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Abstract

There exists a local classification of finite-dimensional Lie algebras of vector
fields on C2. We lift the Lie algebras from this classification to the bundle
C2 × C and compute differential invariants of these lifts.
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Chapter 1

Introduction

Consider the problem of classifying all complex analytic scalar partial differ-
ential equations of two independent variables with finite-dimensional sym-
metry groups. The local action of a symmetry group can be described in
terms of its Lie algebra of infinitesimal generators. We say that the vec-
tor field X ∈ D(C3(x, y, u)) is an (infinitesimal) symmetry for the equation
F (x, y, u, ux, uy, ..., uyk) = 0 if

X(k)(F ) = λF

where λ is a smooth function of x, y, ..., uyk . Given a differential equation
F = 0, we can find its symmetries by solving for X. These symmetries
form a Lie algebra. We can also go the other way: Given a Lie algebra of
symmetries g ⊂ D(C3(x, y, u)), we can solve for F to find all differential
equations with the given Lie algebra as its symmetry algebra.

There exists a local classification of finite-dimensional Lie algebras of
vector fields on C2. By using this, one can get a local description of all
scalar ODEs with finite-dimensional Lie algebras of symmetries, up to point
transformations.

For C3 there exists no complete classification of Lie algebras of vector
fields, and therefore we cannot classify scalar PDEs of two independent vari-
ables in the same way. In this thesis we take the Lie algebras of vector fields
on C2 from the classification, and lift them on the bundle C2×C. This gives
us a subset of all Lie algebras of vector fields on C3.

A subproblem of finding all differential equations with a given Lie algebra
g of symmetries, is to find functions F that satisfy

X(k)(F ) = 0 for every X ∈ g.

We call such functions differential invariants (of order k). For each of the
lifted vector fields in C2 × C, we will compute differential invariants.
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Structure of the thesis
We begin by describing the Jet space Jk(π) for the bundle π : C2×C→ C2 in
2.1. In section 2.2 we recall a classification of Lie algebras of vector fields on C
and C2. Then, in 2.3 we describe the procedure we use for lifting vector fields
on C2 to C2×C, and discuss how the lifts correspond to cohomology groups.
In section 2.4 we define differential invariants and invariant derivations, and
state the Lie-Tresse theorem.

In chapter 3 we take the classification of Lie algebras of vector fields on C,
and lift each Lie algebra into a Lie algebra of vector fields on C×C. We also
find the differential invariants for the lifts. In this chapter the calculations
are described in much more detail than in the later part of the thesis, and
the chapter can therefore be considered as continuation of the introduction
in 2.3 and 2.4.

Chapter 4 contains the main results. Lists of the lifts and their differential
invariants are given in 4.1 and 4.3, respectively. In section 4.2 we look at the
dimension of a generic orbit of some of the lifts and their jet-prolongations,
and we use this to count how many independent differential invariants we
expect to find.

Finally, in chapter 5, we look back on our computations and discuss
possible applications of our results and some interesting properties of our
lifts of Lie algebras. In 5.1 we discuss algebraicity of Lie algebra actions
by looking at examples from our computations, and we see how this relates
to the form of the differential invariants. In 5.2 we introduce the notion of
projectable Lie algebra of vector fields, and discuss the surprising fact that
all our lifts has at least one differential invariant of order two. In 5.3 we
give an example of how our results can be usefull in the study of differential
equations.

The appendix contains a list of differential invariants and invariant deriva-
tions that were to long to fit into 4.3 in a reasonable way.
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Chapter 2

Preliminaries

2.1 Jet spaces and prolongation of vector fields

We start by fixing some notations regarding Jet spaces. For a more general
and detailed description, see for example [KL08], [KV99] or [ALV91].

Jet spaces

Consider the trivial bundle π : C2×C→ C2. Let x1, x2 be coordinates on C2

and let u be a coordinate on C. We call x1, x2 independent coordinates, and
u the dependent coordinate.1 Let s : C2 → C2×C be a section of the bundle.
We can describe this section by a function f : C2 → C in the following way:
s(x1, x2) = (x1, x2, f(x1, x2)). We say that two sections s1, s2 are tangent up
to order k at a ∈ Cn if ∂|σ|f1

∂xσ
(a) = ∂|σ|f2

∂xσ
(a) for 0 ≤ |σ| ≤ k, where σ is a

multi-index. Denote by [s]ka the equivalence class of all sections which are
tangent up to order k to s at a ∈ C2. We call this the k-jet of s at a. Let
Jka (C2×C) = Jka (π) be the set of k-jets of sections on π at the point a ∈ C2,
and Jk(π) = ∪a∈C2Jka (π). This set is naturally equipped with the structure
of a smooth manifold.

This description of the k-jets of sections, gives a natural set of coordinates
xi, u, uσ on Jk(π):

xi([s]ka) = ai, u([s]ka) = f(a), uσ([s]ka) =
∂|σ|f

∂xσ
, 1 ≤ |σ| ≤ k

We will also use the notation u0 = u.

1We will for the most part be naming the coordinates x, y, u, but for general discussion
it’s convenient to use indices.
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The map (a, f(a)) 7→ [s]0a gives us the identification J0(C2×C) = C2×C.
The projections πk,l : Jk(π) → J l(π) defined by [s]ka 7→ [s]la for k ≥ l give a
tower structure:

C2 × C = J0(π)
π1,0←− J1(π)

π2,1←− · · ·
πk,k−1←− Jk(π)

πk+1,k←− · · ·

We denote the inverse limit of this system of maps by J∞(π).
Let Fk be the algebra of analytic functions on Jk(π). Through the pro-

jections πk,k−1, we get a filtering of the function algebras:

F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ · · · ⊂ F∞

Prolongation of vector fields

Consider a diffeomorphism φ : C2×C→ C2×C. The kth prolongation of φ is
the diffeomorphism φ(k) : Jk(π)→ Jk(π) defined by φ(k)([s]ka) = [φ ◦ s]kφ(a). If
X ∈ D(C2×C) is a vector field, then we can define the kth prolongation X(k)

to be the vector field on Jk(π) which is generated by the kth prolongation of
the flow of X. We will be working with vector fields, so it’s useful to have a
coordinate description of prolongations of vector fields.

Given a vector field X ∈ D(C2 × C), the prolonged field X(k) can be
computed in terms of the generating function ϕ of X, defined by ϕ = ω0(X)
where ω0 = du− uidxi (we use the Einstein summation convention).

The generating function gives us a nice formula for computing the pro-
longation of a vector field. If the vector field X has generating function ϕ,
then its kth prolongation is given by

X(k) =
∑
|σ|≤k

Dσ(ϕ)∂uσ −
2∑
i=1

∂ui(ϕ)D(k+1)
i

where

D(k+1)
i = ∂xi +

k∑
|σ|=0

uσi∂uσ

is the total derivative with respect to xi restricted to Jk(π). Let Эϕ =∑∞
|σ|=0Dσ(ϕ)∂uσ . This is called the evolutionary derivation with generating

function ϕ. The infinite prolongation X(∞) ∈ D(J∞(π)) of X is given by

X(∞) = Эϕ −
n∑
i=1

∂ui(ϕ)Di

where ∂xi +
∑∞
|σ|=0 uσi∂uσ is the total derivative.
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Remark 1. The differential forms ωσ = duσ − uσidx
i for |σ| ≤ k − 1 de-

termine a distribution on Jk(π) called the Cartan distribution. Using this
we can define a Lie field as a vector field on Jk(π) that preserves the Cartan
distribution. If X ∈ D(C2×C), then X(k) is the unique Lie field that projects
to X through dπk,0. The Lie-Bäcklund theorem tells us that all Lie fields are
prolongations of Lie (or, in other words, contact) fields on J1(π). In this
sense there are more Lie fields on Jk(π) than those prolonged from vector
fields on C2 × C.

2.2 Classification of Lie algebras of vector fields
in one and two dimensions

Let G be a Lie group acting on a manifold M , and let g be the Lie algebra
corresponding to G. The infinitesimal generators of the action of G on M
are given by a Lie algebra homomorphism ρ : g→ D(M). The image ρ(g) ∈
D(M) is a Lie algebra algebra of vector fields.

The Lie group G acts locally effectively on M if and only if ρ is injective.
If G does not act effectively, then the quotient group G/GM , where GM is the
global isotropy group, does act effectively with the action (g+GM) ·x = g ·x.
So instead of considering G, we can consider G/GM with Lie algebra ĝ.

Hence every Lie algebra of vector fields on a manifoldM can be described
by a injective Lie algebra homomorphism ρ̂ : ĝ → D(M) of an abstract Lie
algebra ĝ. We will usually use ĝ to denote the image ρ̂(ĝ) ∈ D(M).

Definition 1. We say that two Lie algebras of vector fields g ∈ D(M), g′ ∈
D(M ′) are locally equivalent if there exist open sets U ⊂ M and U ′ ⊂ M ′,
and a local biholomorphism f : U → U ′ such that df(g|U) = g′|U ′ .

In [Lie70] Sophus Lie gave local classifications (up to local equivalence)
of all nonsingular finite-dimensional Lie algebras of analytic vector fields in
one and two complex dimensions (page 6 and 71, respectively). Nonsingular
means that there are no fixed points.

Classification of Lie algebras of vector fields on C
Any nonsingular finite-dimensional Lie algebra of analytic vector fields on C
is locally equivalent to one of the following:

g1 = 〈∂x〉, g2 = 〈∂x, x∂x〉, g3 = 〈∂x, x∂x, x2∂x〉.
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Classification of Lie algebras of vector fields on C2

Any nonsingular finite-dimensional Lie algebra of analytic vector fields on C2

is locally equivalent to one of the following:

Primitive and locally transitive
g1 = 〈∂x, ∂y, x∂x, x∂y, y∂x, y∂y, x2∂x + xy∂y, xy∂x + y2∂y〉
g2 = 〈∂x, ∂y, x∂x, x∂y, y∂x, y∂y〉
g3 = 〈∂x, ∂y, x∂y, y∂x, x∂x − y∂y〉

Nonprimitive, locally transitive (r = dim gi)
g4 = 〈∂x, eα1x∂y, xe

α1x∂y, ..., x
m1−1eα1x∂y, xe

α2x∂y, ..., x
ms−1eαsx∂y〉,

where mi ∈ N, αi ∈ C, i = 1, ..., s,
s∑
i=1

mi + 1 = r ≥ 2

g5 = 〈∂x, y∂y, eα1x∂y, xe
α1x∂y, ..., x

m1−1eα1x∂y, xe
α2x∂y, ..., x

ms−1eαsx∂y〉,

where mi ∈ N, αi ∈ C, i = 1, ..., s,
s∑
i=1

mi + 2 = r ≥ 2

g6 = 〈∂x, ∂y, y∂y, y2∂y〉
g7 = 〈∂x, ∂y, x∂x, x2∂x + x∂y〉
g8 = 〈∂x, ∂y, x∂y, ..., xr−3∂y, x∂x + λy∂y〉 for λ ∈ C \ {r − 2}, r ≥ 3

g9 = 〈∂x, ∂y, x∂y, ..., xr−3∂y, x∂x +
(
(r − 2)y + xr−2

)
∂y〉, r ≥ 3

g10 = 〈∂x, ∂y, x∂y, ..., xr−4∂y, x∂x, y∂y〉, r ≥ 4

g11 = 〈∂x, x∂x, ∂y, y∂y, y2∂y〉
g12 = 〈∂x, x∂x + ∂y〉

g13 = 〈∂x, ∂y, x∂y, ..., xr−4∂y, x2∂x + (r − 4)xy∂y, x∂x +
r − 4

2
y∂y〉, r > 4

g14 = 〈∂x, ∂y, ..., xr−5∂y, y∂y, x∂x, x2∂x + (r − 5)xy∂y〉, r > 5

g15 = 〈∂x, x∂x + ∂y, x
2∂x + 2x∂y〉

g16 = 〈x2∂x + y2∂y, x∂x + y∂y, ∂x + ∂y〉
g17 = 〈∂x, x∂x, x2∂x, ∂y, y∂y, y2∂y〉
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Nonprimitive and locally intransitive
g18 = 〈∂x〉
g19 = 〈∂x, x∂x〉
g20 = 〈∂x, x∂x, x2∂x〉
g21 = 〈∂y, φ2(x)∂y, ..., φr(x)∂y〉, where φi are analytic functions
g22 = 〈∂y, y∂y, φ3(x)∂y, ..., φr(x)∂y〉, where φi are analytic functions

This list is copied from [GOV93].

2.3 Lifts

Given a vector bundle π : E →M , a projectable vector field on E is a vector
field X that projects to a vector field dπ(X) onM . A projectable vector field
on the bundle C2×C→ C2 with coordinates x, y and u can be expressed on
the form a(x, y)∂x + b(x, y)∂y + c(x, y, u)∂u. We denote the set of projectable
vector fields on C2 × C by Dproj(C2 × C)

Definition 2. A lift of g ⊂ D(C2) on the bundle π : C2 × C → C2 is a
Lie algebra homomoorphism ρ′ : g → Dproj(C2 × C) such that the following
diagram commutes:

Dproj(C2 × C)

dπ
��

g

ρ′
99

ρ
// D(C2)

We do not consider the most general lift in this paper, but only lifts that
are constant on the fibers. Then the lift of a(x, y)∂x + b(x, y)∂y has the form
a(x, y)∂x + b(x, y)∂y + c(x, y)∂u. We call this a “constant” lift.

Definition 3. A constant lift of g ⊂ D(C2) on π : C2×C→ C2 is a lift that
is constant on the fibers.

Let g = 〈Y1, ..., Yr〉 be a Lie algebra of vector fields on C2 with com-
mutation relations [Yi, Yj] = Ck

ijYk. The generators are of the form Yi =
ai(x, y)∂x + bi(x, y)∂y. We will consider lifts of Yi to D(C2 × C) of the form
Y

(0)
i = ai(x, y)∂x+bi(x, y)∂y+ci(x, y)∂u. We must have [Y

(0)
i , Y

(0)
j ] = Ck

ikY
(0)
k ,

with the same structure constants as for g, for the diagram above to com-
mute. The commutation relations for the lifted generators give some dif-
ferential equations containing the functions ci. By solving these differential
equations, we find all the possible lifts. Since C2×C = J0(C2×C), it seems
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natural to denote the lift of this algebra by g(0), and the lift of X ∈ g by
X(0). Our first objective is to apply this procedure to all the Lie algebras
from the classifications in 2.2.

2.3.1 Cohomology

If we allow for coordinate transformations of the form (x, y, u) 7→ (x, y, u −
U(x, y)), and say that two lifts are equivalent if one can be transformed into
the other by such a transformation, then the different lifts are described in
terms of Lie algebra cohomology.

Let X, Y ∈ g. Then the lifts are given by X(0) = X + ψX∂u and Y (0) =
Y + ψY ∂u, where ψ is a Cω(C2)-valued one-form on g. The commutator is
given by

[X(0), Y (0)] = [X + ψX∂u, Y + ψY ∂u] = [X, Y ] + (X(ψY )− Y (ψX))∂u.

We see that the one-form ψ defines a lift if and only if the equality X(ψY )−
Y (ψX) = ψ[X,Y ] holds. Now, consider the following complex.

