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Abstract Atmospheric parameters from the troposphere above Adventdalen, Svalbard, 78°N, 16°E, are
examined for signatures of complexity in their respective stochastic components over time scales from ~1h
to 1 year. Several approaches are used, all of which can estimate values of the generalized Hurst exponent, a,
which can in turn be compared with each other and with similar independent characterizations, usually via the
classic Hurst exponent, H, obtained from location-specific and globally averaged time series. For tropopause
altitude, the stochastic component exhibits the signature of a persistent fractional Gaussian noise (fGn) with
a~0.75. For surface air temperature, the indications are for fractional Brownian motion (fBm) with a~1.4.
Using recent high time-resolution data from a single high-latitude location, this identification of fBm is relevant
for short-term memory as opposed to findings from many other studies addressing possible long-term
memory, which demonstrate fGn with a =H= 0.7. Furthermore, the lack of similarity between the results for
surface air temperature and tropopause altitude suggests that different underlying processes are responsible
for stochastic variability.

1. Introduction

Examination of time series with the goal of identifying and quantifying scaling properties is not new to physics.
Kolmogorov [1941] described, mathematically, the theoretical scaling relationship between sizes of structures
—eddies—in well-developed turbulence as advanced by Richardson [1920]. In the turbulence spectrum, large
structures dissipate energy by generating smaller and smaller structures and eventually heat. Distinct regimes
can be identified corresponding to underlying buoyancy, inertia, and viscous forcing each characterized by
power law dependence on scale size. The power-law dependencies can be predicted by dimensional analysis,
and thus hypotheses as to underlying mechanisms, and then validated by observation. More recently, however, a
paradigm for analysis of long-term time series has emerged in which the signal’s noise, or stochastic component,
is examined for self affinity. Thereafter it may or may not be possible, often by comparing scaling signatures with
those of known processes, to deduce driving mechanisms a posteriori. Searching for characteristics such as long-
term persistence/memory in climate (specifically, temperature) records was pioneered by, e.g., Koscielny-Bunde
et al. [1998] and further developed by, e.g., Eichner et al. [2003] and Lennartz and Bunde [2009]. The approach is,
however, notorious: Scafetta and West [2003], for example, proposed a linking of terrestrial temperature anom-
alies to solar flare intermittency via a Lévy process, sparking a heated discussion in the literature. Similarly, Rypdal
and Rypdal [2011] find identical multifractal noise signatures in both the auroral electrojet index and the z
component of the interplanetary magnetic field suggesting the existence of a physical mechanism linking
intermittency in the two parameters. The aforementioned studies almost exclusively employ very long data sets,
typically of 1 month time resolution with an aim to facilitating better trend analyses and prediction of future
climate. Here, however, shorter (~years) data sets with higher time resolution (~hours) are analyzed using the
same techniques but to search for geographically local complexity differences and similarities.

In this study, three independent approaches to time series analysis will be employed, each yielding a metric
characterizing the stochastic component. As we shall see, the resulting three metrics are related and are, in turn,
related to the somewhat “out-of-fashion” fractal dimension or perhaps more precisely the Hausdorff-Besicovich
dimension [e.g., Mandelbrot, 1983]. A more contemporary approach, however, is to examine the Hurst expo-
nent, H (originally, Hurst, [1951]). The first step is to isolate the stochastic component from the original time
series. For the measurements that will be considered in this investigation, this involves “deseasonalizing”

the data; since we have a priori knowledge of the deterministic components this deseasonalization is con-
sidered appropriate, and furthermore, the combined subsequent analyses have the possibility to reveal any
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inadequacies. In this study, the data are smoothed using a boxcar of width 1 month; then this smoothed
time series is subtracted from the original. The result effectively removes all variation with periods greater
than 1 month, and thus seasonal, interannual, etc. periods, and, furthermore, any underlying trend. Various
approaches to deseasonalization were explored by Hall et al. [2011a] including Butterworth filtering and
subtraction of monthly climatology.

