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Abstract

Intratumor heterogeneity caused by genetic, phenotypic or functional differences

between cancer cell subpopulations is a considerable clinical challenge.

Understanding subpopulation dynamics is therefore central for both optimization of

existing therapy and for development of new treatment. The aim of this study was to

isolate subpopulations from a primary tumor and by comparing molecular

characteristics of these subpopulations, find explanations to their differing

tumorigenicity. Cell subpopulations from two patient derived in vivo models of

primary breast cancer, ER+ and ER-, were identified. EpCAM+ cells from the ER+
model gave rise to tumors independently of stroma cell support. The tumorigenic

fraction was further divided based on SSEA-4 and CD24 expression. Both markers

were expressed in ER+ breast cancer biopsies. FAC-sorted cells based on EpCAM,

SSEA-4 and CD24 expression were subsequently tested for differences in

functionality by in vivo tumorigenicity assay. Three out of four subpopulations of

cells were tumorigenic and showed variable ability to recapitulate the marker

expression of the original tumor. Whole genome expression analysis of the sorted

populations disclosed high similarity in the transcriptional profiles between the

tumorigenic populations. Comparing the non-tumorigenic vs the tumorigenic

populations, 44 transcripts were, however, significantly differentially expressed.

A subset of these, 26 identified and named genes, highly expressed in the
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non-tumorigenic population, predicted longer overall survival (N5737, p,0.0001)

and distant metastasis free survival (DMFS) (N51379, p,0.0001) when performing

Kaplan-Meier survival analysis using the GOBO online database. The 26 gene set

correlated with longer DMFS in multiple breast cancer subgroups. Copy number

profiling revealed no aberrations that could explain the observed differences in

tumorigenicity. This study emphasizes the functional variability among cell

populations that are otherwise genomically similar, and that the risk of breast

cancer recurrence can only be eliminated if the tumorigenic abilities in multiple

cancer cell subpopulations are inhibited.

Introduction

Cancer cells evading the administered treatment represent the major challenge in

oncology. To understand how some cancer cells are able to escape and cause

recurrence, researchers have compared primary tumors to small ecosystems where

the extracellular components determine the physical environment, and all cell

populations, both normal and neoplastic, represent the diversity of the species

within the system [1, 2]. Large intratumoral cellular diversity ensures that at least

one tumor cell subpopulation is able to tolerate the altered conditions, during

treatment, or relocation to a metastatic site [2, 3]. Our challenge is to understand

why heterogeneity is sustained in the developing tumor, and how to best eradicate

dynamically changing cancer cell populations before they develop strategies to

withstand attacks from various treatment. Details of cancer cell population

dynamics is obviously not possible to study in tissue derived directly from

patients. The best option is therefore, clinically representative patient derived

xenograft models (PDX), that has not been subjected to in vitro culture

differentiation or selection [4]. Such models provide stable access to primary

tumor material enabling repeated experiments on the same primary tumor, and

thus broad characterization of tumor cell subpopulations. PDX stably recapitulate

the molecular composition and the heterogeneity of the mother tumor [4, 5, 6].

The luminal-like PDX used in this study is unique in that it recapitulates estrogen

dependency for growth [7, 8].

Although intratumor heterogeneity is well established, its origin has been

heavily debated. The clonal evolution model was counteracted by the theory of

‘‘cancer stem cells’’ or tumor initiating cells, TICs. Several studies in cell lines [9]

and animal models [10, 11] have indeed indicated the existence of tumor cell

subpopulations with enhanced tumorigenic capacity, compared to the ‘‘bulk’’

tumor cells. Regardless of the origin of TIC populations, identification and

functional characterization of both TICs and the seemingly less tumorigenic

subpopulations are essential for development of more efficient anti-cancer

therapies. It is important to consider that within the ecosystem of a tumor, the

TICs and the apparently less tumorigenic cancer cell populations might in fact be
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equally dependent on each other [12]. Less tumorigenic populations might

constitute a reservoir for development of treatment resistance. Clarification of the

reciprocal relationships between cell populations within breast tumors, and the

dynamics of their differentiation, is therefore needed. The aim of this study was to

find phenotypically different subpopulations within a primary tumor that could

initiate tumor growth independently of each other, and by comparing molecular

characteristics of these subpopulations, find explanations to their diverging

capacity. Another objective was to acquire detailed knowledge on functional

differences, cell surface marker expression, and molecular portraits of tumorigenic

subpopulations within a primary breast cancer model, to open the possibility for

future, controlled studies of cancer cell population dynamics and cellular plasticity

in response to changing conditions. In the present manuscript, subpopulations

from two uniquely well characterized PDX models [7, 8, 13, 14, 15, 16] were

therefore defined, and their cellular surface marker composition was elucidated.

To prospectively characterize the intratumoral heterogeneity; flow cytometry was

combined with in vivo tumorigenicity assay and immunohistochemistry (IHC). In

addition, four subpopulations from the luminal like ER+ PDX model were

subjected to molecular comparisons using whole genome expression profiling and

SNP array analysis of genomic aberrations.

Materials and Methods

Ethic statement

The MAS98.12 and MAS98.06 tumor models were established by implantation of

biopsy tissues from primary mammary carcinomas as previously described

(Approved by the Norwegian Regional Committee for Medical Research Ethics,

Health region II (reference number 2.2007.2155) [7, 16]. Informed written

consent was obtained from all patients.

All procedures and experiments involving animals were approved by the

National Animal Research Authority (http://www.fdu.no/), and were conducted

according to the regulations of the Federation of European Laboratory Animal

Science Association (FELASA). All surgery was performed under sevofluran

anaesthesia, and all efforts were made to minimize suffering.

Patient derived breast cancer xenografts models (PDX)

Both the primary carcinomas and the xenograft models have been characterized

using gene expression profiling. These analyses demonstrated that the primary

carcinomas could be classified as luminal-like and basal-like subtypes of breast

cancer, and that these molecular subtypes were retained in the MAS98.06 (ER+,

luminal-like) and MAS98.12 (ER-, basal-like) xenografts. Relevant characteristics

of the models are presented in [16]. Both models are now routinely serially

transplanted without enzymatic digestion, as 1-3mm3 pieces in nude (athymic)

mice. Notably, to optimize the conditions for tumorigenicity [17] the in vivo
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tumorigenicity assays using dissociated tumor cells in suspension were performed

using NOD/SCID interleukin-2 receptor gamma chain null (Il2rg-/-) (NSG) mice.

