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The velocity scaling for isolated plasma filaments in non-uniformly magnetized plasmas with
respect to filament amplitude and cross-field size has been investigated by means of numerical
simulations. The model includes electric currents due to magnetic gradient and curvature drifts,
polarization drifts, and parallel currents through sheaths, where the magnetic field lines intersect
material walls. In the ideal limit, the radial velocity of the filament increases with the square root
of its size. When sheath currents dominate over polarization currents, the filament velocity is
inversely proportional to the square of its size. In the presence of sheath currents, the velocity is
maximum for an intermediate filament size determined by the balance between diamagnetic,
polarization, and sheath currents. The parameter dependence of this filament size and velocity is
elucidated. The results are discussed in the context of blob-like structures in basic laboratory
plasma experiments and in the scrape-off layer of magnetically confined plasmas. VC 2011
American Institute of Physics. [doi:10.1063/1.3647553]

I. INTRODUCTION

Transport of particles and heat across magnetic field
lines in the scrape-off layer of magnetically confined plas-
mas has been found to be dominated by radial motion of fila-
mentary structures. These structures are elongated along the
magnetic field and localized in the drift plane perpendicular
to the field lines, thus appearing as blobs of excess particles
and heat compared to the background plasma.1–5

Much attention has been given to the dynamics of local-
ized filamentary structures in magnetized plasmas. Probe
measurements in the scrape-off layer of tokamak plasmas
have revealed frequent appearance of large-amplitude bursts
which give rise to positively skewed and flattened particle
density probability distribution functions and conditionally
averaged wave forms with a steep front and a trailing
wake.6–12 Fast camera imaging in numerous experiments
have demonstrated radial motion of blob-like structures
through the scrape-off layer with velocities up to one tenth
of the acoustic speed.13–17

Theoretical modelling and numerical simulations of iso-
lated filament structures have revealed interchange dynamics
in the non-uniform magnetic field as the likely mechanism
for the radial filament motion.18–23 Two limits for the paral-
lel dynamics have been identified. In the absence of parallel
currents, the radial filament velocity is found to increase as
the square root of its cross-field size.19,20 However, when
diamagnetic currents are balanced by parallel currents
through sheaths where the magnetic field lines intersect ma-
terial walls, the filament velocity is inversely proportional to
the square of its size.20–22 In this contribution, we reveal the
velocity dependence of the filament on its size and amplitude
in the intermediate regime between these two extremes.

Recently, several experiments on filament dynamics have
been made in basic toroidal laboratory plasmas. In the case of

a purely toroidal magnetic field in the Versatile Toroidal
Facility (VTF) device, an isolated plasma filament was pro-
duced at the high field side and allowed to evolve freely.24 In
these experiments, it was found that large-amplitude filaments
can move radially outwards with velocities comparable to the
acoustic speed.24 The spatio-temporal evolution is qualita-
tively similar to results from numerical simulations of blob
dynamics in a non-uniform magnetic field.19,20 However, the
filaments in these experiments have very large amplitudes
while the simulation results were restricted to small relative
amplitudes. Here, we generalize the previous theories to
obtain the velocity dependence for large filament amplitudes.

In other basic plasma torus experiments on the TORPEX
device, a metal limiter introduced on the low-field side
resulted in parallel electric currents through sheaths where
the magnetic field lines intersect material walls.25 Blob-like
structures were found to develop from interchange turbu-
lence and their radial motion influenced by sheath currents to
the limiter plates.25 The results presented here are in excel-
lent agreement with the blob size dependence of the velocity
found in these experiments. This configuration resembles the
scrape-off layer in magnetically confined plasmas.

This paper is organized as follows. In Sec. II, we present
the model equations, the normalization used, and the asymp-
totic velocity scalings for isolated plasma filaments. In
Sec. III, we present results from numerical simulations of
filament dynamics with varying filament amplitude and
sheath dissipation parameter. These results are discussed in
Sec. IV, with emphasis on the filament velocity dependence
on the cross-field size and amplitude. A summary and
conclusions of this work is given in Sec. V.

II. INTERCHANGE MODEL

The radial motion of filament structures in the scrape-
off layer of tokamak plasmas is believed to be caused by the
charge polarization within the structures due to vertical mag-
netic field gradient and curvature drifts.1–5,9–12,18–23 Thisa)Electronic mail: odd.erik.garcia@uit.no.
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current may be closed by polarization drifts or by parallel
currents through sheaths where the magnetic field lines inter-
sect material walls. The cross-field size and amplitude of the
plasma filament determines the relative magnitude of these
current channels and, thereby, the radial filament velocity.