Cω(C2)
d−→ g∗ ⊗ Cω(C2)

d−→ ∧2g∗ ⊗ Cω(C2)

where d is defined by

df(X) = X(f), f ∈ Cω(C2)

dψ(X, Y ) = X(ψY )− Y (ψX)− ψ[X,Y ], ψ ∈ g∗ ⊗ Cω(C2).

The one-form ψ defines a lift if and only if dψ = 0.
Now, two lifts are equivalent if there exists a biholomorphism

φ : (x, y, u) 7→ (x, y, u− U(x, y))

on C2 × C that brings one to the other. The expression

dφ : X + ψX∂u 7→ X + (ψX − dU(X))∂u

for the differential of φ shows us that two lifts ψ, ψ̃ are equivalent if and only
if ψX − ψ̃X = dU(X) for some U ∈ Cω(C2). This means that the different
lifts are encoded in terms of the cohomology group

H1(g, Cω(C2)) = {ψ ∈ g∗ ⊗ Cω(C2) | dψ = 0}/{dU | U ∈ Cω(C2)}.

Hence we have the following theorem.

Theorem 1. There is a one-to-one corresponcence between the set of con-
stant lifts of the Lie algebra g ⊂ D(C2) (up to equivalence) and the cohomol-
ogy group H1(g, Cω(C2)).
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2.3.2 Coordinate change

To begin with, we will consider the lifts of Lie algebras up to coordinate
transformations of the form (x, y, u) 7→ (X(x, y), Y (x, y), u−U(x, y)). Since
the Lie algebras of vector fields on C2 are already in normal form, we can
let X = x and Y = y. After finding the lifts we will also apply a trans-
formation of the form u 7→ Cu. Note that transformations of the form
(x, y, u) 7→ (X(x, y), Y (x, y), Cu − U(x, y)) preserve the set of vector fields
that are constant on fibers, and these are actually the only transformations
that do that.

The fact that we consider lifts up to suitable coordinate transformations
significantly simplifies the expressions we get for the lifts, and it also simplifies
the differential equations we have to solve in order to find the lifts.

Example 1. Consider abelian Lie algebra 〈X, Y 〉 ⊂ D(C2), where X =
∂x, y = ∂y. The lifts of the generators take the form X(0) = ∂x+a(x, y)∂u and
Y (0) = ∂y + b(x, y)∂u. The holomorphic transformation u 7→ u−

∫
a(x, y)dx

brings X(0) to the form ∂x. After this coordinate change, the expression for
Y (0) will change, but it will still be of the same form, just with a differ-
ent function b. The lift is a Lie algebra homomorphism, so we must have
[X(0), Y (0)] = ∂x(b)∂u = 0. Hence b = b(y). The holomorphic transformation
u 7→ u −

∫
b(y)dy maps Y (0) = ∂y + b(y)∂u to ∂y. Hence all lifts of 〈X, Y 〉

are trivial, up to a triangular transformation.

This example is very useful since most of the Lie algebras we work with
contain 〈X, Y 〉 as a subalgebra. The simple forms of X(0), Y (0) simplify the
differential equations for the lift of the rest of the generators.

2.4 Differential invariants

In this section we will state some definitions and results regarding differen-
tial invariants. At the end of this section, we state the Lie-Tresse theorem,
which is of great importance for the calculation of differential invariants.
Usually these definitions and results are stated using Lie group actions (or
pseudogroup actions), while computations are usually done by considering
the Lie algebra of infinitesimal generators of the Lie group action. Since our
starting point is the classifications of Lie group actions in terms of infinites-
imal generators (i.e. Lie algebras of vector fields), we will define everything
in terms of these. See for example [Olv96] for an introduction to differential
invariants for Lie group actions.
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Definition 4. Let g ⊂ D(C2 × C). A function I ∈ Fk = Cω(Jk(C2 × C)) is
a differential invariant of order k if

X(k)(I) = 0 for every X ∈ g.

We do not usually require I to be defined at all points. The common
approach is to consider an open set in Jk(π) on which I is defined. We call
this the micro-local approach.

Since prolongation is a Lie algebra homomorphism, we only need to check
this equation on the generators of g. In other words, to find differential
invariants of order k of the algebra generated by X1, ..., Xr we must solve r
linear first-order differential equations:

X
(k)
i (I) = 0, i = 1, ..., r.

With pointwise addition and multiplication, the differential invariants of or-
der k make up an algebra, Ak. It’s obvious that all differential invariants of
order k are also differential invariants of order k+1. Hence, we get a filtering

A0 ⊂ A1 ⊂ A2 ⊂ · · · .

2.4.1 Determining the number of differential invariants
of order k

Often when we have a Lie group acting on a manifold, we want to know what
the orbits of the group action look like. This question is closely related to the
question about invariant functions on the manifold, i.e. functions that are
constant on the orbits of the group action. Locally, around generic points,
these questions can be answered by Frobenius’ theorem.

For us, the Lie group action will always be given in terms of the Lie
algebra 〈X1, ..., Xr〉 of infinitesimal generators. In the neighborhood of a
generic point (a point where the dimension of 〈X1, ..., Xr〉 is maximal), the Lie
algebra of infinitesimal generators determines a distribution on the manifold
which, by Frobenius’ theorem, is integrable.

Theorem 2 (Frobenius). Let P be an s-dimensional distribution on an n-
dimensional manifold. There exist local coordinates w1, ..., wn such that P =
〈∂w1 , ..., ∂ws〉 if and only if [X, Y ] ∈ P for every X, Y ∈ P .

In these coordinates the integral manifolds (which are the orbits of the
group action) are given by ws+1 = cs+1, ..., w

n = cn where cs+1, ..., cn ∈ C,
which means that there are n−s functionally independent invariant functions:
ws+1, ..., wn.

10



A differential invariant of order k of g is the same as an invariant function
of g(k). In the neighborhood of a generic point, the Lie algebra g(k) deter-
mines an s-dimensional distribution. In this neighborhood Jk(π) is foliated
by s-dimensional submanifolds that are the orbits of g(k). Hence there are
dim Jk(π)− s functionally independent differential invariants of order k. We
say that I ∈ Ak is a differential invariant of strict order k if I /∈ Ak−1.

Definition 5. If I, J ∈ Ak are differential invariants of strict order k, we
say that they are strictly independent if the functions I, J, x, y, u, ..., uyk−1

are functionally independent.

Our goal is to find all differential invariants for the lifts of Lie algebras.
This problem may seem too difficult, since there are infinitely many func-
tionally independent differential invariants in A∞. However, the Lie-Tresse
theorem tells us that every differential invariant is generated by a finite num-
ber of differential invariants and invariant derivations.

2.4.2 Invariant derivations

Definition 6. An invariant derivation is a horizontal vector field ∇ =
αDx +βDy ∈ D(J∞(π)), where α, β ∈ Fk for some k, that commutes with
the infinite prolongation of all vector fields in g, i.e. [∇, X(∞)] = 0 for every
X ∈ g.

We say that ∇ is of order k if α, β ∈ Fk. Given a differential invariant
I and an invariant derivation ∇, the product I · ∇ is again an invariant
derivation. Hence the invariant derivations form a module over the algebra
of differential invariants. We say that ∇1 and ∇2 are independent if they
are linearly independent in this module. Since the base space of our bundle
is two-dimensional, we only need two independent invariant derivations to
generate all of them.

One way to find invariant derivations is to solve the commutation equa-
tions. Let g = 〈X1, ..., Xr〉 and ∇ = αDx +βDy for α, β ∈ Fk for some k.
∇ is an invariant derivation if the following equations hold:

[∇, X(∞)
i ] = 0, i = 1, 2, ..., r.

We’ll rewrite these equations. Let x1, x2, u be coordinates on C2 × C.
If Xi = aji (x)∂xj + bi(x)∂u, then X

(∞)
i = aji (x)Dxj +Эφ. The evolutionary

11



derivative commutes with total derivatives.

[∇, X(∞)
i ] = [αlDxl , aji Dxj +Эφ]

= αl∂xl(a
j
i )Dxj −(aji Dxj +Эφ)(αl)Dxl

= αl∂xl(a
j
i )Dxj −X

(∞)
i (αj)Dxj

= 0

So for each generator Xi we get a set of 2 linear first-order differential equa-
tions of the form

X
(∞)
i (αj) = αl∂xl(a

j
i ).

Note that since αj is a function on some finite-order Jet space Jk(C2 × C),
we have X(∞)

i (αj) = X
(k)
i (αj).

2.4.3 Tresse derivatives

In some cases, the commutation equations are difficult to solve, and we need
another method of finding invariant derivations. The following method re-
quires that we have found two functionally independent differential invari-
ants f1, f2. In local coordinates, we can define the horizontal differential
d̂ : Cω(Jk(π))→ Ω1(Jk+1(π)) in the following way:

d̂f = Dxi(f)dxi

If f1, f2 are functionally independent, then

d̂f1 ∧ d̂f2 6= 0.

This means that the total Jacobian matrix

DF =

Dx1(f1) Dx1(f2)
Dx2(f1) Dx2(f2)


is nondegenerate. For any other differential invariant f , we have

d̂f =
∂̂i

∂̂fi
(f)d̂fi.

Thus

d̂ = dxi ⊗Dxi = d̂fi ⊗
∂̂i

∂̂fi
.

12



This gives us the expression of Tresse derivatives ∂̂i = ∂̂i/∂̂fi:∂̂1
∂̂2

 =

Dx1(f1) Dx1(f2)
Dx2(f1) Dx2(f2)


−1Dx1
Dx2


These are two independent invariant derivations that also have the property
that they commute with eachother: [∂̂i, ∂̂j] = 0.

See [KL06] for more details.

2.4.4 The Lie-Tresse theorem

The Lie-Tresse theorem is a theorem motivated by Lie and Tresse ([Lie93,
p. 760] and [Tre94]) that states, loosely speaking, that all differential invari-
ants of a finite-dimensional Lie group of point transformations are generated
by a finite number of differential invariants and invariant derivations.

The theorem was rigorously proved in [Kum75a] and [Kum75b] for actions
of pseudogroups, micro-locally on generic orbits. In [KL08] it was generalized
for pseudogroup actions on differential equations.

For us, the following version will be sufficient.

Theorem 3 (Lie-Tresse). Let g ⊂ D(C2 × C). There exist two invariant
derivations ∇1,∇2 and a finite number of differential invariants I1, ..., Iq such
that, micro-locally, any other differential invariant can be written as a func-
tion of I1, ..., Iq and ∇jk · · · ∇j1(Ii) for some integer k, where jl ∈ {1, 2} for
l ∈ {1, ..., k}.

By adding some conditions for the group action and the manifold it acts
on, we can obtain a global version of the Lie Tresse theorem (see [KL13]).
We saw earlier that Frobenius’ theorem guaranteed enough functionally in-
dependent invariants to separate the orbits locally. If a Lie group is acting
algebraically on an irreducible algebraic variety, then Rosenlicht’s theorem
does the same thing, only globally.

Theorem 4 (Rosenlicht). For an algebraic action of a Lie group on an
irreducible variety X, a finite set of rational invariants separates generic
orbits.

Proof. See [Ros56], theorem 2 or [PV94], theorem 2.3.

We will discuss the topic of algebraic group actions further in 5.1.
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Chapter 3

Warm-up: Differential invariants
of lifts of Lie algebras in D(C)

Any nonzero, nonsingular finite-dimensional Lie algebra of analytic vector
fields on C is locally equivalent to one of the following:

g1 = 〈∂x〉, g2 = 〈∂x, x∂x〉, g3 = 〈∂x, x∂x, x2∂x〉.
In this chapter we will find all constant lifts of these three Lie algebras to
C × C, and compute the differential invariants of these lifts. Since there
are only three cases, we will do a much more detailed description of the
calculations here, than we will do for the Lie algebras of vector fields on
C2. Hence this chapter can be viewed as an elementary introduction to the
techniques we use for the Lie algebras of vector fields on C2. The reader not
interested in the details can jump to section 3.4 for a summary.

3.1 g1 = 〈∂x〉
LetX = ∂x. The lift ofX has the formX(0) = ∂x+a(x)∂u. By the coordinate
transformation u 7→ u−

∫
a(x)dx it can be brought to the form X(0) = ∂x.

The kth prolongation is X(k) = ∂x for k = 0, 1, 2, .... Every function
that does not depend on x is a differential invariant. Thus the differential
invariants of order k are generated by u, ux, uxx, ..., uxk .

Since the base space of C × C is one-dimensional, we need only one in-
variant derivation. The vector field ∇ = αDx is an invariant derivation if it
commutes with X(∞) = ∂x, i.e. if α is a solution to the equation

[αDx, ∂x] = −αxDx = 0.

The function α = 1 is obviously a solution. And since Dx(uxi) = uxi+1 for
i = 0, 1, 2, ..., every differential invariant is generated by u and Dx.

15



3.2 g2 = 〈∂x, x∂x〉

3.2.1 Lift of g2 to D(C× C) and invariants on C× C
Let X0 = ∂x, X1 = x∂x. The lifts of these to D(C× C) have the form

X
(0)
0 = ∂x + a0(x)∂u, X

(0)
1 = x∂x + a1(x)∂u.

We can straighten out X(0)
0 like we did in the last section, so the lifts get

the following form:

X
(0)
0 = ∂x, X

(0)
1 = x∂x + a(x)∂u.

The commutation relation for g2 is [X0, X1] = X0. Let’s impose the corre-
sponding equation equation on X(0)

0 and X(0)
1 .

X
(0)
0 = [X

(0)
0 , X

(0)
1 ] = [∂x, x∂x + a(x)∂u] = ∂x + a′(x)∂u

It follows that a′ = 0, so a = C is constant. Hence

X
(0)
0 = ∂x, X

(0)
1 = x∂x + C∂u.

If C = 0, the invariants are generated by u. If C 6= 0, g(0)2 = 〈X(0)
0 , X

(0)
1 〉 is

transitive on C×C, so there are no invariants on C×C. Note also that when
C 6= 0, the coordinate transformation u 7→ u/C normalizes the constant. So
we can assume that C = 0 or C = 1.

3.2.2 Differential invariants of first order

Now, let’s prolong g
(0)
2 to D(J1(C× C)). We get

X
(1)
0 = ∂x, X

(1)
1 = x∂x + C∂u − ux∂ux

where C = 0 or C = 1. We find the differential invariants of first order (the
invariants of g(1)2 on J1(C× C)) by solving the system{

X
(1)
0 (f) = 0

X
(1)
1 (f) = 0

where f = f(x, u, ux). The system is equivalent to the equation

C∂uf(u, ux)− ux∂uxf(u, ux) = 0.

16



If C = 1, the general solution to this equation is

f(x, u, ux) = F (uxe
u) .

Hence the algebra of differential invariants of first order is generated by

I1 = uxe
u.

If C = 0, the equation reduces to ∂uxf(u, ux) = 0 which tells us that
f = f(u). Hence, in this case, there are no new differential invariants of first
order, and the algebra of differential invariants of first order is generated by
u.

3.2.3 Differential invariants of higher order

A generic orbit of g(1)2 is two-dimensional. This is also true for g(k)2 for k > 1.
Frobenius’ theorem tells us that locally, there are dim Jk(C × C) − 2 = k
functionally independent differential invariants of order k for k ≥ 1. This
in turn implies that there is maximally one strictly independent differential
invariant of strict order k for k ≥ 2.