Mice were kept under pathogen-free conditions, at constant temperature

(21.5¡0.5 C̊) and humidity (55¡5%), 20 air changes/hr and a 12 hr light/dark

cycle. Distilled tap water was given ad libitum, supplemented with 17-b-estradiol

at a concentration of 4 mg/l. All mice used in the experiment were locally bred at

the animal facility of our institute.

Collection of primary tumor material

The five primary breast cancer samples analysed in this study were collected as

part of a study where patients were referred for surgical treatment of breast cancer

to several different hospitals in the Oslo region. The study was approved by the

Norwegian Regional Committee for Medical Research Ethics, Health region II

(reference number S-07278a). All patients have given written consent for the use

of material for research purposes.

Dissociation of tumors to single cell suspension for FACS.

Tumors, routinely implanted as 1–2 mm3 pieces, bilaterally in mammary fat pads

of female athymic nude mice (Athymic Nude-Foxn1nu; weight, 23–25 g; age, 12–

13 weeks), were harvested when largest tumor diameter reached 10 mm. Tumors

were then manually minced and incubated in Collagenase III solution

(Collagenase III, Worthington, Lakewood Township, USA (900U/ml), dissolved

in DMEM/F12 with 0,5% human serum albumin, 2% Hepes, Pencillin and

Streptamycin), for 3 hours at 37 C̊ on an orbital shaker. The digested tumor cells

were washed twice in DMEM/F12 medium following a quick spin after the second

wash, to precipitate and separate the organoid fraction from the single cell

suspension. Following an additional spinning of the single cell suspension, the

single cells were either frozen in 90% FCS with 10% DMSO or directly re-

suspended in flow blocking buffer for subsequent staining with antibodies and

further flow analysis or FACS.

Fluorescence-activated cell sorting and Flow analysis

Single cell suspensions were diluted in cold staining buffer (PBS containing 0.5%

FCS and 3% human immune globulin (Gammaguard) (N.V Baxter S.A,

Belgium)) and stained with fluorescently-labelled antibodies, diluted according to

the manufacturer’s recommendation. Following 30 min incubation at 4 C̊, the

stained cells were washed once with PBS, then re-suspended in PBS with 2% FCS

and further analysed by LSRII flow cytometer (Becton Dickinson) using BD

FACSDivaTM software. The antibody- stained single cell suspensions, sorted for

further re-injection or DNA/RNA extraction were, after the washing step, re-

suspended in DMEM/F12 with 0.5% human serum albumin, 2% Hepes, Penicillin

and Streptomycin. The cell populations were sorted by FACS DIVA flow

cytometer (Becton Dickinson), equipped with a 488nm Argon laser (Coherent)
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and 633nm HeNe laser (Spectra Physics), distributing cells from each population

into a separate tube containing DMEM/F12 with 0.5% human serum albumin,

2% Hepes, Penicillin and Streptomycin. The single cell suspensions were always

stained with 1 mg/ml propidium iodide (PI) (Sigma) prior to flow analysis or

sorting to exclude the dead cells from the analysis. Fluorescently-conjugated IgG

isotype controls (BD Biosciences, Franklin Lakes, USA) and/or unstained controls

were used to set the gates. A minimum of 10,000 events from the viable cell

population were recorded for each sample. FlowJo 7.6 software was used to

analyse the data. Sorted populations were defined as indicated on figures.

Antibodies

The following antibodies were used for FACS and flow analysis of human tumor

cells; anti-CD24-FITC (clone ML5), anti-CD15 (also known as SSEA-1clone

W6D3), anti-CD45-FITC (clone HI30), anti-EpCAM-APC (clone 9C4), were all

from Biolegend, San Diego, US. Anti-SSEA-4-PE (clone MC813-70), anti-H2kD-

FITC (clone SF1-1.1), anti-CD325-PE (also known as N-cadherin clone 8C11),

anti-CD44-PerCP-Cy5.5 (clone G-44-26, also known as G26), anti-CD29

(integrin b1, clone 18/CD29), anti-CD184-PE (clone 12G5), anti-CD49B-PE

(clone 12F1), anti-CD31-PE (clone WM59), anti-CD166-PE (clone 3A6), anti

CD271-PE (also known as p75, clone C40-1457), anti-anti-NG2-FITC (also

known as CSPG4, clone 9.2.27), anti-CD90-PE (clone 5E10), anti-CD-34-PE

(clone 581), anti-CD117-APC (also known as c-Kit, clone YB5.B8), anti-CD142-

PE (clone HTF1) and Annexin V-PE, were all from BD Biosciences, New Jersey,

US. Anti-CDV66-PE (clone SF10) and anti-Tra-1-85-PE were both from R&D

Systems, Oxon, UK. Anti-CD133/2-PE (clone 293-C3) was from Milteny Biotech,

Lund, Sweden.

For immunohistochemistry the following antibodies were used; anti-S100A4

(clone 20.1) [18], anti-ALDH1A1, rabbit polyclonal (cat no ab51028), Abcam,

Cambridge, UK, anti-CK19 (clone A-53-B/A2), Abcam, anti-CK-14 (clone

LL002), Novacostra Labs. Ltd., Newcastle Upon Tyne, UK, anti-CD49f (clone

GoH3), BD Biosciences, anti-Ki-67 (clone Ki-67), anti CD44 (clone DF1485) and

anti-EpCAM (clone Moc-31), DAKO, Copenhagen, Denmark,

Immunohistochemistry

Immunohistochemistry was performed using the Dako EnVisionTM + System,

Peroxidase (DAB) (K4011, Dako, Glostrup, DenmarK) and Dakoautostainer, or

VECTOR M.O.M.TM immunodetection Kit (PK-2200, Vector Laboratories).

