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Abstract

A new method for calculating the Casimir force between compact objects was intro-

duced in May 2012 by Per Jakobsen and Isak Kilen [1]. In this method a regularization

procedure is used to reduce the pressure to the solution of an integral equation defined

on the boundaries of the objects. In this thesis the method is further developed by

extending from a 2D to a 3D massless scalar field, subject to Dirichelet boundary con-

ditions on the boundaries of the objects. The method is implemented numerically and

tested on configurations consisting of plates, spheres and ellipsoids. We compare the

method to the functional integral method and the method of mode summation where

possible.

Our results are in accordance with what I. Kilen found; the method correctly predicts

the geometry dependence of the Casimir force, but the size of the force is off by a factor

of two.
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Chapter 1

Introduction

1.1 The Casimir effect

The typical example of the Casimir force is an attractive force between uncharged,

parallel, conducting metal plates in vacuum and zero temperature. This force was first

predicted by Casimir in 1948 [2]. He assumed that the vacuum between the plates was

filled with an electromagnetic field and predicted that the force per area is a function of

the separation distance a,
F (a)

A
= − π2

240

~c
a4
. (1.1)

The minus sign indicates that the plates attract each other. This result was derived

using a method based on mode summation. Conceptually this method is simple, one

uses the fact that a quantized electromagnetic field can be decomposed into an infinite

number of quantum harmonic oscillators, which usually are called modes. By assigning a

zero-point energy of 1
2~ω to each mode (photon) of the quantized field, the ground state

energy of the electromagnetic field can be found by summing over zero-point energies of

the field determined by Dirichelet boundary conditions where the plates are located;

E =
~
2

∑
n

ωn. (1.2)

This sum is divergent, but by subtracting the energy without the presence of boundaries

and giving a proper definition to the sums, Casimir was able to extract a finite result,

the Casimir energy for this geometry. When the Casimir energy is known, the Casimir

force can be found by taking the derivative of the energy with respect to a parameter,

in this case with respect to the separation distance a. Because of this relationship, one

often only refers to the Casimir effect. As we can see from equation (1.1), the force

decreases rapidly as the separation between the plates increases. This indicates that

the Casimir effect is only measurable at small length scales, typically nano-meter and

micro-meter.

1



Chapter 1. Introduction 2

In general, the Casimir force is usually thought of as a force arising when the zero

point fluctuations of a quantum field are modified by the presence of static or slowly

moving objects. The Casimir energy is obtained by taking the difference between the

energy of the field when the objects are present and when the objects are removed to

infinite separation. This effect has been seen as a physical consequence directly due to

zero-point fluctuations. However, it should be mentioned that the Casimir effect does

not prove the “reality” of the vacuum energy of the zero point fluctuations. It has

been explained without reference to such fluctuations. For example, in 1975, Schwinger

explained the Casimir effect in the source theory language [3]. Nevertheless, it is a fact

that the Casimir effect can be, and usually is, explained using quantum fluctuations.

The Casimir force has similarities with the van der Waals force. Both effects are of

quantum origin (the forces depend on ~) and can cause an attractive force between two

neutral objects. A difference is that the Casimir force in addition may be repulsive. The

attractive or repulsive character of the Casimir force depends on the geometry of the

objects, the number of spatial dimensions and whether the quantum field between the

objects is bosonic or fermionic etc. An other important difference is that the Casmir

force is relativistic (the force depends on the speed of light c), while the van der Waals

force is non-relativistic.

1.2 Measurements and applications of the Casimir effect

Even though the Casimir force was predicted theoretically in 1948, it should take almost

50 years before the first successful measurement of the force was done. In fact, Casimir’s

paper for a long time remained largely unknown, but from the 1970s it has received

more and more attention and especially the last 15-20 years, the Casimir effect has

been intensely investigated. The first reported attempt to measure the force was in

1958. Then Sparnaay et al. tried to measure the Casimir force between two parallel

plates. However, due to systematic errors, the measurements had a 100 % uncertainty

and all Sparnaay could conclude was that “the observed attractions do not contradict

Casimir’s theoretical prediction” [4]. The first successful measurement was completed

in 1997 by S.K. Lamoreaux [5]. Since the configuration of two parallel plates is difficult

to use experimentally, he instead measured the force between a plate and a sphere. He

obtained results in agreement with theory at the level of 5% . In 1998 Mohideen and

Roy [6] measured the Casimir force, also between a plate and a sphere, but even more

accurately than Lamoreaux. Their experiment differed from theoretical predictions by

less than 2 %.

As today’s electrical devices become smaller and more and more devices are invented

using nanotechnology, the need for understanding and taking benefit of the Casimir

effect increases. Nanoelectromechanical systems (NEMS) and microelectromechanical
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systems (MEMS) are terms used to describe nanofabricated devices. These devices

can function as sensors, routers and actuators (devices that convert an electrical signal

into a mechanical output). Accelerometers and gyroscopes in cars, and microphones

in portable devices are examples of such electromechanical systems. The Casimir force

typically become influential at distances below a micron and therefore it has to be taken

into consideration when designing such devices. A tendency of MEMS devices is that the

moving components frequently jump into contact with the fixed electrodes and adhere to

them. This phenomenon is called stiction, and leads to loss of functionality. It has been

recognized that the Casimir force is primary cause to stiction [7]. Careful analysis of the

Casimir force is necessary to design devices that avoid such problems. It could be that it

is possible to take advantage of the fact that the Casimir force in some cases is repulsive

to resolve the problem of stiction. It has also been suggested that repulsive Casimir

forces could allow quantum levitation of objects and lead to a new class of nanoscale

devices with ultra-low static friction [8]. We see that the Casimir effect both can provide

new functionality and be a hindrance. In any case, this should be a motivation for more

study the effect, both theoretically and experimentally.

1.3 Methods for calculating the Casimir force

As mentioned above, especially after the successful measurements of the Casimir effect

in 97 and 98, many methods for calculating the Casimir effect have been developed. In

this section we discuss some methods that are of particular interest for us.

The classical method for calculating the Casimir force is the method of mode summa-

tion that Casimir used in his original work. This method has now been further developed

and use highly advanced mathematical methods like the argument principle and zeta

function regularization. An advantage of this method is that it can be used to calculate

the Casimir effect exactly. Mode summation works very well for the case Casimir con-

sidered; perfectly conducting parallel plates, vacuum and zero temperature. However, as

one move away from this configuration, the method becomes progressively more difficult

to apply. The problem is that one has to find the full frequency spectrum {ωn}∞n=1, and

for non-symmetric configurations this is hopeless do analytically. To obtain the required

precision numerically is also very hard. We are left with the configurations where it is

possible to solve the mode equations using separation of variables. Typical examples are

symmetric configurations such as two parallel plates, two concentric spheres or cylinders.

In fact, even for very symmetric situations such as two concentric spheres, the method

is very hard to apply. The reason is that extracting a finite Casimir energy of the sum

in equation (1.2) is also a very hard problem in general. For practical applications of the

Casimir effect, it is not enough to restrict only to symmetric configurations. Therefore

general methods that applies to arbitrary configurations are needed. However, when
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developing new methods, it is useful to test the method on configurations where the

Casimir effect can be obtained by mode summation.

A method that applies to non-planar configurations is the proximity force approxi-

mation (PFA). For many years, using PFA was the only practical way to compute the

Casimir effect for other configurations than parallel plates [9]. Essentially, this is a

method for treating curved surfaces as flat. The surfaces of the interacting objects are

divided into pairs of small parallel plates. By extending the plates to infinity, Casimir’s

original result can be applied to each of the pairs. Taking the sum over the contribu-

tions from each of the pairs, one obtains the total Casimir energy or force. However, this

approximation is only valid for very small separations and therefore the applicability of

the PFA is limited.

Whereas it is hard to apply numerical methods using mode summation, there has in

the 21th century been developed methods that don’t require knowledge about the mode

spectrum and are adapted for using modern numerical tools. An example is a method

based on functional integrals developed by T.Emig [10], [11], [12], [13]. An advantage

of the method is that it can be applied to arbitrary configurations of objects, different

boundary conditions and quantum fields. This method, which is based on Feynman’s

idea to integrate over weighted classical paths, has been further developed by P. Jakobsen

and I. Kilen [1]. We refer to it as the functional integral method (FIM) and give a brief

description of the method here. First, the Casimir energy is related to a functional

integral, which turns out to be of Gaussian type since the field equations are linear. By

discretizing the boundaries of the conductors, using a free-space Green’s function and

defining a complete, orthonormal set of functions on the boundaries, the Casimir energy

can be expressed in terms of a determinant of a finite matrix. In order to find this

matrix, one has to find inverses and products of other matrices. This method has been

highly successful for calculating the Casimir effect in situations where mode summation

doesn’t apply. However, since the method involves calculation of a determinant of a

matrix that easily become very large, it is hard to make an effective implementation of

the method, for example using parallelization.

All the methods we have considered till now output the Casimir energy. The energy

is related to the pressure (or force) on the objects via a derivative. Thus, if one use

a numerical method and wants to calculate the force or pressure, a minimum of two

evaluations of the energy is required. However, there exist methods for calculating the

pressure directly. A possibility is to use Green’s functions, which are related to the

pressure via some derivatives. The pressure has to be calculated on the boundaries of

the conductors, but the Green’s functions are extremely singular here, and therefore

one obtain an infinite pressure if no regularization is used. The problem with infinities

seems to be unavoidable in all methods for calculating the Casimir effect. There are many

ways dealing with these infinite expressions, but a common word for all such methods
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is regularization. The pressure that is obtained directly from the Green’s function is

a sum of the self pressure and the interaction pressure. Whereas it is the interaction

pressure that causes the force on the objects, the self pressure doesn’t contribute to

the total force and is infinite in general. A major part of the regularization procedure

will be to extract out the interaction pressure such that a finite pressure is obtained.

This appears to be the same kind of problem that one meets in the mode summation

approach, but there is an important difference; in the Green’s function approach it is

possible to apply a regularization procedure that is more or less independent of the

geometry of the objects. One can therefore regularize before using numerical methods

on the regularized equations. An implication is that the Green’s function approach

isn’t stuck to symmetric situations, it applies to arbitrary configurations. In 2006 a

numerical approach using Green’s functions based on the finite difference time domain

(FDTD) method from computational electromagnetics was introduced [14]. With this

method it is possible to calculate the Casimir force for complex geometries. When using

FDTD, the entire problem space is gridded, also the space between the objects. However,

the Green’s functions only have to be calculated on the boundaries of the objects and

therefore it seems like this approach involves unnecessary calculations.

We should keep in mind that the problem sizes easily become so large that the numer-

ical calculations become hard to perform, even on nowadays supercomputers. Therefore

unnecessary calculations should be avoided. I. Kilen and P. Jakobsen introduced a new

Green’s function approach in 2012 [1], the boundary integral method (BIM), where the

Casimir pressure is calculated on the boundaries only. This method applies to arbitrary

configurations and is most efficient when used on linear equations and boundaries with

piecewise linear material coefficients. In the BIM, the Casimir pressure is found by

solving a set of boundary integral equations. The equations are regularized before they

are discretized and solved numerically. Computationally the BIM is based on filling and

solving a set of linear equations, which is a problem that has the advantage that it can

be programmed in parallel. In addition, if the boundaries of the objects of interest are

symmetric, the computational load for this method can be reduced enormously. So far,

the method has been investigated for the case of a 2D massless scalar field subject to

Dirichelet boundary conditions. I. Kilen found that in this case it is possible to find fully

regularized boundary integral equations for the pressure, but that a factor of two was

missing. He found that this missing factor was geometry independent and concluded

that it was lost somewhere in the theory.

1.4 Layout and aims

The object of this thesis is to extend the boundary integral method (BIM) from two

to three spatial dimensions. We consider the case of a massless scalar field subject
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to Dirichelet boundary conditions. We will investigate whether it is possible to fully

regularize the boundary integral equations, before solving them numerically, also in the

three dimensional case. If so, we expect that there is still a missing factor. The question

is whether this factor has the same value as in 2D, or whether it depends on the number

of dimensions. We will further investigate the theory of the method and hopefully find

the source of this missing factor. The method will be compared to the functional integral

method and the method of mode summation for different configurations.

In chapter 2 the theory for the boundary integral method (BIM) is developed. First

we define the Green’s function using the scalar field. We derive some of its properties

and show that it actually is a Green’s function, i.e. that it is the inverse of the differential

operator in the scalar field equation. The stress tensor will be used to show that the

Casimir force is related to the Green’s function via a double normal derivative. In order

to find this quantity, we formulate the differential equation for the Green’s function as a

boundary integral equation. This equation is regularized through a process that involves

several steps. We discretize and formulate the regularized boundary integral equations

as a system of linear equations that will be solved numerically. Explicit expressions for

all the matrix elements will be derived and discussed. At last, we show that there is

a great potential of reducing the computational load, if the configuration of objects is

symmetric.

The functional integral method (FIM) will be discussed in chapter 3. First a formula

that relates the Casimir energy to the transition amplitude is found. The transition

amplitude is expressed as a functional integral over an exponential. After implementing

both spatial and periodic BCs, using the classical equations of motion, a change of

variables and some more steps, we will be able to solve the functional integral exactly.

The regularization involves subtraction of self-interaction terms. Finally we arrive at

a formula for the Casimir energy that will involve an integral over a determinant of a

matrix. This matrix contains all the information about the geometry of the problem.

The integral will be calculated numerically and therefore we derive expressions for the

matrix elements.

In chapter 4 the method of mode summation is used to derive simple formulas for the

Casimir energy for two symmetric configurations. For the parallel plates configuration,

we derive the energy using two different methods. The first is based on the argument

principle, whereas the second method is regularized using zeta functions. The second

configuration is two concentric spheres. Applying mode summation to this configuration

is more advanced. The regularization will involve several steps such as frequency cutoffs,

zeta function regularization and the argument principle.

Chapter 5 gives a general relation between the Casimir energy and the Casimir force.

For the configurations where the method of mode summation and/or the functional

integral method will be applied, we use this relation to derive explicit expressions for
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the force. Chapter 6 describe the numerical implementations of the BIM and FIM. We

also discuss the complexity of the two methods.

We are going to test the implementation of the BIM on different configurations. The

BIM is compared to the FIM and the exact solution found using mode summation where

possible. First will the flat configuration consisting of two parallel plates be considered.

We thereafter test the method on configurations where the objects have a constant,

non-zero curvature; two concentric spheres and two adjacent spheres. Configurations

consisting of objects with varying curvature (ellipsoids) will also be considered. The

results of these tests, and a discussion, are presented in chapter 7. We also compare our

results to the results Isak Kilen obtained. In chapter 8 we conclude on the validity of

the boundary integral method.

In appendix A some Gaussian integrals are calculated. The final result in this ap-

pendix is used in the functional integral method.

For the special configuration consisting of two parallel plates, we discretize the bound-

aries of the objects using two different methods. We use both a structured grid of squares

and an unstructured grid consisting of triangles. The latter is a special case of a triangu-

lation, which we will discuss in more detail in appendix B. The reason for triangulating

the surfaces is that such a discretization is much more flexible than structured grids in

fitting to objects of arbitrarily shape. Therefore we will for all other configurations only

use triangulations. However, by using two different discretizations on the plates, we can

test the importance of the discretization in the implementations of the BIM and FIM.

The results of these comparisons are also given in chapter 7.

Appendix C lists up programs we have developed and/or used in our implementation

of the BIM and FIM, and give a short explanation of them. The reason for including

this appendix is to make it easier to re-use our implementations of the BIM and the

FIM.

1.5 Configuration of objects

The theory of the BIM will be developed for a configuration of objects that consists of

r static, compact, perfect conductors of arbitrarily shape. Let Qα denote the boundary

of the conductor Vα. The boundary Qα is idealized; it will be assumed that Qα consists

of an ideal metal which is uncharged and perfectly conducting. Let V0 denote the

complement to the compact conductors. Thus

V0 = R3 −
r∑

α=1

Vα. (1.3)

The space V0 is assumed to consist of a vacuum. Our boundary integral equations will

be derived under the assumption that the temperature is at absolute zero. The vacuum
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in V0 will consist of the simplest example of a three dimensional relativistic field that

is possible find, namely a massless scalar field ϕ̂ in its ground state. The fact that

the objects are perfectly conducting means that we can assign the Dirichelet boundary

conditions

ϕ̂|Qα = 0, α = 1, ..., r, (1.4)

at the boundaries Qα. These boundary conditions simulate perfectly conducting bound-

aries from the electromagnetic case and we will also for the scalar field case call these

boundary conditions perfectly conducting.

Figure 1.1: Possible configuration of compact objects.



Chapter 2

Boundary integral method

2.1 Green’s function

In this section we define our Green’s function. We derive some of its properties and

show that it actually is a Green’s function for the scalar field equation.

The massless scalar field ϕ̂ that fills the region V0 = R3 −
r∑

α=1
Vα is determined by

the field equation

ϕ̂tt −∇2ϕ̂ = 0

ϕ̂|Qj = 0,
(2.1)

where Qj is the boundary of the object Vj . In order to simplify the equations, natural

units are selected, i.e ~ = c = k = 1, where k is the Boltzmann constant. The fields ϕ̂

and ϕ̂t satisfy the equal time commutation relations

[ϕ̂(x, t), ϕ̂(x′, t)] = [ϕ̂t(x, t), ϕ̂t(x
′, t)] = 0,

[ϕ̂t(x, t), ϕ̂(x′, t)] = iδ(x− x′).
(2.2)

In order to obtain a Green’s function that decay exponentially instead of oscillatory, we

transform to imaginary time, t = −is. The time derivative changes as ∂t = ∂s
ds
dt = i∂s

and the equation for the quantized field ϕ̂ becomes

ϕ̂ss +∇2ϕ̂ = 0

ϕ̂|Qj = 0,
(2.3)

and commutation relations

[ϕ̂(x, s), ϕ̂(x′, s)] = [ϕ̂s(x, s), ϕ̂s(x
′, s)] = 0,

[ϕ̂s(x, s), ϕ̂(x′, s)] = δ(x− x′).
(2.4)

9
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In the Heisenberg picture the field operator ϕ̂(x, s) satisfies the equation of motion

d

ds
ϕ̂(x, s) = [Ĥ, ϕ̂(x, s)], (2.5)

where Ĥ is the Hamiltonian for the system. The conductors are assumed to be stationary

so that Ĥ is time independent, i.e. independent of s. Equation (2.5) is formally solved

by

ϕ̂(x, s) = esĤ ϕ̂(x)e−sĤ , (2.6)

where ϕ̂(x) = ϕ̂(x, 0)

The basic Green’s function D is defined by

D(x, s,x′, s′) =
〈
T [ϕ̂(x, s)ϕ̂(x′, s′)]

〉
. (2.7)

I.e D is the expectation value of the time ordered product of the field ϕ̂ in it’s ground

state. It is assumed that the quantum field is in a state of thermal equilibrium at

temperature T . We will at the end of this section let the temperature go to zero, but to

start with, we consider a general temperature T . Given thermal equilibrium, the density

matrix is ρ̂ = 1
Z e
−βĤ . Defining β = 1/T and using the property

〈
Â
〉

= Tr(ρ̂Â), we get

D(x, s,x′, s′) =
1

Z
Tr
(
e−βĤT [ϕ̂(x, s)ϕ̂(x′, s′)]

)
, (2.8)

where Z = Tr
(
e−βĤ

)
is the partition function. The derivations that follow will only

relate to the time domain. In order to simplify the notation, the abbreviation

D(s, s′) = D(x, s,x′, s′) (2.9)

will be used, meaning that the two spatial arguments are x and x′. Define

D+(s, s′) =
〈
ϕ̂(x, s)ϕ̂(x′, s′)

〉
,

D−(s, s′) =
〈
ϕ̂(x′, s′)ϕ̂(x, s)

〉
.

(2.10)

Thus the Green’s function can be written as

D(s, s′) =

D+(s, s′) s > s′

D−(s, s′) s < s′.
(2.11)
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We will now derive some properties of the Green’s function. Equation (2.6) is used to

show that the Green’s function is periodic in β;

D+(s+ β, s′) =
1

Z
Tr
(
e−βĤe(s+β)Ĥ ϕ̂(x)e−(s+β)Ĥ ϕ̂(x′, s′)

)
=

1

Z
Tr
(
esĤ ϕ̂(x)e−sĤe−βĤ ϕ̂(x′, s′)

)
=

1

Z
Tr
(
ϕ̂(x, s)e−βĤ ϕ̂(x′, s′)

)
=

1

Z
Tr
(
e−βĤ ϕ̂(x′, s′)ϕ̂(x, s)

)
= D−(s, s′),

(2.12)

where a property of traces of matrices is used; Tr(ABC) = Tr(CAB) = Tr(BCA). Using

similar reasoning, we get

D−(s, s′ + β) = D+(s, s′). (2.13)

Equations (2.12) and (2.13) are known as the Kubo-Martin-Schwinger (KMS) boundary

conditions. The fact that Ĥ is time independent gives

D+(s, s′) =
1

Z
Tr
(
e−βĤ ϕ̂(x, s)ϕ̂(x′, s′)

)
=

1

Z
Tr
(
e−βĤesĤ ϕ̂(x)e−sĤes

′Ĥ ϕ̂(x′)e−s
′Ĥ
)

=
1

Z
Tr
(
e−βĤe(s−s′)Ĥ ϕ̂(x)e−(s−s′)Ĥ ϕ̂(x′)

)
= D+(s− s′, 0).

(2.14)

Similar calculations give that

D−(s, s′) = D−(s− s′, 0). (2.15)

Based on the above properties, we introduce a slightly modified Green’s function

D(s) =

D+(s, 0) s > 0

D−(s, 0) s < 0.
(2.16)

Equations (2.14) and (2.15) give that

D(s− s′) = D(s, s′) ∀s, s′ ∈ R. (2.17)

Thus there is a close relationship between the two Green’s functions.
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Now let |n〉 be a complete set of eigenstates for Ĥ, i.e Ĥ|n〉 = En|n〉. For s > 0 we

have

D(s) = D+(s, 0) =
1

Z
Tr
(
e−βĤesĤ ϕ̂(x)e−sĤ ϕ̂(x′)

)
=

1

Z

∑
n

〈
n
∣∣∣e−βĤesĤ ϕ̂(x)e−sĤ ϕ̂(x′)

∣∣∣n〉
=

1

Z

∑
nn′

e−(β−s)Ene−sEn′
〈
n|ϕ̂(x)|n′

〉 〈
n′|ϕ̂(x′)|n

〉
.

(2.18)

Observe that when s > β, we get exponential growth and the series doesn’t converge.

Thus D(s) only exists for s ≤ β. Similar calculations for s < 0 give

D(s) =
1

Z

∑
nn′

e−(β+s)EnesEn′
〈
n|ϕ̂(x′)|n′

〉 〈
n′|ϕ̂(x)|n

〉
. (2.19)

Thus D(s) only exists for s ≥ −β. Combining the two latest results, we get that D(s)

only exists for s ∈ [−β, β]. We apply the KMS conditions and get

D(s+ β) = D+(s+ β, 0) = D−(s, 0) = D(s). (2.20)

Thus D(s) is determined by its values on [−β, 0]. By definition, we then extend D(s) to

all s as a function of period β.

We now show that D(s) is a Green’s function for the scalar field equation (2.3). First

note that

D(s) = θ(s)
〈
ϕ̂(x, s)ϕ̂(x′, 0)

〉
+ θ(−s)

〈
ϕ̂(x′, 0)ϕ̂(x, s)

〉
, (2.21)

where θ is the Heaviside step function. Differentiate with respect to s, use the fact that

θ′(s) = δ(s) and the commutation relations (2.4) to get

∂sD(s) = δ(s)
〈
ϕ̂(x, s)ϕ̂(x′, 0)

〉
+ θ(s)

〈
∂sϕ̂(x, s)ϕ̂(x′, 0)

〉
− δ(s)

〈
ϕ̂(x′, 0)ϕ̂(x, s)

〉
+ θ(−s)

〈
ϕ̂(x′, 0)∂sϕ̂(x, s)

〉
= δ(s)[ϕ̂(x, s), ϕ̂(x′, 0)] + θ(s)

〈
∂sϕ̂(x, s)ϕ̂(x′, 0)

〉
+ θ(−s)

〈
ϕ̂(x′, 0)∂sϕ̂(x, s)

〉
= θ(s)

〈
∂sϕ̂(x, s)ϕ̂(x′, 0)

〉
+ θ(−s)

〈
ϕ̂(x′, 0)∂sϕ̂(x, s)

〉
. (2.22)

Differentiate once more, use the defining equation (2.3) and the commutation relations

(2.4) to get

∂ssD(s) = δ(s)
〈
∂sϕ̂(x, s)ϕ̂(x′, 0)

〉
+ θ(s)

〈
∂ssϕ̂(x, s)ϕ̂(x′, 0)

〉
− δ(s)

〈
ϕ̂(x′, 0)∂sϕ̂(x, s)

〉
+ θ(−s)

〈
ϕ̂(x′, 0)∂ssϕ̂(x, s)

〉
= δ(s)[∂sϕ̂(x, s), ϕ̂(x′, 0)]−∇2

(
θ(s)

〈
ϕ̂(x, s)ϕ̂(x′, 0)

〉
+ θ(−s)

〈
ϕ̂(x′, 0)ϕ̂(x, s)

〉)
= δ(s)δ(x− x′)−∇2D(s). (2.23)
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Thus the equation for the Green’s function becomes

∂ssD(x,x′, s) +∇2D(x,x′, s) = δ(s)δ(x− x′). (2.24)

We see that D is a Green’s function for the scalar field equation (2.3). Using the

boundary condition ϕ̂|Qj = 0, the defining equation for D and equation (2.17), we

obtain the boundary condition

D(x,x′, s) = 0, x ∈ Qj or x′ ∈ Qj . (2.25)

We have showed that the Green’s function D(x,x′, s) is periodic in s with period β =

1/T . Thus D(x,x′, s) can be written as a Fourier series. However, in this thesis we only

consider situations where the temperature is zero, i.e T → 0. Thus the period of the

Fourier series will be infinite and therefore D(x,x′, s) can be written using a Fourier

transform in s. We obtain the equation

∇2D(x,x′, ω)− ω2D(x,x′, ω) = δ(x− x′),

D(x,x′, ω) = 0, x ∈ Qj or x′ ∈ Qj .
(2.26)

2.2 Relation between the Casimir force and the Green’s

function

In the following section an expression for the Casimir force on conductor i will be derived.

Both tensor notation and dyadic notation is used in the derivation. Partial derivatives

are written two different ways; ∂0 = ∂t, ∂1 = ∂x, ∂2 = ∂y, ∂3 = ∂z. We start by deriving

a relation between the classical stress tensor and the momentum density. Then we do a

quantization and use the quantized stress tensor to find an expression for the force.

The Lagrangian density for the “un-quantized” version of field equation (2.1), i.e the

classical wave equation

ϕtt −∇2ϕ = 0, (2.27)

is given by

L(ϕ) =
1

2

(
ϕ2
t −∇ϕ2

)
=

1

2
∂µϕ∂µϕ. (2.28)

Using Noether’s theorem, the stress-energy tensor is given by

Tµν =
∂L

∂(∂µϕ)
∂νϕ− ηµνL, µ, ν = 0, 1, 2, 3, (2.29)

where ηµν is the Minowski metric with signature {+,−,−,−}. Insert equation (2.28)

into (2.29) to obtain

Tµν = ∂µϕ∂νϕ− 1

2
ηµν∂ρϕ∂ρϕ. (2.30)
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The conservation equations are

∂µT
µν = 0, (2.31)

where ν = 0 gives conservation of energy and ν = 1, 2, 3 gives conservation of momentum.

