
A Weighted Minimum Distance Using Hybridization of 
Particle Swarm Optimization and Bacterial Foraging 

Muhammad Marwan Muhammad Fuad 

Forskningsparken 3, Institutt for kjemi, NorStruct  
The University of Tromsø - The Arctic University of Norway  

NO-9037 Tromsø, Norway 
 marwan.fuad@uit.no  

Abstract: In a previous work we used a popular bio-inspired algorithm; particle 
swam optimization (PSO) to improve the performance of a well-known 
representation method of time series data which is the symbolic aggregate 
approximation (SAX), where PSO was used to propose a new weighted 
minimum distance WMD for SAX to recover some of the information loss 
resulting from the original minimum distance MINDIST on which SAX is 
based. WMD sets different weights to different segments of the time series 
according to their information content, where these weights are determined 
using PSO. We showed how SAX in conjunction with WMD can give better 
results in times series classification than the original SAX which uses 
MINDIST. In this paper we revisit this problem and propose optimizing WMD 
by using a hybrid of PSO and another bio-inspired optimization method which 
is Bacterial Foraging (BF); an effective bio-inspired optimization algorithm in 
solving difficult optimization problems. We show experimentally how by using 
this hybrid to set the weights of WMD we can obtain better classification results 
than those obtained when using PSO to set these weights.  

Keywords: Bacterial Foraging, Particle Swarm Optimization, Symbolic 
Aggregate Approximation, Time Series Data Mining, Weighted Minimum 
Distance.  

1   Introduction 

A time series is an ordered collection of values measuring a certain phenomenon over 
a period of time. Formally, a time series S of length n is defined as;   

nnn tvstvstvsS ,,....,,,, 222111 ==== . These values can be real numbers 

or multi-dimensional vectors.  
Time series data arises in many applications including medical, financial, and 

engineering.  For this reason, time series data mining has received attention over the 
last years.  

Although time series data mining tackles several tasks such as query-by-content, 
clustering, classification, anomaly detection, motif discovery, and prediction, but  



Table 1. The GEMINI algorithm for time series range queries 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
executing all these tasks requires performing another fundamental task; similarity 
search. A similarity search problem consists of a database D, a query or pattern Q, 
which does not necessarily belong to D, and a constraint that determines the extent of 
proximity that the data objects should satisfy to qualify as answers to that query. 
Direct sequential scanning compares every single time series in D against Q to 
answer this query. Obviously this is not an efficient approach given that modern time 
series databases are usually very large. 

The main frame to handle time series is through the Generic Multimedia Indexing 
(GEMINI) algorithm [4]. GEMINI was first presented for indexing time series. Later 
it was extended to other data types. GEMINI reduces the dimensionality of the time 
series by converting them from a point in an n-dimensional space into a point in an N-
dimensional space, where N<<n. A similarity measure is defined on the reduced 
space, which is a lower bound of the original similarity measure, thus the similarity 
search returns no false dismissals in this case. A post-processing sequential scan on 
the candidate response set is performed to filter out all false alarms and return the true 
response set. Table 1 illustrates the GEMINI algorithm. 

Dimensionality Reduction Techniques, also known as Representation Methods, 
follow the GEMININ framework to find a faster solution to the similarity search 
problem in time series databases. This is achieved by projecting the original time 
series onto lower dimensional spaces, thus reducing their dimensionality, and then 
processing the query in those reduced spaces. 

Several dimensionality reduction techniques have been suggested in the literature, 
of those we mention: Piecewise Aggregate Approximation (PAA) [7] and [20], 
Piecewise Linear Approximation (PLA) [12], and Adaptive Piecewise Constant 
Approximation (APCA) [8]. Other methods use multi-resolution approaches [11], 

Algorithm: range_query(Q,r)  
  
1. Transform the time series in the database D from   
   the original n-dimensional space  into a lower   
   dimensional space of N dimensions 
    
2. Define a lower bounding distance on the reduced  

   space: ( ) ( ) DSSSSdSSd jiji
n

ji
N ∈∀≤ ,,,  

 
3. Eliminate all the time series for which we have      

   ( ) rSQd N >, → obtain a candidate response set 
 

4. Apply  nd  to the candidate response set and    
   eliminate all the time series that are farther    
   than r from Q  to get the true response set. 
 



[15], [16], [17]; i.e. the time series are projected on several reduced spaces instead of 
a single reduced space.  

One of the most important dimensionality reduction techniques of time series data 
is the Symbolic Aggregate approXimation method (SAX) [10]. This symbolic 
representation method uses pre-computed distances obtained from lookup tables. This 
makes SAX efficient and easy to apply.  