In the next section we find an invariant derivation that, together with the
differential invariant we have found, generates all differential invariants for
the cases C = 0 and C = 1, respectively.

3.2.4 Invariant derivations

The vector field ∇ = αDx is an invariant derivation if it commutes with
X

(∞)
0 and X(∞)

1 :

[∇, X(∞)
0 ] = [αDX x, ∂x] = −αxDx = 0

[∇, X(∞)
1 ] = [αDx, xDx +ЭC−xux ] = αDx−X(∞)

1 (α)Dx = 0

The first equation tells us that α does not depend on x. Let first C = 1. If
we assume that α = α(u), the second equation is equivalent to αu = α. One
solution to this equation is α = eu, and hence

∇ = euDx

is an invariant derivation.
If C = 0, we try with α = α(ux, uxx). Then the second equation is

equivalent to uxαux + 2uxxαuxx +α = 0. The function uxx/u3x is a solution to
this equation, and thus

∇̂ =
uxx
u3x
Dx

17



is an invariant derivation.
The algebra of differential invariants is generated by I1 and∇ when C = 1

and by u and ∇̂ when C = 0.

3.3 g3 = 〈∂x, x∂x, x2∂x〉

3.3.1 Lift of g3 to D(C× C) and invariants on C× C
Let X0 = ∂x, X1 = x∂x, X2 = x2∂x. By the same argument that we used in
the last section, the lift of these vector fields can be brought to the form

X
(0)
0 = ∂x, X

(0)
1 = x∂x + A∂u, X

(0)
2 = x2∂x + a(x)∂u

by a change of coordinates. The commutation relations for g3 are

[X0, X1] = X0, [X0, X2] = 2X1, [X1, X2] = X2.

The equation [X
(0)
0 , X

(0)
1 ] = X

(0)
0 was used get X(0)

0 and X(0)
1 to their current

forms. The second commutation relation, gives us the equation

2x∂x + A∂u = 2X
(0)
1 = [X

(0)
0 , X

(0)
2 ] = 2x∂x + a′(x)∂u.

This implies that a′(x) = 2A, and therefore that a(x) = 2xA+B. From the
last commutation relation we get the following equation:

x2∂x + (2xA+B)∂u = X
(0)
2

= [X
(0)
1 , X

(0)
2 ]

= x2∂x + x∂x(a)∂u

= x2∂x + 2Ax∂u

Hence B = 0, and a constant lift of g2 is generated by

X
(0)
0 = ∂x,

X
(0)
1 = x∂x + A∂u,

X
(0)
2 = x2∂x + 2Ax∂u.

Also here, we can normalize the constant so that A = 0 or A = 1 by a
coordinate transformation. If A = 0, then u is an invariant. If A = 1, there
are no invariants on C× C.
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3.3.2 Differential invariants of first and second order

There are no differential invariants of strict order one. If A = 0 there are no
differential invariants of strict order two. If A = 1, there is one differential
invariant of second order:

I2 =
(
uxx + u2x/2

)
e2u

3.3.3 Differential invariants of higher order

A generic orbit of g(2)2 is three-dimensional. This is also true for g(k)2 for k > 2.
Therefore there are dim Jk(C × C) − 3 = k − 1 functionally independent
differential invariants of order k for k ≥ 2. This in turn implies that there is
maximally one strictly independent differential invariant of strict order k for
k ≥ 3.

In the next section we find an invariant derivation that, together with the
differential invariant we have found, generates all differential invariants for
the cases A = 0 and A = 1, respectively.

3.3.4 Invariant derivations

The vector field ∇ = αDx is an invariant derivation if it commutes with
X

(∞)
0 , X(∞)

1 and X(∞)
2 :

[∇, X(∞)
0 ] = [αDx, ∂x] = −αxDx = 0

[∇, X(∞)
1 ] = [αDx, xDx +ЭA−xux ] = αDx−X(∞)

1 (α)Dx = 0

[∇, X(∞)
2 ] = [αDx, x2Dx +Э2Ax−x2ux ] = 2xαDx−X(∞)

2 (α)Dx = 0

The first equation tells us that α does not depend on x. Let’s assume that
A = 1 and try with α = α(u). Then the system is equivalent to the equation
αu = α, which has the solution

α = eu.

Hence we get an invariant derivation

∇ = euDx .

If A = 0, we let α = α(u, ux, uxx, uxxx) and get the equations{
−uxαux − 2uxxαuxx − 3uxxxαuxxx = α

−2xuxαux − (2ux + 4xuxx)αuxx − 6(uxx + xuxxx)αuxxx = 2xα
.
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It’s easily checked that the function

α =
2uxxxux − 3u2xx

u5x

is a solution to this system, and thus we get an invariant derivation

∇̂ =
2uxxxux − 3u2xx

u5x
Dx .

All differential invariants are generated by ∇ and I2 when A 6= 0 and by
∇̂ and u when A = 0.

3.4 Summary
The constant lifts of g1, g2, g3 are of the form

g
(0)
1 = 〈∂x〉

g
(0)
2 = 〈∂x, x∂x + C∂u〉

g
(0)
3 = 〈∂x, x∂x + C∂u, x

2∂x + 2Cx∂u〉

after a suitable change of coordinates of the form (x, u) 7→ (x, u−U(x)). As
a corollary we get the following cohomology groups:

H1(g1, C
ω(C)) = {0}, H1(g2, C

ω(C)) = C, H1(g3, C
ω(C)) = C

By a scaling of u, we can normalize the constant so that C = 0 or C = 1. The
differential invariants of the lifts are generated by the following differential
invariants and invariant derivations.

Differential invariants Invariant derivation

g1 u Dx
g2, C = 0 u uxx

u3x
Dx

g2, C = 1 uxe
u euDx

g3, C = 0 u 2uxxxux−3u2xx
u5x

Dx
g3, C = 1 (uxx + u2x/2)e2u euDx

Remark 2. In the cases where C = 0, we could have chosen the simpler
invariant derivation ∇ = 1

ux
Dx. This is the Tresse derivative with respect

to u, which means that ∇(u) = 0. Because of this we would need one more
differential invariant (of higher order) to generate all differential invariants.
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Chapter 4

Differential invariants of lifts of
Lie algebras in D(C2)

In [Olv96] there is a complete list of differential invariants of the Lie algebras
of vector fields from the classification (Olver uses a slightly different classifi-
cation than we use here) taken as vector fields on C×C. In this case x is an
independent variable, and y is a dependent variable. In [Nes06] the same is
done for a classification of vector fields on R2.

In this chapter we’ll do the same for the classification of Lie algebras of
vector fields on C2 as we did in the previous chapter for the classification of
Lie algebras of vector fields on C. We will first find all constant lifts of the
Lie algebras to C2×C, and then find the differential invariants of these lifts.

4.1 Lifts to D(C2 × C)
The computations of the lifts consists of two parts. First we change coordi-
nates, so that the lifts of one or two of the generators get a simpler form.
Then we solve the differential equations given by the commutation relations.

4.1.1 Coordinate change

It was described in 2.3.2 how one can change coordinates u 7→ u−U(x, y) so
that the lift of 〈∂x, ∂y〉 is the same as the trivial lift. This means that when
we consider the lifts of Lie algebras that contain X = ∂x and Y = ∂y, we can
change coordinates so that X(0) = ∂x and Y (0) = ∂y. There are four other
cases where we use other coordinate changes, namely for g4, g5, g12, g16.

The cases g4 and g5 are handled similarly. We may assume without loss
of generality that m1 ≥ m2 ≥ · · · ≥ ms. Let X = ∂x, Y = eα1x∂y. As before,
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we can rectify the lift of X by using a suitable coordinate transformation, so
that X(0) = ∂x. The general lift of Y is of the form eα1x∂y + b(x, y)∂u. The
commutation relation [X(0), Y (0)] = α1Y

(0) tells us that b(x, y) = c(y)eα1x.
By changing coordinates u 7→ u−

∫
c(y)dy, we get Y (0) = eα1x∂y.

Consider now g12. Let X = ∂x, Y = x∂x + ∂y. After a change of coor-
dinates we have X(0) = ∂x, Y

(0) = x∂x + ∂y + b(x, y)∂u. The commutation
relation [X(0), Y (0)] = X(0) tells us that b does not depend on x. After
changing coordinates u 7→ u−

∫
b(y)dy, we get Y (0) = x∂x + ∂y.

Lastly, consider g16. Let X = ∂x, Y = x∂x + y∂y. After a change of
coordinates we get X(0) = ∂x, Y

(0) = x∂x+y∂y+b(x, y)∂u. The commutation
relation [X(0), Y (0)] = X(0) tells us that b does not depend on x. Write b(y) =
B + yb̃(y) where b̃ is an analytic function. The coordinate transformation
u 7→ u−

∫
b̃(y)dy transforms the lift of Y to the form Y (0) = x∂x+y∂y+B∂u.

4.1.2 Solving the differential equations

It was described in 2.3 how finding the general lift of a Lie algebra of vector
fields on C2 corresponds to solving a set of differential equations. We also
saw how this worked in the previous chapter. Here we will only look closely
at one case, g8.

Let X0 = ∂x, X1 = ∂y, X2 = x∂x + λy∂y and Yi = xi∂y. We have the
following commutation relations:

[X0, X1] = 0, [X0, X2] = X0, [X1, X2] = λX1

[X0, Y1] = X1, [X0, Yi] = iYi−1, i = 2, 3, ..., r − 3,

[X2, Yi] = (i− λ)Yi, i = 1, 2, ..., r − 3.

Every other Lie bracket vanishes.
After we straighten out X(0)

0 and X(0)
1 , the lifts of the generators are of

the following forms:

X
(0)
0 = ∂x

X
(0)
1 = ∂y

X
(0)
2 = x∂x + λy∂y + a2(x, y)∂u

Y
(0)
i = xi∂y + bi(x, y)∂u.

22



The commutation relations

[X
(0)
0 , X

(0)
2 ] = X

(0)
0 ,

[X
(0)
1 , X

(0)
2 ] = λX

(0)
1 ,

[X
(0)
0 , Y

(0)
1 ] = X

(0)
1 ,

[X
(0)
0 , Y

(0)
i ] = iYi−1, i = 2, 3, ..., r − 3,

[X
(0)
1 , Y

(0)
i ] = 0, i = 1, 2, ..., r − 3,

[X
(0)
2 , Y

(0)
i ] = (i− λ)Y

(0)
i

are equivalent to the following set of differential equations:

∂x(a2) = 0

∂y(a2) = 0

∂x(b1) = 0

∂x(bi) = ibi−1

∂y(bi) = 0

x∂x(bi) + λy∂y(bi)− xi∂y(a2) = (i− λ)bi

The first two equations tells us that

a2 = A

is constant. By combining the equations, the last one simplifies to xibi−1 =
(i− λ)bi. We must consider two cases.

• If λ = k ∈ {1, 2, ..., r − 3}, then xkbk−1 = 0 if k > 1, and by using the
last equations, we see that bi = 0 for i = 1, 2, ..., k − 1. The equation
∂x(bk) = ibk−1 (or ∂x(b1) = 0 if k = 1) together with ∂y(bk) = 0 implies
that

bk = B

is constant. The rest of the coefficients are given by bk+l =
(
k+l
k

)
xlB.

• If λ /∈ {1, 2, ..., r− 3}, then we have bi = 0 for i = 1, 2, ..., r− 3. To see
this, we use the equation x∂x(bi) = (i− λ)bi. For i = 1, this reduces to
(1− λ)b1 = 0, and since λ 6= 1, b1 = 0. The equation xibi−1 = (i− λ)bi
then implies that bi = 0 for every i.
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4.1.3 List of lifts and cohomologies

Here we give the complete list of the lifts. From these lifts, we can at once
read off the cohomology groups H1(gi, C

ω(C2)). It’s not difficult to see that
we cannot simplify the expressions more by using coordinate transformations
of the form u 7→ u− U(x, y).

i Generators for g(0)i H1(gi, C
ω(C2))

1 ∂x, ∂y, y∂x, x∂y, x∂x + C∂u, y∂y + C∂u,
xy∂x + y2∂y + 3Cy∂u, x2∂x + xy∂y + 3Cx∂u

C

2 ∂x, ∂y, y∂x, x∂y, x∂x + C∂u, y∂y + C∂u C

3 ∂x, ∂y, x∂y, y∂x, x∂x − y∂y {0}

6 ∂x, ∂y, y∂y + C∂u, y2∂y + 2Cy∂u C

7 ∂x, ∂y, x∂x + C∂u, x2∂x + x∂y + 2Cx∂u C

11 ∂x, ∂y, x∂x + A∂u, y∂y +B∂u, y2∂y + 2By∂u C2

12 ∂x, x∂x + ∂y {0}

15 ∂x, x∂x + ∂y, x2∂x + 2x∂y + Cey∂u C

16 2∂x, x∂x + y∂y + A∂u,
x2+y2

2
∂x + xy∂y + (Ax+By)∂u

C2

17 ∂x, x∂x + A∂u, x2∂x + 2Ax∂u,
∂y, y∂y +B∂u, y2∂y + 2By∂u

C2

18 ∂x {0}

19 ∂x, x∂x + a(y)∂u Cω(C)

20 ∂x, x∂x + a(y)∂u, x2∂x + 2xa(y)∂u Cω(C)

24



i Generators for g(0)i H1(gi, C
ω(C2))

4 ∂x, xieαjx∂y + bj,i(x)∂u
for i = 0, 1, ...,mj − 1, j = 1, 2, ..., s
where b1,0 = 0, b1,i = eα1x

∑i
k=1

(
i
k

)
C1,kx

i−k

and bj,i = eαjx
∑i

k=0

(
i
k

)
Cj,kx

i−k.
In addition mi ≥ mi+1.

Cm1+m2+···+ms−1

5 ∂x, y∂y + C∂u, xieαjx∂y
for j = 1, 2, ..., s, i = 0, 1, ...,mj − 1

C

8 ∂x, ∂y, x∂x + λy∂y + A∂u, xi∂y + bi(x)∂u,
i = 1, 2, ..., r − 3 where λ ∈ C, λ 6= r − 2.
If λ = k ∈ {1, 2, ..., r − 3}, then bi = 0 for
i = 1, 2, ..., k − 1, bk = B ∈ C and bk+l =

(
k+l
k

)
xlB

for l = 1, 2, ..., r − 3− k. If else bi = 0 for
i = 1, 2, ..., r − 3.

C2

9 ∂x, ∂y, x∂x +
(
(r − 2)y + xr−2

)
∂y + C∂u, xi∂y,

i = 1, 2, ..., r − 3
C

10 ∂x, ∂y, x∂x+A∂u, y∂y+B∂u, xi∂y, i = 1, 2, ..., r − 4 C2

13 ∂x, ∂y, xi∂y, i = 1, 2, ..., r − 4,
x∂x + r−4

2
y∂y + C∂u, x2∂x + (r − 4)xy∂x + 2xC∂u

C

14 ∂x, ∂y, x∂x + A∂u, y∂y +B∂u,
x2∂x + (r − 5)xy∂y + (2A+ (r − 5)B)x∂u, xi∂y,
i = 1, 2, ..., r − 5

C2

21 ∂y, φi(x)∂y + ai(x)∂u, i = 2, 3, ..., r Cω(C,Cr−2)

22 ∂y, y∂y + b(x)∂u, φi(x)∂y, i = 3, 4, ..., r Cω(C)

Most of the lifts depend on one or two constants. If they depend on one
constant, we can always normalize it by a change of coordinates.1 If C 6= 0,
we can use the transformation u 7→ u/C to remove the constant. This means
that we can always make C equal to either 0 or 1 by change of coordinates.
For the lifts that depend on two constant we can always, for the same reason,
make one of them equal to 1.

