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Theory and numerical simulations are presented for interchange motion of plasma filaments in the
presence of dynamical friction and allowing large relative filament amplitudes. When friction is
negligible, the filament velocity is proportional to the square root of gravity and its cross-field size.
For strong friction, the filament velocity is independent of the cross-field size, proportional to gravity,
and inversely proportional to the friction coefficient. In this frictional regime, the filament moves a
large distance with nearly constant velocity and shape. The transition between these velocity scaling
regimes and the amplitude dependence are revealed. The results presented here complement previous
theories for irregularities in the equatorial ionosphere and are in excellent agreement with recent
experiments on simply magnetized toroidal plasmas. The relevance to blob-like structures in the
scrape-off layer of magnetically confined plasmas is also discussed. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4704793]

I. INTRODUCTION

Plasma filament structures that are elongated along the
magnetic field and localized in the drift plane perpendicular to
the field have been found to strongly influence the transport of
particles and heat in magnetized plasmas as diverse as the
equatorial ionosphere,1–5 basic laboratory experiments,6–10

and magnetically confined fusion plasmas.11–15 In all these
cases, buoyancy or magnetic field curvature causes charge
polarization and interchange motions across the magnetic field
lines. In this contribution we investigate the effect of dynami-
cal friction on the dynamics of such filament structures.

In the equatorial F-layer ionosphere, field-aligned irreg-
ularities are frequently produced on the night side, resulting
in strong plasma depletions that due to buoyancy propagate
radially outwards and may cause radio wave scintillation
that degrades communication and navigation systems.3

These structures, often referred to as equatorial spread-F
(ESF) bubbles, can propagate beyond the peak of the F-layer
ionosphere. Dynamical friction, resulting from collisions
between plasma and neutral gas particles, strongly influences
the motion of these plasma filaments.4,5 A frictional regime
was identified, in which the irregularities move across the
field lines with a velocity that is proportional to gravity,
inversely proportional to the ion neutral collision frequency
and independent of the cross-field filament size. The theory
and numerical simulations presented here will be shown to
support and extend previous theories for the evolution of
ESF irregularities. However, we do not attempt make a
detailed description of ESF irregularities, which is further
complicated by for example B-parallel dynamics, multiple
ion species and coupling to neutral dynamics.1–3

Recently, several laboratory experiments have been
done on filament motion in toroidally magnetized plasmas.
In the Versatile Toroidal Facility (VTF) device, an isolated
plasma filament was produced at the high field side, and the

radial motion recorded by a large probe array.8 The filament
developed a mushroom-like cap shape and a dipole electro-
static potential structure. The radial velocity was found to be
inversely proportional to the neutral gas pressure and inde-
pendent of the cross-field filament size for the parameter
regimes investigated. We present results from numerical
simulations that compare favourably with these experimental
measurements, showing that the filament velocity depends
on the ion neutral collision frequency !i in the same way as
for equatorial F-region irregularities discussed above.

In magnetically confined plasmas, blob-like structures
frequently form in the edge region and propagate radially
through the scrape-off layer. This causes enhanced levels of
plasma wall interactions that may limit the performance and
operation of fusion reactors.16–20 Plasma recycling on mate-
rial surfaces can result in large neutral gas particle densities
in the scrape-off layer and significant impact of ion neutral
collisions on the motion of blob-like structures. Moreover,
for structures ballooned on the low field side, the parallel dy-
namics may result in an effective dynamical friction with the
friction coefficient !i given by Cs=L in the electrostatic
regime21–23 and CA=L in the electromagnetic regime,24,25

where Cs and CA are the acoustic and Alfvén speeds, respec-
tively, and L the parallel structure length. The following
investigations on the role of dynamical friction may therefore
apply to these cases as well. The origin of effective dynamical
friction is discussed in some detail in the appendix.