The equation for conservation of energy can be written as

∂tH+∇ · Se = 0, (2.32)

where

H = T 00 =
1

2

[
ϕ2
t +∇ϕ · ∇ϕ

]
=

1

2

[
ϕ2
t + Tr(∇ϕ∇ϕ)

]
(2.33)

is the energy density or the Hamiltonian density and

Se = −ϕt∇ϕ (2.34)

is the energy flux tensor. The equations for conservation of momentum become

∂tp+∇ · S = 0 (2.35)

where

p = ϕt∇ϕ (2.36)

is the momentum density and S, given by

S(x, t) = −∇ϕ∇ϕ+
1

2
Tr(∇ϕ∇ϕ)I − 1

2
ϕ2
t I, (2.37)

is the momentum flux or the stress tensor. I.e. S is a 2-tensor and in our case it has

been written as a matrix. However, we are working with the quantized scalar field ϕ̂

and must therefore do a quantization. Start by doing a rotation into the complex plane,

t = −is. Observe that the stress tensor can be written as

S(x, s) =

(
−∇∇+

1

2
Tr(∇∇)I +

1

2
∂2
sI

)
ϕ(x, s)ϕ(x, s)

=

(
−∇∇+

1

2
Tr(∇∇)I +

1

2
∂2
sI

)
1

2
{ϕ(x, s), ϕ(x, s)} ,

(2.38)

where {A,B} = AB + BA is the anti commutator. The quantum stress tensor Sq will

be defined via the point splitting method ([15], [16]). We start by quantizing the fields

by letting ϕ→ ϕ̂ and then replacing one of the fields ϕ̂(x, s) by ϕ̂(x′, s′), where (x′, s′)

is a nearby point. The corresponding operator ∇ is replaced by ∇′. By ∇′ is meant the

derivative w.r.t. to the primed variables. We let (x′, s′) approach (x, s) and take the
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vacuum expectation value;

Sq(x, s) = lim
(x′,s′)→(x,s)

(
−∇∇′ + 1

2
Tr(∇∇′)I +

1

2
∂s∂s′I

)
1

2
D(1)(x, s,x′, s′), (2.39)

where D(1)(x, s,x′, s′) is the Hadamard’s Green’s function, given by

D(1)(x, s,x′, s′) =
〈
{ϕ̂(x, s), ϕ̂(x′, s′)}

〉
= D(+)(x, s,x′, s′) +D(−)(x, s,x′, s′), (2.40)

and the functions D(±)(x, s,x′, s′) are defined in equation (2.10).

A property of the Heaviside step function, θ, is that

θ(x) + θ(−x) = 1, ∀ x. (2.41)

Using this property and by adding and subtracting the same quantities, we can relate

the Hadamard Green’s function D(1) to the Green’s function D, given in equation (2.7);

D(1)(x, s,x′, s′) =
(
θ(s− s′) + θ(s′ − s)

) 〈
{ϕ̂(x, s), ϕ̂(x′, s′)}

〉
= 2

(
θ(s− s′)

〈
ϕ̂(x, s), ϕ̂(x′, s′)

〉
+ θ(s′ − s)

〈
ϕ̂(x′, s′), ϕ̂(x, s)

〉)
− θ(s− s′)〈[ϕ̂(x, s), ϕ̂(x′, s′)]〉+ θ(s′ − s)〈[ϕ̂(x, s), ϕ̂(x′, s′)]〉

= 2D(x, s,x′, s′)−DR(x, s,x′, s′)−DA(x, s,x′, s′), (2.42)

where

DR(x, s,x′, s′) = θ(s− s′)〈[ϕ̂(x, s), ϕ̂(x′, s′)]〉 (2.43)

DA(x, s,x′, s′) = −θ(s′ − s)〈[ϕ̂(x, s), ϕ̂(x′, s′)]〉. (2.44)

DR is the retarded Green’s function and DA is the advanced Green’s function. However,

because of the commutation relations (2.4), both are zero in the limit (x′, s′) → (x, s).

Thus

Sq(x, s) = lim
(x′,s′)→(x,s)

(
−∇∇′ + 1

2
Tr(∇∇′)I +

1

2
∂s∂s′I

)
D(x, s,x′, s′). (2.45)

By letting τ = s−s′, we can use the property of the Green’s function D given in equation

(2.17); D(x, s,x′, s′) = D(x,x′, s− s′). Sq changes into

Sq(x) = lim
x′→x
τ→0

(
−∇∇′ + 1

2
Tr(∇∇′)I − 1

2
∂ττI

)
D(x,x′, τ). (2.46)

A Fourier transform in τ results in

Sq(x, ω) = lim
x′→x

(
−∇∇′ + 1

2
Tr(∇∇′)I +

1

2
ω2I

)
D(x,x′, ω). (2.47)
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The quantum stress tensor can be expressed via its Fourier components by taking the

inverse Fourier transform and evaluating at zero

Sq(x) =

 1

2π

∞∫
−∞

dω eiωτSq(x, ω)


τ=0

=
1

2π

∞∫
−∞

dω Sq(x, ω). (2.48)

From classical mechanics we know the relation between force and momentum through a

time-derivative. Using the equation of momentum conservation (2.35) and the divergence

theorem, the expression for the net force on conductor i becomes

Fi = ∂t

∫
Vi

dV p(x, t) = −
∫
Vi

dV ∇ · Sq(x, t) = −
∮
Qi

dA n · Sq(x), (2.49)

where n is the unit normal pointing from the boundary Qi into V0. The total system is

assumed to be stationary, and therefore the sum of all forces is zero:
∑
Fj = 0.

The expression for the force can be simplified considerably using the boundary con-

ditions. At any point on the surface Qi it is possible to find two tangent vectors, t1 and

t2, such that they span the tangent plane. Together with the unit normal n they span

R3. With respect to this basis the unit vectors are

ei = (ei · t1)t1 + (ei · t2)t2 + (ei · n)n, i = 1, 2, 3. (2.50)

The gradient changes to

∇ → (t1 · ∇)t1 + (t2 · ∇)t2 + (n · ∇)n = t1∂t1 + t2∂t2 + n∂n, (2.51)

and the double gradient becomes

∇∇′ = t1t′1∂t1t′1 + t1t
′
2∂t1t′2 + t2t

′
1∂t2t′1 + t2t

′
2∂t2t′2 + t1n

′∂t1n′

+ nt′1∂nt′1 + t2n
′∂t2n′ + nt

′
2∂nt′2 + nn′∂nn′ .

(2.52)

Remember the boundary condition for the Green’s function,

D(x,x′, ω) = 0, x ∈ Qj or x′ ∈ Qj , j = 1, ..., r. (2.53)

Thus for x,x′ ∈ Qi;
∂t1D = ∂t′1D = ∂t2D = ∂t′2D = 0, (2.54)

which gives

∇∇′D(x,x′, ω) = nn′∂nn′D(x,x′, ω), x,x′ ∈ Qi. (2.55)
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Under the assumption that x,x′ ∈ Qi, we can insert equations (2.53) and (2.55) into

the defining equation of the stress tensor (2.47). It then changes into

Sq(x, ω) = lim
x′→x

(
−nn′ + 1

2
Tr(nn′)I

)
∂nn′D(x,x′, ω)

=

(
−nn+

1

2
Tr(nn)I

)
∂nnD(x,x, ω). (2.56)

The expression for the force changes into

Fi = −
∮
Qi

dAxn ·
∞∫
−∞

dω

2π
Sq(x, ω)

= − 1

2π

∮
Qi

dAxn ·
∞∫
−∞

dω

(
−nn+

1

2
Tr(nn)I

)
∂nnD(x,x, ω)

=
1

4π

∮
Qi

dAxn

∞∫
−∞

dω ∂nnD(x,x, ω),

(2.57)

where we have used that n · nn = n, Tr(nn) = ‖n‖2 = 1 and n · I = n. Thus the

unregularized force on object i is

Fi =
{

Qi

dAx n(x) P (x), (2.58)

where n(x) is the unit normal pointing into the region V0 and the pressure, P , on surface

i, is given by

P (x) =
1

4π

∞∫
−∞

dω ∂nnD(x,x, ω) (2.59)

Positive pressure means that the force is pointing in the same direction as the normal.

2.3 Boundary integral equation for the pressure density

We have now related the Casimir force to the Green’s function D(x,x, ω) through a

double normal derivative. The quantity ∂nnD will be referred to as the pressure density.

This section will be used to derive a boundary integral equation for the pressure density.

In order to derive such an equation, we return to the PDE that describes the Green’s

function (2.26). Start by taking the gradient with respect to the primed variable to

obtain

∇2E(x,x′, ω)− ω2E(x,x′, ω) = ∇′δ(x− x′), (2.60)
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where the definition

E(x,x′, ω) = ∇′D(x,x′, ω) (2.61)

is used. Since D(x,x′, ω) = 0 for x,x′ ∈ Qj , the boundary condition

E(x,x′, ω) = 0, x ∈ Qj (2.62)

holds. In order to find a boundary integral formulation of the problem, we introduce

the free Green’s function D0,

D0(x,x′′, ω) = − e
−|ω|‖x−x′′‖

4π‖x− x′′‖
, (2.63)

which satisfies the differential equation

LD0(x,x′′, ω) = δ(x− x′′). (2.64)

L is the differential operator given by

L = ∇2 − ω2, (2.65)

which is same as the Helmholtz operator ∇2 + k2 for k = iω. Thus we see that D0 is a

Green’s function that satisfies equation (2.26), but not the boundary conditions.

Hereafter abbreviations such as for example D(x,x′′) will be used for the Fourier

components D(x,x′′, ω). Using the fact that ∇2E = (∇2Ex,∇2Ey,∇2Ez), we can apply

Green’s second identity on each component to produce an integral formulation of the

boundary value problem (2.60), (2.62);

y

V0

dVx
{
D0(x,x′′)LE(x,x′)− E(x,x′)LD0(x,x′′)

}
=

y

V0

dVx
{
D0(x,x′′)∇2E(x,x′)− E(x,x′)∇2D0(x,x′′)

}
= −

∑
α

{

Qα

dAx ·
{
D0(x,x′′)∇E(x,x′)− E(x,x′)∇D0(x,x′′)

}
,

(2.66)

where x′,x′′ ∈ V0. The notation ∇E means taking the gradient of each component of

E. In the second term the dyadic product is used. The dot-product of a vector and

a 2-tensor will produce a vector. The minus sign appears because dAx = dAxn, and

n is defined such that it points out of each of the surfaces Qα and into V0. Inserting
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equations (2.60) and (2.64) give

y

V0

dVx
{
D0(x,x′′)∇′δ(x− x′)− E(x,x′)δ(x− x′′)

}
= −

∑
α

{

Qα

dAx ·
{
D0(x,x′′)∇E(x,x′)− E(x,x′)∇D0(x,x′′)

}
.

(2.67)

Inserting the boundary condition E(x,x′) = 0 for x ∈ Qj and using the properties of

the Dirac delta, we obtain the integral identity

y

V0

dVxD0(x,x′′)∇′δ(x− x′) = E(x′′,x′)−
∑
α

{

Qα

dAx D0(x,x′′)∂nE(x,x′), (2.68)

where x′,x′′ ∈ V0. This integral equation is satisfied by any solution to equation (2.60).

However, we don’t have to solve the equation in the entire region V0 since the pressure

only acts on the conductors. Therefore we are going to let x′,x′′ approach the boundaries

Qk. It turns out that it isn’t a trivial thing to take these limits, but we can start by

observing that if we let x′′ approach the boundary, Qj , of conductor j, then E(x′′,x′) =

0. This term disappears from equation (2.68) and we obtain

−
y

V0

dVxD0(x,x′′)∇′δ(x− x′) =
∑
α

{

Qα

dAx D0(x,x′′)∂nE(x,x′), (2.69)

where x′′ ∈ Qj and x′ ∈ V0. The free Green’s function D0 has a pole of order one at

x = x′′. Therefore the integrals in the equation have singularities at the points x = x′′.

However, as we will see in the next section, these can be made sense of as principal value

integrals. Remember that we want to use our boundary integral equation to find the

pressure density, ∂nnD, on the boundaries of the conductors. We now have an equation

for ∂nE, but because of the close relation between the function ∂nE and ∂nnD, it is an

easy task to manipulate equation (2.69) such that it contains ∂nnD. We let x′ approach

the boundary Qi of conductor i and (initially) ignore the problems that arise on the left

hand side if i = j and x′ → x′′. As we did in the previous section, we change basis to

normal and tangent vectors at x′ such that the gradient ∇′ becomes

∇′ → t′1∂t′1 + t′2∂t′2 + n′∂n′ . (2.70)

The boundary condition D(x,x′) = 0, for x′ ∈ Qi, gives

∂nE(x,x′) = ∂n∇′D(x,x′)→ ∂n(t′1∂t′1 + t′2∂t′2 + n′∂n′)D(x,x′)

= ∂nn
′∂n′D(x,x′) = n′∂nn′D(x,x′).

(2.71)

We now consider what happens to the left hand side of equation (2.69) when x′ → Qi

(still omitting the special case x′ → x′′ ). Observe that L is a selfadjoint operator that
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acts on the space of functions

M =
{
f : V0 → R

∣∣ f(x) = 0 for x ∈ Qk, k = 1, 2, ..., r
}
. (2.72)

Assume
{
φλ
∣∣ φλ ∈M} is a complete set of eigenfunctions for L. Then for f ∈ M, we

have that

f(x) =
∑
λ

〈f |φλ〉φλ(x) =
∑
λ

∫
dVx′f(x′)φλ(x′)φλ(x). (2.73)

Formally this can be done for the Dirac-delta function as well, s.t. for x,x′ ∈ Qk we

have

δ(x− x′) =
∑
λ

φλ(x)φλ(x′). (2.74)

Using the expansion of the gradient ∇′, we get

∇′δ(x− x′) =
∑
λ

φλ(x)∇′φλ(x′)→
∑
λ

φλ(x)(t′1∂t′2 + t′2∂t′2 + n′∂n′)φλ(x′)

=
∑
λ

φλ(x)n′∂n′φλ(x′) = n′∂n′δ(x− x′).
(2.75)

Thus the left hand side of equation (2.83) changes to

−
y

V0

dVxD0(x,x′′)∇′δ(x− x′) = −
y

V0

dVxD0(x,x′′)n′∂n′δ(x− x′)

= −n′∂n′

y

V0

dVxD0(x,x′′)δ(x− x′) = −n′∂n′D0(x′,x′′)
(2.76)

where n′ is the normal vector pointing from the boundary Qi and into V0. We see that

n′ is common to both sides of the equation and can be cancelled. Thus we get the

boundary integral equation

− ∂n′D0(x′,x′′) =
∑
α

{

Qα

dAx D0(x,x′′)∂nn′D(x,x′), (2.77)

where x′ ∈ Qi, x′′ ∈ Qj , i, j = 1, ..., r and assuming that x′ 6= x′′.

2.4 Regularization of the boundary integral equation

As we have already indicated, the boundary integral equation (2.77) can’t be solved

w.r.t the pressure density, ∂nn′D, as it stands. We have to define how to integrate over

the infinity that occurs on the right hand side at x = x′′ and how to treat the singularity

that occurs on the left hand side when x′ approaches x′′. This will be a big part of the

regularization of the equation. In addition, the regularization consists of subtracting the
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self-pressure contribution from ∂nn′D(x,x′). We will return to this at the end of the

section.

The first part of the regularization will be to define how the integrals on the right

hand side shall be calculated. Remember that we let x′′ → Qj , thus the j-th integral

has a singularity when x = x′′. The other integrals can be treated as ordinary integrals.

In order to define how to perform the j-th integral, we start by extending the surface Qj

to Qεj ∪ Dε, where Dε is the hemisphere with radius ε, centered around x′′ (see figure

2.1). Qεj is almost the same surface as Qj , only a disk with a radius ε and center in x′′ is

removed. To get back to the original surface Qj is simply a matter of letting the radius

go to zero. A parametrization of the hemisphere is given by

X(ϕ, θ) = x′′ + ε (sinϕ cos θ, sinϕ sin θ, cosϕ) , ϕ1 ≤ ϕ ≤ ϕ1 +
π

2
, 0 ≤ θ < 2π (2.78)

and ϕ1 is a constant. Without loss of generality, we can assume that ϕ1 = 0. A

parametrization of the normal vector is

N(ϕ, θ) = Xθ ×Xϕ = ε2sinϕ (sinϕ cos θ, sinϕ sin θ, cosϕ) = ε2sinϕ n, (2.79)

where n is the unit normal, pointing out of the hemisphere.

Figure 2.1: The extended surface around the singularity at x′′

The j-th integral on the right hand side in the boundary integral equation (2.77), we

define as the integral over Qεj and Dε, where the radius ε goes to zero:

lim
ε→0

x

Qεj

dAxD0(x,x′′)∂nn′D(x,x′) + lim
ε→0

x

Dε

dAxD0(x,x′′)∂nn′D(x,x′).
(2.80)
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By definition, the integral over Qεj is a principal value integral when ε → 0. The

contribution from integrating over the hemisphere Dε is

x

Dε

dAxD0(x,x′′)∂nn′D(x,x′) =

∫ π/2

0
dϕ

∫ 2π

0
dθ ‖N‖D0(X,x′′)∂nn′D(X,x′)

=

∫ π/2

0
dϕ sin(ϕ)

∫ 2π

0
dθ ε2

e−|ω|ε

4πε
∂nn′D(X,x′). (2.81)

But

lim
ε→0

ε2
e−|ω|ε

4πε
= lim

ε→0
ε
e−|ω|ε

4π
= 0. (2.82)

Thus the integral over the hemisphere Dε gives no contribution and therefore the j-th

integral reduces to a principal value integral over Qj . The boundary integral equation

(2.77) now can be written

− ∂n′D0(x′,x′′) =
∑
α

PVx′′
x

Qα

dAxD0(x,x′′)∂nn′D(x,x′), (2.83)

where x′ ∈ Qi, x′′ ∈ Qj , i, j = 1, ..., r. Only the integral over Qj is a principal value

integral.

The next step is to define how to take the limit x′ → x′′ so that we don’t get an

infinity on the left hand side of the equation for x′ = x′′. Observe that if we start

with equation (2.69) where x′ ∈ V0, x′′ ∈ Qi and takes the limit x′ → x′′ along some

arbitrary path in V0, then some of the steps that led to equation (2.83) aren’t valid and

one doesn’t get rid of the infinity on the left hand side. However, as we remember from

the derivation of the expression of the force (equation (2.57)), the limit x′ → x was

taken with both x ∈ Qi and x′ ∈ Qi. Thus letting x′ approach any point, but not x′′,

at the boundary Qi and then taking the limit x′ → x′′ along the surface Qi, is the only

interesting limit for us. Doing it this way, we can use equation (2.83) as a starting point

when we shall take the limit x′ → x′′.

Notice that the free Green’s function D0, given by equation (2.63), only depends on

the distance ‖x′ − x′′‖. The gradient of a function g: Rn → R that only depends of the

distance r = ‖r‖ is given by

∇g(r) =
r

r

d

dr
g(r). (2.84)

Therefore the left hand side of equation (2.83) can be written as

−∂n′D0(x′,x′′) = −n′ · ∇′D0(x′,x′′) = −n′ · 1

4π

[
r

r

d

dr

e−ωr

r

]
r=x′−x′′

= −n′ ·
(
x′ − x′′

) e−ω‖x
′−x′′‖

4π‖x′ − x′′‖3
(
1 + ω‖x′ − x′′‖

)
.

(2.85)
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In two dimensions the corresponding equation to (2.85) has a ‖x′−x′′‖2 dependence

in the denominator. In that case it is possible to show that ∂n′D0(x′,x′′) is finite also

in the limit x′ → x′′. I. Kilen showed that this factor is proportional to the curvature

when x′ → x′′ in his thesis [1].

In our case we have a ‖x′ − x′′‖3 dependence in the denominator and therefore it

seems like we haven’t resolved anything by first letting x′ → Qi. There is still an infinity

in ∂n′D0(x′,x′′) when we take the limit x′ → x′′. This is a clear difference from the two

dimensional case. The quantity ∂n′D0(x′,x′′) must be regularized even more.

Observe that for parallel plates, because of orthogonality, n′⊥(x′−x′′), the quantity

∂n′D0(x′,x′′) is zero. It turns out that this fact also will help us in situations where

the boundaries are surfaces with curvature. The reason is that the surfaces Qk will

be discretized into pieces that are flat, i.e without curvature. The flat pieces will be

triangles. When x′ and x′′ are on the same triangle, the normal n′ is orthogonal to

x′ − x′′ and the contribution is zero. When x′ and x′′ are on different triangles, the

contribution from the left hand side can be calculated using equation (2.85). Because

x′ and x′′ are on different triangles, we know that the denominator isn’t zero and

the contribution from the left hand side is finite. Thus the discretization removes the

singularity and is therefore the final regularization of ∂n′D0(x′,x′′). However, we should

keep in mind that, especially when the resolution of the discretization is high and the

objects are very curved and the two sources x′ and x′′ are placed on two neighbouring

triangles, that both the nominator and the denominator are close to zero. We will discuss

this behaviour in more detail after having introduced how we are going to discretize the

equations.

Our boundary value equation (2.83) has now been regularized s.t. the expression

on the left hand side is finite for all x′ ∈ Qi,x′′ ∈ Qj and the integrals on the right

hand side are treated as principal value integrals when integrating over singularities

in the free Green’s function D0. However, we haven’t arrived at our fully regularized

boundary integral equations yet. The final part of the regularization will be to separate

the interaction pressure from the self pressure.

Assume that x and x′′ belong to different surfaces Qk and Ql. Observe that when

ω →∞, the free Green’s function D0(x,x′′, ω)→ 0 (see equation (2.63)). This make the

equations (2.83) decouple into separate equations for each surfaceQj for high frequencies.

We denote the solutions of the resulting equations by Pi(x,x′), where the equations are

− ∂n′D0(x′,x′′) = PVx′′
x

Qi

dAxD0(x,x′′)Pi(x,x′) x′,x′′ ∈ Qi, i = 1, .., r. (2.86)

Since Pi(x,x′) is the self pressure on surface i, the equations (2.86) will be called the

self pressure equations. Physically, the self pressure isn’t measurable. Our final regular-

ization will therefore be to subtract the self pressure contribution from equation (2.83).
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This will remove the high frequency contribution from the force and the resulting force

will be redefined as the correct force for our problem.

By subtracting
s
Qi
dAxD0(x,x′′)Pi(x,x′) from both sides of equation (2.83), intro-

ducing Q = ∪kQk and interchanging the left and right hand side of the equation, we

get

x

Q

dAxD0(x,x′′)P(x,x′) = −∂n′D0(x′,x′′)−
x

Qi

dAxD0(x,x′′)Pi(x,x′) (2.87)

where x′ ∈ Qi and x′′ ∈ Qj for i, j = 1, 2, ..., r. The integrals over Qj are principal value

integrals and the regularized density, P, is given by

P(x,x′) =

∂nn′D(x,x′)− Pi(x,x′), x,x′ ∈ Qi

∂nn′D(x,x′), x ∈ Qj ,x′ ∈ Qi, j 6= i.
(2.88)

This is our final boundary integral equation, which is fully regularized. It can be solved

and investigated using standard analytical or numerical methods. We will return to how

we are going to do this shortly.

When we have solved equation (2.87) for all ω’s that contributes to the density

components P(x,x′, ω), we get the regularized pressure,

P (x) =
1

4π

∫ ∞
−∞

dω P(x,x, ω). (2.89)

The fact that D0(x,x′′, ω) is an even function in ω implies that P(x,x, ω) is even in ω

and therefore the regularized pressure can be written as

P (x) =
1

2π

∞∫
0

dω P(x,x, ω). (2.90)

Finally, the regularized force is found by

Fi =
{

Qi

dAx n(x)P (x) =
{

Qi

dAx n(x)
1

2π

∞∫
0

dω P(x,x, ω). (2.91)

2.5 Discretization of the regularized boundary integral equa-

tion

It can be convenient to separate ordinary integrals and principal value integrals, and

also to separate between whether x′ and x′′ belong to the same surface or not. Using

the self-pressure equation (2.86), the fully regularized boundary integral equation (2.87)
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can for x′,x′′ ∈ Qi be written as

PVx′′

x

Qi

dAxD0(x,x′′)P(x,x′) +
∑
α 6=i

x

Qα

dAxD0(x,x′′)P(x,x′) = 0. (2.92)

For x′ ∈ Qi, x′′ ∈ Qj , i 6= j, we have

PVx′′
x

Qj

dAxD0(x,x′′)P(x,x′) +
∑
α 6=j

x

Qα

dAxD0(x,x′′)P(x,x′)

= − ∂n′D0(x′,x′′)−
x

Qi

dAxD0(x,x′′)Pi(x,x′),
(2.93)

where Pi(x,x′) is the self pressure, found by solving equation (2.86). These equations

will be solved numerically using the method of moments, which is a numerical technique

used to convert the integral equations into a linear system that can be solved numerically.

For the test configuration consisting of two parallel plates, two different discretizations

are used; both standard grids of squares and triangulations consisting of triangles. For

all other configurations we only discretize using triangulations.

To simplify the notation of the linear systems that appear, the following definitions

will be helpful: Given a discretization of the surface Qi, let Sik be the kth triangle or

square and sk the “center of mass” of Sik.

Define

xijkk′ = P(sk, sk′) for sk ∈ Sik and sk′ ∈ Sjk′ (2.94)

aijkk′′ =
x

Sik

dAxD0(x, sk′′), for sk′′ ∈ Sjk′′ , (2.95)

where the integral in equation (2.95) is a principal value integral when i = j and k = k′′.

Further, define

yijk′k′′ = −∂n′D0(sk′ , sk′′) for sk′ ∈ Sik′ and sk′′ ∈ Sjk′′ (2.96)

biikk′ = Pi(sk, sk′) for sk ∈ Sik and sk′ ∈ Sik′ . (2.97)

To illustrate the efficiency of the above notation, let us see how the integrals in equations

(2.92) and (2.93) will change:

x

Qi

dAxD0(x, sk′′)P(x, sk′) =
∑
k

x

Sik

dAxD0(x, sk′′)P(x, sk′)

≈
∑
k

x

Sik

dAxD0(x, sk′′)

P(sk, sk′) =
∑
k

aijkk′′x
ij
kk′ . (2.98)
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Remember that we are considering a configuration consisting of r conductors. Dis-

cretizing the boundaries {Qk}rk=1 and using the above notation, equations (2.92) and

(2.93) can be approximated by the system∑
k

a11
kk′′x

1i
kk′ + ...+ ai1kk′′x

ii
kk′ + ...+ ar1kk′′x

ri
kk′ = yi1k′k′′ −

∑
k

ai1kk′′b
ii
kk′

...∑
k

a1,i−1
kk′′ x

1i
kk′ + ...+ ai,i−1

kk′′ x
ii
kk′ + ...+ ar,i−1

kk′′ x
ri
kk′ = yi,i−1

k′k′′ −
∑
k

ai,i−1
kk′′ b

ii
kk′∑

k

a1i
kk′′x

1i
kk′ + ...+ aiikk′′x

ii
kk′ + ...+ arikk′′x

ri
kk′ = 0

∑
k

a1,i+1
kk′′ x

1i
kk′ + ...+ ai,i+1

kk′′ x
ii
kk′ + ...+ ar,i+1

kk′′ x
ri
kk′ = yi,i+1

k′k′′ −
∑
k

ai1kk′′b
ii
kk′

...∑
k

a1r
kk′′x

1i
kk′ + ...+ airkk′′x

ii
kk′ + ...+ arrkk′′x

ri
kk′ = yirk′k′′ −

∑
k

airkk′′b
ii
kk′ .

(2.99)

The self pressure equation (2.86), for object i, becomes

∑
k

aiikk′′b
ii
kk′ = yiik′k′′ . (2.100)

We express this linear system of equations as a product of block matrices. Define

Aij =
(
aijkk′′

)T
=
(
aijk′′k

)
, (2.101)

Xij =
(
xijkk′

)
, (2.102)

Y ij =
(
yijk′k′′

)T
=
(
yijk′′k′

)
, (2.103)

Bii =
(
biikk′
)
. (2.104)

The above equations (2.99) can be expressed as

A11 · · · · · · Ai1 · · · · · · Ar1

...
. . .

...
...

A1,i−1 . . .
... Ar,i−1

A1i · · · · · · Aii · · · · · · Ari

A1,i+1
...

. . . Ar,i+1

...
...

. . .
...

Ari · · · · · · Ari · · · · · · Arr





X1i

...

Xi−1,i

Xii

Xi+1,i

...

Xri


=



Y i1 −Ai1Bii

...

Y i,i−1 −Ai,i−1Bii

0

Y i,i+1 −Ai,i+1Bii

...

Y ir −AirBii


, (2.105)
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for i = 1, 2, ..., r. These are r block matrix equations for r block matrix unknowns. The

self pressure is given by

AiiBii = Y ii, i = 1, 2, ..., r. (2.106)

For the special configuration consisting of two objects, equations (2.105) turns into[
A11 A21

A12 A22

][
X11

X21

]
=

[
0

Y 12 −A12B11

]
(2.107)

and [
A11 A21

A12 A22

][
X12

X22

]
=

[
Y 21 −A21B22

0

]
, (2.108)

where Bii is given by

AiiBii = Y ii, i = 1, 2. (2.109)

For each ω, the self pressure is found by solving for Bii. After this, the matrices Xii are

found, where the diagonal elements contribute to the pressure.

The next two sections show how to calculate the elements of the matrices Aij and

Y ij for the two different discretizations that we are going to use.

2.6 Matrix elements for the square discretization of the

parallel plates

Fix a coordinate system such that the plates are lying in the planes z = z1 = −a
2 and

z = z2 = a
2 . Let the plates have length L in both x- and y-direction. Fix two grids such

that Sikl is the square with center in skl = ((k − 1
2)h, (l − 1

2)h, zi) and edges of length

h = L
N , where N is the number of squares in both x- and y-direction. A problem with this

discretization is that we get four-double lower indices such as for example aijklk′′l′′ , but we

want to work with matrix elements. A way to resolve this is to let m = k+N(l−1) and

m′′ = k′′ + N(l′′ − 1) . Then m and m′ run from 1 to N2 and the elements transforms

as aijklk′′l′′ → aijmm′′ . Finally, we rename the dummy-indices m and m′′ s.t. we get aijkk′′ .