1Note that this transformation has nothing to do with the cohomology groups. For the
cohomology we only considered transformations on the form u 7→ u− U(x, y).
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4.2 Counting differential invariants

Given an algebra g ⊂ D(C2×C) we can find the number of strictly indepen-
dent differential invariants of order k in the neighborhood of a generic point
for any k. The dimension of Jk(π) is 2 +

(
k+2
2

)
. Let

qk = dim Jk(π)− dim Jk−1(π) =

(
k + 2

2

)
−
(
k + 1

2

)
=

(
k + 1

1

)
= k + 1.

This is the number of derivative coordinates of order exactly k.
Let sk denote the dimension of a generic orbit of g(k). Then the number of

functionally independent differential invariants of order k is ik = 2+
(
k+2
2

)
−sk.

The number of strictly independent differential invariants of order k is jk =
ik − ik−1 = qk − sk + sk−1. Hence we only need to calculate sk and sk−1 to
count the number of strictly independent differential invariants of order k.

This calculation can be automated in Maple.

Trivial lift

Order 0 1 2 3 4

g3 1 0 2 4 5

g12 1 2 3 4 5

g18 2 2 3 4 5

C = 0 C = 1

Order 0 1 2 3 4 0 1 2 3 4

g1 1 0 0 3 5 0 0 1 3 5

g2 1 0 1 4 5 0 0 2 4 5

g6 1 1 2 4 5 0 1 3 4 5

g7 1 1 2 4 5 0 1 3 4 5

g15 1 1 3 4 5 0 2 3 4 5
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A = 0, B = 0 A = 1, B = 0 A ∈ C, B = 1

Order 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

g11 1 0 2 4 5 0 1 2 4 5 0 0 3 4 5

g16 1 1 3 4 5 1 1 3 4 5 0 2 3 4 5

g17 1 0 1 4 5 0 0 2 4 5 0 0 2 4 5

Trivial lifts a(y) 6= 0

Order 0 1 2 3 4 0 1 2 3 4

g19 2 1 3 4 5 1 2 3 4 5

g20 2 1 2 4 5 1 1 3 4 5

For the families of Lie algebras, the number of differential invariants depends
on the dimension of the algebra. The bold numbers are numbers that does
not change when we increase the algebra dimension.

g4 Ci,j = 0

Order 0 1 2 3 4

r = 2 1 2 3 4 5

r = 3 1 1 3 4 5

r = 4 1 1 2 4 5

r = 5 1 1 2 3 5

r = 6 1 1 2 3 4

The lift of g4 is much more complicated than the other lifts, so it’s difficult
to find a pattern like we do for most of the other lifts. But we can count the
number of differential invariants for some cases, and we see that this number
depends on the constants.
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g4 C1,1 6= 0 C2,0 6= 0 C1,1 6= 0 and C2,0 6= 0

Order 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

m1 = 1,m2 = 1 0 2 3 4 5

m1 = 2 0 2 3 4 5

m1 = 2,m2 = 1 0 1 3 4 5 0 1 3 4 5 0 1 3 4 5

m1 = 2,m2 = 2 0 1 2 4 5 0 1 2 3 4 0 1 2 4 5

m1 = 2,m2 = 2,m3 = 1 0 1 2 3 5 0 1 1 4 5 0 1 1 4 5

g5 Trivial lift Nontrivial lift

Order 0 1 2 3 4 0 1 2 3 4

r = 2 1 2 3 4 5 1 2 3 4 5

r = 3 1 1 3 4 5 0 2 3 4 5

r = 4 1 0 3 4 5 0 1 3 4 5

r = 5 1 0 2 4 5 0 1 2 4 5

r = 6 1 0 2 3 5 0 1 2 3 5

r = 7 1 0 2 3 4 0 1 2 3 4

g8 Trivial,
λ = 0

Trivial,
λ 6= 0

A = 1,
bi = 0

Order 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

r = 3 1 1 3 4 5 1 1 3 4 5 0 2 3 4 5

r = 4 1 1 2 4 5 1 0 3 4 5 0 1 3 4 5

r = 5 1 1 1 4 5 1 0 2 4 5 0 1 2 4 5

r = 6 1 1 1 3 5 1 0 2 3 5 0 1 2 3 5

r = 7 1 1 1 3 4 1 0 2 3 4 0 1 2 3 4
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g8 λ = 1,
b1 6= 0

λ = 2,
b2 6= 0

λ = 3,
b3 6= 0

λ = 4,
b4 6= 0

Order 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

r = 4 0 1 3 4 5

r = 5 0 0 3 4 5 0 0 3 4 5

r = 6 0 0 2 4 5 0 0 2 4 5 0 0 2 4 5

r = 7 0 0 2 3 5 0 0 1 4 5 0 0 1 4 5 0 0 2 3 5

r = 8 0 0 2 3 4 0 0 1 3 5 0 0 1 3 5 0 0 1 3 5

r = 9 0 0 1 3 4 0 0 1 2 5 0 0 1 2 5

r = 10 0 0 1 2 4 0 0 1 2 4

r = 11 0 0 1 2 3

g9 Trivial lift Nontrivial lift

Order 0 1 2 3 4 0 1 2 3 4

r = 3 1 1 3 4 5 0 2 3 4 5

r = 4 1 0 3 4 5 0 1 3 4 5

r = 5 1 0 2 4 5 0 1 2 4 5

r = 6 1 0 2 3 5 0 1 2 3 5

r = 7 1 1 2 3 4 0 1 2 3 4

g10 Trivial A = 0,
B = 1

A = 1,
B ∈ C

Order 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

r = 4 1 0 3 4 5 0 1 3 4 5 0 1 3 4 5

r = 5 1 0 2 4 5 0 1 2 4 5 0 0 3 4 5

r = 6 1 0 1 4 5 0 1 1 4 5 0 0 2 4 5

r = 7 1 0 1 3 5 0 1 1 3 5 0 0 2 3 5

r = 8 1 0 1 3 4 0 1 1 3 4 0 0 2 3 4
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g13 Trivial lift Nontrivial lift

Order 0 1 2 3 4 0 1 2 3 4

r = 4 1 1 2 4 5 0 1 3 4 5

r = 5 1 0 2 4 5 0 1 2 4 5

r = 6 1 0 1 4 5 0 1 1 4 5

r = 7 1 0 1 3 5 0 1 1 3 5

r = 8 1 1 2 3 4 0 1 1 3 4

g14 Trivial A = 0,
B = 1

A = 1,
B ∈ C

Order 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

r = 5 1 0 2 4 5 0 1 2 4 5 0 0 3 4 5

r = 6 1 0 1 4 5 0 1 1 4 5 0 0 2 4 5

r = 7 1 0 1 3 5 0 1 1 3 5 0 0 1 4 5

r = 8 1 0 1 3 4 0 1 1 2 5 0 0 1 3 5

r = 9 0 1 1 2 4 0 0 1 3 4

g21 Trivial a2 6= 0 a2 6= 0 and a3 6= 0

Order 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

r = 2 2 1 3 4 5 1 2 3 4 5

r = 3 2 1 2 4 5 1 1 3 4 5 1 1 3 4 5

r = 4 2 1 2 3 5 1 1 2 4 5 1 1 2 4 5

r = 5 2 1 2 3 4 1 1 2 3 5 1 1 1 4 5

r = 6 1 1 2 3 4 1 1 1 3 5

r = 7 1 1 1 3 4
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g22 Trivial lift Nontrivial lift

Order 0 1 2 3 4 0 1 2 3 4

r = 3 2 0 3 4 5 1 1 3 4 5

r = 4 2 0 2 4 5 1 1 2 4 5

r = 5 2 0 2 3 5 1 1 2 3 5

r = 6 2 0 2 3 4 1 1 2 3 4

We have only listed the number of the invariants of order up to 4. When we
compute the differential invariants, it will usually be clear how the pattern
continues.

When we prolong a Lie algebra of vector fields, the dimension of its generic
orbits will, in general, increase. The dimension of an orbit is bounded by the
dimension of the Lie algebra. When the Lie algebra is of finite dimension,
the orbit dimension must stabilize at some point. The following theorem,
due to Ovsiannikov, tells us that for Lie algebras of vector fields, the orbit
dimension stabilizes when it reaches the dimension of the Lie algebra (see
[Olv96, p. 143]).

Theorem 5. A Lie group of point or contact transformations acts locally
effectively if and only if its stable orbit dimension equals its dimension.

Remember that for each Lie algebra of vector fields, there exists an effec-
tive Lie group whose local action coincide with the Lie algebra.

If a generic orbit of g(k) has dimension equal to the dimension of g, then
the pattern of differential invariants of strict order greater than k, is very
simple. We will get the maximal number of differential invariants of strict
order l for l > k. In other words, there will be l + 1 differential invariants of
strict order l for l > k.
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4.3 List of differential invariants

In this section, we give a list of differential invariants and invariant deriva-
tions. In many cases these generate all differential invariants for the given
Lie algebra of vector fields. For the families of Lie algebras from the clas-
sification, these generating differential invariants can be of arbitrarily high
order, and even though there seems to be some pattern, we have not been
able to express these in general. Therefore, the list is complete only for the
Lie algebras of low order.

An interesting property of the Lie algebras we consider is that all of them
have differential invariants of order two. And in most cases, even in cases
where we have not found all differential invariants, we know the order of the
missing generating differential invariants.

It turns out that the following functions appear in many of the differential
invariants we find:

Jki =
i−1∑
j=0

(−1)j
(
i− 1

j

)
uxjyk−j

ujxu
k−j
y

Therefore it will be useful to express many of the differential invariants in
terms of them.

Many of the differential invariants and invariant derivations are, due to
their lengthy expressions, gathered in the appendix. They appear in the
tables in this sections as letters I,K, L,M, α, β with indices. All calcula-
tions were done using Maple with the packages “DifferentialGeometry” and
“JetCalculus”.

4.3.1 g1, g2, g3

For g
(0)
1 with C = 1 we’re only able to find a differential invariant of order

two. We know that micro-locally there are three differential invariants of
order three and k + 1 differential invariants of order k for k > 3.
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Differential invariants Invariant derivations

g
(0)
1

C = 0
u, I31, I32, I33, I41 α1

(
Dx−ux

uy
Dy
)

+ 1
uy
Dy,

α2

(
Dx−ux

uy
Dy
)

g
(0)
1

C = 1
(J23 + 3J21J23−3J2

22)(uxuye
u)2

g
(0)
2

C = 0
u,K2, K31, K32, K33, K34 α5

(
Dx−ux

uy
Dy
)
,

α6

(
Dx−ux

uy
Dy
)

+ 1
uy
Dy

g
(0)
2

C = 1
J23
(
uxuye

u
)2,

(J23J21 − J2
22)
(
uxuye

u
)2,

K31, K32, K33, K34

α7Dx +β7Dy, α8Dx +β8Dy

g
(0)
3 u, J23u

2
xu

2
y, K2, K32, K33

J33+2J21J23−2J2
22

J34ux

(
Dx−ux

uy
Dy
)

+

1
uy
Dy, 1

J34u3xu
2
y

(
Dx−ux

uy
Dy
)
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4.3.2 g6, g7, g11, g12, g15, g16, g17, g18, g19, g20

Differential invariants Invariant Derivations

g
(0)
6

C = 0
u, uyyy

u3y
− 3

2

(
uyy
u2y

)2
Dx, 1

uy
Dy

g
(0)
6

C = 1
ux, (uyy + u2y/2)e2u Dx, euDy

g
(0)
7

C = 0
u, J23−1/uy

J2
22

uy
uxuyy−uyuxy

(
Dx−ux

uy
Dy
)
,

Dy
g
(0)
7

C = 1
uy,(
J23 + 4J22−1

uy−2 + 4J21
(uy−2)2

)
(uxe

u)2
eu
(
Dx− ux

uy−2 Dy
)
, Dy

g
(0)
11

A = 0
B = 0

u, uxx
u2x
, uxy
uxuy

, uyyy
u3y
− 3

2

(
uyy
u2y

)2
1
ux
Dx, 1

uy
Dy

g
(0)
11

B = 0
A = 1

uxe
u, J31 − 3

2
J2
21

1
ux
Dx, 1

uy
Dy

g
(0)
11

B = 1
A ∈ C

uxx
u2x
, uxyu

A−1
x eu,

(uyy − u2y/2)u2Ax e2u

1
ux
Dx, uAx euDy

g
(0)
12 u ey Dx, Dy

g
(0)
15

C = 0
u,
(
J23 + 1

2uy

)
(uxe

y)2 ey
(
Dx−ux

uy
Dy
)
, Dy

g
(0)
15

C = 1
uy − u, 2uuy + uxe

y − u2 ey Dx +2uDy, Dy
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Differential invariants Invariant derivations

g
(0)
16

A = 0
B = 0

u, y2(u2y − u2x), y2(uyy − uxx) 1
ux+uy

(
Dx +Dy

)
,

1
ux−uy

(
Dx−Dy

)
g
(0)
16

B = 0
A = 1

eu/y, y2(uyy − uxx) (1 + y(ux − uy))y(Dx +Dy),
y

1+y(ux−uy)(Dx−Dy)

g
(0)
16

B = 1
A ∈ C

(
(ux + uy)− 1+A

y

)
y1−Aeu,(

ux − uy − 1−A
y

)
yA+1e−u

yA+1e−u
(
Dx−Dy

)
,

y1−Aeu
(
Dx +Dy

)
g
(0)
17

A = 0
B = 0

u, uxy
uxuy

, uxxx
u3x
− 3

2

(
uxx
u2x

)2
,

uyyy
u3y
− 3

2

(
uyy
u2y

)2 1
ux
Dx, 1

uy
Dy

g
(0)
17

B = 0
A = 1

(u2x + 2uxx)e
2u,uxy

uy
eu,

J31 − 3
2
J2
21

euDx, 1
uy
Dy

g
(0)
17

B = 1
A ∈ C

uxy(u
2
x + 2Auxx)

(A−1)/2eu,
(u2y + 2uyy)(u

2
x + 2Auxx)

Aeu
1√

u2x+2Auxx
Dx,
√
u2x+2Auxx

uxy
Dy

g
(0)
18 y, u Dx, Dy

g
(0)
19

a = 0
y, u, uxx

u2x

1
ux
Dx, Dy

g
(0)
19 y, uxe

u
a(y) , uy − ua

′(y)
a(y)

1
ux
Dx,Dy

g
(0)
20

a = 0
y, u, uxxx

u3x
− 3

2

(
uxx
u2x

)2
1
ux
Dx, Dy

g
(0)
20 y, uy − ua

′(y)
a(y)

,(
u2x
a(y)

+ 2uxx

)
e

2u
a(y)

e
u
a(y) Dx,Dy

4.3.3 g8, g9, g10, g13, g14

For families of Lie algebras (g(0)4 , g
(0)
5 , g

(0)
8 , g

(0)
9 , g

(0)
10 , g

(0)
13 , g

(0)
14 , g

(0)
21 , g

(0)
22 ), there

are always some differential invariants and invariant derivations, that every
Lie algebra in the family have in common. Because of this, we can almost
always determine the number of differential invariants of each order. The
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exceptions are the nontrivial lifts of g4, g8 and g21.
In order to generate all differential invariants we need, in addition to

the mentioned differential invariants and invariant derivations, one or two
differential invariants that depend on the dimension of the Lie algebra. In
the tables, r is always the dimension of the Lie algebra.

