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Abstract

There exists a local classification of finite-dimensional Lie algebras of vector
fields on C2. We lift the Lie algebras from this classification to the bundle
C? x C and compute differential invariants of these lifts.
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Chapter 1

Introduction

Consider the problem of classifying all complex analytic scalar partial differ-
ential equations of two independent variables with finite-dimensional sym-
metry groups. The local action of a symmetry group can be described in
terms of its Lie algebra of infinitesimal generators. We say that the vec-
tor field X € D(C?(z,y,u)) is an (infinitesimal) symmetry for the equation
F(,y,u, g, Uy, ...y ) = 0 if

X®O(F) = \F

where A is a smooth function of z,y,...,u,x. Given a differential equation
F = 0, we can find its symmetries by solving for X. These symmetries
form a Lie algebra. We can also go the other way: Given a Lie algebra of
symmetries g C D(C3(x,y,u)), we can solve for F to find all differential
equations with the given Lie algebra as its symmetry algebra.

There exists a local classification of finite-dimensional Lie algebras of
vector fields on C2. By using this, one can get a local description of all
scalar ODEs with finite-dimensional Lie algebras of symmetries, up to point
transformations.

For C? there exists no complete classification of Lie algebras of vector
fields, and therefore we cannot classify scalar PDEs of two independent vari-
ables in the same way. In this thesis we take the Lie algebras of vector fields
on C? from the classification, and lift them on the bundle C? x C. This gives
us a subset of all Lie algebras of vector fields on C3.

A subproblem of finding all differential equations with a given Lie algebra
g of symmetries, is to find functions F' that satisfy

X®(F)y=0 for every X eg.

We call such functions differential invariants (of order k). For each of the
lifted vector fields in C? x C, we will compute differential invariants.

1



Structure of the thesis

We begin by describing the Jet space J*(7) for the bundle 7: C? x C — C? in
2.1. In section 2.2 we recall a classification of Lie algebras of vector fields on C
and C2. Then, in 2.3 we describe the procedure we use for lifting vector fields
on C? to C? x C, and discuss how the lifts correspond to cohomology groups.
In section 2.4 we define differential invariants and invariant derivations, and
state the Lie-Tresse theorem.

In chapter 3 we take the classification of Lie algebras of vector fields on C,
and lift each Lie algebra into a Lie algebra of vector fields on C x C. We also
find the differential invariants for the lifts. In this chapter the calculations
are described in much more detail than in the later part of the thesis, and
the chapter can therefore be considered as continuation of the introduction
in 2.3 and 2.4.

Chapter 4 contains the main results. Lists of the lifts and their differential
invariants are given in 4.1 and 4.3, respectively. In section 4.2 we look at the
dimension of a generic orbit of some of the lifts and their jet-prolongations,
and we use this to count how many independent differential invariants we
expect to find.

Finally, in chapter 5, we look back on our computations and discuss
possible applications of our results and some interesting properties of our
lifts of Lie algebras. In 5.1 we discuss algebraicity of Lie algebra actions
by looking at examples from our computations, and we see how this relates
to the form of the differential invariants. In 5.2 we introduce the notion of
projectable Lie algebra of vector fields, and discuss the surprising fact that
all our lifts has at least one differential invariant of order two. In 5.3 we
give an example of how our results can be usefull in the study of differential
equations.

The appendix contains a list of differential invariants and invariant deriva-
tions that were to long to fit into 4.3 in a reasonable way.



Chapter 2

Preliminaries

2.1 Jet spaces and prolongation of vector fields

We start by fixing some notations regarding Jet spaces. For a more general
and detailed description, see for example [KLO8|, [KV99| or [ALV91].

Jet spaces

Consider the trivial bundle 7: C?> x C — C2. Let 2!, 22 be coordinates on C?
and let u be a coordinate on C. We call 2!, 22 independent coordinates, and
u the dependent coordinate.! Let s: C? — C? x C be a section of the bundle.
We can describe this section by a function f: C? — C in the following way:
s(zt,2?) = (2!, 22, f(2', 2?)). We say that two sections sq, 5o are tangent up
to order k at a € C" if 8(‘9‘2({1 (a) = %(a) for 0 < |o| < k, where o is a
multi-index. Denote by [s]*¥ the equivalence class of all sections which are
tangent up to order k to s at a € C2. We call this the k-jet of s at a. Let
JF(C? x C) = J*¥(r) be the set of k-jets of sections on 7 at the point a € C?,
and J*(m) = Usec2J¥ (). This set is naturally equipped with the structure
of a smooth manifold.

This description of the k-jets of sections, gives a natural set of coordinates
2t u, uy on J*(7):

We will also use the notation uy = u.

"'We will for the most part be naming the coordinates x, y, u, but for general discussion
it’s convenient to use indices.



The map (a, f(a)) — [s]° gives us the identification J°(C? x C) = C? x C.
The projections my,;: J¥(w) — J'() defined by [s]* — [s]!, for k& > [ give a
tower structure:

C? x € = J(m) &5 () & - () T

We denote the inverse limit of this system of maps by J>° (7).
Let Fj be the algebra of analytic functions on J*(r). Through the pro-
jections my, 1, we get a filtering of the function algebras:

FoCFIC- - CFpC- C Fu

Prolongation of vector fields

Consider a diffeomorphism ¢: C? x C — C? x C. The kth prolongation of ¢ is
the diffeomorphism ¢®: J*(7) — J*(7) defined by ¢ ([s]¥) = [¢ o 8]ty 1f
X € D(C?xC) is a vector field, then we can define the kth prolongation X *)
to be the vector field on J*(7) which is generated by the kth prolongation of
the flow of X. We will be working with vector fields, so it’s useful to have a
coordinate description of prolongations of vector fields.

Given a vector field X € ©(C? x C), the prolonged field X*) can be
computed in terms of the generating function ¢ of X, defined by ¢ = wy(X)
where wy = du — u;dz’ (we use the Einstein summation convention).

The generating function gives us a nice formula for computing the pro-
longation of a vector field. If the vector field X has generating function ¢,
then its kth prolongation is given by

2

X(k) = Z IDU((p)aUU - Z auz<90) 'DEkJFI)

lo|<k i=1

where

k
DI =5, + Z UgiO,

lo|=0

is the total derivative with respect to ' restricted to J*(m). Let D, =
Zr;\:o D,()0,,. This is called the evolutionary derivation with generating

function ¢. The infinite prolongation X () € ®(J>(r)) of X is given by
X =9, =3 0.(¢) D
i=1

where 0, + Z|O5|:o Uyi0y, 1s the total derivative.

4



Remark 1. The differential forms w, = du, — uydz’ for |o| < k—1 de-
termine a distribution on J*(r) called the Cartan distribution. Using this
we can define a Lie field as a vector field on J*(r) that preserves the Cartan
distribution. If X € D(C?x C), then X*) is the unique Lie field that projects
to X through dmyo. The Lie-Bdacklund theorem tells us that all Lie fields are
prolongations of Lie (or, in other words, contact) fields on J'(w). In this
sense there are more Lie fields on J*(r) than those prolonged from vector

fields on C? x C.

2.2 Classification of Lie algebras of vector fields
in one and two dimensions

Let G be a Lie group acting on a manifold M, and let g be the Lie algebra
corresponding to G. The infinitesimal generators of the action of G on M
are given by a Lie algebra homomorphism p: g — ©(M). The image p(g) €
D(M) is a Lie algebra algebra of vector fields.

The Lie group G acts locally effectively on M if and only if p is injective.
If G does not act effectively, then the quotient group G/G, where G is the
global isotropy group, does act effectively with the action (¢+Gp) -z = g-x.
So instead of considering G, we can consider G/G, with Lie algebra g.

Hence every Lie algebra of vector fields on a manifold M can be described
by a injective Lie algebra homomorphism p: g — © (M) of an abstract Lie
algebra g. We will usually use g to denote the image p(g) € D(M).

Definition 1. We say that two Lie algebras of vector fields g € ©(M), ¢’ €
D (M') are locally equivalent if there exist open sets U C M and U’ C M/,
and a local biholomorphism f: U — U’ such that df (g|v) = ¢'|v-

In |Lie70] Sophus Lie gave local classifications (up to local equivalence)
of all nonsingular finite-dimensional Lie algebras of analytic vector fields in
one and two complex dimensions (page 6 and 71, respectively). Nonsingular
means that there are no fixed points.

Classification of Lie algebras of vector fields on C

Any nonsingular finite-dimensional Lie algebra of analytic vector fields on C
is locally equivalent to one of the following:

01 =(0),  02=(0n,28,), @3 = (Or, 10, 2°0,).



Classification of Lie algebras of vector fields on C?

Any nonsingular finite-dimensional Lie algebra of analytic vector fields on C?
is locally equivalent to one of the following:

Primitive and locally transitive
g1 = {0y, 0y, 20, 20y, YOy, Y0y, ¥°0y + Y0y, Ty, + y*0,)
g2 = (Oy, Oy, ¥0y, £0y, YO, YOy )
g3 = (Op, Oy, ©0y, YOy, 0y — yOy)

Nonprimitive, locally transitive (r = dim g;)

g1 = (O, €70y, 270, ..., x™ ™), xe***9,, ...,z e D,),

S
where m; e Nya, € C,e =1, ..., s, g m;+1=r>2
i=1
95 = (O, Y0y, €70, xe* 7Dy, ..., x™ MY, £, ...,z e D,),

where m; € Nya; € C, 1 = 1,...,5,Zmi—i—2:r2 2
i=1
Oz, Oy, Y0y, y*0y)
Dy, Oy, ¥0y, 120y + 10,,)
e, Oy 20y, oy 20, 20, + \yd,) for A € C\ {r —2},r >3
ey Oy, O, ...,x”_36y,xax + ((r —2)y + .CET_Q) Oy), >3
Oy, 0y, ©0y, .., 40y, 20y, y0,), 7 > 4

g6 = (

g7 = (

gs = (

g9 = (

g10 = {

911 = (O, xax,ay,yay, 20,)

g12 = (O, 20, + 8y>
(
(
(
(
=

Q

—4
013 = (Og, 0y, 20, ..., xr"lﬁy, 220, + (r — 4)zy0,, 0y + TTyay),r >4

g14 = (O, 0y, o, ©7°0,, 40y, 20y, %0, + (1 — B)aydy), 1 > 5
015 = (O, 70, + 0, 2°0, + 220,)
916 = (%0 + Y0y, 20, + Y0y, 0x + 0)

Dy 0y, 20y, Dy, YOy, Y*0,)



Nonprimitive and locally intransitive

gi1s = <8a:>
g19 =

©
=
Il
SQ.D
-
I\
8
~—
‘SQ)
<
E
3
<
=
=
D
=
@
&
Q
=
@
Q
=
=
<
=
o
=N
=
Q
=
o
=
n

This list is copied from [GOV93|.