2.6.1 Matrix elements yijk′k′′

The matrix elements yijk′k′′ are given by equations (2.96) and (2.85). Thus

yijk′k′′ = −∂n′D0(sk′ , sk′′)

= −n′ · (sk′ − sk′′)
e−ω‖sk′−sk′′‖

4π‖sk′ − sk′′‖3
(1 + ω‖sk′ − sk′′‖) .

(2.110)
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When i = j, the normal vector n′ is orthogonal to sk′ − sk′′ and therefore

yiik′k′′ = 0. (2.111)

This means that Y 11 = Y 22 = 0 and the unique solutions of the self pressure equations

(2.106) are

B11 = B22 = 0. (2.112)

I.e. the self pressure is zero on the parallel plates.

When i 6= j, we have that n′ · (sk′ − sk′′) = −a. Thus

yijk′k′′ =
a

4π

e−ω‖sk′−sk′′‖

‖sk′ − sk′′‖3
(1 + ω‖sk′ − sk′′‖) , i 6= j. (2.113)

2.6.2 Matrix elements aijkk′′

When k 6= k′′, the elements are approximated by the midpoint rule

aijkk′′ =
x

Sik

dAxD0(x, sk′′) = − 1

4π

x

Sik

dAx
e−ω‖x−sk′′‖

‖x− sk′′‖
≈ −h

2

4π

e−ω‖sk−sk′′‖

‖sk − sk′′‖
. (2.114)

When i = j and k = k′′, we have to integrate over the singularity at x = sk. Remember

from the derivation in section 2.4 that we can treat this integral as a principal value

integral because the contribution from integrating over the hemisphere Dε is zero, thus

aiikk = PVsk

x

Sik

dAxD0(x, sk) = − 1

4π
PVsk

x

Sik

dAx
e−ω‖x−sk‖

‖x− sk‖
. (2.115)

It is possible to make this integral independent of i and k by choosing a two dimensional

coordinate system, lying in the plane z = zi, such that the center of mass, sk, of the

square Sik is in the origin 0 = (0, 0), and the edges of Sik are parallel to the coordinate

axes. Thus

aiikk = − 1

4π
PV

x

S

dAx
e−ω‖x‖

‖x‖
≡ − 1

4π
lim
ε→0

x

Sε

dA
e−ω‖x‖

‖x‖
, (2.116)

where S = [−h
2 ,

h
2 ]× [−h

2 ,
h
2 ] and Sε is the remaining part of the square S when the part

which is inside the hemisphere Dε of radius ε and with center in the origin is removed.

It will now be helpful to define a function f , given by

f(r;ω) =
e−ωr

r
. (2.117)
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This function is closely related to the free Green’s function D0. Using f , we get

aiikk = − 1

4π
PV

x

S

dA f(‖x‖;ω). (2.118)

In order to solve the above integral (2.118), the divergence theorem will be used. There-

fore we must find a function g s.t f(r;ω) = ∇ · g(r;ω). Try with g(r;ω) = rh(r;ω).

Then

∇ · g(r;ω) = ∇ · (rh(r;ω)) = (∇ · r)h(r;ω) + r · ∇h(r;ω)

= 2h(r;ω) + r · r
r
h′(r;ω) = 2h(r;ω) + rh′(r;ω).

(2.119)

In order to find h(r;ω), we have to solve the first order linear ODE given by

2h(r;ω) + rh′(r;ω) =
e−ωr

r
. (2.120)

The solution, found using standard methods, is

h(r;ω) =
1

ωr2

(
C − e−ωr

)
, C ∈ R, (2.121)

and therefore

g(r;ω) = rh(r;ω) =
r

ωr2

(
C − e−ωr

)
, C ∈ R. (2.122)

We are free to choose the constant C, but remember that we are going to integrate over

ω from 0 to ∞. Observe that the choice C = 1 gives

lim
ω→0

g(r;ω) = lim
ω→0

r

ωr2

(
1− e−ωr

)
=
r

r
(2.123)

Thus C = 1 makes sure that g(r; 0) is finite, and we therefore define g by

g(r;ω) =
r

ωr2

(
1− e−ωr

)
. (2.124)

The diagonal elements change to

aiikk = − 1

4π
PV

x

S

dA∇ · g(x;ω). (2.125)

The divergence theorem gives

aiikk = − 1

4π
lim
ε→0

∮
∂Sε

ds n · g(x;ω) = − 1

4π

∮
∂S

ds n · g(x;ω) + lim
ε→0

∮
Cε

ds n · g(x;ω)

 ,

(2.126)
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where ∂Sε = ∂S ∪ Cε is the boundary of Sε. ∂S is the boundary of the square S and

Cε is the boundary of the hemisphere Dε. A parametrization of the circle Cε, correctly

oriented, is given by

Cε : γ(θ) = ε (cos θ,− sin θ) , θ ∈ [0, 2π]. (2.127)

The contribution from the second integral in equation (2.126) is

− 1

4π

∮
Cε

ds n · g(x;ω) = − 1

4π

2π∫
0

dθ εn · γ(θ)

ω‖γ(θ)‖2
(

1− e−ω‖γ(θ)‖
)

= − 1

4π

2π∫
0

dθ
ε2

ωε2
(
1− e−ωε

)
= − 1

2ω

(
1− e−ωε

) ε→0−→ 0.

(2.128)

Thus there is no contribution from integrating around the circle Cε when ε → 0, and

therefore

aiikk = − 1

4π

∮
∂S

ds n · g(x;ω), (2.129)

where ∂S = C1 ∪ C2 ∪ C3 ∪ C4 is the boundary of the square S. A parametrization of

∂S is introduced;

C1 : γ1(t) =
(
t,−h

2

)
, t ∈

[
−h

2 ,
h
2

]
, n1 = (0,−1),

C2 : γ2(t) =
(
h
2 , t
)
, t ∈

[
−h

2 ,
h
2

]
, n2 = (1, 0),

C3 : γ3(t) =
(
−t, h2

)
, t ∈

[
−h

2 ,
h
2

]
, n3 = (0, 1),

C4 : γ4(t) =
(
−h

2 ,−t
)

t ∈
[
−h

2 ,
h
2

]
n4 = (−1, 0).

(2.130)

Observe that ni · γi(t) = h
2 and ‖γi(t)‖ =

√
t2 +

(
h
2

)2
for i = 1, 2, 3, 4. Thus

aiikk = − 1

4π

h/2∫
−h/2

dt

4∑
i=1

ni ·
γi(t)

ω‖γi(t)‖2
(

1− e−ω‖γi(t)‖
)

= − h

2πω

h/2∫
−h/2

dt
1− e−ω

√
t2+(h

2
)2

t2 + (h2 )2
.

(2.131)

This integral is calculated numerically, using a Gaussian quadrature or the midpoint

rule.
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2.7 Matrix elements for the triangle discretization

Consider a general configuration of r compact objects. Assume that the boundaries of

the objects have been triangulated by mi triangles on each of the r surfaces. Let the

triangles Sik be represented by their vertices x1k ,x2k ,x3k , which are oriented counter

clockwise when looking at the surface Qi. Let sk be the center of mass of each triangle,

i.e. sk = 1
3 (x1k + x2k + x3k). Aik is defined as the area of the triangle Sik.

2.7.1 Matrix elements yijk′k′′

The matrix elements yijk′k′′ are given by exactly the same expression as they were for the

square discretization;

yijk′k′′ = −n′ · (sk′ − sk′′)
e−ω‖sk′−sk′′‖

4π‖sk′ − sk′′‖3
(1 + ω‖sk′ − sk′′‖) . (2.132)

In particular, when i = j and k′ = k′′, we have that

yiik′k′ = 0 (2.133)

because the limit sk′ → sk′′ is taken with both sk′ ∈ Sik′ and sk′′ ∈ Sik′ , and therefore

n′ · (sk′ − sk′′) = 0.

2.7.2 Matrix elements aijkk′′

When i = j and k 6= k′′, or i 6= j, the matrix elements are approximated by the midpoint

rule;

aijkk′′ =
x

Sik

dAxD0(x, sk′′) = − 1

4π

x

Sik

dAx
e−ω‖x−sk′′‖

‖x− sk′′‖
≈ −

Aik
4π

e−ω‖sk−sk′′‖

‖sk − sk′′‖
. (2.134)

When i = j and k = k′′, the elements are represented via principal value integrals;

aiikk = PVsk

x

Sik

dAxD0(x, sk) = − 1

4π
PVsk

x

Sik

dAx
e−ω‖x−sk‖

‖x− sk‖
. (2.135)

Since the integrand only depends on ‖x− sk‖, we can choose coordinates such that the

integral simplifies. The coordinate choice will be made such that the triangle Sik is lying

in the xy-plane with the vertex x1k in the origin and the vertex x2k on the positive part

of the x axis. See figure 2.2.

Define

rk = x2k − x1k ,

qk = x3k − x1k .
(2.136)
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Figure 2.2: Change of coordinates.

The coordinates are chosen such that

x1k → 0 = (0, 0),

x2k → uk = (uk, 0),

x3k → vk = (vk, wk),

(2.137)

where

‖uk‖ = uk = ‖rk‖ (2.138)

and

vk = (vk, wk) = ‖qk‖(cosαk, sinαk) =
1

‖rk‖
(rk · qk, ‖rk × qk‖). (2.139)

In equation (2.139) the identities

a · b = ‖a‖‖b‖ cosα, (2.140)

‖a× b‖ = ‖a‖‖b‖ sinα (2.141)

are used. α is the angle between the vectors a and b. In these coordinates, the triangle

Sik has the vertexes 0, uk and vk. The center of mass becomes

sk =
1

3
(uk + vk). (2.142)

The diagonal elements are given by

aiikk = − 1

4π
PVsk

x

Sik

dAx
e−ω‖x−sk‖

‖x− sk‖
= − 1

4π
PVsk

x

Sik

dAxf(‖x− sk‖;ω). (2.143)
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By definition of the principal value integral, we have that

aiikk = − 1

4π
lim
ε→0

x

Sik,ε

dAxf(‖x− sk‖;ω), (2.144)

where Sik,ε is the remaining part of the triangle Sik when the part which is inside the

hemisphere Di
k,ε of radius ε, centered around sk, is removed. Now, use the fact that

f(r;ω) = ∇ · g(r;ω) and the divergence theorem to obtain

aiikk = − 1

4π

∮
∂Sik

dl n · g(x− sk;ω) + lim
ε→0

∮
Cik,ε

dl n · g(x− sk;ω)

 , (2.145)

where ∂Sik = C1k ∪C2k ∪C3k is the boundary of the triangle Sik. C
i
k,ε is the boundary of

the hemisphere Di
k,ε. Similar calculations as we did for the squares, show that integrating

around the circle Cik,ε give no contribution. Thus

aiikk = − 1

4πω

∮
∂Sik

dlx n ·
x− sk
‖x− sk‖2

(
1− e−ω‖x−sk‖

)
. (2.146)

A parametrization of ∂Sik is

C1k : γ1k(t) = ukt, t ∈ [0, 1],

C2k : γ2k(t) = uk + (vk − uk)t, t ∈ [0, 1]

C3k : γ3k(t) = vk(1− t), t ∈ [0, 1].

(2.147)

Observe that

dl n1k = dt ‖γ ′1k
(t)‖n1k = dt (0,−uk),

dl n2k = dt ‖γ ′2k
(t)‖n2k = dt (wk, uk − vk),

dl n3k = dt ‖γ ′3k
(t)‖n3k = dt (−wk, vk),

(2.148)

and

‖γ ′jk(t)‖njk · (γjk(t)− sk) =
ukwk

3
, j = 1, 2, 3. (2.149)

Inserting this and the parametrization into (2.146), we get

aiikk ≈ −
Aik
6πω

1∫
0

dt

3∑
j=1

1− e−ω‖γjk (t)−sk‖

‖γjk(t)− sk‖2
, (2.150)

where

Aik =
ukwk

2
(2.151)



Chapter 2. Boundary integral method 34

is the area of the triangle Sik. sk is the center of mass defined in equation (2.142). The

coordinates of the vertices uk and vk are given in equations (2.136),(2.137), (2.138) and

(2.139). The integral in equation (2.150) is calculated numerically using a Gaussian

quadrature or the midpoint rule.

2.8 Dependence on curvature and resolution in the self-

pressure

In this section we discuss how the self-pressure depend on curvature and number of

triangles in the discretization. The discretized self pressure equation is according to

equation (2.106)

AiiBii = Y ii. (2.152)

Thus we have to consider the matrix elements aiikk′′ and yiik′k′′ . The main influence to the

right hand side will come when the two sources x′ and x′′ are placed on two neighbouring

triangles Sik and Sik+1. The configuration of the two triangles that makes the matrix

element yiik,k+1 become as large as possible, is illustrated in the two figures 2.3 and 2.4.

s' s''

d2d

Figure 2.3: The two triangles Si
k and Si

k+1

In order to keep the analytical calculations simple, we do some simplifications. We

assume that surface i is triangulated by equilateral triangles of equal area. The software

we use for triangulating surfaces in this thesis is Netgen, which is an open source based

mesh generator. Even though mesh generators, such as Netgen, output triangles of

unequal size, we believe that this discussion will give us some insight about the self

pressure.

Let d be the shortest distance from the center of mass to the edges of the triangles.

We define s as the distance between the two centers of mass s′ = sk and s′′ = sk+1, i.e

s = s′ − s′′,

s = ‖s‖.
(2.153)
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n'
d

ss' s''

v

d

R

R

R

v

3/2 d

u

Figure 2.4: Looking at the two triangles Si
k and Si

k+1 from the side. The angle
between them is u. R is the radius of curvature.

The intersection between the surface and a plane containing the normal at a given point

on the surface will be a curve. This curve is called a normal section. We refer to

the curvature of a normal section as the sectional curvature. In general, a surface has

different sectional curvatures in different sections. The maximal and minimal sectional

curvature is called the principal curvature. It will be assumed that the largest of the

principal curvatures, κ, is obtained at the edge where the triangles Sik and Sik+1 intersect,

and points in the same direction as s . Let v be the angle between s and the plane that

the triangle Sik lies in. Elementary trigonometry gives that

s = 2d cos v. (2.154)

The radius of curvature is related to the curvature κ by

κ =
1

R
. (2.155)

R is a measure of the radius of the circular arc that best approximates the curve at that

point.

Let’s take a look at how the matrix elements, corresponding to these two triangles,

depend on the curvature κ and the resolution of the discretization. Looking to figure

2.4, we see that the distance d decreases when the size of the triangles decreases. Thus

the distance d is a measure of the resolution of the triangulation.
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The matrix element yiik,k+1 becomes

yiik,k+1 = −n′ ·
(
s′ − s′′

) e−ω‖s
′−s′′‖

4π‖s′ − s′′‖3
(
1 + ω‖s′ − s′′‖

)
= −n′ ·se

−ωs

4πs3
(1 + ωs) . (2.156)

Using the definition of the dot product and assuming that n′ points upwards, we find

that

n′ · s = ‖n′‖‖s‖ cos(
π

2
+ v) = −s sin v. (2.157)

Thus

yiik,k+1 =
sin v

4πs2
e−ωs (1 + ωs) =

sin v

16πd2 cos2 v
e−ωs (1 + ωs) . (2.158)

Using basic trigonometry again, we find that

sin v =
3d

2R
=

3dκ

2
, (2.159)

cos v =
√

1− sin2 v =

√
1−

(
3dκ

2

)2

. (2.160)

Thus

yiik,k+1 =
3κ

8πd (4− 9d2κ2)
e−ωd

√
4−9d2κ2

(
1 + ωd

√
4− 9d2κ2

)
. (2.161)

We see that yiik,k+1 = 0 if the curvature is zero. The main contribution to the pressure

and self-pressure comes from quite small ω. For small d, the exponential is of order 1

and we have that

yiik,k+1 ≈
3κ

32πd
. (2.162)

Thus yiik,k+1 is proportional to κ and inversely proportional to d. We therefore expect

that this quantity can be quite large, especially if the resolution of the triangulation is

high, and the surface is very curved in the region where Sik and Sik+1 are placed.

The expression for the particular matrix element yiik,k+1 in equation (2.161) holds for

a general surface. In order to keep the calculations simple, we for the rest of this section

assume that surface i is a sphere of radius R. A sphere has the special property that the

curvature is constant all over the surface; all sectional and principal curvatures equal

the inverse of the radius of the sphere. Thus at any section on the sphere, the curvature

is equal to the maximal principal curvature κ. Then there are several elements yiik,k+1,

k = 1, 2, ..., in the matrix Y ii that are given by equation (2.161). These elements are the

largest in the matrix and therefore these will drive the changes of the right hand side

of the equation when the resolution or the curvature is changed. The other elements

will play a minor role than these elements, and therefore we don’t find it necessary to

analyse their dependence on the curvature and the resolution of the discretization.
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Since the surface is a sphere, we can find an explicit expression for the resolution

dependence in d. Using basic trigonometry, we find that the area of the triangles is

given by

A = Aik = Aik+1 = 3
√

3d2. (2.163)

The number of triangles, N , on the sphere is given by

N =
4πR2

A
=

4πR2

3
√

3d2
. (2.164)

Solving for d we obtain

d =

√
π

3
√

3

2R√
N

=

√
π

3
√

3

2

κ
√
N
. (2.165)

Thus we see that, in addition to being a measure of resolution, the distance d also

depends on the curvature κ.

The matrix elements aiik,k+1 are given by equation (2.134),

aiik,k+1 = −
Aik
4π

e−ω‖s
′−s′′‖

‖s′ − s′′‖
= −

Aik
4π

e−ωs

s
. (2.166)

The fact that s = 2d cos v, and equation (2.160), gives that

aiik,k+1 = −3
√

3d2

4π

e−2ωd
√

1−( 3dκ
2 )

2

2d

√
1−

(
3dκ
2

)2 = −3
√

3d

4π

e−ωd
√

4−9d2κ2

√
4− 9d2κ2

. (2.167)

When the resolution of the discretization is high, we have that

aiik,k+1 ≈ −
3
√

3d

8π
. (2.168)

We see that aiik,k+1 is proportional to d. The distance d, and therefore also aiik,k+1, depend

on both curvature and resolution.

In order to find the resolution and curvature dependence in the self pressure, we

consider the other elements in the matrix Aii as well. The diagonal elements aiikk are

given by equation (2.150);

aiikk ≈ −
Aik
6πω

1∫
0

dt
3∑
j=1

1− e−ω‖γjk (t)−sk‖

‖γjk(t)− sk‖2
. (2.169)
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The distance ‖γjk(t)− sk‖ is of the same size as d and therefore

aiikk ≈ −
3
√

3d2

6πω

1∫
0

dt
3∑
j=1

1− e−ωd

d2
≈ −3

√
3d2

6πω

3∑
j=1

ωd

d2
∼ d. (2.170)

The other matrix elements go as

aiikk′′ = −
Aik
4π

e−ω‖sk−sk′′‖

‖sk − sk′′‖
= −3

√
3d2

4π

e−ω‖sk−sk′′‖

‖sk − sk′′‖
∼ d2 e

−ω‖sk−sk′′‖

‖sk − sk′′‖
. (2.171)

Thus there is a d2-dependence. We also observe that when we move away from the tridi-

agonal, the exponential and the denominator come into play and the elements become

progressively smaller.

According to the discussion above, the matrix Aii have elements with a d-dependence

close to the diagonal and elements that get smaller when moving away from the diagonal.

The largest elements in the matrix Y ii go as κ
d . Therefore the self-pressure equation

AiiBii = Y ii roughly can be written as

dtAB =
κ

d
Y, (2.172)

where t ≥ 1 and A, Y are matrices with elements of order 1. We get

B =
κ

d1+t
A−1Y. (2.173)

We therefore expect that the self pressure go as

biikk′′ ∼
κ

d1+t
=

1

Rd1+t
∼ N (1+t)/2

R2+t
, t ≥ 1, (2.174)

where equation (2.165) is used. The correct value of t is more difficult to determine.

Since the biggest elements in Aii is of order d1, we are pretty sure that t is greater

or equal to one. It is reasonable to think that the d-dependent elements close to the

diagonal will dominate such that t is close to 1. However, we should keep in mind

that the d2- dependent elements depend more on the curvature and resolution than the

d-dependent elements, and there are more of them.

In order to investigate whether the estimate (2.174) is correct, we do some numerical

calculations. If it is, we can also determine the value of t more accurately. Consider

a configuration consisting of two concentric spheres. The radius of the outer sphere is

kept constant at a radius of 3 units, whereas the radius of the inner sphere is varied

in the range from 1.4 to 2.8 units. The self pressure is calculated on the inner sphere.

A disadvantage with the mesh generator Netgen is that one can’t control exactly the

number of triangles in the discretization. Typically, the roughest triangulation of a
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surface consists of about a hundred triangles. When one increases the resolution once,

the number of triangles is quadrupled, then quadrupled again and so it continues. Thus

the 6 first triangulations of a surface generated by Netgen can consist of for example

100, 400, 1600, 6400, 25600 and 102400 triangles. The first, and maybe also the second,

triangulation is usually so rough that it doesn’t give any valuable information. Typically,

the triangulations after the fifth contain so many triangles that the computer doesn’t

have enough memory do calculations. Thus there are only 3 or 4 different resolutions

that we are able to do calculations for.

Calculated self pressure

c3 R-3

c4 R-4

c5 R-5

1.6 1.8 2.0 2.2 2.4 2.6 2.8
R1

-40

-30

-20

-10

Self pressure

Figure 2.5: Self pressure on the inner sphere plotted against its radius. The number
of triangles on the inner sphere is about 1900.

Calclated self pressure

c3 R-3

c4 R-4

c5 R-5

1.6 1.8 2.0 2.2 2.4 2.6 2.8
R1

-250

-200

-150

-100

-50

Self pressure

Figure 2.6: Self pressure on the inner sphere plotted against its radius. The number
of triangles on the inner sphere is about 7500.

In figures 2.5, 2.6 and 2.7 the self pressure on the inner sphere is plotted as function

of radius. There are, respectively, about 1900, 7500 and 30000 triangles on the inner

sphere. The self pressure is plotted versus the three functions

pn(R) = cnR
−n, n = 3, 4, 5, (2.175)
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Calculated self pressure

c3 R-3

c4 R-4

c5 R-5

1.6 1.8 2.0 2.2 2.4 2.6 2.8
R1

-1500

-1000

-500

Self pressure

Figure 2.7: Self pressure on the inner sphere plotted against its radius. The number
of triangles on the inner sphere is about 30000.

where cn is chosen such that pn(2.8) equals the calculated self pressure for R = 2.8.

These three plots, quite clearly, predicts that biikk′′ ∼ R−4 when the number of triangles

is constant. This suggests that the value of t in equation (2.174) is approximately 2.

We investigate the dependence on the resolution in the self pressure by keeping the

radius of the spheres constant and calculating the self pressure for 4 different resolutions.

The self pressure will be calculated for two different radii, R = 1.7 and R = 2.3. The

results are plotted in a kind of a log-log plot, shown in figure 2.8. We mentioned above

that the number of triangles in the x-th refinement of the triangulation of a surface

generated by Netgen, is given by

N = N1 · 4x, (2.176)

where N1 is the number of triangles in the first triangulation of the surface. The label on

the horizontal axis is x, which equals log(N/N1)
log 4 . We plot the logarithm of the calculated

self pressure versus the function log(Pi(N)), where

Pi(N) = c ·N (1+t)/2. (2.177)

The constant c is chosen such that Pi(N1) equals the calculated self pressure for N1

triangles. Our investigation of the curvature dependence suggests the choice t = 2 in

equation (2.174). Therefore we plot log(Pi(N)) for t = 2. Figure 2.8 shows that the self

pressure is close to having an N3/2 dependence, which was estimated. Optimally, the

green line should have been straight and covered the blue line entirely, and the black

should have covered the red entirely. Thus it seems like the number α is close to 3/2,

but slightly less. However, these numerical calculations of the curvature and resolution

dependence, suggest that the value of t in equation (2.174) is close to 2.

We have now investigated the curvature and resolution dependence in the self pres-

sure. Our analytical calculations suggest that the self pressure is determined by equation
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R = 1.7, calculated using BIM

R = 1.7, PHNL = c N3�2

R = 2.3, calculated using BIM

R = 2.3, PHNL = c N3�2

3 4 5

log HN � N1 L
log H4L

1

2

3

4

5

6

7

logHPi L

Figure 2.8: LogLog plot of self pressure on two different spheres with radius 1.7 and
2.3 units respectively.

(2.174), but can’t determine the value of t more accurately t ≥ 1. However, our numer-

ical calculations verify that the analytical calculations are correct and that t ≈ 2. Thus

biikk′′ ∼
N3/2

R4
. (2.178)

The consistence between the numerical and analytical calculations is a little surprising,

especially because of the simplifications we did. Among other things we assumed that

the triangles were of equal size and equilateral, which they in reality not are. However,

when looking at a triangulation of a sphere (see for example figure B.3), we see that

many of the triangles in fact are close to being of equal size and equilateral.

A consequence of the N3/2R−4 dependency is that the self pressure can be very large

for spheres with much curvature, i.e. small radius, especially if the resolution of the

triangulation is high. The largest absolute value of the self pressure in the three figures

2.5, 2.6 and 2.7 is 1640, which corresponds to a radius of 1.4 units and a triangulation

consisting of 29696 triangles. On the other hand, the lowest absolute value of the self

pressure is 2.3, which corresponds to a radius of 2.8 units and a triangulation consisting

of 1792 triangles. Thus we see that the self pressure can vary enormously, depending on

the size of the curvature and the resolution. In principle, there is no limit for how large

the self pressure can be.

2.8.1 Consequences of a large self-pressure

Consider a configuration of two objects, where object 2 is a sphere. The pressure on the

sphere is determined by[
A11 A21

A12 A22

][
X12

X22

]
=

[
Y 21 −A21B22

0

]
. (2.179)
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Thus the self pressure come into play on the right hand side of the equation. We know

that the self pressure matrix B22 contains elements that go as N3/2R−4, which can be

very large. The elements in the matrix A21 are approximations of double integrals over

the free Green’s function D0 via the midpoint rule;

a21
kk′′ = −

A2
k

4π

e−ω‖sk−sk′′‖

‖sk − sk′′‖
∼ d2 e

−ω‖sk−sk′′‖

‖sk − sk′′‖
∼ N−1R2 e

−ω‖sk−sk′′‖

‖sk − sk′′‖
. (2.180)

We should keep in mind that sk and sk′′ belong to different spheres so that the distance

‖sk−sk′′‖, in most cases, is much larger than the distance d. The function eωs

s decrease

rapidly and therefore will the matrix A21 consist of elements that are very small. This

means that the calculation of the matrix A21B22 involves multiplication of small numbers

with large numbers. Since the elements of Aij are approximations of some integrals, this

can cause numerical challenges.

Let the matrix A represent the exact values of the double integrals that determine the

left hand side of equation (2.179) and εE represent the error from the approximations.

ε is a small constant. Similarly, we let A0 be the exact value of the double integrals on

the right hand side and εE0 the error. Define σ = N3/2R−4 and let σB represent the

self pressure contribution. Then equation (2.179) can be written as

(A+ εE)X = Y − (A0 + εE0)σB. (2.181)

The inverse of the lhs. is found by

(A+ εE)−1 =
(
A(I + εA−1E)

)−1
= (I + εA−1E)−1A−1

= (I − εA−1E)A−1 = A−1 − εA−1EA−1. (2.182)

Thus the pressure is determined by

X =
(
A−1 − εA−1EA−1

)
(Y − (A0 + εE0)σB)

= A−1Y − σA−1A0B − εA−1EA−1Y + εσ(A−1EA−1A0B −A−1E0B). (2.183)

Since εσ > ε, the error in X is controlled by the size of εσ. Thus the errors of the ap-

proximations have to decrease faster than the self pressure increases when the resolution

increases. In other words; we must have that εσ → 0 when N → ∞. If this isn’t the

case, it could be that the calculated pressure is just noise from the numerical errors.

Then the matrix elements would have to be calculated using more accurate methods.

The resolution and curvature dependence in the error ε can be found: We know that

the error when calculating a two dimensional integral over a square of area h2 using the

midpoint rule, is of order h4 (see for example [17]), i.e. area to the power of two. The

error when approximating an integral over a triangle will also be of order area to the
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power of two. Thus

ε ∼ (Aik)
2 = A2 ∼ d4 ∼ R4N−2 (2.184)

and therefore

εσ ∼ R4N−2N3/2R−4 =
1√
N
. (2.185)

This means that, no matter which curvature the surface has, we can make the error in

X as small as we want by just increasing the resolution. Thus our analysis indicates

that it will be sufficient to calculate the matrix elements using the midpoint rule. It will

therefore be expected that the calculated pressure will converge towards the pressure

found using other methods when the resolution is increased.

