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Abstract: The edit distance is the most famous distance to compute the 
similarity between two strings of characters. The main drawback of the edit 
distance is that it is based on local procedures which reflect only a local view of 
similarity. To remedy this problem we presented in a previous work the 
extended edit distance, which adds a global view of similarity between two 
strings. However, the extended edit distance includes a parameter whose 
computation requires a long training time. In this paper we present a new 
extension of the edit distance which is parameter-free. We compare the 
performance of the new extension to that of the extended edit distance and we 
show how they both perform very similarly.  
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1   Introduction 

Let U be a universe of objects. The similarity search problem is the process of 
finding and retrieving the objects in U that are similar to a given object q; the query. 
This problem comes in two flavors; exact search, i.e. a query q is given, and the 
algorithm retrieves the data objects in U that exactly match q, and the other is 
approximate search which is motivated by the fact that many exact similarity search 
methods are time-consuming, that in some cases the response time becomes 
unacceptable. Besides, in many applications, the overhead time necessary to achieve 
exact search is not worth the importance of the results obtained.  

There are several types of queries, the most famous of which is range queries, 
which can be defined as: given a query q and a radius r, which represents a threshold, 
tolerance, or selectivity. The range query problem can be specified as retrieving all 
the data objects in U that are within a distance r of q. This can be represented as:  
 

{ }r)u,q(d;Uu)r,q(Range ≤∈=                                     (1) 
 

Another very important type of queries is the k-nearest neighbor. In this kind of 
queries we look for the most similar, i.e. the closest, object in the database to a given 
query. In the general case we look for the k most similar objects. Unlike the case with 



 

 

range queries, the response set here is never empty. Moreover, its size is defined 
beforehand by the user.  Formally, this problem can be defined as:  
 

{ })q,v(d)q,u(d:XUv,XukX,UX)q(kNN ≤−∈∈∀∧=⊆=           (2) 
 
There are still other types of queries such as the k- reverse nearest neighbor and 

similarity join.  
At the heart of the similarity search problem is the question of how this similarity 

can be depicted. One of the models that have been presented to tackle this problem is 
the metric model, which is based on the distance metric.  

In this paper we present a new distance metric applied to sequential data. This new 
distance is an extension of the well-known edit distance. The particularity of the new 
distance compared with other extensions of the edit distance that we presented before 
is that it does not include any parameters, whose computing can be very time 
consuming, thus the new distance can be applied immediately.   

The rest of the paper is organized as follows; the necessary background is presented 
in Section 2, and the new distance is presented in Section 3 with an analysis of its 
complexity in Section 4, we validate the new distance in Section 5, and related 
remarks are presented in Section 6. We conclude in Section 7.    

2   Background 

Let U be a collection of objects. A function d 
{ }0UU:d U+→× R  is called a distance metric if the following holds:   

      (p1) ( ) 0≥y,xd                                    (non-negativity)                                                   

      (p2) ( ) ( )x,ydy,xd =                                     (symmetry)                                                   

      (p3) ( ) 0=⇔= y,xdyx                                                                        (identity)                                                  

      (p4) ( ) ( ) ( )z,ydy,xdz,xd +≤                                               (triangle inequality) 

Uz,y,x ∈∀ . We call )d,U( a metric space.                                                              □ 
 

Of the distance metric properties, the triangle inequality is the key property for 
pruning the search space when processing queries [10].  

Search in metric spaces has many advantages, the most famous of which is that a 
single indexing structure can be applied to several kinds of queries and data types that 
are so different in nature.  This is mainly important in establishing unifying models 
for the search problem that are independent of the data type. This makes metric spaces 
a solid structure that is able to deal with several data types [12].  

In metric spaces the only operation that can be performed on data objects is 
computing the distance between any two objects, which enables us to determine the 
relative location of the data objects to one another. This is different from the case of 



 

 

vector spaces; a special case of metric spaces, where data objects have k  real-valued 
coordinates which makes it possible to perform operations that can not be performed 
in general metric spaces, like addition or subtraction, for instance. Vectors have 
certain geometric properties that can be exploited to construct indexing structures, but 
these properties can not be extended to general metric spaces [1].  