Similar to most previous studies of filament motion in
non-uniformly magnetized plasmas, we use a two-field
model describing the evolution of the particle density n and
electric drift vorticity X ¼ b "r# ðb#r/=BÞ ¼ r2

?/=B
(Refs. 2 and 20),

@

@t
þ 1

B
b#r/ "r

! "
n ¼ jer2

?n; (1a)

@

@t
þ 1

B
b#r/ "r

! "
Xþ C2

sb

# ðb "rbþr lnBÞ "r ln n ¼ lir2
?Xþ r

/
B
; (1b)

where Cs is the sound speed, / is the electrostatic potential,
b is the unit vector along the magnetic field, r ¼ Cs=Lkqs

2 is
the sheath dissipation parameter due to parallel electric cur-
rents through sheaths at material surfaces, Lk is the magnetic
connection length, qs is the sound gyration radius, and je
and li are the collisional particle diffusion and viscosity
coefficients, respectively. In deriving the sheath dissipation
term in Eq. (1b), the filament structure is assumed to be
uniform along the magnetic field lines.20

We introduce a local coordinate system with x in the
radial direction, y in the poloidal direction, and z along the
magnetic field. Spatial scales are normalized with a charac-
teristic cross-field filament size ‘ and temporal scales with
the corresponding ideal interchange rate c0¼ (g=‘)1=2, where
g ¼ 2C2

s=R is the effective gravity and R is the magnetic
field length scale. In the following, we will use these
non-dimensional units unless otherwise explicitly stated. The
non-dimensional model is then written in the form,

@

@t
þ ẑ#r/ "r

! "
ln n ¼ jr2

? ln n' jðr? ln nÞ2; (2a)

@

@t
þ ẑ#r/ "r

! "
Xþ @ ln n

@y
¼ lr2

?Xþ K/; (2b)

where the non-dimensional sheath dissipation coefficient is
given by K ¼ ðCs‘2=c0Lkqs

2Þ and the non-dimensional
diffusion coefficients are given by j¼je=c0‘

2 and
l¼li=c0‘

2.
Currents due to particle drifts in the non-uniform mag-

netic field, described by the last term on the left hand side of
Eq. (2b), give rise to polarization of vorticity across the field
lines and thus a radial electric drift at the centre of a blob-
like structure.18–20 Sheath currents, described by the last
term on the right hand side of Eq. (2b), give rise to damping
of collective motions, preferentially on large spatial length
scales.20

In the following section, we present results from numeri-
cal simulations of the model (2). The initial condition for the
simulations is a localized, blob-like structure for the particle
density,

n

N
¼ 1þ Dn

N
h; (3)

where N is the background particle density, Dn=N is the rela-
tive filament amplitude, and the spatial variation is given by
h which initially is taken to be19,20

hðx; t ¼ 0Þ ¼ exp ' 1

2
x2

! "
: (4)

There is no initial fluid flow, /(x, t¼ 0)¼ 0, so the collective
motions arise from charge polarization due to particle drifts
in the non-uniform magnetic field, which is described by the
interchange term in the vorticity equation (2b).

In the small filament amplitude limit, Dn=N ( 1, the
interchange term in the vorticity equation (2b) can be linear-
ised, @ ln n=@y)Dn=N. In the ideal limit, K ( 1, a simple
order of magnitude estimate gives the inertial velocity scal-
ing, V2)Dn=N, which in dimensional units is given by19,20

V

Cs
) 2‘

R

Dn
N

! "1=2

: (5)

In this limit, the filament velocity increases as the square root
of the cross-field size ‘ and the relative amplitude. However,
for large Dn=N the interchange term is independent of the
amplitude, @ ln n=@y)Dn=(NþDn)) 1, so the velocity is
then expected to become independent of the filament ampli-
tude. Further discussions of the filament velocity dependence
on the amplitude will be given in the following two sections.