It is difficult to find a general, explicit expression for the curvature and resolution

dependence in the self pressure for surfaces with varying curvature, and it is therefore

tempting to ask whether the BIM is limited to geometries with constant curvature?

However, we should keep in mind that a sphere can be made as curved as we want

just by decreasing its radius. We therefore expect that we actually have covered the

“worst case scenario” in our discussion. As long as the surfaces are smooth, the local

curvature and resolution dependence in the self pressure won’t get any worse (it won’t

increase faster) than for a sphere. It will therefore be sufficient to calculate the matrix

elements using the midpoint rule for general surfaces as well. Thus, if the calculated

pressure converges towards the pressure found using other methods for spheres, then

it is also expected to converge for general surfaces. In order to test whether the BIM

outputs a correct pressure, we are going to do numerical calculations for different test

configurations. We will start by considering the flat configuration consisting of two

parallel plates. The next step will be to consider concentric and adjacent spheres. To

check whether it is the property of constant curvature that give rise to a (eventual)

correct pressure, we will also consider configurations of varying curvature; adjacent and

concentric ellipsoids. After having considered these configurations, we should be able to

conclude on the validity of the BIM.

2.9 Symmetry reduction

We have shown that the Casimir pressure is found by solving the regularized boundary

integral equation

x

Q

dAxD0(x,x′′)P(x,x′) = −∂n′D0(x′,x′′)−
x

Qi

dAxD0(x,x′′)Pi(x,x′), (2.186)
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where x′ ∈ Qi, i = 1, .., r and Pi(x,x′) is the unique solution to the self pressure

equation

− ∂n′D0(x′,x′′) = PVx′′

x

Qi

dAxD0(x,x′′)Pi(x,x′) x′,x′′ ∈ Qi. (2.187)

These equations are solved numerically. In this section we show that it is possible to

reduce the computational load if there is any symmetry in the configuration Q.

The set of isometries of R3 form a group under composition, which usually is called

the Euclidian group E3. We are interested in the subgroup, H ⊂ E3, that preserves the

surfaces Q. Let h be an element in H. Since h is an isometry, it is also a bijection. Thus

h will map the surface Qi onto Qj for some j.

Define a function Fj : Qj ×Qj → R by

Fj(x,x
′) = Pi(h−1x, h−1x′), (2.188)

and the functional I by

I[Fj ] = PVx′′

x

Qj

dAxD0(x,x′′)Fj(x,x
′). (2.189)

Use the definition (2.188) and introduce a change of variables y = h−1x to get

I[Fj ] = PVx′′
x

Qj

dAxD0(x,x′′)Pi(h−1x, h−1x′)

= PVx′′
x

Qi

dAyD0(hy,x′′)Pi(y, h−1x′). (2.190)

The isometry h preserves the norm, thus D0(hx, hx′′) = D0(x,x′′), and

I[Fj ] = PVh−1x′′

x

Qi

dAyD0(y, h−1x′′)Pi(y, h−1x′). (2.191)

Equation (2.187) gives

I[Fj ] = −∂n(h−1x′)D0(h−1x′, h−1x′′) = −∇h−1x′D0(h−1x′, h−1x′′)n(h−1x′). (2.192)

Use the chain rule to obtain

I[Fj ] = −∇x′D0(h−1x′, h−1x′′)(Dh−1(x′))−1n(h−1x′), (2.193)

where Dh−1(x′) =
(
∂h−1x′

∂x′

)
is the Jacobian matrix of size 3× 3.

Let p ∈ Q and TpR3 be the tangent space at p. An element η in TpR3 is mapped
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to the element ξ in the tangent space at hp by the pushforward (total derivative), i.e.

ξ = Dh(x)η. In particular, this means that the normal is mapped from x′ to h−1(x′)

as n(h−1x′) = Dh−1(x′)n(x′). Thus

I[Fj ] = −∇x′D0(h−1x′, h−1x′′)(Dh−1(x′))−1Dh−1(x′)n(x′)

= −∇x′D0(h−1x′, h−1x′′) n(x′). (2.194)

The norm preserving property is used once again;

I[Fj ] = −∇x′D0(x′,x′′)n(x′) = −∂n′D0(x′,x′′). (2.195)

Thus we have shown that

−∂n′D0(x′,x′′) = PVx′′

x

Qj

dAxD0(x,x′′)Fj(x,x
′). (2.196)

This means that Fj(x,x
′) = Pi(h−1x, h−1x′) is a solution to equation (2.187) for i = j.

However, we already know that Pj(x,x′) is a solution for i = j. Uniqueness gives that

Pj(x,x′) = Pi(h−1x, h−1x′). (2.197)

Let P(x,x′) be the unique solution to equation (2.186) and define the function F :

Q×Q→ R by

F (x,x′) = P(h−1x, h−1x′). (2.198)
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We do similar calculations as above;

x

Q

dAxD0(x,x′′)F (x, hx′) =
x

Q

dAxD0(x,x′′)P(h−1x,x′)

=
x

Q

dAyD0(hy,x′′)P(y,x′) =
x

Q

dAyD0(y, h−1x′′)P(y,x′)

= −∂n(x′)D0(x′, h−1x′′)−
x

Qi

dAxD0(x, h−1x′′)Pi(x,x′)

= −∇x′D0(x′, h−1x′′)n(x′)−
x

Qj

dAyD0(h−1y, h−1x′′)Pi(h−1y,x′)

= −∇h−1(hx′)D0(h−1(hx′), h−1x′′)n(h−1(hx′))−
x

Qj

dAyD0(y,x′′)Pj(y, hx′)

= −∇h−1(hx′)D0(h−1(hx′), h−1x′′)Dh−1(hx′)n(hx′)−
x

Qj

dAyD0(y,x′′)Pj(y, hx′)

= −∇hx′D0(h−1(hx′), h−1x′′)(Dh−1(hx′))−1Dh−1(hx′)n(hx′)

−
x

Qj

dAyD0(y,x′′)Pj(y, hx′)

= −∇hx′D0(hx′,x′′)n(hx′)−
x

Qj

dAyD0(y,x′′)Pj(y, hx′) (2.199)

Thus F (x, hx′) is a solution to

x

Q

dAxD0(x,x′′)F (x, hx′) = −∂n(hx′)D0(hx′,x′′)−
x

Qj

dAyD0(y,x′′)Pj(y, hx′),

(2.200)

where hx′ ∈ Qj . Uniqueness gives that F (x, hx′) = P(x, hx′), and by definition of F

we conclude that

P(h−1x,x′) = P(x, hx′) (2.201)

Remember from the derivation of the boundary integral equation (2.186) that x′ is

the position of one of the sources. Originally we have to solve equation (2.186) for all

x′ ∈ Q. But equations (2.197) and (2.201) say that if there exists an isometry h that

connects two source locations, x′ and hx′, then equation (2.186) only have to be solved

for one of the them. The contribution to the Casimir pressure for the other source

location is thereafter found using the identity (2.201).

Every isometry of R3 can be written as a composition of a translation and an or-

thogonal map. This means that an isometry can be a translation, a rotation about a

line, a reflection about a plane or a composition these. We know that if the configura-

tion Q is symmetric, then there is also an isometry lurking in the background. More

mathematically; if there exist some kind of symmetry in the configuration, then there

also exist a subset S of Q such that Q = H(S). That is, Q is generated by the action
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of the subgroup H on S. The identity (2.201) then says that it is enough to calculate

the pressure on S in order to find the pressure on Q. Thus the computational load for

finding the Casimir pressure can be reduced a lot if the subset S is much smaller than

Q. Some of the configurations we are considering in this thesis are examples of config-

urations where S is very small. For the case of two parallel plates S consists of only a

single point. When the configuration consists of two concentric spheres, Q is generated

from two points, one on each sphere.

It is possible to reduce the computational load even more for symmetric configura-

tions; also the integration domain in the regularized boundary integral equation (2.186)

can be reduced. Pick a source location x′ in S. Let G be the subgroup of H that fixes

the point x′, i.e for g ∈ G we have that gx′ = x′. Assume T is a subset of Q that gen-

erates Q under the action of G, i.e Q = G(T ). Similar calculations like the ones we did

above show that the integration domain can be reduced to T . Thus the computational

load can be reduced even more. When the configuration consist of parallel plates or

concentric spheres the integration domain can be cut into half.





Chapter 3

Functional integral method

3.1 Relation between the Casimir energy and a functional

integral

Consider the massless scalar field ϕ(x, t) that satisfies the classical wave equation (2.27).

Assume that the field satisfies the boundary conditions

ϕ(x, t) = ϕ(x)

ϕ(x, t′) = ϕ′(x),
(3.1)

where t′ > t. The dynamics of the field is described by the action S,

S[ϕ] =

t′∫
t

dτ

∫
R3

d3x L(ϕ(x, τ)), (3.2)

where L is the Lagrangian density given in equation (2.28).

Within the formalism of canonical quantization, the field ϕ is converted into the

operator ϕ̂, which satisfies the usual commutation relations (see eq. (2.2)). In the

Heisenberg picture the field operator ϕ̂(x, t) is related to the energy operator Ĥ via the

equation of motion

− i~ d
dt
ϕ̂(x, t) = [Ĥ, ϕ̂(x, t)], (3.3)

and to the classical field ϕ via the eigenstate-equation

ϕ̂(x, t)|ϕ(x), t〉 = ϕ(x, t)|ϕ(x), t〉. (3.4)

The time dependence of the eigenstates is given by

|ϕ(x), t〉 = e
it
~ Ĥ |ϕ(x)〉. (3.5)

49
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The amplitude of making a transition between two states can be written as

〈ϕ′, t′|ϕ, t〉 = 〈ϕ′|e−
i
~ (t′−t)Ĥ |ϕ〉. (3.6)

This is the probability amplitude of making a transition from the field configuration

ϕ(x) at the time t and ending up in ϕ′(x) at t′.

The transition amplitude can be found by summing over all possible connecting paths

between the two configurations. This “sum” is a path- or a functional integral. Thus

〈ϕ′|e−
i
~ (t′−t)Ĥ |ϕ〉 =

∫
Dϕ e

i
~S[ϕ] ≡ Z. (3.7)

The integration runs over fields satisfying the boundary conditions ϕ(x, t) = ϕ(x) and

ϕ(x, t′) = ϕ′(x). Due to the close relation to the partition function in statistical physics,

the letter Z is used for the functional integral.

The interesting configurations for us are

ϕ(x) = ϕ′(x) = 0. (3.8)

Thus the integration will be performed over fields that start in the vacuum configuration

at time t and end up in the same configuration at time t′. The constraints in equation

(3.8) also imply that the fields in the integration domain are T = t′−t periodic. However,

in order to relate the transition amplitude to the Casimir energy, we will let T →∞ in

the end. In addition, it will be assumed that the fields satisfy some boundary conditions

C on a space time surface S. Denote the transition amplitude satisfying these conditions

by

Z[SC , T ] =

∫
DϕC,T e

i
~S[ϕ], (3.9)

where DϕC,T indicates that the integration is over T-periodic fields satisfying the bound-

ary conditions C. The boundary conditions we are interested in are

C : ϕ|S = 0. (3.10)

In order to relate Z to the Casimir energy, introduce a complete set of energy eigen-

states, {|φn〉}. Thus Ĥ|φn〉 = En|φn〉. General field configurations can be expanded in

the energy basis {|φn〉}. Thus the ground (vacuum) state can be written as

|0〉 =
∑
α

〈0|φα〉|φα〉. (3.11)
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〈0|...〉 is a functional itself on the space of classical configurations. The vacuum to

vacuum transition amplitude Z[SC , T ] becomes

Z[SC , T ] = 〈0|e−
i
~ (t′−t)Ĥ |0〉

=
∑
α

〈0|φα〉
〈
φα
∣∣e− iT~ Ĥ ∣∣∑

β

〈0|φβ〉|φβ
〉

=
∑
α,β

〈0|φα〉〈0|φβ〉∗
〈
φα
∣∣e− iT~ Ĥ ∣∣φβ〉

=
∑
α,β

〈0|φα〉〈0|φβ〉∗〈φα|φβ〉e−
iT
~ Eβ

=
∑
α

|〈0|φα〉|2e−
iT
~ Eα . (3.12)

In order to obtain a convergent series, we do an analytical continuation of the partition

function Z[SC , T ] into the complex plane, T = −is

Z[SC ,−is] =
∑
α

|〈0|φα〉|2e−
s
~Eα . (3.13)

It will be assumed that the spectrum of the Hamiltonian is bounded from below and

that the lowest energy state is E0. When s is large,

Z[SC ,−is] ≈ |〈0|φ0〉|2e−
s
~E0 . (3.14)

Take the logarithm;

lnZ[SC , T ] ≈ 2 ln |〈0|φ0〉| −
s

~
E0. (3.15)

Solve for E0 and let s→∞,

E0 = lim
s→∞

(
2~
s

ln |〈0|φ0〉|+
~
s

lnZ[SC ,−is]
)

= − lim
s→∞

~
s

lnZ[SC ,−is]. (3.16)

E0 is called the ground state energy and is the lowest possible energy level for the

quantum system. In general, this quantity is infinite.

We now assume that perfect conductors are located at the surface S. Then the field

ϕ satisfies the boundary conditions C, given in equation (3.10) and the Casimir energy

for the system is obtained by subtracting the ground state energy when the objects have

been removed to infinite separation from E0,

E = E0 − E∞ = − lim
s→∞

~
s

ln
Z[SC ,−is]
Z∞[−is]

. (3.17)
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This quantity will turn out to be finite. In the following sections we will derive ex-

pressions for lnZ[SC , T ] and lnZ∞[T ], evaluate them at T = −is and in the end let

s→∞.

3.2 Implementation of spatial boundary conditions via delta

functionals

In this section we illustrate how we are going implement the boundary condition C:
ϕ|S = 0 in the functional integrals. We want to keep things simple and therefore just

illustrates the implementation on a simplified situation. Assume that the space-time

surface S can be parametrized by

η : B → S, (3.18)

where B = [a1, b1] × [a2, b2] × [a3, b3] is a box. Using the notation from the previous

section, we want to define how to perform the functional integral

I[SC ] =

∫
DϕCF [ϕ], (3.19)

where F [ϕ] is some functional. Discretize S by splitting the box B into small boxes Bk.

Let {αj}, given by

αj = (a1 + j1∆u1, a2 + j2∆u2, a3 + j3∆u3), j = (j1, j2, j3), ji = 0, 1, ..., Ni, (3.20)

be the set of vertices for the boxes. Let all of the boxes Bk be of equal size. ∆ui specifies

the length of the edges of the boxes, and is given by ∆ui = bi−ai
Ni

, i = 1, 2, 3. Define Bj

as the box where αj is the vertex closest to the point a = (a1, a2, a3) and the midpoint

sj is given by

sj = (a1, a2, a3) +
(
(j1 − 1

2)∆u1, (j2 − 1
2)∆u2, (j3 − 1

2)∆u3

)
. (3.21)

Let ϕj = ϕ(η(sj)). Introduce the abbreviation

∏
j

≡
N1∏
j1=1

N2∏
j2=1

N3∏
j3=1

. (3.22)

Inserting a finite product of Dirac-delta functions into the functional integral in equation

(3.19) gives ∫
Dϕ

∏
j

δ(ϕj)F [ϕ]. (3.23)
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Because of the properties of the delta, the only contribution to the integral is when

ϕj = 0. But when Ni → ∞, i = 1, 2, 3, the parametrization will be dense on S and

the integral will be restricted to fields such that ϕ|S = 0. Defining the delta functional

δ(ϕ|S) by ∫
Dϕ δ(ϕ|S)F [ϕ] = lim

Ni→∞
i=1,2,3

∫
Dϕ

∏
j

δ(ϕj)F [ϕ], (3.24)

we can implement the boundary conditions C: ϕ|S = 0 as

I[SC ] =

∫
Dϕ δ(ϕ|S)F [ϕ]. (3.25)

The Dirac-delta can be represented as an integral,

δ(x) =
1

2π

∫
R
dλ eiλx. (3.26)

Therefore ∏
j

δ(ϕj) =

∫
RN

∏
j

dλj
2π

 ei
∑

j λjϕj , (3.27)

where j = (j1, j2, j3) and N = N1N2N3. Let ηj ≡ η(sj). Define two functions on S by

∆u(ηj) =

∣∣∣∣∂ηj∂u1
∧
∂ηj
∂u2
∧
∂ηj
∂u3

∣∣∣∣∆u1∆u2∆u3 (3.28)

and

%(ηj) = %(η(sj)) =
λj

∆u(ηj)
. (3.29)

Inserting equations (3.28) and (3.29) into equation (3.27) gives

∏
j

δ(ϕj) =

∫
RN

∏
j

∆u(ηj)
2π d%(ηj)e

i
∑

j %(ηj)ϕ(ηj)∆u(ηj). (3.30)

Formally ∏
j

∆u(ηj)
2π d%(ηj)→ D% as Ni →∞ for i = 1, 2, 3, (3.31)

and ∑
j

%(ηj)ϕ(ηj)∆u(ηj)→
∫
S
du %ϕ, (3.32)

where du is the volume element given by du =
∣∣∣ ∂η∂u1 ∧ ∂η

∂u2
∧ ∂η
∂u3

∣∣∣ du1 du2 du3. Thus the

delta functional can be expressed as

δ(ϕ|S) =

∫
D% ei

∫
S du %ϕ, (3.33)
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and the functional integral I[SC ] becomes

I[SC ] =

∫
DϕD% ei

∫
S du %ϕF [ϕ]. (3.34)

The field % becomes a source “living” on the surface S.

We now use the delta functional to implement boundary conditions to the transition

amplitude given in equation (3.9). The space time surface S now consists of r disjoint

objects, S =
⋃
α Sα. Let %α be the source living on the object Sα. The delta functional

is modified a little and can be expressed as

δ(ϕ|S) =

∫ ∏
α

D%αe
i
~
∑
α

∫
Sα du %

αϕ
, (3.35)

where the exponent now is measured in units of ~. Inserting this delta functional into

the transition amplitude given in equation (3.9), we obtain

Z[SC , T ] =

∫
DϕT

∏
α

D%αT e

i
~

(
S[ϕ]+

∑
α

∫
Sα

du %αϕ

)
. (3.36)

3.3 Implementation of periodic boundary conditions

In the following section it will be showed how the periodic property ϕ(x, t′) = ϕ(x, t) = 0

will be implemented into the transition amplitude given in equation (3.36). We are

considering static configurations of objects. Thus the boundary S is fixed in time and

can be written as S =
⋃
α Sα =

⋃
α (Qα × [0, T ]). Let %α be the source living on

Qα × [0, T ]. Note that also the field %α is T -periodic since the boundaries are static.

Since the fields ϕ and %α are T -periodic, they can be expanded as Fourier series;

ϕ(x, t) =
∞∑

n=−∞
ϕn(x)e2πint/T ,

%α(x, t) =

∞∑
n=−∞

%αn(x)e2πint/T .

(3.37)

The fact that the fields are real, implies that ϕ−n = ϕ∗n and %α−n = %α∗n . We now

start to explore how equation (3.36) changes under the change of variables introduced
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in equation (3.37). The integrals inside the exponential will change as

∫
Sα

du %α(x, t)ϕ(x, t) =

∫
Qα

dA

T∫
0

dt
∑
m,n

%αm(x)ϕn(x)e2πi(m+n)t/T

=
∑
m,n

∫
Qα

dA %αmϕn

T∫
0

dt e2πi(m+n)t/T

= T
∑
n

∫
Qα

dA %α−nϕn,

(3.38)

where the result
T∫

0

dt e2πi(m+n)t/T =

T m = −n

0 m 6= −n
(3.39)

is used. The action can be simplified using the same result;

S[ϕ] =

t′∫
t

dτ

∫
R3

dV L(ϕ(x, τ)) =

T∫
0

dτ

∫
R3

dV
1

2

(
ϕ2
t (x, τ)−∇ϕ2(x, τ)

)

=

T∫
0

dτ

∫
R3

dV
1

2

∑
m,n

(
2πim
T

2πin
T ϕm(x)ϕn(x)−∇ϕm(x) · ∇ϕn(x)

)
e

2πi(m+n)τ
T

=
∑
n

∫
R3

dV
T

2

((
2πn
T

)2
ϕnϕ−n −∇ϕn · ∇ϕ−n

)
.

(3.40)

The differentials in equation (3.36) may be written as

DϕT =

∞∏
n=−∞

Dϕn,

D%αT =
∞∏

n=−∞
D%αn.

(3.41)

The Jacobian is omitted because it is common to both Z[SC , T ] and Z∞[T ] and therefore

will cancel.

Inserting the equations (3.38), (3.40) and (3.41) into the partition function given by

equation (3.36) and taking the logarithm, we obtain

lnZ[SC , T ] =

∞∑
n=−∞

ln

∫
Dϕn

∏
α

D%αne

iT
~

(∫
R3
dx 1

2

(
( 2πn
T )

2
ϕnϕ−n−∇ϕn·∇ϕ−n

)
+
∑
α

∫
Qα

dA %α−nϕn

)
.

(3.42)
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As T → ∞, the sum
∞∑

n=−∞
can be replaced by T

2π

∫∞
−∞ dk, where k = 2πn

T and ϕn(x) is

replaced by ϕk(x). Thus

lnZ[SC , T ] =
T

2π

∞∫
−∞

dk ln

∫
Dϕk

∏
α

D%αk e

iT
~

(∫
R3
dV 1

2(k2ϕkϕ−k−∇ϕk·∇ϕ−k)+
∑
α

∫
Qα

dA %α−kϕk

)
.

(3.43)

Split into negative and positive part, make the substitution k → −k on the negative

part and use the fact that ϕ−k = ϕ∗k, %
α
−k = %α∗k ;

lnZ[SC , T ] =
T

2π

∫ ∞
0

dk ln

∫
Dϕ∗k

∏
α

D%α∗k e

iT
~

(∫
R3
dV 1

2(k2|ϕk|2−|∇ϕk|2)+
∫
Qα

dA %αkϕ
∗
k

)

+
T

2π

∫ ∞
0

dk ln

∫
Dϕk

∏
α

D%αk e

iT
~

(∫
R3
dV 1

2(k2|ϕk|2−|∇ϕk|2)+
∫
Qα

dA %α∗k ϕk

)
.

(3.44)

Use the property ln a+ ln b = ln(ab) to obtain

lnZ[SC , T ] =
T

2π

∫ ∞
0

dk lnΠQ(k), (3.45)

where

ΠQ(k) =

∫
DϕkDϕ

∗
k

r∏
α=1

D%αkD%
α∗
k e

iT
~ S̃ , (3.46)

and the effective action S̃ is

S̃ = S̃[ϕk, ϕ
∗
k, %

α
k , %

α∗
k ] =

∫
R3

dV
(
k2|ϕk|2 − |∇ϕk|2

)
+

r∑
α=1

∫
Qα

dA (%α∗k ϕk + %αkϕ
∗
k). (3.47)

Similarly we find that

lnZ∞[T ] =
T

2π

∫ ∞
0

dk lnΠ∞(k). (3.48)

To obtain the expression for the Casimir energy, let T = −is and do a Wick rotation

k = iκ in equation (3.45). Inserting this into (3.17), we obtain

E = − lim
s→∞

~
s

ln
Z[SC ,−is]
Z∞[−is]

= − lim
s→∞

~
2π

∫ ∞
0

dκ ln
ΠQ(iκ)

Π∞(iκ)

∣∣∣∣∣
T=−is

. (3.49)

3.4 Classical equations of motion

In order to perform the integration over ϕk and ϕ∗k in ΠQ(iκ) and Π∞(iκ), the fields

will be decomposed into a classical part and a fluctuating part. The classical part is
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a solution to the classical equations of motion. We are going to derive the classical

equations of motion by taking the variational derivative of S̃ with respect to ϕ∗k, and

require it to be zero.

Make the abbreviations φ = ϕcl,k and S̃cl = S̃[ϕcl,k, ϕ
∗
cl,k, %

α
k , %

α∗
k ]. Consider a small

variation δφ∗ from the classical solution φ∗ and insert it into the effective action in

equation (3.47);

S̃[φ, φ∗ + δφ∗, %αk , %
α∗
k ] = S̃cl +

∫
R3

dV
(
k2φ δφ∗ −∇φ · ∇δφ∗

)
+

r∑
α=1

∫
Qα

dA %αk δφ
∗

= S̃cl +

∫
R3

dV k2φ δφ∗ −
r∑
i=0

∫
Vi

dV ∇φ · ∇δφ∗ +
r∑

α=1

∫
Qα

dA %αk δφ
∗, (3.50)

where the fact that R3 = V0
⋃ r∑
α=1

Vα =
r⋃
i=0

Vi is used. The boundary of the compact

object Vα is ∂Vα = Qα. The boundary of the complement to the objects is ∂V0 =
r∑

α=1
Qα.

Using Green’s first identity, the volume integrals over the regions Vi can be written

r∑
i=0

∫
Vi

dV ∇φ · ∇δφ∗ =
r∑

α=1

∫
∂Vα

dA (∂nφ−) δφ∗ −
∫
∂V0

dA (∂nφ+) δφ∗ −
r∑
i=0

∫
Vi

dV ∇2φ δφ∗

=

r∑
α=1

∫
Qα

dA (∂nφ−) δφ∗ −
r∑

α=1

∫
Qα

dA (∂nφ+) δφ∗ −
∫
R3

dV (∇2φ) δφ∗

=

r∑
α=1

∫
Qα

dA (∆∂nφ) δφ∗ −
∫
R3

dV (∇2φ) δφ∗, (3.51)

where the normals n point out of the compact objects Vα, α = 1, ..., r and ∆∂nφ(x) =

∂nφ−(x)− ∂nφ+(x). The fields φ± are the defined as

φ−(x) = lim
x′→x
x′∈Vα

φ(x′) and φ+(x) = lim
x′→x
x′∈V0

φ(x′) x ∈ Qα, α = 1, ..., r. (3.52)

Inserting equation (3.51) into (3.50) we obtain

S̃[φ, φ∗ + δφ∗, ..] = S̃cl +

∫
R3

dV
(
k2φ+∇2φ

)
δφ∗ +

r∑
α=1

∫
Qα

dA (%αk −∆∂nφ) δφ∗. (3.53)
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We require that the classical solution is continuous. Thus ∆ϕcl,k = 0. Requiring that

δS̃/δφ∗ = 0, we get the “equations of motion”

∇2ϕcl,k + k2ϕcl,k = 0 x /∈ Qα

∆ϕcl,k = 0 x ∈ Qα

∆∂nϕcl,k = %αk x ∈ Qα.

(3.54)

3.5 Integration over the unconstrained fields ϕk and ϕ∗k

In order to integrate over ϕk and ϕ∗k, we introduce the change of variables we mentioned

above; ϕk and ϕ∗k is decomposed into a classical part and a fluctuating part,

ϕk = ϕcl,k + δϕk,

ϕ∗k = ϕ∗cl,k + δϕ∗k.
(3.55)

The effective action in equation (3.47) then can be written as,

S̃[ϕcl,k + δϕk, ϕ
∗
cl,k + δϕ∗k, %

α
k , %

α∗
k ] =

∫
R3

dV
{
k2(ϕcl,k + δϕk)(ϕ

∗
cl,k + δϕ∗k) (3.56)

−∇(ϕcl,k + δϕk) · ∇(ϕ∗cl,k + δϕ∗k)
}

+
r∑

α=1

∫
Qα

dA
(
%α∗k (ϕcl,k + δϕk) + %αk (ϕ∗cl,k + δϕ∗k)

)
.