Spectral analysis (SA) is a time series analysis method that is familiar to most physicists. Normally the goal is to
identify dominant periods in the data, but here since we are interested in the characteristics of the noise
rather than the deterministic component, the power law dependence is obtained by linear fitting to a log-log
plot of power spectral density, S versus frequency, f. Depending on the underlying data, different depen-
dencies may emerge for different time scale ranges (analogous with the various size-scale subranges in the
Kolmogorov spectrum for turbulence). We shall denote the scaling exponent (the negative of the spectral
slope in log-log space) by f:

S(F)«|f|* m
A flat spectrum indicating white noise is thus characterized by f=0. The case of f=1 is often referred to as
“pink noise”. The case where =2, “red noise” corresponds to Brownian motion and is alternatively called
Brownian or just Brown noise. In the eventualities where power density increases with frequency, the terms
blue and violet are used. For more on colours of noise, the reader is referred to Vasseur and Yodzis [2004]. A
description of the SA method together with further references is given by Heneghan and McDarby [2000];
note, however, that these authors use “o” as the scaling exponent derived from the spectrum, rather than £.

The second method employed is the often-used detrended fluctuation analysis (DFA) approach [Peng et al.,
1993]. Again, this is described in detail by, for example, Heneghan and McDarby [2000] together with original
references. DFA is perhaps the preferred method for searching for long-term memory in data; to achieve this
reliably it is necessary to establish power-law scaling (viz., as described above), investigating the constancy of
spectral local slopes in a sufficient range and rejecting any exponential decay of the autocorrelation function
[Maraun et al., 2004; Varotsos et al., 2013]. Then, in order to obtain a clearer view of whether long-range
correlations prevail in a complex time series, DFA can be combined with a new, derived, time domain, termed
“natural time” as described fully by Varotsos et al. [2009a] and Sarlis et al. [2010]. The DFA procedure itself is as
follows. The stochastic component of the original time series is first used to produce a corresponding
cumulative summation series (each new point is the sum of the preceding points in the original). Thereafter
the cumulative summation is divided into blocks of equal size (n). Each of these subseries of length n points is
then detrended either by subtracting the straight line between end-points (bridge detrending) or linear or
polynomial fits (thus referred to as DFA1, DFA2, etc). Variances are calculated for each block followed by the
mean F of these. The process is repeated for a range of block sizes (usually all possible block sizes) resulting in
the function F(n). After plotting F(n) versus n in log-log space (as was done in the spectral analysis case) it may
be possible to identify regimes exhibiting a scaling exponent a:

F(n)xn® (2)

The use of a has become the norm for DFA analyses, e.g., Delignieres et al. [2006], as opposed to Heneghan and
McDarby [2000] who use f. Here a simple linear detrending will be used and DFA will be used to refer to DFA(1).

The third method to be employed in this study is the lesser-used signal summation conversion (SSC) method
[Eke et al., 2000]. The method is very similar to DFA, but the standard deviation, SD(n) is determined for each
block/subseries (normally after linear detrending) possibly exhibiting

SD(n)exntssc (3)
Where Hssc is the Hurst exponent as determined by SSC.

All three methods are fully described by Delignieres et al. [2006]. Hartmann et al. [2013] also provide particularly
explicit explanations for implementing the DFA and SSC methods together with a useful table of nomenclature.
One fundamental difference between SA and DFA and SSC is that in the last two methods the data are
cumulatively summed. If white noise is cumulatively summed, the result is a Brownian motion: the likelihoods of
the motion to continue in the same direction (increasing or decreasing amplitude) or to reverse are equal.
Alternatively, one can say that the successive movements or increments are uncorrelated. Mandelbrot and van
Ness [1968] introduced the concept of fractional Brownian motions (fBm) in which successive increments are
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indeed correlated. Another genre of
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Figure 1. Relationships between slopes of the analysis methods used here: o, the  ceding motion is likely to be followed by
generalized Hurst exponent and also the scaling exponent from the DFA, Hssc from a reversal. These likelihoods are com-

the SSC method and equivalent to ¢, and S from the spectral analysis.