g8 r = 3, 4, ... 1
uxuyy−uyuxy

(
Dx−uxy

uyy
Dy
)
,Dy

λ = 0 u, J33−J21J23
J2
22

A = 0 r = 3 J22,
J23
J2
22

B = 0 r = 4 J23
J2
22

r = 5 J34−3J22J23
J3
22

r = 6
J45−6J33J23−4J22J34+12J2

22J23+3J21J2
23

J4
22

r = k one differential invariant of order k − 2

g8 r = 3, 4, ...
u2y

uxuyy−uyuxy

(
Dx−ux

uy
Dy
)
, 1
uy
Dy

λ 6= 0 u, J21, J22uxu
−1/λ
y

A = 0 r = 3 uxu
−1/λ
y

B = 0 r = 4 J23
J2
22

r = 5 J34−3J22J23
J3
22

r = 6
J45−6J33J23−4J22J34+12J2

22J23+3J21J2
23

J4
22

r = k one differential invariant of order k − 2

g8 r = 3, 4, ... eu
(
Dx−ux

uy
Dy
)
, 1
uy
Dy

A = 1 uye
λu

B = 0 r = 3 uxe
u

r = 4 J23(uxe
u)2

r = 5 (J34 − 3J22J23) (uxe
u)3

r = 6
(
J45 − 6J33J23 − 4J22J34 + 12J2

22J23 +
3J21J

2
23

)
(uxe

u)4

r = k one differential invariant of order k − 2
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In each table, the top box on the right-hand side contains invariant deriva-
tions and differential invariants that hold for every r. In addition we must
specify one, or sometimes two, additional differential invariants that depend
on r. Consider for example g

(0)
8 with λ = A = B = 0. When r = 5, all

differential invariants are generated by the two differential invariants and
invariant derivations in the box labeled “r = 3, 4, ...”, in addition to the
differential invariant J34−3J22J23

J2
22

.

g8 r = 4, 5, ... 1

u
1/k
y

(
Dx−uxy

uyy
Dy
)
, 1
uy
Dy

A = 1 k = 1, ..., r−3 J21

k = 1 uyy
u2y

(log(uy) + u) +B uxy
u2y

k = 2 B
uyyyu2xy
u2yu

2
yy
−2B uxyyuxy

u2yuyy
+B uxxy

u2y
+ uyy

u2y
(2u+log(uy))

bk = B k = 1, r = 4 ux
uy
B + u+ log(uy)

B 6= 0

λ = k

r = 5 uyy
u2y

(
log(uy) + u

)2
+2B uxy

uxuy

(
log(uy) + u

)
ux
uy

+

B2 uxx
u2x

u2x
u2y

+ (log(u2) + u) +B ux
uy

r = 6 uyyy
u3y

(log(uy) + u)3 + 3B uxyy
u3y

(log(uy) + u)2 +

3B2 uxxy
u3y

(log(uy) + u) +B3 uxxx
u3y

+

4uyy
u2y

(log(uy) + u)2 + 5B uxy
u2y

(log(uy) + u) +

B2 uxx
u2y

+ (log(uy) + u) +

ux
uy

(
3B uyy

u2y
(log(uy) + u) + 3B2 uxy

u2y
+B

)
k = 2, r = 5 uxu

−1/2
y J22, B u2x

uy
J23 + 2u+ log(uy)

r = 6 uyy
u2y

(log(uy) + 2u) − B
uyyuxx−u2xy

u3y
,

ux

u
3/2
y J3

21

(
BJ34J

3
21u

2
x − 3BJ33J

2
22J21u

2
x −

3J32J21(BJ21J23u
2
x − 2BJ2

22 + 2J21uuy +
J21 log(uy)uy) + J31J22(3BJ21J23u

2
x + 6J21uuy +

3J21uy log(uy)− 4BJ2
22u

2
x)− 2J2

21J22uy
)

k > 2,
r = k + 3

ukx
uy
Jk22, one differential invariant of order k
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For the cases when B 6= 0, it’s more complicated because we have an
extra parameter k. In addition to the one differential invariant that holds
for every r and k, we usually need two more. In the tables we have added
another box that contains one differential invariant which holds for every r
when k = 1 and when k = 2. Then, for these two cases, we need only one
more differential invariant that depends on r. If we follow the pattern, it
looks like when k = s we have to specify one differential invariant of order
s+ 1 in addition to one differential invariant that depends on r. We’ve also
added a box at the bottom, in order to list all differential invariants of order
two.

g8 r = 4, 5, ... 1

u
1/k
y

(
Dx−uxy

uyy
Dy
)
, 1
uy
Dy

A = 0 k = 1, ..., r−3 J21

k = 1 uuyy+uxy
u2y

k = 2
uyyyu2xy
u2yyu

2
y
− 2uxyyuxy

uyyu2y
+ uxxy

u2y
+ 2uuyy

u2y

bk = B k = 1, r = 4 ux
uy

+ u

B = 1 r = 5
u2uyy+2uuxy+uxx+uu2y+uxuy

u2y

λ = k r = 6 u3uyyy+u2(3uxyy+4uyuyy)

u3y
+

u(3uxxy+3uxuyy+5uyuxy+u3y)+uxxx+3uxuxy+uyuxx+uxu2y
u3y

k = 2, r = 5 u2x
uy
J2
22,

u2x
uy
J23 + 2u

r = 6
uyy(uxx+2uuy)−u2xy

u3y
, 1

u6yyu
3
y

(
uyyy(3uxyuxxuyy −

4u3xy + 6uuyuxyuyy) + uxyy(6u
2
xyuyy − 3uxxu

2
yy −

6uuyu
2
yy)− 3uxxyuxyu

2
yy + uxxxu

3
yy + 2uxuyu

3
yy −

2u2yu
2
yyuxy

)2
k = 3, r = 6 u3x

uy
J3
22,

u3x
uy

(J34 − 3J23J22)− 6u

k = 4, r = 7 u4x
uy
J4
22,

u4x
uy

(
J45 − 6J33J23 − 4J22J34 + 12J2

22J23 +

3J21J
2
23

)
+ 24u

k > 4,
r = k + 3

ukx
uy
Jk22, one differential invariant of order k
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The structure of the differential invariants for g
(0)
9 , g

(0)
10 , g

(0)
13 and g

(0)
14 are

very simple. One property they have in common (except for g(0)10 ) is that the
differential invariants and invariant derivations in the dop box depens on the
dimension r. Note also the similarities of the differential invariants for the
different Lie algebras. This is not surprising since all of them contain the
vector fields xi∂y when r is sufficiently large.

g9 r = 3, 4, ... 1

u
1
r−2
y

(
Dx−ux

uy
Dy
)
, 1
uy
Dy

C = 0 u, J21, J22uxu
−1
r−2
y

r = 3 ux
uy
− log(uy)

r = 4 J23
u2x
uy
− log(uy)

r = 5 (J34 − 3J22J23)
u3x
uy

+ 2 log(uy)

r = 6
(J45−6J33J23−4J22J34+12J2

22J23+3J21J2
23)u

4
x

uy
− 6 log(uy)

r = k one differential invariant of order k − 2

g9 r = 3, 4, ... eu
(
Dx−ux

uy
Dy
)
, 1
uy
Dy

C = 1 uye
(r−2)u

r = 3 (ux + uyu)eu

r = 4 (J23u
2
x + 2uyu)e2u

r = 5
(
(J34 − 3J22J23)u

3
x + 6uyu

)
e3u

r = 6
(
(J45−6J33J23−4J22J34 +12J2

22J23 +3J21J
2
23)u

4
x+

24uyu
)
e4u

r = k one differential invariant of order k − 2
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g10 r = 4, 5, ...
u2y

uxuyy−uyuxy

(
Dx−uxy

uyy
Dy
)
, 1
uy
Dy

A = 0 u, J33−J21J23
J2
22

B = 0 r = 4 J22,
J23
J2
22

r = 5 J23
J2
22

r = 6 J34−3J22J23
J3
22

r = 7
J45−6J33J23−4J22J34+12J2

22J23+3J21J2
23

J4
22

r = k one differential invariant of order k − 3

g10 r = 4, 5, ...
u2y

uxuyy−uyuxy

(
Dx−uxy

uyy
Dy
)
, 1
uy
Dy

A = 0 uye
u, J33−J21J23

J2
22

B = 1 r = 4 J22,
J23
J2
22

r = 5 J23
J2
22

r = 6 J34−3J22J23
J3
22

r = 7
J45−6J33J23−4J22J34+12J2

22J23+3J21J2
23

J4
22

r = k one differential invariant of order k − 3

g10 r = 4, 5, ... uBy e
u
(
Dx−ux

uy
Dy
)
, 1
uy
Dy

A = 1 J21, J22uxu
B
y e

u

B ∈ C r = 4 uxu
B
y e

u

r = 5 J23(uxu
B
y e

u)2

r = 6 (J34 − 3J22J23) (uxu
B
y e

u)3

r = 7 (J45 − 6J33J23 − 4J22J34 + 12J2
22J23 +

3J21J
2
23)(uxu

B
y e

u)4

r = k one differential invariant of order k − 3
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g13 r = 5, 6, ... 1

u
2
r−4
y

(
Dx−ux

uy
Dy
)
, 1
uy
Dy

C = 0 u, J21,
(
J33 − r−3

r−4J
2
22 − J21J23

)(
ux

u
2
r−4
y

)2

r = 5 J23
u2x
u4y

r = 6 (J34 − 3J22J23)
u3x
u3y

r = 7
(
J45 − 6J33J23 − 4J22J34 + 12J2

22J23 + 3J21J
2
23

) u4x

u
8/3
y

r = k one differential invariant of order k − 3

g13 r = 5, 6, ... eu
(
Dx−2uxy+(r−4)uxuy

2uyy+(r−4)u2y
Dy
)
, 1
uy
Dy

C = 1 u2ye
(r−4)u, u2x

(r−4+2J21)2u
4
r−4
y

(
(−r2+8r−16)J33+(−4r+

16)J21J33 + (4r− 16)J32J22 + 8J32J21J22 − 4J31J
2
22 +

(r2 − 7r + 12)J2
22 + (18 − 4r)J21J

2
22 + (r2 − 8r +

16)J21J23 + (4r − 16)J2
21J23 − 4J2

21J
2
22 + 4J3

21J23 −
4J33J

2
21

)
r = 5 u2x

u4y

(
J23 − 2

J2
22

1+2J21

)
r = 6 u3x

u3y

(
J34 − 3 (J33+J23)J22

1+J21
+ 3

(J32+J22)J2
22

(1+J22)2
+ 2

J3
22

(1+J21)3

)
r = k one differential invariant of order k − 3

41



g14 r = 6, 7, ... 1
ux(J32−2J22J21)

(
Dx−ux

uy
Dy
)
, 1
uy
Dy

A = 0 u, J21,
J33− r−4

r−5
J2
22−J21J23

(J32−2J22J21)2

B = 0 r = 6 J32−2J21J22√
J23

, J34−6J23J22
J
3/2
23

r = k one differential invariant of order k − 4

g14 r = 6, 7, ... 1+J21
ux(2J22J21+J22J31−J32(1+J21))

(
Dx +ux

uy

(
J22

1+J21
− 1
)
Dy
)
,

1
uy
Dy

A = 0 uye
u,

J33+J2
22−J21J23+

(J31−2)J222
(1+J21)

2 −
(2J32+

1
r−5J22)J22
1+J21

(J31J22−J32−J21J32+2J22J21)2

B = 1 r = 6 2J22J21+J22J31−J32(1+J21)
(1+J21)

√
J23(1+J21)−J2

22

, 1
(J23+J21J23−J2

22)
3/2

(
J34 −

3J33

(
J22

1+J21

)
+ 3J32

(
J22

1+J21

)2
− J31

(
J22

1+J21

)3
−

6J22
(J23+J21J23−J2

22−(J21+1/3)J2
22

(1+J21)3
+ J21J23

(1+J21)2

))
r = k one differential invariant of order k − 4

g14 r = 6, 7, ... uBy e
u

(
Dx−ux

uy

(
1− (2+(r−5)B)J22

r−5+(2+(r−5)B)J21

)
Dy
)
, 1
uy
Dy

A = 1

B ∈ C

J21,

(
J33 − J21J23 + J2

22 −
2(2+B(r−5))J32J22+J2

22

(2+B(r−5))J21+r−5 +

(
(2+B(r−5))

2
J31−2(r−5)2

)
J2
22

((2+B(r−5))J21+r−5)
2

)(
uxu

B
y e

u
)2

r = 6
(
J23 − (2+B)J2

22

1+(2+B)J21

)(
uxu

B
y e

u
)2

r = 7

(
J34 − 3 ((B+1)J33+J23)J22

(B+1)J21+1
+

(3(B+1)2J32+5(B+1)J22)J2
22

((B+1)J21+1)
2 −

((B+1)3J31+2(B+1)2J21)J3
22

((B+1)J21+1)
3

)(
uxu

B
y e

u
)3

r = k one differential invariant of order k − 4
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4.3.4 g4

g4 ∀s,mi Dx−ux
uy
Dy,Dy

Ci,j = 0 u

s = 1,m1 = 1 α1yuy + ux

s = 1,m1 = 2 J23u
2
x − α2

1yuy − 2α1ux

s = 2,m1 = m2 = 1 J23u
2
x − α1α2yuy − (α1 + α2)ux

r =
∑s

i=1mi + 1 one differential invariant of order
r − 1

The most difficult case to handle is the family g
(0)
4 because these algebras may

contain an arbitrarily high number of constants. Independent of the value of
the constants, the following differential invariants and invariant derivations
hold for any s and mi.

g4 ∀s,mi Dx−uxy
uyy
Dy,Dy

uy

In the following cases which we consider, all differential invariants can be
generated from differential invariants of order two. We consider cases with
one, two and three nonzero constants, respectively.