2.3 Lifts

Given a vector bundle 7: £ — M, a projectable vector field on F is a vector
field X that projects to a vector field dn(X) on M. A projectable vector field
on the bundle C? x C — C? with coordinates .,y and u can be expressed on
the form a(z,y)0, +b(z,y)0, + c(x, y,u)0,. We denote the set of projectable
vector fields on C? x C by DP"I(C? x C)

Definition 2. A lift of g C ©(C?) on the bundle 7: C* x C — C* is a
Lie algebra homomoorphism p': g — DP"(C? x C) such that the following
diagram commutes:

@proj((cz % (C)

e

g——9(C?)

We do not consider the most general lift in this paper, but only lifts that
are constant on the fibers. Then the lift of a(z, y)0, + b(z,y)0, has the form
a(z,y)0, + b(x,y)0y + c(x,y)0,. We call this a “constant” lift.

Definition 3. A constant lift of g € D(C?) on 7: C? x C — C? is a lift that
is constant on the fibers.

Let g = (Y},...,Y;) be a Lie algebra of vector fields on C? with com-
mutation relations [Y;,Y;] = C’i’“ij. The generators are of the form Y; =
a;i(x,y)0y + bi(z,y)d,. We will consider lifts of V; to D(C? x C) of the form

YV = aiw, y)0u+bi(2,9)0,+ci(x, y)dy. Wemust have [V, V%) = iy,
with the same structure constants as for g, for the diagram above to com-
mute. The commutation relations for the lifted generators give some dif-
ferential equations containing the functions ¢;. By solving these differential

equations, we find all the possible lifts. Since C* x C = J°(C? x C), it seems

7



natural to denote the lift of this algebra by g(®, and the lift of X € g by
X O Our first objective is to apply this procedure to all the Lie algebras
from the classifications in 2.2.

2.3.1 Cohomology

If we allow for coordinate transformations of the form (z,y,u) — (z,y,u —
U(x,y)), and say that two lifts are equivalent if one can be transformed into
the other by such a transformation, then the different lifts are described in
terms of Lie algebra cohomology.

Let X,Y € g. Then the lifts are given by X© = X +¢x0, and Y =
Y + 1y d,, where ¢ is a C*(C?)-valued one-form on g. The commutator is
given by

(XOYO) = [X +4x0,,Y +4yd,] = [X, Y]+ (X (¢y) = Y (¥x))d..

We see that the one-form v defines a lift if and only if the equality X (¢y) —
Y (¢x) = 1x,y] holds. Now, consider the following complex.

C¥(C?) -4 g* @ C¥(C?) -5 A2g* ®@ C¥(C?)
where d is defined by
df(X)=X(f), feC“(C?
dY(X,Y) = X(Wy) =Y (Ux) —¥ixy), ¢ €g-®C(C?.

The one-form ) defines a lift if and only if dy) = 0.
Now, two lifts are equivalent if there exists a biholomorphism

¢: (l‘, Y, U) = ($7 Yy, u — U(x7 y))
on C? x C that brings one to the other. The expression
do: X +x0, — X + (vx — dU(X))0,

for the differential of ¢ shows us that two lifts v, ¢ are equivalent if and only

if vy —x = dU(X) for some U € C*(C?). This means that the different
lifts are encoded in terms of the cohomology group

H'(g,C*(C*) ={¢ € g ® C*(C*) | dy = 0}/{dU | U € C*(C*)}.
Hence we have the following theorem.

Theorem 1. There is a one-to-one corresponcence between the set of con-
stant lifts of the Lie algebra g C D(C?) (up to equivalence) and the cohomol-
ogy group H'(g, C*(C?)).



2.3.2 Coordinate change

To begin with, we will consider the lifts of Lie algebras up to coordinate
transformations of the form (z,y,u) — (X(z,y),Y (z,y),u — U(z,y)). Since
the Lie algebras of vector fields on C? are already in normal form, we can
let X = x and Y = y. After finding the lifts we will also apply a trans-
formation of the form u + Cwu. Note that transformations of the form
(z,y,u) = (X(x,y),Y(x,y),Cu — U(x,y)) preserve the set of vector fields
that are constant on fibers, and these are actually the only transformations
that do that.

The fact that we consider lifts up to suitable coordinate transformations
significantly simplifies the expressions we get for the lifts, and it also simplifies
the differential equations we have to solve in order to find the lifts.

Example 1. Consider abelian Lie algebra (X,Y) C D(C?), where X =
Op,y = 0,. The lifts of the generators take the form X = d,+a(z,y)d, and
YO =9, +b(x,y)0y. The holomorphic transformation u v+ u — [ a(x,y)ds
brings X©) to the form 0,. After this coordinate change, the expression for
YO will change, but it will still be of the same form, just with a differ-
ent function b. The lift is a Lie algebra homomorphism, so we must have
[(X© Y] =9,(b)0, = 0. Hence b= b(y). The holomorphic transformation
u s u— [b(y)dy maps YO = 9, + b(y)d, to d,. Hence all lifts of (X,Y)
are trivial, up to a triangular transformation.

This example is very useful since most of the Lie algebras we work with
contain (X,Y) as a subalgebra. The simple forms of X© Y (© simplify the
differential equations for the lift of the rest of the generators.

2.4 Differential invariants

In this section we will state some definitions and results regarding differen-
tial invariants. At the end of this section, we state the Lie-Tresse theorem,
which is of great importance for the calculation of differential invariants.
Usually these definitions and results are stated using Lie group actions (or
pseudogroup actions), while computations are usually done by considering
the Lie algebra of infinitesimal generators of the Lie group action. Since our
starting point is the classifications of Lie group actions in terms of infinites-
imal generators (i.e. Lie algebras of vector fields), we will define everything
in terms of these. See for example [Olv96| for an introduction to differential
invariants for Lie group actions.



Definition 4. Let g C D(C? x C). A function I € F, = C*(J*(C? x C)) is
a differential invariant of order k£ if

X®(I) =0 for every X € g.

We do not usually require I to be defined at all points. The common
approach is to consider an open set in J*(7) on which I is defined. We call
this the micro-local approach.

Since prolongation is a Lie algebra homomorphism, we only need to check
this equation on the generators of g. In other words, to find differential
invariants of order k of the algebra generated by Xji, ..., X, we must solve r
linear first-order differential equations:

x®a1y=o0, i=1,..r

With pointwise addition and multiplication, the differential invariants of or-
der k make up an algebra, A;. It’s obvious that all differential invariants of
order k are also differential invariants of order £+ 1. Hence, we get a filtering

AOCAchQC---.

2.4.1 Determining the number of differential invariants
of order £

Often when we have a Lie group acting on a manifold, we want to know what
the orbits of the group action look like. This question is closely related to the
question about invariant functions on the manifold, i.e. functions that are
constant on the orbits of the group action. Locally, around generic points,
these questions can be answered by Frobenius’ theorem.

For us, the Lie group action will always be given in terms of the Lie
algebra (X7, ..., X,) of infinitesimal generators. In the neighborhood of a
generic point (a point where the dimension of (X7, ..., X,.) is maximal), the Lie
algebra of infinitesimal generators determines a distribution on the manifold
which, by Frobenius’ theorem, is integrable.

Theorem 2 (Frobenius). Let P be an s-dimensional distribution on an n-
dimensional manifold. There exist local coordinates w?, ..., w™ such that P =
(Owty ..oy Ous) if and only if [X,Y] € P for every X,Y € P.

In these coordinates the integral manifolds (which are the orbits of the
group action) are given by w*™ = ¢,,1,...,w" = ¢, where ¢g,1,...,c, € C,

which means that there are n—s functionally independent invariant functions:

’LUS+1, . n

Sw™.
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A differential invariant of order k of g is the same as an invariant function
of g®). In the neighborhood of a generic point, the Lie algebra g*) deter-
mines an s-dimensional distribution. In this neighborhood J*(7) is foliated
by s-dimensional submanifolds that are the orbits of g*). Hence there are
dim J*(7) — s functionally independent differential invariants of order k. We
say that I € Ay is a differential invariant of strict order k if I ¢ Ag_;.

Definition 5. If I, J € A are differential invariants of strict order k, we
say that they are strictly independent if the functions I, .J,z,y,u, ..., uys-
are functionally independent.

Our goal is to find all differential invariants for the lifts of Lie algebras.
This problem may seem too difficult, since there are infinitely many func-
tionally independent differential invariants in A,,. However, the Lie-Tresse
theorem tells us that every differential invariant is generated by a finite num-
ber of differential invariants and invariant derivations.

2.4.2 Invariant derivations

Definition 6. An invariant derivation is a horizontal vector field V =
aD,+8D, € D(J*®(r)), where o, 8 € Fj, for some k, that commutes with
the infinite prolongation of all vector fields in g, i.e. [V, X ()] = 0 for every
X eg.