monly referred to as persistent and

antipersistent, respectively. Any of the scaling exponents from equations (1), (2) and (3), &, 8, and Hssc can
potentially reveal whether the noise is fGn or fBn. H, as distinct from Hssc, on the other hand lies in the range
{0,1} wherein H < 0.5 is indicative of antipersistence, H > 0.5 is indicative of persistence and H= 0.5 is the special
case of Brownian motion. The relationships between the three scaling exponents and H will not be derived
explicitly here, and the reader is referred to Hartmann et al.[2013], Heneghan and McDarby [2000] (recalling that
a and  must be interchanged), Delignieres et al. [2006, and references therein]. An overview is

p=2a—1
ForafGnsignal :H=a = (f+1)/2 = Hssc (4)
ForafBmsignal :H=a—1=(8—1)/2 = Hssc — 1

tropopause height
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Figure 2. Stochastic components (i.e., time series after deseasonalization) of (top) tropopause heights (radar tropopause) November 2007 to
December 2012 inclusive, as determined by SOUSY, and (bottom) surface air temperature August 2011 to February 2013 immediately below.
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F 1 These relationships are summarized pictori-
1o 4 ally in Figure 1. Also, it is worth mentioning
08 7 that, applicable to fBm only, the fractal or
S 06} 3 Hausdorff-Besicovich dimension, D=2 — H.
0.4 E . One can see, therefore, that deriving D
- F E [Grassberger and Procaccia, 1983], although
F ] potentially yielding H does not unambigu-
0'074 o 0 P 4 ously provide the same information as «, §, or
bin (K) Hssc. Furthermore, o has recently been used
to represent a “generalized Hurst exponent
3¢ ‘ ‘ \ 7 and direct classification into antipersistent
E ] fGn, persistent fGn, and fBm is performed
) 7 7 directly from ¢ This is the chosen approach
. F 1 for the analyses that will be presented here.
'E 3 2. Underlying Data
0 g ‘ :  The SOUSY Svalbard radar is located in
4 9 0 2 4 Adventdalen at 78°N, 16°E and operates
bin (K) automatically 24/7. A particular parameter
determined by the radar is the altitude of
3 EE e the local radar tropopause (hereafter Z7).
x e The system itself, the definition of the radar
5 oF o / 4 tropopause and the algorithm used to deter-
E x e 1 mine it from the radar soundings are all
2 1 7 e i 7 described in detail by Réttger and Hall [2007]
°F . . 1 and Hall et al. [2009, 2011b]. The radar tropo-
Eo E pause [Gage and Green, 1979] is closely related
0 & : : : : : - to the meteorological and cold-point tropo-
0.0 0.5 1.0 1.5 2.0 2.5 3.0

pauses [World Meteorological Organization,
1996] as demonstrated by Hall et al. [2009]

Figure 3. Statistics of stochastic component of tropopause height. (top)  such that we can anticipate that any com-

Probability density function (histogram); (middle) cumulative distribution; . . . .
and (bottom) Q-Q plot (quantiles of distribution of observation versus those pIeX|ty S.Ignature in the radar d.ata to be rep
of a Gaussian distribution having the same mean and standard deviation). resentative for the tropopause in general. One

