noise with Hurst exponent H = 0.85 and v = 3 degrees
of freedom. The same random seed is used in (a) and (b).

where 6, is an estimator of o, = var(a,)"/?. From the assumption of Y; being stationary

(with a finite second moment), it follows that a, is stationary. In particular, var(a;) is time
invariant. Let &, be the sample standard deviation. When the data-generating process
is a white noise £(Y") converges to a standard normal distribution. We can use this to
determine the significance of the observed LR statistic. From the definition of the addends
we see that a large likelihood-ratio points towards a fGn, while large negative values points
towards an AR(1) process. Coupled with the asymptotic result under white noise, we
suggest to use quantiles from the normal distribution to assess the significance.

Table 3.3 summarizes a Monte Carlo study using the proposed method. Note that the
OLS linear trend is subtracted prior to estimating the remaining quantities. It is seen that
distinguishing the two models requires more data when the persistence is low. Here one
should note that even with long time series one can have something in between an AR(1)
and a fGn, in the sense of Vuong (1989). Let us finally note that an alternative test is to
include both an AR(1) and a fGn in the error term. This can for instance be done using
equation (3.14) with v; being a fGn.

3.3 Missing data

It is straight forward to adjust the linear trend model to handle gaps in the time series.
To estimate the parameters in ARMA models (AR(1) in this study) we use the Kalman
filter (e.g. Shumway and Stoffer, 2010). The biggest challenge is to estimate the Hurst
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Figure 3.4: a) p-values of slope parameter computed from a fGn null hypothesis. Data-
generating process is fractional student noise with v = 3 degrees of freedom, Hurst-
exponent H = 0.85 and sample length n = 340. Number of Monte Carlo runs is n,. = 2000.
b) nme = 2000 realizations from the uniform [0, 1] distribution.

H=05 H=06 H=07 H=08 H=09

n = 340
fGn 0.02 0.33 0.60 0.77 0.85
AR(1) 0.03 0.05 0.02 0.01 0.01
n = 680
fGn 0.02 0.48 0.79 0.92 0.97
AR(1) 0.03 0.03 < 0.01 < 0.01 < 0.01
n = 1360
fGn 0.03 0.65 0.94 0.99 1.00
AR(1) 0.03 0.01 < 0.01 < 0.01 < 0.01

Table 3.3: Likelihood-ratio test of f{Gn versus AR(1). The decision is based on 95% standard
normal confidence interval, i.e. we choose a fGn if LR > zpg75, and a AR(1) if LR <
Z0.025- Lhe test is undecided otherwise. Here z, is the a-quantile of the standard normal
distribution. The LR statistic is calculated from residuals of a linear trend model. The
data-generating process is a f{Gn with Hurst exponent H.

exponent. We note that the fGn vector (found by removing entries that are missing) is
still multivariate normal with covariance matrix I'gps. The matrix I'gpg is found by removing
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=0 $=02 ¢=04 ¢6=06 ¢=08

n = 340
fGn 0.02 002 <00l <001 <0.01
AR(1)  0.03 0.45 0.72 0.84 0.95

n = 680
fGn 002 001 <00l <001 <001
AR(1) 003 045 072 084 095

n = 1360
tGn 0.03 <001 <001 <001 <0.01
AR(1)  0.03 0.77 0.98 1.00 1.00

Table 3.4: Same as in 3.3, except here the data-generating process is AR(1) with parameter
0.

the rows and columns in I" where observations are missing. As a result the matrix 'y is no
longer Toeplitz. The Toeplitz property is used to create an efficient algorithm in the “gap-
free” case (McLeod et al., 2007). However, as shown in Bos et al. (2012), there is a simple
relation between I' and I'ys, which can be used to create an efficient algorithm for ML
estimation of the Hurst exponent. For the wavelet variance, methods for handling missing
data are presented in Mondal and Percival (2008) and Craigmile and Mondal (2013), and
these results are easily adopted to the variogram method.

3.4 Not significant versus no trend

3.4.1 Type II error

By construction we control the probability of comiting a type I error, i.e. rejecting the
null hypothesis given that the null is true. We do not control the other error (type II)
involved; keeping the null when the alternative is hypothesis is true. However, one can
study the probability of making type II errors. For this purpose, one can use the so-called
(statistical) power functions. A power function gives the probability of the type II error
as a function of the parameter value(s) under the alternative hypothesis. We observe that,
for the linear trend model with fGn, the statistical power can be computed from (3.4)
for a known Hurst exponent and a known scale parameter. When these parameters are
estimated we use (3.10) instead, adjusted such that a; # 0.

In the case of Gaussian white noise, where the Hurst exponent is estimated, Cohn and
Lins (2005) found that the statistical power was not reduced substantially compared to
an a priori assumption of H = 0.5. In that study, the likelihood-ratio test was used. We
report a similar finding (not shown) for the OLS test statistic.
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3.4.2 Effective sample size

Another way to study the impact of LRD in statistical inference is to calculate effective
sample sizes, a measure of the amount of reduced information about the mean term that is
caused by positive serial correlation (Lee and Lund, 2008, see also Zwiers and von Storch
(1995); Lee and Lund (2004); Ko et al. (2008)). It is easiest to motivate this term in the
case of the sample mean:

Let By(t) be a fractional Brownian motion (fBm) with Hurst exponent H and scale-
parameter o = (EBy(1)?)/2. Denote by X; = By(t) — By(t — 1) the corresponding fGn.
The sample mean X = n~! > iy X, is a scaled, discrete-time fractional Brownian motion,
ie.

X L n'By(n). (3.17)

Thus, the one-dimensional marginals are given by

_ X
X ~ N (0,0°n*"7?%) & n' "= ~ N(0,1). (3.18)
o
The effective sample size is defined as
<
Ne = nm =220, (3.19)

var(X)

Observe that, if n. is an integer, the variance of the sample mean for n. independent
random variables equals the the variance of sample mean for a fGn with length n. So
one only needs n, data points from a white noise process to produce the same uncertainty
in the sample mean as a fGn with sample length n. As an example, for H = 0.9 and
ne = 10 we need a sample length of n = 10° from the fGn. Increasing the Hurst exponent
to H = 0.99 results in n = 10°°, reflecting that the sample mean of a fractional Brownian
motion is not consistent. The effective sample size for the OLS estimator of the slope is
defined similar to (3.19), see (3.11).



Paper 1

Abstract. We propose a multifractal model for short-term interest rates. The model
is a version of the Markov-Switching Multifractal (MSM), which incorporates the well-
known level effect observed in interest rates. Unlike previously suggested models, the
level-MSM model captures the power-law scaling of the structure functions and the slowly
decaying dependency in the absolute value of returns. We apply the model to the Norwegian
Interbank Offered Rate with three months maturity (NIBORM3) and the U.S. Treasury
Bill with three months maturity (TBM3). The performance of the model is compared to
level- GARCH models, leve EGARCH models and jump-diffusions. For the TBM3 data
the multifractal out-performs all the alternatives considered.

37
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4.1 Introduction

Interest rates play an important role for financial institutions, for instance in risk man-
agement, where the interest-rate risk needs to be assessed. Often this is done by a simple
stress test, where one considers a parallel shift in the yield curve, typically 100 or 200 basis
points, and report the change in the value of the portfolio. This approach can be improved
by stochastic modeling of future movements in the interest-rate yield curve. Vasicek (1977)
and Cox et al. (1985) argue that the yield curve is given by the spot rate alone. Short-term
interest rates, such as NIBORM3 and TBM3, are frequently used as proxies for the spot
rate, and hence accurate modeling of these time series is potentially very important. To
our knowledge this is the first published paper considering the Norwegian rate, while the
TBMS3 data are much studied (see e.g. Andersen and Lund (1997), Chapman and Pearson
(2001), Durham (2003), Johannes (2004), Bali and Wu (2006)).

Traditionally models for short-term rates have been modeled by Ito stochastic differen-
tial equations on the form

dR(s) = f(R(s))ds + cR(s)"dB(s), (4.1)

where s is the time variable, R(s) denotes the risk-free rate and B(s) is a Brownian
motion. If we discretize this equation, by letting s = tAs and r, = R(s), then we obtain
a stochastic difference equation on the form r, = r,_; + f(r;_1)At 4+ cAs'/?r] jw;, where
w; are independent and normal distributed random variables with unit variance. It is
convenient to write this equation on the form

Ty = [t =+ O¢, (42)

with p; = r,_1 + Asf(r,_1) and oy = r]_ z;. Here z; = ow, with o = cAs'/2. Throughout
the rest of the paper we will consider linear drift terms on the form f(r) = Ay + Ayr. If
A; <0, then (4.1) has a stationary solution, and the discretized equation has a stationary
solution for sufficiently small As > 0. For a fixed As we write u; = 7,1 + ag + ayr;_1. In
this case we have stationarity for —2 < a; < 0.

The number v > 0 is called the Constant Elasticity Variance (CEV) parameter. For
~v # 0 the models feature the so-called level effect. It is generally accepted that this effect
is present in interest-rate data, see for instance (Longstaff et al., 1992). The level-effect
introduces volatility persistence, i.e. strong dependence between the absolute values of the
increments Ar, = r, — r;_1. However, if B(s) is a Brownian motion, then the variables

Ary — (g + oqre—y)

7 (4.3)
are i.i.d. and Gaussian, and hence the volatility persistence will vanish under a simple
transformation of the increments. Such processes are called pure-level models and have
been studied by Cox et al. (1985) and Longstaff et al. (1992). Using time-series data for
short-term interest rates we can optimize the likelihood to determine the parameters aq, oy
and 7. These results are shown in table 4.1. We can then transform the data according to



4.1. INTRODUCTION 39
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Figure 4.1: (a): The NIBORM3 data r; for the time period 1986-01-02 to 2010-09-24. (b):
The one-day increments Ar, = r;—r;_1. (¢): The normalized one-day increments Ar, /] ;.
The value of the CEV parameter is 7 = 1.61.

(4.3). The resulting time series (which are plotted in figures 4.1(c) and 4.2(c)) are realiza-
tions of the so-called normalized increment process. Just from inspection of figures 4.1(c)
and 4.2(c)) we observe that the resulting time series exhibit strong volatility persistence.
This is confirmed in figures 4.3(a) and 4.3(b), where we have plotted the autocorrelation
functions for the absolute values of the normalized increments. As a consequence of these
observations we conclude that pure-level models are insufficient, and we will therefore
replace the process w; with dependent variables x;.

In our empirical investigations we find that the dependency structure in the variables
x; resembles the stylized facts of logarithmic returns of asset prices, namely that the vari-
ables themselves are uncorrelated (or weakly correlated) whereas their absolute values have
slowly decaying autocorrelation functions. To describe this dependency several authors

Innovations Qo ¥ o v log L
U.S. Treasury Bill
Normal 0.0009709  0.3755 0.04788 15707.94
t, —0.0002434 0.5377  0.2186 2.01 20688.54
NIBORM3
Normal 0.0002863 1.61  0.006298 A7T71.78
12 0.0002419 0988  0.0921 2.01 8041.42

Table 4.1: The constant elasticity volatility (CEV) model of Longstaff et al. (1992) with
normal and student-¢ innovations.
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Figure 4.2: (a): The TBM3 data r, for the time period 1954-01-04 to 2010-09-22. (b): The
one-day increments Ar; = r; — ;1. (c¢): The normalized one-day increments Ar,/r; ;.
The value of the CEV parameter is 7 = 0.38.

(e.g. Brenner et al. (1996) and Koedijk et al. (1997)) have suggested using a general-
ized autoregressive conditional heteroskedasticity (GARCH) model for the process x;. The
corresponding process 7y is then called a level-GARCH model. This model can be further
improved by letting z; be an Exponential GARCH (EGARCH) model. The leve EGARCH
model was introduced by Andersen and Lund (1997) and has been reported to perform
better than the standard GARCH model on the TBM3 data.

In this work we propose a multifractal model, specifically a level-MSM model, as an
alternative to level-GARCH models and level- EGARCH models for short-term interest
rates. This model is a slight modification of the standard MSM model constructed by
Calvet and Fisher (2004). The motivation for introducing multifractal models for short-
term interest rates is similar to the motivation for multifractal modeling of asset prices,
namely that these models capture the dependency structure and scaling properties of the
process z;. Secondly, encouraging results (in and out-of-sample) have been obtained in a
preliminary study of the NIBORM3 data (Lgvsletten, 2010).

We use a HAC-adjusted version of the Vuong-test (Vuong, 1989) for model selection
(Calvet and Fisher, 2004), and the main result of this work is that the level-MSM model
performs well compared against level- GARCH models, leve- EGARCH models and jump-
diffusions. The paper is organized as follows: In section 4.2 we define the level-MSM model
and consider some basic properties. A brief description of the alternative models are pre-
sented in section 4.3, and in section 4.4 the results of the Vuong-test are presented. In
section 4.5 we give some concluding remarks.

Remark. We note that the data analyzed in this paper is freely available online. Both
data sets are given with daily resolution. The TBMS3 data is taken from the period 1951-
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Figure 4.3: (a): Autocorrelation functions for one-day increments in the NIBORM3 data.
The variables considered are the standard increments Ar, = r, — r,_1, the normalized
increments Ar;/r] ; and the absolute values of these two time series. The value of the
CEV parameter is 7 = 1.61. (b): Same as (a), but now for the TBM3 data. The value of
the CEV parameter is 7 = 0.38. In both figure the dotted lines represent a 0.95 confidence
interval for the autocorrelation function assuming independence.

01-04 to 2010-09-22, and consists of 14172 data points. The NIBORMS data is taken from
the period 1986-01-02 to 2010-09-24, and consists of 6231 data points. The TBMS data
contains several days with zero value, something that causes certain technical problems in
the stochastic modeling. The problem is resolved by a simple variable shift r — r +0b. In
order to be consistent with our set of models, we estimate the constant b > 0 by estimating
the conditional standard deviations sdv[Ar|ry_1 = r] (for various r) and fitting a function
cr’ — b to this data set. Using this model we find b = 0.03.

4.2 Multifractal models

The application of multifractal processes to finance was introduced by Mandelbrot et al.
(1997). We recall that a process X(t) is multifractal if the structure functions S,(t) =
E[|X (¢)|?] are power laws in . One can then define a scaling function ((g) through the
relation S,(t) ~ 1@ as ¢t — 0, i.e.

. logS,(t)
C(Q)_lg% logt

Using Hélder’s inequality it is easy to show that the scaling function ((g¢) is concave, and

we also note that if the process X (t) is h-self similar, i.c. X (at) £ a"X(t), then ¢(q) = hq.
We are therefore interested in the situations where ((q) is strictly concave. In this case we
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see that
E[X(1)"]

E[X(1)%)?

If we assume that X (¢) also has stationary increments, then this implies that the At-
lagged increments X (¢ + At) — X (t) are more leptokurtic for small At than for larger At.
In particular, this shows that X () can not be Gaussian.

In financial time series one will most often want the process X (¢) to have uncorrelated
and stationary increments. In order for this to be satisfied we must impose the condition
((2) = 1, because otherwise the variables AX (t) = X (¢t + 1) — X (1) have slowly decaying
autocorrelation. In fact,

~ W) 5 50 as t— 0.

Cov(AX(0),AX(t)) ~ —(2Hy—2) 7

where Hy := ((2)/2. A simple example of such a process is a Brownian motion, which
is h-selfsimilar with h = Hy; = 1/2. As opposed to the Brownian motion, a multifractal

process with strictly concave scaling function has strongly dependent increments, even for
Hy = 1/2. For instance, in the MSM model' we have ((2) =1 and

Cov(|AX(0)]7, |AX (£)|9) ~ t~CRD=X(@) (4.4)

See proposition 1 of (Calvet and Fisher, 2004). This inherent long-range volatility persis-
tence serves as our motivation for modeling short-rate interest rates using multifractals.

In the next subsection we will present several examples of multifractal processes and
look at some basic properties. This part of the text is included for completeness, and
readers who are familiar with multifractal models may skip to section 4.2.2.