Proceeding similarly as we did when we derived the equations of motion, i.e. by using

Green’s first identity and the equations of motion (3.54) themselves, we obtain

S̃[ϕcl,k + δϕk, ϕ
∗
cl,k + δϕ∗k, %

α
k , %

α∗
k ] = S̃cl +

∫
R3

dV
(
k2|δϕk|2 − |∇δϕk|2

)
. (3.57)

The classical equations of motion and Green’s first identity can also be used to simplify

the expression for the classical action S̃cl. Using equation (3.47), we can write S̃cl as

S̃cl =
1

2

∫
R3

dV k2ϕcl,kϕ
∗
cl,k −

1

2

∫
R3

dV ∇ϕcl,k · ∇ϕ∗cl,k +
r∑

α=1

∫
Qα

dA %αkϕ
∗
cl,k + c.c. (3.58)

Green’s first identity applied to the second integral gives

∫
R3

dV ∇ϕcl,k · ∇ϕ∗cl,k =

r∑
α=1

∫
Qα

dA (∆∂nϕcl,k) ϕ
∗
cl,k −

∫
R3

dV (∇2ϕcl,k)ϕ
∗
cl,k. (3.59)
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Thus

S̃cl =

∫
R3

dV
(
k2ϕcl,k+∇2ϕcl,k

2

)
ϕ∗cl,k +

r∑
α=1

∫
Qα

dA
(
%αk −

∆∂nϕcl,k
2

)
ϕ∗cl,k + c.c. (3.60)

The equations of motion (3.54) give the following expression for the classical action:

S̃cl =
1

2

r∑
α=1

∫
Qα

dA %αkϕ
∗
cl,k + c.c =

1

2

r∑
α=1

∫
Qα

dA
(
%αkϕ

∗
cl,k + %α∗k ϕcl,k

)
. (3.61)

By inserting the effective action, given in equation (3.57), into equation (3.46) we get

ΠQ(k) =

∫ r∏
α=1

D%αkD%
α∗
k e

s
~ S̃cl

∫
D(δϕk)D(δϕ∗k)e

s
~
∫
R3
dV (k2|δϕk|2−|∇δϕk|2)

. (3.62)

Notice that part of the functional integral which involves δϕk is geometry independent.

This part is common toΠQ(k) andΠ∞(k) and will therefore cancel. Thus the integration

over ϕk gives no contribution to the Casimir energy.

Therefore, after we have performed the integration over ϕk and ϕ∗k, equation (3.46)

have reduced to

ΠQ(k) =

∫ r∏
α=1

D%αkD%
α∗
k e

s
~ S̃cl , (3.63)

and Π∞(k) is given by

Π∞(k) =

∫ r∏
α=1

D%αkD%
α∗
k e

s
~ S̃∞ , (3.64)

where S̃∞ is the classical action when the objects have been removed to infinite separa-

tion.

3.6 Integration over the sources %αk and %α∗k

In order to perform the integration over %αk and %α∗k , we are going to introduce a change

of variables. First, choose coordinate systems Oα in each object Vα. Let xα be coor-

dinates in Oα. See figure 3.1. In each of the coordinate systems, choose a complete

set of functions, {qαiα(xα)}, defined on the boundaries Qα. At the end we are going to

discretize the boundaries, and then it is easy to choose the functions such that they are

orthonormal. However, to start with, we only assume that the functions {qαiα(xα)} form

a complete set. Introduce the linear change of variables

%α(xα) =
∑
jα

%αjαq
α
jα(xα) (3.65)

in equation (3.63).
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Figure 3.1: Coordinate system for the situation with two objects.

In order to perform the integration, we are also going to use the property that the

equations (3.54) are linear, which means that the solution can be written as a linear

superposition

ϕcl,k =
∑
β

ϕβ, (3.66)

where ϕβ satisfies (3.54) when all the sources are set to zero, except for %β. Thus if we

define

S̃αβ =

∫
Qα

dA
(
%α∗k ϕβ + %αkϕ

∗
β

)
, (3.67)

the integrand in equation (3.63) can be written as

e
s
~ S̃cl = e

s
2~
∑
αβ
S̃αβ

. (3.68)

The terms S̃αβ we call interaction terms. In particular, we call the terms S̃αα for self-

interaction terms. When the conductors have been removed to infinite separation there

is no interaction between them. Thus only the self-interaction terms contribute to S̃∞.

The integrand in equation (3.64) can be written

e
s
~ S̃∞ = e

s
2~
∑
α
S̃αα

. (3.69)

In order to be able to compute the interaction terms, we are going to use Green’s

functions. The differential operator corresponding to the equations of motion (3.54) is

L = ∇2 + k2. Let Gα(xα,x
′
α) be a Green’s function for L in the coordinate system Oα,

i.e

LαGα(xα,x
′
α) = −δα(xα − x′α). (3.70)

A Green’s function corresponding to this equation is

Gα(xα,x
′
α) =

eik‖xα−xα‖

4π‖xα − xα‖
. (3.71)
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Before we can perform the integration, we must find expressions for the interaction terms

S̃αβ, α, β = 1, ..., r.

3.6.1 Self interaction terms S̃αα

S̃αα is the contribution to the action from the field ϕα, generated by the source %α,

integrated over the surface Qα. From equation (3.67) we get

S̃αα =

∫
Qα

dA (%α∗k ϕα + %αkϕ
∗
α) . (3.72)

The field ϕα is a solution to equation (3.54) and can therefore be written using the

Green’s function and the sources as

ϕα(xα) =

∫
Qα

dAx′αG
α(xα,x

′
α)%α(x′α). (3.73)

Expand the Green’s function Gα using the functions {qαiα(xα)} in the coordinate system

Oα;

Gα(xα,x
′
α) =

∑
iα

Gαiα(x′α)qαiα(xα). (3.74)

Inserting equations (3.65) and (3.74) into equation (3.73), we get

ϕα(xα) =
∑
iαjα

Gαiαjα%
α
jαq

α
iα(xα), (3.75)

where

Gαiαjα =

∫
Qα

dAx′αG
α
iα(x′α)qαjα(x′α). (3.76)

Using the expansions of the field ϕα and the source %α given in equations (3.65) and

(3.75), the self-interaction terms can be written as

S̃αα =

∫
Qα

dA (%α∗k ϕα + %αkϕ
∗
α) =

∑
iαkα

%α∗iαG
α
iαkα%

α
kα +

∑
iαkα

%αiαG
α∗
iαkα%

α∗
kα , (3.77)

where

Gαiαkα =
∑
jα

Dα
iαjαG

α
jαkα (3.78)

and

Dα
iαjα =

∫
Qα

dAxαq
α∗
iα (xα)qαjα(xα). (3.79)
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Observe that if the set {qαiα(xα)} is orthonormal, we get

Dα
iαjα = δiαjα . (3.80)

Defining

Tαiαkα = Gαiαkα + Gα∗kαiα , (3.81)

and interchanging dummy variables in the second sum in equation (3.77), the contribu-

tion to the action from the self interaction reduces to

S̃αα =
∑
iαkα

%α∗iα T
α
iαkα%

α
kα . (3.82)

3.6.2 Interaction terms S̃αβ, α 6= β

We want to find the contribution to the action from the field ϕβ, generated by the source

%α, integrated over the surface Qα. Here we can proceed almost as we did in the previous

section. Let xα be coordinates in Oα. In the coordinate system Oβ these coordinates

can be written as xβ(xα). Define

ϕβ(xα) ≡ ϕβ(xβ(xα)). (3.83)

ϕβ(xα) can be written using the Green’s function and the sources,

ϕβ(xα) = ϕβ(xβ(xα)) =

∫
Qβ

dAx′βG
β(xβ(xα),x′β)%β(x′β). (3.84)

Make the expansion

Gβ(xβ(xα),x′β) =
∑
iα

Gαβiα (x′β)qβiα(xα). (3.85)

Inserting this expression, together with the source expansion given in equation (3.65),

into equation (3.84) we get

ϕβ(xα) =
∑
iαjβ

Gαβiαjβ%
β
jβ
qβiα(xα), (3.86)

where

Gαβiαjβ =

∫
Qβ

dAx′βG
αβ
iα

(x′β)qβjβ (x′β). (3.87)

Using equations (3.65) and (3.86), the interaction terms become

S̃αβ =

∫
Qα

dA
(
%α∗k ϕβ + %αkϕ

∗
β

)
=
∑
iαkβ

%α∗iαG
αβ
iαkβ

%βkβ +
∑
iαkβ

%αiαG
αβ∗
iαkβ

%β∗kβ , (3.88)
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where

Gαβiαkβ =
∑
jα

Dα
iαjαG

αβ
jαkβ

. (3.89)

Defining

Uαβiαkβ = Gαβiαkβ + Gβα∗kβiα
, (3.90)

we get

S̃αβ =
∑
iαkβ

%α∗iαU
αβ
iαkβ

%βkβ . (3.91)

3.6.3 Classical action

Combining the interaction and the self-interaction terms, the classical action becomes

S̃cl =
1

2

∑
αβ

S̃αβ =
1

2

∑
α

S̃αα +
∑
αβ
α 6=β

S̃αβ



=
1

2

∑
α

∑
iαkα

%α∗iα T
α
iαkα%

α
kα +

∑
αβ
α 6=β

∑
iαkβ

%α∗iαU
αβ
iαkβ

%βkβ

 .

(3.92)

Observe that, by definition (equations (3.81) and (3.90)), the matrices Tα and Uαβ are

self-adjoint.

Define the block matrix A = A(k) by

Aαβ = −Tαδαβ − Uαβ(1− δαβ), α, β = 1, ..., r. (3.93)

Thus the entries of A are also matrices. The fact that Tα and Uαβ are self-adjoint

implies that A is self-adjoint. The matrix A is positive definite since the Helmholtz

operator ∇2 +k2 is a positive operator for k = iκ. Using equation (3.93), the action can

be written as

S̃cl = −1

2

∑
αβ

∑
iαkβ

%α∗iαA
αβ
iαkβ

%βkβ = −1

2
〈%,A%〉 , (3.94)

where 〈 , 〉 is the standard inner product in Cn. The action in the infinite separation

case becomes

S̃∞ =
1

2

∑
α

S̃αα =
1

2

∑
α

∑
iαkα

%α∗iα T
α
iαkα%

α
kα

= −1

2

∑
αβ

∑
iαkβ

%α∗iαB
αβ
iαkβ

%βkβ = −1

2
〈%,B%〉 ,

(3.95)
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where the block matrix B = B(k) is defined by

Bαβ = −Tαδαβ, α, β = 1, ..., r. (3.96)

Notice that also B is self-adjoint and positive definite.

3.6.4 Performing the integration

Under the change of variables %α(xα) =
∑
iα

%αiαq
α
iα

(xα), the differentials change as

∫ r∏
α=1

D%αD%α∗ → J

∫ r∏
α=1

∏
iα

d%αiαd%
α∗
iα = J ′

∫ r∏
α=1

∏
iα

d%αiαd%
α∗
iα

2πi , (3.97)

where J is the Jacobian of the coordinate change and J ′ = J
∏
iα

2πi. Defining the block

matrices A′ = A′(k) and B′ = B′(k) as

A′ =
s

2~
A,

B′ =
s

2~
B,

(3.98)

the equations (3.63) and (3.64) can be written as

ΠQ(k) = J ′
∫ r∏

α=1

∏
iα

d%αiαd%
α∗
iα

2πi e−〈%,A
′%〉 (3.99)

and

Π∞(k) = J ′
∫ r∏

α=1

∏
iα

d%αiαd%
α∗
iα

2πi e−〈%,B
′%〉. (3.100)

Using the integral result for self-adjoint and positive-definite and matrices,∫ ∏
j

dzjdz
∗
j

2πi e−〈z,Az〉 =
1

detA
, (3.101)

from Appendix A we get

ΠQ(k) =
J ′

detA′(k)
, (3.102)

Π∞(k) =
J ′

detB′(k)
. (3.103)
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3.7 Casimir energy

Remember the expression for the Casimir energy;

E = − ~
2π

lim
s→∞

∫ ∞
0

dκ ln
ΠQ(iκ)

Π∞(iκ)

∣∣∣∣
T=−is

=
~

2π
lim
s→∞

∫ ∞
0

dκ ln
Π∞(iκ)

ΠQ(iκ)

∣∣∣∣
T=−is

. (3.104)

The integrand can be calculated using the results in equations (3.102) and (3.103);

Π∞(iκ)

ΠQ(iκ)
=
J ′

J ′
detA′

detB′
= det

(
B′−1A′

)
= det

(
2~
s
B−1 s

2~
A

)
= det

(
B−1A

)
. (3.105)

Let M = M(iκ) be the block matrix given by

M(iκ) = B−1(iκ)A(iκ). (3.106)

B is the diagonal block matrix defined in equation (3.96). Thus the inverse of B is also

diagonal, and the block entries are given by

[Bαβ]−1 = −[Tα]−1δαβ. (3.107)

This result, together with the definition of A in equation (3.93), gives that

Mαβ = 1δαβ + [Tα]−1 Uαβ(1− δαβ) α, β = 1, ..., r. (3.108)

Observe that there is no time dependence (s is cancelled) in M . Inserting equation

(3.105) into equation (3.104), we finally obtain an expression for the Casimir energy,

E =
~

2π

∫ ∞
0

dκ ln detM(iκ). (3.109)

For the special case when the configuration consists of two objects, the Casimir energy

is given by

E =
~

2π

∫ ∞
0

dκ ln det(1−
[
T 1
]−1

U12
[
T 2
]−1

U21). (3.110)

3.8 Formulas needed to calculate the Casimir energy

Long calculations led up to the expression for the Casimir energy in equation (3.109).

In this section we collect the expressions and formulas that are necessary to calculate

the Casimir energy.

The Green’s function corresponding to equation (3.70) with k = iκ is

Gα(xα,x
′
α) =

e−κ‖xα−xα‖

4π‖xα − xα‖
. (3.111)
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Given a configuration of r compact objects {Vα}. Choose an orthonormal basis {qαiα(xα)}
on the surfaces Qα. We discuss how to find this basis in the next section. Because of

orthogonality things simplify a little. The elements in the matrix Dα, given in equation

(3.79), can be written as

Dα
iαjα =

∫
Qα

dAxαq
α∗
iα (xα)qαjα(xα) = δiαjα , (3.112)

and the matrices Gα and Gαβ, given in equation (3.78) and (3.89), become

Gαiαkα =
∑
jα

Dα
iαjαG

α
jαkα =

∑
jα

δiαjαG
α
jαkα = Gαiαkα ,

Gαβiαkβ =
∑
jα

Dα
iαjαG

αβ
jαkβ

=
∑
jα

δiαjαG
αβ
jαkβ

= Gαβiαkβ .
(3.113)

The final formula for the Casimir energy is

E =
~

2π

∫ ∞
0

dκ ln detM(iκ), (3.114)

where the matrix M(iκ) is given by

Mαβ = 1δαβ + [Tα]−1 Uαβ(1− δαβ) α, β = 1, ..., r, (3.115)

and the elements in the self-adjoint matrices Tα and Uαβ are given by

Tαiαkα = Gαiαkα + Gα∗kαiα = Gαiαkα + Gαkαiα = Gαiαkα +Gαkαiα ,

Uαβiαkβ = Gαβiαkβ + Gβα∗kβiα
= Gαβiαkβ + Gβαkβiα = Gαβiαkβ +Gβαkβiα .

(3.116)

The elements of the matrices Gα and Gαβ are given by equation (3.76) and (3.87);

Gαiαjα =

∫
Qα

dAx′αG
α
iα(x′α)qαjα(x′α),

Gαβiαjβ =

∫
Qβ

dAx′βG
αβ
iα

(x′β)qβjβ (x′β),
(3.117)

where Gαiα(x′α) and Gαβiα (x′β) are defined as the coefficients of the expansion of the

Green’s function in the basis qαiα(xα) (see equations (3.85) and (3.74)). Since the basis

is orthonormal, these coefficients are given by

Gαiα(x′α) =

∫
Qα

dAxαG
α(xα,x

′
α)qαjα(xα),

Gαβiα (x′β) =

∫
Qα

dAxαG
β(xα,x

′
β)qαjα(xα).

(3.118)



Chapter 3. Functional integral method 67

Thus we get

Gαiαjα =

∫
Qα

dAx′α

∫
Qα

dAxα q
α
iα(xα)Gα(xα,x

′
α)qαjα(x′α),

Gαβiαjβ =

∫
Qβ

dAx′β

∫
Qα

dAxα q
α
iα(xα)Gβ(xα,x

′
β)qβjβ (x′β).

(3.119)

When looking at equation (3.119), it seems like it is going be very expensive to fill the

matrix M . However, as we will see in the next section, by discretizing the surfaces Qα,

it becomes an easy task to find an orthonormal basis {qαiα(xα)}. The fact that the basis

is orthonormal, implies that the integration domain in equation (3.119) reduces a lot.

3.9 Discretization

The functional integral method is designed for arbitrary configurations of conductors.

The general configurations will be discretized using triangles, but we also for the FIM use

two different discretizations for the special configuration consisting of two parallel plates,

namely both standard grids of squares and triangulations consisting of triangles. Doing

this we can test how much the method depend on the discretization. In this section we

take a look at how to find the orthonormal basis {qαiα(xα)} and how to calculate the

matrices Gα and Gαβ for the two different discretizations.

3.9.1 Square discretization of the parallel plates

Fix a coordinate system such that the plates are lying in the planes z = z1 = −a
2 and

z = z2 = a
2 . Let the plates have length L in both x- and y-direction. Fix two grids such

that Sαkl is the square with center in skl = ((k − 1
2)h, (l − 1

2)h, zα) and edges of length

h = L
N , where N is the number of discretization points in both x- and y-direction.

α = 1, 2 and k, l = 1, ..., N . The double indices kl are made into single indices by letting

i = k +N(l − 1). Then i runs from 1 to N2.

The complete set of functions {qαi (x)} defined on the plates Qα, α = 1, 2, is chosen

to be

qαi (x) =


1
h x ∈ Sαi
0 else.

(3.120)

With this basis we get

Dα
ij =

x

Qα

dAxq
α
i (x)qαj (x) =

1

h2

x

Sαi

dAx = δij . (3.121)

We see that the basis is orthonormal.
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3.9.1.1 Matrix elements Gαβij

For α 6= β

Gαβij =
x

Qβ

dAx′

x

Qα

dAxq
α
i (x)Gβ(x,x′)qβj (x′)

=
1

4πh2

x

Sβj

dAx′

x

Sαi

dAx
e−κ‖x−x

′‖

‖x− x′‖
. (3.122)

This integral is non singular and can be approximated using the midpoint rule,

Gαβij ≈
h2

4π

e−κ‖s
α
i −s

β
j ‖

‖sαi − s
β
j ‖

. (3.123)

3.9.1.2 Matrix elements Gαij

Gαij =
x

Qα

dAx′

x

Qα

dAxq
α
i (x)Gα(x,x′)qαj (x′)

=
1

4πh2

x

Sαj

dAx′

x

Sαi

dAx
e−κ‖x−x

′‖

‖x− x′‖
. (3.124)

When i 6= j, there is no singularity in the integrand, and the integral can be approxi-

mated using the midpoint rule,

Gαij ≈
h2

4π

e−κ‖s
α
i −sαj ‖

‖sαi − sαj ‖
. (3.125)

If i = j;

Gαii =
1

4πh2

x

Sαi

dAx′

x

Sαi

dAx
e−κ‖x−x

′‖

‖x− x′‖
. (3.126)

Wee see that there is a singularity in the integrand when x = x′, thus we have to define

how to perform the integral. We are going to calculate the integral almost the same way

as we calculated the diagonal elements in the boundary integral method. Keep x′ fixed

and look at the inner integral, abbreviated Iinner. Let Dε be the hemisphere with radius

ε, centered around x′. We define the inner integral as

Iinner = PVx′

x

Sαi

dsdt
e−κ‖x−x

′‖

‖x− x′‖
+ lim
ε→0

x

Dε

dsdt
e−κ‖x−x

′‖

‖x− x′‖
. (3.127)

Similar calculations to those done in section 2.4 give that the contribution from inte-

grating over Dε is zero when ε→ 0.
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Thus

Gαii =
1

4πh2

x

Sαi

dAx′

PVx′

x

Sαi

dAx
e−κ‖x−x

′‖

‖x− x′‖

 . (3.128)

Define s = (s, t) and s3 = (s, t, 0). A parametrization of the squares is given by

Xα
i (s) = sαi + s3, s = (s, t) ∈ S =

[
−h

2 ,
h
2

]
×
[
−h

2 ,
h
2

]
. (3.129)

Thus

‖N‖ = ‖∂sXα
i × ∂tXα

i ‖ = 1. (3.130)

Doing the same for the primed coordinates, we obtain

‖x−x′‖ = ‖Xα
i (s)−X ′αi (s′)‖ = ‖sαi +s3− (sαi +s′3)‖ = ‖s3−s′3‖ = ‖s−s′‖, (3.131)

and the integral changes to

Gαii =
1

4πh2

x

S

ds′dt′

(
PVs′

x

S

dsdt
e−κ‖s−s

′‖

‖s− s′‖

)
. (3.132)

Using the function f , given by

f(r;ω) =
e−ωr

r
, (3.133)

the inner integral can be written as

Iinner = PVs′
x

S

dsdt f(‖s− s′‖;κ). (3.134)

Use the fact that f(r;ω) = ∇ · g(r;ω), where g is given in equation (2.124), and the

divergence theorem to obtain

Iinner =

∮
∂S

dls n · g(s− s′;κ) + lim
ε→0

∮
Cε

dls n · g(s− s′;κ), (3.135)

where ∂S = C1 ∪ C2 ∪ C3 ∪ C4 is boundary of the square S, and Cε is the boundary of

the hemisphere Dε. Calculations very similar to equations (2.127) - (2.128), show that

there is no contribution from the integration around Cε. Thus

Iinner =

∮
∂S

dls n ·
s− s′

κ‖s− s′‖2
(

1− e−κ‖s−s′‖
)
. (3.136)
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Inserting this into equation (3.132) and changing order of integration gives

Gαii =
1

4πh2

∮
∂S

dls

h
2∫

−h
2

h
2∫

−h
2

ds′dt′ n · s− s′

κ‖s− s′‖2
(

1− e−κ‖s−s′‖
)
. (3.137)

Since the singularity is removed, the integrals over s′ and t′ can be approximated using

the midpoint rule;

Gαii ≈
1

4π

∮
∂S

dl n · s

κ‖s‖2
(

1− e−κ‖s‖
)
. (3.138)

Using the parametrization of ∂S given in equation (2.130), we get

Gαii ≈
1

4π

h/2∫
−h/2

dt
4∑
i=1

ni ·
γi(t)

κ‖γi(t)‖2
(

1− e−κ‖γi(t)‖
)

=
h

2πκ

h/2∫
−h/2

dt
1− e−κ

√
t2+(h

2
)2

t2 + (h2 )2
. (3.139)

Observe that this result is very similar to the expression for the diagonal elements in the

boundary integral method (see equation (2.131)), the only difference is the sign. The

integral is calculated numerically using the midpoint rule or a Gaussian quadrature.

3.9.2 Triangulation of surfaces of arbitrary shape

Let Sαi be a triangle represented by its vertices x1i ,x2i ,x3i .

The orthonormal basis is chosen to be

qαi (x) =


1√
Aαi

x ∈ Sαi

0 else,
(3.140)

where Aαi is the area of the triangle Sαi .

3.9.2.1 Matrix elements Gαβij

For α 6= β

Gαβij =
x

Qβ

dAx′

x

Qα

dAxq
α
i (x)Gβ(x,x′)qβj (x′)

=
1

4π
√
Aαi A

β
j

x

Sβj

dAx′

x

Sαi

dAx
e−κ‖x−x

′‖

‖x− x′‖
. (3.141)
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This integral is approximated using the midpoint rule

Gαβij ≈
Aαi A

β
j

4π
√
Aαi A

β
j

e−κ‖si−sj‖

‖si − sj‖
=

√
Aαi A

β
j

4π

e−κ‖si−sj‖

‖si − sj‖
, (3.142)

where si is the center of mass, i.e. si = 1
3 (x1i + x2i + x3i).

3.9.2.2 Matrix elements Gαij

Gαij =
x

Qα

dAx′

x

Qα

dAxq
α
i (x)Gα(x,x′)qαj (x′)

=
1

4π
√
Aαi A

α
j

x

Sαj

dAx′

x

Sαi

dAx
e−κ‖x−x

′‖

‖x− x′‖
. (3.143)

When i 6= j we use the midpoint rule;

Gαij ≈

√
Aαi A

α
j

4π

e−κ‖si−sj‖

‖si − sj‖
. (3.144)

When i = j we do the same as for the squares. We extend the triangle into a triangle and

a hemisphere centered around x′. The integral over the hemisphere doesn’t contribute

when the radius goes to zero, thus Gαii is given as the principal value integral

Gαii =
1

4πAαi

x

Sαi

dAx′

PVx′

x

Sαi

dAx
e−κ‖x−x

′‖

‖x− x′‖

 . (3.145)

We now proceed almost as we did when we calculated the diagonal elements aijkk in

the BIM. Choose coordinates such that the triangle Sαi is lying in the xy-plane with

the vertex x1i in the origin and the vertex x2i on the positive part of the x axis. Let

ri = x2i − x1i and qi = x3i − x1i . In more detail,

x1i → 0 = (0, 0), (3.146)

x2i → ui = (ui, 0) = (‖ri‖, 0), (3.147)

x3i → vi = (vi, wi) =
1

‖ri‖
(ri · qi, ‖ri × qi‖) . (3.148)

In these coordinates the triangle Sαi has the vertexes 0, ui and vi. The center of mass

becomes si = 1
3(ui+vi). Using these coordinates and the function f , given in equation
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(3.133), we obtain

Gαii =
1

4πAαi

x

Sαi

dAx′

PVx′

x

Sαi

dAxf(‖x− x′‖;κ)

 . (3.149)

Using the fact that f(r;κ) = ∇ · g(r;κ), where g is given in equation (2.124), and the

divergence theorem, the principal value integral becomes∮
∂Sαi

dlx n · g(x− x′;κ) + lim
ε→0

∮
Cαi,ε

dlx n · g(x− x′;κ), (3.150)

where ∂Sαi = C1i ∪C2i ∪C3i is boundary of the triangle Sαi and Cαi,ε is the boundary of

the hemisphere Dα
i,ε. There is no contribution from the second integral. Thus, changing

order of integration, we obtain

Gαii =
1

4πAαi

∮
∂Sαi

dlx
x

Sαi

dAx′ n · x− x′

κ‖x− x′‖2
(

1− e−κ‖x−x′‖
)
. (3.151)

Use the midpoint rule to approximate the double integral;

Gαii ≈
1

4π

∮
∂Sαi

dlx n ·
x− si

κ‖x− si‖2
(

1− e−κ‖x−si‖
)
. (3.152)

Using the parametrization given in equation (2.147),

C1i : γ1i(t) = uit, t ∈ [0, 1],

C2i : γ2i(t) = ui + (vi − ui)t, t ∈ [0, 1]

C3i : γ3i(t) = vi(1− t), t ∈ [0, 1],

(3.153)

and the calculations done in equations (2.148) and (2.149), we obtain

Gαii ≈
Aαi
6πκ

1∫
0

dt

3∑
j=1

1− e−κ‖γji (t)−si‖

‖γji(t)− si‖2
, (3.154)

where

Aαi =
uiwi

2
(3.155)

is the area of the triangle Sαi . Observe that also here, the only difference from equation

(2.150) is the sign. The integral is calculated numerically using the midpoint rule or a

Gaussian quadrature.



Chapter 4

Mode summation method

We mentioned in chapter 1 that, in principle, the method of mode summation applies

to any configuration. However, in most cases it is very hard to find the full frequency

spectrum and a way to regularize the sum that determines the Casimir energy. Thus in

practice, the method is limited to very symmetric configurations. In this chapter we use

mode summation to derive expressions for the Casimir energy for two special symmetric

configurations, namely parallel plates and concentric spheres.

4.1 Parallel plates

We are going to derive an expression the Casimir energy using two different alternatives.

In the first alternative the regularization of the frequency sum is done by first applying

the argument principle and then subtracting the high frequency part, whereas in the

second zeta-function regularization is used.

Consider two parallel plates separated by a distance a. Assume that the plates are

of infinite length and width. Let V0 be the region between the two plates;

V0 = {x = (x, y, z) ∈ R3 | 0 < z < a}. (4.1)

The two infinitely thin plates are located in the planes

Q1 = {x ∈ R3 | z = 0}, (4.2)

Q2 = {x ∈ R3 | z = a}. (4.3)

73



Chapter 4. Mode summation method 74

4.1.1 Alternative 1: Using the argument principle

Let V− be the region below the plates and V+ be the region above them,

V− = {x ∈ R3 | z < 0}, (4.4)

V+ = {x ∈ R3 | z > a}. (4.5)

The scalar field ϕ that “lives” in the different regions, we define as

ϕ(x, t) =


ϕ−(x, t), x ∈ V−

ϕ0(x, t), x ∈ V0

ϕ+(x, t), x ∈ V+

(4.6)

and the defining equation for the field is

ϕtt(x, t)− c2(z)∇2ϕ(x, t) = 0, x ∈ R3, (4.7)

where

c(z) =

c0, z ∈ (0, a)

c1, else.
(4.8)

A Fourier transform of equation (4.7) in the time domain gives

ω2ϕ(x)− c2(z)∇2ϕ(x) = 0. (4.9)

Continue by taking Fourier transforms in the x− and y−direction;

− ϕ′′(z) +

(
k2 − ω2

c2(z)

)
ϕ(z) = 0, (4.10)

where k = (kx, ky) and k2 = k · k. By defining

q2
j = k2 − ω2

c2
j

, j = 0, 1, (4.11)

we can write down equation (4.10) explicitly for the three different regions;

V− : −ϕ′′−(z) + q2
1ϕ−(z) = 0,

V0 : −ϕ′′0(z) + q2
0ϕ0(z) = 0,

V+ : −ϕ′′+(z) + q2
1ϕ+(z) = 0.