could be forgiven for assuming that in the

case of a troposphere characterized by a con-
stant lapse rate, the tropospheric thickness is directly related to the surface temperature. However, this proves not
to be the case, and the temperature minimum denoting the top of the troposphere is positioned by the com-
peting processes of tropospheric temperature and stratospheric ozone [Highwood et al,, 2000; Hu et al., 2011]. Thus
any long-term change in tropopause altitude is of particular interest for climate research because it is affected
both by tropospheric warming [e.g., Solomon et al,, 2007; Béque et al., 2010; Feng et al,, 2012] and middle atmo-
sphere cooling [e.g., Roble and Dickinson, 1989; Rishbeth and Clilverd, 1999]. These longer-term changes are
addressed by, for example, Santer et al. [2003]. Furthermore, these effects are particularly complicated at high
latitude where ozone concentration is strongly modulated by formation and breakdown of the polar vortex
[Brasseur and Solomon, 2005; Salby, 1996] and by high-energy particle precipitation [e.g., Highwood et al., 2000;
Zdngel and Hoinka, 2001]. As described by Hall et al. [2009], then, tropopause altitude is determined at a nominal
30 min resolution and the period 2008-2012 inclusive will be examined here. For a variety of reasons, including
poor signal-to-noise ratio, interruption in radar operation due to power outages and occasional system break-
downs, however, the time series must be considered irregularly sampled, and this will be taken into consideration
in the next section.

Gaussian

Originally, in order to monitor temperature indoors and outdoors at the normally unmanned radar site,
surface air temperature has also been recorded since the period 2011. Again, due to occasional breakdowns
and power outages, this nominally 10 s resolution time series must also be considered as irregularly sampled.
Both these surface air temperature (SAT) and tropopause altitude time series were also fully described
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2 F ‘ ‘ ‘ 1 recently by Hall [2013] and subsequently
1.0F 1 examined for similarities over short time
0.8F 1 scales. Following subtraction of time series
5 056 7 7 smoothed by 1T month wide running means
0.4f 4 —the deseasonalization described in
r ] section 1, the residuals deemed to repre-
0.2 7 7 sent stochastic components (and therefore
0'920 o 5 o o With zero mean and no overall trend) are
bin (km) shown in Figure 2. Short straight line seg-
ments indicate missing data: there is no
or ‘ ‘ ‘ 4 interpolation here. As was mentioned by
8F - Hall[2013], the range resolution of 150 m in
[ 7 the tropopause determinations results in a
5 ° a 1 degree of discretization. Furthermore, a
s < degree of annual variability apparently
5 F 4 remains (indicating the deseasonalization
r 1 was not totally successful) and transmitter
ot ‘ ‘ ‘ : problems in November 2011 necessitated a
-20 -10 0 10 20 . .
bin (k) higher altitude lower cutoff for the tropo-
pause detection algorithm. For the SAT
10 ‘ T data, there is also a seasonal variation, but
sL Ty X 1 this is not in the value itself but rather in
< F - ] the nature of the variability, with unstable
*g 6 a . ; * 4 and varying temperatures during the win-
2 s 4 terand more stable conditions in summer.
° 5 , N « , Based on a priori assumptions as to driving
Lo ‘ ‘ 1 mechanisms behind the observables, e.g.,
OO 5 6 10 1o solar forcing at seasonal and solar cycle
Gaussian scales, corresponding time series of noise—

stochastic components—have now been
Figure 4. Statistics of stochastic component of surface air temperature. (top) obtained. So do we have reason to believe
probability density function (histogram); (middle) cumulative distribution; and
(bottom) Q-Q plot (quantiles of distribution of observation versus those of a
Gaussian distribution having the same mean and standard deviation).

that there are complexity signatures in the
data? By performing quantile-quantile (Q-Q)
analyses [Wilk and Gnanadesikan, 1968] it is
possible to check for non-Gaussian distributions: quantiles of the distribution of the noise in the measured
parameter are plotted against those derived from a semiempirical Gaussian distribution exhibiting the same
mean and standard deviation. The investigations for tropopause height and SAT are shown in Figures 3 and 4,
respectively. The probability density functions (PDFs) are shown in Figures 3 (top) and 4 (top), the cumulative
density functions in Figures 3 (middle) and 4 (middle), and the Q-Q plots, including a line with slope unity, in
Figures 3 (bottom) and 4 (bottom). For tropopause height, the altitude resolution of the radar is essentially
inadequate, requiring bin sizes larger than the resolution; with a bin size of 1km, all bins contain data but the
density functions are sparse. Even so, there is a suggestion that the distribution is slightly skewed to the left. This
is borne out by the curved nature of the Q-Q plot (although this too is sparse). See Chambers et al. [1963] for
diagnostics of Q-Q plots. The results are more convincing, however, for the SAT noise; the PDF indicates both
skew and some weight in the tails of the distribution, and the slope decreasing overall to the right indicating a
skewing of the PDF to the left. The left end of the pattern being slightly above the unity slope line and the right
end below the line is indicative of short tails at both ends of the distribution. Qualitatively, at least, it can be
asserted that the noise in both Zr and SAT at 78°N, 16°E are potential candidates for further analysis.