This paper is organized as follows. In Sec. II we present
the reduced model equations, analytical solutions, and veloc-
ity scalings. In Sec. III we present results from numerical
simulations of the filament dynamics, addressing the role of
dynamical friction. A discussion of the simulation results is
given in Sec. IV, revealing the size and amplitude depend-
ence of the filament velocity. In Sec. V we discuss how these
results compare to basic laboratory experiments on filament
motion on the VTF device. Finally, in Sec. VI we present a
brief summary and conclusions.a)Electronic mail: odd.erik.garcia@uit.no.
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II. MODEL EQUATIONS

The dynamical evolution of filament structures is gov-
erned by the dominant current channels, which are deter-
mined by the filament size, amplitude, and plasma
parameters. This is described by the one-fluid momentum
equation including buoyancy and dynamical friction

q
@

@t
þ V "r

! "
V ¼ $rPþ J% Bþ qg$ q!iV; (1)

where q is the mass density, P the plasma pressure, and g
gravity. The friction coefficient !i is in the following
assumed to be constant. In the case of ion neutral collisions
giving rise to dynamical friction, the analysis is performed in
the reference frame of the neutrals.

The momentum equation can be used to obtain explicit
expressions for the cross-field currents in the case of low-
frequency dynamics. The electric current density due to
gravitational particle drifts is then given by

Jg ¼
q
B
g% b: (2)

In an inhomogeneous plasma this causes charge polarization
in the direction perpendicular to gravity and the magnetic
field, similar to the baroclinic generation of vorticity in ordi-
nary fluids.26

For non-uniformly magnetized plasmas, effective grav-
ity arises from magnetic field curvature and inhomogeneity.
In this case, the diamagnetic current Jd ¼ b%rP=B is com-
pressible and gives rise to charge polarization similar to that
described by Eq. (2), where the effective gravity is given
by27,28

g ¼ $C2
s ðb "rbþr?lnBÞ; (3)

where Cs ¼ ðP=qÞ1=2 is the acoustic speed. This has been
identified as the mechanism for radial motion of blob-like
structures in the scrape-off layer of magnetically confined
plasmas.29–33

Assuming electrostatic perturbations, the lowest order
cross-field motion is given by the electric drift b%r/=B,
where / is the electrostatic potential. Further neglecting
B-parallel motions due to flute ordering gives the electric
current density caused by polarization drifts

Jp ¼ $ q
B
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B

: (4)

Plasma inertia enters through this current channel, and it is
well known to be of crucial importance for non-linear plasma
dynamics in general and turbulent flows in particular.

Finally, there is an electric current density due to dy-
namical friction, which in the electrostatic limit is given by

J! ¼ $q!i
B2

r?/: (5)

In weakly ionized plasmas, ion collisions with neutral
particles result in currents along the electric field that
prevent charge build-up by buoyancy. In the lower part of

the ionosphere, the ion neutral collision frequency can be so
large that the ions are unmagnetized. In this case the gravita-
tional current is balanced by the friction current rather than
polarization currents.

Neglecting for the moment collisional diffusion and vis-
cosity, a closed model that comprises all the current channels
discussed above is given by
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q ¼ 0; (6a)
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þ b% g "rq ¼ 0: (6b)

It is clear that the gravitational current will lead to charge
build-up within a plasma filament structure and that the bal-
ance of ion polarization and friction currents will determine
the dynamical evolution of the filament.

In the ideal limit where friction can be neglected, there
is an inertial velocity scaling for an isolated filament struc-
ture given by

V ( ðg‘Þ1=2; (7)

where ‘ is the cross-field filament size. This scaling, predicting
a velocity increasing with the square of the size, follows from
dimensional analysis and has previously been demonstrated by
numerical simulations.31–33 The temporal scale for the filament
evolution is the ideal interchange rate c ¼ ðg=‘Þ1=2.

We introduce a rectangular coordinate system with grav-
ity in the x-direction and the magnetic field in the z-direction.
Assuming separation of variables, it is readily found that the
model (6a) and (6b) has an analytical solution describing ra-
dial motion of any wave form

qðx; tÞ ¼ Hðx$ gt=!i; yÞWðyÞ; (8a)

/ðx; tÞ ¼ $Bgy=!i; (8b)

where H and W are arbitrary functions that describe the ini-
tial filament shape in the drift plane. This solution represents
a structure moving along the direction of gravity with termi-
nal velocity

V ( g

!i
; (9)

independent of the cross-field filament size. It should be
noted that there is no vorticity and hence no plasma inertia
associated with this analytical solution.