Sections were deparaffinized and epitopes unmasked using PT-Link (Dako) and

EnVision Flex target retrieval solution, high pH or low pH, and then treated with

0.03% hydrogen peroxide (H2O2) for 5 minutes to block endogenous peroxidase.

After incubation with rabbit polyclonal antibody for 30 minutes at room

temperature, the sections were incubated with peroxidase labelled polymer

conjugated to goat anti-rabbit for 30 minutes. Tissue was stained for 10 minutes
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with 393-diaminobenzidine tetrahydrochloride (DAB) and then counterstained

with haematoxylin, dehydrated, and mounted in Diatex. Negative controls

included substitution of the polyclonal primary antibody with antibody diluent.

The specimens were given a sequential incubation with mouse Ig blocking

reagent (60 minutes) and working solution of diluent (5 minutes). Excess

working solution of diluent was blotted from the slides before incubation with

mouse monoclonal antibodies for 30 minutes. The sections were then incubated

with biotinylated anti-mouse IgG for 10 minutes and ABC reagents for 5 minutes.

Tissue was stained for 10 minutes with DAB and then counterstained with

haematoxylin, dehydrated, and mounted in Diatex. Negative controls included

substitution of the monoclonal antibody with mouse myeloma protein of the

same subclass and concentration as the monoclonal antibody.

In vivo tumorigenicity assay

EpCAM positive cells isolated by FACS were pelleted by centrifugation,

resuspended in 100 ml of PBS and re-counted. Non-viable cells were detected with

tryphan blue staining and excluded from the calculations. To test the stringency of

the trypan blue staining, aliquots of the subpopulations were subjected to live

(calcein AM) and dead dye (propidium iodide), staining and inspected for

differences in cell viability using a fluorescent microscope. In addition, Annexin V

flow cytometry was performed on the EpCAM positive population. Only the outer

perimeter of each population was isolated by FACS, ensuring maximum difference

in marker expression levels. The purity of the subpopulations was tested by

reanalyzing the sorted fractions by flow cytometry. Each fraction, dissolved in

100 ml PBS, containing 40.000 cells of 98% purity, was injected in the right

mammary fat pad of NSG mice. Tumor diameter was measured twice a week, and

the experiment was terminated when the diameter reached 12 mm.

Isolation of RNA and cDNA synthesis for qPCR

All RNA extractions were performed using Trizol Reagent manufacturer’s

instructions (Invitrogen Life Science, Carlsbad, USA). RNA concentration was

routinely assessed on the NanoDrop 1000 instrument (Thermo Fisher Scientific,

Waltham, USA). Generally 0.08–1 mg of RNA was reverse transcribed using the

qScript cDNA synthesis kit (Quanta BioSciences Inc.) in a volume of 20 ml and

then diluted (in dH2O) to 5–10 mg/ml.

Gene expression analysis

Four subpopulations from the luminal MAS9806 xenograft were sorted by FACS

based on the presence of EpCAM, SSEA-4 and CD24 cell surface markers on the

epithelial MAS9806 cells. Total RNA was isolated from four biological replicates

of each population (totally 16 samples). 50–100 ng of total RNA was amplified

and labeled with cy3-CTP following Agilent Low Input Quick Amplification

Labeling Kit protocol for One-Color Microarray-Based Gene Expression Analysis.
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Hybridization was performed according to the manufacturer’s protocol (Agilent

One-Color Microarray-Based Gene Expression Analysis v6.0) using 1650 ng cy3-

labeled cRNA per sample and hybridized onto Whole Human Genome Oligo

Microarrays (4x44K, G4112F).

The microarrays were scanned using Agilent Technologies Microarray Scanner

(G2505C). Data were extracted from the scanned images using Feature Extraction

Software (Agilent Technologies), version 10.7 and protocol GE1-107-Sep09 for

mRNA, using default settings and FULL text output. One sample from the double

positive cell fraction was removed from the further analysis due to poor data

quality. Raw data were uploaded to Gene expression omnibus (GEO) accession

number GSE48384.

Data analysis and statistics

Microarray expression data were filtered for spot quality and quantile normalized

using GeneSpring GX Software (Agilent). A final dataset was generated by

additionally averaging the signal intensity of multiple unique probes for each

gene. This set included data for 24210 unique genes on 15 microarrays from the

four cell subpopulations. Qlucore Omics Explorer 2.3 software was used to

compare gene expression profiles between different cell subpopulations. A student

t-test was performed to identify genes significantly differentially expressed

between the non-tumorigenic dbl.high subpopulation and the three tumorigenic

subpopulations. Only genes that contributed the most to the variation across the

dataset were included in the analysis. Filtering genes by variance (v50.2 for t-test)

excluded genes having variance lower than v compared to the gene having the

largest variance, from the analysis. The calculated P-values were adjusted for

multiple testing by applying a False Discovery Rate adjustment (FDR50.2). Gene

expression-based Outcome for Breast cancer Online (GOBO) tool was used for

prognostic validation of sets of genes in a pooled breast cancer data set comprising

1881-samples [19]. Association with outcome for the 26 gene set was investigated

by Kaplan-Meier analysis using overall survival and distant metastasis-free

survival as endpoint and 10-years censoring.

Validation of microarray data by RT-qPCR:

Real-time quantitative PCR reactions were performed on the iCycler instrument

from BioRad (Hercules, CA). All reactions were run in parallel, and all samples

were in 25 ml volume. Each primer mix contained 200 nM FAM-labeled probe,

300 nM of each primer and 16 Perfecta qPCR Supermix (Quanta BioSciences

Inc, Gaithersburg, MD). Expression of YARS, a t-RNA synthetase, was used for

sample validation and normalization of expression. The reference genes (YARS

and TBP) had been tested in a panel of cell lines and found to have equal

expression per ng of cDNA. All primers have been validated using appropriate

controls, and negative and positive controls for all targets were always included in

the PCR runs. Primers were designed using the probe finder software available

Intratumoral Heterogeneity in Luminal-Like Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0113278 November 24, 2014 7 / 22



online at the Universal ProbeLibrary assay design Center

(http://www.roche-applied-science.com/sis/rtpcr/upl/index.jsp), and all probes

are from the UniversalProbe Library collection (both Roche Applied Science).