When sheath dissipation dominates, K * 1, an order of
magnitude estimate for large filament amplitudes give the
velocity scaling V) 1=K, which in dimensional units is
given by20–22

V

Cs
)

2Lkq2s
R‘2

: (6)

This predicts a velocity that is inversely proportional to the
square of the cross-field filament size. Neglecting collisional
diffusion and viscosity, the model (2) has a well-known ana-
lytical solution given by20–22

/ ¼ ' y

K
; (7a)

n

Dn
¼ H x' t

K

# $
exp ' y2

2

! "
: (7b)

This describes a blob-like structure with arbitrary radial vari-
ation, initially given by H(x), moving radially outwards with
velocity 1=K. It should be noted that according to this solu-
tion, the plasma filament moves in vacuum, N¼ 0, with no
associated vorticity, X¼ 0.

The interchange model (2) predicts that the filament ve-
locity increases with size for small ‘ and decreases with size
for large ‘. It follows that sheath-connected filaments have a
maximum velocity for an intermediate cross-field filament
size determined by the balance between the diamagnetic,
polarization, and sheath currents. An order of magnitude
estimate of this length scale is given by the sheath dissipa-
tion parameter K¼ (‘=‘*)

5=2 equal to unity, which gives26–28
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‘+ ¼
2q4s L

2
k

R

 !1=5

: (8)

The magnitude of the maximum filament velocity in dimen-
sional units is estimated by Eq. (5) for this filament size,
V*=Cs¼ (2‘*=R)

1=2, or in terms of the plasma parameters,26–28

V+

Cs
¼

8q2s Lk
R3

! "1=5

: (9)

In Sec. IV, the prefactors for this size and velocity scaling
and their amplitude dependence will be established based on
results from numerical simulations presented in Sec. III.

III. NUMERICAL SIMULATIONS

In this section, we present results from numerical simu-
lations of the interchange model (2). The model is solved on
a biperiodic domain using a standard Fourier Galerkin
method. The normalized diffusion coefficients j and l are
both set to 10'3, which ensures that we are in the ideal
regime even for relative filament amplitudes as small as
10'2 in the absence of sheath dissipation.19,20 Numerical
simulations have been done for relative filament amplitudes
Dn=N from 10'2 to 105 and the sheath dissipation parameter
K from zero to 102. Convergence with respect to spatial and
temporal resolution and the size of the simulation domain
has been carefully checked for all simulations. A square
simulation domain has been used with normalized box length
up to 100 and number of grid points up to 81922.

In order to quantify the motion of the plasma filament,
we define the radial centre of mass position and velocity,

XðtÞ ¼
ð
dxxh

&ð
dxh; (10a)

VðtÞ ¼ dX

dt
; (10b)

where the integration is over the whole simulation domain
and h is defined in Eq. (3). Multiplying the particle density
equation (2a) by x and integrating over space, it follows that
the radial centre of mass velocity is equal to the total particle
flux due to collective motions,

VðtÞ ¼ '
ð
dxh

@/
@y

&ð
dxh: (11)

The centre of mass velocity is thus also a measure of the ra-
dial particle transport caused by the motion of the filament
structure.

A. Inertial regime

We first present results from numerical simulations
where the blob amplitude has been varied and sheath
dissipation has been neglected, K¼ 0. The inertial response
to vertical gradients in the particle density causes the forma-
tion of a vorticity dipole structure and, hence, a radially out-
wards electric drift at the centre of the filament structure.
This leads to the formation of a steep front and a trailing
wake, as shown by the contour plots in Fig. 1 and the radial
variation of the particle density at the symmetry plane y¼ 0
presented in Fig. 2 for Dn=N¼ 10'1. The evolution of the

FIG. 1. (Color online) Particle density (top row) and
electrostatic potential (bottom row) at t 0.5 (left
column) and t 16 (right column) for Dn=N 10 1

and K 0. Only a small part of the simulation do
main is shown.

FIG. 2. (Color online) Radial variation of the particle density at y 0 for
various times and Dn=N 10 1 and K 0.
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radial centre of mass velocity, presented in Fig. 3, shows that
there is an initial acceleration and subsequent deceleration,
resulting in a pronounced peak of the velocity curve. The
time of maximum radial centre of mass velocity is t¼ 16 for
the case Dn=N¼ 10'1. The filaments radial centre of mass
coordinate is then X(16)¼ 2.7, that is, the filament has
moved a radial distance nearly three times its initial size. By
then it has developed the shape of a mushroom-like cap, so
the interchange mechanism leads to small-scale flows and
dispersion of the filament structure. The subsequent evolu-
tion depends sensitively on the diffusion parameters.20