The frictional velocity scaling given by Eq. (9) is
expected to prevail when the friction coefficient is large. The
transition between the inertial and frictional regimes will
occur when !i is of the same order of magnitude as the ideal
interchange rate c. This defines a frictional length scale given
by g=!2i . For cross-field filament sizes ‘ ) g=!2i , we expect
the inertial velocity scaling given by Eq. (7) to hold. For fila-
ment sizes ‘ * g=!2i , the frictional velocity scaling given by
Eq. (9) is expected. In the Sec. III we present results from
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numerical simulations that connect these two velocity scal-
ing regimes and elucidate the amplitude dependence.

III. NUMERICAL SIMULATIONS

In order to analyze the radial interchange motion of iso-
lated plasma filaments, we investigate a reduced two-field
model describing the evolution of the particle density n and
electric drift vorticity X ¼ r2

?/=B. Spatial scales are normal-
ized with a characteristic cross-field filament size ‘ and tem-
poral scales with the corresponding ideal interchange rate c.
The non-dimensional model is then written in the form

d ln n

dt
¼ jr2

?ln nþ jðr?ln nÞ2; (10a)

dX
dt

þ @ ln n

@y
þ !X ¼ lr2

?X; (10b)

where d=dt ¼ @=@tþ ẑ %r/ "r, the normalized friction
coefficient is given by ! ¼ !i=c, and we have added cross-
field collisional diffusion and viscosity with normalized dif-
fusion coefficients j and l, respectively. In the remaining
part of this paper we use these non-dimensional units unless
otherwise explicitly stated.

In the following we present results from numerical sim-
ulations of the model (10a) and (10b). In order to investigate
the dynamics of an isolated plasma filament, we write the
particle density as

n

N
¼ 1þ Dn

N
h; (11)

where N is a homogeneous background particle density,
Dn=N is the relative filament amplitude, and the spatial vari-
ation is given by h. For the numerical simulations, h is ini-
tially taken to be31–33

hðx; t ¼ 0Þ ¼ exp $ 1

2
x2

! "
: (12)

There is initially no fluid flow, /ðx; t ¼ 0Þ ¼ 0, so the collec-
tive motions arise from charge polarization due to particle
drifts across the magnetic field, which is described by the
interchange term in the vorticity Eq. (10b). Note that due to
the absence of free-energy sources, the asymptotic state is
that of thermodynamic equilibrium with the initial plasma
blob structure distributed homogeneously in space.

The model has been solved on a biperiodic square do-
main using a standard Fourier Galerkin method with size up
to 1002 and the number of grid points up to 81922. The nor-
malized diffusion coefficients j and l are both set to 10 3,
which ensures that we are in the ideal regime even for rela-
tive filament amplitudes as small as 10 2 in the absence of
friction.31,32

To quantify the radial motion of the plasma filament, we
define the radial center of mass position and velocity

XðtÞ ¼ 1

2p

ð
dxxh; VðtÞ ¼ dX

dt
; (13)

where the integration is over the whole simulation domain
and h is defined in Eq. (11). From Eq. (10a) it can be shown
that the radial centre of mass velocity is equal to the total ra-
dial particle flux caused by the collective motions.

The dynamical evolution of the radial centre of mass ve-
locity for Dn=N ¼ 1 and various friction coefficients is pre-
sented in Fig. 1. Following an initial period of fast
acceleration, the filament reaches a maximum velocity after
approximately 6 ideal interchange times for ! < 1. It has pre-
viously been shown that the evolution at later times in the
ideal limit is dominated by the development of small scale
flows and dispersion of the filament structure that sensitively
depend on the collisional diffusion coefficients.31–33 For fric-
tion coefficients of order unity and larger the centre of mass
velocity remains approximately constant for a long time after
the initial acceleration. The terminal radial velocity decreases
with increasing friction coefficient.