Analysis of genomic copy number alterations

To compare genome wide copy number aberration patterns and degree of

heterogeneity between and within the four subpopulations, the luminal MAS9806

xenograft was sorted by FACS based on the presence of EpCAM, SSEA4 and CD24

cell surface markers on the epithelial cells. Genomic DNA was isolated using

Quiagen kit according to the manufacturer’s protocol, and subjected to Illumina

HumanOmniExpressExome v1.2 BeadChips (Performed by Aros Applied

Biotechnology A/S, Denmark). aData were analysed using GenomeStudio 2011.1

Software, and by R version 3.0.2 (2013-09-25), using the ‘‘DNAcopy package’’ for

segmentation. The standard Illumina reference file (HumanOmniExpressExome-

8v1-2_A.egt) was used to identify aberrations in relation to a normal genome. To

search for aberrations specific for each subpopulation, the four samples were also

compared pairvise. For each possible pairing of the four samples (6), a new

segmentation was applied in order to more easily see how much the samples

differed from each other (data not shown). Raw data were uploaded to Gene

Expression Omnibus (GEO) accession number GSE56103.

Results

EpCAM expression was a specific and sensitive marker for the

human cell population in both PDX models

After enzymatic degradation of PDX tissue the single cell suspensions contained a

mix of human and mouse cells. The initial challenge was to separate the human

cancer cells from the mouse stroma cells by flow cytometry. When staining with

the EpCAM antibody (clone 9C4), the flow analyses showed a defined

subpopulation in both xenografts (Figure 1A and B). It was, however, unclear

whether all the human cells (i.e. all cancer cells) in the cell suspension were

detected using EpCAM, and furthermore, whether the antibody also recognized

the mouse version of the antigen. The specificity and sensitivity of EpCAM as a

marker of human tumor cells, was tested by triple and quadruple staining

combining anti-EpCAM, anti-Tra-1-85 (pan anti-human antibody, filled blue),

anti-H2Kd (mouse MHC class I antibody, red line) and Hoecst-3342 (DNA-

content, grey contour), with subsequent flow cytometry analysis (Figure 1A and

B, right panel). Our results showed that the anti-EpCAM antibody was human

specific, and all the human cells in both xenografts were recognized as EpCAM

positive. Staining of the luminal xenograft suspension with the anti-mouse MHC

class I antibody and the pan anti-human antibody was mutually excluding

(Figure 1B right panel). The H2-kd antibody failed to show any binding in the cell

suspension from the basal-like tumor, while both Hoechst staining and Tra-1-85
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positivity confirmed the human origin of the EpCAM positive cells in both

xenografts (Figure 1A).

EpCAM positive tumor cells from the luminal-like xenograft were

tumorigenic

The two PDX models were routinely serially passed as 1-2 mm3 pieces implanted

orthotopically. The small tumor tissue pieces contain human tumor initiating cell

(TIC) population(s), as well as mouse stromal cells. For isolation and functional

Figure 1. Flow cytometry analysis of total cell fractions of dissociated cells from PDX models. A) Basal-like xenograft cells. B) Luminal-like xenograft
cells. A and B displays pseudo-color dot plots (left panels) and histograms (right panels). Freshly harvested xenografts were minced and the whole cell
suspensions were washed and stained with monoclonal antibody towards EpCAM, TRA-1-85 (filled blue in histograms), H2-kd (red line in lower histogram)
and Hoecst-33342 (intensity measure for DNA content of cells, grey contours in both histograms. Left peak indicate mouse cells, right peak indicate human
cells). The population positive for both EpCAM and TRA-1-85, i.e the human tumor cells, are indicated with a circle in the dot plots. C) Flow cytometry
analysis of double stained samples (marker of interest and EpCAM/Tra-1-85) of the Luminal-like PDX model. Flow cytometry histograms show the
distribution of the markers indicated in the figure. Filled blue histogram represents EpCAM positive tumor cell population, and the EpCAM negative
population (mouse stroma cells) is indicated by the red line. Grey contour represent unstained control.

doi:10.1371/journal.pone.0113278.g001
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characterization of TIC subpopulations, it was necessary to test whether the tumor

cells maintained their tumorigenic capacity when injected as sorted single cell

suspensions without the support of stromal cells. It was also of value to confirm

that the EpCAM negative population did not contain TICs. Both EpCAM positive

and EpCAM negative cells were therefore isolated using FACS, and re-injected

(105 and 104 cells, in vivo tumorigenicity assay) in the mammary fat pad of NSG

mice. The EpCAM positive cells from the luminal xenograft demonstrated the

highest tumorigenic capacity, indicating presence of TICs (Table 1, and growth

curves in Figure S1). As expected, the EpCAM negative fraction (containing only

mouse stroma cells) did not initiate tumor growth. Stained cells run through the

FACS machine but not sorted (all events) were used as control. Interestingly,

unsorted basal-like cells gave rise to only one tumor from four separate injections

in mice suggesting that these tumor cells might be dependent on support from the

stroma cells to initiate tumor growth.

Having established EpCAM as a marker specifying human tumor cells from

these two PDX models, we hypothesized that this population was heterogeneous

and that it would be possible to identify cell surface markers for prospective

detection and isolation of tumor cells with different tumorigenic capacity. To this

end, dissociated single cells from both xenografts were stained with EpCAM in

combination with a number of markers (Table 2) and IHC analysis of sectioned

xenograft tumors was performed (Figure S2). Of all the tested markers, CD24,

SSEA-4, SSEA-1 (CD15) CXCR4, E-cadherin and CD44v6 were expressed on the

EpCAM positive population of the tumorigenic luminal-like xenograft cells, and

thus candidates for defining functionally different luminal tumor cell subpopu-

lations (Table 2). To test whether the candidate antibodies were specifically anti–

human, dissociated cells from the luminal-like xenograft were double-stained

using anti-EpCAM or anti-TRA-1-85 in combination with either of the markers of

interest (Figure 1C). This experiment revealed that expression of some of the

markers did not define subpopulations, as all human cells were recognized

(CD49b, CD31, CD166). CD44v6 expression was excluded due to variable

expression caused by the enzymatic digestion of the tumors [20]. SSEA-1 was

excluded due to expression also in the basal-like model (Table 2) in which

dissociated cells in suspension showed very low tumorigenicity. We therefore

hypothesized that SSEA-1 might not define a population with tumorigenic

Table 1. Test of Tumorigenicity of Cell Fractions from two Breast Cancer Xenograft Models.