In Fig. 3, we compare the evolution of the radial centre
of mass velocity for various filament amplitudes. For all
Dn=N, the velocity curve has a pronounced peak. The time at
which the filament has maximum velocity scales as
(Dn=N)1=2 for relative amplitudes smaller than unity, in
agreement with previous work for small amplitude fila-
ments.19,20 The filament dynamics for large amplitudes is
qualitatively similar to that for small Dn=N. However, from
the contour plots presented in Fig. 4 for Dn=N¼ 102, it is
seen that the filament retains its blob-like structure at the
time of maximum radial centre of mass velocity, which is at
t¼ 2 in this case. The radial centre of mass coordinate for
the filament is then X(2)¼ 3.3.

In Fig. 5, we present the maximum radial centre of mass
velocity of the filament as a function of its relative amplitude
over seven orders of magnitude. For Dn=N< 1, we find that
the filament velocity increases as the square root of its ampli-
tude. A least squares fit gives V¼ 0.83(Dn=N)0.50, in excel-
lent agreement with previous results for small amplitude
filaments.19,20 For relative filament amplitudes larger than
unity the square root scaling for the radial velocity clearly
does not hold. There is a very weak dependence of the veloc-
ity on the amplitude for large Dn=N. However, the velocity
is not seen to become independent of the amplitude as
expected from the discussion at the end of Sec. II. This is
likely due to the more persistent blob-like structure during
the filament motion which sustains the dipole vorticity gen-
eration and, thereby, larger radial velocities compared to the
low amplitude case.

B. Sheath dissipation

In this subsection, we present results from numerical
simulations where the sheath dissipation parameter K has
been varied. This has been done for filament amplitudes

FIG. 3. (Color online) Evolution of the radial centre of mass velocity for
K 0.

FIG. 4. (Color online) Structure of the particle
density (top left), vorticity (top right), electro
static potential (bottom left), and radial velocity
(bottom right) for Dn=N 102 and K 0 at time
t 2.

FIG. 5. (Color online) Maximum radial centre of mass velocity as a function
of relative filament amplitude for K 0. The dashed line is a least squares fit
of a power law to the simulation data.
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Dn=N up to 100. The most prominent effect of sheath cur-
rents on filament dynamics is that they reduce the radial ve-
locity and, thereby, the cross-field plasma transport. In Fig.
6, we present the evolution of the radial centre of mass ve-
locity from simulations with Dn=N¼ 10'1 for different K.
The maximum velocity decreases gradually with increasing
sheath dissipation parameter. For small values of K we find
that the velocity curves feature a pronounced peak. For K of
order unity or larger, the velocity becomes approximately
constant after a short period of acceleration. For
Dn=N¼ 10'1 and K¼ 10 the filament structure is effectively
stagnant. In Fig. 7, we present contour plots of the particle
density, vorticity, electrostatic potential, and radial velocity
for K¼ 10'1 at t¼ 15, the time of maximum radial centre of
mass velocity. Compared to Fig. 1, we see that the formation
of a mushroom-like cap is less pronounced and the electro-
static potential has significantly smaller amplitude and spa-
tial extent in the presence of sheath dissipation. The radial
centre of mass position at the time of maximum velocity is
X(t¼ 15)¼ 1.27, less than half of that for K¼ 0. These
results are similar to those presented previously for small
amplitude filaments.20

The evolution of the radial centre of mass velocity for
Dn=N¼ 102 and various sheath dissipation parameters is

presented in Fig. 8. The maximum velocity clearly increases
with increasing filament amplitude and decreasing sheath
dissipation parameter. The filament evolution for large
Dn=N and small K is qualitatively similar to that for K¼ 0.
Increasing the sheath dissipation parameter K to unity or
larger, we find that the radial centre of mass velocity is
reduced substantially. As seen in Fig. 9 for Dn=N¼ 102 and
K¼ 10, the filament structure keeps its blob-like shape
while it is slowly moving radially outwards. The radial ve-
locity is nearly constant at the centre of the structure. How-
ever, the radial centre of mass velocity is very small. Hence,
the radial centre of mass position at t¼ 2 is only 0.17. It
should be noted that for large K and Dn=N the structure
from the numerical simulation resembles the analytical blob
solution in Eq. (7) in the centre with zero vorticity and a
Gaussian particle density.