The filament dynamics also depends on the relative am-
plitude. In Fig. 2 we show the dynamical evolution of the ra-
dial centre of mass velocity for ! ¼ 1 and various filament
amplitudes. For very large amplitudes there is a pronounced
peak for the radial velocity, while the velocity is nearly con-
stant for a long time in the case of small to intermediate fila-
ment amplitudes.

Contour plots of the particle density with super-imposed
electrostatic potential iso-lines are presented for various val-
ues of the friction coefficient in Fig. 3 for Dn=N ¼ 1 and in
Fig. 4 for Dn=N ¼ 103 at the time of maximum radial centre
of mass velocity. For large friction coefficients, these struc-
tures pertain for a long time during the subsequent motion of
the filaments. It is clearly seen that the filament structure
develops an asymmetric shape with a steep front and a

FIG. 1. Evolution of the radial centre of mass velocity for Dn=N 1 and
various friction coefficients.

FIG. 2. Evolution of the radial centre of mass velocity for ! 1 and various
filament amplitudes.
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trailing wake for small friction coefficients. This radial
asymmetry is reduced, resulting in a more circular shaped
blob-structure, when either the amplitude or friction coeffi-
cient becomes larger. The filament velocity is very small
when the friction coefficient is larger than unity, even for
very large filament amplitudes.

In Fig. 5 we present the scaling of the maximum radial
centre of mass velocity as function of the friction coefficient
for various filament amplitudes. For small ! the velocity is
independent of friction while for large ! the velocity is inver-
sely proportional to the friction coefficient. Similarly, Fig. 6
shows the maximum velocity as function of relative ampli-
tude for various friction coefficients. The filament velocity
clearly increases with the relative amplitude. For small fila-
ment amplitudes and friction coefficients we recover the
square root amplitude scaling V ( ðDn=NÞ1=2 (Refs. 31 33).
This scaling breaks for filament amplitudes of order unity or
larger and transits into a regime where the filament velocity
is only weakly dependent on the amplitude for Dn=N * 1.
Further discussion of the velocity dependence on amplitude
is given in the following section.

IV. DISCUSSION AND INTERPRETATION

Applying an order of magnitude estimate with @=@t
( X ( V, the vorticity equation (10b) gives V2 $ d1Dn
=ðN þ DnÞ þ d2!V ¼ 0, where d1 and d2 are fit coefficients
that depend on the filament amplitude. The positive root for
the filament velocity is given by

V ¼ $ d2!

2
þ d22!

2

4
þ d1

Dn
N þ Dn

! "1=2

: (14)

Fitting this model to the numerical simulation data for a
fixed filament amplitude, we find the fit parameters d1 and
d2. The fit of Eq. (14) to the simulation data is presented by
the solid lines in Fig. 5 and the fit coefficients d1 and d2 as
function of the relative filament amplitude in Fig. 7. The
simple order of magnitude estimate clearly yields a good
description of the simulation data. For small friction coeffi-
cients, ! ) 1, Eq. (14) gives V + ½d1Dn=ðN þ DnÞ-1=2 inde-
pendent of ! as observed in Fig. 5. For large friction
coefficients, ! * 1, we get V + d1Dn=d2!ðN þ DnÞ, inver-
sely proportional to the friction coefficient as seen in Fig. 5.

When Eq. (14) is written in dimensional units, the filament
velocity dependence on the cross-field size becomes explicit

!iV

g
¼ d2

2

!2i ‘

g
$1þ 1þ 4d1

d22

g

!2i ‘

Dn
N þ Dn

! "1=2
" #

: (15)

There is a characteristic size given by g=!2i that separates the
two velocity scaling regimes. For small filament sizes,
‘ ) g=!2i , we find the inertial velocity scaling given by
Eq. (7)31–33

V + d1g‘
Dn

N þ Dn

! "1=2

: (16)

FIG. 3. Particle density contour plots with super imposed electrostatic potential iso lines for Dn=N 1 and ! 10 1 (left), 1 (middle), and 10 (right) at time
t 6.