A string is an ordered set of an alphabet Σ . Strings appear in a variety of domains 
in computer science and bioinformatics. The main distance used to compare two 
strings is the edit distance [11], also called the Levenshtein distance [3], which is 
defined as the minimum number of delete, insert, and substitute operations needed to 
transform string S into string R.     

Formally, the edit distance is defined as follows: Let Σ be a finite alphabet, and let 
Σ* be the set of strings on Σ. Given two strings ns....ssS 21=  and mr....rrR 21= defined 
on Σ*. An elementary edit operation is defined as a pair: ( ) ( )λλ ,b,a ≠ , where a and 
b  are strings of lengths 0 and 1, respectively. The elementary edit operation is usually 
denoted ba →  and the three elementary edit operations are λ→a (deletion) 

b→λ (insertion) and ba → (substitution). Those three operations can be weighted 
by a weighting function γ which assigns a nonnegative value to each of these 
operations. This function can be extended to edit transformations mT...TTT 21= .  

The edit distance between S  and R can then be defined as:  
 

ED (S, R) = {γ (T)| T is an edit transformation of S into R }                  (3) 
 

ED is the main distance measure used to compare two strings and it is widely used 
in many applications. Fig. 1 shows the edit distance between the two strings 

{ }N,A,W,R,A,MS =1 and { }D,A,U,FS =2  
ED has a few drawbacks; the first is that it is a measure of local similarities in 

which matches between substrings are highly dependent on their positions in the 
strings. In fact, the edit distance is based on local procedures both in the way it is 
defined and also in the algorithms used to compute it.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1.  The edit distance between two strings.   

 2  3  4 3  3  A   5  4

 2  2  4 3  2  U   6  5

 2  1  4 3  1  F   6  5

 2  1  4 3  0     6  5

 3  4  4 3  4  D   5  5

A M WR    N A



 

 

Another drawback is that ED does not consider the length of the two strings.  
Several modifications have been proposed to improve ED. One of them is the 

extended edit distance [7] [8], which adds a global level of similarity to that of ED.  
The Extended Edit Distance: The extended edit distance (EED) is defined as 
follows:  
Let Σ be a finite alphabet, and let Σ* be the set of strings on Σ. Let ( )S

af , ( )R
af be the 

frequency of the character a in S and R, respectively, where S, R are two strings in  Σ*.  
EED is defined as; 
 

( ) ( ) ( ) ( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−++= ∑

∈

R
a

S
a

a

f,fmin2RSR,SEDR,SEED
Σ

λ                    (4) 

Where S , T are the lengths of the two strings S, R respectively, and where 

0≥λ ( +∈Rλ ). We call λ  the co-occurrence frequency factor.  
EED is based on the principle that the ED distance does not take into account 

whether the change operation used a character that is more “familiar” to the two 
strings or not, because ED considers a local level of similarity only, while EED adds 
to this local level of similarity a global one, which makes EED more intuitive as we 
showed in [7] [8].  

We also presented other modifications of the edit distance based on the frequencies 
of n-grams [5], [6], [9] but they all include parameters whose computing can be very 
time consuming. In this paper we try to introduce a new extension of the edit distance 
which is parameter-free, thus can be applied directly.  

3   The Parameter-Free Extended Edit Distance 

3.1   The Number of Discrete Characters   

Given two strings S ,T . The number of distinct characters NDC is defined as: 
 
                                         )}({)}({),( TchSchTSNDC ∪=                                        (5) 
 
 where )(ch is the set of characters that a string contains.  

The significance of NDC  is related to the change operation; one of the three atomic 
operations that the edit distance is based on. Instead of predefining a cost function for 
all the change operations between any two characters in the alphabet, NDC can make 
the distance, by itself, detect if the change operations use characters that are familiar 
or unfamiliar to the two strings concerned. 



 

 

3.2   The Proposed Distance   

The objective of our work is to introduce a new distance that adds new features to the 
edit distance to make it detect global similarity,  all this is done by keeping the new 
distance metric, which is the same objective as that of EED, but unlike EED, our new 
distance is parameter-free, which makes it more generic. 
 
Definition:  The Parameter-Free Extended Edit Distance (PFEED) is defined as: 
 

              ( ) ( )
( ) ( )( )

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−+=
∑

TS

f,fmin2
1T,SEDT,SPFEED

T
i

S
i

i
        (6) 

Where S , T are the lengths of the two strings S,T, respectively. 