In Fig. 10, we present the maximum radial centre of
mass velocity as function of the relative filament amplitude
for various sheath dissipation parameters. For each value of
K, the maximum velocity scales as a power law with Dn=N
for relative amplitudes less than unity. Through a least
squares fit in the range 0.1,Dn=N, 1, a scaling of the

FIG. 6. (Color online) Evolution of the radial centre of mass velocity for
Dn=N 10 1 and various sheath dissipation parameters.

FIG. 8. (Color online) Evolution of the radial centre of mass velocity for
Dn=N 102 and various sheath dissipation parameters.

FIG. 7. (Color online) Structure of the particle den
sity (top left), vorticity (top right), electrostatic
potential (bottom left), and radial velocity (bottom
right) for Dn=N 10 1 and K 10 1 at time
t 15.
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maximum radial centre of mass velocity on the form
V) (Dn=N)b is found for each K. The scaling exponent b
increases gradually from 0.50 for K¼ 0 to approximately
0.85 for K¼ 1 and does not increase further with increasing
sheath dissipation parameter up to 100. The change in the
scaling exponent for K approximately equal to unity comes
along with a qualitative change in the evolution of the radial
centre of mass velocity, which no longer features a pro-
nounced maximum for K> 1, as seen in Figs. 6 and 8. As
Dn=N approaches unity, the velocity scaling in Fig. 10
breaks and the maximum velocity increases only slightly
with further increasing filament amplitude. This behaviour is
similar to that seen in Fig. 5 and expected from the discus-
sion at the end of Sec. II.

The variation of the maximum radial centre of mass ve-
locity as function of the sheath dissipation parameter for var-
ious filament amplitudes is presented in Fig. 11. The
simulation data shows that for fixed Dn=N, the maximum ve-
locity is inversely proportional to K for large sheath currents.
Indeed, the velocity scaling from the analytical solution in

Eq. (6), 1=K, appears to be the upper limit for the filament
velocity. Note however that the velocity scaling from the an-
alytical solution grossly over-estimates the velocity for either
K or Dn=N of order unity or smaller.

IV. DISCUSSION

Results from numerical simulations with varying fila-
ment amplitude and sheath dissipation parameter confirm
that the filament velocity is proportional to the square root of
the filament size ‘ when K is small, and that the velocity is
inversely proportional to the square of the filament size for
large K. In this section, we present an order of magnitude
estimate for the filament velocity and its size dependence
and compare this to the simulation results.

A simple order of magnitude estimate of the various
terms in the non-dimensional vorticity equation (2b), with
@=@t)X)V, gives

V2 ' c1
Dn=N

1þ Dn=N
þ c2KV ¼ 0; (12)

FIG. 9. (Color online) Structure of the particle den
sity (top left), vorticity (top right), electrostatic
potential (bottom left), and radial velocity (bottom
right) for Dn=N 102 and K 10 at time t 2.

FIG. 10. (Color online) Maximum radial centre of mass velocity as a func
tion of relative filament amplitude for various sheath dissipation parameters.
The lines are least squares fits of a power law to the simulation data for
small amplitudes.

FIG. 11. (Color online) Maximum radial centre of mass velocity as a func
tion of the sheath dissipation parameter K for various relative filament
amplitudes. The dashed line corresponds to V 1=K. The full lines are least
squares fit of an order of magnitude approximation to simulation data.
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where c1 and c2 are fitting parameters that depend on the
relative filament amplitude. The positive root for the filament
velocity is given by

V ¼ ' c2K
2

þ c22K
2

4
þ c1

Dn=N
1þ Dn=N

! "1=2

: (13)

By fitting the model (13) to the data from numerical simula-
tions for fixed filament amplitude, we find the parameters c1
and c2. The fit to the simulation data is presented in Fig. 11
and the fit coefficients c1 and c2 as the function of the fila-
ment amplitude are shown in Fig. 12. Equation (13) is clearly
a very good approximation to the simulation results.