4.2.1 Mandelbrot’s MMAR processes

The multifractal models introduced by Mandelbrot et al. (1997) are stochastic processes
on the form

X(t)=oT" By(O(t)), (4.5)

defined for 0 < ¢ < T', where O(t) = p([0,t]) is a random probability measure on [0, 7]
and By (t) is a fractional Brownian motion with E[Bg(1)?] = 1. The process O(t) is itself
a multifractal process with scaling function (g(¢), and if u and By(-) are independent,
then (x(q) = (o(Hq). By construction, the measures we will mention in this paper satisfy
E[p([0,t])] o t, i.e. (o(1) = 1. It follows that (x(1/H) = 1, and in order to satisfy the
condition H; = 1/2 one must have H = 1/2. However, since processes with correlated
increments are useful in other applications (see e.g. Rypdal and Rypdal (2010)), there is
no reason to restrict ourselves to the case H = 1/2 in the definition of the models.

Tt is pointed out by Lux (2006) that the MSM model is only a finite-level approximation, and so
equation (4.4) is only valid on time scales up to b¥. Here b > 0 and K € N are parameters in the MSM
model. See section 4.2.2.
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There are several choices for the measure u, and below we give three examples:

Example 1: In the simplest case the measure y is a randomized dyadic Bernoulli measure
with probabilities p; = p and p, = 1 — p. This measure is constructed through an iterative
procedure, where we in the first step divide the interval [0,7] in two pieces Ay and A
of equal length. One of the intervals is chosen at random and given a mass p; ([0, 77),
while the other interval is given the mass po ([0, 7). This procedure is then repeated
recursively, i.e. the interval A is divided into the equally sized intervals Agg and Ag;. One
of these intervals is given the mass p? 11([0, T']) and the other is given the mass pyps p([0, 7).
Formally the measure can be defined by letting f be a random bijection® {0,1} — {p1, p2}
,,,,, i, be independent copies of f. The measure is constructed by assigning the mass

(A iy i) = f(i1) fiy (i2) -+ fir oo, (i) to the dyadic intervals
e = [T+ (041 -+ )9, T (0iy - i)+ T 277, i € {0,1}.

A simple combinatory argument shows that for ¢ = T - 27%, the random variable ©(t) has

density
P 2k2( ) z—p"(1—=p)").

When the processes By(t) and O(t) are independent, we obtain the density of X (¢):

pxi(z) = /pchHBH s(@) pou(s)ds = o Z ( ) - (_ QUQ(Tpn(f—p)k—")2H> '

\/2#02 (Tpr(1 — p)k—”)QH

From this density we can easily calculate the structure functions S,(t) = E[|X(¢)]?] and
see that S,(t) ~ 1@ as t — 0, where ((q) = 1 — T'(Hq) and T(q) = log,(p? + (1 — p)?).

Remark. The function T(q) is sometimes called the scaling function of the random
measure. The dyadic measure defined by (A, ;) = Di, -+ pi, has a multifractal spec-
trum f(a) given by the Legendre transform of T(q): f(a) = infer{aq —T(q)}, and the
Hentchel-Procaccia dimension spectrum is Dy, = (¢ — 1)7'T(q). See e.g. Pesin (1997) for
an account of the relation between scaling functions and spectra of fractal dimensions. The
function oo — f(Ha) is often called the singularity spectrum of the process X (t).

Example 2: A different class of multifractal measures consists of the b-adic random
multiplicative cascades (see e.g. Mandelbrot et al. (1997) for a more detailed account).
For an integer b > 2 and i, € {0,1,...,b— 1} we define the b-adic subintervals of [0, T] as

i = [T (0241 .. ig)y, T (0 i)y +T - b7,

Zwith probability 1/2 for each of the two outcomes (0,1) + (p1,p2) and (0,1) — (p2,p1)
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For a positive random variable M, with E[M] = b7, let
/’L(Aily--~7ik) = Mi1Mi

. e M

i1igik

Q

$1yeenyl 9

where M;, ;. are independent copies of M and

n

1192 ik Jk " In

9117...’2'}6 = hm E Mil s Miliz'“ikMiliT”ikjl s M
n—00

Jlsensdn

Again a stochastic process is constructed according to equation (4.5) with O(f) =
1([0,¢]). This process has a scaling function ((q) = 1 — T'(Hq), where T'(q) = log, E[M1].
Popular choices for the multiplier M are log-normal distributions, which give quadratic
scaling functions, or other log-infinitely divisible distributions. Almost every realization of
the measure p has the multifracal spectrum f(a) = inf,er{ag — T'(q)}.

Example 3: The Poisson multifractal measure on [0, 7] generalizes the b-adic multiplica-
tive cascade by introducing randomness in the construction of the intervals A; ;, ;.. In
the original multifractal models, each interval on level k are divided into b pieces of equal
length at level k4 1. As a result the interval length decreases as b=* with the level k. In the
Poisson multifractal measure, the splitting of an interval at level k is preformed by drawing
the lengths of the new pieces randomly from an exponential distribution with rate /.
This means that the mean and median length of an interval at level k + 1 are 1/l and
log(2)/l+1 respectively, so to maintain exponential decay of interval lengths (as a function
of level), one chooses [, = b*~1l;. Note that b no longer is restricted to the integers.

Formally, the Poisson multifractal measure on the interval [0, 7] is defined via sequence
of measures p;, specified on randomly generated intervals

Ai17i27---7ik = [ti1,i2,m,ik’til,i2,~~~7(ik+1)]7

where the numbers ¢;, _;, are defined by the following recursive construction:
Let {7, i, (J)}jen denote independent and exponentially distributed random variables
with rates [, = b*~11;. Define

Niy,...ip—y = Max {m : ZTil,m,ikﬂ (]) < dia’m(AilaiZ,mﬂ:k—1>} (46)
=1
and
ti1,...,ik_1 1f Zn - 0
Livyi, = § tiryoipy + Z;k:l Tivoiny (g) 1 1< < Ny, - (4.7)
iy, (ip_1+1) it =Ny 4, +1

This means that the interval A;, ; is divided into N;, _; subintervals by the cuts made
by a Poisson process with rate lx;. We start with an interval A = [0, T].
A sequence py of measures can now be defined via the formula
_ 1 g
/J’k(Aily'i%“-yik) =T dla‘m(Ailyi%--wik) MilMi

: 1,82 °

My

kD
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where M, ..;, are independent copies of a positive random variable M satisfying E[M] = 1.
If E[M?] < b, then y;, converges weakly to a Borel measure p on [0,7]. With this choice
of random measure the model given by equation (4.5) has scaling function

C((q)=1—-T(Hq), where T(q)=1-—q+log, E[MI]. (4.8)

Calvet and Fisher constructed their MSM model by discretizing the time interval [0, T']
and assigning discrete geometric (rather than an exponential) distributions on the waiting
times 7. More precisely one will fix an integer K > 1 determining the number of levels
that are to be included in the discrete model, and consider the integer values {0, 1, ... ,T},
where T = mX for some positive integer m. As for the construction of the Poisson mul-
tifractal one makes random partitions A; i, i = [tiia,.ins birsis,..(ie+1)] Of the interval
[0,7]. These are constructed using the recursive procedure described by equations (4.6)
and (4.7), where the variables 7, ;, are replaced by discrete random variables 7;, ;, with
geometric distributions P(7;, ;. = 7/) = M\ (1 — A\)7 Y, with 1 — X\, = e~ T/T - Thig
choice of parameters \; implies that the median of 7;, _;, is proportional to [='b~™. Note
that the parameters )\, are given by A; through the formula

AMe=1—(1=X)"". (4.9)

A measure fi is defined by specifying that if ¢ is an integer and [t —1,¢] C A, ;,, then
At — 1,8)) = m My My gy - Miy e s

where M;, . ; are independent copies of a positive random variable M with E[M] = 1.

Again we define O(t) = ([0, ]), and by taking the composition with a fractional Brownian
motion we get a discrete time stochastic process X(t) = C By(©(t)). We denote x; =

X(t) — X(t — 1), and observe that
w0 L C it t = )" (Ba(t) = Bult = 1)) = 0 (M, My iy -+ Miy,.ipe)™

where 0 = C'm™% and ¢; = By (t) — Bg(t—1) is a discrete version of a fractional Brownian
noise.

We can simplify notations by denoting My, = M,;, ., fort € A, ;. For H =1/2
the result is the MSM model described in the next section.
4.2.2 The MSM model
The Markov Switching Multifractal model of order K > 1 is given by
T = O'g(Mt)l/th s (410)

where M, = (M4, ..., Mg,), and the function g : R® — R is the product of the vector
components. The innovatons ¢, are normal distributed with unit variance, and in this
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setting also assumed to be independent. The process M; is a Markov-chain defined by the
following updating scheme:

My, — {drawn from M with probability A, (4.11)

My 11 with probability 1 — ;.

Components are updated independently of all previous updates, and the frequencies \; are
related to each other through (4.9).
For simplicity we choose a two-point distribution M:

1
P(M =mg) =P(M =m,) = 3 with mg € (1,2) and m; =2 — my. (4.12)

This version of the MSM is known as the binomial multifractal (Calvet and Fisher, 2004).
To higlight the number of multipliers K we will use the notation MSM(K). Note that,
unlike GARCH(p, q), the number of parameters remains unchanged with increasing order.
Let {m’|i =1,...,d := 25} denote the sample space of M;. We also define vectors
w(z) : R — RY and p; : N — R? with components wy(z) = n(z|o?g(m*)) and py, =
P(M; = m*|x;) respectivly. Here xX; = (3, ..., 7;), and n(-|o) is the density of the normal
distribution with zero mean and variance 0. With this notation the density of x;|x;_; is
given by
pladxi-1) = Pl Aw(ay), (4.13)
where A is the transitition matrix of the Markov chain, that is A;; = P(M; = m*|M,;_; =
m’). This is seen by conditioning on the underlying Markov-chain at time ¢ — 1 and ¢, and
using Bayes’ rule. It is easily seen, once again using Bayes’ rule, that the vectors p, follow
the recursion {
T T T
P = )Y (2¢) * (Pr—1 A), (4.14)
where *x denotes the Hadamard-product. We start the recursion with the limiting proba-
bilities of M.

4.2.3 The level-MSM model for interest rates
We propose the following level-MSM model for the short-rate

re— Tl = Qg+ are g 1) T, (4.15)

where x; is the binomial MSM model defined above. The likelihood

L= Zlog f(relre1),
t=2

for data ro,...,r, with r; taken as a pre-sample value, now follows from equations (4.13)
and (4.14) together with the relation

1
f(relre1) = ——p(@exi1),
T
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Model 10% x oy 10 x oy
U.S. Treasury Bill M3
MSM(9) 0.1214(0.354) —0.1905 (1.04)
GARCH 0.2821 (0.386) —0.6731 (1.10)
EGARCH 0.3595 (0.310) —1.3524 (0.92)
Jump-diffusion  0.7074 (0.397) —0.8695 (1.15)
NIBORM3

MSM(9) 2,228 (0.726)  —3.201 (1.60)
GARCH 2,424 (0.746)  —3.986 (1.66)
EGARCH 2.515(0.430)  —3.626 (0.87)
Jump-diffusion  2.621 (0.788)  —4.053 (1.77)

Table 4.2: A linear term in the drift term was added and the parameters estimated using
ML. In the TBM3 none of the parameters a; are significantly different from zero. Standard
deviations are reported in parentheses.

where f is the density of ry|r,_;.

We have fitted the level-MSM models to the two time series under consideration for
K = 2,...,9. For the case K = 9, the maximum likelihood (ML) estimates for the
parameters g and «aq are reported in table 4.2. In this table the estimates of ag and a4 for
the alternative models are also included. As expected the estimates for the parameter oy
are negative, but we observe that none of these ML estimates are significantly different from
zero for the TBM3 data. The estimates for «a are also very small for the NIBORM3 data,
and we will therefore consider the model defined by (4.15) with a; = 0. The corresponding
ML estimates for the other parameters are presented in tables 4.3 and 4.4. From these
results we also see that the likelihoods increase monotonically with K. Using a Vuong-
test we compare the level-MSM of order K = 9 against level-MSM models of lower order.
When comparing two models with this method, the null-hypothesis is that both models are
equally far from the data-generating process measured by the Kullback-Leibler distance.
Hence small p-values indicate that the level-MSM model of order K = 9 is significantly
closer to the data generating process than the level-MSM models of order K = 7 or lower.

The same model-selection-test is used to compare the level-MSM model with various
alternative models, and more details on the test are presented in section 4.4.

4.3 Alternative models

In this section we briefly discuss the processes which we compare level-MSM model to. As
for the level-MSM model we have first considered these models with drift terms on the
form p; = ry_1 + g+ ayry_1. The ML estimates for the parameters ay and oy are reported
in table 4.2. Again we see that the contribution from the parameter «; is negligible.
Consequently we will consider models with drift terms on the form p; = r;_1 + ap.
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K 10° x o oY mo b Ak o log L BIC Vuong  HAC-adj.
U.S. Treasury Bill M3

2 0.2752 0.2824 1.808 23.85 0.1391 0.07037  22309.49 -3.1446 13.573 9.091
(0.247)  (0.0106) (0.00471) (4.92) (0.011) (0.00162) (< 0.001) (< 0.001)

3 0.2052 0.1913 1.73 10.62 0.1660 0.08078  22676.53 -3.1964 11.618 10.138
(0.234)  (0.0175) (0.0062) (1.45) (0.0163) (0.00336) (< 0.001) (< 0.001)

4 0.2276 0.2269 1.661 9.643 0.2956 0.07202 22818.9 -3.2165 8.4076 7.562
(0.226)  (0.032) (0.00674) (1.23) (0.0462) (0.00357) (< 0.001) (< 0.001)

5 0.0643 0.2280 1.609 9.804 0.6761 0.06865  22901.03 -3.2281 5.036 4.805
(0.222)  (0.0191) (0.00667) (1.04) (0.0597) (0.00265) (< 0.001) (< 0.001)

6 0.0375 0.2115 1.559 6.577 0.778 0.06368  22920.57 -3.2308 4.346 4.335
(0.219)  (0.0282) (0.00744) (0.564) (0.0541) (0.00360) (< 0.001) (< 0.001)

7 0.0660 0.1744 1.527 5.713 0.7928 0.08208  22933.55 -3.2326  3.4883 3.112

(0.223)  (0.0291) (0.00752) (0.465) (0.0561) (0.00441) (<0.001)  (0.001)

8 0.0839 0.1575 1.503 4.932 0.8474 0.06956  22951.89 -3.2352 1.131 0.938

(0.215)  (0.0260) (0.00815) (0.355) (0.0509)  (0.0036) (0.129)  (0.174)

Table 4.3: ML-estimates for the binomial multifractal with standard deviations in parentheses. The Vuong-column reports
the likelihood ratio statistic with corresponding p-value in parentheses (Vuong, 1989). The nullhypothesis is that MSM(9)
and MSM(K) have equal Bayesian Information Criteria, with the alternative hypothesis being that the MSM(9) is closer to
the data generating process. The HAC-adjusted version of the Vuong-test corrects for heteroschedacity and autocorrelation
in the addends (Calvet and Fisher, 2004).
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103 x oy v 10° X aq a, b v
U.S. Treausury Bill M3
0.0904 0.1699  0.7092  0.1301 0.8915  3.7995
(0.225)  (0.0496) (0.139) (0.0092) (0.0062) (0.134)
NIBORM3
0.9104 0.9717  0.4889  0.20993 0.80838 3.3305
(0.397)  (0.0719) (0.158) (0.0209) (0.0135) (0.155)

Table 4.5: ML estimates for the parameters in the level-GARCH model with standard
deviations in parentheses.

4.3.1 The level-GARCH model

When comparing to MSM models, we prefer the standard level-GARCH model proposed
by Koedijk et al. (1997)3. This model is defined by (4.15), with z; a GARCH(1,1) and
a1 = 0. As is common for this model, we include student-¢ distributed innovations. The
model then reads

2
=00+ T_ Fwg, wp = hi/QTZ_let, he = ag + a; (%1) +bh_q, (4.16)
t—2
where the innovations ¢; are i.i.d. student-¢ distributed with unit-variance and v degrees
of freedom. For v = 0 we have the pure-GARCH(1,1) model, and for a; = b = 0 we have
the standard level model.

The estimated parameters for the NIBORM3 and TBM3 data are presented in table
4.5. We observe that simulated paths with these exponents have far to wild fluctuations
compared to the real data, indicating that this model fails to accurately describe the in-
terest rate fluctuations. In addition, we know that the GARCH models have exponentially
decaying autocorrelation functions for the absolute values of the increments. This means
that the long-range volatility persistence observed in the short-term interest rates is not
inherent in these models.