3. Data Analysis

In the preceding description of the data, it was stressed that the time series under consideration should be
treated as irregularly sampled; although long data gaps are relatively few, it is incorrect to assume regularly
spaced data. In performing a spectral analysis, therefore, a Lomb-Scargle periodogram analysis [Press and
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Adventdalen Tropopause height spectral analysis — Lomb—Scargle
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Figure 5. Tropopause height noise analyses. (top left) Time series shown in Figure 2, but now with cosine tapering and bridge detrending.
(top right) Lomb-Scargle periodogram obtained from data shown in Figure 5 (top left). (bottom left) Signal summation conversion (SSC)
analysis. (bottom right) Detrended fluctuation analysis (DFA). In all cases broken vertical lines indicate key time scales. Full explanations are
found in the text as are explanations and interpretations of the parameters in the annotations.

Rybicki, 1989] is more appropriate than a Fourier transform. Furthermore, Fougére [1985] and Eke et al. [2000]
have proposed conditioning of the time series prior to spectral analysis and frequency selection afterward.
Delignieres et al. [2006] describe the steps in detail: conditioning by applying a parabolic window, W(}), is
performed, each value, j, in the series of N points being multiplied by

: 2 S
WO)_1_(W_1> forj=1,2...,N (5)
Finally, bridge detrending is applied using the first and last points in the series, although strictly this should
be superfluous since detrending is implicit in the deseasonalization method. The result of combining addi-
tional frequency selection with the Lomb-Scargle periodogram is somewhat unpredictable and so the entire
spectrum is retained.

Six analyses follow, SA, DFA, and SSC, for each of Zrand SAT. The signal is preconditioned using the parabolic
window (equation (5)) only for SA. In each case as appropriate, the scaling exponents are obtained for all time
scales, and for intraday, day-month, and greater than monthly scales. The results are shown in Figures 5 and
6. Figures 5 (top left) and 6 (top left) show the windowed signal used in the SA, Figures 5 (top right) and 6 (top
right) are the SA, Figures 5 (bottom left) and 6 (bottom left) are the SSC analysis and Figures 5 (bottom right)
and 6 (bottom right) are the DFA(1) analysis. In each case, vertical broken lines indicate 1 day (dotted),

1 month (dash-dotted), and 1 year (dashed) time scales, line-styles being consistent between panels. Where
meaningful, fitted lines and explicit scaling exponents for each subscale and for the entire range of scales are
indicated on the respective plots. For Zz, the spectrum exhibits different scaling characteristics for scales

1 day, day-month and > 1 month. The absence of significant isolated spikes can be interpreted as an indi-
cation that the deseasonalization was satisfactory. The SSC analysis gives similar results although the intraday
portion is sparse and a fit has not been attempted. DFA exhibits linearity over 2 orders of magnitude for
scales < 1 month. For SAT the spectrum reveals isolated spikes at around 25 min and 1 day, but otherwise
scaling from just under 1 month down to the 10 s sampling of the instrument. The SSC analysis exhibits
convincing scaling over days to months, while for DFA scaling appears reliable only at scales shorter than

1 month, similar to the indication from the SA.
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Adventdalen Temperature spectral analysis — Lomb—Scargle
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Figure 6. Surface air temperature analyses. (top left) Time series shown in Figure 2, but now with cosine tapering and bridge detrending.
(top right) Lomb-Scargle periodogram obtained from data shown in Figure 6 (top left). (bottom left) Signal summation conversion (SSC)
analysis. (bottom right) Detrended fluctuation analysis (DFA). In all cases broken vertical lines indicate key time scales. Full explanations are
found in the text as are explanations and interpretations of the parameters in the annotations.