Surface marker
EpCAM
positive

EpCAM
positive

EpCAM
negative

EpCAM
negative All events All events

1:1 mix EpCAMpos
EpCAMneg

No of cells injected 105 104 105 104 105 104 105

Basal-like 0/7 0/6 0/9 0/6 1/4 0/6 0/2

Luminal-like 7/9 0/3 0/8 0/3 3/7 0/3 3/6

Injection in MFP of NSG mice.

doi:10.1371/journal.pone.0113278.t001
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potential, and chose to proceed with SSEA-4 and CD24 to define subpopulations

within the EpCAM-positive fraction of luminal-like xenograft cells.

SSEA-4 and CD24 are expressed in patient biopsies and define

tumorigenic subpopulations in the luminal-like PDX

Expression of CD24 has been associated with breast cancer cells of low

tumorigenic capacity [10], and several studies demonstrate that expression of

CD24 can classify functionally distinct subpopulations of tumor cells. SSEA-4 is a

much less used marker in breast cancer research, but was previously identified as a

marker of the ductal zones containing normal stem cells of the breast [21, 22]. It

was therefore interesting to investigate whether these markers were co-expressed

also in tumors derived directly from patients. Fresh tumor material from five

randomly chosen breast cancer patients was disaggregated and triple stained with

anti-EpCAM, anti-CD24 and anti-SSEA-4 antibodies. The results (Figure 2A)

Table 2. Expression of Cell Surface Markers and Aldefluoractivity in EpCAM Positive Cells from Two Breast
Cancer Xenografts Models, measured by flow cytometry.

Luminal-like Basal-like

Marker
Expression on EpCAM
+ cells

Expression on EpCAM
+ cells

SSEA-4/stage specific antigen 4 ++ 0

CD24/heat stable antigen 24 ++ +++

CD184/CXCR-4 ++ ++

CD31/PeCAM-1 ++++ 0

CD166/ALCAM ++++ +

CD44v6, splice variant of CD44 + +

E-cadherin, cadherin-1, ++ +

CD44/receptor for hyaluronic acid 0 0*

P75, LNGFR, CD271, 0 +

ALDH, aldefluor activity +++ ++

CD49f/integrin alpha 6 0 +++

Annexin V 0 0

CD90/Thy-1 0 0

CD34/transmembrane sialomucin family 0 0

CD142/tissue factor 0 ++

NG2, CSPG4, HMW-MAA 0 +

CD49b/integrin alpha 2 ++++ 0

CD15, SSEA-1, Lewis 1 antigen ++ ++

CD45/leucocyte common antigen 0 0

CD117/c-kit/ 0 ++

CD133 0 +++

++++ 5 all EpCAM positive cells positive, +++5 40-90% were positive, ++5 5–39% were positive, + 5 less
than 5% positive cells, 0 5 no cells expressed marker. * 5 was highly positive when xenografts tumor was
digested with trypsin.

doi:10.1371/journal.pone.0113278.t002
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confirmed that all three markers were, to a varying degree, expressed on primary

breast cancer cells, thus, indicating inter-patient variations in cell surface marker

expression, even within the EpCAM positive population. Similar analysis of

another PDX model (Luminal-like, HBCX-3 [5]), as well as MCF-7 and T47D

cells (Figure 2B) confirmed CD24 and SSEA-4 expression in other ER+ breast

cancer PDX models and cell lines.

SSEA-4 and CD24 define tumor cell subpopulations with different

tumorigenic ability

As Figure 2B and 3A demonstrate, SSEA-4 and CD24 can be used to define four

subpopulations in luminal like EpCAM positive cells; SSEA-4low/CD24low

(dbl.low), SSEA-4high cells (SSEA-4high), SSEA-4high/CD24high (dbl.high) and

CD24high cells (CD24high). To test whether they had different capacity for in vivo

tumorigenicity, FACS was used to isolate pure fractions from each subpopulation,

and 40.000 cells from each subpopulation were injected in MFP of NSG mice.

Under these conditions, the dbl.high cells did not produce tumors in any of the

four experiments while the three other populations did (Figure 3B). The dbl.high

subpopulation thus seemed to contain a significantly lower number of TICs than

the other fractions. The luminal PDX model is dependent of estrogen for growth,

hence, tumor growth cease if estrogen is removed [8]. Immunohistochemical

staining for estrogen receptor (ER) positivity showed that both the primary tumor

and the PDX contain ER positive and negative tumor cells (Figure S3 upper

Figure 2. Flow cytometry analysis of EpCAM positive cells from human primary breast tumors, xenografts, and breast cancer cell lines. Freshly
harvested primary or xenograft tumor material was minced and digested and the whole cell suspension was stained with anti-EpCAM antibody combined
with anti-CD24 and anti-SSEA-4. A) Flow analysis of EpCAM positive cells from five randomly chosen primary breast cancer tumors. F indicate tumor
number, ER 5estrogen-, PR5 progesterone-, and Her2- receptor status are indicated under the corresponding dot plot. IDC indicates that primary tumor
was invasive ductal carcinoma. B) Flow analysis of EpCAM positive cells from three PDX models and two breast cancer cell lines. The dot plots illustrate the
distribution of CD24 and SSEA-4 expressing cells. Red dots are antibody stained cells; black dots represent unstained control.

doi:10.1371/journal.pone.0113278.g002
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panel). It was therefore of interest to test whether the dbl.high fraction was

depleted of ER positive cells, and thus unable to respond to the growth

stimulatory signals from estrogen. ER staining of sorted subpopulations showed

that they all contained ER positive cells, demonstrating that absence of ER in the

dbl.high subpopulation could not explain their low tumorigenic capacity (Figure

S3).