4.3.2 The level-EGARCH model

Instead of using (4.16), Andersen and Lund (1997) propose using the EGARCH model.
They find that this model gives an adequate fit to the TBM3 data, and a better fit compared
to the standard GARCH model. In the EGARCH model the logarithm of the conditional

variance replaces the conditional variance. The variance-recursion is then

log hy = ag + a1e4—1 + as|e;—1| + blog hy—. (4.17)

3We use a version of the model in Koedijk et al. (1997), where the quadratic term in the conditional
means are set to zero.
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10% x oy o ag aq as b v
U.S. Treausury Bill M3
0.1039 0.3441  —0.2360 —0.03127 0.2322 0.9888 3.866
(0.212)  (0.0648) (0.0165) (0.00634) (0.0123) (0.00154) (0.138)
NIBORM3
1.120 0.9101 —0.4024 0.02930  0.2664 0.9741 3.358
(0.396)  (0.0887) (0.0372) (0.0104) (0.0188) (0.00333) (0.156)

Table 4.6: ML estimates for the parameters in the level- EGARCH model with standard
deviations in parentheses.

The extra parameter a; controls potentially different responses to positive and negative
returns. The use of the logarithm guarantees positive values of the volatility for all param-
eter values. In addition, this model provides the extra flexibility by letting the conditional
distribution be non-symmetric. As we will see from the results presented in the next sec-
tion, the EGARCH model gives better results than the GARCH model for both of the time
series considered in this paper. This confirms the results in Andersen and Lund (1997).

The ML estimates for the parameters in the EGARCH model are presented in table
4.6.

4.3.3 Jump-diffusions

The last class of alternative models considered are the jump-diffusions. Both Johannes
(2004) and Das (2002) propose these processes in order to describe the large spikes seen in
interest-rate data. As a discretized jump-diffusion model we use the following specification:

re=cap+rio1 +rl (v + Jez),

where J; is the jump-indicator assumed to follow a Bernoulli-distribution. The probability
of a jump taking place at time ¢ is then given by

(14 exp(—c —dr,_1))"".

By letting x; = hi/ %, follow a GARCH-process, conditional heteroschedacity in levels
are also accomodated (Das, 2002; Hong et al., 2004). The innovations are distributed as

2 A N(0,72) and g, £ NV(0,1).The variance recursion in the GARCH process is given by

Ar, | —ap)’
ht:a0+a1 (#) +bht,1,

T o

where Ar, = r; — ;1. The ML estimates for the parameters in the jump-diffusion model
are presented in table 4.7.
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10% x oy v 10% x aq a, b c d T
U.S. Treasury Bill M3
0.464 0.1670 5.131 0.0931 08773 —3.751 0.2761 0.08622
(0.232)  (0.0374) (0.867) (0.0055) (0.0062) (0.170) (0.0271) (0.00624)
NIBORM3
1.085 1.872 0.0436  0.1291  0.8301 —1.883 —0.2119 0.01127
(0.417)  (0.0892) (0.0198) (0.0099) (0.0111) (0.328) (0.0417) (0.00216)

Table 4.7: ML estimates for the parameters in the jump-diffusion model with standard
deviations in parentheses.

4.4 In-sample comparision

To test the binomial MSM model against the alternative models we use a version of the
Vuong-test which is adjusted for heteroschedacity and autocorrelation (HAC) (Calvet and
Fisher, 2004). For each of the alternative models the null-hypothesis is that this model and
the level-MSM model of order K = 9 are equidistant from the data-generating process,
measured in the Kullback-Leibler distance (Kullback and Leibler, 1951). In the classical
Vuong-test it is assumed that the data-generating process is i.i.d., and then the log-ratio of
the likelihoods for the two models will converge to a normal distribution with zero mean,
and with a variance which is consistently estimated by the sample variance for the log-
ratio of the likelihoods. Using the corresponding normal distribution one can then easily
calculate a p-value under the null-hypothesis. In the HAC-adjusted version of this test, the
data-generating process may have dependence, but the variables r; should be identically
distributed. This is satisfied if we assume that the data-generating process r; is stationary.

The results of this test are presented in table 4.8. We observe that for the TBM3 data,
the level-MSM model of order K = 9 is significantly closer to the data-generating process
than any of the alternative models. For the NIBORMS3 data the EGARCH model performs
best, whereas the level-MSM model performs better than the standard level-GARCH model
and jump-diffusions.

4.5 Concluding remarks

In this paper we have introduced a multifractal model for short-term interest rates. The
model combines the well-established level effect described in Longstaff et al. (1992) with
the discretized multifractal model of Calvet and Fisher (2001). In a comparison with
level- GARCH, level- EGARCH and jump-diffusions, we find that this model well describes
the fluctuations of the TBM3 and NIBORMS3 time series. The main result of this work
is that the level-MSM outperforms all alternatives for the TBM3 data. This motivates
further research on multifractal modeling of short-term interest rates, in particular an
out-of-sample analysis of the level-MSM model.
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It is also interesting to note in the level-GARCH model the parameter estimates (for
both the TBM3 data and the NIBORMS3 data) fall outside the covariance-stationarity re-
gion. As a result the level- GARCH model has a wild volatility pattern, which does not
seem to be an accurate description of the interest-rate data. This confirms the results of
e.g. Andersen and Lund (1997).

Acknowledgment. This project was partly funded by Sparebank 1 Nord-Norge and the
Norwegian Research Council.



Paper 2

Abstract. We present an approximated maximum likelihood method for the multifractal
random walk processes of Bacry et al. (2001). The likelihood is computed using a Laplace
approximation and a truncation in the dependency structure for the latent volatility. The
procedure is implemented as a package in the R computer language. Its performance is
tested on synthetic data and compared to an inference approach based on the generalized
method of moments. The method is applied to estimate parameters for various financial
stock indices.
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5.1 Introduction

Multifractal models were first introduced in the 1960s by the so-called Russian school in
turbulence theory (Obukhov, 1962; Kolmogorov, 1962). In turbulence, multifractality can
be conceived as a weakening of the spatial self-similarity in the velocity field implicitly as-
sumed in Kolmogorovs 1941 theory. This generalization is called the Kolmogorov-Obukhov
model and entails modeling the spatial variability of the energy dissipation rate as a ran-
dom measure with certain multiscaling properties. The Kolmogorov-Obukhov model is
treated rigorously by Kahane (1985) and this construction is known as Gaussian multi-
plicative chaos. In recent years, multifractal random processes and multifractal random
measures have received increased attention and are widely used in physics, geophysics,
and complex systems theory. Examples include phenomena as diverse as internet traffic
(Riedi et al., 1999), geomagnetic activity (Rypdal and Rypdal, 2010, 2011), and rainfall
patterns (Pathirana and Herath, 2002). In addition, multifractal processes provide natu-
ral models for the long-range volatility persistence observed in financial time series. This
was discovered by Ghashghaie et al. (1996) and Mandelbrot et al. (1997), and since the
late 1990s much work has been done on multifractal modeling of financial markets (Cal-
vet and Fisher, 2001; Di Matteo, 2007). Logarithmic returns of assets are modeled as
xp = X(t + At) — X (), where X (¢) are continuous-time processes with stationary incre-
ments and multifractal scaling. The latter means that the moments of X (¢) are power laws
as functions of time,

E[|X (t)]7] ~ <9, (5.1)

either in some interval t € (0, R) or asymptotically as ¢ — 0. Here E denotes expectation
value. The scaling function ((q) is linear for self-similar processes, but may in general be
concave. Processes satisfying (5.1) with strictly concave scaling functions are generally
referred to as multifractal. Two well-known stylized facts of financial time series are that
log returns are uncorrelated and non-Gaussian. Based on this, Mandelbrot (1963) deduced
that if prices are described as self-similar processes, then these processes must be so- called
Lévy flights, i.e., a-stable Lévy processes with o < 2. However, if one allows nonlin-
ear scaling functions, then one can maintain uncorrelated log returns by simply imposing
the condition ((2) = 1. The concave shape of ((¢) implies that the variables X (t) are
increasingly leptokurtic with decreasing ¢, and consequently non-Gaussian. Moreover, as
opposed to Lévy flights, multifractal processes have strongly dependent increments and can
therefore describe a third stylized fact of financial time series, namely, volatility clustering.
Notwithstanding that multifractal processes provide accurate and parsimonious descrip-
tions of temporal financial fluctuations, the models are rarely implemented for forecasting
and risk analysis in financial institutions. This is partially due to a lack of accurate, stable,
and efficient inference methods for multifractal processes. Parameter estimation has so far
mostly been made using various moment-based estimators, such as the generalized method
of moments (GMM). Alternatively, one can fit the estimated scaling functions to theoreti-
cal expressions of ((q). However, as pointed out, e.g., in Lux (2003) and Chapman et al.
(2005), the standard estimators of scaling exponents have large mean square errors for
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time series of length comparable to those typically available in econometrics. An exception
to the statements above is the Markov switching multifractal (MSM) model (Calvet and
Fisher, 2001) where maximum likelihood estimation is feasible. In discrete time, the MSM
model implies that the increments x; are described by a stochastic volatility model of the

form
Ty — O/ MtEt. (52)

Here, &, LN (0,1) are independent variables and the volatility is a product of the form
My = M1 M- My k,

where (for each time step t) M, are updated from a distribution M with a probability
w =1—(1- ’Yl)bk_l. In this model, however, maximum likelihood estimation is only
possible in the case where M is defined on a discrete state space, and there is a limitation
on the magnitude of K which should not exceed ~ 10 (Lux, 2008). These restrictions not
only limit flexibility with respect to the distribution of returns, but also the possible range
in the volatility dependency. This paper concerns parametric inference for the multifractal
random walk (MRW) introduced by Bacry et al. (2001). The increment process x; =
X (t+ At) — X () is still a discrete-time stochastic process described by (5.2), but now the
volatility is modeled as M; = cexp(h;) , where h; is a stationary and centered Gaussian
process with the covariance structure

T

= A2log*
Cov(hy, hs) = A log (|t — s| +1)At’

(5.3)

where log" a = max{loga,0}. Here, T > 0 is called the correlation range ! and A > 0 is
called the intermittency parameter. The constant ¢ ensures normalization and is chosen
so that 1/¢ = Elexp(h:)]. We denote R = T'/At. Let 6 = (), 0, R) denote the parameter
vector and y = (yi, ..., ¥n) € R™ denote a fixed time series. The main result of this paper
is the development of a method for efficiently computing approximations to the likelihood
function

L(0ly) = p=(y10),

where p,(-|f) is the probability density function of a random vector x = (x1, ..., z,) pro-
duced by the MRW model with parameters #. Using the likelihood function, parameters
can be determined by means of the maximum likelihood (ML) estimator:

0 = arg max L(8]y).

Our method exploits that the discrete MRW model has a construction similar to simple
volatility (SV) models. The distinguishing feature is that the processes h; are autoregressive
in SV models. By truncating the dependency structure in the logarithmic volatility h;, the
computation of the likelihood function is mapped onto a similar problem for SV models,

'In turbulence, T corresponds to the integral scale.
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Log-returns of DAX stock market index

MRW model withA=0.32 and 7=2.2 years

0 1000 2000 3000 4000 5000
Time (days)

Figure 5.1: The top figure shows the daily log returns of the German DAX index for the
time period 26 November 1990 to 25 November 2011. The standard deviation of the data
is normalized to unity. For 7 = 500, the ML estimates are A = 0.32 and T" = 2.2 years.
The lower figure shows a simulation of the MRW model x; with the estimated parameters.

and hence existing techniques for further approximations are available. The present paper
presents results on ML estimation for multifractal models with continuous state spaces
for the volatility. Such estimates may be of great practical importance, since accurate
parameter estimation is essential for volatility forecasts and risk estimates. In the MRW
model, this degree of accuracy is particularly important for the intermittency parameter
A, which determines the peakedness of the return distributions on all time scales. In
applications other than finance, accurate estimates of A can be used as supplements to the
empirical scaling functions, and thereby the ML estimator can provide a tool for quantifying
multifractality in data.

The paper is organized as follows: In section 5.2, we briefly explain the construction
of the continuous-time process X (t) for which the model given by (5.2) and (5.3) is a
discretization. There exists a large class of multifractal processes which are related to a
construction known as infinitely divisible cascades (IDCs). In general, the random walk
models associated with IDC processes have logarithmic volatility with infinitely divisible
distributions, and the MRW model considered in this paper is a discrete approximation
to the random walk model obtained in the special case when the logarithmic volatility
is Gaussian. Section 5.3 contains the procedure for approximated ML estimation in the
MRW model. In section 5.4, we test the estimator by first applying it to various stock
market indices, and then by running a small Monte Carlo study. The results are compared
with the GMM method used in Bacry et al. (2008). We finally remark that the methods
presented in this paper have been implemented in a package for the R statistical software.
This package is available online (Lgvsletten and Rypdal, 2012b).
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5.2 Motivation of the model

There exist several popular models for multifractal stochastic processes with uncorrelated
increments. All of these models can be written either of the form X(¢) = B(A(t)), where
B(t) is a Brownian motion and A(t) = m(]0,t]) is the distribution function of a multifractal
random measure m on the time axis, or as

t
X(t) = lim / JADAB(®),
T 0

where A, (t) — A(t) as r — 0. The meaning of A,(¢) is discussed below. These two types
of constructions are equivalent as long as B(t) is a Brownian motion. (This is not the
case for fractional Brownian motions with H # 1/2.) The differences between the various
multifractal models are then related to the construction of the random measure m. The
log-normal MRW model is, on one hand, based on a particular construction of m known
as multiplicative chaos, and, on the other hand, it can be seen as a special case of the
more general IDC constructions. In multiplicative chaos, which was developed rigorously
in Kahane (1985), one considers a sequence m,, of measures defined via random densities
of the form

dm,,(t) = ¢, exp(h,(t))dt,

where 1/¢, = Elexp(h,(t))], and h,(t) are centered Gaussian processes with covariance
structures g, (t,s) = cov|h,(t), h,(s)] that converge to some expression g(¢,s) in the limit
n — 0. Kahane (1985) showed that if g is o-positive, meaning that there are positive and
positive definite functions K, (¢, s) such that

gn(tv 8) = Z Km(t’ 8) )

then the sequence m,, converges weakly to a Borel measure m which depends only on the
function ¢(t,s). One can therefore informally think of m as being of the form dm(t) =
cexp(h(t)dt, where 1/c¢ = E[cexp(h(t)], and h(t) is a Gaussian process with covariance
g(t,s). Then, if one makes the choice

R
t,s) = Alog" —— 5.4
9(t, s) 8 T (5.4)

then one easily obtains the relation h(at) < h(t) + Q(a), where Q(a) are independent of

h(t) and distributed according to Q(a) & N (0, —A2loga). It follows that for ¢ < R and
0 < a < 1, we have the scaling relation

m ([0, at]) £ M(a)m([0,1]), (5.5)

with log M (a) & N(1 + A\2/2)loga, —A\2loga]. See proposition 3.3 in Robert and Vargas
(2010) for a rigorous proof of (5.5), and see example 2.3 of the same paper for a verification
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that the function g(¢, s) in (5.4) is o-positive. By using the well-known formula for the ¢-th
moments of log-normal variables together with (5.5), we easily verify the multifractality of
the process A(t) = m([0,t]): Denote C, = E|m([0,1])|? and observe that

Elm([0,#])|? = C,EM (t)? = C,t4@,

where Ca(q) = q(1+X?/2) — A?¢?/2. Since a Brownian motion is self-similar with H = 1/2,
the scaling function of X (¢) is given by ((q) = Ca(q/2).

Alternatively, the model defined by (5.2) and (5.3) can be motivated by considering
the more general class of IDC models. Here we briefly mention the main ideas and results
in this theory, and we refer to (Bacry and Muzy, 2003; Muzy and Bacry, 2002) for details.
At the base of this construction is an object called an independently scattered, infinitely
divisible, random measure P(dt,dr) defined on the half plane St = {(t,7) € R?r > 0}.
The defining properties of the random measure P are (1) for any measurable set A C ST,
the random variable P(A) is infinitely divisible with characteristic function

©p)(q) = exp(¥(q)p(A)),

where u(dt,dr) = r~2dtdr; and (2) for any finite sequence A, C ST of disjoint and mea-
surable sets, the corresponding random variables P(Ay) are independent. If we assume
that ¢/(0) = 0, then the random measure P induces a family of centered and stationary
stochastic processes through the equation

where A(r,t) are conelike domains defined by
A(r,t) = {(t',r") € ST = r |t' = t] < f(r)/2},

with f(r) =r for r < R, and f(r) = R for r > R. The time correlations in the processes
h,(t) are characterized by the functions

By1-1t ift<n,
R
t

pr(t) = p[A(0,r) NA(t,r)] = { Ei ift>r.