Even before using the relationships given in equation (4), it is evident that there is both agreement and
disagreement between the three methods and the next step is to assess the reliability of the apparent scaling
and to achieve this, the method described by Theiler et al. [1992] is used. For each of the two stochastic
components (of Zr and SAT) 100 surrogate time series are constructed using Theiler's amplitude adjusted
Fourier transform algorithm (AAFT). Each surrogate exhibits the same mean, standard deviation, and Fourier
transform as the observed signal but is otherwise random. The statistics obtained from the original stochastic
components of Zr and SAT are similarly obtained from each of the surrogates. For the DFA of the surrogates
for Zy, for example, the mean uy and standard deviation oy, of the 100 as are found (uy and o are used for
consistency with Theiler et al. [1992]). Then the significance S is defined as

S — 1Q — 4
OH

(6)

where Q is the statistic from the actual data, i.e., 8, a, or Hssc, from Zr or SAT. Thus, although S is dimensionless,
itis essentially in units of “sigmas,” and wherever it exceeds 2 we may assert that the statistic from the data is
significantly different from that of the ensemble of surrogates. Since the AAFT method of generating surro-
gates retains the Fourier transform, we can expect S for the SA to indicate that # is not significantly different
from the null hypothesis. Table 1 shows the comparisons between the scaling exponents from the surrogate
ensembles for SA, DFA, and SSC. The comparison between Zr observation and surrogate for SA is somewhat
surprising since the difference is very significant; this must be attributed to the nature of the spectrum, which
evidently is composed of distinct subranges each with its own scaling. Moreover, Fourier analysis is used in
generation of the surrogates—an approximation due to irregularly spaced data. Without any real physical
basis, dividing the surrogate spectrum into subranges would be subjective, and so the comparison will be
restricted to the entire spectrum. On the other hand, the SAT SA comparison yields the expected result
that the scaling exponents are nearly identical for observation and surrogates with a significance of only
0.053 sigmas. The Z; DFA analysis of surrogates gives uy=0.91 as opposed to 0.93 from the observation;
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Table 1. Comparison of Scaling Results for Observations and Means and Standard Deviations From Ensembles of 100 AAFT Surrogates,
for Each of Zr and SAT, and for Different Analyses

Parameter SA () DFA (a) SSC (Hssc)
Zr

Scaling exponent from observation 0.490 0.929 0.742

Mean scaling exponent from surrogates 0.536 0913 0.739

Standard deviation of scaling exponent from surrogates 0.0064 0.0048 0.11

Significance of scaling exponent from observation (sigmas) 7.32 339 0.03
SAT

Scaling exponent from observation 1.81 1.40 0.929

Mean scaling exponent from surrogates 1.81 1.37 1.013

Standard deviation of scaling exponent from surrogates 0.054 0.0044 0.16

Significance of scaling exponent from observation (sigmas) 0.053 6.9 0.54

the difference is small, but the standard deviation oy is also small such that the significance is 3.4 sigmas.
Similarly, for SAT the significance is 6.9 sigmas. While DFA produces a very “clean” scaling relationship, SSC
does not, such that oy is large, resulting in Hssc from the observation not being significantly different from
that from the surrogate ensemble. This is the case for both Z; and SAT, although for the latter the surrogate
ensemble exhibits x;=1.01 such that the probability of the null hypothesis being true is ~60% [Theiler et al.,
1992]. To summarize, the comparisons with analyses of surrogate ensembles gives us confidence in the DFA
scaling exponents, whereas SSC provides only supporting information and SA is precluded due to the
method of surrogate generation.