We say that V is of order k if o, 8 € Fi. Given a differential invariant
I and an invariant derivation V, the product [ - V is again an invariant
derivation. Hence the invariant derivations form a module over the algebra
of differential invariants. We say that V; and Vs, are independent if they
are linearly independent in this module. Since the base space of our bundle
is two-dimensional, we only need two independent invariant derivations to
generate all of them.

One way to find invariant derivations is to solve the commutation equa-
tions. Let g = (Xy,...,X,) and V = aD,+5D, for a, f € Fj, for some k.
V is an invariant derivation if the following equations hold:

V, X =0, i=1,2.n

)

We'll rewrite these equations. Let xl,xQ,u be coordinates on C? x C.
If X; = al(x)0u + bi(x)0,, then Xi(oo) = a](2) D, +94. The evolutionary

11



derivative commutes with total derivatives.

[V, X = [ Dy, 0l D,y +3y)
= alaxl (ai) ij _(az ij +9¢)(al) Dzl
= a'0,1(al) Dy =X (/) D,
=0

So for each generator X; we get a set of 2 linear first-order differential equa-
tions of the form '
X (ad) = ald,(al).

Note that since o7 is a function on some finite-order Jet space J*(C? x C),
we have X(OO)(ozj) = XZ-(k)(aj).

7

2.4.3 Tresse derivatives

In some cases, the commutation equations are difficult to solve, and we need
another method of finding invariant derivations. The following method re-
quires that we have found two functionally independent differential invari-
ants f1, fo. In local coordinates, we can define the horizontal differential
d: C¥(J*(x)) — QL(J*(n)) in the following way:

df = D,i(f)da’
If f1, fo are functionally independent, then
dfi Ndfs # 0.

This means that the total Jacobian matrix

is nondegenerate. For any other differential invariant f, we have

A

N

Thus

~

cZ:dxi®Dzi:czfi®§—i.

)
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This gives us the expression of Tresse derivatives ('i = & / ) fi:

-1

:Jcl(fl) Dxl(f2) Dy

D
DxQ (fl) DIQ(fQ) DacQ
These are two independent invariant derivations that also have the property
that they commute with eachother: [0;, 9;] = 0.
See [KLO6] for more details.

2.4.4 The Lie-Tresse theorem

The Lie-Tresse theorem is a theorem motivated by Lie and Tresse (|Lie93,
p. 760] and [Tre94|) that states, loosely speaking, that all differential invari-
ants of a finite-dimensional Lie group of point transformations are generated
by a finite number of differential invariants and invariant derivations.

The theorem was rigorously proved in [Kum?75a| and [Kum75b| for actions
of pseudogroups, micro-locally on generic orbits. In [KLO08| it was generalized
for pseudogroup actions on differential equations.

For us, the following version will be sufficient.

Theorem 3 (Lie-Tresse). Let g C D(C* x C). There exist two invariant
derivations V1,V and a finite number of differential invariants I, ..., I, such
that, micro-locally, any other differential invariant can be written as a func-
tion of I, ..., 1y and V;,---V; (1;) for some integer k, where j, € {1,2} for
le{l,.. k}.

By adding some conditions for the group action and the manifold it acts
on, we can obtain a global version of the Lie Tresse theorem (see [KL13]).
We saw earlier that Frobenius’ theorem guaranteed enough functionally in-
dependent invariants to separate the orbits locally. If a Lie group is acting
algebraically on an irreducible algebraic variety, then Rosenlicht’s theorem
does the same thing, only globally.

Theorem 4 (Rosenlicht). For an algebraic action of a Lie group on an
irreducible variety X, a finite set of rational invariants separates generic
orbits.

Proof. See |Ros56], theorem 2 or [PV94], theorem 2.3. O

We will discuss the topic of algebraic group actions further in 5.1.
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Chapter 3

Warm-up: Differential invariants
of lifts of Lie algebras in ©(C)

Any nonzero, nonsingular finite-dimensional Lie algebra of analytic vector
fields on C is locally equivalent to one of the following:

gl = <ax>7 92 = <ax7xa$>7 93 = <azaxaxyx26x>'

In this chapter we will find all constant lifts of these three Lie algebras to
C x C, and compute the differential invariants of these lifts. Since there
are only three cases, we will do a much more detailed description of the
calculations here, than we will do for the Lie algebras of vector fields on
C2. Hence this chapter can be viewed as an elementary introduction to the
techniques we use for the Lie algebras of vector fields on C2. The reader not
interested in the details can jump to section 3.4 for a summary.

3.1 g1 = <(933>

Let X = 0,. The lift of X has the form X = 9,+a(x)d,. By the coordinate
transformation u — u — [ a(x)dz it can be brought to the form X© = 9,.

The kth prolongation is X*) = 9, for k¥ = 0,1,2,.... Every function
that does not depend on z is a differential invariant. Thus the differential
invariants of order k are generated by u, Uy, Uyy, ..., Uk

Since the base space of C x C is one-dimensional, we need only one in-
variant derivation. The vector field V = a D, is an invariant derivation if it
commutes with X(®) = 9,, i.e. if o is a solution to the equation

[aD,, 0] = —a, D, =0.
The function o = 1 is obviously a solution. And since D, (uyi) = ugi+1 for

1=0,1,2,..., every differential invariant is generated by u and D,.
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3.2 go= (0, x0;)

3.2.1 Lift of g, to ®(C x C) and invariants on C x C
Let Xo = 0., X1 = x0,. The lifts of these to ®(C x C) have the form
Xéo) = 0, + ap(x)0y, XI(O) = 20, + a1(x)0y.

We can straighten out X(()O) like we did in the last section, so the lifts get
the following form:

x =0, X9 =20, +alz)d,.

The commutation relation for go is [Xo, X7] = Xo. Let’s impose the corre-
sponding equation equation on Xéo) and X 1(0).

X9 = x0, xO = (8, 20, + a(x)0,] = 8, + d' ()8,
It follows that a’ = 0, so a = C' is constant. Hence
x =0, X =z0,+Co,.

If C' = 0, the invariants are generated by u. If C' # 0, ggo) = (X(()O), X{0)> is
transitive on C x C, so there are no invariants on C x C. Note also that when
C # 0, the coordinate transformation u +— u/C normalizes the constant. So
we can assume that C' =0 or C' = 1.

3.2.2 Differential invariants of first order
Now, let’s prolong g3 to ®(J'(C x C)). We get
xM =0, xW=28,+00, - u,0,,

where C'= 0 or C' = 1. We find the differential invariants of first order (the
invariants of gi” on J!(C x C)) by solving the system

X§(f)
x(f) =

0
0
where f = f(z,u,u,). The system is equivalent to the equation

COuf(u,uy) — uOy, f(u,uy) = 0.

16



If C' =1, the general solution to this equation is
flz,u,uy) = F (uge) .

Hence the algebra of differential invariants of first order is generated by

[1 = uxe“.
If C = 0, the equation reduces to 0,, f(u,u,) = 0 which tells us that
f = f(u). Hence, in this case, there are no new differential invariants of first
order, and the algebra of differential invariants of first order is generated by
u.

3.2.3 Differential invariants of higher order

A generic orbit of ggl) is two-dimensional. This is also true for ggk) for k > 1.
Frobenius’ theorem tells us that locally, there are dim J*(C x C) — 2 = k
functionally independent differential invariants of order k for k > 1. This
in turn implies that there is maximally one strictly independent differential
invariant of strict order k for k& > 2.

In the next section we find an invariant derivation that, together with the
differential invariant we have found, generates all differential invariants for
the cases C' = 0 and C' = 1, respectively.

3.2.4 Invariant derivations

The vector field V = aD, is an invariant derivation if it commutes with
X((]OO) and Xl(oo):

IV, X =[aDx2,8,] = —a, Dy =0
IV, X = [aD,, 2D, +3¢_4u,] = a Dy — X (a) D, = 0

The first equation tells us that o does not depend on x. Let first C' = 1. If
we assume that a = a(u), the second equation is equivalent to a,, = . One
solution to this equation is @ = e*, and hence

V=¢e"D,

is an invariant derivation.

If C =0, we try with @ = a(ugz, uz,). Then the second equation is
equivalent to uzav,, + 2Uzpry,, +a = 0. The function u,, /u3 is a solution to
this equation, and thus

- Ugy
V="15De
ua:
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is an invariant derivation.

The algebra of differential invariants is generated by I; and V when €' = 1
and by v and V when C' = 0.

3.3 g3=(0,,x0,,2°0,)

3.3.1 Lift of g5 to ®(C x C) and invariants on C x C

Let Xy = 0,, X1 = 20,, Xo = 220,. By the same argument that we used in
the last section, the lift of these vector fields can be brought to the form

X" =0, X{¥ =20, + A0, X =220, + a(x)0,
by a change of coordinates. The commutation relations for gz are
(X0, Xi] = Xo, [Xo, Xo] =2X3, [X1,X5] =X,

The equation [X((]O), X0 = Xéo) was used get X((]O) and X\” to their current
forms. The second commutation relation, gives us the equation

220, + A, = 2X” = (X, X\V] = 228, + d'(x)0,.

This implies that o’(z) = 2A, and therefore that a(x) = 2¢A + B. From the
last commutation relation we get the following equation:
220, + (2zA + B)d, = X\
= 7%
= 220, + 10,(a)0,
= 220, + 2Ax0,

Hence B = 0, and a constant lift of g, is generated by

X(()O) - am7
X9 = 20, + Ad,,
Xéo) = 120, + 2Ax0,.
Also here, we can normalize the constant so that A = 0 or A = 1 by a

coordinate transformation. If A = 0, then w is an invariant. If A = 1, there
are no invariants on C x C.
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3.3.2 Differential invariants of first and second order

There are no differential invariants of strict order one. If A = 0 there are no
differential invariants of strict order two. If A = 1, there is one differential
invariant of second order:

Iy = (um + ui/2) e?v

3.3.3 Differential invariants of higher order

A generic orbit of géz) is three-dimensional. This is also true for ggk) for k > 2.
Therefore there are dim J*(C x C) — 3 = k — 1 functionally independent
differential invariants of order k for £ > 2. This in turn implies that there is
maximally one strictly independent differential invariant of strict order k& for
k> 3.