In a previous work we used an optimization method- Particle Swarm Optimization 
(PSO) to propose a new minimum distance WMD for SAX to recover some of the 
information loss which results from using SAX as a dimensionality reduction 
technique. WMD sets different weights to different segments of the time series 
according to their information content. These weights are set through an optimization 
process. We have shown experimentally how WMD enhances the performance of 
SAX.  

 In this paper we revisit our previous work and optimize WMD by hybridizing PSO 
with another optimizer. This hybridization improves the performance of PSO in the 
aforementioned optimization problem.    

The rest of the paper is organized as follows: in Section 2 we present related 
background. The new hybrid algorithms is introduced in Section 3 and evaluated in 
Section 4. In Section 5 we give concluding remarks. 

2   Related Work 

Piecewise Aggregate Approximation (PAA) was independently proposed in [7] and 
[20]. The basis of PAA is simple and straightforward, yet this method has been 
successfully used as a competitive method of dimensionality reduction technique of 
time series. PAA reduces the dimensionality of a time series S from n in the original 
space to N in the reduced space by segmenting the time series into equal-sized frames 
and representing each segment by the mean of the data points that lie within that 
frame.  

In [10] the authors proposed one of the most important symbolic representation 
methods of time series, which is the Symbolic Aggregate approXimation method 
(SAX). SAX assumes the Gaussianity of the normalized time series.  

After normalizing the time series SAX projects the resulting time series on a lower-
dimensional space using PAA as a dimensionality reduction technique, and then 
discretizes the outcome to obtain a sequence of symbols. These symbols are obtained 
by determining the number and locations of the breakpoints. Their locations are 
determined by using Gaussian lookup tables, whereas the user determines their 
number.  

SAX uses the following similarity measure: 
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Where n is the length of the original time series, N is the length of the strings (the  



 
 
 
   
 
 
 
 
             
                 
                  Separation                                Alignment                               Cohesion 
 

Fig. 1. Simulating swarm’s behavior 
 

number of the segments), Ŝ and R̂ are the symbolic representations of the two time 
series S and R , respectively, and where the function )(dist  is implemented by using 
the appropriate lookup table.                                                                                           

In [13], we derived the Weighted Minimum Distance (WMD) from equation (1). 
WMD is defined as follows:  
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            (2) 

 
The motivation behind this is that different segments have different information 

contents, so segments with a higher information content should be assigned a higher 
weight than those with a lower information content.    

We showed in [13] that MINDIST is a special case of WMD, and we also showed 
that WMD is a lower bound of the Euclidean distance, so it guarantees no false 
dismissals.  

 The weights in (2) were obtained as the outcome of an optimization process where 
the optimizer we used was Particle Swarm Optimization (PSO). PSO is an 
evolutionary optimization algorithm inspired by the social behavior of some animals, 
such as bird flocking or fish schooling [6].  PSO is a member of a family of naturally-
inspired optimization algorithms called Swarm Intelligence (SI) which are population-
based optimization algorithms. In [19] a model is proposed to simulate a swarm. In 
this model individuals, also called agents or particles, follow three rules (Fig. 1); 
Separation: Each particle avoids getting too close to its neighbors. Alignment: Each 
particle steers towards the general heading of its neighbors, and Cohesion:   Each 
particle moves towards the average position of its neighbors. 

In PSO the particles are represented by vectors whose lengths are the dimension of 
the optimization problem at hand. 

There are quite a large number of variations of PSO. In the following we present a 
standard PSO [5]. PSO starts by initializing a swarm of sSize particles at random 
positions 0

iX


and velocities 0
iV


where { }sSize,..,i 1∈ .   
In the next step each position, and for each iteration, is evaluated using a fitness 

function, also called objective function.  



The positions 1+k
iX


  and velocities 1+k
iV


are updated at time step ( 1+k ) according 
to the following formulae: 
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where GGG a.r=ϕ , LLL a.r=ϕ , ( )10,Ur,r LG → , R∈GL a,a,ω , k

iL


 is the best position 

found by particle i , kG


is the global best position found by the whole swarm, ω is 
called the inertia ,  La is called the local acceleration , and Ga is called the global 
acceleration. These last three parameters are control parameters which are chosen by 
the algorithm designer.  The algorithm continues until a stopping criterion terminates 
it.  

As is the case with other evolutionary algorithms, PSO should keep a balance 
between exploitation, and exploration. Exploration is defined as the act of searching 
for the purpose of discovery, and exploitation is defined as the act of utilizing 
something for any purpose [1].    