FIG. 4. Particle density contour plots with super imposed electrostatic potential iso lines for Dn=N 103 and ! 10 1 (left), 1 (middle), and 10 (right) at
time t 2.
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Note that d1 is independent of Dn=N for small amplitudes,
implying that V ( ðDn=NÞ1=2 in this limit. This is consistent
with the fit presented in Fig. 6, which gives a scaling expo-
nent of approximately 0:5 for ! ¼ 10 2 and Dn=N . 1. For
large cross-field filament sizes, ‘ * g=!2i , the frictional fila-
ment velocity scaling given in Eq. (9) is recovered

V + g

!i

d1
d2

Dn
N þ Dn

: (17)

For small filament amplitudes this gives a linear dependence
on Dn=N, again consistent with the fitted scaling exponent of
approximately unity in Fig. 6 for ! & 1 and Dn=N . 1.

Except for the numerically determined fit coefficients d1
and d2, the frictional limit given in Eq. (17) is the same as
that found by Ossakow and Chaturvedi for buoyant equato-
rial irregularities.5 Based on an analogy with bubbles in
hydrodynamics, Ott arrived at an expression for ESF fila-
ment velocities similar to Eq. (15) but without the amplitude
dependence.4 While the bubble analogy did not reveal the
amplitude dependence, it did identify the qualitative size de-
pendence and a transition from the inertial to the frictional
velocity scaling regimes. The importance of the amplitude
dependence of the maximum centre of mass velocity !iV=g
in the frictional limit given by Eq. (17) is evident from
Fig. 8, where the fit coefficients d1 and d2 are given in Fig. 7.

The velocity dependence on filament size given by
Eq. (15) is presented in Fig. 9 for a range of amplitudes. It is
clearly seen that the radial velocity increases as the square
root of the size for small ‘ and is independent of size for large
‘. The length scale for the transition between these two
regimes scales as g=!2i but also depends on the filament am-
plitude. In order to quantify this amplitude dependence we
have calculated the cross-field size which gives the largest
curvature for the velocity curves in Fig. 9. In Fig. 10 we pres-
ent the cross-field size of the transition point between the iner-
tial and frictional velocity scaling regimes. We find that this
transition point depends sensitively on the filament amplitude
for small amplitudes. For amplitudes Dn=N & 102 this de-
pendency is weaker and the transition point increases little
with increasing filament amplitude. For relative filament
amplitudes larger than approximately 103 the transition length
scale is approximately given by 2g=!2i . We conclude that the
inertial velocity scaling pertains for larger filament sizes as
the amplitude increases.

FIG. 5. Maximum radial centre of mass velocity as function of the friction
coefficient ! for various filament amplitudes. The full lines are least square
fits of an order of magnitude approximation to the simulation data.

FIG. 6. Maximum radial centre of mass velocity as function of the relative
filament amplitude for various friction coefficients. The full lines are least
square fits of the simulation data for amplitudes less than unity.

FIG. 7. Fit coefficients d1 (square) and d2 (circle) for the maximum filament
velocity dependence on friction coefficient as function of Dn=N.

FIG. 8. Amplitude dependence of the maximum radial centre of mass veloc
ity !iV=g in the frictional limit.

FIG. 9. Dimensional filament velocity as function of the cross field size in
the presence of dynamical friction.
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V. COMPARISON WITH EXPERIMENTS

The simulation results presented here compare favour-
ably with experimental measurements on the motion of iso-
lated filament structures in the weakly ionized VTF
plasmas.8 In these experiments, a blob-like filament structure
was produced by a pulse of micro waves in a simply magne-
tized torus configuration. Due to vertical magnetic field gra-
dient and curvature drifts, the toroidally symmetric blob
structure becomes polarized and moves radially outwards.
Collisions with the neutral Argon gas particles result in loss
of momentum. This resembles the dynamics of ESF irregu-
larities and is exactly the situation described by the model
and numerical simulations presented here.