3.3   Theorem  

PFEED is a metric distance                                                                                            □ 
 
3. 3. 1. Proof :  Before we prove the theorem, we can easily notice that:   
 

                                T,S0
TS

)f,f(min2
1

)T(
i

)S(
i

i ∀≥
⎟
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⎛

+
−
∑

                                (7) 

 
In order to prove the theorem we have to prove that: 
 
i) TSTSPFEED =⇔= 0),(  
              i. a) TSTSPFEED =⇒= 0),(  
-Proof:  
 
If 0),( =TSPFEED , and taking into account (7), we get the following relations: 
 

                             0
TS

)f,f(min2
1
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i
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i

i =
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                                                  (8) 

 
                                          0),( =TSED                                                                    (9) 
 
From (9), and since ED is metric we get: S=T .  



 

 

               i. b) 0)T,S(PFEEDTS =⇒=  (obvious). 
 
From i. a) and i. b) we get TSTSPFEED =⇔= 0),(   
 
ii) ),(),( STPFEEDTSPFEED =  (obvious). 
iii) ),(),(),( TRPEEEDRSPFEEDTSPFEED +≤  
 
-Proof: RTS ,,∀ , we have: 
 
                                             ),(),(),( TREDRSEDTSED +≤                                (10) 

                                                 
(Valid since ED is metric).                                             
 
 
We also have: 
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 (See the appendix for a proof of (11)) 
 
Adding (10), (11) side to side we get: ),(),(),( TRPFEEDRSPFEEDTSPFEED +≤ . 
 
From i), ii), and iii) we conclude that the theorem is valid.                                                

4   Complexity Analysis 

The time complexity of PFEED is )( nmO × , where m is the length of the first string 

and n is the length of the second string, or )( 2nO if the two strings are of the same 
lengths. This is the same complexity as that of ED and EED. 

5   Experiments 

The objective of our experiments is to compare PFEED with EED and show that they 
have similar performance but one, PFEED, can be applied directly while the other 
needs a long training time.  

A time series TS is an ordered collection of observations at different time points. 
Time series data mining handles several tasks such as classification, clustering, 
similarity search, motif discovery, anomaly detection, and others. Time series are 



 

 

high-dimensional data so they are usually processed by using representation methods 
that are used to extract features from these data and project them on lower-
dimensional spaces.    

The Symbolic Aggregate approXimation method (SAX) [4] is one of the most 
important representation methods of time series. SAX is applied as follows: 
 
1-The time series are normalized.  
 
2-The dimensionality of the time series is reduced using a dimensionality reduction 

technique called piecewise aggregate approximation (PAA). 
 
3-The PAA representation of the time series is discretized by determining the number 
and location of the breakpoints. Their locations are determined using Gaussian lookup 
tables. The interval between two successive breakpoints is assigned to a symbol of the 
alphabet, and each segment of PAA that lies within that interval is discretized by that 
symbol. 

 
The last step of SAX is using the following similarity measure: 

 

                        ( ) ( )( )∑
=

≡
N

i
ii r̂,ŝdist

N
nR̂,ŜMINDIST

1

2                          (12)          

 
Where n is the length of the original time series, N is the length of the strings. 

Ŝ and R̂ are the symbolic representations of the two time series S and R , 
respectively, and where the function )(dist  is implemented by using the appropriate 
lookup table.  After reaching this last step, SAX converts the resulting strings into 
numeric values so that the MINDIST can be calculated.  

Since EED is applied to strings of characters, in [7] and [8] EED was tested on 
symbolically represented time series using SAX. In this paper we proceed in the same 
manner and compare PFEED on symbolically represented time series using SAX as a 
representation method.  

EED has two main drawbacks; the first is that the parameter λ does not have any 
semantics, so its choice is completely heuristic. Besides in all the applications in 
which EED should be applied directly, i.e. there is no training phase, it becomes 
difficult to choose and justify the numeric value assigned to the parameter λ to 
calculate EED. The second drawback is that for each dataset we have to train the 
training datasets for 5 times at least for parameterλ  ( 1,...,0=λ step=0.25, and 
sometimes we have to go beyond 1=λ ), which takes a long time.  