SSEA-4
high

cells were tumorigenic, but did not give rise to

CD24
high

cells.

The cancer stem cell hypothesis proposed that cancer stem cells should have the

ability to reproduce the original tumor mass. To elucidate the self renewal

capacity of the subpopulations, three tumors from the SSEA-4high and dbl.low

populations, and two tumors from the CD24high populations (generation P0)

were disaggregated and analyzed for expression of EpCAM, CD24 and SSEA-4

(Figure 3D). Tumors initiated from the dbl.low and CD24high populations were

similar to the original xenografts, expressing all three markers (Figure 3D bottom

panels compared to 3C). However, the tumors initiated from SSEA-4high cells (red

Figure 3. In vivo functional characterizations of four EpCAM positive tumor cell subpopulations, defined by CD24 and SSEA-4, from the luminal-
like PDX. A) Concept figure illustrating the workflow of the in vivo tumorigenicity assays. The FAC-sorted populations are indicated by color in the dot plot.
Red indicates SSEA-4hi, blue indicate dbl.high, green indicate CD24hi and black dots indicate dbl.low cells. B) Growth curves of tumors resulting from
injection of FAC-sorted pure populations. 46104 cells from each fraction were injected in the right mammary fat pad of NSG c null mice. Tumor diameter was
measured twice each week. C) Flow cytometry analysis of EpCAM positive cells from the ‘‘original’’ tumor. This is the same tumor as in A, but the
fluorochrome intensity is here illustrated by histograms, and unstained control cells are included. Harvested tumors were disaggregated and analyzed by
flow cytometry after staining with anti- EpCAM, CD24 and SSEA-4 –antibodies. Dark blue histograms indicate the stained samples; light blue contours
indicate the unstained control cells. D) Flow cytometry analysis of EpCAM positive cells from tumors in B. Representative histograms are shown.

doi:10.1371/journal.pone.0113278.g003
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dots in Figure 3A and red lines in Figure 3B) did not contain CD24high cells;

hence the SSEA-4high population seemed to harbor TICs that could not

recapitulate the original tumor (Figure 3D upper panel compared to 3C). Tissue

from tumors originating from all three subpopulations was, furthermore,

implanted in the MFP of NSG mice and they were all able to establish and grow

(generation P1, results not shown).

Whole Genome Expression profiling revealed a gene set

predicting longer overall survival in clinical samples

The four subpopulations showed phenotypical and functional differences, and we

next aimed to relate the tumorigenic potential to differences in transcriptional

profiles. Total RNA was isolated from the four FAC-sorted subpopulations

(dbl.low, SSEA-4high, dbl.high and CD24high), and analyzed using whole genome

expression arrays. Unsupervised clustering of the 1000 most variable genes

revealed high similarity between the four subpopulations. Considering that these

comparisons were performed between cells originating from the same tumor and

with relatively homogenous EpCAM expression (Figure 1), and with no previous

selection from in vitro cultivation, this might be expected. The main variance

across the populations was caused by genes highly expressed in the dbl.high

population. This corresponded well to the functional data. A two group

comparison using t-test (Figure 4A) revealed 44 differentially expressed

transcripts (p#0.004, FDR50.20), of which 6 genes were less expressed in the

dbl.high compared to the other populations (Figure 4A and Table 3). The online

database ‘‘Gene expression-Based Outcome for Breast Cancer’’ (GOBO) [19] was

used to test the association between the set of genes highly expressed in the non-

tumorigenic population with outcome for 1881 breast cancer patients. 26 genes

from the 44-list were both highly expressed in dbl.high cells and represented in the

GOBO database. In tumors, high expression of the 26 genes, correlated

significantly with longer overall survival (OS) (N5737, p,0.0001) and distant

metastasis free survival (DMFS) (N51379, p,0.0001) in Kaplan-Meier analysis

(Figure 4B). The 26 gene set, furthermore, correlated with longer DMFS in

multiple subgroups of the 1881 sample breast cancer dataset; in basal-like, ER-

negative, LN-negative, as well as in grade 2 tumors, high expression of the 26

genes predicted lower risk of recurrent disease and longer DMFS. RT-qPCR

validation confirmed the stringency of the FACS procedure and microarray gene

expression analysis. This was exemplified by the CD24 gene which was found

highly expressed in the CD24 expressing populations, both by microarray analysis

and by RT-qPCR (Figure 4C).

Genomic aberrations could not explain the non-tumorigenic

phenotype.

The functional differences between the four subpopulations made it interesting to

screen for associated genomic aberrations utilizing SNP arrays. All four
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subpopulations displayed similar copy number aberrations characteristics for the

luminal B breast cancer subtype. These genetic alterations included focal

amplification of 8p11-12, 11q13 (CCND1), 12q15 (MDM2) and multiple focal

amplicons distal to ERBB2 on chromosome 17q (Figure 5). Cell surface

expression of CD24 seemed to divide the EpCAM positive cells in two slightly

different variants with respect to copy number variations. The B allelic frequency

(BAF) plot of chromosome 2 was similar in the CD24 expressing populations and

Figure 4. Whole genome expression analyses of sorted tumor cell subpopulations. EpCAM positive cells from the luminal xenografts were
separated based on expression of SSEA-4 and CD24 using FACS. A) Normalized gene expression data from all 15 samples were subjected to t-test
comparison of two groups (dbl.high subopoulations vs. the tumorigenic subpopulations) with p#0.004 and FDR50.2. The figure shows a cluster heatmap of
the 44 significantly differentially expressed genes. Probes in yellow frames are not included in B, either because they are not annotated, the genes could not
be found in GOBO, or they showed lower expression in the dbl.high population. The A_32_P188263 probe maps to the C1QB gene, which is already
represented in the 26 gene list. B) Kaplan-Meier analysis using overall survival (OS) and distant metastasis free survival (DMFS) as endpoint and 10-year
censoring as displayed in GOBO. C) Total RNA was isolated from FAC-sorted subpopulations and RT-qPCR was performed using primers against CD24.
The bars illustrate the fold difference.

doi:10.1371/journal.pone.0113278.g004
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Table 3. List of the 44 probes and corresponding genes significantly differentially expressed in the non-tumorigenic population compared to the tumorigenic
populations.