In fact, the covariance of h,.(t) is given by
cov[he(t), he(s)] = N p. ([t — s)),
where A\? = —1”(0). Random measures are defined by dm,(t) = c,exp(h.(t))dt, where

1/c, = Elexp(h.(t))]. The corresponding distribution functions are Ar(t) = m,([0,t]) and
corresponding random walks are

X, (1) = / VA DAB(),
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By using the relation p,,(at) = —loga + p,(t), one can show that

har(t) £ By (1) + Q(a),

for a € (0,1) and ¢t < R, where (a) are independent of h,(t) and have characteristic
functions po(q)(q) = exp(—1(q) log a). Consequently, the limit process X (¢) = lim,_,o X, (t)
has scaling function

C(q) = (1 +¥(=i))q/2 — ¥(—ig/2).

In the case that h,.(t) are Gaussian, i.e., ¥(q) = —\?¢*/2, the covariance is of the form

Cov(h,(t), h,(s)) = N log™ r—
-5

for |t — s| > r, and hence it can be approximated by the process defined by (5.3). In this

case, the scaling function is

C(q) = (L+X?/2)q/2 — N*¢*/8.

We note that for A = 0, the process X (¢) is reduced to a Brownian motion and ((q) = ¢/2.

We point out that this paper presents an ML estimator for the discrete-time process x;
defined by (5.2) and (5.3). This is sufficient for the purpose of modeling and forecasting
volatility in financial time series, since the discrete-time MRW model is directly compa-
rable to generalized autoregressive conditional heteroskedasicity (GARCH)-type models.
In other applications, such as modeling the velocity field in turbulence, one is interested
in the continuous-time process X (¢). Since x; is an approximation to the continuous-time
process X (t), our method can also be interpreted as an estimator for this process. In this
case, one must be aware that the increment process X (¢t + At) — X (¢) is not proportional
(in law) to exp(ha¢(t))e; , and that this is only an approximation in the limit \* < 1; see
Appendix A.1 in Bacry et al. (2008). In the case of strong intermittency, the estimator for
the continuous-time process X (¢) may therefore depend significantly on the time scale At
for which the data is sampled. An analysis of how our method performs as an estimator
for X (t) will require extensive Monte Carlo simulations (with varying A and At), and this
is beyond the scope of this paper. We also remark that in some applications it is relevant
to estimate the parameters of the measure dm(t), for instance when modeling the energy
dissipation fields in turbulence. In the discrete-time approximation, this corresponds to
the process exp(h:) , where h; is described by (5.3). Since h; is Gaussian, this problem
is much easier than the one considered in this paper. The ML estimator for exp(h;) can
be constructed using standard methods (McLeod et al., 2007) and no approximations are
required.

5.3 Approximated maximum likelihood

In this section, we explain our method of approximated maximum likelihood estimation.
Let x; and h; be the processes defined by (5.2) and (5.3). Denote z = (xy,...,2,) and
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h = (hy, ..., hy). The first step is to write

pa() = / prale, h) dh = /R punlalh)pu (R}, (5.6)

The first factor pyn(x|h) in the integrand is computed by noting that when conditioned on
h, the variables z1, ..., x, are independent and Gaussian. In fact,

log pan(w, h) = Y 1og pu,pu, (x4, he)
t=1 n (5.7)
h 2
= —nlog\/27m—l—z<—§t L)
t=1

202 exp(hy)

For the second factor py(h), we use that h; is a centered Gaussian process with a specified
covariance structure, cov(hy, hs) = (|t — s|). First, we decompose the density into one-
dimensional marginals,

ph(h) = tht|h1;t—1(ht) ) (58)

where we have used the notation

[ (hpy hps1y -y hey)  form >n
e (hnahn*la"'ahm) fOI' n>m .

Denote by T'; the covariance matrix of the vector hy, , and let vy, = [y(1),...,v(t)].
The covariance matrix can be written of the block form

I, — <Ft1 ’Yl:t1)
a1 (0)

By performing standard computations of conditional marginals in multivariable Gaus-
sian distributions, we deduce that h;|h1,4_1 is a Gaussian with mean m, = ’yl;t,lF;_llh%;_l):l
and variance S? = v(0) — y141; 4%, . As usual, it is convenient to introduce vectors
& defined by ¢T", = ~1,,. This allows us to write the mean as m; = gzﬁ(t*l)h%;_l):l and
the variance as S? = v(0) — ¢*"U4%. . Then from equation (5.8) we have

n n (ht _ gb(t—l)h%;_l):l)Z
logpp(h) = —nlogVv2m — Z log S; — Z 552
t=1 t

t=1

(5.9)

Combining equation (5.9) with equation (5.7) we get an expression for the full likelihood:

— 2 202eh
(ht - ¢(t_1)h{t—1):1)2

t=1

Pap(z,h) = —nlog2mo + z": ( L xf )
N (5.10)
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We keep in mind that ¢ depends on R and X through the relation 1/c = Efexp(hy)] = RN/2.
Approximation 1: By comparing covariances, the process h; can be written as

= ngt_l)ht—l +o 4+ ¢t 11)h1 + wy, (5.11)

where w; are independent Gaussian variables with zero mean and variances equal to S?. As
approximations to h;, we can consider processes obtained by truncating the sum in (5.11).
We fix a parameter 7 € N, and for ¢ > we replace (5.11) with

] VR G A L (5.12)

where w,gT) are independent Gaussian variables with zero mean and variances equal to SZ, ;.

Note that h|h;_14, in (5.11) has the same distribution as obtained from (5.12), namely, a
Gaussian with mean m; = gb(f)hﬁ_l):t_T and variance SZ_ ;. In effect, we have approximated
the distribution of h;|h;_1.1 by truncating the dependency after a lag 7. As a result of this,

the approximation given by (5.9) becomes

T (h —¢(t_1)hT_ .)2
logpn(h) = —nlogVv2r ZlogSt Z ! (=1

2
n oy =L 2 (5.13)
ht 4 h‘t 1: T)
DI .
t=7+1

In order to compute the expression in (5.13), we need to solve the equations
¢(t)Ft = Y1:t t= 1,...,7—.

This is done efficiently using the Durbin-Levinson algorithm (Levinson, 1946; Trench,
1964). We remark that for 7 = n, the expression in (5.13) is exact.

Approximation 2: The second approximation is the so-called Laplace’s method,
which is frequently used for the approximation of likelihoods in SV models; see, e.g.,
(Skaug and Yu, 2009; Martino et al., 2011). We write (5.6) of the form

px(x):/ enf=Mdh | (5.14)

where 1
fz(h> = Elogpz,h<x>h)

1 « 1 «
= ﬁ tzl logp$t|ht<xt) + ﬁ tzl logpht‘hlztfl(h’t) -

The Laplace method is to assume that f,(h) has a global maximum in R™, which we denote
by h*. When n is large, the contribution to the integral in (5.14) is concentrated around
h*, and therefore we make a second order Taylor approximation to f,(h) around this point.
Since h* is also a local maximum, we have

(5.15)

o (= 1) 2 (= 1)

1
fx(h) ~ Elogpx,h(ma h*> + 2
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where
B 0?1og pyp(z, h*)

Oh OhT
is the Hessian matrix of f,(h) at the point A*. The approximation now reads

Qy

po(z) A~ el [ eh (k)R ()T gy
R’VL
= (27r)"/2 | det Qgc|1/2 Dan(x, BF).

The maximum h* is found by computing the partial derivatives of f,(h) with respect to h,
setting them equal to zero, and solving the corresponding system of equations numerically
using the algorithm df-sane (La Cruz et al., 2006), which is implemented in the R package
BB (Varadhan and Gilbert, 2009). The matrix €2, is obtained using analytical expressions
for the second derivatives. This matrix is band diagonal, with the bandwidth equal to the
truncation parameter 7, and, in the R software, such matrices are efficiently stored and
manipulated using the package MATRIX (Bates and Maechler, 2014).
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Figure 5.2: Double-logarithmic plot of the mean square errors as functions of sample length
n for the ML estimator with 7 = 100 (squares) and the GMM estimator (crosses). The
dotted lines have slopes equal to —1, i.e., the mean square errors decay roughly as 1/n for
both estimators.

5.4 Estimator comparisons

In this section, the ML estimator is compared with a GMM approach which is similar to
the one used in Bacry et al. (2008). This GMM version is essentially a least-squares fitting
of the autocorrelation function for the logarithmic volatility, and we briefly explain this
method in the following: Denote m; = logz?, and observe that

my = hy + Yy,
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where y; = logc + loge? are independent and identically distributed. We can use the
sample standard deviation to normalize m; so that it has unit variance. Then, if we let
tm = E[m;] = E[y;] denote the mean of m;, the autocorrelation function (ACF) of m; has
the form

ACF,(t) = E[(m1 — pm)(mi1 — )]

= Ehlht+1 = /\2 10g+ Hil

For t < R, we have
ACF,,(t) = N®log R — M log(t + 1)

and log R and A can be found by linear regression of the autocorrelation function versus
log(t41). We begin testing the approximated ML estimator by applying it to various stock
market indices. An example is shown in figure 5.1, where we have plotted a realization of
the MRW model with parameters estimated from the German DAX index. For comparison,
the data are plotted together with the log-returns of the DAX index. In table 5.1 we present
estimates for six different stock indices. We use daily log returns and in all of the estimates
the truncation parameter is set to 7 = 500 days. We observe that the intermittency
parameter 7 varies from 0.29 to 0.37 for the different indices and time periods. We also
observe that the correlation range parameter 7' varies by roughly one order of magnitude,
in the range 1.4 — 12.2 years. If we compare with the GMM, we see that for all of the
indices, the estimates of A are lower using the ML method. For the parameter T, the
estimates using ML and GMM are more or less consistent, but with quite large variations
between the two estimators.

To further test the performance of the proposed ML estimator, we run a small-sample
Monte Carlo study. We have used three different sample lengths, n € {2500, 5000, 10000},
and for each sample length n we simulated 500 sample realizations. The parameter vector
considered is A = 0.35,0 = 1, and R = 2000. For the truncation parameter, we have

ML GMM
Index Time period A T (years) A T (years)

CAC 40 1990 — 2011 0.29 2.8 0.36 2.5
S & P 500 1950 — 2011 0.32 12.2 0.36 10.2
DAX 1990 — 2011 0.32 2.2 0.44 3.1
Nikkei 225 1984 — 2011 0.36 1.4 0.40 3.0
Hang Seng 1986 — 2011 0.37 2.8 0.44 2.5
FTSE 100 1984 — 2011 0.28 4.2 0.36 2.9

Table 5.1: Estimated parameters for the log returns of various stock market indices. Prior
to the analysis, the sample standard deviation of each data set is normalized to unity.
All ML estimates are run with 7 = 500 and the GMM estimates are performed with a
maximum time lag ¢,,,, = 500 days in the autocorrelation function of m; = logz?. The
analyzed data is retrieved from http://finance.yahoo.com/.
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Table 5.2: The results of a Monte Carlo study of the ML and GMM estimator. The
parameters in the simulations are A = 0.35 and R = 2000 (i.e. log R = 7.6). In the GMM
estimator, we have we have used a maximum time lag ¢,,,x = 500 days in the autocorrelation
function of m; = logz?. The reported values are the mean estimates together with the
standard deviations (in brackets).

ML GMM
H n ‘ T A ‘logR‘ o A ‘logR‘ o
o | 03L [ 687 | 097
(0.03) | (3.41) | (0.19)
034 | 647 | 097 | 0.34 | 611 | 097
25001501 0,08y | (1.73) | (0.19) | (0.08) | (0.76) | (0.19)
034 | 635 | 0.07
100
(0.03) | (1.67) | (0.19)
o | 030 | 555 | 0.8
(0.03) | (2.18) | (0.14)
031 | 702 | 098 | 0.35 | 6.69 | 0.981
V00150 609y | (1.44) | (0.14) || (0.05) | (0.96) | (0.15)
oo | 034 | 687 [ 097
(0.02) | (1.31) | (0.14)
o | 030 [ 910 | 0.8
(0.02) | (1.80) | (0.10)
0.34 | 7.37 [ 0.98 | 0.35 | 7.11 | 0.98
100001501 01y | (1.24) | (0.10) || (0.04) | (0.92) | (0.10)
oo | 034 [ 721 | 098
(0.01) | (1.16) | (0.10)

considered the cases 7 € {10,50,100}, and in the GMM method, we use a maximum
time lag tyax = 500 days in the autocorrelation function of m; = log x? . The results are
presented in table 5.2. For both the GMM and the ML methods, the estimates of R are
highly unstable. This is also pointed out in Bacry et al. (2008). However, the processes
x, only depend on the R through expressions of the form \?log R. Therefore, in order to
have an estimator which is comparable to A, we should consider the variable log R. The
estimators of log R behave reasonably well, even though there are significant mean square
errors and some bias. We see that both the ML and GMM methods underestimate log R
and that the errors are roughly the same for the two estimators. On the other hand, we
observe that the ML estimates of A have standard deviations which are much smaller than
the corresponding standard deviation for the GMM estimate, especially for 7 = 100. This
can also be seen from figures 5.3 and 5.4, where the probability density functions (PDFs)
for the GMM estimates and the ML estimates are presented. Based on this, we conclude
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that the ML estimator performs better than the GMM. Moreover, if one allows longer
computing times, then the truncation parameter 7 can be increased to obtain even more
accurate estimates. For a time series of n = 10* data points, an ML estimate with 7 = 500
takes a few minutes on a personal computer. In figure 5.2, we have plotted the mean square
errors (MSEs) E[(A — \)?] for the ML estimator, with 7 = 100, and the GMM estimator.
We see that for both of the estimators, the MSE is roughly inversely proportional to the
sample length. However, from table 5.2, we see that there is a slight negative bias in A for
the ML estimator. This bias decreases with increasing 7, and we suspect the estimator to
be asymptotically unbiased in the limit 7 = n — oo.

5.5 Concluding remarks

In this paper, we have presented an approximate ML estimator for MRW processes. The
method is implemented and tested in a Monte Carlo study, and the results show significant
improvements over existing methods for the intermittency parameter A\. The methods of
this paper represent a suitable starting point for two important generalizations. The first
generalization is to allow for correlated innovations, for instance by letting €, be a fractional
Gaussian noise. This has several important applications, for instance in the modeling of
geomagnetic activity and electricity spot prices (Malo, 2006). Another interesting gener-
alization is to consider the non-Gaussian IDC models referred to in section 5.2. We also
point out that the techniques presented in section 5.3 can be used to calculate conditional
densities of the form p(zyi1, ..., Teys|T1, ..., 2¢). At time ¢, such an expression provides a
complete forecast over the next s time steps. Forecasting and risk analysis based on the
MRW model and the methods in this paper is a promising topic that will be pursued in
future work.
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Figure 5.3: The results of the Monte Carlo study for the GMM estimator explained in section 5.3. The figures show
the estimated probability density functions (PDFs) for the estimators based on 500 realizations of the process. The
parameters are A = 0.35, 0 = 1, and R = 2000 (i.e., log R = 7.6). In (a)-(c), the sample lengths are n = 2500; in (d)-(f),
the sample lengths are n = 5000; and in (g)-(i), the sample lengths are n = 10000. The means and standard deviations
of the estimators are reported in table 5.2.
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Paper 3

Abstract. We discuss stochastic modeling of volatility persistence and anti-correlations in
electricity spot prices, and for this purpose we present two mean-reverting versions of the
multifractal random walk (MRW). In the first model the anti-correlations are modeled in
the same way as in an Ornstein-Uhlenbeck process, i.e. via a drift (damping) term, and in
the second model the anti-correlations are included by letting the innovations in the MRW
model be fractional Gaussian noise with H < 1/2. For both models we present approximate
maximum likelihood methods, and we apply these methods to estimate the parameters for
the spot prices in the Nordic electricity market. The maximum likelihood estimates show
that electricity spot prices are characterized by scaling exponents that are significantly
different from the corresponding exponents in stock markets, confirming the exceptional
nature of the electricity market. In order to compare the damped MRW model with the
fractional MRW model we use ensemble simulations and wavelet-based variograms, and we
observe that certain features of the spot prices are better described by the damped MRW
model. The characteristic correlation time is estimated to approximately half a year.
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6.1 Introduction

Since the 1990s, several of the world’s electricity markets have been deregulated and re-
organized in order to introduce competition and increase efficiency (Bye and Hope, 2005).
In the de-regularized electricity markets there is trading of contracts for physical delivery
of electric energy at a certain hour the next day. The price of such a contract is called the
electricity spot price, and it is recorded for every hour of the year. The records of historical
spot prices are extremely interesting from a scientific point of view, and a lot of effort has
been devoted to describing and modeling their dynamics.