Only one nonzero constant

In the upper right box we have differential invariants that hold in many
different cases, while the lower box contains invariants holding only for one
particular combination of values of mi.
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C1,1 6= 0 s = 1, ∀m1 uuyy + C1,1(α1yuyy + uxy)

C1,k 6= 0 m1 = 1 + k, ∀s,mi
α1u−ux
uy

uyy + uxy

C2,0 6= 0 m2 = 1, ∀s,mi
α2u−ux
uy

uyy + uxy

C1,1 6= 0 s = 1,m1 = 2 ux + α1(yuy − u) + uuy
C1,1

s = 2,m1 = 2,m2 = 1 L21
22

s = 1,m1 = 3 L3
22

s = 2,m1 = 3,m2 = 1 L3
22

C1,2 6= 0 s = 1,m1 = 3 L32
22

s = 1,m1 = 4 L4
2

C2,0 6= 0 s = 2,m1 = 1,m2 = 1 (ux + α1yuy − α2u)C2,0 +
(α2 − α1)uuy

s = 3,m1 = 1,m2 = 1,m3 = 1 L111
22

s = 2,m1 = 2,m2 = 1 L211
22

s = 2,m1 = 2,m2 = 2 L220
2
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Two nonzero constants

C1,1, C1,2 6= 0 s = 1,m1 = 3 L33
21, L

33
22

s = 1,m1 = 4 L33
22

s = 2,m1 = 3,m2 = 1 L31
2

C1,1, C1,3 6= 0 s = 1,m1 = 4 L42
2

C1,2, C1,3 6= 0 s = 1,m1 = 4 L43
2

C1,1, C2,0 6= 0 s = 2,m1 = 2,m2 = 1 L212
21 , L

212
22

s = 2,m1 = 2,m2 = 2 L212
22

s = 3,m1 = 2,m2 = 1,m3 = 1 L212
2

s = 2,m1 = 3,m2 = 1 L310
2

C1,1, C2,1 6= 0 s = 2,m1 = 2,m2 = 2 L22
2

C1,2, C2,0 6= 0 s = 2,m1 = 3,m2 = 1 L312
2

C2,0, C2,1 6= 0 s = 2,m1 = 2,m2 = 2 L222
2

C2,0, C3,0 6= 0 s = 3,m1 = 1,m2 = 1,m3 = 1 L112
21 , L

112
22

s = 3,m1 = 2,m2 = 1,m3 = 1 L112
22

Three nonzero constants

C1,1, C1,2, C1,3 6= 0 m1 = 4 L44
2

C1,1, C1,2, C2,0 6= 0 m1 = 3,m2 = 1 L313
2

C1,1, C2,0, C2,1 6= 0 m1 = 2,m2 = 2 L223
2

C1,1, C2,0, C3,0 6= 0 m1 = 2,m2 = 1,m3 = 1 L221
2

C2,0, C3,0, C4,0 6= 0 m1 = m2 = m3 = m4 = 1 L1111
2
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4.3.5 g5

g5 ∀s,mi Dx−ux
uy
Dy, 1

uy
Dy

C = 0 u, J21, J22ux

s = 0 yuy, ux

s = 1,m1 = 1 α1yuy + ux

s = 1,m1 = 2 J23u
2
x − α2

1yuy − 2α1ux

s = 2,m1 = m2 = 1 J23u
2
x − α1α2yuy − (α1 + α2)ux

r =
∑s

i=1mi + 2 one differential invariant of order r − 2

g5 ∀s,mi Dx−ux
uy
Dy, 1

uy
Dy

C = 1 uye
u

s = 0 eu/y

s = 1,m1 = 1 α1yuy + ux

s = 1,m1 = 2 J23u
2
x − α2

1yuy − 2α1ux

s = 2,m1 = m2 = 1 J23u
2
x − α1α2yuy − (α1 + α2)ux

r =
∑s

i=1mi + 2 one differential invariant of order r − 2

4.3.6 g21, g22

g21 r = 2, 3, ... Dx−ux
uy
Dy,Dy

ai = 0 x, u

r = 2 J23u
2
x −

φ′′2 (x)

φ′2(x)
ux

r = k One differential invariant of strict order
k

For the nontrivial lift of g21 we again have to find two differential in-
variants in addition to the two that hold for every r. We can reorder the
generators of the algebra so that only the first ones have nonzero function ai.
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g21 r = 2, 3, ... Dx−uxy
uyy
Dy,Dy

x, uy

ai = 0, i > 2 uxuyJ22 − uuyJ21 a
′
2(x)

a2(x)

ai = 0, i > 3 M3

a2 6= 0, r = 2 u
a2(x)

(a′2(x)− φ′2(x)uy)− ux
r = 3

−a′2(x)φ′′3 (x)u+φ′2(x)φ′′3 (x)uuy+a2(x)φ′′3 (x)ux
a2(x)φ′3(x)

+
−φ′3(x)φ′′2 (x)uuy+φ′3(x)a′′2 (x)u

a2(x)φ′3(x)
+

−a′2(x)2J21u2+2a′2(x)a2(x)uuxJ22−a2(x)2u2xJ23
a2(x)2

r = k one differential invariant of strict order
k − 1

a3 6= 0, r = 3 M21,M22

r = 4 M21

r = k one differential invariants of strict order
k − 2

a4 6= 0, r = 4 M23, one differential invariant of strict
order 3

g22 r = 3, 4, ... Dx−ux
uy
Dy, 1

uy
Dy

b = 0 x, u, J21, J22ux

r = 3 J23u
2
x −

φ′′3 (x)

φ′3(x)
ux

r = k one differential invariant of strict
order k − 1

g22 r = 3, 4, ... Dx +
(
b′(x)u
b(x)uy

− ux
uy

)
Dy, 1

uy
Dy

b 6= 0 x, uye
u/b(x)

r = 3
−b(x)φ′′3 (x)ux+b′(x)φ′′3 (x)u−b′′(x)φ′3(x)u

b(x)φ′3(x)
+

b′(x)2u2J21−2b′(x)b(x)uuxJ22+b(x)2u2xJ23
b(x)2

r = k one differential invariant of strict
order k − 1
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Chapter 5

General remarks and applications

In this chapter we discuss the notion of algebraic actions of Lie algebras
of vector fields by using examples from our computations. Then we state
some results based on the fact that all our lifts have differential invariants of
order two. We end by describing how we can use differential invariants for
constructing invariant differential equations.

5.1 Algebraic actions

In section 2.4 we discussed how Frobenius’ theorem guarantees the existence
of differential invariants on some micro-local neighborhood of a generic point
of a Lie algebra of vector fields. Many of the differential invariants we found
in section 4.3 are given by rational functions. Some differential invariants
contain logarithms or exponential functions, and some contain expressions
like ux/uλy where λ is a complex number.

In this section we will look at a few examples where Rosenlicht’s theorem
(theorem 4 on page 13) guarantees that there exists a complete set of differ-
ential invariants which are rational in derivative coordinates (ux, uy, uxx, ...).
We will consider g = g

(0)
8 with r = 4 in detail. It has a basis consisting of ∂x,

∂y, x∂x + y∂y + A∂u and x∂y +B∂u.
Since the action of g is transitive on C3, all orbits of g(k) project onto C3.

Hence, to study the space of orbits on the level of k-jets we can restrict to
a fiber π−1k,0(0) and the action of the isotropy algebra of 0: g0 = 〈B(x∂x +
y∂y)− A(x∂y)〉. Consider the group of 1-jets of local diffeomorphisms of C3

at the point 0 ∈ C3, denoted by J1
0 (C3,C3), and let Xi, Yi, Ui be coordinates,

for i = 1, 2, 3.
Consider the left action of g0 on J1

0 (C3,C3). It is easily checked that the
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functions

X2

X1

,
X3

X1

,
Y2
X1

−Y1X2

X2
1

,
Y3
X1

− Y1X3

X2
1

,

U1, U2, U3, XA
1 e

B
Y1
X1

are invariants of g(1)0 . The orbit of g(1)0 going through id(1) is given by the
equations

X2

X1

=
X3

X1

=
Y3
X1

− Y1X1

X2
1

= U1 = U2 = 0,

Y2
X1

− Y1X2

X2
1

= U3 = XA
1 e

B
Y1
X1 = 1.

We identify this orbit with the group corresponding to g
(1)
0 . We want to

determine whether this orbit is algebraic, i.e. given by rational equations.
The only equation that may potentially prevent this is

XA
1 e

B
Y1
X1 = 1. (5.1)

Now we will study this orbit for different values of A and B.

Case 1 Let B = 0 and A 6= 0. Then (5.1) reduces to XA
1 = 1, which we

rewrite to X1 = 1. Thus the orbit is defined by rational equations, which
means that g(1)0 acts algebraically. This means that there exists differential
invariants which are rational in derivative coordinates. This is in corre-
spondence with the differential invariants we found. For A = 1 they were
generated by

uye
u,

(
uyy
u2y
− 2

uxy
uxuy

+
uxx
u2x

)
(uxe

u)2, eu

(
Dx−

ux
uy
Dy

)
,

1

uy
Dy .

Case 2 Now, let both A and B be different from 0. If we fix all coordinates
except for Y1, the equationXA

1 e
B
Y1
X1 = 1 has infinitely many zeroes, and hence

the orbit cannot be expressed by rational equations alone. Hence the action
of g(1)0 is not algebraic, and we may expect to get differential invariants that
are not rational in derivative coordinates. When A = 1, the differential
invariants are generated by

B
ux
uy

+ u+ log(uy),
uyy
u2y
,

1

uy

(
Dx−

uxy
uyy
Dy

)
,

1

uy
Dy .
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Case 3 Finally, let A = 0 and B 6= 0. Now equation (5.1) reduces to
e
B
Y1
X1 = 1, which is equivalent to Y1

X1
= 0. Hence the action is algebraic. If

B = 1, the differential invariants are generated by

ux
uy

+ u,
uyy
u2y
,

1

uy

(
Dx−

uxy
uyy
Dy

)
,

1

uy
Dy .

We summarize these results in a theorem.

Theorem 6. Consider the Lie algebra g = 〈∂x, ∂y, x∂x + y∂y + A∂u, x∂y +
B∂u〉. When A = 0 and B 6= 0, or when A 6= 0 and B = 0, then g(k) acts
algebraically on derivative coordinates. When AB 6= 0, then g(k) does not act
algebraically in derivative coordinates.

In fact, when A = 0, the action of g(k) is not only algebraic in derivative
coordinates, but also in base coordinates (x, y, u). However, a change of
coordinates does not in general preserve such algebraicity in base coordinates.
Algebraicity in derivative coordinates, on the other hand, is preserved. To
illustrate this, we look at the first prolongation of a point transformation:
(x, y, u) 7→ (a(x, y, u), b(x, y, u), c(x, y, u)). The derivative coordinates ux, uy
transforms according to the following formula:ux

uy

 7→
D(1)

x (a) D(1)
x (b)

D(1)
y (a) D(1)

y (b)


−1D(1)

x (c)

D(1)
y (c)


Recall that D(1)

x = ∂x+ux∂u and D(1)
y = ∂y+uy∂u. We see that expression on

the right-hand side is rational in ux and uy. In [KL13] the notion of algebraic
actions is used to formulate a global version of the Lie-Tresse theorem.

5.2 Projectable Lie algebras of vector fields

Consider the trivial bundle π : C2 × C → C2. Recall that a vector field X
on C2 × C is projectable if there exists a vector field Y on C2 such that the
following diagram commutes.

C2 × C X //

π

��

T (C2 × C)

π∗
��

C2 Y // T (C2)
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If x, y, u are coordinates on the bundle, then a projectable vector field is
of the form

a(x, y)∂x + b(x, y)∂y + c(x, y, u)∂u.

Now, consider an r-dimensional Lie algebra g of vector fields on C2 × C.
We call g = 〈X1, ..., Xr〉 projectable if it consists only of projectable vector
fields, and regularly projectable if in addition dπ : g→ D(C2) is injective.

By lifting the algebras from the classifications of Lie, we have found a
local description of all regularly projectable Lie algebras of vector fields on
C2 × C that are constant on the fibers of π.

Theorem 7. Every regularly projectable finite-dimensional Lie algebra of
vector fields on the trivial bundle C2 × C → C2 that is constant on the fiber
has, on some open set, a differential invariant of order two.

Proof. Away from singular points, such a Lie algebra of vector fields is locally
equivalent to g(0)i for one of the Lie algebras in the classification. The theorem
follows from our list of differential invariants.

This is an interesting property, and for general Lie algebras of vector
fields on C2 × C, there is no upper bound on the order of the lowest-order
differential invariant.

Consider for example the Lie algebra

hs = 〈∂x, ∂y, y∂x, x∂y, x∂x − y∂y, xiyj∂u | i+ j = 0, 1, ..., s〉.

Notice that this is constant on fibers, and projects (nonregularly) to g3.

Theorem 8. The Lie algebra hs has no differential invariants of order s.

Proof. If f is a differential invariant of hs, then f = f(ux, uy, ...). As-
sume that f = f(uxk , uxk−1y, uxk−2y2 , ...). In other words, f is constant on
Jk−1(π) ⊂ Jk(π). The Lie algebra hk contains the vector fields

Xi = xiyk−i∂u, i = 0, 1, ..., k.

We know that X(∞)
i = Эϕ = Dσ(ϕ)∂uσ where ϕ = (du− uxdx− uydy)(X) =

xiyk−i. Hence

X
(∞)
i =

k−i∑
m=0

i∑
n=0

i!(k − i)!
(i− n)!(k − i−m)!

xi−nyk−i−m∂uxnym .

Since ∂uxnym (f) = 0 for n+m < k, we get

X
(∞)
i (f) = X

(k)
i (f) = i!(k − i)!∂u

xiyk−i
(f).
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For f to be a differential invariant of the hs, we must have X(k)
i (f) = 0 for

i = 0, 1, ..., k. This means that f does not depend on xk, xk−1y, ..., yk. By
induction, hk has no differential invariants of order k.

Hence the lowest-order differential invariant of a nonregularly projectable
Lie algebra g of vector fields which is constant on fibers can be of arbitrarily
high order k. But the dimension of ker dπ|g gives an upper bound on k.

From the list of differential invariants, we see that all the Lie algebras has
at least

(
k
2

)
differential invariants of order k for k ≥ 2. We get the following

corollary.

Corollary 1. Let g ∈ D(C2 × C) be a projectable finite-dimensional Lie
algebra of vector fields which is constant on the fibers of π : C2×C→ C2 and
let k ≥ 2. If dim(ker dπ|g) <

(
k
2

)
, then g has, on some open set, a differential

invariant of order k.

Proof. Locally, Im dπ|g = gi where gi ⊂ D(C2) is an algebra from the clas-
sification. Hence g = g

(0)
i ∪ ker dπ|g. If dim(ker dπ|g) <

(
k
2

)
, then ker dπ|g

cannot kill all the differential invariants of g(0)i of order k.

5.3 Differential equations and their symmetries
One important property of differential invariants is that they generate invari-
ant differential equations.

A scalar differential equation of two independent variables can be consid-
ered as a subset E ⊂ Jk(C2 × C) given by an equation:

E = {F (x, y, u, ux, uy, ..., uyk) = 0}.

We will always assume that E is regular, i.e. that the differential dF is
nonzero in a neighborhood of E . In this case, E ⊂ Jk(C2 × C) is a regular
submanifold of dimension dim Jk(C2 × C)− 1.

The Lie algebra g ⊂ D(C2 × C) is a symmetry algebra of E if

X(k)(F ) = λF for every X ⊂ g (5.2)

where λ ∈ Cω(Jk(C2×C)). If we set λ = 0, the above equation tells us that
F is a differential invariant of g. In this way, the differential invariants of g
gives us invariant differential equations.

However, we do not get all invariant differential equations. In order to get
all of them, we should also consider cases where λ 6= 0. Still, there is a sense
in which the differential invariants locally determine all invariant differential
equations.
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Theorem 9. Let θ ∈ Jk(C2 × C) be a generic point of g(k). There exists a
neighborhood U of θ such that every g-invariant differential equation of order
k in U is given by F (I1, ..., Ir), where Ii are differential invariants of g of
order k.