ProbeID, highly expressed, used in GOBO Gene Symbol Gene name

A_23_P18713 ABCG2 ATP-binding cassette, sub-family G (WHITE), member 2

A_23_P258190 AKR1B1 aldo-keto reductase family 1, member B1 (aldose reductase)

A_23_P164650 APOE hypothetical LOC100129500; apolipoprotein E

*A_23_P113762 S100B S100 calcium binding protein B

*A_23_P113811 RPL19 ribosomal protein L19; ribosomal protein L19 pseudogene 12

*A_23_P146981 CTSZ cathepsin Z

*A_23_P204541 CNTN1 contactin 1

*A_24_P161173 PDE4D phosphodiesterase 4D, cAMP-specific (phosphodiesterase E3 dunce homolog,
Drosophila)

*A_24_P664891 COX6A1 cytochrome c oxidase subunit VIa polypeptide 1

*A_24_P910246 TCN2 transcobalamin II; macrocytic anemia

*A_24_P924752 LGALS2 lectin, galactoside-binding, soluble, 2

*A_24_P935203 UBC ubiquitin C

A_23_P213385 BASP1 brain abundant, membrane attached signal protein 1

A_23_P137366 C1QB complement component 1, q subcomponent, B chain

A_24_P264943 COMP cartilage oligomeric matrix protein

A_23_P52556 CTSD cathepsin D

A_23_P202071 CUGBP2 CUGBP, Elav-Like Family Member, CELF2

A_23_P213745 CXCL14 chemokine (C-X-C motif) ligand 14

A_23_P119362 EMP3 epithelial membrane protein 3

A_23_P131183 GBX2 gastrulation brain homeobox 2

A_24_P402690 ITM2C integral membrane protein 2C

A_24_P42264 LYZ lysozyme (renal amyloidosis)

A_23_P401106 PDE2A phosphodiesterase 2A, cGMP-stimulated

A_23_P100711 PMP22 peripheral myelin protein 22

A_23_P75786 SLC15A3 solute carrier family 15, member 3

A_24_P367454 ZEB2 zinc finger E-box binding homeobox 2

Probe ID, less expressed in dbl.high compared to the tumorigenic populations

*A_32_P44099 GUCY1A2 guanylate cyclase 1, soluble, alpha 2

*A_32_P185530 RAPGEF5 Rap guanine nucleotide exchange factor (GEF) 5

*A_32_P158053 UBA6 ubiquitin-like modifier activating enzyme 6

*A_24_P196859 STS steroid sulfatase (microsomal), isozyme S

*A_32_P38268 BAT2L PRRC2B (proline-rich coiled-coil 2B)

A_23_P167920 DLL1 delta-like 1 (Drosophila)

Probe ID, not found in GOBO

A_23_P424603 C12orf53 chromosome 12 open reading frame 53

A_23_P372368 C21orf87 chromosome 21 open reading frame 87

A_23_P127565 LAYN layilin

A_23_P88222 PLD4 phospholipase D family, member 4

*A_32_P188263 C1QB complement component 1, q subcomponent, B chain

A_23_P132856 LRRC33 leucine rich repeat containing 33

A_23_P150547 PGA3 similar to Pepsin A precursor; pepsinogen 3, group I (pepsinogen A); pepsinogen 4,
group I (pepsinogen A)

*A_24_P910471 ACAA1A acetyl-CoA acyltransferase 1
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differed from CD24 negative populations (Figure 5 A and C compared to B and

D). Furthermore, on chromosome 18, distinct differences in BAF were evident

(Figure 5E-H). Importantly, none of the observed differences in genomic

aberrations were unique for the non-tumorigenic population (Figure 5E, G and

H). This indicates that although the cell surface marker based FAC-sorting

enriched for functional differences between the populations, underlying genomic

differences were not determinants of the observed in vivo tumorigenicity.

Discussion

Intratumoral heterogeneity may explain why systemic cancer therapies fail, and

many attempts have been made to study, especially genomic, heterogeneity in

patient samples [23, 24]. Studies of non-genetic molecular variations and

correlations with tumorigenic abilities (functional heterogeneity) are, due to

limited supply of material, literally impossible to perform in clinical samples. The

intratumor heterogeneity of a representative PDX model was therefore explored.

Clinically relevant cell surface markers were used to prospectively define four

subpopulations, and in vivo functional heterogeneity was measured. Finally,

transcriptional and genomic characteristics were analysed with emphasis on

differences between the populations that could potentially explain their divergent

in vivo tumorigenicity.

The in vivo assays were performed as four separate biological parallels, and the

purity and viability of the fractions were controlled before each injection. Even

though the common genetic origin of the four populations was confirmed by the

copy number analyses, no tumors were formed after any of the injections of the

dbl.high (CD24high/SSEA4high) fractions suggesting that this cell population had a

lower intrinsic tumorigenic potential than the others. Interestingly, tumors

resulting from injections of pure dbl.low - and pure CD24high cells were, when re-

analyzed by flow, always similar to the original PDX tumor. In other words, cells

expressing neither of the cell surface markers, or only CD24, had the ability to

form offspring containing all four subpopulations, and did so every time.

Conversely, cells expressing only the SSEA-4 marker, although tumorigenic, were

Table 3. Cont.