Tropopause altitude
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Figure 7. Analysis results displayed schematically. (top) Tropopause altitude (Z7); (bottom) surface air temperature (SAT). The abscissa shows the
generalized Hurst exponent (DFA scaling exponent) (o) and the ordinate shows the SA scaling exponent (). « and # < 1 and > 1 indicate
fractional Gaussian noise and fractional Brownian motion, respectively. Diamonds indicate results from this study (specifically from 78°N, 16°E).
Colored patches show results from other studies (which may be from global data or specific locations, as discussed in the text).
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4, Discussion and Conclusions

For convenience, the results from the three analyses are assembled in Figure 7. As in Figure 1.,the axes of the
figure indicate the SA scaling exponent, 5, and the generalized Hurst exponent or DFA scaling exponent, a,
according to the relations in equation (4). For clarity, the Zr and SAT results are shown in separate plots. Each
plot can be classified thus: values of a > 0.5 indicate persistent processes and values of « < 0.5 indicate
antipersistent processes; values of a or f < 1 indicate fractional Gaussian noise (fGn) and values of a or > 1
indicate fractional Brownian motion (fBm). For the special case of a= 1.5 the process is one of Brownian
motion. The results from the previous section are shown on their respective panels by annotated diamonds:
red, green, and blue for DFA, SA, and SSC, respectively.

For Z; all analyses support the hypothesis that the process is fGn. From DFA, a=0.93, which has high sig-
nificance compared to the surrogate ensemble and is in reasonable agreement with the SA result, a = 0.98, for
day-month time scales. For intraday scales, however, SA indicates f=0.34, which biases the result of using
the entire spectrum but gives o= 0.67. Supported by the unexpected result of comparison with the surrogate
ensemble, it is evident that tropopause altitude variability should be examined separately for different time
scales but is otherwise characterized by persistency. Also indicated in the Figure are results from previous
investigations. Hall [2013] found H=0.86 using SA but without parabolic windowing, assuming regularly
spaced observations and therefore a Fourier spectrum. Varotsos et al. [2009b] investigated zonally averaged
observations at a variety of latitudes, finding H=097. Varotsos et al. [2009b], however, used monthly values as
their starting point and demonstrate a suggestion of zonal dependence with higher H nearer the equator,
and the global average being H=0.9. Given the averaging and time scale differences, the results in this study
are not too dissimilar from those of Varotsos et al. [2009b], both indicative of persistent fractional Gaussian
noise. There is no indication whatsoever of a fractional Brownian motion in the Z; signal.

For SAT, as would be expected, there is no significant difference between SA and surrogate results. Only the
all-scale SSC analysis suggests the process is fGn and with o= 0.93; however, analysis of the surrogates shows
that the confidence that this is significant compared with the null-hypothesis is only 60%. On the other hand,
all other analyses, irrespective of scale, indicate fBm, with the exception of the intraday scales portion of the
DFA, which indicates persistent fBm.with a > 1.5 (the value for Brownian motion) The SA yields a~ 1.4 for all
scales; DFA for day-month scales yields o = 1.38 but for intraday scales a = 1.63. The overall result is not sur-
prising, however, because although a number of similar analyses hitherto have found persistent fGn with H
between ~0.6 and ~0.8 [Bunde and Havlin, 2002; Kirdli and Jdnosi, 2005; Suteanu and Mandea, 2012; Varotsos
etal., 2013], these analyses used long time series at coarser temporal resolution to investigate, e.g., the presence
of long-term memory. Strangely, classification as fGn or fBm, persistent or antipersistent does not seem to be
the norm, so the figures in the aforementioned references must be examined individually, this being the basis
for positioning of the annotation in Figure 7. A notable exception is the recent investigation by Rypdal et al.
[2013] who examine characteristics of SAT from both global and local averages and at scales of months and
longer. Rypdal et al. [2013] report global H~0.75, local and regional H~ 0.65 and with H approaching unity for
locations influenced by ocean. All analysis methods employed by Rypdal et al. [2013] indicate fGn.