In this paper we analyze data from the Nordic electricity spot market (Nord Pool),
which is known to exhibit a daily periodicity, a weekly periodicity and a one-year period-
icity. These periodicities can be understood from a simple analysis of supply and demand.
The consumption of electric energy is generally lower at night than during the day, and
this causes a daily cycle in price. In the same way, the industry’s demand for electric
energy is lower during the weekend, and in the Nordic countries the demand for electric
energy increases in winter due to the need for heating. In addition, the Nord Pool market
is largely based on hydroelectric energy which supply has a seasonal variation.

On top of the periodic variations, the electricity spot prices have more unpredictable
changes which are related to factors such as the weather, the distribution network, the level
of industrial activity and general market dynamics. The aim of this paper is to present
models for these non-periodic fluctuations. This task is important for several reasons. For
instance, accurate quantification of the variability of spot prices is essential for correct
pricing of futures and other electricity-based derivatives. It is also interesting to compare
the characteristics of electricity spot prices with the prices of other commodities. It is
observed that some of the “stylized facts” of electricity spot prices are similar to what is
seen for stock and currency, whereas other properties are quite different. See e.g. Weron
(2006).

Among the “stylized facts” of spot prices that are similar to other financial time series,
are non-Gaussian distributions of log-returns and long-range volatility dependence. The
latter is related to the term “volatility clustering”, which refers to the observation of
Mandelbrot (1963), that small price changes tend to be followed by small price changes,
and that large price changes tend to be followed by large price changes. In stock markets it
is known that volatility is closely tied to the trading volume (Lobato and Velasco, 2000), and
it is reasonable to assume that the same is true for the electricity market. However, since
electric energy is expensive to store, the delivered volume must equal the consumption. It
is therefore somewhat surprising that electricity spot prices have such clear memory effects
in volatility, and it shows that volatility clustering can be present even in markets with
limited room for speculative behavior. On the other hand, the (non-periodc component
of the) demand for electric energy is obviously not constant. It depends on a range of
physical and economic factors, which certainly may contain long-range memory effects.

The “stylized facts” mentioned above can be described in a parsimonious way using
multifractal models, and it has already been suggested by some authors (Norouzzadeh
et al., 2007; Malo, 2006, 2009) to apply multifractal modeling to electricity spot prices.
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Within this framework the logarithmic returns are modeled as z; = X (t + At) — X(¢),
where X (t) is a multifractal process with stationary increments. Multifractality means
that X (¢) is characterized by power-law scaling of its moments, i.e. E[|X(¢)|?] ~ t*@ in
some range 0 < t < T or asymptotically as ¢ — 0. For self-affine processes with finite
variances, such as Brownian motion and fractional Brownian motion, the scaling function
((q) is linear and its slope equals the self-affinity exponent. However, in general, the scaling
functions are concave and in the following we will refer to multifractal processes as those
with strictly concave scaling functions.

The stochastic modeling presented in this paper is based on the (log-normal) MRW
model. This model was introduced by Bacry et al. (2001), and it is often preferred over
other multifractal models because of its simplicity and its desirable theoretical properties.
For the purpose of modeling financial time series, the most important property of the MRW
model (and other multifractal models) is that, even if the log-returns x; are uncorrelated,
the auto-correlation functions for their amptitudes |x;| decay as power-laws as functions of
the time lag 7:

R, I(T) def El|z24-|] — EHItHQ A4
: Var(|z]

Here A is called the intermittency parameter. This property allows us to model volatil-
ity clustering without imposing any particular type of correlations between the returns
themselves. Simultaneously, the concave shape of the scaling function ((¢) implies that
the kurtosis of X(¢) increases as ¢ — 0. This means that the return distributions are
increasingly leptokurtic on shorter time scales, and consequently non-Gaussian.

In addition to “fat-tailed” distributions and slowly decaying volatility dependence, elec-
tricity spot prices have anti-correlated returns. This was first discovered by Weron (2000)
and has since been confirmed by several authors. Anti-correlations are atypical in financial
time series and would normally lead to arbitrage possibilities. (See e.g. Samuelson (1965)
or chapter 2 in Mantegna and Stanley (2000).) However, since electricity is expensive to
store, such arbitrage possibilities are hard to exploit, and hence anti-correlated returns
may exist. There are mainly two ways in which these anti-correlations are modeled: The
simplest approach is to consider models similar to Ornstein-Uhlenbeck (OU) processes
(Uhlenbeck and Ornstein, 1930). The standard OU processes are defined via stochastic
differential equations on the form

(6.1)

dX(t) = —v (X(t) —m)dt+odB(t), (6.2)

where B(t) is a Brownian motion. The first term on the right-hand side of equation (7.3) is
called the drift term (or the damping term), and for v > 0 this causes anti-correlations since
it prevents X (¢) to diffuse far from its mean value m. One can choose initial conditions for
X (t) such that the OU process is stationary, and in this case the auto-correlation function
for the returns z; = X (¢t + At) — X (¢) has an exponential decay with a characteristic time
scale 1/v:

déf E[$t$t+7] B E[‘rtP ~ 2 —vT

R.(T) Varl) —ve T, (6.3)
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To include the effects of non-Gaussian log-returns and volatility clustering, the white noise
dB(t) can be replaced by other types of (uncorrelated) noise processes, such as jump
processes with regime switching or (as in this paper) multifractal processes. Examples of
non-Gaussian OU-type models for spot prices are given by Benth et al. (2007), Erlwein
et al. (2010) and Weron et al. (2003).

An alternative to including mean reversal via a drift (damping) term is to describe
the anti-correlations using Hurst exponents. This assumes that the logarithm (of the non-
periodic component) of the spot price can be described by a process X (¢) with stationary
increments and power-law scaling of the variogram. The latter means that the second
moment of the differences §.X,(t) = X (¢t + 7) — X(¢) is a power-law as a function of the
lag 7, in which case H is defined by

E[6 X, (t)%] oc 72 (6.4)

For self-affine processes with stationary increments and finite variances, such as fractional
Brownian motions, the Hurst exponents are equal to the self-affinity exponents.

This follows from the definition of self-affinity: If X (at) < o X (¢) for all a > 0, then

6X.(t) £ X(r) & 7HX(1). Taking the second moment gives equation (6.4). However,

equation (6.4) does not imply that the gth moments, E[|dX(¢)|?], are power laws in 7.
In particular, we do not need to assume self-affinity to use Hurst exponents. If the Hurst
exponent is well-defined, H # 1/2 and X(¢) has stationary increments, then the auto-
correlation function of the log-returns x; decays as

R.(T) ~2H(2H — 1) 7212, (6.5)

See e.g. appendix A of Rypdal and Rypdal (2012). We note that the case H < 1/2
corresponds to algebraically decaying anti-correlations.

By the Wiener-Khinchin theorem (assuming stationarity of ), the auto-correlation
function R,(7) and the power spectrum of z; are related via a Fourier transform. Therefore,
equation (6.4) implies that the power spectrum of X(t) is a power law. In principle,
the power-law exponents of the variogram, the auto-correlation function and the power
spectrum contain the same information, namely the characteristics of the second-order
statistics. On the other hand, the estimators corresponding to these quantities behave
quite differently.

There exist several methods for estimating Hurst exponents, and various authors have
reported different estimates in different electricity markets using different techniques. How-
ever, all reported values of H are in the interval H < 1/2. Weron and Przybylowicz
(2000) applied R/S analysis to daily averaged prices from the California Power Exchange
(CalPX), and reported a Hurst exponent around H = 0.42. Using an average wavelet
coefficient (AWC) method, Simonsen (2003) has estimated a Hurst exponent H = 0.41 for
the Nord Pool market. Anti-persistence in the Nord Pool data is also found by Erzgraber

IThe notation < denotes equality in distribution for random variables, while 4 denotes equality in
distribution for stochastic processes, i.e. that all finite-dimensional marginals are equal in distribution.
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H Authors \ Market \ Period H
Weron and Przybylowicz (2000) | CalPX Apr. 1998 - Jan. 2000
Simonsen (2003) NordPool | May 1992 - Dec. 2000
Erzgraber et al. (2008) NordPool | May 1992 - Dec. 1998
Norouzzadeh et al. (2007) OMEL Jan. 1998 - May 2006

Method | Estimate
Weron and Przybylowicz (2000) | R/S H =0.42
Simonsen (2003) AWC H =041
Erzgréaber et al. (2008) R/S H =044
Norouzzadeh et al. (2007) DFA H =0.16

Table 6.1: A summary of some of the previously obtained results that have been obtained
using Hurst analysis on electricity spot prices. The table includes the method of estimation,
the time series analyzed and the obtained estimate of H. Further details are found in the
cited references.

et al. (2008) by R/S-analysis. Using de-trended fluctuation analysis Norouzzadeh et al.
(2007) have estimated the Hurst exponent of the Spanish electricity exchange, Compania
O Peradora del Mercado de Electricidad (OMEL), to be H = 0.16. These results are
summarized in table 6.1.

In this work we present two stochastic models for electricity spot prices. In the first
model, which we will refer to as a damped MRW model, we consider a process of OU type,
but where we have introduced stochastic volatility in the same way as in a standard MRW
model. This type of model (which was first introduced in Rypdal and Rypdal (2011) to
describe magnetic field fluctuations in the turbulent solar wind) has exponentially decaying
anti-correlation of returns and algebraically decaying dependence in volatility.

The second model is referred to as a fractional MRW process. Here we use the same
stochastic volatility as in the standard MRW model, but instead of a white noise, the
process is driven by a fractional Gaussian noise with Hurst exponent H < 1/2.

The main results of this paper are presented in sections 6.3 and 6.4. In section 6.3
we discuss methods for modeling spot prices using mean-reverting multifractal processes,
and in section 6.4 we derive approximate ML estimators. These methods are general-
izations of a recently developed method for inference on standard (uncorrelated) MRW
models (Lgvsletten and Rypdal, 2012a). In section 7.4 we apply the ML estimators to the
Nord Pool data and show that the estimates are consistent with the preliminary analysis
presented in section 6.2.

As a part of our further analysis we compare our two models in order to determine which
provides the better description of the Nord Pool data. To do this we construct ensembles
of synthetic signals from the two models, with periodic components added, and compute
wavelet-based variograms. These variograms are then compared to the corresponding var-
iogram for the Nord Pool data. The details and results of this test are described in section
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Figure 6.1: (a): The time series obtained from the spot prices by taking the logarithm and
subtracting a linear trend. The plotted signal consists of daily means from May 4th 1992
to August 27th 2011. (b): The increments of the time series plotted in (a). (c): For the
signal in (a) we plot the mean value conditioned on the weekday. This means that the
first point is is obtained from the signal in (a) by taking the mean value over all Mondays,
the second is obtained by taking the mean over all Tuesdays, and so on. (d): The weekly
means of the signal in (a) conditioned on the week of the year. The dotted line shows a
fitted sinusoidal oscillation with a period of one year and an amplitude 0.25.

6.6. In section 6.7 we give some concluding remarks.

6.2 Description of data and preliminary analysis

The data analyzed in this paper are received from the Data Administrator at Nord Pool
Spot (http://www.nordpoolspot.com/) upon request. The data set consists of hourly
spot prices measured in Norwegian Kroner (NOK) from May 4th 1992 to August 27th
2011. The one-day period and the seven-day period show up as peaks in the estimated
power spectrum, as do their higher harmonics. This can be seen in figure 6.2(c).

To eliminate the effect of the strong daily periodicity we consider the signal P(t) of daily
mean prices, and we denote X () = —ut + log P(t), where p is the mean daily log-return,
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=B log 55
where At = 1day and “log” denotes the natural logarithm. The resulting signal X (t) is
shown in figure 6.1(a). We will refer to the time series X (¢t + At) — X(¢) as the daily
log-returns, and they are shown in figure 6.1(b). The sample standard deviation of this
signal is 0 = 0.12.

Even if we study daily mean values, there are still seven-day and one-year periodicities
in the signal. This is illustrated in figures 6.1(c) and 6.1(d). In figure 6.1(c) we have
plotted the conditional mean of X (t) given that the signal is sampled only on a specific
day of the week. We see from the figure that the spot price is lower for Saturdays and
Sundays. The conditional mean of X () has a variation of about 0.15 from weekdays to
the weekend. This variation is rather large, roughly equal to the standard deviation of the
log-returns, and therefore the seven-day periodicity exerts substantial influence on certain
estimates. For instance, the estimated auto-correlation function of the daily log-returns
has a strong seven-day period which makes it hard to analyze the correlation decay in the
non-periodic component of the signal.

Due to the strong weekly periodicity we will for most of the remaining analysis consider
a discretization y, = X (kAt), where At = 1week. This simply means that we consider
the signal X (t) sampled once a week, for instance every Monday. This gives us seven
(dependent) time series, and as we will see in section 7.4, the parameter estimates vary
little between these time series, with some exceptions for Saturdays and Sundays.

In the weekly sampled signals there is still a one-year periodicity. This is illustrated
in figure 6.1(d), where we have plotted the weekly mean of X (¢) conditioned on the week
number of the year. The seasonal dependence can very roughly be described by a sinusoidal
oscillation with amplitude 0.25. This amplitude is greater than the the weekly oscillation,
but since the period is about 50 times greater, the one-year oscillation exerts much less
influence on the analysis. We make no attempt to de-trend this seasonality, but we have
crudely tested the effect that a sinusoidal oscillation with amplitude of 0.25 has on the
estimates that we perform. For the ML estimators presented in section 6.4 we observe that
the addition of the sinusoidal signal slightly decreases the estimate of H in the fractional
MRW model, and slightly increases the time scale 1/v in the damped MRW model. The
relative changes in H and 1/v are typically < 10%, whereas the intermittency parame-
ter is almost unchanged. Other estimates, such as the auto-correlation function for the
fluctuation amplitudes | X (¢t + At) — X (t)|, are more influenced by the seasonal variation.
We have plotted this correlation function in figure 6.2(b), and we clearly see a one-year
oscillation on top of the decay. Simonsen Simonsen (2005) has found that this correlation
function decays algebraically as 1/7%97, and if we compare with equation (6.1), this corre-
sponds to A = 0.53. This value of the intermittency parameter is slightly higher than what
is estimated for stock markets, which typically are in the range 0.3-0.4 (Lgvsletten and
Rypdal, 2012a; Bacry et al., 2008). This difference between stock markets and electricity
spot markets is confirmed by the ML estimates presented in section 7.4.

The estimated correlation functions for the log-returns themselves are plotted in figure
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6.2(a). It is the average of the correlation functions for the seven time series obtained by
sampling with weekly intervals on a given weekday. It might be possible to detect some
anti-correlation from this figure, but it is impossible to distinguish between an exponential
and an algebraic decay, i.e. between the expressions in equations (6.3) and (6.5). The corre-
lations of returns are better analyzed using a wavelet-based variogram V (a) = E[|W (¢, a)|?],
where

W(t,a) = % /X(t’)z/z(t/ — t) dt' (6.6)

is the wavelet transform of X(¢) with respect to the mother wavelet . The wavelet
transform scales as (Muzy et al., 1991; Simonsen et al., 1998):

W(t,a) ~ Va (X(t ta)— X(t)> , (6.7)
and hence, if the Hurst exponent of X (¢) is well defined® we have
V(a) ~ a*tt . (6.8)

In figure 6.2(d) we show the wavelet-based variograms for the weekly sampled data esti-
mated using a wavelet 1) that is the first derivative of a Gaussian. The dotted line above the
variograms has slope 1.8 in the double-logarithmic plot, corresponding to a Hurst exponent
H =04.