In these VTF experiments, it was observed that the blob-
like structures in some cases develop a mushroom-like cap
shape for the particle density and a dipole electrostatic potential
similar to that seen in the numerical simulations.8 The radial
centre of mass velocity of the filament was calculated from
probe measurements and found to be inversely proportional to
the neutral gas pressure, with a gas pressure of 10 4 Torr giving
a velocity approximately equal to 2% 103 m=s.

Estimates of the ion neutral collision frequency indicate
that the VTF blob experiments were in the frictional regime.
With the stated electron and ion temperatures of Te + 2Ti
+ 2 eV, the acoustic speed Cs + 2% 103 m=s. Assuming the
neutral gas to be at room temperature and the cross section
for ion neutral collisions given by r + 1018 m 2 (Refs. 34
and 35), the collision frequency !i + ngrvti is 9% 103 m=s,
where the neutral gas particle density ng + 3% 1018 m 3 at a
pressure of 10 4 Torr. This gives the frictional velocity
g=!i + 2% 103 m=s which is expected to pertain for cross-
field filament sizes of the order of g=!2i + 0:2m or larger.
This is roughly the size of the blob-like structures produced
by the solenoid and micro wave pulse in the VTF experi-
ments. We find best agreement between the simulation
results and the experimental measurements for a relative fila-
ment amplitude of order 10.

For larger neutral gas pressures, the predicted velocity
and transition length scale decrease, in accordance with the
experimental measurements. For a neutral gas pressure of
5% 10 4 Torr the frictional velocity is given by g=!i
+ 3% 102 m=s, which is just the average filament velocity
measured in the experiments.8 In this frictional regime, the
radial velocity is independent of the cross-field filament size.
This was explicitly demonstrated in the VTF experiments

where blob structures with different cross-field size were
produced by varying the micro wave pulse length. For a
given neutral gas pressure, it was found that the radial centre
of mass velocity does not change with size.8

Despite the overall agreement, it should be noted that
there are several uncertainties in the above estimated plasma
parameters. First, the low background plasma particle den-
sity is not accessible by probe measurements. Thus, the rela-
tive filament amplitude, although certainly large, is not
exactly known. Second, the ion temperature is not measured
in the experiments. Finally, the estimate of the ion-neutral
collision frequency is not unambiguous. It should be noted
that the transition size g=!2i strongly depends on the friction
coefficient. Nevertheless, it is concluded that the prediction
of the model and numerical simulations presented here agree
well with the VTF experiments.

For blob-like structures in the scrape-off layer of magnet-
ically confined plasmas, we find that ion neutral collisions
will strongly influence the filament dynamics provided ! & 1,
which implies a neutral deuterium particle density of 5
%1019 m 3 for a filament size ‘ + 1 cm, relative amplitude
Dn=N + 1, major radius R + 1m, and equal electron and ion
temperatures. Such high neutral particle densities are found in
the divertor region and may occur in the scrape-off layer in
high recycling or detached plasmas.17–20 In the case of bal-
looned filament structures as discussed in Sec. I and the Ap-
pendix, parallel motion with the acoustic or Alfvén speed can
lead to effective friction coefficients of the order of 0.1 and
10, respectively. This indicates that parallel vorticity transport
may be important for the filament dynamics. However, nu-
merical simulations of dynamics in all three spatial dimen-
sions are required to self-consistently describe the radial
transport associated with the filament motion in this case.

VI. SUMMARYAND CONCLUSIONS

In summary, we have investigated the radial interchange
motion of isolated plasma filaments in the presence of dy-
namical friction and allowing large relative amplitudes. We
have elucidated the filament velocity dependence on cross-
field size, amplitude, and plasma parameters in the presence
of dynamical friction. Based on an order of magnitude esti-
mate, we have found an analytical expression for this veloc-
ity dependence and verified it by numerical simulations.