(4.12)
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On the plates Q1 and Q2 we require the solution to be continuous;

lim
z→0−

ϕ−(z) = lim
z→0+

ϕ0(z), (4.13)

lim
z→a−

ϕ0(z) = lim
z→a+

ϕ+(z). (4.14)

We also require that the time derivative of the field, ϕt, is continuous here. The other

boundary conditions will be derived from the requirement that no energy should be

deposited into the boundaries. Following the steps we did in equations (2.27) - (2.34),

but instead using wave equation (4.7), we obtain the energy flux

Se = −c2(z)ϕt∇ϕ. (4.15)

The normal component of the energy flux must be continuous across the plates if there

is no energy deposition. Using the fact that the normal points in the z-direction and

that ϕt is continuous, this requirement can be written as

lim
z→0−

c2
1ϕ
′
−(z) = lim

z→0+
c2

0ϕ
′
0(z), (4.16)

lim
z→a−

c2
0ϕ
′
0(z) = lim

z→a+
c2

1ϕ
′
+(z). (4.17)

The general solutions of equation (4.12) are

V− : ϕ−(z) = A1e
q1z +A2e

−q1z,

V0 : ϕ0(z) = B1e
q0z +B2e

−q0z,

V+ : ϕ+(z) = C1e
q1z + C2e

−q1z.

(4.18)

Let A2 = C1 = 0 such that there is no exponential growth when z → ±∞. The boundary

conditions at z = 0 give

A1 = B1 +B2,

c2
1q1A1 = c2

0q0(B1 −B2).
(4.19)

and for z = a we obtain

B1e
q0a +B2e

−q0a = C2e
−q1a,

c2
0q0(B1e

q0a −B2e
−q0a) = −c2

1q1C2e
−q1a.

(4.20)

We eliminate A1 and C2 and get the linear system

MB = 0, (4.21)
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where

M =

[
c2

1q1 − c2
0q0 c2

1q1 + c2
0q0

(c2
1q1 + c2

0q0)eq0a (c2
1q1 − c2

0q0)e−q0a

]
and B =

[
B1

B2

]
. (4.22)

Equation (4.21) has non-trivial solutions if and only if

detM = 0. (4.23)

This relation determines the possible frequencies ω and can more conveniently be written

as

g(ω, k) = −e−q1a detM = e−q1a
(
(c2

0q0 + c2
1q1)2eq0a − (c2

0q0 − c2
1q1)2e−q0a

)
= 0, (4.24)

where qi is given by equation (4.11).

The energy of the system can be expressed as a sum over the frequencies, ωn, which

are roots of g(ω, k);

E =
~
2

∞∫
−∞

dkx
2π

∞∫
−∞

dky
2π

∑
n

ωn(k) =
~

8π2

x

R2

dk
∑
n

ωn(k) (4.25)

The sum
∑
n
ωn will be evaluated using the argument principle, which says the following:

Let h be an analytic function with no poles inside a positively oriented contour C

and f a meromorphic function with no poles or zeros on C. Then

1

2πi

∮
C
dz h(z)

d

dz
ln f(z) =

∑
n

mnh(z0
n)− knh(zpn), (4.26)

where z0
n are the zeros, and zpn the poles of f inside the contour, and mn and kn are

their respective multiplicity.

We are going to apply this principle to our problem by defining a contour C =

C1
⋃
CR, where

C1 =
{
ix
∣∣ x ∈ [−R,R]

}
,

CR =
{
z = x+ iy ∈ C

∣∣ |z| = R, x > 0
}
.

(4.27)

Let h(z) = z. Since the function g(ω, k) has no poles, the argument principle gives that

∑
n

ωn =
1

2πi
lim
R→∞

∮
C
dω ω

d

dω
ln g(ω, k). (4.28)
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Figure 4.1: The integration contour C = C1 ∪ CR

The energy is therefore

E =
~

16π3i

x

R2

dk lim
R→∞

 −iR∫
iR

dω ω
d

dω
ln g(ω, k) +

∫
CR

dω ω
d

dω
ln g(ω, k)

 . (4.29)

This expression is divergent and must be regularized. The regularization consists of

subtracting the high frequency contribution. It will be assumed that the system is

dispersive. This means that the response of the material in the boundaries to the modes

is frequency-dependent, i.e ci = ci(ω). For large ω it is natural to assume that c0 = c1 = c

(c is the speed of light). The physical explanation is that the modes don’t see the atoms

in the boundaries because their frequencies are so high. Normal sized frequency modes

experience the boundaries as perfectly conducting, i.e. c0 = c and c1 = 0. Thus, for

large ω, we have

qj ≈
√
k2 − ω2

c2
≈ iω

c
, j = 0, 1, (4.30)

and therefore

g(ω, k) ≈ (c2
0q0 + c2

1q1)2e(q0−q1)a ≈ (2icω)2ei(
1
c
− 1
c
)ωa → −4c2ω2, (4.31)

g′(ω, k)→ −8c2ω. (4.32)
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Thus d
dω ln g(ω, k) = ω g

′(ω,k)
g(ω,k) → 2 along C∞. The energy can therefore be written as

E =
~

16π3i

x

R2

dk

− lim
R→∞

iR∫
−iR

dω ω
d

dω
ln(g(ω, k)) + 2

∫
C∞

dω

 . (4.33)

Observe that there is no geometry dependence in the second integral and therefore this

term will cancel when we subtract the high frequency part. The dominating contribution

to the energy for large ω is

g∞(ω, k) = (c2
0q0 + c2

1q1)2e(q0−q1)a. (4.34)

The energy associated to this contribution is

E∞ =
~

16π3i

x

R2

dk

− lim
R→∞

iR∫
−iR

dω ω
d

dω
ln(g∞(ω, k)) + 2

∫
C∞

dω

 . (4.35)

Define the regularized Casimir energy as

E = E − E∞ = − ~
16π3i

x

R2

dk lim
R→∞

iR∫
−iR

dω ω
d

dω
ln

(
g(ω, k)

g∞(ω, k)

)
(4.36)

Integration by parts, followed by a change of variable ω = iu, results in

E =
~

16π3

x

R2

dk

∞∫
−∞

du ln

(
g(iu, k)

g∞(iu, k)

)
, (4.37)

where
g(iu, k)

g∞(iu, k)
= 1−

(
(c2

0q0 − c2
1q1)

(c2
0q0 + c2

1q1)

)2

e−2q0a

∣∣∣∣
ω=iu

. (4.38)

We take the limit c0 → c and c1 → 0 to simulate a perfect conductor. Then

g(iu, k)

g∞(iu, k)
→ 1− e−2q1a

∣∣
ω=iu

= 1− e−2
√
k2+(uc )

2
a. (4.39)



Chapter 4. Mode summation method 79

By first changing to spherical coordinates and thereafter letting v = 2ρa, we obtain

E =
~

16π3

∞∫
−∞

dkx

∞∫
−∞

dky

∞∫
−∞

du ln

(
1− e−2

√
k2+(uc )

2
a

)

=
~c

16π3

2π∫
0

dθ

π∫
0

dφ sinφ

∞∫
0

dρ ρ2 ln
(
1− e−2ρa

)

=
~c

16π3
2π · 2

∞∫
0

dv

2a

v2

(2a)2
ln
(
1− e−v

)

=
~c

32π2a3

∞∫
0

dv v2 ln
(
1− e−v

)
. (4.40)

This integral is most easily calculated using Mathematica. We obtain π4/45. Thus the

Casimir energy for two parallel plates is given by

E(a) = − ~c
32π2a3

π4

45
= − π2~c

1440a3
≈ −0.006854

~c
a3
. (4.41)

4.1.2 Alternative 2: Zeta function regularization

We also derive the Casimir energy for two perfectly conducting parallel plates using zeta

function regularization.

With this alternative it is only necessary to define the scalar field ϕ in the region

between and on the plates;

ϕtt(x, t)− c2∇2ϕ(x, t) = 0, x ∈ V0,

ϕ|Qj = 0.
(4.42)

Fourier transforms of equation (4.7) in the time domain and the x and y direction give

ϕ′′(z) + q2ϕ(z) = 0, (4.43)

ϕ(0) = ϕ(a) = 0, (4.44)

where

q2 =
ω2

c2
− k2 (4.45)

and k = (kx, ky) and k2 = k · k. Notice that q is defined oppositely of the previous

section here. The general solution is

ϕ(z) = A sin(qz) +B cos(qz). (4.46)
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The boundary conditions (4.44) give B = 0 and

qn =
nπ

a
, n = 1, 2, 3, ..... (4.47)

Thus

ω = ωn = c

√
k2
x + k2

y +
(nπ
a

)2
, n = 1, 2, 3, ..... (4.48)

and the energy is

E =
~
2

∞∫
−∞

dkx
2π

∞∫
−∞

dky
2π

∞∑
n=1

ωn. (4.49)

This expression is of course divergent. We regularize by multiplying by ω−2s
n and in the

end letting s→ 0;

E =
~
2

∞∫
−∞

dkx
2π

∞∫
−∞

dky
2π

∞∑
n=1

ω1−2s
n . (4.50)

Introducing polar coordinates, we obtain

E =
~
2

∞∫
0

dr

2π
r
∞∑
n=1

c

(
r2 +

(nπ
a

)2
) 1

2
−s
. (4.51)

Interchange sum and integral, and then substitute y = ar
nπ to obtain

E =
~c
2

1

2π

∞∑
n=1

∞∫
0

nπdy

a

nπy

a

((nπy
a

)2
+
(nπ
a

)2
) 1

2
−s

=
~c
4π

∞∑
n=1

∞∫
0

dy y
(
y2 + 1

) 1
2
−s
(nπ
a

)3−2s

=
~c
4π

(π
a

)3−2s
∞∫

0

dy y
(
y2 + 1

) 1
2
−s
∞∑
n=1

1

n2s−3
.

(4.52)

Both the integral and the sum diverge when s → 0. However, we observe that both

converge for s > 3
2 . We therefore are going to evaluate each of them in their domain of

convergence and thereafter analytically continue to s = 0.

The integral can be calculated using the substitution u = y2 + 1;

∞∫
0

dy y
(
y2 + 1

) 1
2
−s

=

∞∫
1

du

2
u

1
2
−s =

1

2

u
3
2
−s

3
2 − s

∣∣∣∣∣
∞

u=1

= − 1

3− 2s

∣∣∣∣
s=0

= −1

3
. (4.53)



Chapter 4. Mode summation method 81

The sum we recognize as a well-studied mathematical function, namely the Riemann

zeta function ζ (see for example [18] and [19])

∞∑
n=1

1

n2s−3
= ζ(2s− 3)

∣∣∣∣
s=0

= ζ(−3). (4.54)

The series that defines the zeta function ζ(s) is divergent for Re(s) ≤ 1. However, the

zeta function ζ(s) can be uniquely analytically continued to the whole complex plane.

There is a close relation between the zeta function and the Bernoulli polynomials Bn for

integers n;

ζ(−n) = −Bn+1(1)

n+ 1
. (4.55)

Thus

ζ(−3) = −B4(1)

4
=

1

120
. (4.56)

By inserting the results (4.53) and (4.56) into equation (4.52), we obtain

E =
~c
4π

(π
a

)3
(
−1

3

)
1

120
= − ~cπ2

1440a3
. (4.57)

This of course the same result that we got using the first alternative. Note that we didn’t

subtract anything explicitly from the energy, using the zeta function regularization. In

some sense the zeta regularization corresponds to the subtraction.

4.2 Two concentric spheres

The following derivation is based on a paper by M. Ozcan [20].

Consider two concentric spheres with radius R1 and R2, where R1 < R2. The defining

equation for the scalar field in the space, V0, between the two spheres is

ϕtt(x, t)− c2∇2ϕ(x, t) = 0,

ϕ|Qj = 0.
(4.58)

A Fourier transform in time gives

ω2ϕ(x) + c2∇2ϕ(x) = 0. (4.59)

In spherical coordinates the Laplace operator become

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
. (4.60)
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Let k = ω/c. Then equation (4.58) can be written as

1

r2

∂

∂r

(
r2∂ϕ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
+

1

r2 sin2 θ

∂2ϕ

∂φ2
+ k2ϕ = 0, (4.61)

where ϕ = ϕ(r, θ, φ), r ∈ [R1, R2], θ ∈ [0, 2π) and φ ∈ [0, π). The boundary condition

become

ϕ(R1, θ, φ) = ϕ(R2, θ, φ) = 0. (4.62)

4.2.1 Solution of equation (4.61)

Separation of variables will be used to solve equation (4.61);

ϕ(r, θ, φ) = R(r)Θ(θ)Φ(φ). (4.63)

Multiply equation (4.61) by r2/RΘΦ,

1

R

d

dr

(
r2dR

dr

)
+ k2r2 +

1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

1

Φ sin2 θ

d2Φ

dφ2
= 0. (4.64)

We first try to find the angular part of the field ϕ. When we multiply equation (4.64) by

sin2 θ, only the last term involves φ, whereas the first three involves r and θ. Therefore

the last term must be constant,

1

Φ

d2Φ

dφ2
= −m2. (4.65)

The solution is

Φm(φ) = cme
imφ, m ∈ Z. (4.66)

The condition Φ(φ) = Φ(φ + 2π) implies that m must be an integer. We can wlog.

choose cm = 1. Substituting (4.65) into equation (4.64), we obtain

1

R

d

dr

(
r2dR

dr

)
+ k2r2 +

1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
= 0. (4.67)

The third and fourth terms only depend on θ, whereas the first and second term only

depend on r. Therefore the sum of the third and fourth term must be a constant, which

we write as −l(l + 1);

1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
= −l(l + 1). (4.68)

Multiply by Θ to get

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

(
l(l + 1) +

m2

sin2 θ

)
Θ = 0. (4.69)
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Make the substitution x = cos θ;

d

dx

[
(1− x2)

dΘ(x)

dx

]
+

(
l(l + 1) +

m2

1− x2

)
Θ(x) = 0. (4.70)

Equation (4.70) is the Associated Legendre Equation, and the solution is

Θm
l (cos θ) = Pml (cos θ), (4.71)

where Pml are the Associated Legendre Polynomials. Only the choices l = 0, 1, 2... and

m = −l,−l + 1, ..., l − 1, l will make sure that the solution is finite for −l ≤ cos θ ≤ 1.

The two solutions Φm and Θm
l can be combined into a Spherical Harmonic, Y m

l (θ, φ),

given by

Y m
l (θ, φ) = Cml P

m
l (cos θ)eimφ, l = 0, 1, 2...,m = −l,−l + 1, ..., l − 1, l, (4.72)

where Cml is a normalization constant.

By substituting equation (4.68) back into equation (4.67), only the radial part re-

mains;

r2d
2R

dr2
+ 2r

dR

dr
+
[
k2r2 + l(l + 1)

]
R = 0. (4.73)

Define a function Z by

R(r) =
Z(r)√
kr
. (4.74)

Substituting this into equation (4.73), we get

r2d
2Z

dr2
+ r

dZ

dr
+

[
k2r2 −

(
l +

1

2

)2
]
Z = 0. (4.75)

This is a Bessel equation of order l + 1/2. The complete solution is

Z(r) = A′lJl+1/2(kr) +B′lNl+1/2(kr), (4.76)

where Jl+1/2 and Nl+1/2 are Bessel’s functions of first and second kind, respectively.

Thus the solution to equation (4.61) is

ϕ(r, θ, φ) =
∑
k,l,m

(kr)−1/2
[
AlJl+1/2(kr) +BlNl+1/2(kr)

]
Y m
l (θ, φ). (4.77)

By inserting the boundary conditions

ϕ(R1, θ, φ) = 0,

ϕ(R2, θ, φ) = 0,
(4.78)
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we obtain

ϕ(r, θ, φ) =
∑
k,l,m

(kr)−1/2Al

[
Jl+1/2(kr)−

Jl+1/2(kR1)

Nl+1/2(kR1)
Nl+1/2(kr)

]
Y m
l (θ, φ) (4.79)

where r ∈ [R1, R2], θ ∈ [0, 2π), φ ∈ [0, π), Al is a normalization constant and k are the

roots of the equation

Jl+1/2(kR2)Nl+1/2(kR1)− Jl+1/2(kR1)Nl+1/2(kR2) = 0. (4.80)

4.2.2 Expression for the Casimir energy

The Casimir energy is given by

EC =
1

2
~
∞∑
l=0

l∑
m=−l

∞∑
n=1

ωnl = ~c
∞∑
l=0

ν

∞∑
n=1

knl, (4.81)

where ν = l + 1/2, ωnl = knlc. knl are eigenfrequencies, determined by solving the

transcendental frequency equation (4.80). Note that for fixed l, there is an infinite

number of solutions knl to the frequency equation. Also note that the complete solution

of Bessel’s equation involves the Bessel functions Jl+1/2 and Nl+1/2. These functions

can be represented as infinite series’ of ascending powers of k, but for large |k| the series’

converge slowly and therefore the initial terms give no information about the sum. In

order to describe the frequency spectrum at fixed l and large |k|, we therefore introduce

uniform asymptotic expansions of the Bessel’s functions. The asymptotic expansions

converges rapidly in the sense that the series rapidly approaches a constant as l → ∞.

Thus, to carry out the summation with respect to l in EC , the sum
∞∑
n=1

knl will be

replaced by
∞∑
n=1

knl+
∞∑
n=1

k̃nl, where k̃nl is the eigenvalue spectrum in the limit k →∞ at

fixed l. knl represents the rest of the spectrum. The Casimir energy then can be written

as

EC = ĒC + ẼC = ~c
∞∑
l=0

ν
∞∑
n=1

knl + ~c
∞∑
l=0

ν
∞∑
n=1

k̃nl. (4.82)

The expression for the energy is of course divergent and must be regularized. As we will

see in the next subsections, the regularization will involve both Abel Plana formulas,

exponential cutoffs and zeta functions.
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4.2.3 Calculation of ẼC

In order to calculate the eigen frequencies for large arguments at fixed ν, we use Hankel’s

asymptotic expansion for x� 1;

Jν(x) '
√

2

πx

[
cos
(
x− νπ

2
− π

4

)
− 4ν2 − 1

8x
sin
(
x− νπ

2
− π

4

)]
,

Nν(x) '
√

2

πx

[
cos
(
x− νπ

2
− π

4

)
+

4ν2 − 1

8x
sin
(
x− νπ

2
− π

4

)]
.

(4.83)

Inserting these into the frequency equation (4.80), we get

R1 sin
(
R2k̃ −

νπ

2
− π

4

)
cos
(
R1k̃ −

νπ

2
− π

4

)
−R2 sin

(
R1k̃ −

νπ

2
− π

4

)
cos
(
R2k̃ −

νπ

2
− π

4

)
= 0.

(4.84)

Graphically we see that this equation have approximately the same roots as

R2 sin((R2 −R1)k̃) = 0, (4.85)

i.e k̃nl ≈ nπ
R2−R1

. However, the zeros aren’t entirely evenly spaced and a better approxi-

mation (see [20]) is

k̃2
nl '

(
nπ

R2 −R1

)2

+
ν2

R2R1
n = 1, 2, ... (4.86)

Thus

ẼC = ~c
∞∑
l=0

ν
∞∑
n=1

[(
nπ

R2 −R1

)2

+
ν2

R2R1

] 1
2

. (4.87)

This divergent sum can be regularized using the Abel-Plana sum formula , which is given

by

Reg

[ ∞∑
n=0

f(n)

]
≡
∞∑
n=0

f(n)−
∞∫

0

f(x)dx =
1

2
f(0) + i

∞∫
0

dt
f(it)− f(−it)

e2πt − 1
, (4.88)

where f is an analytic function for Re [z] > 0 and Reg refers to the regularized value of

the sum. The Abel-Plana sum formula for half integers will also be used;

∞∑
n=0

f(n+ 1/2) =

∞∫
0

f(x)dx− i
∞∫

0

dt
f(it)− f(−it)

e2πt + 1
. (4.89)

Define

G(z;A,B) =
√

(Az)2 +B2. (4.90)
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This function has branch points z = ±iBA . By going around the branch points, one can

prove the equality (see p. 23 in [7])

G(it;A,B)−G(−it;A,B) = 2i
√

(At)2 −B2θ(At−B), (4.91)

where θ(x) is the Heaviside step function. We regularize ẼC using this identity and

equation (4.88);

ẼC = ~c
∞∑
l=0

ν Reg

[ ∞∑
n=1

G
(
n; πd ,

ν√
R1R2

)]

= ~c
∞∑
l=0

ν

−( ν2

R1R2

) 1
2

+ i 2i

∞∫
0

dt

{(
tπ

d

)2

− ν2

R2R1

} 1
2 θ

(
πt
d −

ν√
R1R2

)
e2πt − 1


= − ~c

2
√
R1R2

∞∑
l=0

ν2 − 2~c
∞∑
l=0

ν

∞∫
νξ
2π

dt

{(
tπ

d

)2

− ν2

R2R1

} 1
2 1

e2πt − 1
,

(4.92)

where d = R2 − R1, ξ = 2d√
R1R2

and ν = l + 1/2. The first divergent sum can be

analytically continued using the Hurwitz zeta function (see [19]);

∞∑
l=0

ν2 =
∞∑
l=0

(
l +

1

2

)2

= ζ (−2, 1/2) . (4.93)

The property

ζ (−2n, 1/2) = 0, (4.94)

for n = 1, 2, .., gives that equation (4.92) becomes

ẼC = −2~c
∞∑
l=0

F (ν), (4.95)

where

F (ν) = ν

∞∫
νξ
2π

dt

{(
tπ

d

)2

− ν2

R2R1

} 1
2 1

e2πt − 1
. (4.96)

Using the half integer Abel-Plana sum formula given in equation (4.89), we get

ẼC = −2~c
∞∫

0

dx F (x) + 2~ci
∞∫

0

dx
F (ix)− F (−ix)

e2πx + 1
(4.97)
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The first integral is solved using several substitutions;

∞∫
0

dx F (x) = ~c
∞∫

0

dx x

∞∫
xξ
2π

dt

{(
tπ

d

)2

− x2

R2R1

} 1
2 1

e2πt − 1

= ~cR1R2

∞∫
0

dv v2

∞∫
vd
π

dt

{(
tπ

vd

)2

− 1

} 1
2 1

e2πt − 1

= ~cR1R2
d

2π

∞∫
0

dv v3

∞∫
0

du

√
u

u+ 1

1

e2d
√
u+1v − 1

= ~cR1R2
d

2π

1

24d4

∞∫
0

du

√
u

u+ 1

1

(u+ 1)2

∞∫
0

dy
y3

ey − 1

= ~c
R1R2

25πd3

1∫
0

dq
√
q
π4

15
=
R1R2

25πd3

2

3

π4

15
=
R1R2π

3

720d3

(4.98)

The second integral in equation (4.97) is divergent. This integral is regularized by

substituting ν − iε for ν and letting ε→ 0 at the end. This results in

2~ci
∞∫

0

dt
F (it)− F (−it)

e2πt + 1
= − 5~cπ

1440d
. (4.99)

Thus

ẼC = −~cR1R2π
3

360d3

[
1 +

5

4π2

d2

R1R2

]
. (4.100)

4.2.4 Calculation of ĒC

In order to regularize the expression for ĒC , we introduce an exponential cutoff. I.e we

define ĒC as

ĒC = ~c
∞∑
l=0

ν
∞∑
n=1

knle
−αknl = ~c

∞∑
l=0

(
l +

1

2

)
Sl, (4.101)

where Sl =
∞∑
n=1

knle
−αknl and the original expression is recovered by letting α → 0.

Define

fν(x; a, b) = Jν(bx)Nν(ax)− Jν(ax)Nν(bx). (4.102)

Thus the frequencies knl are the roots of fν(νk;R1, R2). To evaluate the sum Sl, we use

the argument principle given in equation (4.26). Choose h(z) = ze−αz. The principle
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then states that

1

2πi

∮
C
dk e−αkk

d

dk
ln fν(k) =

∞∑
n=1

knle
−αknl = Sl. (4.103)

Thus the sum Sl can be replaced by a contour integral, and the expression for ĒC

becomes

ĒC = ~c
∞∑
l=0

ν
1

2πi

∮
C
dk e−αkk

d

dk
ln fν(νk). (4.104)

Figure 4.2: The integration contour C = C1 ∪ C2 ∪ CR

Let the contour C be given by C = C1 ∪ C2 ∪ CR, where

CR = {z = x+ iy ∈ C| |z| = R, x > 0}

C1 =
{
−iyeiφ|y ∈ [0, R]

}
C2 =

{
iye−iφ|y ∈ [0, R]

}
.

(4.105)

For fixed R, the contour C encloses a finite number of roots of fν(νk), but when we take

the limit R → ∞, C encloses all of them. Provided that φ 6= 0, the contribution from

C∞ vanishes because of the exponential cutoff. The contributions from C1 and C2 are

complex conjugated of each other, and therefore only the real part gives a contribution.

Equation (4.104) reduces to

ĒC = −~c
π

lim
α→0

∞∑
l=0

ν Re e−iφ
∫ ∞

0
dy e−iαye

−iφ
y
d

dy
ln fν(iνy;R1, R2). (4.106)
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Well known relations between the Bessel functions Jν , Nν and the modified Bessel func-

tions Iν and Kν will be used to calculate the integral in equation (4.106);

Jν(iz) = iνIν(z), (4.107)

Kν(iz) =
π

2
iν+1 [Jν(z) + iNν(x)] . (4.108)

These relations give that

fν(ix; a, b) = gν(x; a, b), (4.109)

where

gν(x; a, b) = − 2

π
[Iν(bx)Kν(ax)− Iν(ax)Kν(bx)] . (4.110)

Define λ = R1
R2

and rescale the integration variable with yR2 → y in equation (4.106);

ĒC = − ~c
R2π

lim
α→0

∞∑
l=0

ν Re e−iφ
∫ ∞

0
dy e−iαye

−iφ/R2 y
d

dy
ln gν(νy;λ), (4.111)

where gν(x;λ) ≡ gν(x;λ, 1). Lommel’s expansions (or the multiplication theorem) for

the function gν(x;λ) gives

gν(x;λ) = λ−ν
∞∑
k=0

(λ2−1)k

k!2k
x2k−ν

[
Iν(x)

(
d

x dx

)k {xνKν(x)} −Kν(x)
(

d
x dx

)k {xνIν(x)}
]
,

(4.112)

where |λ2 − 1| < 1. Long calculations give that

νy
d

dy
ln gν(z;λ) =

[
(1− λ2)2

12
z2 +

(1− λ2)3

24
z2 +

(1− λ2)4

720

[
z2(19− ν2)− z4

]
− (1− λ2)5

1440

[
3z2(ν2 − 9) + 2z4

]
+ [Terms in even powers of z]

]
z=νye−iφ

.

(4.113)

Inserting equation (4.113), and using the integral result

I(2n) = e−iφ
∫ ∞

0
dy e−iαye

−iφ/R2

(
νye−iφ

)2n
=

∫ ∞
0

(
−iR2

α dx
)
e−x

(
−νiR2

α x
)2n

= (−1)n+1iν2n
(
R2
α

)2n+1
Γ(2n) = (−1)n+1i(2n)!ν2n

(
R2
α

)2n+1
, n = 0, 1, ..,

(4.114)
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equation (4.111) becomes

ĒC =− ~c
R2π

lim
α→0

∞∑
l=0

Re

[
i
(1− λ2)2

6
ν2

(
R2

α

)3

+ i
(1− λ2)3

12
ν2

(
R2

α

)3

+ i
(1− λ2)4

720

[
2ν2(19− ν2)

(
R2

α

)3

+ 24ν4

(
R2

α

)5
]

+ i
(1− λ2)5

720

[
−6ν2(ν2 − 9)

(
R2

α

)3

+ 48ν4

(
R2

α

)5
]

+ [Terms in imaginary number and even powers of ν]

]
.

(4.115)

All terms in the above expression have a singular term in the regulation parameter α,

but the fact that they are purely imaginary implies that

ĒC = 0. (4.116)

4.2.5 Final expression for the Casimir energy

Inserting the expressions for ẼC and ĒC into equation (4.82), we obtain

EC = ĒC + ẼC = −~cR1R2π
3

360d3

[
1 +

5

4π2

d2

R1R2

]
, (4.117)

where d = R2 −R1. This is the Casimir energy for two concentric spheres.



Chapter 5

Relation between Casimir energy

and pressure

In the previous chapter we used the method of mode summation to find the Casimir

energy for some configurations. We also remember that the FIM outputs the Casimir

energy of a system, whereas the BIM gives the Casimir pressure and force. In order

to be able to compare the three different methods, we therefore must find a relation

between the energy of a system and the force/pressure on the objects in the system.