Diversity in PSO comes from two sources [21]; the first is the difference between 
the particle’s current position and that of its best neighbor, and the other is the 
difference between the particle’s current position and its best historical position.  

Variation, although provides exploration, can only be sustained for a limited 
number of generations because convergence of the swarm to the best position is 
necessary to refine the solution (exploitation). 

3   A Hybrid of Bacterial Foraging and Particle Swam 
Optimization  

In [2] the authors suggested hybridizing PSO with another member of the SI family, 
which is Bacterial Foraging. The new hybrid algorithm is called Bacterial Swarm 
Optimization Algorithm (BSOA). In their paper the authors tested BSOA on five well-
known benchmark functions, and they showed that BSOA outperforms both BF and 
PSO. But before we introduce BSOA let us first present BF.  

3.1 Bacterial Foraging 

Bacterial Foraging (BF) is a global optimization algorithm which has attracted 
increasing attention in the last few years. BF is another member of the SI family and it 
is inspired by the foraging behavior of the Escherichia coli (E. coli) bacteria.  

The basis of BF is that natural selection tends to eliminate animals with poor 
foraging strategies and either replaces them with others that have better foraging 
strategies or shapes them into ones which have these desirable strategies [18]. BF 
formulates this process as an optimization problem.  
 



 

 
Fig. 2. Chemotactic movements: (a) swimming (b) tumbling  

 
In the presence of chemical attractants and repellants E. coli responds by two 

patterns of movement achieved by a set of flagella. When these flagella rotate in the 
clockwise direction the bacterium tumbles, whereas when they rotate in the 
counterclockwise direction the bacterium swims. These two movements are known as 
chemotaxis. Fig. 2 shows the tumbling and swimming chemotactic movements. The 
purpose of chemotaxis is to help the bacterium approach or avoid nutrient or noxious 
substance gradients.  Sudden environmental changes may destroy the chemotactic 
progress causing the elimination and dispersal of a group of bacteria.  

Given a function ( ) p;f R∈θθ  (p is the number of parameters) to be minimized. 
BF finds the minimum of f by applying four mechanisms; chemotaxis, swarming, 
reproduction, and elimination-dispersal, which we will illustrate shortly, but let us 
first present this definition which is necessary to understand these mechanisms: a 
chemotactic step is a tumble followed by another tumble, or a tumble followed by a 
swim. Table 2 summarizes the symbols we are going to use to describe BF.  

The position of each member of the population of Nb  bacteria at the jth chemotactic 
step, kth reproduction step, and lth elimination-dispersal event is denoted by  

 
( ) ( ){ }b

i N,...,2,1i| l,k,jk,j,iP == θ . 
 
We now describe the four mechanisms we mentioned earlier in this section:  

• Chemotaxis:  This is a key step in BF. Let ( )l,k,jiθ  be the ith bacterium at the jth 
chemotactic step, kth reproduction step, and lth elimination-dispersal event, then the 
movement of the bacterium can be represented by :  

                                     ( ) ( ) ( ) ( )
( ) ( )ii

iiCl,k,jl,k,1j
T

ii

∆∆

∆θθ +=+                             (5)                                               

a-Flagella rotating counterclockwise:  
the bacterium swims 

b-Flagella rotating clockwise: 
the bacterium tumbles 



     where Δ is a vector in the random direction whose elements lie in the interval [-1, 
1]. 

• Swarming:  E. coli demonstrate a swarming behavior in that they travel in rings of 
bacteria which move up the nutrient medium when they are placed in the center of 
a semisolid matrix with a single nutrient chemo-effecter. When simulated by a high 
level of succinate the bacteria release an attractant aspartate which helps them 
aggregate into groups and thus move as a swarm. The cell-to-cell signal in the 
swam can be represented by the following function:  
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where dattractant , ωattractant , hrepellant, ωrepellant are coefficients to be chosen by the 
algorithm designer.  

 
This objective function ( )( )l,k,jP,fcc θ  is to be added to the original objective 
function to present a time varying objective function in that if many cells come 
close together there will be a high amount of attractant and hence an increasing 
likelihood that other cells will move towards the group. This produces the 
swarming effect [18]. 

 
• Reproduction: Through this process the least healthy bacteria die out and the 

healthier ones will undergo cell division to produce two daughter bacteria. This 
guarantees that the swam size will remain stable.    
 