In the ideal limit there is an inertial velocity scaling, pre-
dicting the filament velocity to be proportional to the square
root of gravity and the cross-field size. For large friction coef-
ficients, the filament velocity is independent of the cross-field
size, proportional to gravity and inversely proportional to the
friction coefficient. In this regime, the filament moves a large
distance with nearly constant velocity and shape. The cross-
field filament size that separates these two regimes is given by
the ratio of gravity and the square of the friction coefficient.
These results agree with previous theories for buoyancy
driven ionospheric irregularities and generalizes them to allow
for a large variation of filament amplitudes.

The spatio-temporal filament evolution and predicted
velocity scaling are found to compare favourably with meas-
urements of isolated blob-like structures in the VTF device.

FIG. 10. Cross field filament size that separates the inertial and frictional
regimes, given by the point of maximum curvature of Vð‘Þ.
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The results presented here agree with (i) the mushroom-like
cap shape of the filament structures, (ii) the dipole shaped
electrostatic potential, (iii) the inverse scaling of the filament
velocity with neutral gas pressure and thereby collision fre-
quency, and (iv) the filament velocity independence on size
for strong friction. Moreover, by extending the blob theory
and simulations to relative filament amplitudes much larger
than unity, we find that the measured blob velocities of the
order of the acoustic speed is consistent with theory.
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APPENDIX: EFFECTIVE FRICTION

Here we briefly discuss how effective dynamical friction
might arise from B-parallel dynamics in the high and low
collisionality limits with emphasis on tokamak scrape-off
layer plasmas.11,24,25 It has been demonstrated in several
experiments that the filamentary structures have significant
parallel modulation with peak amplitude in the outboard
mid-plane region. This so-called ballooning structure leads
to flows along the magnetic field that are experimentally
measured away from the outboard mid-plane.36–38

For simplicity of the argument, let us ignore the cross-
field dynamics and focus on the effect of parallel electric
currents. The quasi-neutrality condition is then given by

q
B

@X
@t

¼ rk " Jk; (A1)

where q is the plasma mass density and X ¼ r2
?/=B is the

electric drift vorticity. If we average over the parallel length
L of the filament structure we obtain

@r2
?/
@t

¼ C2
Al0Jw
L

; (A2)

where CA ¼ ðB2=l0qÞ
1=2 is the Alfvén speed and Jw is the

current density at the edge of the filament structure. Since
there are no parallel electric fields in the background plasma
outside the filament structure, we must have the boundary
condition

rk/þ
@Ak

@t
¼ 0; (A3)

where the electric current perturbations are related to the
vector potential by l0Jk ¼ $r2

?Ak. For outgoing waves
with phase velocity x=kk ¼ CA it follows that the parallel
current is related to the electrostatic potential by / ¼ CAAk.
This results in an effective friction term in the field line aver-
aged vorticity equation (A2)

@r2
?/
@t

þ CA

L
r2

?/ ¼ 0; (A4)

and the effective friction coefficient is evidently given by
!i ¼ CA=L. This damping mechanism for interchange
motions has previously been used for the description of
ablating pellets in tokamak plasmas.39,40

Propagation of Alfvén waves will be halted in highly
collisional plasmas, such as the scape-off layer in present
tokamak experiments with high line-averaged particle den-
sity and small plasma currents. Note that if we here include
B-parallel motion Vk "r in the advective derivative in the
polarization current given in Eq. (4), we obtain an additional
term in the resulting vorticity equation given by qðVk "rÞX.
In the collisional limit the parallel advection can be esti-
mated by Cs=L, which results in an effective friction term in
the vorticity equation with the friction coefficient !i ¼ Cs=L.
This is the damping term in used in previous two-
dimensional turbulence simulations of scrape-off layer
plasmas.21–23 These considerations suggest that the parallel
filament dynamics can be parametrized as a simple effective
friction in the low and high collisionality limits for strongly
ballooned structures. However, three-dimensional numerical
simulations are evidently required to reveal the self-
consistent filament dynamics and the transition between
these regimes. This is work now in progress.
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