We conducted the experiments on PFEED using the same datasets on which EED 
was tested. These datasets are available at UCR [2]. We used the same protocol used 
with EED; we used SAX to get a symbolic representation of the time series, and then 
we replaced MINDIST with PFEED (or EED, when testing EED). We also used the 
same compression ratio that was used to test EED (i.e. 1:4) and the same range of 
alphabet size [3,10]. The experiments are a time series classification task based on the 

 



 

 

Table 1: A comparison of the classification error between PFEED and EED on different 
datasets. 
 

         (*: α is the alphabet size) 
 
first nearest-neighbor (1-NN) rule using leaving-one-out cross validation. This means 
that every time series is compared to the other time series in the dataset. If the 1-NN 
does not belong to the same class, the error counter is incremented by 1.  

We varied the alphabet size on the training set to get the optimal value of the 
alphabet size; i.e. the value that minimizes the error rate, and then we utilized this 
optimal value of the alphabet size on the testing sets. We obtained the results shown 
in Table. 1.  

We see from Table 1 that the performance of PFEED is very similar to that of 
EED, yet PFEED can be applied directly as it requires no  training to get the value of 
λ , which is not the case with EED.    

6   Remarks 

1-In the experiments we conducted we had to use time series of equal lengths for 
comparison reasons only, since SAX can be applied only to strings of equal lengths. 
But PFEED and EED can both be applied to strings of different lengths 
 
2- We did not conduct experiments for alphabet size=2 because SAX is not applicable 
in this case, but PFEED and EED.  

Distance  Dataset 
PFEED  EED 

Synthetic Control 0.030 
α* =7 

0.037 
α =7, λ=0 

Gun-Point 
 

0.067 
α =4 

0.060 
α =4, λ =0.25 

CBF 0.010 
α =6 

0.026 
α =3, λ =0.27 

Face (all) 0.323 
α =5 

0.324 
α =7=, λ =0 

OSULeaf 0.310 
α =5 

0.293 
α =5, λ =0.75 

50words 0.270 
α =7 

0.266 
α =7, λ =0 

Adiac 0.650 
α =9 

0.642 
α =9, λ =0.5 

Yoga 0.155 
α =8 

0.155 
α =7, λ =0 



 

 

7   Conclusion  

In this paper we presented a new extension of the edit distance; the parameter-free 
extended edit distance (PFEED) and we compared it to another extension; the 
extended edit distance (EED). The experiments we conducted show that PFEED gives 
similar results on a classification task, yet the new distance does not include any 
parameters, thus can be applied directly, which is not the case with EED.    
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Appendix 
 
We present a brief proof of the theorem presented in Section 3.3 



 

 

Lemma 
 
Let Σ be a finite alphabet, )S(

af be the frequency of the character a in S, 
where *S Σ∈ . Then 321 ,, SSS∀  we have: 
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i  (A1)     

                                                                                          
                                                                                                                                 
For all n, where n is the number of characters used to represent the strings 
 
Proof 
 
i) 1=n , this is a trivial case, where the strings are represented with one character .  
 
Given three strings 321 ,, SSS  represented by the same character a  . 

Let )()()( 321 ,, S
a

S
a

S
a fff be the frequency of a  in 321 ,, SSS , respectively. We have six 

configurations in this case: 
 
1) )()()( 321 S

a
S

a
S

a fff ≤≤   

2) )()()( 231 S
a

S
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S
a fff ≤≤  

3) )()()( 312 S
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S
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4) )()()( 132 S
a
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S
a fff ≤≤  

5) )()()( 213 S
a

S
a

S
a fff ≤≤  

6) )()()( 123 S
a

S
a

S
a fff ≤≤  

 
We will prove that relation (A1) holds in these six configurations. 
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In this case we have:  
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By substituting the above values in (A1) we get:  
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If we substitute )( 2S

af , )( 1S
af , )( 2S

af with )( 1S
af , )( 3S

af , )( 3S
af , respectively in the 

denominators of the last relation it still holds according to the stipulation of this 
configuration. We get: 
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This is valid according to the stipulation of this configuration. 
 
 
The proofs of cases 2), 3), 4), 5) and 6) are similar to that of case 1). 
 
 
From 1)-6) we conclude that the lemma is valid for 1=n  
 
ii)  1n >  
 
This is a generalization of the case where 1=n .  
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holds, according to the first case i) 
 



 

 

By summing over n  we get 
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