• Elimination and dispersal:  There might be a gradual or sudden change in the 
environment where the bacteria live. As a result, the bacteria in a certain region are  

Table 2. The symbols used in the description of bacterial foraging 
 

Nb The number of bacteria in the population  

Nc The number chemotactic steps 

Ns The swimming length 

Nre The number of reproduction steps 

Ned The number of elimination-dispersal events 

Ped The probability of elimination-dispersal  

C(i) The size of the step taken in the random direction determined by the tumble 



killed or a group might be dispersed into another location. This has two effects 
on chemotaxis; the first is destroying the chemotactic progress. The second is 
that the new bacteria might be placed at locations with a better food source, thus 
assisting chemotaxis. 

3.2 Bacterial Swarm Optimization Algorithm (BSOA) 

The principle of BSOA is that local search is performed through the chemotactic 
movement operation of BFOA whereas the PSO operator executes the global search. 
This enables BSOA to keep a balance between exploration and exploitation [2].  

In BSOA, and after undergoing a chemotactic step, the bacterium is mutated by a 
PSO operator which attracts the bacterium towards the global best position found so 
far by the whole population, and also towards its previous heading direction. Thus 
BSOA performs global search through its “PSO component” and local search through 
its “BF component”.  

Our main motivation in using BSOA is that this hybrid optimization technique is 
particularly designed to handle a multi-modal optimization problem which is the case 
with the problem at hand as we showed in [14]. 

4   Experiments 

The purpose of our experiments is to compare the performance of WMD in equation 
(2) when the weights are obtained by PSO (which is our work in [13]) with its 
performance when the weights are obtained by BSOA. We refer to the former as 
PSO_WMD and to the latter as BSOA_WMD.  

As in [13], we conducted our experiments on a time series classification task on the 
first nearest-neighbor (1-NN) rule using leaving-one-out cross validation. The datasets 
on which we conducted our experiments are available at [9].  

For each value of the alphabet size tested we first transform the time series to 
sequences by applying SAX (c.f. Section 2) and then we apply PSO_WMD (or 
BSOA_WMD)  . The weights iw in relation (2) are obtained during a training phase; 
i.e. for each value of the alphabet size tested, we formulate an optimization problem 
whose fitness function is the classification error of the time series, and whose 
outcome is iw .   

In Table 3 we present some of the results we obtained for alphabet size equal to 3, 
10, and 20, respectively.  

As we can see from Table 3, the classification error of BSOA_WMD is smaller 
than or equal to that of PSO_WMD for all the datasets and for all values of the 
alphabet size tested, which shows that BSOA is indeed more effective in handling this 
optimization problem than PSO.  



5   Conclusion  

In this paper we revisited a previous work that applies particle swam optimization to 
set the weights of WMD – a weighted minimum distance applied in conjunction with 
SAX, and we used instead a hybrid optimization algorithm; bacterial swarm 
optimization algorithm – BSOA, to calculate these weights.  

The experiments we conducted on a time series classification task show that 
BSOA_WMD either outperforms or gives the same classification error obtained by 
applying PSO_WMD on all the datasets and alphabet sizes tested. This shows that 
BSOA is effective in optimizing multi-modal problems.  

Table 3. Comparison between PSO_WMD and BSOA_WMD 
 

  Dataset     Method Alphabet Size Classification Error 
 

 

ECG 

 
PSO_WMD 

α= 3 0.19 
α=10 0.08 
α=20 0.10 

 
BSOA_WMD 

α= 3 0.13 
α=10 0.07 
α=20 0.09 

 

Trace 

 

 
PSO_WMD 

α= 3 0.51 
α=10 0.41 
α=20 0.30 

 
BSOA_WMD 

α= 3 0.47 
α=10 0.36 
α=20 0.25 

 

CBF 

 
PSO_WMD 

α= 3 0.36 
α=10 0.07 
α=20 0.06 

 
BSOA_WMD 

α= 3 0.36 
α=10 0.06 
α=20 0.03 

 

Beef 

 
PSO_WMD 

α= 3 0.73 
α=10 0.53 
α=20 0.43 

 
BSOA_WMD 

α= 3 0.73 
α=10 0.46 
α=20 0.43 

 

Lighting7 

 
PSO_WMD 

α= 3 0.68 
α=10 0.36 
α=20 0.37 

 
BSOA_WMD 

α= 3 0.68 
α=10 0.26 
α=20 0.31 

 

Fish 

 
PSO_WMD 

α= 3 0.88 
α=10 0.51 
α=20 0.22 

 
BSOA_WMD 

α= 3 0.85 
α=10 0.51 
α=20 0.22 
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