Proof. Let g be a Lie algebra of vector fields on C2×C. In a neighborhood of
a generic point θ ∈ Jk(C2×C), the prolonged Lie algebra g(k) determines an
integrable distribution P whose maximal integral manifolds are the orbits of
g(k). By Frobenius’ theorem there exists an open setW ⊂ Jk(C2×C) contain-
ing θ and local coordinates w1, ..., wm on W such that P = 〈∂w1 , ..., ∂ws〉. In
these coordinates maximal integral manifolds are given by equations ws+1 =
c1, ..., w

m = cm−s where ci ∈ C. Now, consider a g-invariant differential
equation E = {F (w1, ..., wm) = 0} ⊂ W . Since E is g-invariant, F does not
depend on w1, ..., wm, and hence E = {F (ws+1, ..., wm) = 0}. The coordi-
nates ws+1, ..., wm correspond to differential invariants of order k of the Lie
algebra g.

Because of this we can use the differential invariants to locally describe all
g-invariant differential equations of order k in the neighborhood of a generic
point of g(k).

Example 2. Consider the Lie algebra g
(0)
15 = 〈∂x, x∂x+∂y, x

2∂x+2x∂y+ey∂u〉
(C = 1). The generators span a three-dimensional vector space at every
point, and so does the generators of all prolongations of g(0)15 . Every differ-
ential invariant of this Lie algebra is generated by the differential invariants
uy − u, 2uuy + uxe

y − u2 and the invariant derivations ey Dx +2uDy,Dy. In
particular there are five functionally independent differential invariants of
order two:

I1 = uy − u, I2 = 2uuy + uxe
y − u2,

I3 = uyy − uy, I4 = uxye
y + 2uuyy − u2,

I5 = uxxe
y − 2u(−ey(2uxy + ux) + u(u− uy − 2uyy))

Let E ⊂ J2(C2 ×C) be an invariant differential equation. In some neighbor-
hood U of any point in J2(C2×C), we have E∩U = {F (I1, I2, I3, I4, I5) = 0}.
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Chapter 6

Appendix

Some of the expressions for the differential invariants are collected here.

I31 =
J2
34

J3
23

+ 12

(
J33 + J2

22

J23
− J21 −

J22J34
J2
23

)
I32 =

(−54J4
23J32+18(J21J34+6J22J33)J3

23−18J34(J33+4J2
22)J

2
23+18J22J23J2

34−J3
34)

2

J9
23

I33 =
(
(−72J2

21 + 108J31)J
6
23 + (−324J22J32 + 144J2

22J21 − 180J21J33)J
5
23

+ (54J34J32 + 180J21J22J34 + 504J33J
2
22 − 72J4

22 + 90J2
33)J

4
23

− 24J34(J21J34 + 12J22J33 + 12J3
22)J

3
23 + J2

34(168J2
22 + 24J33)J

2
23

− 24J22J23J
3
34 + J4

34

)
/J6

23

I41 =
J45 − 12(J22J34 + J2

23J21 − J2
22J23 − J33J23)

J2
23

K2 = J21 −
J2
22

J23

K34 =
J2
34

J3
23

K33 =
J33
J23
− J34J22

J2
23

K32 =
1

J23

(
J32 −

2J33J22 + J34J21
J23

+ 2
J34J

2
22

J2
32

)2

K31 = J31 − 3
J33J21 + J32J22

J23
+ 3

2J33J
2
22 + J34J21J22
J2
23

− 4
J34J

3
22

J3
23
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α1 =
(
− 12J31J

4
23 + 12J43J

3
23 − 12J2

33J
2
23 + 24J2

21J
4
23 − 3J2

34J33

+ 48J33J
2
23J

2
22 − 48J34J23J

3
22 − 12J44J

2
23J22 − 48J21J

3
23J

2
22

+ 6J2
34J

2
22 + 24J2

23J
4
22 − 12J34J32J

2
23 + 2J44J34J23 − 12J21J33J

3
23

+ 24J21J34J
2
23J22 + 18J34J33J23J22

)
/
(
ux(12J44J

3
23 − 36J32J

4
23

− 3J3
34 − 12J45J

2
23J22 − 30J34J33J

2
23 + 72J33J

3
23J22 + 12J21J34J

3
23

− 48J34J
2
23J

2
22 + 30J2

34J23J22 + 2J45J34J23)
)

α2 =
J4
23

ux

(
12J44J

3
23 − 36J32J

4
23 − 3J3

34 − 12J45J
2
23J22 − 30J34J33J

2
23

+ 72J33J
3
23J22 + 12J21J34J

3
23 − 48J34J

2
23J

2
22 + 30J2

34J23J22 + 2J45J34J23
)−1

α5 =
J2
23

ux(J34J2
22 + J32J2

23 − 2J33J23J22)

α6 =
2J2

21J
2
23 − J31J2

23 − 4J21J23J
2
22 + 2J32J23J22 + 2J4

22 − J33J2
22

ux(J34J2
22 + J32J2

23 − 2J33J23J22)

α7 =
(

2J21J23 − 2J2
22 + J21J33 − 2J32J22 + J31J23

)
e−2u

/(
u2yu

3
x(4J33J

3
22

+ 2J34J
2
22 − 2J2

33J22 + 2J34J32J22 − 2J21J34J
2
22 − 2J32J23J

2
22

− 4J33J23J22 + 2J32J
2
23 + 2J21J32J

2
23 + J33J32J23

− J31J34J23 + 2J2
21J34J23 − 4J21J33J23J22)

)
β7 = −

(
2J21J23 − 2J2

22 − J21J34 + J21J33 + 2J33J22 − 2J32J22

− J32J23 + J31J23

)
e−2u

/(
u3yu

2
x(4J33J

3
22 + 2J34J

2
22 − 2J2

33J22 + 2J34J32J22

− 2J21J34J
2
22 − 2J32J23J

2
22 − 4J33J23J22 + 2J32J

2
23 + 2J21J32J

2
23 + J33J32J23

− J31J34J23 + 2J2
21J34J23 − 4J21J33J23J22)

)
α8 =

(
2J23 − 2J2

22 + 2J21J23 + J33

)
e−2u

/(
u2yu

3
x(4J33J

3
22 + 2J34J

2
22 − 2J2

33J22

+ 2J34J32J22 − 2J21J34J
2
22 − 2J32J23J

2
22 − 4J33J23J22 + 2J32J

2
23 + 2J21J32J

2
23

+ J33J32J23 − J31J34J23 + 2J2
21J34J23 − 4J21J33J23J22)

)
β8 = −

(
2J23 + 2J21J23 − 2J2

22 − J34 + J33

)
e−2u

/(
u3yu

2
x(4J33J

3
22 + 2J34J

2
22

− 2J2
33J22 + 2J34J32J22 − 2J21J34J

2
22 − 2J32J23J

2
22 − 4J33J23J22 + 2J32J

2
23

+ 2J21J32J
2
23 + J33J32J23 − J31J34J23 + 2J2

21J34J23 − 4J21J33J23J22)
)
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L3
22 =

1

u2,2

(( (
−α1

2u + 2u1α1 + u2α2α1y − u1,1
)
u2,2

− u1,2
(
u2 (α1 − α2)− u1,2

) )
C1,1 + u2

(
(uα2 − u1)u2,2 + u2u1,2

) )
L21
22 =

1

u22

((
− u23α2α1y +

(
(uα2 − u1)α1 − α2u1 + u1,1

)
u2

2

+ 2u1,2 (−u1 + α1u)u2 + u2,2 (−u1 + α1u)2
)
C1,1 + u2

3u (α1 − α2)
)

L111
22 =

1

u22C2,0

( (
−C2,0α3α1y − u (−α3 + α2) (α1 − α2)

)
u2

3

+ C2,0

(
α2 (−α2 + α3 + α1)u + u1,1 − u1α1 − α3u1

)
u2

2

+ 2u1,2C2,0 (uα2 − u1)u2 + u2,2C2,0 (uα2 − u1)2
)

L211
22 =

1

u22

((
− u23yα1

2 +
((
−α2

2 + 2α2α1

)
u − 2u1α1 + u1,1

)
u2

2

+ 2u1,2 (uα2 − u1)u2 + u2,2 (uα2 − u1)2
)
C2,0 + u2

3u (α1 − α2)
2
)

L4
2 =

((
(−u + yu2)α1

2 + 2u1α1 − u1,1
)
u2,2 + u1,2

2
)
C1,2 − 2u2,2uu2

L33
21 =

1

2C1,1
2 + u2C1,2

( (
2u1,2 + 2α1u2,2y

)
C1,1

2 + 2u2,2uC1,1

+
(
(−u1 + α1u)u2,2 + u2u1,2

) )
C1,2

L33
22 =

1

u2,2

(((
(−u + yu2)α1

2 + 2u1α1 − u1,1
)
u2,2 + u1,2

2
)
C1,2

2

+
(((

(−2u − 2 yu2)α1 + 2u1
)
C1,1 − 2u2u

)
u2,2

− 4C1,1u2u1,2

)
C1,2 − 4

((
C1,1α1y + u

)
u2,2 + u1,2C1,1

)
C1,1

2
)

L31
2 =

1

u2,2

(
2
(
C1,1 − 1/2C1,2 (α1 − α2)

)
u1,2u2

2

+
( (

2α2α1yu2,2 − 2u1,2 (α1 − α2)
)
C1,1

2 + 2 (uα2 − u1)u2,2C1,1

− C1,2u2,2 (α1 − α2) (−u1 + α1u)
)
u2

− 2
((
α1

2u − 2u1α1 + u1,1
)
u2,2 − u1,22

)
C1,1

2
)
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L42
2 =

1

u2,2

( (
6α1u2,2y + 6u1,2

)
C1,1

3 + 6C1,1
2u2,2u

+
((

(−u + yu2)α1
2 + 2u1α1 − u1,1

)
u2,2 + u1,2

2
)
C1,3C1,1

+ u2
(
(−u1 + α1u)u2,2 + u2u1,2

)
C1,3

)
L43
2 =

1

u2,2

(( (
−3α1

2u + 6u1α1 + 3α1
2yu2 − 3u1,1

)
C1,2

2 − 6u2uC1,2

− 2u2C1,3 (−u1 + α1u)
)
u2,2 − 2u2

2C1,3u1,2 + 3C1,2
2u1,2

2
)

L212
21 =

1

(α1 − α2)
(
u2 − C2,0

)
C1,1 + C2,0u2

(
(α2 − α1)

( (
α1u2,2y + u1,2

)
C2,0

+ u1u2,2 − α1uu2,2 − u2u1,2
)
C1,1 + C2,0

(
u2,2uα2 − u1u2,2 + u2u1,2

) )
L212
22 =

1

u2,2

((
− α1

3yC1,1u2,2 +
((

2 yu2,2α2 − u1,2
)
C1,1 + u2,2u2y

)
α1

2

+
(
−α2

(
yu2,2α2 − 2u1,2

)
C1,1 + 2u2u1,2

)
α1 − u1,2C1,1α2

2

+
(
−u1,1 − α2

2u + 2α2u1
)
u2,2 − 2α2u2u1,2 + u1,2

2
)
C2,0

2

+ (α1 − α2)
(
C1,1u2,2 (u + yu2)α1

2 +
(( (

(−u − yu2)α2 − u1
)
u2,2

+ 2u2u1,2
)
C1,1 − u2,2uu2

)
α1 + α2

(
u1u2,2 − 2u2u1,2

)
C1,1

− u2
(
(−2u1 + uα2)u2,2 + 2u2u1,2

) )
C2,0

− C1,1u2 (α1 − α2)
2 (α1uu2,2 − u1u2,2 + u2u1,2

) )
L212
2 =

1

(α1 − α2)u2,2

(
(α1 − α2)

(
u1,2u2

2 (−α3 + α2)

+
(
u2,2

(
uα2 + α3

(
−u + C2,0y

))
α1 + (α3 − α2)

(
u1,2C2,0 + u1u2,2

) )
u2

−
(
(uα2 − u1)u2,2α1 − u1u2,2α2 − u1,22 + u1,1u2,2

)
C2,0

)
C1,1

+ u2 (α1 − α3)
(
(uα2 − u1)u2,2 + u2u1,2

)
C2,0

)
L22
2 =

1

u2,2

((((
u2α2α1y + (u1 − uα2)α1 + α2u1 − u1,1

)
u2,2 + u1,2

2
)
C2,1

+ u2
(
(α1u − u1)u2,2 + u2u1,2

))
C1,1 + u2C2,1

(
(uα2 − u1)u2,2 + u2u1,2

))
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L312
2 =

1

(α1 − α2)u2,2

(
(α1 − α2)

(
u2,2u2

(
−u + C2,0y

)
α1

2

+
((

(u1 − uα2)C2,0 + u2 (uα2 + u1)
)
u2,2 − u2u1,2

(
u2 − C2,0

))
α1

+
((
−u1,1 + α2u1

)
C2,0 − u1u2α2

)
u2,2 + u1,2

( (
−α2u2 + u1,2

)
C2,0

+ α2u2
2
))
C1,2 + 2u2

(
(uα2 − u1)u2,2 + u2u1,2

)
C2,0

)
L222
2 =

1

u2,2

(
− 2u1,2

(
C2,0 + 1/2C2,1 (α1 − α2)

)
(α1 − α2)u2

2

+
((
C2,0

2α1
2y − (α1 − α2) (α1u − 2u1 + uα2)C2,0

− C2,1 (α1 − α2)
2 (uα2 − u1)

)
u2,2 + 2C2,0

2u1,2 (α1 − α2)
)
u2

− C2,0
2
((
α2

2u + u1,1 − 2α2u1
)
u2,2 − u1,22

))
L112
21 =

1(
(−α2 + α3)C3,0 + u2 (α1 − α3)

)
C2,0 − C3,0u2 (α1 − α2)

(
(
− (−α3 + α2)

(
α1u2,2y + u1,2

)
C3,0 + (α1 − α3)

(
(uα2 − u1)u2,2

+ u2u1,2
))
C2,0 −

(
(−u1 + α3u)u2,2 + u2u1,2

)
(α1 − α2)C3,0

)
L112
22 =

1

(−α3 + α2)u2,2

((
(−α3 + α2)

((
yα1

2u2,2 + 2u1,2(−1/2α2 + α1

− 1/2α3)
)
u2 +

(
(−α3u + u1)α2 − u1,1 + α3u1

)
u2,2 + u1,2

2
)
C3,0

− u2
(
(uα2 − u1)u2,2 + u2u1,2

)
(α1 − α3)

2
)
C2,0 + u2

(
(−u1 + α3u)u2,2

+ u2u1,2
)