A striking feature in figure 6.2(d) is the sharp “breaks” in the variograms in the range
20-50 weeks. This represents a characteristic time scale, and the existence of characteristic
scales is not consistent with an algebraic decay of the auto-correlation function. In fact,
this feature of the spot price signal suggests a process of OU-type, for which the correlation
decay has a characteristic time scale 1/v. To support this statement we have simulated an
ensemble of OU processes with 1/v = 20 weeks and estimated the wavelet-based variograms
using the same method as for the spot-price data. The results of this analysis are shown as
the bottom curves in figure 6.2(d). We see from these plots that the OU-process captures
the flattening of the variogram on long time scales. The same feature is seen in the power
spectrum, which is plotted in figure 6.2(c). As opposed to the pure power-law spectrum,
a Lorentzian spectrum, which scales as ~ 1/f% for f > v, captures the flattening of
the spectrum at low frequencies. This seems to indicate that a model of OU type is
preferable over a fractional model. However, we must take into account that the observation
of a characteristic time scale may be an effect of the one-year periodicity, and that a
scale-invariant description of the non-periodic component may nevertheless be appropriate.
These questions are discussed in more detail in section 6.6.

6.3 Modeling anti-correlations and intermittency

In econometrics, the “stylized facts” of asset price fluctuations are often described by
discrete-time models, such as generalized autoregressive conditional heteroskedasticity (GARCH)

2The Hurst exponent is well defined if equation (6.4) holds, and we do not need to assume that X (t) is
self-affine nor multifractal. Equation (6.8) follows from (6.7) by the definition of H.
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Figure 6.2: (a): The auto-correlation function of the daily mean log-returns sampled at
weekly intervals on a given weekday, and then averaged over the seven weekdays. (b): The
auto-correlation function for the absolute values of the daily mean log-returns sampled
on Mondays. (c): Double logarithmic plot of the power spectrum of the daily mean spot
prices. The vertical lines correspond to periods of one year, one week and one day. The
solid line represents a power law 1/f2*! with H = 0.4, whereas the dotted line is a
Lorentzian spectrum v/(v? + (27 f)?), with 1/v = 20 weeks. (d) Double logarithmic plots
of the wavelet-based variograms for the log-returns sampled on different weekdays. The
curves are shifted to make them all visible (Mondays through Sundays are sorted from
bottom to top.) The dotted line is a power law corresponding H = 0.4. The bottom
curves show the results of the wavelet-based variograms estimated from realizations of a
OU process with parameters 1/v = 20 weeks. For each time scale a we have plotted the
mean (solid curve) and the 1/8 (upper and lower) quantiles (dashed curves).

models (Bollerslev, 1986), which are well-suited for efficient parameter estimation and fore-
casting. In parallel to to this approach, several authors have proposed to describe prices
using continuous-time models with scaling properties. This idea dates back to the work
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of Bachelier (1900), who modeled asset prices using Brownian motions. To deal with level
effects, Bachelier’s model has been modified, so that it is the logarithmic prices, rather
than the prices themselves, that are described by Brownian motions. The resulting model
can be written on the form

log P(t) =put+ o B(t). (6.9)

In 1963, Mandelbrot suggested to replace the Brownian motion B(t) in equation (6.9) with
a non-Gaussian self-affine process Z(t). He deduced that in order to maintain uncorrelated
increments, the process Z(t) must be an a-stable Lévy process with o < 2 (also called a
Lévy flight). An interesting modification of the stable Lévy processes are the truncated
Lévy flights (Mantegna and Stanley, 1994), which behave as heavy-tailed Lévy flights on
short time scales, but converge to Brownian motions on long time scales.

The disadvantage of these self-affine (or truncated self-affine) processes is that incre-
ments are independent, so that the models do not describe volatility clustering. The
dependence between log-returns can be introduced by explicitly modeling the volatility
o = o(t) as a stochastic process independent of B(t) (Taylor, 1982). These processes are
often called stochastic volatility (SV) models, and if the volatility o () is assumed to follow
a OU process, then the process is referred to as a basic SV model. In the basic SV mod-
els, the logarithmic prices do not have the scaling properties of Lévy flights and truncated
Lévy flights, and they can therefore not be characterized using scaling exponents or scaling
functions. However, as is shown by e.g. Calvet and Fisher (2001, 2004) and Bacry et al.
(2001, 2008), the volatility o(t) can be chosen so that the resulting model is multifractal.

The class of multifractal processes has its origin in statistical modeling of fully developed
fluid turbulence, and the underlying ideas can be traced back to the works of Kolmogorov
(1962) and Obukhov (1962). The analogies between turbulent fluids and financial markets
were first discussed in the 1990s, by e.g. Ghashghaie et al. (1996), Mantegna and Stanley
(1996), and Mandelbrot et al. (1997). Since then, several authors have proposed to model
the fluctuation of asset returns using multifractal stochastic processes, which are cascade-
type constructions inspired by the energy cascading in turbulence. See e.g. Lux (2012).

In this section we consider a particular multifractal model, the so-called MRW model,
and discuss how this model can be modified in order to include anti-correlations. We begin
by giving a brief description of the standard (uncorrelated) MRW model in section 6.3.1.

6.3.1 Stochastic volatility and MRW processes

Consider a discretization of the logarithmic price X (t), i.e. y, = X (kAt). This signal is
modeled as

Y = Y1+ 0/ My e + p At (6.10)

where ¢ is a standard Gaussian white noise. The stochastic volatility term is defined as
M. = c exp(hy), where hy is a centered Gaussian process with co-variances

T

Cov(hg, b)) = AN log™
OV( k> l) og (|k__l’+1>At7

(6.11)
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where log* a & max{0,a}. The constant ¢ is chosen so that 1/c = E[exp(hy)]. Note that
for A = 0 the logarithmic price is a Brownian motion with drift, i.e. the price is modeled
as a geometric Brownian motion.

From equations (6.10) and (6.11) one can derive equation (6.1), which shows that the
MRW model describes algebraically decaying volatility dependence. This type of long-
range dependence is common in financial time series, and the MRW model has shown to
provide good descriptions of the fluctuations of stock prices and currency exchange rates
(Bacry et al., 2008). However, the (drift-compensated) log-returns xy = yx — yr_1 — p At
are uncorrelated in this model, and therefore the model needs to be modified to make it
capture the anti-correlations of spot-price data.

6.3.2 A dampled MRW model

The discrete-time analog of OU processes are auto-regressive models of order one (AR(1)
processes). These can be written on the form

Yr = Qyk—1 + o + pAt, (6.12)

where ¢ = 1 — v At. This model can now be generalized to include multifractal volatility
by replacing the constant o with the process o /M, where M) = c exp(hy) is as defined
above. The resulting model is given by the following equation

Yk = QYk—1 + 0V Myep. (6.13)

We will refer to this process as a damped MRW model. We have here assumed that g = 0.3
We note that the damped MRW model is not multifractal, since its structure functions are
not power laws. However, the volatility dependence is the same as in the standard MRW
model.

Keeping in mind that M}, and ¢;, are independent processes, and that /M, is normalized
to have unit variance, we can use equation (6.13) to derive some simple properties of the
damped MRW model. The main observation is that the stochastic volatility term /M,
does not effect the second order statistics. This means that the auto-correlation functions,
variograms and power spectra are the same for the damped MRW process as for the
corresponding AR(1) process. For instance, for k > 0, the auto-correlation function is

0'2 k Atkl/v o vt

-7 7 1-g°

2

E[yoyk] =

where t = kAt. The auto-correlation function for the log-returns x, = y, — yr_1 is then

B2 o2 At202,2
E[zory] ~ —At*— I vt POV

21— g2 1—¢2 ©

vt (6.14)

3This can be done without loss of generality since the parameter u is easily estimated from data. One
can then replace the logarithmic prices X (¢) with the drift-compensated signal X (¢) — ut.
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and (up to discreteness effects) the power spectrum of y; is a Lorentzian:
v

TR

For general references on AR(1) processes see e.g. Percival and Walden (1993) and Brock-
well and Davis (1991).

Although the damped MRW models and OU processes (or AR(1) processes) share the
same correlations, there are essential differences between the models. As explained in the
introduction and in section 6.3.1, the factor v/Mj introduces volatility clustering and “fat
tailed” return distributions, features that are not contained in standard OU processes.
This can be seen from figure 6.3. In figures 6.3(a) and 6.3(b) we show a realization of an
OU process X (t) and its increments X (t+ At) — X (¢) respectively, and in figures 6.3(e) and
6.3(f) we show the corresponding plots for a damped MRW process. We clearly see that
the increments of the damped MRW model has volatility clustering and spikiness that is
not present in the OU process. If we compare with the Nord Pool data, which are shown in
figures 6.3(i) and 6.3(j), we observe that these features are essential for accurate modeling
of spot prices.

6.3.3 A fractional MRW model

The second class of models that we introduce are fractional MRW models. Here the term
“fractional” refers to the replacement of the white Gaussian noise ¢, with a fractional
Gaussian noise

e — By(k+1) — By (k).
Here By(-) is a fractional Brownian motion with self-affinity exponent H. This gives
processes on the form

uk = s+ My (6.15)
where M}, is as described in section 6.3.1.
The parameter ¢ is absent from this model since the anti-correlations of returns are
described via a Hurst exponent H < 1/2. In fact, for H # 1/2, the correlations of
Tr = Yr — Yr_1 are given by the expression

Elzoxy] ~ 2H (2H — 1) k2H272/4 (6.16)

If we compare equation (6.16) with equation (6.14) we see that a distinguishing feature for
the two models is that the auto-correlation function for log-returns decays exponentially for
the damped MRW model, whereas it decays algebraically for the fractional MRW model.
As for the damped MRW model, the factor /M, introduces volatility clustering and
“fat tailed” return distributions. In figures 6.3(c) and 6.3(d) we show a realization of
a fractional Brownian motion X (t) with H = 0.4 and its increments X (¢t + At) — X(¢)
respectively. In figures 6.3(g) and 6.3(h) we show the corresponding plots for a fractional
MRW process with H = 0.4. We see that the increments of the fractional MRW model has
volatility clustering and spikiness that is not present in the fractional Brownian motion.
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Figure 6.3: (a): A realization of an OU process with 1/v = 20 weeks. (b): The increments
of the signal in (a). (c): A realization of a fractional Brownian motion with H = 0.4.
(d): The increments of the signal in (c). (e): A realization of a damped MRW model with
1/v = 20 weeks and A = 0.7. (f): The increments of the signal in (e). (g): A realization
of a fractional MRW model with H = 0.4 and A = 0.7. (h): The increments of the signal
in (g). (i): The daily mean (logarithmic) spot price sampled every Monday. (j): The
increments of the signal in (i).

6.4 Maximum likelihood estimators

In the following we present ML estimators for damped and the fractional MRW models.
ML techniques for multifractal models have so-far been restricted to the so-called Markov-
Switching Multifractal (MSM) (Calvet and Fisher, 2001, 2004), but were recently obtained
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for the standard MRW model (Lgvsletten and Rypdal, 2012a). The generalization to
fractional and damped MRW models are new results.

6.4.1 Computation of the likelihood function for the standard
MRW model

The standard MRW model can be written as z; = o+/M}, 5, where the processes M) =
cexp(hy) and ¢ are as described in section 6.3.1. Given a time series of n observations
z=(z1,...,2,) (which we want to model with the process z}) the ML estimator seeks the
parameter vector § = (A, 0,7T') that maximizes the likelihood function £,(0|z), i.e.

0 = argmax, £,(0]2),

where L£,(0|z) = p.(z|0) is the n-dimensional probability density function (PDF) for the
random vector z = (x1,...,x,), evaluated at the point z for a fixed parameter vector 6.

The challenge is to efficiently compute the PDFs p,(z). Such a method is presented
in detail in Lgvsletten and Rypdal (2012a), and here we will only explain the main ideas.
The first step is to denote h = (hy, ..., h,) and to write

pz(x) = /n pz,h(xvh) dh = /npx|h(l‘|h)ph(h)dha (617)

where p, 5, is the joint PDF for the pair (z,h) € R" x R". Here p,, is the conditional PDF
of x given h, and pj, is the marginal PDF of h. The first term is easily computed by noting
that x|h is a Gaussian vector with independent entries. This gives

n

Pain(z|h) = prk\hk (zx|hw) , (6.18)
k=1
where , ,
x
b (T |k) = exp( — ——+——). 6.19
Dasin (TP V2mcexp(hg) o p( 202cexp(hk)> (6.19)

By definition the vector h is centered and Gaussian with specified co-variances Cov(hy, h;) =
v(|k —1]), and so the second factor pp(h) is calculated by using standard techniques for

Gaussian vectors: For each k = 1,...,n we define the regression coefficients gogk) by the
equations
k
Zcpg- )7(|z—]|):7(2) for i=1,... k. (6.20)
j=1

Then it holds that
hy = @gk_l)hkq +---+ 9015311_11)]11 + Wy, (6.21)

where w;, are independent and centered Gaussian variables with variances

k—1
st =7(0) = Y V(i) .
=1
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We can now make an approximation by fixing a truncation parameter K € N, and for
k > K replacing the expression in equation (6.21) with

hy, = @gK)hk_1 +---+ @%ﬂhk—}( + wng) )

where w,gK) are independent and centered Gaussian variables with variances s%,. With
this approximation we obtain the following expression for p,(h):

K
logpn(h) = —nlogVv2m — Zlog sk — (n— K)logski1
k=1
- - 2
s (= T e = = )
p 257
n 2
-y (e — o hymy — - — o i)
5 :
k=K+1 23K+1

By combining this expression with equations (6.18) and (6.19) we have an expression for the
full likelihood p, 5 (z, k), and what remains is to calculate the integral in equation (6.17).
This integral can be accurately approximated using Laplace’s method (Laplace, 1986).
This method entails writing p, »(x, h) = exp(nf,(h)) and assuming that the function f,(h)
has a global maximum h* as a function of h. For large n the contribution to the integral in
equation (6.17) is concentrated around h*, and the hence we can approximate it by making
a second order Taylor expansion of f,(h) about h*. The result is the approximation

pa() ~ exp(fu(h?)) / exp (%(h — W) (h = 1)) dh
= (2m)"?| det Q| Y2 pyn(z, h*),

where €, is the Hessian matrix of f,(h) evaluated at the point h*.

6.4.2 Computation of the likelihood function for the damped
MRW model

Let yx be the damped MRW model defined by equation (6.13) and xj be the standard
MRW model. We can write

Yk = QYr—1 + T,
and then, for y = (y1,...,y,) and an initial condition y,, we have

py(y) = /pyo (Yo)p=(y1 — PYo, Y2 — Y1, -+ Yn — OYn—1) dYo -

For large n, the ML method is insensitive to the initial condition yq, and therefore we
choose yy = 0, which gives

Py(Y) = Da(Y1, Y2 — OY1, - - Yn — OYn—1) -
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We then have a simple relationship between the likelihood functions of the process vy, and
the the likelihood functions for the process xy:

Ey(zl,...,zn|()\,a,T,gb)) :Ex(21722 — P21,y 2y — PZp | ()\70,T,¢)).

6.4.3 Computation of the likelihood function for the fractional
MRW model

In the fractional MRW model the white noise process ¢, is replaced by a fractional Gaussian
noise e,(CH) with Hurst exponent H. By definition this is a centered Gaussian process with
co-variance

B(lk 1) & Cov(e™ M) = {(|k: U+ 1) = 20k — 1P 4 (k= 1] - )2}
In the same way as for process hj in section 6.4.1, we can write
effH) = f‘fk 2 E,iH)l +- 4+ £kk 11 €1 )y Wy, , (6.22)

where the regression coefficients are defined via the equations

Zg (li—j)=p3G), i=1,... k, (6.23)

and wy are independent and centered Gaussian variables with variances

k—1
0) - > " VB()
=1

Again we fix a truncation parameter K € N, and for £ > K we replace the expression in
equation (6.22) with the expression

H K K) (H K
o = €10 4 GO+l

where w,(CK) are independent and centered Gaussian variables with variances r%, ;. For
k > K it follows that the conditional PDF of x, given both hq,...,hy and x1,..., 25 1,

satisfies

logpxk|h1 ..... hi,x1y..ey zk,1<xkz|h’17-"7hkax17"-7xk—1) = _log(UV 27TC) - 5

2
1
—logrg,i1 — T(xkexp 25 Tp—iexp(—hg_ Z)> .