In the next section we find an invariant derivation that, together with the
differential invariant we have found, generates all differential invariants for
the cases A =0 and A = 1, respectively.

3.3.4 Invariant derivations

The vector field V = aD, is an invariant derivation if it commutes with
x4 x) and x 1

IV, X = [aD,,8,] = —0, D, =0
IV, X = [aD,, 2Dy 4+ 4-pu,] = @Dy — X () D, = 0
[V, X)) = [a Dy, 2° Dy +Doss_u2a,] = 200Dy — XS () D, =0

The first equation tells us that a does not depend on x. Let’s assume that
A =1 and try with @ = a(u). Then the system is equivalent to the equation
«, = «, which has the solution

a=e".
Hence we get an invariant derivation
V=¢e"D,.

If A=0, we let @ = a(u, Uy, Uys, Uzze) and get the equations

Uz Oy, — 2umzaump - 3umxmaump7 =«
—2xUp0r,, — (2uy + 40Uy )y, — 6(Upe + TUgpy )y, = 200
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It’s easily checked that the function

2
o QgpgUy — UL,

5
ul‘
is a solution to this system, and thus we get an invariant derivation

A QU lhy — U2
V= 3 2D, .
ul‘

_ All differential invariants are generated by V and I> when A # 0 and by
V and v when A = 0.

3.4 Summary

The constant lifts of g, go, g3 are of the form
gy = (2.)
o) = (8,, 20, + C8,)
ol = (0,, 20, + C8,, 3°0, + 2C20,)

after a suitable change of coordinates of the form (z,u) — (z,u —U(x)). As
a corollary we get the following cohomology groups:

H'(g1,C(C)) = {0},  H'(g2,C“(C))=C,  H'(g5,C*(C))=C

By a scaling of u, we can normalize the constant so that C'=0or C' = 1. The
differential invariants of the lifts are generated by the following differential
invariants and invariant derivations.

Differential invariants | Invariant derivation
g1 U D,
927 C == O u 1;132 Dx
g2 C =1 e’ oD,
9,2
93, C =0 u W D,
93, C =1 | (uoz+ u§/2)62u e" D,

Remark 2. In the cases where C' = 0, we could have chosen the simpler
mvariant deriwation V = il)w. This 1s the Tresse derivative with respect

to u, which means that V(u) = 0. Because of this we would need one more
differential invariant (of higher order) to generate all differential invariants.
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Chapter 4

Differential invariants of lifts of
Lie algebras in ©(C?)

In [O1v96] there is a complete list of differential invariants of the Lie algebras
of vector fields from the classification (Olver uses a slightly different classifi-
cation than we use here) taken as vector fields on C x C. In this case x is an
independent variable, and y is a dependent variable. In [Nes06| the same is
done for a classification of vector fields on R2.

In this chapter we’ll do the same for the classification of Lie algebras of
vector fields on C? as we did in the previous chapter for the classification of
Lie algebras of vector fields on C. We will first find all constant lifts of the
Lie algebras to C? x C, and then find the differential invariants of these lifts.

4.1 Lifts to D(C* x C)

The computations of the lifts consists of two parts. First we change coordi-
nates, so that the lifts of one or two of the generators get a simpler form.
Then we solve the differential equations given by the commutation relations.

4.1.1 Coordinate change

It was described in 2.3.2 how one can change coordinates u — u — U (x,y) so
that the lift of (0,,0,) is the same as the trivial lift. This means that when
we consider the lifts of Lie algebras that contain X = 0, and Y = 9,, we can
change coordinates so that X = 9, and Y© = 0y. There are four other
cases where we use other coordinate changes, namely for g4, g5, g12, g16-

The cases g4 and g5 are handled similarly. We may assume without loss
of generality that m; > mgy > --- > my,. Let X = 0,,Y = e**0,. As before,
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we can rectify the lift of X by using a suitable coordinate transformation, so
that X(© = §,. The general lift of Y is of the form e*1%9, + b(z,y)d,. The
commutation relation [X© Y(©] = ;Y © tells us that b(z,y) = c(y)e*®.
By changing coordinates u +— u — [ c(y)dy, we get YO = 2129, .

Consider now gi2. Let X = 0,,Y = 20, + 0,. After a change of coor-
dinates we have X0 = 9,,Y(© = 29, + 0y + b(z,y)0,. The commutation
relation [X© V(0] = X© tells us that b does not depend on z. After
changing coordinates u — u — [ b(y)dy, we get YO = 20, + 9,.

Lastly, consider gis. Let X = 0,,Y = 20, + y0,. After a change of
coordinates we get X = 9,,Y(© = 20, +y9, +b(x, y)9,. The commutation
relation [X©, V(0] = X© tells us that b does not depend on z. Write b(y) =
B+ yl;(y) where b is an analytic function. The coordinate transformation
u — u— [ b(y)dy transforms the lift of Y to the form Y© = 20, +yd, + B0,.

4.1.2 Solving the differential equations

It was described in 2.3 how finding the general lift of a Lie algebra of vector
fields on C? corresponds to solving a set of differential equations. We also
saw how this worked in the previous chapter. Here we will only look closely
at one case, gs.

Let Xo = 0;, X1 = 0y, Xo = 20, + \yd, and Y; = 2'0,. We have the

following commutation relations:

[X07X1] = 07 [X07X2] = XU7 [XlaXQ] = )\Xl
[XOa}/l] :Xh [X07YZ] :i}/;—h i:2737"'77ﬁ_37
(X0, Y] = (i = \Yi, i=1,2, .r—3

Every other Lie bracket vanishes.

After we straighten out X(()O) and Xl(o), the lifts of the generators are of
the following forms:

Xéo) = 20, + Ay0y, + as(x, y)0,
Y;(O) = 1'0, + b;(x,y)O\.

22



The commutation relations

X7, %47 = X,

X, x5 = ax,

[Xéo) Y'l(o)

X Y =Y, i=23,0 -3,
XY =0, i=12.r -3,
X370 = (= Wy

Ox(az) =0
dy(az) =0
9:(b1) =0
0y(b;) = ib;i_4
9, (b;) = 0
20, (0i) + Aydy (b;) — 2'dy(az) = (i — A)b;

The first two equations tells us that
a9 — A

is constant. By combining the equations, the last one simplifies to xib;_; =
(1 — A)b;. We must consider two cases.

o If A\=Fke{1,2,....7 — 3}, then xkb,_; = 0 if £ > 1, and by using the
last equations, we see that b; = 0 for i = 1,2,...,k — 1. The equation
Oy (b)) = ibg—1 (or 0,(by) = 0 if k = 1) together with J,(bs) = 0 implies
that

by, =B

is constant. The rest of the coefficients are given by by, ; = (k:l)xlB.

o If A ¢ {1,2,...,r — 3}, then we have b; =0 for i = 1,2, ..., — 3. To see
this, we use the equation x0,(b;) = (i — A\)b;. For i = 1, this reduces to
(1 —=X)by =0, and since A # 1, by = 0. The equation zib;_; = (i — A\)b;
then implies that b; = 0 for every .
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4.1.3 List of lifts and cohomologies

Here we give the complete list of the lifts. From these lifts, we can at once
read off the cohomology groups H'(g;, C¥(C?)). It’s not difficult to see that
we cannot simplify the expressions more by using coordinate transformations
of the form u — u — U(z,y).

i | Generators for g'” H'(g;, C*(C?))

1 | Op, Oy, Y0y, 0, z0,+C0O,, yo,+C0,,|C
zyd, + y*9, + 3Cy0,, 120, + xyd, + 3Cx0,

2 | Oy, 0y, YOy, 20y, x0, + CO,, y0, + CO, C

3 | Op, Oy, 0y, YOy, 0y — YOy {0}

6 | Ou, Oy, YO, + COy, y*0, + 2Cyd, C

7 | O, Oy, 20y + COy, 220, + 20, + 2C20, C

11 | 9y, 0y, 20, + Ady, y0, + B, y*0, + 2Byd, C?

12 | 9, 20, + 0, {0}

15 | Oy, 20, + 0y, 220, + 220, + Ce¥0, C

16 | 20,, 0y + yOy + Ad,, C?
C’:Q;Fyz 0y + 2y0y + (Ax + By)0,

17 | 0,, x0, + AD,, 220, + 2Ax0,, C?
dys YOy + By, y*0, + 2Byd,

18 | 0, {0}

19 | Oy, 0, + a(y)0, c¥(C)

20 | Oy, 20y + a(y)Oy, 20, + 2xa(y)d, C*(C)
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i | Generators for g'” H'(g;, C*(C?))
4 8z, x"eaﬂ@y + b]’z(x)ﬁu Cm1+m2+---+msfl
fori=0,1,...m; —1,7=1,2,...;s
where by g =0, b; =e*" 22:1 (Z) Ol,kl'i_k
and b;; = eM7 3 (1) Cipa ™"
In addition m; > m;;.
5 | O, y0, + CO,, x'e™%d, C
forj=1,2,...,5,1=0,1,....m; — 1
8 | Dy, 0y, x0p+Ayd,+ Ady, 'Oy + bi(2)0,, | C
1=1,2,....,m—3 where \e€C, AFETr—2.
If AN=ke{l,2,..,7r—3}, then b =0 for
i=1,2,...,k—1,b =B €Cand by, = (*/)2'B
for 1=1,2,....r—3—k. If else b, =0 for
i=1,2,...r—3
9 |8y, Oy, 20, + ((r—2)y+2"2)0,+ CH,, 29, |C
1=1,2,...,7m—3
10 | Oy, Oy, ©0p+Ady, yO,+BO,, 20y, i =1,2,...,r — 4 | C?
13 | 0, Oy, 'y, i=1,2,...,7r—4, | C
20, + Sy, + COy, 220, + (r — 4)ayd, + 22C0I,
14 | 0, Jy, 20, + A0, Y0, + BO,, | C*
220, + (r = 5)xyd, + (2A + (r —5)B)xd,, 'y,
i=1,2,..,7—5
21 | Oy, ¢i(x)0y + ai(x)0y, 1 = 2,3, ...,7 C*(C,Cr?)
22 | 0y, YO, + b(x)0y, ¢i(x)0y, i =3,4,...,r Cc¥(C)

Most of the lifts depend on one or two constants. If they depend on one
constant, we can always normalize it by a change of coordinates.! If C' # 0,
we can use the transformation u +— u/C to remove the constant. This means
that we can always make C equal to either 0 or 1 by change of coordinates.
For the lifts that depend on two constant we can always, for the same reason,
make one of them equal to 1.