(α1 − α2)
2C3,0

)
L44
2 =

1(
2C1,3C1,1 − 3C1,2

2
)
u2,2

((
12α1yC1,1

3 + 12uC1,1
2

+
((

(6u + 6 yu2)α1 − 6u1
)
C1,2 + 2C1,3((−u + yu2)α1

2 + 2u1α1

− u1,1)
)
C1,1 +

(
(3u − 3 yu2)α1

2 − 6u1α1 + 3u1,1
)
C1,2

2 + 6u2uC1,2

+ 2u2C1,3 (−u1 + α1u)
)
u2,2 + 2u1,2

(
6C1,1

3 +
(
C1,3u1,2 + 6u2C1,2

)
C1,1

− 3/2u1,2C1,2
2 + u2

2C1,3

))
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L313
2 =

1(
2C2,0C1,1 − C1,2C2,0α2 + C1,2C2,0α1 + 2C1,1

2α1 − 2C1,1
2α2

)
u2,2

(
u2,2

(
2C1,1

2 + u2C1,2

) (
−u + C2,0y

)
α1

3 +
((

(2 yu2 + 2u − 4C2,0y)C1,1
2

+ C1,2

(
(u + yu2)C2,0 − 2u2u

) )
u2,2α2 + u1

(
4C1,1

2

+ C1,2(u2 + C2,0)
)
u2,2 − u1,2

(
2C1,1

2 + u2C1,2

) (
u2 − C2,0

) )
α1

2

+
(
− 2

(
1/2C1,2u + yC1,1

2
)
u2,2

(
u2 − C2,0

)
α2

2 +
((
− 4C1,1

2u1

+
(
(−4u + 2 yu2)C2,0 + 2u2u

)
C1,1 − 2u2C1,2u1

)
u2,2 + 2u1,2(2C1,1

2

+ u2C1,2)
(
u2 − C2,0

) )
α2 + u2,2

(
− 2u1,1C1,1

2 − 2u1
(
u2 − 2C2,0

)
C1,1

− u1,1C1,2C2,0

)
+ 2u1,2

(
u1,2C

2
1,1 + u2

(
u2 − C2,0

)
C1,1 + u1,2C1,2C2,0

2

))
α1

− 2
(
u2 − C2,0

) ((
−C1,2u1/2 + uC1,1

)
u2,2 + u1,2

2

(
2C1,1

2 + u2C1,2

))
α2

2

+
((

2u1,1C1,1
2 + 2C1,1u2u1 + C2,0

(
u1,1C1,2 + 2u2u

))
u2,2

− 2
(
u1,2C1,1

2 + u2
(
u2 − C2,0

)
C1,1 + 1/2u1,2C1,2C2,0

)
u1,2

)
α2

− 2C2,0

( (
u1u2 + u1,1C1,1

)
u2,2 − u1,2u22 − u1,22C1,1

))
L221
2 =

1

(α1 − α2)u2,2

(
(α1 − α2)

(
u1,2u2

2 (−α3 + α2) +
(
u2,2
(
uα2

+ α3

(
−u + C2,0y

) )
α1 − (−α3 + α2)

(
u1,2C2,0 + u1u2,2

) )
u2

−
(
(uα2 − u1)u2,2α1 − u1u2,2α2 − u1,22 + u1,1u2,2

)
C2,0

)
C1,1

+ u2 (α1 − α3)
(
(uα2 − u1)u2,2 + u2u1,2

)
C2,0

)
L310
2 =

1

u2,2
(
(α1 − α2)C1,1 + C2,0

)
C1,1

(
(α1 − α2)

(
u2,2

(
−u + yC2,0

)
α1

2

+

((
y
(
u2 − C2,0

)
α2 + 2u1

)
u2,2 − u1,2

(
u2 − C2,0

))
α1 − u2,2u1,1

+
((
u2 − C2,0

)
α2 + u1,2

)
u1,2

)
C1,1

2 +
((((

(−2u + yu2)C2,0

+ uu2
)
α2 − u1

(
−2C2,0 + u2

) )
u2,2 + u2u1,2

(
u2 − C2,0

) )
α1

+
(
−u
(
u2 − C2,0

)
α2

2 + u2α2u1 − u1,1C2,0

)
u2,2

−
(
u2
(
u2 − C2,0

)
α2 − u1,2C2,0

)
u1,2

)
C1,1 + C2,0

(
(uα2 − u1)u2,2 + u2u1,2

)
u2

)
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L220
2 =

1

u2,2

(((
α1

2yC2,0 − (α1 − α2) (α1u − 2u1 + uα2)
)
u2

− C2,0

(
−2α2u1 + u1,1 + uα2

2
) )
u2,2 − 2u1,2

(
(α1 − α2)u2

2 − C2,0 (α1 − α2)u2 − 1/2u1,2C2,0

) )
L32
22 =

1

u22

((
− u23yα1

2 +
(
α1

2u − 2u1α1 + u1,1
)
u2

2 + 2u1,2 (−u1 + α1u)u2

+ u2,2 (−u1 + α1u)2
)
C1,2 + 2u2

3u
)

L223
2 =

1(
−C1,1α2

2C2,1 + C2,0
2 − C1,1α1

2C2,1 + 2α2C2,1C1,1α1

)
u2,2

(
u2,2

(
− C2,1 (yu2 − u)α2 +

(
C2,0y − u

)
u2 − C2,1u1 − yC2,0

2 + uC2,0

)
C1,1α1

3

+
(

2C2,1C1,1u2,2(yu2 − u)α2
2 − 2u2,2

((
(C2,0y − u)u2 + uC2,0 − yC2,0

2

− C2,1u1/2
)
C1,1 + 1/2uC2,1u2

)
α2 +

( (
−C2,0u1 + u1u2 + C2,1u1,1

)
u2,2

− u1,2
(
C2,1u1,2 − 2C2,0u2 + C2,0

2 + u2
2
) )
C1,1 + u2

(
(C2,1u1 + yC2

2,0

− uC2,0)u2,2 − C2,1u1,2u2
))
α1

2 +
(
− C2,1C1,1u2,2 (−u + yu2)α2

3

+ u2,2

((
(−u + C2,0y)u2 + uC2,0 − yC2,0

2 + C2,1u1
)
C1,1 + 2uC2,1u2

)
α2

2

+
((

(2C2,0u1 − 2u1u2 − 2C2,1u1,1)u2,2 + 2u1,2(C2,1u1,2 − 2C2,0u2

+ C2,0
2 + u2

2)
)
C1,1 − 2u2C2,1

(
−u2u1,2 + u1u2,2

) )
α2 + 2C2,0u2

(
u1u2,2

− u1,2(u2 − C2,0)
))
α1 − u2,2C2,1

(
u2u + u1C1,1

)
α2

3 +
((

(−C2,0u1

+ u1u2 + C2,1u1,1)u2,2 − u1,2(C2,1u1,2 − 2C2,0u2 + C2,0
2 + u2

2)
)
C1,1

+
((
uC2,0 + C2,1u1

)
u2 − C2,0

2u
)
u2,2 − C2,1u2

2u1,2

)
α2

2

− 2C2,0

(
u2 − C2,0

) (
−u2u1,2 + u1u2,2

)
α2 − C2,0

2
(
u1,1u2,2 − u1,22

) )
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L1111
2 = −u2

((
(−α3 + α2)

(
u1,2 + α4yu2,2

)
C3,0 − (α2 − α4) (u1,2

+ u2,2yα3)C4,0 + (−α4 + α3)
(
u2,2uα2 − u2,2u1 + u2u1,2

) )
C2,0

+
(

(−α4 + α3)
(
u1,2 + α2u2,2y

)
C4,0 − (α2 − α4) (α3u2,2u − u2,2u1

+ u2u1,2)
)
C3,0 + C4,0 (−α3 + α2)

(
u2u1,2 − u2,2u1 + α4uu2,2

) )
α1

2+((
(−α3 + α2)

(
− u2,2y (−α4 + α3) (α2 − α4)C4,0 + (α3u2,2u − u2,2u1

+ u2u1,2)α2 +
(
u2u1,2 − u2,2u1

)
α3 − u1,22 + α4

2u2yu2,2 + u2,2u1,1
)
C3,0

−
( (
u2u1,2 − u2,2u1 + α4uu2,2

)
α2 + α3

2u2yu2,2 +
(
u2u1,2 − u2,2u1

)
α4

− u1,22 + u2,2u1,1

)
(α2 − α4)C4,0 + u2 (−α4 + α3) (α3 + α4)

(
u2,2uα2

− u2,2u1 + u2u1,2
))
C2,0 +

((
u2α2

2yu2,2 +
(
u2u1,2 − u2,2u1 + α4uu2,2

)
α3

+
(
u2u1,2 − u2,2u1

)
α4 − u1,22 + u2,2u1,1

)
(−α4 + α3)C4,0

− u2 (α2 − α4) (α2 + α4)
(
α3u2,2u − u2,2u1 + u2u1,2

) )
C3,0

+ u2C4,0 (−α3 + α2) (α2 + α3)
(
u2u1,2 − u2,2u1 + α4uu2,2

) )
α1

+
(
−
(
u1,2 (−α4 + α3) (α2 − α4)C4,0 + α4

(
(α3u2,2u − u2,2u1

+ u2u1,2)α2 +
(
u2u1,2 − u2,2u1

)
α3 − u2α4u1,2 + u2,2u1,1

− u1,22
))

(−α3 + α2)C3,0 −
(
− (α2 − α4)

(
(u2u1,2 − u2,2u1

+ α4uu2,2)α2 − u2α3u1,2 +
(
u2u1,2 − u2,2u1

)
α4 − u1,22 + u2,2u1,1

)
C4,0

+ u2α4 (−α4 + α3)
(
u2,2uα2 − u2,2u1 + u2u1,2

) )
α3

)
C2,0

+
((
−
(
− u2u1,2α2 + (u2u1,2 − u2,2u1 + α4uu2,2)α3 + (u2u1,2

− u2,2u1)α4 − u1,22 + u2,2u1,1
)

(−α4 + α3)C4,0

+ u2α4 (α2 − α4)
(
α3u2,2u − u2,2u1 + u2u1,2

) )
C3,0

− u2C4,0α3 (−α3 + α2)
(
u2u1,2 − u2,2u1 + α4uu2,2

) )
α2

62



M21 =
1(

d
dx
φ4 (x)

)(
−a3 (x) d

dx
a2 (x) + a2 (x) d

dx
a3 (x)

)
u2,2

(
− u2

((
u2,2u

d
dx
φ3 (x) + a3 (x)u1,2

)
d
dx
a2 (x) +

(
− u1,2a2 (x)

− u
(
d
dx
φ2 (x)

)
u2,2

)
d
dx
a3 (x)−

(
− a3 (x) d

dx
φ2 (x)

+ a2 (x) d
dx
φ3 (x)

) (
−u2u1,2 + u1u2,2

) )
d2

dx2
φ4 (x) +

(
d
dx
φ4 (x)

)(
− u2

(
u2,2u

d
dx
a3 (x)− a3 (x)

(
−u2u1,2 + u1u2,2

))
d2

dx2
φ2 (x)

+ u2

(
u2,2u

d
dx
a2 (x)− a2 (x)

(
−u2u1,2 + u1u2,2

))
d2

dx2
φ3 (x)

+
(
u2,2u

d
dx
a3 (x)− a3 (x)

(
−u2u1,2 + u1u2,2

))
d2

dx2
a2 (x)

+
(
−u2,2u d

dx
a2 (x) + a2 (x)

(
−u2u1,2 + u1u2,2

))
d2

dx2
a3 (x)

−
(
−a3 (x) d

dx
a2 (x) + a2 (x) d

dx
a3 (x)

) (
u1,1u2,2 − u1,22

) ))

M22 =
1

−a2 (x) d
dx
a3 (x) + a2 (x)

(
d
dx
φ3 (x)

)
u2 + a3 (x) d

dx
a2 (x)− a3 (x)

(
d
dx
φ2 (x)

)
u2

(
(
− u2,2u

d

dx
a3 (x) + a3 (x)

(
−u2u1,2 + u2,2u1

) ) d
dx
φ2 (x)

+

(
u2,2u

d

dx
a2 (x)− a2 (x)

(
−u2u1,2 + u2,2u1

)) d

dx
φ3 (x)

− u1,2
(
−a3 (x)

d

dx
a2 (x) + a2 (x)

d

dx
a3 (x)

))
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M23 =
(
u2,2(((

d
dx
a4(x))a3(x)− a4(x) d

dx
a3(x)) d

dx
φ2(x) + (( d

dx
a2(x))a4(x)

− ( d
dx
a4(x))a2(x)) d

dx
φ3(x) + ( d

dx
φ4(x))(−a3(x) d

dx
a2(x)

+ a2(x) d
dx
a3(x)))

)−1(
u2((−u( d

dx
a4(x))u2,2 + a4(x)(−u2u1,2

+ u1u2,2))
d
dx
φ3(x) + (u2,2u

d
dx
a3(x)− a3(x)(−u2u1,2 + u1u2,2))

d
dx
φ4(x)

− u1,2(( d
dx
a4(x))a3(x)− a4(x) d

dx
a3(x))) d2

dx2
φ2(x)− u2((−u( d

dx
a4(x))u2,2

+ a4(x)(−u2u1,2 + u1u2,2))
d
dx
φ2(x) + (u2,2u

d
dx
a2(x)− a2(x)(−u2u1,2

+ u1u2,2))
d
dx
φ4(x)− u1,2(( d

dx
a4(x))a2(x)− ( d

dx
a2(x))a4(x))) d2

dx2
φ3(x)

+ u2((−u2,2u d
dx
a3(x) + a3(x)(−u2u1,2 + u1u2,2))

d
dx
φ2(x) + (u2,2u

d
dx
a2(x)

− a2(x)(−u2u1,2 + u1u2,2))
d
dx
φ3(x)− u1,2(−a3(x) d

dx
a2(x)

+ a2(x) d
dx
a3(x))) d2

dx2
φ4(x) + ((u( d

dx
a4(x))u2,2 − a4(x)(−u2u1,2

+ u1u2,2))
d
dx
φ3(x) + (−u2,2u d

dx
a3(x) + a3(x)(−u2u1,2 + u1u2,2))

d
dx
φ4(x)

+ u1,2((
d
dx
a4(x))a3(x)− a4(x) d

dx
a3(x))) d2

dx2
a2(x) + ((−u( d

dx
a4(x))u2,2

+ a4(x)(−u2u1,2 + u1u2,2))
d
dx
φ2(x) + (u2,2u

d
dx
a2(x)− a2(x)(−u2u1,2

+ u1u2,2))
d
dx
φ4(x)− u1,2(( d

dx
a4(x))a2(x)− ( d

dx
a2(x))a4(x))) d2

dx2
a3(x)

+ ((u2,2u
d
dx
a3(x)− a3(x)(−u2u1,2 + u1u2,2))

d
dx
φ2(x) + (−u2,2u d

dx
a2(x)

+ a2(x)(−u2u1,2 + u1u2,2))
d
dx
φ3(x) + u1,2(−a3(x) d

dx
a2(x)

+ a2(x) d
dx
a3(x))) d2

dx2
a4(x) + ((( d

dx
a4(x))a3(x)− a4(x) d

dx
a3(x)) d

dx
φ2(x)

+ (( d
dx
a2(x))a4(x)− ( d

dx
a4(x))a2(x)) d

dx
φ3(x) + ( d

dx
φ4(x))(−a3(x) d

dx
a2(x)

+ a2(x) d
dx
a3(x)))(u1,1u2,2 − u1,22)

)
M3 =

1

u2u2,22
(
−a3 (x) d

dx
a2 (x) + a2 (x) d

dx
a3 (x)

)(u2,22(u2,2u d
dx
a3 (x)

− a3 (x)
(
−u2u1,2 + u1u2,2

) )
d2

dx2
a2 (x) +

(
− u2,23u d

dx
a2 (x)

+ a2 (x)u2,2
2
(
−u2u1,2 + u1u2,2

) )
d2

dx2
a3 (x) +

(
− u2,23u1,1

+
(
u1,2

2 + u2u1,1,2
)
u2,2

2 − 2u2u1,2u1,2,2u2,2 + u2u2,2,2u1,2
2
)(

− a3 (x) d
dx
a2 (x) + a2 (x) d

dx
a3 (x)

))
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