Thus, the fundamental difference between the result for SAT presented here is that a short (3 year) time series
is used with sampling interval of only tens, whereas other investigations have examined longer data sets with
much coarser time resolution. As stated earlier, the rationale for this study is to look for similarities (or dif-
ferences) between SAT and Z; for a very specific location, as opposed to climate- and memory-related
motivations. Furthermore, the high latitude implies variation of temperature due to boundary layer inver-
sions, katabatic winds, and generally low absolute values during both summer and winter [e.g., Salby, 1996].
In summer, Svalbard could be considered a location influenced by proximity to the ocean, but extensive sea
ice during winter might change this classification. As for Zz, the irregularly sampled nature of the time series
has already been mentioned; apart from data gaps due to instrumental problems and failure to identify the
tropopause, there are naturally occurring gaps where the tropopause is simply not defined, such as frontal
passages and tropopause folds [Nastrom et al., 1989; May et al., 1991; Alexander et al., 2012]. In fact, isolating
these features, had sufficient events been available, would result in an intermittent time series worthy

of investigation.

On day-month scales, Zr is characterized by fGn, and with a =H ~ 0.9, and thus almost verging on pink noise.
This is a somewhat higher value than the overall findings of Varotsos et al. [2009]; there can be a number of
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reasons for this, including highly local, high-latitude source, but with the short time series, and 30 min res-
olution of the data for this study, such differences are to be expected. Kantelhardt et al. [2006] report similar
findings using different hydrological data types and explain how results from shorter-term data could be
modeled by an autoregressive moving-average [Whittle, 1951]. Furthermore, the very definition of the tro-
popause is different (essentially related to temperature gradient driven small scale dynamics, as opposed to
the World Meteorological Organization [1996] definition directly related to the temperature profile) and the
stochastic component of the radar tropopause may reflect this. There is a lack of similarity with the SAT
signatures—this study indicating fBm and with 1.0 < a < 1.5. This is not surprising since the tropopause
altitude is determined by the stratospheric temperature profile and thus ozone [Vogler et al., 2006, and
references therein]. The effect of the ozone depends both on solar flux and on density, the latter being
modulated by both dynamics and solar radiation and particle precipitation. Furthermore, the results are
supported by, for example, Tuck and Hovde [1999] who report persistency in stratospheric temperature with
H ~ 0.84, but ozone concentration exhibiting H ~ 0.54. On the other hand, vertical wind speed, influenced by
shorter time scale features such as frontal passages and tropopause folds [e.g., Sprenger et al., 2003] exhibits
fGn with H~ 0.25, and therefore antipersistent.

In conclusion, therefore, tropopause altitude noise does not exhibit the same complexity signatures as sur-
face air temperature, explicable by a combination of forcing top-down from the stratosphere in addition to
the temperature structure of the underlying troposphere. Surface air temperature over short time scales
exhibits complex signatures, viz,, fractional Brownian motion, in contrast to fractional Gaussian noise for more
geographically averaged longer time series. Considering that fBm characterizes a process that is nonstationary
and with time-varying variance, it is perhaps not surprising that observations from a single location may appear as
fBm, apart from being due to the temporal characteristics of the time series itself. This can particularly be the case
for a very high latitude location in which insolation is absent in winter giving rise to periods of low stable tem-
peratures with little variance interspersed with disturbances from violent depressions (“polar low"s), and unstable
situations, especially during spring and autumn when rapidly changing insolation disturbs the stability, inducing
katabatic winds and breakdown of nighttime inversions. Averaging, even over several relatively local time series
(but especially globally) will tend to even out variances over intraannual time scales and mask any
nonstationarities. Furthermore, perusal of some of the spectral analyses shown by Rypdal et al. [2013] reveals that
over shorter time scales the spectrum tends to steepen with the scaling exponent then exceeding unity. Recall
that the longer time scales are of interest for climate dynamics, whereas shorter time scales are in focus in this
study, such that the characterizations of processes underlying tropopause altitude and surface air temperature do
not contradict those of other studies, but rather add additional information related to scale and location.
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