!Note that this transformation has nothing to do with the cohomology groups. For the
cohomology we only considered transformations on the form u +— u — U(z, y).
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4.2 Counting differential invariants

Given an algebra g C ®(C? x C) we can find the number of strictly indepen-
dent differential invariants of order k£ in the neighborhood of a generic point

for any k. The dimension of J*(r) is 2 + (k;—Q) Let

2 1 1
qk:dimjk(w)—dika_l(ﬁ):(k;— )—(k; )z(kj; )Zk—l—l.

This is the number of derivative coordinates of order exactly k.

Let s;, denote the dimension of a generic orbit of g*). Then the number of
functionally independent differential invariants of order k is 1, = 2+ (k;Q) —Sp.
The number of strictly independent differential invariants of order k is j, =
Ig — lg—1 = Qr — Sk + Sk_1. Hence we only need to calculate s, and s,_; to

count the number of strictly independent differential invariants of order k.

This calculation can be automated in Maple.

Trivial lift

Order |0 1 2 3 4

g3 1 0 2 45

g12 1 2 3 45

g18 2 2 3 4 5

C=0 Cc=1

Order |0 1 2 3 4|0 1 2 3 4
g1 1 00 3 5/0 01 3 5
g0 1 01 4 50 0 2 4 5
U6 11 2 4 50 1 3 4 5
g7 11 2 4 5]0 1 3 4 5
g15 1 1 3 4 5]0 2 3 4 5




For the families of Lie algebras, the number of differential invariants depends
on the dimension of the algebra. The bold numbers are numbers that does

not change when we increase the algebra dimension.

The lift of g4 is much more complicated than the other lifts, so it’s difficult
to find a pattern like we do for most of the other lifts. But we can count the
number of differential invariants for some cases, and we see that this number
depends on the constants.

94 Ci,j:O
Order | 01234
r= 12345
r=3 1] 11345
r=4 (11245
r= 11235
r= 11234

27

A=0,B=0 | A=1,B=0 | AeC,B=1
Order |O 1 2 3 4/0 1 2 3 4/0 1 2 3 4
g1 1 0 2 4 5|0 1 2 4 5]0 0 3 4 5
16 11 3 4 5|1 1 3 4 5|0 2 3 4 5
gi7 1 01 4 5(0 0 2 4 5|0 0 2 4 5

Trivial lifts a(y) #0

Order [0 1 2 3 4(0 1 2 3 4

g19 2 1 3 4 5|1 2 3 4 5

920 21 2 4 5|1 1 3 4 5




4

Cin #0

Ch0 # 0

01,1 7é 0 and 02,0 # 0

Order

01234

01234

01234

my=1mo=1
mp = 2

mp=2,mg=1
my=2,mo =2

mq :2,m2 :2,m3: 1

02345
01345
01245
01235

02345

01345
01234
01145

01345
01245
01145

g5

Trivial lift

Nontrivial lift

Order

01234

01234

r=2
r=3
r=
r=
r=

r =

12345
11345
10345
10245
10235
10234

12345
02345
01345
01245
01235
01234

gs

Trivial,

A:

Trivial,

A#£0

S
I
O =

Order

01234

01234

01234

r=
r=
r=
r==6
r=7

11345
11245
11145
11135
11134

11345
10345
10245
10235
10234

02345
01345
01245
01235
01234
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gs

A=2,
by # 0

A =3,
by # 0

Order

01234

01234

r=
r=

r=29
r =10
r=11

00345
00245
00145
00135
00134

00245
00145
00135
00125
00124

00235
00135
00125
00124
00123

99

Trivial lift

Nontrivial lift

Order

01234

01234

r=
r=

r=>5
r==06

T =

11345
10345
10245
10235
11234

02345
01345
01245
01235
01234

g10

Trivial

A

0,
B=1

A=1,
BeC

Order

01234

01234

01234

r =
r=
r=
r=71
r=3_8

10345
10245
10145
10135
10134

01345
01245
01145
01135
01134

01345
00345
00245
00235
00234
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913

Trivial lift

Nontrivial lift

Order

01234

01234

r =

r =

T =

r=2=8

11245
10245
10145
10135
11234

01345
01245
01145
01135
01134

914

Trivial

SoieN
[l
— O

A=1,
BeC

Order

01234

01234

01234

T =

r =

r =

T =

r =

10245
10145
10135
10134

01245
01145
01135
01125
01124

00345
00245
00145
00135
00134

921

Trivial

CLQ?éO

as # 0 and a3z # 0

Order

01234

01234

01234

r =
r=3
r—=
r=2>5
r==6
r="7

21345
21245
21235
21234

12345
11345
11245
11235
11234

11345
11245
11145
11135
11134
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022 Trivial lift | Nontrivial lift

Order | 01234 01234
r=31 20345 11345
r=4120245 11245
r=5120235 11235
r=6120234 11234

We have only listed the number of the invariants of order up to 4. When we
compute the differential invariants, it will usually be clear how the pattern
continues.

When we prolong a Lie algebra of vector fields, the dimension of its generic
orbits will, in general, increase. The dimension of an orbit is bounded by the
dimension of the Lie algebra. When the Lie algebra is of finite dimension,
the orbit dimension must stabilize at some point. The following theorem,
due to Ovsiannikov, tells us that for Lie algebras of vector fields, the orbit

dimension stabilizes when it reaches the dimension of the Lie algebra (see
[O1v96, p. 143]).

Theorem 5. A Lie group of point or contact transformations acts locally
effectively if and only if its stable orbit dimension equals its dimension.

Remember that for each Lie algebra of vector fields, there exists an effec-
tive Lie group whose local action coincide with the Lie algebra.

If a generic orbit of g*) has dimension equal to the dimension of g, then
the pattern of differential invariants of strict order greater than k, is very
simple. We will get the maximal number of differential invariants of strict
order [ for [ > k. In other words, there will be [ 4+ 1 differential invariants of
strict order [ for [ > k.
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4.3 List of differential invariants

In this section, we give a list of differential invariants and invariant deriva-
tions. In many cases these generate all differential invariants for the given
Lie algebra of vector fields. For the families of Lie algebras from the clas-
sification, these generating differential invariants can be of arbitrarily high
order, and even though there seems to be some pattern, we have not been
able to express these in general. Therefore, the list is complete only for the
Lie algebras of low order.

An interesting property of the Lie algebras we consider is that all of them
have differential invariants of order two. And in most cases, even in cases
where we have not found all differential invariants, we know the order of the
missing generating differential invariants.

It turns out that the following functions appear in many of the differential
invariants we find:

i—1 .
1 — 1\ Ugjyh—i
i = Z(_I)J( j > yk j

j —
=0 Uz Uy

Therefore it will be useful to express many of the differential invariants in
terms of them.

Many of the differential invariants and invariant derivations are, due to
their lengthy expressions, gathered in the appendix. They appear in the
tables in this sections as letters I, K, L, M, «,  with indices. All calcula-
tions were done using Maple with the packages “DifferentialGeometry” and
“JetCalculus”.

4.3.1 ¢1,02,03

For g§°) with C' = 1 we’re only able to find a differential invariant of order

two. We know that micro-locally there are three differential invariants of
order three and k + 1 differential invariants of order k for k£ > 3.