The asymptotic solutions for V based on Eq. (13) in the
limit of small and large K are given by

V )
c1

Dn=N
1þ Dn=N

! "1=2

; forK ( 1;

c1
c2K

Dn=N
1þ Dn=N

; forK * 1:

8
>>><

>>>:
(14)

These are just the ideal and sheath dissipative limits dis-
cussed in Sec. II, but here generalized to include a large
range of filament amplitudes. Reverting to dimensional units,
the size dependence of the filament velocity implied by Eq.
(13) becomes explicit

V

V+
¼ c2

2

‘

‘+

! "3

'1þ 1þ c1
c22

4‘5+
‘5

Dn=N
1þ Dn=N

! "1=2
" #

: (15)

For small filament sizes, ‘ ( ‘+, we find

V

V+
) c1

‘

‘+

Dn=N
1þ Dn=N

! "1=2

; (16)

which for small filament amplitudes corresponds to the iner-
tial scaling in Eq. (5). For large filament sizes, ‘ * ‘+, Eq.
(15) gives

V

V+
) c1

c2

‘+
‘

! "2 Dn=N
1þ Dn=N

; (17)

which in the limit of large filament amplitudes corresponds
to the sheath dissipative scaling in Eq. (6).

The excellent fit for the velocity curves in Fig. 11 shows
that Eq. (15) accurately describes the size dependence of the
filament velocity. A plot of the dimensional filament velocity
as function of the normalized size ‘=‘* is presented in Fig.
13 for c1¼ 0.76 and c2¼ 2.2, which corresponds to
Dn=N¼ 1. In this case, the dimensional maximum velocity
V=V*¼ 0.33 occurs for a filament size ‘=‘*¼ 0.41. The nor-
malized size for which the filament has maximum velocity
as function of filament amplitude is presented in Fig. 14 and
the corresponding filament velocity is presented in Fig. 15. It
should be noted that ‘* over-estimates the cross-field size for
which the filament moves fastest by more than a factor of
two. Moreover, for relative filament amplitudes less than
unity, V* over-estimates the maximum radial filament veloc-
ity by a factor of three or more.

FIG. 12. (Color online) Fit coefficients c1 and c2 for parametrization of the
maximum radial filament velocity as a function of the relative filament
amplitude.

FIG. 13. (Color online) Dimensional filament velocity dependence on
cross field size ‘ for Dn=N 1 in the presence of sheath dissipation (full
line). For ‘=‘+ ( 1, the inertial scaling gives V) ‘1=2 (dotted line) while for
‘=‘+ * 1, the sheath dissipative scaling gives V) ‘ 2 (broken line).

FIG. 14. (Color online) Size for which the radial filament velocity is maxi
mum as a function of the relative filament amplitude in the presence of
sheath dissipation.

FIG. 15. (Color online) Maximum dimensional radial filament velocity as
function of the relative filament amplitude in the presence of sheath
dissipation.
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V. CONCLUSIONS

The interchange motion of field-aligned plasma fila-
ments in non-uniformly magnetized plasmas has been inves-
tigated by means of numerical simulations. We have
elucidated the filament velocity dependence on its amplitude
and cross-field size. In the absence of sheath currents, or for
weak sheath dissipation, the filament velocity increases with
the square root of the cross-field size. For small amplitudes,
the velocity increases as the square root of the relative ampli-
tude. The velocity has a weak dependence on filament ampli-
tude for relative amplitudes much larger than unity. The
latter is the situation for the plasma blob experiments on the
VTF device.24 Here, it was found that the filament velocity
may approach the acoustic speed at low neutral gas pres-
sures. The numerical simulations presented here are in
favourable agreement with these experimental measure-
ments, showing a persistent blob-like structure for the parti-
cle density and a dipole shape for the electrostatic potential.
Comparison to these experimental measurements with inclu-
sion of friction due to ion neutral collisions in the numerical
simulations will be discussed in detail elsewhere.

Parallel currents through sheaths where the magnetic
field lines intersect material walls result in damping of the
collective motions on large spatial length scales. Thus, in
the presence of sheath currents the filament velocity is larg-
est for an intermediate cross-field structure size that
depends on the magnetic field connection length. We have
shown that the filament velocity dependence on its size
according to a simple order of magnitude estimate is in
excellent agreement with numerical simulations. This also
explains the blob velocity scaling measured in the
TORPEX experiment, where a scan of blob sizes was
achieved by changing the ion mass.25

The application of a sheath dissipation term due to par-
allel currents in the model used in this and many other works
assumes the filament structures to be perfectly elongated
along the magnetic field. However, fluctuations and
turbulence-driven transport in the scrape-off layer of toka-
mak plasmas is well know to be poloidally asymmetric due
to regions of favourable and unfavourable magnetic field
curvature. In order to take into account such ballooning
effects, a three-dimensional model must be invoked where
sheath boundary conditions are applied. An investigation of
filament dynamics in such a geometry is now in progress.
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