The energy in a system is a function of several parameters, r1, ..., rn. Thus the energy

is given by E(r) = E(r1, .., rn). Let γ(s) = (r1(s), ..., rn(s)) be a one parameter curve

through the argument space. Then

dE(γ(s)) = ∇E · γ ′(s)ds (5.1)

is the relation between the change in the parameter s and the change in energy. Let

Q = ∪jQj , where Qj are the boundaries of a set of compact objects Vj in R3. The force

on the surface element dA on Qj is related to the pressure via

Fj = njPjdA, (5.2)

where nj is a unit normal pointing into the region V0 = R3 \ {Vk}. The change in the

energy related to a deformation, dr, of one ore more of the objects, is given by

dE = −
{

Q

F · dr = −
{

Q

dA Pn · dr = −
∑
j

{

Qj

dAPjnj · drj , (5.3)

where the sum involves the objects that are deformed. Combining equations (5.1) and

(5.3), we obtain

−∇E · γ ′(s)ds =
∑
j

{

Qj

dA Pjnj · drj . (5.4)

91



Chapter 5. Relation between Casimir energy and pressure 92

This relation holds for general configurations and will be used to find explicit relations

between the Casimir energy and force/pressure for configurations that are of particular

interest for us.

5.1 Two parallel plates

Let the two plates lie in the planes z = z1 and z = z2, with z2 − z1 = a > 0. Keeping

the upper plate fixed, the position of the plates is determined by the parameter s via

the parametrization γ(s) = (z1 ± s, z2). For a change ds in the parameter, the change

in energy will be

dE(γ(s)) = ∇E(z1, z2) · γ ′(s)ds =

(
∂E

∂z1
,
∂E

∂z2

)
· (±1, 0)ds = ± ∂E

∂z1
ds. (5.5)

A parametrization of the lower plate is given by r1(u, v) = (u, v, z1), while r1(u, v, s) =

(u, v, z1 ± s) describe deformations of it. The unit normal is given by n1 = (0, 0, 1).

Under the parameter change ds, the change in position of the plate is given by the

differential

dr1 = r′1(s)ds = (0, 0,±ds). (5.6)

We assume that the area of the plates is A and that a �
√
A such that the boundary

effects can be neglected. Then the symmetry of the configuration gives that the pressure

is constant on the surface. Equation (5.3) gives the relation between the pressure and

the change in energy;

dE(γ(s)) = −
{

Q1

dA P1n1 · dr1 = ∓ds
{

Q1

dA P1 = ∓ds A P1. (5.7)

The energy per area is therefore given by

∓ ∂E

∂z1
ds = ±ds P1. (5.8)

Thus

P1 = − ∂E
∂z1

. (5.9)

Similar calculations are done for the upper plate, and we get

P2 =
∂E

∂z2
, (5.10)
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because the normal is pointing in the opposite direction. Using the fact that a = z2−z1,

we get that E = E(a) and

P1 = − ∂E
∂z1

= − ∂a

∂z1

dE

da
=
dE

da
,

P2 =
∂E

∂z2
=

∂a

∂z2

dE

da
=
dE

da
.

(5.11)

Using mode summation we found that the Casimir energy for two parallel plates is given

by

E = − ~cπ2

1440a3
. (5.12)

Thus the pressure is

P1 = P2 =
dE
da

=
~cπ2

480a4
, (5.13)

where positive direction is along the normals that point into the region between the

plates, V0. Thus the force between the plates is attractive.

5.2 Concentric spheres

Let R1 and R2, R2 > R1, be the radii of the two spheres. Since the spheres are

concentric, the configuration is fully described by their radii. To start with, we keep

the outer sphere fixed. Thus the configuration is described by the one parameter curve

γ(s) = (R1 ± s,R2). Under a change in radius of the inner sphere by ds, the change in

energy will be

∇E(R1, R2) · γ ′(s)ds =

(
∂E

∂R1
,
∂E

∂R2

)
· (±1, 0)ds = ± ∂E

∂R1
ds. (5.14)

A parametrization of the inner sphere is given by r1(ϕ, θ) = R1 (sinϕ cos θ, sinϕ sin θ, cosϕ) =

R1n1, where n1, given by

n1 = (sinϕ cos θ, sinϕ sin θ, cosϕ) , (5.15)

is the unit normal of the sphere. A deformation of the sphere is described by r1(ϕ, θ, s) =

(R1± s)n1. Under a parameter change, ds, the change in position of the inner sphere is

given by the differential

dr1 =
∂r1

∂s
ds = ±dsn1. (5.16)

The relation between the pressure and the change in energy is given by equation (5.3);

dE(γ(s)) = −
{

Q1

dA P1n1 · ±dsn1 = ∓ds
{

Q1

dA P1 = ∓ds4πR2
1P1, (5.17)
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where it is used that, because of symmetry, the pressure is constant on the surface. We

get

± ∂E

∂R1
ds = ∓ds 4πR2

1P1. (5.18)

Thus the pressure on the inner sphere is given by

P1 = − 1

4πR2
1

∂E

∂R1
. (5.19)

For the outer sphere, similar calculations give

P2 =
1

4πR2
2

∂E

∂R2
. (5.20)

The sign is opposite since the outer normal is pointing inwards.

Remember that using mode summation, we found that the Casimir energy for this

configuration is

EC = −~cR1R2π
3

360d3

[
1 +

5

4π2

d2

R1R2

]
, (5.21)

where d = R2 −R1.

Using equation (5.19), we find that the pressure on the inner sphere is given by

P1 = − 1

4πR2
1

∂EC
∂R1

=
~cπ2R2

480d4R1

[
1 +

d

3R1
+

5

12π2

d2

R1R2

]
. (5.22)

Equation (5.20) gives that the pressure on the outer sphere is

P2 =
1

4πR2
2

∂EC
∂R2

=
~cπ2R1

480d4R2

[
1− d

3R2
+

5

12π2

d2

R1R2

]
. (5.23)

Consider a situation where the spheres are very close to each other, i.e let R2 → R1.

Then d
Ri
� 1 and therefore

P1 →
~cπ2

480d4
(5.24)

and

P2 →
~cπ2

480d4
. (5.25)

We recognize this as the same result as we obtained for the parallel plates. The ex-

planation is that the contribution to the Casimir effect mainly comes from the nearby

regions. When the objects are close to each other, locally there is almost no difference

between the two configurations.
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5.3 Adjacent objects

Consider two objects whose centers of mass are determined by s1 = (x1, 0, 0) and s2 =

(x2, 0, 0). We keep object 2 fixed and move object 1 along the x-axis. The positions

of the objects are described by the one parameter curve γ(s) = (x1 ± s, x2). Under a

change in position, determined by ds, the change in energy will be

dE(γ(s)) = ∇E(x1, x2) · γ ′(s)ds =

(
∂E

∂x1
,
∂E

∂x2

)
· (±1, 0)ds = ± ∂E

∂x1
ds. (5.26)

Assume r1(ϕ, θ) = (x1, 0, 0) +X1(ϕ, θ) is a parametrization of object 1. Allowing the

object to move along the x-axis, the object is determined by r1(s, ϕ, θ) = (x1± s, 0, 0) +

X1(ϕ, θ). The differential change is dr1 = r′1(s)ds = (±ds, 0, 0). In this situation, it

is more convenient to relate the energy to the force since the pressure isn’t constant.

Using equation (5.3), we obtain

dE(γ(s)) = −
{

Q1

dA P1n1 · (±ds, 0, 0) = ∓ds
{

Q1

dA P1n1,x = ∓dsF1,x. (5.27)

Thus

± ∂E

∂x1
ds = ∓dsF1,x. (5.28)

The force is therefore given by

F1,x = − ∂E
∂x1

. (5.29)

Similar calculations give

F2,x =
∂E

∂x2
. (5.30)

Thus it is clear that the force on the object will be oriented along the x-axis.





Chapter 6

Numerical implementations

In this chapter we consider the implementations of the boundary integral method (BIM)

and the functional integral method (FIM). The implementations of the methods will be

written in C, using both MPI and pthreads for parallel support. The implementations

are designed for r conductors.

6.1 Boundary integral method

Remember that the BIM outputs the pressure,

P (x) =
1

2π

∞∫
0

dω P(x,x, ω). (6.1)

The integral over ω will be calculated using an n-point Gaussian quadrature. The

integral will be truncated at some point ωmax. We can’t give formula for how large

ωmax has to be chosen, but a suitable choice can be found by solving the boundary

integral equations for a rough discretization of the boundaries of the conductors.

We now consider the algorithm for calculating the density P(x,x, ω) on the k-th of

the r conductors, for a particular ω. For simplicity, we assume that each of the conduc-

tors are discretized using N elements. In order to find this density, we have to solve the

linear system of equations given in equations (2.105) and (2.106), for i = k. In general,

the matrix on the right hand side of equation (2.105) consists of N columns. However,

according to our discussion in chapter 2.9, the number of columns can be reduced enor-

mously if there are any symmetries apparent. Both for parallel plates (assuming infinite

length, such that there are no boundary effects) and concentric spheres, the number

of columns can be reduced to a single column. In addition, symmetry gives that the

pressure on both plates in the parallel plates configuration is of equal size. This means

that the equation only have to be solved for i = 1, and not i = 2. These examples

indicate that it is possible to reduce the computational load substantially for symmetric
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configurations. We let NR, 1 ≤ NR ≤ N , be the number of columns on the rhs. of

equations (2.105) and (2.106).

Under the above mentioned assumptions and in accordance with chapter 2, an im-

plementation of the BIM will involve 4 steps:

1. Fill r2 matrices Aij of size N ×N each, and a rhs. of size N ×NR.

2. Solve the linear system AkkBkk = Y kk of size N ×N for NR different right hand

sides.

3. Perform r − 1 matrix multiplications, AkjBkk, for j = 1, 2, .., r, j 6= k.

4. Solve the linear system (2.105) of size rN × rN for NR different right hand sides.

Taking a closer look at the steps we have to go through, we see that most of them are

well suited for being programmed in parallel. The implementation will be parallelized the

obvious way; each of the matrices Aij will be stored on different nodes. These r2 nodes

we call worker nodes. The right hand side of the equations will be stored on a master

node. Only by looking at step 1, we see that it is an advantage parallelizing. When

the resolution of the discretization is high, the matrix on the left hand side of equation

(2.105), A =
(
Aij
)
, easily becomes too large for being stored on a single node computer.

Thus by storing the lhs. on r2 different nodes, one has the opportunity of working with

higher resolution of the discretizations. In addition, one reduces the computational time

by filling each of the matrices Aij at the same time, instead of serially. Step 2 and

3 are clearly possible to perform even though the matrices Aij are stored on different

nodes, but what about step 4? Since there are many different columns on the rhs. of

the equation, the obvious way to solve the equation in step 4, is to use a linear solver

based on LU-decomposition. However, such a method will require that the entire lhs.,

A =
(
Aij
)
, is stored on a single node. LU-decomposition is therefore out of the question.

Fortunately, there exist linear solvers that can be applied even though the lhs. of the

equation is stored on different nodes. An example is the iterative linear solver based on

the generalized minimal residue method (GMRES). Public domain implementations of

GMRES can be found on the internet (See for example the routine written in fortran77

[21]). Using the GMRES, the matrix A will only be involved in a matrix-vector product.

Such a product can easily be performed in parallel by storing the different block matrices

Aij on different nodes. Thus also step 4 is well suited for being parallelized.

The r − 1 matrix multiplications in step 3 are easily parallelized. Step 2, which is

to solve the self pressure equation, is harder to perform in parallel. The reason is that

only the node where the matrix Akk is stored, can be used to solve the equation. All

other nodes are unoccupied during this step and therefore this step may speed down the

implementation. Normally the number of nodes one has in hand is 1,2,4,8,16 and so on.
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This fact can be used to speed up step 2. For example if r = 2, the method described

above only involves 5 nodes. Thus there are 3 more nodes where the matrix Akk can be

stored. Thus, instead of solving the self-pressure equation serially, column by column,

one can for example solve it for 4 different rhs. at the same time.

The computer that I used had a memory of 32 GB available on the largest nodes.

Using double precision every element of a matrix requires 8 bytes. This should imply, if

the entire node is used for storing a matrix, that it is possible to store matrices slightly

larger than 60000× 60000 on each node. If one want to work with larger matrices, and

doesn’t have a larger computer available, it is possible to split the matrices Aij into even

smaller submatrices. This will require that there are enough nodes available, because

then more than r2 nodes is needed for storing the lhs. of equation (2.105). We also

observe that if there is no symmetry reduction, the matrix on the rhs. of the equation

can be large. Fortunately the memory isn’t a problem here, since the different columns

are independent of each other and therefore one can consider one column at the time,

i.e. the equations can be solved for each column serially.

6.2 Functional integral method

Remember that the FIM gives the Casimir energy. In the BIM, the pressure is given as

an integral from 0 to ∞, and similarly the energy is;

E =
~

2π

∫ ∞
0

dκ ln detM(iκ). (6.2)

The integral will be calculated using a Gaussian quadrature and will be truncated at a

suitable choice κmax, for example at ωmax. The matrix M consist of r2 block matrices

Mαβ of size N ×N , where

Mαβ = 1δαβ + [Tα]−1 Uαβ(1− δαβ) α, β = 1, ..., r. (6.3)

We consider the algorithm for calculating the energy density once. To simplify, we also

here assume that all conductors are discretized using N elements.

1. Fill the matrices Tα and Uαβ of size N ×N each, for α = 1, .., r, β 6= α. Thus r2

matrices have to be filled.

2. Calculate the matrices Mαβ = [Tα]−1 Uαβ, β 6= α, by solving the r(r − 1) linear

systems TαMαβ = Uαβ. The size of the lhs. is N ×N , and there are N columns

on the rhs.

3. Calculate the determinant of a rN × rN matrix.



Chapter 6. Numerical implementations 100

This algorithm outputs the energy density for a particular κ. Since the force or pressure

involve a derivative of the energy, a minimum of two calculations of the energy is required.

Thus the algorithm has to be repeated twice for each κ.

Step 3 is hard to implement in parallel since it involves calculation of a determinant.

As far as we know, the determinant of the matrix M of size rN ×rN must be calculated

by storing the entire matrix M on the same node. This reduces the size of the matrices

that we are able to do calculations for, and implies that we can’t apply the FIM on as

high resolutions as the BIM. The fact that it is hard to parallelize the calculations of

the density is a big limitation of the FIM. It could be mentioned that it is still possible

to parallelize the calculations of the energy itself. This can be done by calculating

the integral over κ in parallel, i.e by calculating the energy density for different κ’s on

different nodes. Such a parallelization doesn’t imply that it is possible to do calculations

for higher resolutions, since one still have to store the entire matrix M(iκ) on the same

node, but the computational time will be reduced. However, this can’t be seen as an

advantage of the FIM compared to the BIM, since exactly the same is possible for the

BIM.

By looking closer at step 2, we observe that there are only r different lhs. in the

linear equations. For each lhs. there are r− 1 different matrices on the rhs. Such linear

systems are effectively solved using LU-decomposition. The determinant will also be

calculated using LU-decomposition.

6.3 Complexity considerations

From the discussion in the two previous sections, we see that there are similarities

between the two implementations. Since both the BIM and the FIM are based on Green’s

functions, the elements in the matrices will be very similar. The primary difference

between the implementations is that the BIM ends up solving a large linear system,

whereas one with the FIM has to calculate a determinant of a large matrix in the end.

However, this difference is important; the former is well suited for being parallelized

using GMRES as the linear solver, whereas the latter is not.

The implementation of the FIM is based on LU-decomposition, and therefore it is

easy to estimate the total asymptotic floating point operation cost:

1. Fill r2 matrices. Cost: cr2N2, for some constant c.

2. Solve r linear systems with r − 1 different matrices on the rhs. Cost: r 2
3N

3 +

r2(r − 1)2N3.

3. Calculate the determinant of a rN × rN matrix. Cost: 2
3(rN)3.

Thus the total cost is
(

8
3r

3 − 2r2 + 2
3r
)
N3.
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Since the implementation of the BIM is based on GMRES, it is difficult to give a

general estimate of the total cost of this method. Step 1 is to fill r2 + 1 matrices and

therefore the cost is cr2N2 + cNNR. The constant c is almost equal for the BIM and

the FIM because both are based on Green’s functions. Step 3 consists of r − 1 matrix

multiplications and the cost, using the standard formula, is (r − 1)N2NR. We observe

that the cost of step 3 is O(N3) if NR = N , i.e if there is no symmetry reduction.

The cost of step 2 and 4 depend strongly on the number of iterations the GMRES

routine has to perform. There are several parameters that determine how fast the

GMRES routine converges. A property of the GMRES routine is that it is exact after

at most n iterations, for a system of size n× n. However, it turns out that in our case,

far fewer than n iterations are required. If this wasn’t the case, the GMRES routine

would have been to slow for us. An important speed-up factor of the GMRES routine

is the use of an initial guess. Remember that we integrate over ω from 0 to ∞. This

means that for a particular value of ω, ωk, we can use the solution obtained from ωk−1 as

initial guess. Since the value of ωk−1 is close to ωk, we expect that the pressure density

at ωk−1 is a good guess of the value of the pressure density at ωk. The result is that

the routine will require fewer iterations. However, the most important factor when it

comes to the cost of step 2 and 4 is how much symmetry reduce the problem size. This

is because, unlike solvers based on LU-decomposition, the cost and computational time

of the GMRES grows linearly with the number of columns, NR, on the right hand side

of the equations.

The above discussion indicates that we can’t obtain an explicit expression for the

total asymptotic floating point operation cost in the implementation of the BIM. We

have mentioned that there are two important features of the method that can reduce

the computational time, namely parallelization and symmetry reduction, and therefore

make the method competitive with other methods such as the FIM. The fact that the

implementation is designed for being parallelized, implies that one can work with higher

resolutions since the main matrix is split and stored on different nodes. Even though the

floating point operation cost isn’t reduced, the computational time will be reduced since

the computations are done at the same time. Symmetry reduction implies reduction of

total cost and therefore also computational time.





Chapter 7

Results and discussion

The implementations will first be tested on two parallel plates, a configuration without

curvature. Since the exact pressure on the plates is known, we can use this configu-

ration as a test on whether the implementations calculates the pressure correctly. For

this particular configuration, we have developed implementations using both structured

discretizations consisting of squares and unstructured discretizations consisting of tri-

angles. We will investigate whether the different discretizations affect the calculated

pressure or not.

After having considered a flat configuration, we start investigating whether the BIM

calculates the pressure correctly for curved surfaces. We consider the configuration con-

sisting of two concentric spheres. The exact solution for this configuration is known,

and will be compared to the numerical solutions. The BIM will be further investigated

by considering configurations consisting of adjacent spheres, adjacent ellipsoids and con-

centric ellipsoids.

I. Kilen found that the pressure calculated using the BIM, was off by a factor of two

in the 2D case. He concluded that this factor was lost somewhere in the theory. We

haven’t found the source to this error yet and we therefore expect that also our results

will have a missing factor. The question is whether the factor is still two or whether it

has a dimensional dependence.

The integrals over κ and ω in the FIM and BIM, respectively, will be calculated using

an n-point Gaussian quadrature. An error estimate for the quadrature is given by

Rn =
(b− a)(2n+1)(n!)4

(2n+ 1)[(2n)!]3
f (2n)(ξ), a < ξ < b, (7.1)

(see chapter 5.2 in [22]). We don’t have explicit expressions for the integrands and

therefore we can’t calculate f (2n)(ξ). However, we will assume that the choice f (2n)(ξ) =

100 is large enough. It turns out that for our test configurations, the choice ωmax =

103
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κmax = 60 makes the truncation error small enough. By letting n = 32, we get

R32 =
6065(32!)4

65[(64)!]3
100 ≈ 10−10, (7.2)

which is a better accuracy than required.

When the force is calculated using the FIM, a first order central difference will be

used to approximate the derivative of the energy. We choose the variation parameter to

be da = 10−4.

In order to reduce notation, we introduce abbreviations such as BIM tri mp. This

means “boundary integral method where the objects are discretized using triangles and

the diagonal elements of the matrices are calculated using the midpoint rule”. Similarly

FIM sq gauss means “functional integral method where the objects are discretized us-

ing squares and the diagonal elements of the matrices are calculated using an 8-point

Gaussian quadrature”.

7.1 Parallel plates

Consider two parallel plates that are located at z = −a
2 and z = a

2 . We let the length of

the edges be L = 10 and consider separation distances in the range from a = 0.7 to a =

2.2. It turns out that the numerical solutions depend on how the diagonal elements in the

matrices are calculated. We therefore decide to approximate the integrals that determine

these elements both using a 1-point midpoint rule and much more accurate 8-point

Gaussian quadrature. Thus, for the square discretizations, the pressure is calculated

using both BIM sq mp, BIM sq gauss, FIM sq mp and FIM sq gauss. Since the plates

are not of infinite size, we expect some boundary effects. However, by keeping the ratio

a/L small, these will be constrained to the edges. We want to compare the methods to

the exact solution and therefore, to start with, we only compute the pressure on squares

in the middle of the plates, when applying the BIM. The resolution is chosen such that

there are 10000 squares of equal size on each of the plates.

7.1.1 Square discretization

Figure 7.1 shows the pressure calculated using the BIM sq mp, BIM sq gauss, FIM sq mp

and FIM sq gauss for different separation distances. The exact solution is plotted in the

same figure. The relative errors between the numerical solutions and the exact solution

are shown in figure 7.2. The best results are obtained using the BIM sq mp, where the

error is less than 1% for all separation distances. We also observe FIM sq mp gives

better results than the FIM sq gauss. Since an 8-point Gaussian quadrature calculates

the diagonal elements more accurately than the 1-point midpoint rule, these results are

surprising. An explanation may be that all other elements in the matrices are calculated



Chapter 7. Results and discussion 105
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Figure 7.1: Pressure on one of the plates. Square discretization.
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Figure 7.2: Relative error between the numerical and exact solutions. Square dis-
cretization.

using the midpoint rule. Thus the errors of the approximations become of the same size

in all elements if the diagonal elements are calculated using the midpoint rule.

We have multiplied the pressure, obtained using the BIM, by a factor of two. The

fact that the relative error in the BIM sq mp approaches zero from below when the sep-

aration distance increases, whereas the relative error from the BIM sq gauss approaches

zero from above, verifies that the missing factor is two. We therefore correct our imple-

mentations of the BIM for this factor before doing more calculations.

It is worth noting that whereas the accuracy of the BIM improves when the separa-

tion distance increases using the BIM, the opposite occurs in the FIM. The behaviour
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Figure 7.3: Relative error for the FIM, both fixed and varying length of the plates.

of the error in the BIM is expected since the same resolution is used for all separations.

At shorter separation distances, the discretization is more visible for the equations.

The behaviour of the FIM is more difficult to explain, but we should keep in mind

that both the BIM and the FIM are designed for compact objects in R3. The paral-

lel plates configuration is therefore outside the scope of both methods. It seems like

the non-compactness of this configuration affect the FIM more than the BIM. However,

our results are completely in accordance with the results Isak Kilen [1] found for cor-

responding configuration in two dimensions. He showed that it is possible to keep the

error constant by varying the length of the edges linearly with the separation distance

a, but keeping the number of elements in the discretization constant. We check whether

the same is true in the three dimensional case.

Figure 7.3 shows the relative error for the FIM with both L = 10 and L = 10a
0.7 . The

total number of squares on each plate is kept constant at 10000. We see that the error

is constant when we increase the length of the edges linearly with a. Since the ratio

L/a is constant, it is expected that the contribution to the error from the boundaries is

constant. However, since the resolution decreases, we expect a slight increase in the error

when the separation distance increases. This is seen to be of little effect and therefore

we conclude that the boundary effects give the main contribution to the error and not

the resolution. This suggests that the FIM is more sensitive to edge effects than the

BIM.

With the BIM one has the possibility to compute the pressure on each of the elements

in the discretization. In figures 7.4 and 7.5 the pressure distribution on the plates is

illustrated. We see that the boundary effects give rise to a large pressure close to the

edges.
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Figure 7.4: 2D cut of the plates and the pressure on them. The strength of pressure
is represented via a line segment.
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Figure 7.5: Illustration of the pressure distribution on one of the plates.

7.1.2 Triangle discretization

The boundary effects don’t influence the middle region of the plates and therefore is the

pressure constant here. Using the BIM sq, we found very small variations in calculated

pressure on the different squares in the middle region, typically of size 10−4% or less.

However, using the BIM tri, we find a larger variation in the pressure on the different

triangles.

Figure 7.6 shows that the pressure on some of the triangles, calculated using the

BIM tri mp, is deviating with as much as 8 % from the mean, whereas for the BIM tri gauss

the variation in the calculated pressure is less than 0.2%. The extreme variations we

obtain using the BIM tri mp, have a certain reason: Remember that the diagonal ele-

ments in the matrices are approximations of line integrals on the edges of the triangles.

It is not obvious how to approximate these integrals using the midpoint rule. We tried

to evaluate the integrand both at the middle of the edges and by minimizing the dis-

tance from the edges to the center of mass. The results for the latter are presented in

figure 7.6, and the results for the former were even worse. We therefore decide only to
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Figure 7.6: Variation from mean pressure for a sample of triangles.

calculate the diagonal elements using a Gaussian quadrature in the BIM tri and discard

the BIM tri mp. For the same reason we discard the FIM tri mp. We observe that also

the BIM tri gauss gives more varying results than the square versions. This probably

has something to do with the fact that the triangulations are unstructured and that the

triangles vary in size and shape.

We now compare the BIM tri gauss to the BIM sq and the exact solution. In the

BIM sq we use 40000 squares. Thus each of them are of size 0.05 × 0.05. As we have

mentioned earlier, we can’t control exactly the number of triangles in a triangulation

outputted from the mesh generator Netgen. For this particular configuration it turns out

that the resolution vary pretty much for the different separation distances. However, we

use as high resolution as possible for each separation distance. The number of triangles

on the plate where the pressure is calculated, is plotted in figure 7.8. The relative errors

between the numerical solutions and the exact solution are shown in figure 7.7.

We see that the errors for the BIM tri gauss and the BIM sq gauss are approximately

equal in the range from a = 0.9 to a = 1.5 units, whereas for the other separation

distances the errors for the BIM tri gauss are 0.3-0.7 percentage points larger. The ex-

planation can be found by looking to figure 7.8: In the range from a = 0.9 to a = 1.5 the

number of triangles is approximately the same as the number of squares. However, for

the other separation distances there are only about half as many triangles as squares in

the respective discretizations. It seems like the resolution is to low at these separation

distances to get the same accuracy as for the squares. Thus differences in resolution

explain the small variations in the errors. Therefore it appears that the type of dis-

cretization used in implementation of the BIM, isn’t very relevant to the value of the

pressure.

The FIM tri will also be compared to the BIM tri. We indicated in the previous
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Figure 7.7: Relative error between the solutions found using the BIM tri gauss,
BIM sq mp/gauss and the exact solution.
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Figure 7.8: Number of elements in each of the discretizations for the BIM.

chapter that our implementation of the FIM can’t do calculations with the same high

resolution as the BIM. Figure 7.10 shows the number of elements in the discretization

for the different separations distances. In figure 7.9 we plot the relative error for the

FIM tri gauss and the FIM sq gauss compared to the exact solution. We see that the

relative error is approximately equal for the two different discretizations. The differences

that appear at the three shortest separation distances can be explained by differences in

the resolution. Unlike the BIM, there is almost no difference between the errors at the

larger separation distances, even though the resolutions of the two discretizations differ

for both methods.

We conclude that both the BIM and FIM calculate the Casimir pressure correctly, and
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Figure 7.9: Relative error between the solutions found using FIM tri gauss,
FIM sq mp/gauss and the exact solution.
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Figure 7.10: Number of elements in each of the discretizations for the FIM.

that the obtained results do not depend significantly on the type of discretization used.

Even though unstructured meshes of triangles give somewhat more uncertain results, we

decide to hereafter only discretize the surfaces using triangles. The BIM tri gauss will

therefore be referred to as the BIM and the FIM tri gauss as the FIM. We choose to use

triangulations since these are more flexible in fitting to surfaces of arbitrary shape.

7.2 Concentric spheres

In order to investigate whether the BIM calculates the pressure correctly for curved

objects, we consider the configuration consisting of two concentric spheres. In chapters

4.2 and 5.2 we found exact expressions for the pressure on the inner and the outer sphere.
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Figure 7.11: Illustration of the two concentric spheres. The colour indicates the
strength of the pressure on the spheres.

An illustration of the configuration, and the pressure on the spheres, is shown in figure

7.11. The pressure on the inner sphere is larger than the pressure on the outer sphere.

By integrating over each sphere, we find that the total force is zero on each of them. We

also observe that the pressure on both spheres is positive. This means that locally the

force points in the same direction as the normal vector, namely into the region between

the spheres.