32



Differential invariants

Invariant derivations

g1 u, I31, I3z, I33, I ay (Dx—Z—sz> "‘ipy?
o o (2.2 D,)
ggo) (J23+3J21J23 —3J222)(uxuye“)2
Cc=1
950) u, Ko, K31, K32, K33, K34 (07 <Dx —Z_z y>7
C=0 O‘6<D$_Z_2Dy>+ipy
g Jos (uxuye“)z, a7 D, +5: Dy, ag D, +P3 D,
_ ) 2
=1 (J23J21 - J222) (uxuye ) )
K31, K32, K33, K34
g;(),O) u, Jzauiuz, Ky, K3, K33 %{fj—% (Dx —u y) +

1 1 _ Ug
Uy Dl/’ J34u2u32! < Ty Dy)
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4.3.2 g6, 97, 911, 912, 915, 916, 917, 918, 919, 920

Differential invariants Invariant Derivations
P)

0 u u

0 m u
%(? ) 1 U, (Uyy + Ul /2)€? D,,e" D,

(0) Jaz—1/uy Uy ( _ux )
97 ’ J222 Uz Uyy —UyUzy Toouy TY )
C= D,

0 U Ug
9(7) Uy, € <Dz—mpy>, Dy
C=1 | (g + 220 4 A (e’

0 U, Uz U U
oy u g, ot () Llp, Lo,

A=0 ' '

B =

gty uge®, Jy — 373 LD, LD,
B—

A=

(0) Uga A-1_u 1 D A u D
gll u% ) u;tyum €, Uy T um € Yy
b= (tUyy — u;/z)u?cAeZu
AeC
gg%) U ey DJM Dy
g§05) u, <J23 + ﬁ) (uxey)2 e¥ <Dx _Z_: y)y Dy
O —
gl? Uy — U, 2uty, + uge? — u? eV D, +2uD,, D,

O —

34




Differential invariants Invariant derivations

A=0 = (D -D )
B = v

0 u
9%6) € /y> y2(uyy - um:) (1 _I' y(ul‘ - ))y(px +Dy)7
i - Toa=ay Pz —Dy)
a0 ((ux +uy) — %) y'Thet, | ytte (Do - D),
B = A At y'~e" (D, + Dy)
AeC Uy — Uy ) yTe

)

ggo'?) u, uliijya U,Z% - % <%> ) i Dxa t Dy
A= Uyyy 3 [ Yyy 2
B = ug 2 u%
ggg) (u? + 2um)62“,%e“, et D,, L o 4D,
ii e e

(0) 2 (A-1)/2 u 1 Vu3+24ua,
017 Ugy (uz + 2Aug,) ev, ——— D,, ™ D,
B — (U2 + 2yy) (42 + 2Au,,)Aen | VI ’
AeC
oy Y, u D., D,

0 Uz
ggg) Y, u, u2 % Dx, Dy
a =

0
959) Y, e, Uy ((32/)) t Dy, Dy
g% Y u, s — 3 (Z) 1D, D,
a =

0 a’ 2
ggo) Y, Uy a((g)), eaw D, Dy

<% + 2um) e%

4.3.3 g8, 89, 810, 913, 914

For families of Lie algebras (g\”, g, 6, 65", a'%, 6'%, 60, 657, g%7), there

are always some differential invariants and invariant derivations, that every
Lie algebra in the family have in common. Because of this, we can almost
always determine the number of differential invariants of each order. The
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exceptions are the nontrivial lifts of g4, gs and go;.

In order to generate all differential invariants we need, in addition to
the mentioned differential invariants and invariant derivations, one or two
differential invariants that depend on the dimension of the Lie algebra. In
the tables, r is always the dimension of the Lie algebra.

= 1 _ Uay
o r=384,. | gt (Do ~22D,) D,
_ J33—Jo1Jo3
A=0 u,
A=0 r=23 JQQ, S
‘]22
B=0 |(|r=4 I23
— — %
22
r=>5 J34*3§722J23
22
r—=6 Jus—6J33Jo3—4J22 J34+12J25 Ja3+3J21 I35
J3o
r==%k one differential invariant of order k£ — 2
=34 “ _(p,—=p,) LD
g8 T=90% o | Gty —ugueg \ "% u, Py ) u, Py
~1/x
A 7é 0 u, J21, JQQ'U,IUy
—1/A
A=0 |[r=3 Uy Uy
B=0 |r=4 Lo
J22
J3a—3J22 J-
r = 5 34 J322 23
22
r—=6 Ju5—6J33 J23—4J22 J34+12J2, Jo3+3J21 J2,
I3
r==%k one differential invariant of order k£ — 2
_ U Uy 1
0 r=34, . e (Dm—E y>,u—y7>y
A=1 uye“
B=0|r=3 ugzeh
r=4 Joz(uze")?
_ 3
r=2>5 (J34 — 3J22J23> (uxe“)
r = 6 (J45 — 6J33J23 — 4J22J34 + 12J222J23 +
2 4
r==%k one differential invariant of order k — 2
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In each table, the top box on the right-hand side contains invariant deriva-
tions and differential invariants that hold for every r. In addition we must
specify one, or sometimes two, additional differential invariants that depend
on r. Consider for example géo) with A = A = B = 0. When r = 5, all
differential invariants are generated by the two differential invariants and
invariant derivations in the box labeled “r = 3,4,...”, in addition to the

differential invariant %
22

o r=4,5,.. ul/k( . —22D,), LD,
A=1 k=1,...,r=3 | Jou
k= e (log(uy) +u) + B"“’
k=2 B% QB“IZW“’ +B“”y + 2 (2u—|—log(uy))
by =B | k=1,r=4 %B—l—u—i—log(uy)
B #0 r= (log(uy) + u) +2B; (log Uy) + u) Lo 4
- B2+ (lglus) +u) +
r==6 “us (log(uy) + u)® + SB“’““’ (log(u,) +u)?*  +
332 =224 (log(uy) + u) + Bz Yo +
4“” (log(uy) +u)? + 5Bu’“’ (log(uy) + u) +
32 “;: + (log(uy) + u) +
= (33%(10g(uy) +u) +3B%55 + B)
k=2r=5 |uguy " Jo, BZ—%Jgg + 2u + log(uy)
r==6 uﬂ(log(uy) +  2u) - B—u”uf;f,,_uiy,
e (Bl — 3B Il o —
3J32J21(BJ21J23u ~ 9B, + 2Jmuu, +

J21 log(uy)uy) + J31J22(3BJ21J23U520 + 6J21UUy +
3Ja1uy log(uy) — 4BJ3u?) — 203 Joou,)

k> 2, Z—I;Jé“z, one differential invariant of order k
Yy
r=k+3
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For the cases when B # 0, it’s more complicated because we have an
extra parameter k. In addition to the one differential invariant that holds
for every r and k, we usually need two more. In the tables we have added
another box that contains one differential invariant which holds for every r
when £ = 1 and when k& = 2. Then, for these two cases, we need only one
more differential invariant that depends on r. If we follow the pattern, it
looks like when k& = s we have to specify one differential invariant of order
s+ 1 in addition to one differential invariant that depends on r. We've also
added a box at the bottom, in order to list all differential invariants of order

two.
_ 1 Uy 1
gs r= 47 57 uzll/k ( T _@ y) D
A=0 kzl,.,r—3 ng
UlUyy+U
k=1 yz;i Ty
uyyyuiy UzyyUzy uzzy uyy
bp=B | k=1,r=4 ot
y
B=1 r=75 u2uyy+2uuw+1;mx+uu§+uxuy
Uy
AN=+Fk r==6 usuyyy‘*‘“Q(ilgzyy“"l“y“yy) +
y
uj
k=2r=>5 | %2, %+
=2,r = w, J220 w, /23
_ uyy(uzz"‘Q“uy)_uiy 1
r==6 = , & (uyyy(?)uxyumuyy —
3 2 2
4uj, 4—2 CULY Uy Uy ) +2uxyy(6uxy1;yy - 3umugy -
Butly Uy, ) — gy Uayy, + Ugeally, + 2ty —
2uy yyua:y)
us 13
k= 3,r=06 uz JQQ, E(J34 — 3J23J22) — 6u
4 ul
k=4,r="7 Lz Jd IJ — 6J33 003 — 4Ja0dsy + 1202, Jos +
’ Uy 22) 45 33J23 22J34 2223
k>4, IJ22, one differential invariant of order k
r=k+3
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The structure of the differential invariants for ,gg()[))agg[[)))a ggﬁ? and gﬁ?ﬁ are

very simple. One property they have in common (except for g&%)) is that the
differential invariants and invariant derivations in the dop box depens on the
dimension r. Note also the similarities of the differential invariants for the
different Lie algebras. This is not surprising since all of them contain the
vector fields 2'0, when r is sufficiently large.

% r=34,.| 2 (D,-=D,), LD,
Uy .
C = 0 u, J21, JQQUQLLyTﬁQ
r=3 o log(u,)
w2
r=4 ‘]23E log(uy)
3
r = 5 (J34 — 3J22J23) Z—z + 2log(uy)
r==6 (J45*6J33J2374J22J32112J222J23+3J21J223)ui . 610g(uy)
r==%k one differential invariant of order k — 2
_ u _Ug 1
g r=34,..| ¢ (D, ~%D,), LD,
c=1 uye(T_Q)“
r= (ug + uyu)e®
r= (Jazu2 + 2u,u)e
r=2>5 (<J34 - 3J22J23) Ui + 6uyu) €3u
r= ((J45 — 63303 — 4 JonJay + 1203, Joz + 3 Jo1 JH)ul +
24uyu) et
r==%k one differential invariant of order k£ — 2
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2