ProbeID, highly expressed, used in GOBO Gene Symbol Gene name

Probe ID, no annotation found

A_23_P205500

A_24_P15877

A_24_P324588

A_24_P640045

The 26 top genes were subjected to gene set analysis on breast cancer patient outcome in the GOBO database [19].
Probes downregulated in dbl.high.
Probes upregulated in dbl.high. The top 26 gene IDs were put in gene set analysis on tumors in the GOBO breast cancer gene expression database.
*Genes annotated by BLAST of probe sequence.

doi:10.1371/journal.pone.0113278.t003

Intratumoral Heterogeneity in Luminal-Like Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0113278 November 24, 2014 17 / 22



Figure 5. SNP array data displayed as unsegmented dotplots. Total signal intensity (LogR) and the B allele frequency (BAF) from all four subpopulations
are shown (A–D). For illustration of similarities and differences in genomic aberrations, overlay images comparing LogR and BAF from each population to
the dbl.high population are shown (E–H). Light blue color indicates copy number pattern observed only in dbl.high population, red color indicates pattern
observed only in the cell populations to which dbl.high is compared, and black indicates identical LogR and BAF.

doi:10.1371/journal.pone.0113278.g005
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never able to regenerate all four subpopulations in the resulting tumors.

Altogether, these results indicate that the TICs in the SSEA-4high population were

different from the TICs in dbl.low and CD24high populations. We therefore

hypothesize that tumor initiating cells from this PDX had more than one

phenotype, and the TICs within each subpopulation did not vary from

experiment to experiment. In line with this, it has been shown that from the same

cell line, both phenotypically pure luminal-like cells as well as their more stem

cell-like counterparts could give rise to tumors [25, 26]. This PDX model, always

regenerates the four defined subpopulations of the original PDX when routinely

implanted as small tumor tissue pieces in MFP, and the morphological

characteristics, receptor status and transcriptional profile are stable over multiple

passages [7]. Therefore, the SSEA-4high population does probably not dominate

over the dbl.low or CD24high population; otherwise, the CD24 expression would,

over time, be lost. Considering that SSEA-4 is regarded as a stem cell marker, this

result was unexpected. One possible explanation might be that CD24 expression

was redundant for developing new tumors from the SSEA-4high cells, or that the

daughter cells had lost their ability to differentiate along the luminal-epithelial

lineage, and hence did not express CD24. It is tempting to speculate that cells

expressing SSEA-4 could be locked into myoepithelial differentiation.

From the tumorigenicity assays and re-analysis of the resulting tumors, it was

clear that the four subpopulations represented three different functional

phenotypes; the non-tumorigeic, the PDX recapitulating, and the tumorigenic but

non-CD24 recapitulating. In search for transcriptional patterns explaining the

functional phenotypes, whole genome expression analysis was performed.

Corresponding well with the in vivo data, the dbl.high cell population was the

population that seemed to be most different from the others. Collectively, the

genes differentially expressed in this population compared to the other cell

populations, do not point to a specific tumor inhibiting function or cellular

target. It is therefore interesting that when using the genes highly expressed in the

non-tumorigenic population as a marker for patient stratification in the online

GOBO database, patients with high expression of this gene set experienced

improved overall survival and distant metastasis free survival in a multivariate

analysis. This finding is in concordance with our in vivo functional data, and

suggests that the genes highly expressed in the non-tumorigenic cells may affect

tumorigenicity when highly expressed in clinical samples. Although, high

expression of the 26 genes set in primary breast cancer cells seemed to indicate less

aggressive cancer, it does not necessarily indicate expression of the two cell surface

markers.

SNP arrays were employed to delineate whether copy number alterations were

specifically assigned to each population. Interestingly, genomic heterogeneity

within each population was revealed, indicating that the CD24 and SSEA-4 based

FAC-sorting did enrich for functional phenotypes, but perhaps not for underlying

genetic aberrations. It is possible that transcriptional differences between the TICs

within each subpopulation might be camouflaged by transcription from

intermixed less tumorigenic cells. It is also possible that the tumor initiating
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capacity might be better explained by differences in the post-transcriptional or

protein regulation mechanisms. The clinical impact of the genes highly expressed

in the dbl.high non-tumorigenic population may indicate that the observed

phenotypic and functional heterogeneity within this tumor most likely does not

result from genetic changes. Recently, Snuderl and colleagues [24] explored the

genetic intratumoral heterogeneity of glioblastomas. In a comment to their work

[27], different scenarios for interactions between cellular subclones within tumors

were discussed. Data presented here suggest that in this particular model, a so-

called ‘‘random’’ scenario, where subclones of cancer cells survive autonomously,

is the most probable. While one population could not give rise to new tumors,

three populations were tumorigenic, independently of each other, and

independently of stroma cells. Intriguingly, the three tumorigenic subpopulations,

also gave rise to two phenotypically different types of daughter tumors, implying

possible functional variations between the resulting tumors. This study

emphasizes the need for broad attacks against multiple subpopulations within the

primary tumor to obtain systemic eradication of the disease.

Supporting Information

Figure S1. Growth curves of tumors resulting from injection of 105 FAC-sorted

cells from the luminal-like PDX in the MFP of NSG mice. Upper chart: EpCAM

positive cells; out of nine injections, tumor was formed in seven. Middle chart:

2.56105 EpCAM positive cells were mixed with 2.56105 EpCAM negative cells

and injected. Of six injections, tumors formed in three. Lower chart: 105 cells run

through the FACS Diva, but not sorted, were injected. Of seven injections, three

tumors were formed.

doi:10.1371/journal.pone.0113278.S001 (TIF)

Figure S2. Expression of relevant markers in basal-like and luminal-like

orthotopically growing breast cancer xenografts models. A)

Immunohistochemistry (IHC) on sections from paraffin embedded tumors from

the basal-like (upper row) and luminal-like (lower row) PDX. The sections were

stained with antibodies to the proteins indicated. The antibodies shown did not

react with mouse stromal cells. B) Immunofluorecent staining of frozen tissue

sections from the two PDX models as indicated.

doi:10.1371/journal.pone.0113278.S002 (TIF)

Figure S3. Bright field images of immunohistochemical staining for estrogen

receptor in paraffin embedded sections from the original primary tumor (upper

left side), the luminal-like PDX model (upper right side), and stained cell

suspensions from each of the four subpopulations (Lower panel). The FAC-sorted

pure cell suspensions were placed on glass slides, fixed and stained. Cells showing

positive staining for ER are brown; the cell nuclei were counterstained with

hematoxylin (blue). Arrows point to ER positive cells.

doi:10.1371/journal.pone.0113278.S003 (TIF)
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