202cr
K+1 i=1

From this we obtain an expression for the conditional PDF of = given h:

pz|h iL"h szﬂhl ..... Ry T1seees Tj 1($k|h1,...,hk,l‘1,...,.Cljk_l). (624)
k=1

Equation (6.24) is substituted into equation (6.17). The factor py(h) and the integral in
equation (6.17) are computed as explained in section 6.4.1.



6.5. RESULTS 87

| time series | 1/v (weeks) [ A [T (weeks) | o |

daily means 29 0.68 112 0.13
daily maxima 22 0.86 14 0.17
weekly means 40 0.55 132 0.14

weekday 1 22 0.70 26 0.18
weekday 2 20 0.57 99 0.16
weekday 3 24 0.59 99 0.16
weekday 4 26 0.64 71 0.18
weekday 5 26 0.65 25 0.16
weekday 6 39 0.72 32 0.17
weekday 7 41 0.78 88 0.25

Table 6.2: ML estimates for the damped MRW model using the method described in
section 6.4.2. The first data set consists of the daily mean logarithmic spot price after
having subtracted a linear trend. In the second signal we consider daily maxima of the
logarithmic price rather than the daily mean price. The third signal is obtained from the
first signal my taking seven-day means. The seven remaining signals are obtained from the
first signal by sampling every seventh day.

6.4.4 Implementation of the ML estimators

The methods described above are implemented as packages in the R programming language.
Equations (6.20) and (6.23) are efficiently solved using the Durbin-Levinson algorithm
(Trench, 1964; McLeod et al., 2007), so the most intensive computations are determining
the maxima h* in the Laplace approximation. This is done using analytic expressions
for the derivatives of the functions f,(h), which roots are found numerically using the
derivative-free SANE algorithm (La Cruz et al., 2006).

The estimates 6 are found by numerically optimizing the likelihood functions.

6.5 Results

The ML estimators for the damped MRW model and the fractional MRW model are applied
to the data from the Nord Pool market and the results are shown in tables 6.2 and 6.3.
As discussed in section 6.2 we use daily averaged data sampled once a week. Hence we
have one time series for each day of the week, and these are referred to as “weekday 1”7 to
“weekday 7”7 in tables 6.2 and 6.3. For comparison we have also included two time series
that are sampled daily. These are the daily means and the daily maxima of the logarithmic
spot prices. In addition we have looked at the time series consisting of weekly means of
the logarithmic prices.

For the weekly sampled time series (“weekday 17 to “weekday 77) the estimates for
the damped MRW model give characteristic time scales 1/v that vary between 20 and 40



38 CHAPTER 6. PAPER 3

| timeseries | H [ A [T (weeks) | o |
daily means | 0.47 | 0.68 17 0.10
daily maxima | 0.40 | 0.83 16 0.16

weekly means | 0.59 | 0.58 97 0.14
weekday 1 0.45 | 0.67 101 0.20
weekday 2 | 0.45 | 0.57 146 0.17
weekday 3 | 0.45 | 0.60 99 0.17
weekday 4 | 0.44 | 0.64 97 0.18
weekday 5 | 0.44 | 0.63 101 0.18
weekday 6 | 0.51 | 0.71 73 0.19
weekday 7 | 0.50 | 0.80 97 0.26

Table 6.3: ML estimates for the fractional MRW model using the method described in
section 6.4.3. The data sets are as explained in the caption of table 6.2.

weeks. The mean value is 28 weeks and the standard deviation is 8.2 weeks. These results
are consistent with the preliminary analysis discussed in section 6.2, where we showed that
the wavelet-based variograms fit well with the wavelet-based variogram of an OU process
with 1/v = 20 weeks. Also, the power spectrum of the spot prices fits with a Lorentzian
spectrum with this characteristic time scale.

The highest estimate of 1/v are found for the time series “weekday 7”. This indicates
that the anti-correlations are weaker if we consider only the spot prices for Sundays. This
is also seen from the estimates for the fractional MRW model. Table 6.3 shows that
the estimates of the Hurst exponent is 0.44-0.45 for all the weekdays, but around 0.50 for
Saturdays and Sundays. If these differences between weekends and weekdays are significant,
then it suggests that the anti-persistence in electricity spot prices is, at least partly, caused
by macroeconomic variations, and not solely by the mean-reverting mechanisms of natural
factors such as weather and water levels.

Relative to what is observed in stock markets we find large values of the intermittency
parameter A, both for the damped MRW model and for the fractional MRW. For the
fractional MRW model the estimates of A vary between the 0.57 and 0.80 for the different
weekdays, with an average of 0.66 and a standard deviation of 0.08. For the damped MRW
model the estimates vary from 0.57 to 0.77, with a mean of 0.66 and a standard deviation
of 0.07. In both cases we observe higher estimates of A for Saturdays and Sundays than for
the rest of the week. This could mean that the volatility clustering is stronger for weekend
prices than for the rest of the week, but it may also be a simple level-effect. In commodity
prices one always observes that the fluctuation level increases with the price itself. This
means that when the price is very low, the increments have smaller amplitudes, and this
prevents the prices from becoming negative. If the conditional standard deviation of the
fluctuation 0 P.(t) = P(t + 7) — P(t) is proportional to the price level P(t), i.e.

stdev[0 P, (t) | P(t) = P] x P, (6.25)
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where stdev|-] denotes standard deviation, then one can normalize for the level effect by
taking the logarithm of the price. This is the case for geometric Brownian motion. If the
fluctuation level is proportional to the price itself, as in a geometric Brownian motion,
then one can normalize for the level effect by taking the logarithm of the price. Although
this proportionality hypothesis is a good approximation for most price levels, it might be
inaccurate for very low values of the spot price. If this is the case, the fluctuations during
times with low prices may be amplified by the logarithmic transformation. This can cause
biased estimates of the intermittency parameter and a spurious difference between weekend
prices and the rest of the week.

Remark 1 In this paper we analyze daily mean spot prices. In other situations, it is
relevant to consider hourly prices, which can be negative. We note that a first step towards
dealing with negative prices would be to model the low-level fluctuations by

stdev[0P.(t) | P(t) = P] o< (P — Py)",

and to estimate the parameters k and Fy. See e.g. Rypdal and Lovsletten (2011). Here k
is called the constant elasticity variance (CEV) parameter, and Py represents a base line
for the price. For k = 1, the appropriate transformation is X (t) = log(P(t) — Fy). If the
estimated Py is lower than the lowest price in the time series, then this transformation also
allows negative prices.

We finally remark that the estimates of T' are known to be very unstable, and it is
difficult to draw any meaning from these results.

6.6 Comparing the models

As discussed in sections 6.1 and 6.2, the two models presented in this paper, the damped
MRW model and the fractional MRW model, represent two different ways of describing
the anti-correlations in electricity spot prices. In the damped MRW model the correlations
decay exponentially according to equation (6.3), whereas the correlation decay is a power
law, as in equation (6.5), for the fractional model. Our preliminary analysis has revealed
that the wavelet-based variograms has a scaling regime up to a time scale of about 20 — 50
weeks, and flatten for time scales longer than this. In the same way, the power spectrum
flattens for low frequencies. These results can be seen as indications that the damped MRW
model is more appropriate than the fractional MRW model for describing spot prices. See
figure 6.2(d). On the other hand, the features mentioned above could be effects of the yearly
oscillation, since it is known that the existence of periodicities often produce characteristic
“S-shapes” in variograms. We are therefore considering two competing hypotheses. The
first hypothesis is that there exists a characteristic scale 1/ which is not related to the
annual periodicity in the signal. More precisely that the correlation decays exponentially
with a rate 1/v, and that the non-periodic component of the spot prices can be well
described by the damped MRW model. The second hypothesis is that the non-periodic
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Figure 6.4: (a): Wavelet-based variograms estimated from realizations of the fractional
MRW model with parameters H = 0.45, A = 0.67, T' = 101 weeks and o = 0.20. For each
time scale a we have plotted the mean (crosses) and the 1/8 (dashed) and 1/40 (dotted)
upper and lower quantiles. Prior to the analysis we have added a sinusoidal oscillation
with a one-year period and an amplitude 0.25 to each realization. The curve with circles
is the wavelet-based variogram for the daily mean (logarithmic) spot price sampled every
Monday. (b): The same as (a), but in this case we have simulated the damped MRW
model with parameters 1/v = 21.9 weeks, A = 0.70, T' = 26 weeks and ¢ = 0.18.

component of the spot price has a algebraic correlation decay on time scales from a day to
several years, and that the characteristic scale which is observed is an effect of the annual
periodicity. In this case the fractional MRW model is a good description of the spot price
data.

To test the hypotheses we have simulated an ensemble consisting of 500 realizations of
the fractional MRW model. The parameters are chosen equal to those estimated for the
time series “weekday 17, i.e. H = 0.45, A = 0.67, T' = 101 weeks and o = 0.20. For each
of the realizations we have estimated the wavelet-based variogram V(a) = E[|W (¢, a)|?],
where W (t,a) is the wavelet transform defined in equation (6.6). For each time scale a
the mean is calculated together with the 1/8 and 1/40 (upper and lower) quantiles. These
curves are plotted in figure 6.4(a). To simulate the effect of the annual periodicity we
have added a sinusoidal oscillation with a one-year period and an amplitude 0.25. This
amplitude is chosen according to the estimate shown in figure 6.1(d). The analysis shows
that the periodicity is not strong enough to produce the “break” in the variograms. Hence
this “break” represents a characteristic time scale that should be included in the model. In
figure 6.4(b) we show the same analysis as in 6.4(a), but here we have simulated the damped
MRW model with parameters 1/v = 22 weeks, A = 0.70, T' = 26 weeks and o = 0.18. The
result shows that wavelet-based variogram of the spot prices is much better reproduced by
the damped model than the fractional model.
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6.7 Concluding remarks

The main point of this work is to present stochastic models for electricity spot prices that
capture both the slowly decaying volatility dependence and the anti-correlated returns.
We also present ML methods that efficiently and accurately estimate parameters for these
models. For the data from the Nord Pool market the ML estimates show that the in-
termittency parameter A is significantly higher than what is observed in stock markets,
confirming the exceptional nature of electricity spot markets.

Another important result is that the damped MRW model performs better than the
fractional MRW model, and based on this we conclude that there is a characteristic scale for
the correlation decay of returns (which is not related to the annual oscillations). Estimates
show that this time scale is 20-30 weeks. The use of Hurst exponents to characterize
correlations is incompatible with the existence of such a characteristic scale, and hence the
results of this paper indicate that Hurst-type analysis is inappropriate for electricity spot
prices. This conclusion is supported by the fact that the ML estimates of H actually are
quite close to 0.5. If we keep the one-year oscillation in mind, and take into account that
estimates of H tend to be slightly reduced in the presence of a periodic component, then it
seems unlikely that H < 0.5 with any certainty based on the ML estimates. Since the anti-
correlations are consistently captured by the damped MRW model, our interpretation is
that the fractional model struggles to produce clear evidence for anti-correlations because
it imposes a scale free correlation function which is not compatible with the data.

Another result of this paper becomes evident by considering data sampled on different
weekdays. From table 6.2 it appears that the anti-correlations are stronger for weekdays
than for weekends, which suggests that anti-correlations are partly caused by human ac-
tivity.

We finally remark that the damped MRW model (toghether with a one-year oscillation)
is suitable for forecasting spot prices, and this is the topic of ongoing research. For this
purpose, the main advantage of multifractal models is that they efficiently exploit the
memory effects in the volatility for forecasts of future prices.
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Paper 4

Abstract. We perform significance testing of linear trends in regional temperature records
for the time period year 1900-2014. Instrumental data records on 5° x 5°, 2° x 2°, and
equal-area grids, are examined, and it is demonstrated that the stochastic properties of the
temperature fluctuations vary substantially with geographic location. Many temperature
records are consistent with error models for internal variability that exhibit long-range
memory (LRM), whereas the temperature fluctuations of the tropical oceans are strongly
influenced by the El Nino Southern Oscillation (ENSO), and therefore seemingly more
consistent with random processes of short-range memory (SRM) type. We demonstrate
that the choice of null model in the ENSO regions strongly affects the significance of the
warming trends. By using a null model with LRD we find significant trends (on the 0.05-
level) in only about 65% of grid points, and if we use a null model of SRM type this
number is approximately 95%. However, if we in each grid point use a likelihood ratio test
to choose the null model most consistent with the data, then we obtain significant trends
in just over 80% of grid points. We also discuss how variations in the scaling properties on
decadal time scales could influence the results of trend significance tests. We demonstrate
that if there actually is LRM on time scales longer than a decade in the regions of Earth
where the model selection tests prefers a SRM model, then this can change our conclusions
about the significance of the warming trends in these regions.

93
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7.1 Introduction

To evaluate the rate of global warming it is useful to model temperature variations on
decadal time scales as superpositions of stochastic processes and trend signals. Of course,
such decompositions are not canonical since they depend crucially on both the trend models
and the stochastic components (the errors), and it is therefore essential to construct models
that consistently describe the so-called “stochastic signatures” of the observations. In
particular, in order to be meaningful with respect to trend-significance testing, the models
should correctly reproduce the relations between the fluctuation levels on different time
scales. For the global mean surface temperature there is strong evidence of long-range
dependence (LRD) (Lennartz and Bunde, 2009; Rypdal et al., 2013), and it is therefore
reasonable to choose error models that exhibit scaling and slowly decaying auto-correlation
functions (ACFs). Examples of such models are the fractional Gaussian noises (fGn), which
are stationary processes characterized by dimensionless Hurst exponents H € (0,1). The
Hurst exponent determines the asymptotic correlation decay via the asymptotic formula
~ 2H (2H —1)72"72 for the auto-correlation function. Alternative models include fractional
differenced noise and its generalizations, which are typically defined via the parameter d =
H —1/2. Due to the strong persistence, standard estimators of variability and uncertainty
are typically unsuitable in climatic time series (Koutsoyiannis, 2003).

The issue of the reality of the global warming signal is best addressed by considering
globally averaged signals. Ostvand et al. (2013) demonstrated that the strongest statistical
significance is obtained by considering the global land record, but that significance on
the 95% significance level also is demonstrated in the global ocean record under an fGn
null hypothesis (error model). Nevertheless, number of authors have also focused on the
significance of trends in local temperature records (e.g. Lennartz and Bunde, 2009; Franzke,
2012; Bunde et al., 2014). For such records the statistical significance is lower because of
a much higher level of climate noise, but the significance issue is still interesting because
it is intimately related to the ratio between the estimated warming signal and the natural
variation on the time scale on which the trend is estimated. This ratio, which could be
perceived as a local /regional warming impact factor, could be an important measure of the
load of forced climate change on ecosystems and human communities. It is a more relevant
measure than the nominal warming in a given location, since the capacity for adaptation
to anthropogenic warming will depend on the adaptive capacity already stablished to the
natural variability. This serves as the main motivation for assessing trend significance
and warming impact factor for local-regional temperature records in a global grid. We
will study the geographical distribution of these quantities, and the dependence on the
selection of model for the background climate noise (error model). We shall also attempt
to find the most reasonable error model, which will not be the same in all geographical
locations.

The remainder of this paper is organized as follows: In section 7.2 we discuss various
trend models and error models that are relevant for surface temperature data records. In
section 7.3 we outline the data analysis methods employed in the paper. This includes
parameter estimation, model selection and trend significance testing on several data sets.
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Detailed descriptions of the statistical methods are included as supplementary material.
The main results are presented and discussed in section 7.4.

7.2 Selection of trend model and error model

In Ostvand et al. (2013) it is demonstrated that the instrumental record for global tem-
perature (monthly data for the period 1880-today) has significant linear trends under an
fGn-assumption on the errors. However, it is also shown that a linear-trend model

Y; =ag+ Cth + Xt (71)

actually is inconsistent with observations, and that an oscillatory correction (with a 70yr
period) is significant. An even more refined model for the trend can be constructed by
exploiting our knowledge of the radiative forcing of the climate system, for instance using
the dataset constructed by Hansen et al. (2005, 2011). In Rypdal and Rypdal (2014) it is
shown that the global temperature is well described by a stochastic linear-response model
on the form?

t

Y, = /t (t — )" 32(F(s)ds + 0dB,) = / (t — )32 F(s)ds + X, . (7.2)

—00 —00

As in the linear-trend model (7.1), the errors X; in model (7.2) are given by a fGn with
Hurst exponent H € (0,1). However, the trend in (7.2) is a convolution of the forcing data
F(t) with a power-law kernel, rather than a simple linear expression.