_ Uy _ Uay 1
g10 o 4’ 5’ Ug Uyy — Uy Uzy <D5’3 Uyy D?J) 7wy DZJ
_ Jaz—Jo1J.
A=0 u, 42 J221 23
22
B=0 =4 Jaz, 22
! J22
=5 J23
I3,
—6 J34—3J22J23
— Jaa=3aa g
22
—7 J45—6J33J23—4J22J3;1+12J222J23+3J21J223
J22
=k one differential invariant of order k£ — 3
—4.5 oy D Yy D 1D
810 W Uz Uyy —UyUzy x Uyy Y )7 uy Y
A=0 uyeu’ J33*J‘£21J23
22
B=1 =4 Jaz, 22
! J22
— Ja3
I3y
— J34—3J22J03
J3
_ Ja5—6J33J23—4Ja2 J34+12J2, J23+3J21 /3,
T
= one differential invariant of order k£ — 3
_ B_u _Ug 1
g10 4: 57 uy € <D:Jc Uy y> )y Dy
A= Ja1, J22Uxuf€u
BeC =4 uzuf et
_ B _u\2
=5 Jos(uzu, ")
_ B_u\3
=6 (J34 — 3J22J23) (u$uy 6“)
_ 2
=7 (J45 — 6J33J23 — 4J22J34 + 12J22J23
2 B _u\4
3 J33) (uzuy, €")
=k one differential invariant of order k£ — 3
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913 r=25,0, ﬁ (Dx_z_j y) ’ 1y D,
Yy
2
¢=0 u, Jar, <J33—EJ222—J21J23> ( 1:%)
: Yy
r = 5 ngz—z
Yy
'lLS
r==06 (J34 — 3J22J23) é
U4
r=17 (J45 — 6J33J23 — 4J22J34 + 12J222J23 + 3J21J223) S_z/g
Uy
r==%k one differential invariant of order k£ — 3
u Uy r—4)uzu
913 r=>5,0, e (Dm—WDy>,u—sz
C=1 uzelr =4, %((—724-87”—16)1]334‘(—47”4‘
(r—442J21)2uy "t
16)J21J33 + (4’/“ — 16)J32J22 + 8J32J21J22 — 4J31J222 +
(r? —Tr + 12)J3, + (18 — 4r)JyJs, + (r* — 8r +
_ u? J. 9 I3y
"= ut \/28 7 4180,
’LL3 2 3
r—6 é <J34 _ 3(J331++J;231)J22 + 3(1;31?23«2722 + 2(1j3§1)3)
r==%k one differential invariant of order k£ — 3
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— [ S Yz 1
914 r=06,1, e (J32—2J23721) (DI Uy Dy) »uy Dy
Jaz—L=2J3,— Ja1Jas
A=0 Y, Ja1, (J32—2J22J21)2
_ _ J32—=2J21J22 J34—6J23J29
B = O r = 6 VA ) J§?{2
r==%k one differential invariant of order k — 4
— 1+J21 ugp (_Jo2
914 r=06,7, ug (2J22J21+J22J31 —J32(1+J21)) (Dx +uy (H‘JZI 1) ,Dy)7
1
uy Y
2 (J31-2)J2, (2J32 )Jzz
A—0 el J33+J55—J21 23+ (72 15757
vy (J31J22—J32—Jo1J32+2J22.J21)*
2J22J21+J22J31—J32(1+J21) 1
B=1|r=6 22721 J. —
(1—|—Jz1)\/Jz?,(l—&-le)—Jg2 ’ (Jas+J21Ja3—J2,)372 \ 734
2 3
22 _ J22 _
3J33 (1+J ) + 3J32 (1+J21) J31 <1+J21)
Jog+J21Ja3—J2,—(J21+1/3)J2, Jo1J23
6J22( (14+J21)3 + (1+J21)2)
r==%k one differential invariant of order k — 4
_ B _u Uz . (24+(r—>5)B)Ja2 1
914 r=06,7, u, € (Dw Uy (1 srero—5B5) 71 ) Py ' Uy D,
= _ 2 2(2+B(r—5))JsaJaz+J3,
A= Jor, | a3z — Jordas + Iy CrBr 8o tr—5 T
2
B eC ((2+B(7‘—5)) J31—2(r—5)2) JZ, B 2
5 (uxuy e“)
((2+B(r—5))Ja14+r-5)
2
_ (2+B)J22 B_u
r==~0 (J23 o) ) (Uatye
—_ Ty — 3(BHD st o) n (3(B+1)2J52+5(B+1)J22)J3,
(B+1)J21+1 ((B+1)ng-s-1)2
((B+1)3J31+2(B+1)2J21) J3, (u uB€u>3
3 x Yy
((B+1)J214+1)
r==%k one differential invariant of order k — 4
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4.34 g

94
Ci,j - 0

Vs, m; Dx—ﬁ D,,D,
Uu
s=1m; =1 QLY Uy + Uy

821,m1:2

s=2,m =my=1

2 2
Jozuz — ajyuy, — 200U,

2
Jozus — araayuy, — (g + a2)uy

one differential invariant of order
r—1

r:Zlemi—i—l

The most difficult case to handle is the family 94(10) because these algebras may
contain an arbitrarily high number of constants. Independent of the value of
the constants, the following differential invariants and invariant derivations
hold for any s and m;.

D, — la

VS,mi u_nyy’Dy

g4

In the following cases which we consider, all differential invariants can be
generated from differential invariants of order two. We consider cases with
one, two and three nonzero constants, respectively.

Only one nonzero constant

In the upper right box we have differential invariants that hold in many
different cases, while the lower box contains invariants holding only for one
particular combination of values of m;.
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Cia#0 | s=1Vmy Uy, + C1 1 (01 Yty + Ugy)
. . alu—Ug

Cip#0 || mi=1+k,Vs,m; S Uy + Ugy

0270 7é 01| me=1,Vs,m; —QZZ;UZ Uyy + Ugy

Oy #0

Cip #0

Ch0 # 0

S:]_,m1:2
s=2,m; =2,my =1
s=1,m; =

§s=2,m; =3,mg=1

s=1,m; =
s=1,m; =
s=2m=1mo=1

s=3,mi=1my=1mg=1

s=2m;=2mg=1

s=2,m =2,my =2

UUy

Uy + a1 (yu, —u) + o
L3
L3,
L3,
L33
L,

(uy + aryuy, — asu)Cap +
(g — ar)uuy,

111
L22

211
L22

220
L2
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Two nonzero constants

Ci1,Ci2#0 || s=1,m = L33 L33
s=1,m; = L3
s=2,m;=3,my= L3t

Ci1,Cis#0 || s=1,m =4 L

Cr2,Ci3#0 || s=1,m = L

C11,Co0#0 || s=2,m =2,my=1 L3212 1212
s=2,m; =2,my =2 L3212
s=3m;=2my=1mg=1|L3"2
s=2,m; =3,my=1 L310

C11,C1 #0 || s=2,m1 =2,mg =2 L%

Ci2,Cop#0 || s=2,m =3,mg=1 L3'?

Co0,C21 #0 || s=2,m1 =2,my =2 L3

C0,C30# 0 || s=3,my =1,my=1,m3=1| L3} Li}?
s=3,my =2,my=1,mg=1| L2

Three nonzero constants

01,17 01,27 C'1,3 7& 01 m = LEM
01,17 C'1,27 02,0 #0|m =3my=1 L313
Ci1,C20,Co1 #0 || my=2,mg =2 L5%

C11,C20,C30#0 || my=2,my=1,mg=1 | L3*

_ _ _ _ 1111
C20,C30,Ca0#0 | mi=me=mzg=my=1| Ly




95 Vs, m; Dy —32 Dy,u—lyDy
C =0 u, J21, Jggux
s = Yy, Uy
s=1m; =1 YUy + Uy
s=1,m; =2 JQgUi — a%yuy — 2001 Uy,

_ _ _ 2
s=2,my =mg=1| Josu; — aronyu, — (a1 + aa)u,

r=>0_ mi+2 one differential invariant of order r — 2
95 Vs, m; Dy — 2 Dy,u—lyDy
Cc=1 u, e

s = ey

s=1,m; =1 Q1YUy + Uy

s=1,m; =2 JQgUi — a%yuy — 201Uy,

_ _ _ 2
s=2,my =mg=1| Josu; — aronyu, — (a1 + aa)u,

r=>0_ mi+2 one differential invariant of order r — 2

4.3.6  go1, g2

d21 7“:2,3,... DI—Z—sz,Dy
a; =0 T, U
_ 2 #Y(x)
r=2 Jogus — 452(@") Uy,
r==%k One differential invariant of strict order
k

For the nontrivial lift of go; we again have to find two differential in-
variants in addition to the two that hold for every r. We can reorder the
generators of the algebra so that only the first ones have nonzero function a;.
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d21 T:2,3, ,DI_Z_ZDZJ’,Dy
T, Uy
a; =0,1>2 | uguy,Joy — uunglzzgg
a; =0,1>3 M;
1A 0,7 =2 | s (ah(x) - dhla)uy) — u
- —ah(x) ¢4 (z)u+} () ph (x)uuy +az (z) Y (x)us i
az(x) @ (x)
—¢5(2) ¢y (x)uuy +¢5(z)ay (x)u +
az(z) ¢y (z)
—al(z)2 Ja1u?+2a% () az (z)uug Joo —az () ?u? Jog
az(x)?
r = k | one differential invariant of strict order
k—1
a3 #0,r =3 | My, My
T = 4 MQl
r= one differential invariants of strict order
k—2
ay # 0, r =4 | My, one differential invariant of strict
order 3
d22 7":3,4,... Dw —Z—z yatDy
b= x,u, Jor, Jaoly
_ 2 #5(2)
r = 3 Jgguw ¢Z(m) T
r==%k one differential invariant of strict
order k — 1
922 r = 3, 4, Dw + (_b'(x)u — u_z> D £ Dy

b#£0

b(x)uy Uy Y7y

2, /o)

—b(@) ¢ (x)usz+b' () 5 (x)u—b" (x) P (x)u

b()0% @) *
b (z)2u? Ja1 —2b (2)b(x)uny Joo+b(x)%u2 Jog
b(x)?

one differential invariant of strict
order k — 1
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Chapter 5

General remarks and applications

In this chapter we discuss the notion of algebraic actions of Lie algebras
of vector fields by using examples from our computations. Then we state
some results based on the fact that all our lifts have differential invariants of
order two. We end by describing how we can use differential invariants for
constructing invariant differential equations.

5.1 Algebraic actions

In section 2.4 we discussed how Frobenius’ theorem guarantees the existence
of differential invariants on some micro-local neighborhood of a generic point
of a Lie algebra of vector fields. Many of the differential invariants we found
in section 4.3 are given by rational functions. Some differential invariants
contain logarithms or exponential functions, and some contain expressions
like u,/ ug where A is a complex number.

In this section we will look at a few examples where Rosenlicht’s theorem
(theorem 4 on page 13) guarantees that there exists a complete set of differ-
ential invariants which are rational in derivative coordinates (u, uy, Uyy, -..).
We will consider g = géo) with » = 4 in detail. It has a basis consisting of d,,
Oy, 0, + y0, + A0, and z0, + BJ,.