7.2.1 Behaviour of pressure for fixed curvature and increased resolu-

tion

We investigate whether the pressure is approaching the exact solution when the reso-

lution is increased for three different curvatures, namely spheres of radii R1 = 2.3 and

R2 = 3.0, R1 = 1.7 and R2 = 3.0 and the more extreme situation R1 = 0.5 and R2 = 1.0.

In order to get a picture of the importance of the subtraction of the self pressure from

the boundary integral equations, we also solve the discretized boundary integral equa-

tion (2.108) with the self pressure equal to zero, i.e. B22 = 0. The equations will be

solved for as many different resolutions as possible, but unfortunately (as we explained

in chapter 2.8) there are only 4. The results are shown in figures 7.12, 7.13, 7.14 and

7.15.

In figure 7.15 we see that for R = 0.5, the pressure is reduced by more than 30 %

when the self pressure is set to zero, for R = 1.7 about 25 % and for R = 2.3 about 10 %.

Thus the importance of the removal of the self pressure contribution, is relatively larger

for spheres with much curvature. This is of course expected since the self pressure on

the sphere goes as curvature to the power of 4. Figures 7.12, 7.13 and 7.14 show that, no

matter how curved the sphere is, the calculated pressure is converging towards the exact

pressure when the number of triangles increases. It is remarkable that this happens also

for the R1 = 0.5, R2 = 1.0 configuration, where the curvature is very large. At the

highest resolution, which means 30720 triangles on the inner sphere, the self pressure
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Figure 7.12: Pressure on inner sphere as function of resolution. R1 = 2.3, R2 = 3.0.
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Figure 7.13: Pressure on inner sphere as function of resolution. R1 = 1.7, R2 = 3.0.

has a value of -94766, whereas the exact pressure is 0.8912 of the same units. Thus the

absolute value of the self pressure is over 105 times larger than the pressure.

We also notice that it is the subtraction of the self pressure from the boundary

integral equation that make the pressure converging towards the exact pressure. When

the self pressure is not subtracted from the equations, the calculated pressure diverges

away from the correct pressure when the resolution increases.

Thus our calculations show that, independently of the size of the curvature and the

self pressure, the BIM outputs a pressure that is approaching the exact pressure when the

resolution is increased. These calculations verify that the boundary integral equations
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Figure 7.14: Pressure on inner sphere as function of resolution. R1 = 0.5, R2 = 1.0.

R1 = 1.7, R2 = 3.0

R1 = 2.3, R2 = 3.0

R1 = 0.5, R2 = 1.0

2 3 4

log HN � N1 L
log H4L

-35

-30

-25

-20

-15

-10

-5

Difference @%D

Figure 7.15: Difference in percent between calculated pressure on inner sphere with
and without self pressure in the equations.

are correctly regularized for curved surfaces as well. However, in order to make sure

that it is not the special property of constant curvature that gives rise to a correct

pressure, we also do some calculations for configurations with varying curvature. These

configurations will consist of ellipsoids and the results are presented in section 7.4.

7.2.2 Behaviour of pressure for different separation distances

To check how the error of the BIM behaves for different separation distances, we consider

a configuration where the radius of the outer sphere is kept fixed, R2 = 3.0. The

radius of the inner sphere will be varied in the range from R1 = 1.4 to R2 = 2.8
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Figure 7.16: Pressure on each of the concentric spheres for a = 0.25 to a = 0.7.
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Figure 7.17: Pressure on each of the concentric spheres for a = 0.7 to a = 1.6.

units. For each pair of radii we calculate the pressure on both the inner and the outer

sphere, using both the BIM and the FIM. Figures 7.16 and 7.17 show the pressure on

both spheres, calculated using the BIM, compared to the exact solution obtained using

mode summation. For this configuration Netgen managed to output triangulations with

approximately the same number of triangles on each sphere, independently of the radius

on the inner sphere. Thus there are about 30000 triangles on each of the discretized

spheres.

Figure 7.18 shows the relative errors in the pressure on the inner sphere compared

to the exact solution, whereas figure 7.19 shows the errors in the pressure on the outer
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Figure 7.18: Error in calculated pressure on inner sphere relative to exact pressure.

BIM. About 30000 triangles on each sphere

FIM , About 7500 triangles on each sphere

BIM with same resolution as FIM

0.4 0.6 0.8 1 1.2 1.4 1.6

a

-1

1

2

3

4

5

6

7

8

9

10

Relative error @%D

Figure 7.19: Error in calculated pressure on outer sphere relative to exact pressure.

sphere. As for the parallel plates, we see that the relative errors are largest at the

shortest separation distances. We also observe that, for all distances where we have done

measurements, the implementation of the BIM calculates the pressure more accurately

at the 30000 resolution than the 7500 resolution. This is a another verification of what

we found in the previous subsection.

We notice that on the inner sphere, the relative error in the pressure, found using the

BIM, is 1-2 percentage points less than error in the FIM when the resolution is the same.

On the outer sphere it is opposite. This is not in accordance with what I. Kilen found

for the corresponding configuration in two dimensions, namely two concentric circles.

He found that the FIM was, quite clearly, more accurate than the BIM on both circles.



Chapter 7. Results and discussion 116

Our results could indicate that the BIM is an even better alternative in three than in

two dimensions.

Nevertheless, the fact that the BIM outputs a pressure that is approximately equal

to the exact pressure and is even closer to the pressure calculated using the FIM, when

corrected for the missing factor of two, supports the claim that our boundary integral

equations are fully regularized, also for curved surfaces.

7.3 Adjacent spheres

Figure 7.20: Force on one of the adjacent spheres.

We consider two spheres with radius R = 1.0, centered in s1 = (0, 0, 0) and s2 =

(x, 0, 0). The separation distance between the two spheres is a = x − 2. The distance

a will be varied in the range from a = 1 to a = 2.2. The main difference between this

configuration and the concentric spheres is that the total force on each of the spheres

isn’t zero. This is a configuration where we don’t have an exact solution. However, we

can test the BIM versus the FIM. The corresponding configuration in two dimensions

is two adjacent circles. I. Kilen found that the circles attracted each other. We expect

that also the spheres will attract each other.

Figure 7.20 shows the pressure distribution, found using the BIM, on the sphere on

the left hand side in the configuration. The red region, where the pressure is largest, is

the region on the left sphere that is closest to the right sphere. When integrating over

the pressure on each triangle, we find that the total force points directly towards the

right sphere. The force on the right sphere is found to be of exactly equal size as the

force on the left sphere, just oppositely directed. Thus the spheres attract each other.

In figure 7.21 the size of the total force on the left sphere is plotted for several

separation distances a. We see that the force decreases as the separation distance in-

creases. Figure 7.22 shows how much the force, found using the FIM, differs from the
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Figure 7.21: Force on the left sphere as function of separation distance.
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Figure 7.22: Difference in the force calculated using the FIM relative to the BIM.

force calculated with the BIM. We see that when there are about 1900 triangles on

each sphere, the force calculated using the FIM is almost constantly about 2.3% larger

than the force from the BIM. When there are about 7500 triangles on each sphere, the

difference reduces to about 1.1%. Since we don’t have an exact solution for this con-

figuration, we can’t decide which method is the better. However, the fact that the two

methods give approximately the same results and that the difference between the two

methods is getting smaller when the resolution increases, is another verification of that

the implementations are correct.
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7.4 Ellipsoids

The equation for an ellipsoid with center in the origin is given by(x
a

)2
+
(y
b

)2
+
(z
c

)2
= 1. (7.3)

We remember that a principal curvature is either a maximal or a minimal sectional

curvature. Under the assumption b = c = R < a = 1, the maximal principal curvature

on an ellipsoid is found at all sections through the points (±1, 0, 0) and is given by (see

equation (59) in [23])

κmax =
ab

b3
=

1

R2
. (7.4)

The minimal principal curvature is found at all sections that go through a point on the

circle (0, R cos t, R sin t) and is pointing in the x-direction. It is given by

κmin =
ab

a3
= R. (7.5)

Thus κmax →∞ and κmin → 0 when R→ 0. This means that we can design an ellipsoid

with as varying curvature as we want by choosing a small enough value of R.

7.4.1 Adjacent ellipsoids

Consider two adjacent ellipsoids centered in s1 = (0, 0, 0) and s2 = (x, 0, 0). The two

ellipsoids will be of equal size and determined by the parameters a = 1.0, b = c = 0.4.

Thus the curvature on the objects vary in the range from κmin = 0.4 to κmax = 1
0.42

=

6.25. The separation distance between the two ellipsoids is d = x− 2. We will calculate

the force on the ellipsoids, using both the BIM and the FIM, for distances in the range

from d = 0.4 to d = 1.2.

Figure 7.23 shows the size of the force on the ellipsoid that is centered around the

origin for different separation distances. The force points directly towards the other

sphere. Symmetry gives that the force on the other ellipsoid is of equal size, but oppo-

sitely directed. Thus the ellipsoids attract each other. Figure 7.24 shows the differences

in the outputs from the two methods. For the resolution of 1300 triangles, the force

calculated using the FIM is about 6% larger than the force from the BIM. When the

resolution increase to 5200 triangles, the difference reduces to about 3%. We can’t de-

cide which method is the better, but we see that the two methods give approximately

the same results and that the difference between the two methods is getting smaller

when the resolution increases. When comparing to the adjacent spheres, we see that

the difference between the FIM and the BIM is larger for ellipsoids. This indicates that,

in order to get the same accuracy, one has to use a higher resolution for configurations

with varying curvature than for configurations with constant curvature. However, based
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Figure 7.23: Force on the ellipsoid with center in the origin.
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Figure 7.24: Difference in the force calculated using the FIM relative to the BIM.

on the calculations for adjacent ellipsoids, there is nothing that indicates that the BIM

won’t calculate the pressure/force correctly for configurations with varying curvature.

The calculated force approaches the force obtained using an other method when the

resolution is increased.

7.4.2 Concentric ellipsoids

Consider two concentric ellipsoids. Choose the parameters for the outer ellipsoid to be

a = 2 and b = c = 0.8. For the inner ellipsoid we let a = 1 and b = c = R. The

parameter R will be varied. We first use the BIM to calculate the pressure distribution
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Figure 7.25: Illustration of the pressure distribution on the inner ellipsoid when
R = 0.4

on the inner ellipsoid for R = 0.4. The pressure distribution is illustrated in figure 7.25.

Even though we have used a rough discretization, we see that the pressure is largest

around the points (±1, 0, 0). This is expected since the curvature is largest in these

regions.

We now consider some situations where the variation in curvature is large. This

is achieved by first letting R = 0.4, and then letting R approach zero. It turns out

that R = 0.2 is the smallest value for which we are able to do calculations for at least

two different resolutions. The extremal principal curvatures are then κmin = 0.2 and

κmax = 1
0.22

= 25. We calculate the pressure and self pressure on the triangle that is

closest to the point (1, 0, 0), i.e. on the triangle where the pressure is largest. Since the

pressure isn’t constant on the ellipsoids, it is difficult to compare to the FIM. However,

we saw in the previous subsection that the BIM calculates the force correctly, with

increasing accuracy for increasing resolution, for a configuration with varying curvature

as well. We therefore know that if we obtain a pressure that converges when the number

of triangles increases, then it is the correct pressure on the object. Thus we have to

compute the pressure on the ellipsoid for different resolutions.

Table 7.1: Two concentric ellipsoids. Parameters inner ellipsoid: a = 1, b = c = 0.4.

Resolution [Number of triangles] 1306 5224 20896

Pressure at the point (1,0,0)[Arb. units] 1.0473 1.0585 1.0671

Self pressure at the point (1,0,0)[Arb. units] -4669 -27357 -134973

Table 7.2: Two concentric ellipsoids. Parameters inner ellipsoid: a = 1, b = c = 0.3.

Resolution [Number of triangles] 3170 12680

Pressure at the point (1,0,0)[Arb. units] 1.9804 2.0461

Self pressure at the point (1,0,0) [Arb. units] -37612 -186126

Table 7.3: Two concentric ellipsoids. Parameters inner ellipsoid: a = 1, b = c = 0.2.

Resolution [Number of triangles] 9860 39440

Pressure at the point (1,0,0)[Arb. units] 5.7796 5.8561

Self pressure at the point (1,0,0)[Arb. units] -587103 -2533434
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Tables 7.1, 7.2 and 7.3 show that whereas the self pressure grows rapidly, the pressure

is relatively stable for the different resolutions at constant b = c = R. For R = 0.2, we

see that the absolute value of self pressure increases from 587103 to 2533434 when the

number of triangles is increased from 9860 to 39440, whereas the pressure changes from

5.7796 to 5.8561. The small increase in pressure is partly due to the fact that the triangle

where the pressure is calculated, is closer to the point (1, 0, 0) the higher the resolution is.

For R = 0.2 the centers of mass of the triangles are respectively (0.9979, 0.0076, 0.0044)

and (0.9995, 0.0039, 0.0022). We see that the latter is closer to the point (1, 0, 0) and

therefore should the pressure be larger here. Therefore, when taking into account that

an increase in resolution should improve the accuracy of the solution as well, it seems

like the pressure converges. Thus the results obtained in this subsection is another

verification of that the BIM calculates the pressure correctly for general configurations.





Chapter 8

Conclusion

We have in this thesis developed the boundary integral method for the special case of a

3D massless scalar field, subject to Dirichelet boundary conditions. The first step was

to derive a boundary integral equation for the Casimir pressure. The regularization of

the equation involved several steps:

1. Treat integrals that involve singularities as principal value integrals.

2. Take the limit x′ → x′′ by first letting x′ approach the same surface as x′′, then

discretizing the surface and finally taking the limit along the discretized surface.

3. Subtract the self-pressure contribution from the equations.

In order to test whether the equations are fully regularized, the method has been imple-

mented numerically and applied to several test configurations. For all test configurations,

the calculated pressure was off by a factor of two compared to other methods. Except

for this factor, the method has correctly predicted the geometry dependence of the test

cases.

Our results are in accordance with the results I. Kilen [1] obtained in the two dimen-

sional case. The missing factor has the same value in both two and three dimensions.

We conclude that, in addition to being independent of the geometry, the factor is also

independent of dimensionality. The source to this factor haven’t been found yet, but we

know that it is lost somewhere in the theory. A natural question to ask is whether it

is also independent of the spin of the field? However, in practice, such a missing factor

isn’t a problem since we can renormalize the value of the pressure by multiplying by

two.

There are differences between the methods in two and three dimensions. The largest

difference is that, if taking the limit x′ → x′′ correctly, the self-pressure is finite in two

dimensions, whereas in 3D it is not. To obtain a finite self-pressure, we therefore included

the discretization of the surfaces as a part of the regularization procedure. Despite this,

we have seen that the self-pressure increases when the curvature or resolution increases.

123



Chapter 8. Conclusion 124

A large self-pressure has given rise to some numerical challenges, but nevertheless, after

renormalization, the value of the Casimir pressure/force has been correct for all test

configurations.

We conclude that our boundary integral equations are fully regularized. The bound-

ary integral method calculates the Casimir pressure correctly in the case of a 3D massless

scalar field.

8.1 Further work

The missing factor of two is not a problem in practice. However, it would have been nice

to find its source. The BIM has not been tested on configurations where boundaries of

the objects are non-differentiable. Many devices have vertices and therefore it would be

interesting to consider how the BIM behaves for such configurations as well.

It would also be interesting to extend the method to other boundary conditions such

as von Neumann boundary conditions. A natural next step is to extend to the case of

electromagnetic fields, which physically, is a more realistic situation.



Appendix A

Gaussian integrals

A.1 Real situation

Let I(λ) be the one dimensional Gaussian integral

I(λ) =

∞∫
−∞

dx e−λx
2
, λ > 0. (A.1)

By squaring and introducing polar coordinates, we obtain

I2(λ) =

∞∫
−∞

dx e−λx
2

∞∫
−∞

dy e−λy
2

=

∞∫
−∞

∞∫
−∞

dxdy e−λ(x2+y2)

=

2π∫
0

dθ

∞∫
0

dr re−λr
2 u=λr2

= 2π
1

2λ

∞∫
0

du e−u =
π

λ
.

(A.2)

Thus

I(λ) =

∞∫
−∞

dx e−λx
2

=

√
π

λ
. (A.3)

Let D = (dij) = diag(λj) be a n×n diagonal matrix. Assume that D is positive definite,

i.e. λj > 0 ∀j. Define xT = (x1, ..., xn) and let 〈x,y〉 = xTy denote the standard inner

product in Rn. Then

〈x, Dx〉 =
∑
i,j

xidijxj =
∑
j

.λjx
2
j (A.4)

The determinant of D is given by

detD =
∏
j

λj . (A.5)
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Let In(D) be the n-dimensional Gaussian integral,

In(D) =

∫
Rn

dx e−〈x,Dx〉. (A.6)

Using the results (A.3), (A.4) and (A.5), we can calculate the integral In(D);

In(D) =

∫
Rn

dx e
−
∑
j
λjx

2
j

=

∞∫
−∞

dx1 e
−λ1x21 · · ·

∞∫
−∞

dxn e
−λnx2n

=

√
π

λ1
· · ·
√

π

λn
=

√
πn∏
j λj

=
πn/2

(detD)1/2
.

(A.7)

Next, assume A is a real, positive definite, symmetric matrix. Then there exists a

rotation (orthogonal) matrix R, with the properties

RT = R−1,

RTAR = D,

detR = 1,

(A.8)

where D = diag(λi) is a diagonal matrix consisting of the eigenvalues {λi} of A, which

are positive. The integral In(A) can be calculated by introducing the change of variables

x′ = RTx and then using the properties (A.8) and the result in equation (A.7);

In(A) =

∫
Rn

dx e−〈x,Ax〉 =

∫
Rn

d(Rx′) e−〈Rx
′,ARx′〉

= detR

∫
Rn

dx′ e−〈x′,RTARx′〉 =

∫
Rn

dx′ e−〈x
′,Dx′〉

=
πn/2

(detD)1/2
.

(A.9)

The property

detD = det(RTAR) = det(ARRT ) = (detA) det(RR−1) = detA (A.10)

gives that

In(A) =

∫
Rn

dx e−〈x,Ax〉 =
πn/2

(detA)1/2
. (A.11)

This holds for any real, positive definite, symmetric n× n matrix A.
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A.2 Complex situation

Start by rewriting I2(λ) from the previous section;

π

λ
=

x

R2

dxdy e−λ(x2+y2) =
x

R2

dxdy e−λ(x−iy)(x+iy). (A.12)

Introduce a change variables

z = x+ iy,

z∗ = x− iy.
(A.13)

The volume form becomes

dx ∧ dy =
dz + dz∗

2
∧ dz − dz

∗

2i
=
dz ∧ dz∗

2i
. (A.14)

Thus ∫
C

dzdz∗

2πi e−λz
∗z =

1

λ
. (A.15)

Let D = (dij) = diag(λj) ∈ Rn×n be a diagonal matrix, where λj > 0, j = 1, ..., n.

Let 〈z,w〉 = z∗w denote the standard dot product in Cn, where z∗ is the conjugate

transpose of the column vector z. Using the abbreviation

[dzdz∗] =
n∏
j=1

dzjdz
∗
j

2πi
(A.16)

and the result in equation (A.15), we obtain∫
Cn

[dzdz∗] e−〈z,Dz〉 =

∫
Cn

[dzdz∗] e−
∑
j λj |zj |2 =

1

detD
. (A.17)

Let A be a positive definite, self-adjoint matrix. Then there exists a unitary matrix U ,

with properties

UU∗ = U∗U = I,

|detU | = 1,

U∗AU = D,

(A.18)

where D = diag(λi) is a diagonal matrix consisting of the eigenvalues {λi} of A. Since

A is positive definite and self-adjoint, the eigenvalues are real and positive. Introducing

a change of variables, z = Uz′, using the properties (A.18) and the result in equation
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(A.17), we obtain∫
Cn

[dzdz∗] e−〈z,Az〉 =

∫
Cn

[d(Uz′)d(Uz′)∗] e−〈Uz
′,AUz′〉

= det(UU∗)

∫
Cn

[dz′dz′∗] e−〈z
′,U∗AUz′〉

=

∫
Cn

[dz′dz′∗] e−〈z
′,Dz′〉

=
1

detD
.

(A.19)

Using the property that

detD = det(U∗AU) = det(AUU∗) = (detA) det(UU∗)

= (detA) det(I) = detA,
(A.20)

we get ∫
Cn

[dzdz∗] e−〈z,Az〉 =

∫
Cn

n∏
j=1

dzjdz
∗
j

2πi
e−〈z,Az〉 =

1

detA
. (A.21)

This result holds for any positive definite, self-adjoint n× n matrix A.



Appendix B

Mesh generation and

triangulation

Almost all of the differential equations that arises when doing physical simulation have

to be solved numerically. Usually a continuous problem is replaced by a discrete problem

that can be computed thanks to the power of currently available computers. The solution

to the discrete problem is then an approximate solution to the initial problem whose

accuracy is based on the various choices that are made in the numerical process. When

going from a continuous to a discrete problem, one usually start with discretizing the

domain of interest, i.e one divides the domain into a mesh or approximate it by a mesh.

A mesh is a finite union of small, simple elements such as for example triangles, quads

or tetrahedra depending on the complexity and the spatial dimension of the domain.

Meshes of different kinds are so often used that mesh generation has become an own

industry. There exists much software (both commercial and not, see [24]) developed for

mesh generation. We have used the free software Netgen for meshing our surfaces into

triangles.

A mesh can either be structured or unstructured. The primary difference is that

a structured mesh has a regular topology, i.e it has a well known pattern, while an

unstructured mesh has an irregular topology, which means that the topology has to be

stored for every element of the mesh. A typical example of a structured mesh in two

dimensions is a square grid that may be deformed by a coordinate transformation (see

figure B.2). An unstructured mesh is often a triangulation with arbitrarily varying local

neighbourhoods (see figure B.1).

There are some advantages using a structured mesh instead of an unstructured. The

elements usually have a lower geometric complexity and require less computer memory

because the coordinates can be calculated, rather than explicitly stored. A structured

mesh also offers more direct control over the size and shape of the elements. The big

disadvantage is its lack of flexibility in fitting a complex domain, it may require many
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Figure B.1: Example of an unstructured mesh of a plane

Figure B.2: Example of a structured mesh of a plane

elements and the elements themselves can be ill-shaped. Actually it may be impossible to

find a structured mesh that fits a complicated domain acceptably well. On the contrary,

an unstructured mesh can fit an arbitrarily complicated domain. Therefore, when the

domain of interest is complex enough, it could be that the only option is to use an

unstructured mesh.

As mentioned above, a typical example of an unstructured mesh is a triangulation.

It is possible to define a triangulation in several ways, depending on how the geometric

object that should be triangulated is represented. However, in general we can say that

a triangulation of a geometric object is a subdivision into simplices. A simplex is a

generalized triangle. We can also say that for a triangulation of a geometric object in

Rn there are two properties that have to be satisfied;

1. Let Si and Sj be two simplices in the triangulation and A be the intersection

A = Si
⋂
Sj . Then A either is the empty set or a simplex of dimension less than

the dimension of Si and Sj .

2. Any bounded set in Rn intersects only a finite number of simplices in the triangu-

lation.
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The geometric objects we are considering in this thesis are compact sets in R3. We

are interested in triangulating the boundaries of such objects. A triangulation of such

surfaces consists of triangles that intersect only at shared edges and vertices. An other

example is a triangulation of a 3-dimensional object in R3 which consists of tetrahedrons

that intersect at shared facets, edges and vertices. The triangulation of a polytope is a

partition of simplices that covers the object exactly. Since a triangulation is a union of

objects without curvature, the triangulation of a curved object will necessarily only be

an approximation of the object.

 

Figure B.3: Triangulation of a sphere

Triangulations can be used to approximate all kinds of objects; a sphere (see figure

B.3), an aircraft, the shape of a teapot, a horse and so on. In fact, it has been proven that

all surfaces can be triangulated [25]. However, to find such a triangulation can be a very

hard problem. In addition, one usually isn’t satisfied with only finding a triangulation,

one also want to optimize the triangulation such that the numerical solution of the

problem one has in hand actually is close to the exact solution of the problem.

An optimal triangulation is the one that is best according to some criterion that

measures for example the size, shape, or number of simplices. These measures are often

referred to as quality measures. For triangles typical quality measures are angles, length

of edges, height and area. An example of a triangulation with bad quality is one where

the minimal angle of some of the triangles is very small and the ratios of the length of

the edges are far away from 1. Many different methods for triangulating objects have

been developed in order to make optimal triangulations. The method that maybe is

most known is the Delaunay triangulation, which is made such that no point in the

point set that is triangulated, is inside the circum-hypersphere of any simplex in the

triangulation. In the plane, a property of this triangulation is that it maximizes the

minimal angle of the triangles. For more information about the Delaunay triangulation

and other kinds of triangulations, see for example [26].

When using a software to triangulate an object one has to think through how to rep-

resent the object and how to store the mesh of the object. Usually the software supports
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different kinds of both input and output file formats. If the object is a union, intersec-

tion or the complement of well-known primitives such as planes, spheres, ellipsoids etc.

then there exists a file format, called constructive solid geometry (CSG) format, which

is easy to use. For more advanced geometries, other file formats such as for example

STL can be used. Information about the different file formats that the software supports

is usually found in the documentation of the software. The neutral file format in the

software Netgen is a simple format that is used to store the mesh. This format is easy

to read into any program. A brief description of the format is given here. The two

basic quantities in a triangulation are the nodes (points) and the triangles. Nodes are

easy to represent, since they can be identified simply by their Cartesian coordinates.

To represent the node information, one first writes the number of nodes and then the

coordinates of each node line for line. The information about the triangles starts on the

first line after the coordinates. First the number of triangles is written down. Then for

each triangle there is a new line containing four integers. The first of the integers is the

identifying number of the triangle, and the three other say where in the node list the

three vertices are found. The vertices are oriented in such a way that the triangles have

a counter clockwise orientation when looking at the object.



Appendix C

Programs and files used in the

implementations

This appendix is written for them who want to use the programs we have developed to

do more calculations than we have reported in this thesis. We therefore write down all

of the programs that are used when doing the numerics, and give a short explanation of

them.

Some remarks that may be helpful when running programs on the supercomputer

Stallo: Infiles to the main programs must be saved at the location /global/work/$USER/ .

Programs are started by sending a runscript to Stallo using for example qsub runscript.sh.

This command must be typed from the directory where the program is saved. Before

compilation of the programs, the library gsl must be loaded. This is done by typing the

command module load gsl on the command line.

C.1 Boundary integral method

Table C.1 lists up programs used in the implementation of the boundary integral method

with a discretization consisting of squares.

Table C.2 lists up programs used in the implementation of the boundary integral

method with a discretization consisting of triangles.

C.2 Functional integral method

Table C.3 lists up programs used in the implementation of the functional integral method

with a discretization consisting of squares.

Table C.4 lists up programs used in the implementation of the functional integral

method with a discretization consisting of triangles.
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Table C.1: BIM sq

Program Description

BIMsq.c Main program.

indataBIMsq Example of the only infile needed to run BIMsq.c

makefileBIMsq File needed to compile the main program on an ordinary
linux computer

makefileBIMsq stallo File needed to compile the main program on Stallo

runscript BIMsq.sh File that is sent to Stallo in order to run the program
BIMsq.c.

fortran.f GMRES-routine written in the language fortran, which is
used by BIMsq.c

resBIMsq Example of file outputted when running BIMsq.c.

Table C.2: BIM tri

Program Description

BIMtri.c Main program.

indataBIMtri The infile to BIMtri.c.

makefileBIMtri File needed to compile the main program on an ordinary
linux computer

makefileBIMtri Stallo File needed to compile the main program on Stallo.

runscript BIMtri.sh File that is sent into Stallo in order to run the program
BIMtri.c.

fortran.f GMRES-routine written in the language fortran, which is
used by BIMtri.c

pressureBIMtri Example of outdata.

Table C.3: FIM sq

Program Description

FIMsq.c Main program for FIM sq.

indataFIMsq Example of indata

makefileFIMsq Makefile ordinary linux computer

makefileFIMsq stallo Makefile on Stallo

runscript FIMsq.sh File that is sent into Stallo in order to run the program
FIMsq.c.

resFIMsq Example of outdata from FIMsq.
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Table C.4: FIM tri

Program Description

FIMtri.c Main program.

indataFIMtri Example of the first of three infiles to FIMtri.c. Contains
parameters.

surface minusda Example of the second infile. Contains the triangulation of
the surfaces with separation distance a - da

surface plussda Example of the third infile. Contains the triangulation of
the surfaces with separation distance a + da

makefileFIMtri Makefile ordinary linux computer

makefileFIMtri stallo Makefile on Stallo

runscript FIMtri.sh File that is sent into Stallo in order to run the program
FIMtri.c.

resFIMtri Example of output from FIMtri.c.
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