In principle we could apply linear-response models on the form (7.2) to analyze local and
regional temperatures as well. However, since the fluctuation levels in local temperatures
are several orders of magnitude larger than in the global mean, it is unreasonable to expect
that we can extract detailed information from the global signal by analyzing local data.
This is illustrated in figure 7.1, where we have plotted monthly de-seasonalized temperature
data for the city of Moscow together with the global mean temperature anomaly. Due to
the low trend-to-noise ratio in local data, it reasonable to revert to simple linear trend
models on the form (7.1).

The aim of this paper is to discuss detection of global warming in local and regional
temperature records by analyzing linear trend models on decadal time scales. In this
task we are faced with a number of practical and theoretical obstacles. The first, and
perhaps most important problem, is to choose the error models. The reason that this is
challenging, is that the temporal characteristics of the temperature field vary considerably
with the geographic location. A an illustration of this, in figure 7.1(b) we have plotted a
comparison of the spectral power densities of the temperature signals in the inland city
of Moscow and a reconstructed temperature signal for a 5° x 5° grid box in the tropical

I This stochastic integral is divergent and should only be regarded as a formal expression. A well-defined
formulation of the model is given in (Rypdal and Rypdal, 2014).
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Figure 7.1: (a): The black curve is the monthly temperature data for Moscow. The blue
curve is the monthly reconstructed temperature for the 5° x 5° grid centered at 2.5S,
142.5W. The red curve is the global mean temperature anomaly plotted with monthly
resolution. The time series are shifted vertically to make them visible. (b): The power
spectral densities of the the three time series in (a). The smooth curves are obtained by
averaging over logarithmic bins. The colors of the power spectral densities are the same as
used for the signal in (a).

Pacific ocean (at 2.5S, 142.5W). As we see from this figure, the temperature in Moscow
has a more or less flat spectrum, consistent with a white noise process, whereas the data
from the tropical pacific has something closer to a red-noise spectrum. We also see that
neither of these signals have spectra similar to the global temperature, which spectrum
is shown as the red curve in figure 7.1(b). Significance testing of trends on decadal time
scales depend crucially on the power of the error models at frequencies f ~ (100 yrs)™!,
and how these fluctuation levels relate to the fluctuation levels on the shorter time scales
is substantially different for Moscow than for the tropical Pacific ocean. Consequently we
have to use different error models for these two geographical locations.
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7.2.1 Two classes of null models

As a first step in this direction we can attempt to model all error processes using one class
of parametric models. For instance staying within the scope of LRD, we can use fGns
and allowing Hurst exponents to vary with longitude and latitude. The estimation of the
Hurst exponent H is actually a non-trivial obstacle for monthly temperature records. For
ocean temperatures we typically observe imperfect scaling, which implies that different
Hurst exponents can be found using estimators that emphasize on different time scales.
The maximum likelihood (ML) estimator of H is sensitive to scaling properties at the
shortest time scales, and not the decadal scales which are those relevant in trend significance
testing. An alternative is to use a non-parametric estimator H, for instance using de-
trended fluctuation analysis (DFA) (Peng et al., 1994) or simple variograms. The advantage
of these estimators is that one can easily choose the range of time scales that are used to
determine H.

An alternative to the approaches described above is to allow different error models in
the geographic locations where there are substantial deviations from scaling. This is most
evident in tropical Pacific where the El Nino oscillation increases the power on a range
of frequencies corresponding to time scales roughly from a year to a decade. Due to the
unpredictability of ENSO episodes we will consider simple stochastic error models, and
from a purely empirical point of view we suggest to use the Ornstein-Uhlenbeck (OU) class
of models, i.e. models defined by the stochastic differential equations (SDEs)

1
T

The power spectral density of an OU process is Lorentzian, with S(f) ~ f=2 for f > 1/7
and S(f) ~ fY for f < 1/7. Hence we have two scaling regimes, one corresponding to
Brownian motion (i.e. H = 3/2) on short time scales, and one corresponding to white
noise (i.e. H = 1/2) on long time scales. The transition between these time scales is
given by the characteristic time 7, which is also the e-folding time for the ACF. In discrete
time an OU process becomes an autoregressive process of order one (an AR(1) process),
and we observe that the AR(1) models actually describe the correlation structure of the
temperature signals better than fGns in regions of the world strongly dominated by ocean
oscillations. To test this hypothesis we perform a model selection test based on likelihood
ratios, and the results of these tests show that OU processes are preferred over fGns in the
tropical ocean regions. Over land the fGn class of models is typically preferred, except in
some inland regions where the estimated Hurst exponent is close to 0.5 (note that H = 1/2
corresponds to white noise which is the intersection of the two model classes).

7.3 Data analysis methods

Four data sets are analyzed in this project. These are the HADCRUT4 surface temper-
ature anomalies (Morice et al., 2012), which combines the land temperatures CRUTEM4
(Jones et al., 2012) and sea surface temperatures HADSST3 (Kennedy et al., 2011). We
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also use the NOAA MLOST V3.5.3 data developed by Smith and Reynolds (2005). In both
these datasets the mean temperature in 5° x 5° grids are provided with monthly time res-
olution. In addition to these we use Berkeley Earth’s equal-area data set (with 15984 time
series), and the GISS Surface Temperature Analysis (GISSTEMP) (Hansen et al., 2010)
which is given on 2° x 2° grids. The latter data sets are spatially complete, which makes
it more convenient to work with. The time period analyzed is January 1900 to April 2013.
The main conclusions of our analysis are very similar for all the four data sets, and for
convenience we only present the figures for the GISSTEMP results in this paper. The cor-
responding figures for the other three data sets are included in the supplementary material.

Remark: The supplementary material is not included in this thesis, but the statistical
methods are described in chapter 3. The corresponding figures for the other three data sets
are available upon request.

The data analysis consists of three main parts:
1. Parameter estimation with respect to OU and fGn processes for each grid point.

2. Model selection and trend significance testing based on the preferred model for each
grid point.

3. The robustness of the results are tested by exploring the effect of a different scaling
regime on the longest time scales. This point is discussed in section 7.4.

The accurate estimation of the parameters (o, H) and (o, 7) for the fGn and OU models
respectively are crucial for the conclusions drawn in points (i) and (iii). For the Hurst
exponent we observe that direct application of the ML estimator tends to give higher esti-
mates of H compared with the variogram technique or the de-trended fluctuation analysis
(DFA). In the latter we have control over which time scales that contribute to the estimate.
We also observe that the discrepancy between the two methods disappears if the signals
are coarse grained over four-month windows prior to the ML estimation, i.e., if a new,
coarser time series is produced by dividing the series into 4-month segments and averaging
the data points within each segment. Subsequently, the estimates are corrected for bias
based on a Monte Carlo study of the estimator. The details of this procedure are described
in the supplementary material. The fluctuation level is estimated using the standard ML
technique.

Since likelihoods are computed as a part of the parameter estimation procedure, we
can use a straight forward likelihood ratio test to determine if a OU process or a fGn
is best supported by the data in each grid point. For each regional signal we estimate
the trend a; over the time period from 1900 to 2014, and based on the which model is
preferred in each region we compute the p-value for the trend estimate based on a null
model which is either of OU- or fGn-type. In regions where the OU process is preferred
over the fGn, the computation of the p-value is straight forward using standard techniques
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for AR(1) processes. In regions where the fGn model is preferred we have to preform
trend significance with respect to a LRM model, which is more challenging. We adapt the
method proposed by Ko et al. (2008). This suggest that the (1 — «)-confidence interval for
the trend estimate a; is well approximated by

&1 + a‘c(ﬁ)l/QtﬁefQ’lfa/Q. (74)

Here ¢ is the estimated fluctuation level (standard deviation) of the time series, H is the
estimated Hurst exponent and ¢, , is the lower g-quantile of the student-t¢ distribution with
n degrees of freedom. The function c(]:I ) is defined in the supplementary material, and
describes how the uncertainty in the trend estimate varies with the Hurst exponent. In
fact the factor 6c(lf[ )12 is the standard deviation of estimated psuedo-trends under the
assumption that the data is generated by a fGn with scale parameter 0 = ¢ and Hurst
exponent H = H. We note that

c(H)V? ~n? 1 (7.5)

A

The number 71, = n.(H) is called the estimated effective sample size, and is defined in the
supplementary material. The actual sample size n of the time series is replaced with the
effective sample size to compensate for the reduced statistics that results from a strongly
correlated time series. The p-value approximation corresponding to confidence intervals in

equation (7.4) are
p=2 (1 - F( )) ,

where F' denotes the (cumulative) distribution function for the student-t distribution with
ne — 2 degrees of freedom.

We remark that regression techniques for linear trends under an AR(1) hypothesis
follow along the same lines as the fGn case, and we refer the reader to Lee and Lund
(2004). Further details about the data analysis techniques are found in the supplementary
material.

a

Ge(H)V/?

7.4 Results and discussion

Fig. 7.2(a) shows the estimated trends for the period 1900-2014 in the GISSTEMP data
set. We observe warming over all of Earth’s surface, except for a small region in the North-
Atlantic. The warming trends are generally weaker in the ocean surface compared to over
land, and in particular we observe weaker trend over the Pacific ocean. Fig. 7.2(b) shows
the estimated fluctuation level (sample standard deviation) of the temperature signal after
subtracting the estimated linear trend.

Very large fluctuation levels are observed over land compared with the oceans, and hence
it is unclear which regions have the strongest trends relative to the natural fluctuations.
The estimated Hurst exponents are shown in Fig. 7.2(c), and we observe stronger in ocean
temperatures than in land temperatures. In North-America and in FEurasia the estimated
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model is close to a white-noise process, i.e. H ~ 0.5, where as we apparently have strong
LRM in the oceans, in particular in the tropical Pacific. A similar picture is seen in Fig.
7.2(d). Here we have plotted the estimated correlation length in an OU process. We see
that the estimated correlation time varies from a few months over much of Earth’s land
areas, to a couple of years in the tropical Pacific and tropical Atlantic oceans.

Based on the parameter estimates presented in Fig. 7.2 we can compute the p-values
for the estimated trends. As illustrated in Fig. 7.3(a-b), these p-values depend crucially on
the chosen null model. In Fig. 7.3(a) we have shown a map of the p-values computed with
respect to the f{Gn model, and in 7.3(b) we have show the corresponding p-values computed
with respect to the OU model. A striking feature in these plots are that the temperature
trends for grid points in the Pacific ocean are determined as significant with respect to a
SRM model, but cannot be concluded as significant if we apply a LRM model. Hence, our
interpretation of the significance of the local warming trends in the Pacific ocean depend
on which model is best suited to describe the correlation structure in these data. In 7.3(c)
we have plotted the results of the likelihood ratio model selection test. It shows that an
OU process is preferred over a fGn in much of the Pacific ocean, and in Fig. 7.3(d) we have
combined Figs. 7.3(a) and 7.3(b) so that the p-value for the preferred model is plotted in
each grid point. When combining the two models we have more grid points with significant
warming than what is predicted by only using the fGn model, but less than predicted by
just using the OU process.

Remark. The p-values have been adjusted for multiple testing using the False Discov-
ery Rate (FDR) method (Benjamini and Hochberg, 1995).

7.4.1 Exploring the effect of a second scaling regime

It is important to realize that in a 100 year-long time series the statistics is very poor on
decadal time scales. They are sufficient to estimate a linear trend with reasonably small
errors, but there is very little information about the fluctuation function ¥(At) on these
time scales. Here X(At) denotes standard deviation of the signal obtained after coarse
graining the monthly temperature record over time intervals of length At. Trend testing
is based on the assumption that the model choice, which is justified by analysis of the
stochastic properties on the shorter time scales, also is valid on the longer time scales.
For instance, if we find that a OU process with correlation time 7 is a good description
of short-scale (up to a few years) the temperature fluctuations in the ENSO regions, then
we hypothesize that the OU process correctly will prescribe the fluctuation levels on the
longer time scales via the relation

Y(At) = CAt~Y? (7.6)

for At > 7, with C' = 0/+/27. In the same way, if a regional temperature signal is modeled
as LRM process with Hurst exponent H, then this implies a fluctuation function on the
form

Y(At) = oAt (7.7)
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Due to the poor statistics we cannot verify the correctness of these relations on the longest
time scales, and it is therefore conceivable that the fluctuation function scales differently
with At on these scales. We can for instance imagine a fluctuation function with a sharp
scaling break at a time scale s:

o At At < s
Y(AL) = ) 7.8
(A1) {02AtH2_1 At > s (7.8)

Continuity of the fluctuation function implies that oo = s1=#2¢,. If T' denotes the longest
time scale relevant for the trend, then the second scaling regime changes the fluctuation

at this scale by a factor
T\ Ha—Hy
k= (—) . (7.9)

s
From Eq. 7.5 we see that the standard deviation of the pseudo trends is proportional to
T3(T):

oe(H)Y? a(%)H{ — TS(T). (7.10)

Thus, if the inclusion of a second scaling regime yields the change ¥(7T") — kX(T), then for
the purpose of testing the significance of a linear trend, this has the same effect as scaling
the estimated trend according to a — a/k.

If the second scaling regime is given by the exponent Hs =~ 0.8, consistent with the
scaling exponents observed for global temperature fluctuations on decadal time scales,
then we have Hy, — H; ~ 0.3 in in regions where ¥(At) ~ At~'/2. From inspection of the
estimated power spectral densities of the temperature time series (see Fig. 7.1(b)), we can
be relatively certain that if there is a second scaling regime, then it does not dominate
on time scales < 20 years, but if we let s = 20 years and T = 114 years, we obtain
k =1.7. In Fig. 7.4(a) and (b) we have plotted the p-values obtained after adjusting the
test observable by a factor k in the regions where the model selection test did not (with
statistical significance) favor a LRM model. The k-values are k = 2 and k& = 3 in the two
figures respectively. These figures should be compared with Fig. 7.3(d), and we observe
that the existence of LRM on time scales longer than 20 years would substantially changes
our conclusions about the significance of the regional warming trends. The most striking
differences are in the Pacific ocean, the Southern Oceans and in the northern parts of
Eurasia.

Then main result of this paper is that our conclusions about trend significance for the
last century on gridded temperature data are highly model dependent, and that a direct
application of a single class of models will give misleading results. We also show that trend
significance is sensitive to the persistence on time scales that are relatively long compared
to what can be analyzed from the instrumental data. In future work we will explore the
possibility of strengthening the results presented in this paper by using long data sets from
various climate models to discern the nature of the regional temperature variability on
time scales from a few decades to a few centuries.
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Table 7.1: Percentage significant trends at the 1% (p < 0.01) and 5% (p < 0.05) significance level assuming a fGn null
hypothesis (2. column), AR(1) null hypothesis (3. column). In the last column (prefered model) the trend signficance
are tested against the model selected by the likelihood-ratio criteria. Note that the different data sets have have different
coverages of Earth’s surface. In particular, the HadCrut4 data covers less surface than the other data sets (see the
suplementary material).

fGn AR(1) Prefered model

p<00l p<005|p<00l p<005|p<00l p<0.05
GISSTEMP 47% 68% 87% 93% 68% 82%
Berkely Earth Data | 52% 2% 90% 95% 1% 83%
HadCrut4 35% 54% 7% 85% 55% 69%
NOAA MLOST 45% 65% 88% 94% 70% 83%
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W p<0.01 p<0.01
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Figure 7.3: (a): The distribution of p-values based on a fGn null model. (b): The distribution of p-values based on an
AR(1) null model. (c): Shows the results of the likelihood ratio model selection test. In the grid points marked as red the
data is more consistent with a fGn error model, and in the grid points marked as blue the data is more consistent with an
AR(1) error model. In the grid points marked as light blue, one model is not significantly preferred over the other. (d):
Shows the distribution of p-values when the most model with the highest likelihood is chosen as the null model in each
grid point.
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