Since the action of g is transitive on C?, all orbits of g*) project onto C3.
Hence, to study the space of orbits on the level of k-jets we can restrict to
a fiber W,;(l)(()) and the action of the isotropy algebra of 0: gy = (B(z0, +
yd,) — A(x9,)). Consider the group of 1-jets of local diffeomorphisms of C?
at the point 0 € C?, denoted by J; (C3,C?), and let X;,Y;, U; be coordinates,
fori=1,2,3.

Consider the left action of gy on J3(C3, C?). Tt is easily checked that the
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functions
Xo Xz Yo YiXy Y3 VX3
X, Xy X, XX X2’
A B3
Ul7 U27 U37 Xle X1

are invariants of g(()l). The orbit of g((]l) going through idW is given by the
equations

X, Xy _Ys X

A2 =2 U =0
X, X5 Xi X2 P
Yo YiXp A BO
22 gy = XA =1

X, x2 T

We identify this orbit with the group corresponding to g(()l). We want to

determine whether this orbit is algebraic, i.e. given by rational equations.
The only equation that may potentially prevent this is

Y1
X{iePx = 1. (5.1)

Now we will study this orbit for different values of A and B.

Case 1 Let B=0and A # 0. Then (5.1) reduces to X{* = 1, which we
rewrite to X; = 1. Thus the orbit is defined by rational equations, which
means that ggl) acts algebraically. This means that there exists differential
invariants which are rational in derivative coordinates. This is in corre-
spondence with the differential invariants we found. For A = 1 they were
generated by

T T T ]‘
uyet, (ﬁ g tay ¥ ) (uge®)?, e (Dx Ul Dy> , —D,.
U

2 2
uy, Uplly — UZ y Uy

Case 2 Now, let both A and B be different from 0. If we fix all coordinates

except for Y7, the equation X f‘eB% = 1 has infinitely many zeroes, and hence
the orbit cannot be expressed by rational equations alone. Hence the action
of g((]l) is not algebraic, and we may expect to get differential invariants that
are not rational in derivative coordinates. When A = 1, the differential
invariants are generated by

2
Uy Uy, Uy Uyy Uy

. 1 . 1
B 4w+ log(u,), 2, —<Dx—ﬂpy>, —D,.
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Case 3 Finally, let A = 0 and B # 0. Now equation (5.1) reduces to

Y;
e g 1, which is equivalent to };—11 = (0. Hence the action is algebraic. If

B =1, the differential invariants are generated by

L
Uy, Uy Uyy Uy

x 1 x 1
O e

We summarize these results in a theorem.

Theorem 6. Consider the Lie algebra g = (0y, 0y, x0, + y0, + A0y, x0, +
BOd,). When A =0 and B # 0, or when A # 0 and B = 0, then g*) acts
algebraically on derivative coordinates. When AB # 0, then g does not act
algebraically in derivative coordinates.

In fact, when A = 0, the action of g*) is not only algebraic in derivative
coordinates, but also in base coordinates (x,y,u). However, a change of
coordinates does not in general preserve such algebraicity in base coordinates.
Algebraicity in derivative coordinates, on the other hand, is preserved. To
illustrate this, we look at the first prolongation of a point transformation:
(,y,u) — (a(x,y,u),b(x,y,u),c(x,y,u)). The derivative coordinates u,, u,
transforms according to the following formula:

-1

s Da) DPB)| D)
H
Uy Dy (a) Dy (D) Dy (c)

Recall that DS) = 0, +u,0, and D?(Jl) = 0y +u,0,. We see that expression on
the right-hand side is rational in u, and u,. In [KL13] the notion of algebraic
actions is used to formulate a global version of the Lie-Tresse theorem.

5.2 Projectable Lie algebras of vector fields

Consider the trivial bundle 7: C? x C — C2?. Recall that a vector field X
on C? x C is projectable if there exists a vector field Y on C? such that the
following diagram commutes.

C2x C—5T(C?xC)

T

Cz—X 5 7(C?)
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If z,y,u are coordinates on the bundle, then a projectable vector field is
of the form

a(z,y)0, + b(x,y)0, + c(x, y,u)0,.

Now, consider an r-dimensional Lie algebra g of vector fields on C? x C.
We call g = (X3, ..., X,) projectable if it consists only of projectable vector
fields, and regularly projectable if in addition dr: g — D (C?) is injective.

By lifting the algebras from the classifications of Lie, we have found a

local description of all regularly projectable Lie algebras of vector fields on
C? x C that are constant on the fibers of .

Theorem 7. Fvery regularly projectable finite-dimensional Lie algebra of
vector fields on the trivial bundle C* x C — C? that is constant on the fiber
has, on some open set, a differential invariant of order two.

Proof. Away from singular points, such a Lie algebra of vector fields is locally
equivalent to 91(0) for one of the Lie algebras in the classification. The theorem
follows from our list of differential invariants. ]

This is an interesting property, and for general Lie algebras of vector
fields on C? x C, there is no upper bound on the order of the lowest-order
differential invariant.

Consider for example the Lie algebra

Bs = (O, 0y, YOu, 0y, 20y — Y0y, 'y 0y | i+ 7 =0,1,..., 8).
Notice that this is constant on fibers, and projects (nonregularly) to gs.

Theorem 8. The Lie algebra b, has no differential invariants of order s.

Proof. If f is a differential invariant of b, then f = f(ug, uy,...). As-
sume that f = f(uzk, Upr—1,, Uzk-2,2,...). In other words, f is constant on
J¥ (7)) € J¥(m). The Lie algebra by, contains the vector fields

X; = ziyF0,, i=0,1,.. k.

We know that Xi(oo) =9, = Dy(¢)0,, where ¢ = (du — uydr — u,dy)(X) =
2'y*~*. Hence

%

k—1i '(k . 2)'
X(oo) _ L : i—n k—i—mau )
i Zzu—n)!(k—i—m)!x Y e

m=0 n=0

Since 8uwnym(f) =0 for n+m < k, we get
X ) = XP () =itk =)D, ,_, (f).
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For f to be a differential invariant of the by, we must have Xi(k)( f) =0 for
i = 0,1,...,k. This means that f does not depend on z*, z* 1y, ...,y*. By

induction, b has no differential invariants of order k. ]

Hence the lowest-order differential invariant of a nonregularly projectable
Lie algebra g of vector fields which is constant on fibers can be of arbitrarily
high order k. But the dimension of ker dr|, gives an upper bound on k.

From the list of differential invariants, we see that all the Lie algebras has
at least (g) differential invariants of order k for k > 2. We get the following
corollary.

Corollary 1. Let g € D(C? x C) be a projectable finite-dimensional Lie
algebra of vector fields which is constant on the fibers of m: C* x C — C? and
let k > 2. If dim(ker dr|y) < (g), then g has, on some open set, a differential
invariant of order k.

Proof. Locally, Imdr|, = g; where g; C D(C?) is an algebra from the clas-
sification. Hence g = gz(-o) U kerdr|,. If dim(kerdnl|y) < (g), then ker dr|,
©) of order k. [

%

cannot Kkill all the differential invariants of g

5.3 Differential equations and their symmetries

One important property of differential invariants is that they generate invari-
ant differential equations.

A scalar differential equation of two independent variables can be consid-
ered as a subset £ C J¥(C? x C) given by an equation:

E={F(x,y,u, Uy, Uy, ..., uyr) = 0}.

We will always assume that £ is regular, i.e. that the differential dF is
nonzero in a neighborhood of £. In this case, £ C J*(C? x C) is a regular
submanifold of dimension dim J*(C? x C) — 1.

The Lie algebra g C D(C? x C) is a symmetry algebra of £ if

X®B(F) = \F forevery X Cg (5.2)

where A € C¥(J*(C? x C)). If we set A = 0, the above equation tells us that
F is a differential invariant of g. In this way, the differential invariants of g
gives us invariant differential equations.

However, we do not get all invariant differential equations. In order to get
all of them, we should also consider cases where A # 0. Still, there is a sense
in which the differential invariants locally determine all invariant differential
equations.
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Theorem 9. Let § € J*(C? x C) be a generic point of g¥). There exists a
neighborhood U of 6 such that every g-invariant differential equation of order
k in U is given by F(Iy,...,1.), where I; are differential invariants of g of
order k.

Proof. Let g be a Lie algebra of vector fields on C? x C. In a neighborhood of
a generic point 6 € J*(C? x C), the prolonged Lie algebra g*) determines an
integrable distribution P whose maximal integral manifolds are the orbits of
g®). By Frobenius’ theorem there exists an open set W C J*(C?xC) contain-
ing 6 and local coordinates w',...,w™ on W such that P = (9,1, ..., 0ps). In
these coordinates maximal integral manifolds are given by equations w’™! =
Cly..., W™ = ¢,_s where ¢; € C. Now, consider a g-invariant differential
equation £ = {F(w',...,w™) = 0} C W. Since & is g-invariant, F' does not
depend on w!,...,w™, and hence & = {F(w*™,...,w™) = 0}. The coordi-
nates w*t!, ..., w™ correspond to differential invariants of order k of the Lie
algebra g. O]

Because of this we can use the differential invariants to locally describe all
g-invariant differential equations of order k£ in the neighborhood of a generic
point of g,

Example 2. Consider the Lie algebra g&%) = (O, 0y + 0y, 120+ 220, +€¥D,)
(C = 1). The generators span a three-dimensional vector space at every

point, and so does the generators of all prolongations of gﬁ?. FEvery differ-
ential invariant of this Lie algebra is generated by the differential invariants
Uy — u, 2uuy, + uge? — u? and the invariant derivations e¥ D, +2uD,, D,. In
particular there are five functionally independent differential invariants of
order two:

I = uy — u, Iy :Quuy—l—uxey—uQ,

J— _ Yy 2
Is = uyy — uy, Iy = ugye? + 2uuy,, —u”,

I5 = ugpe? — 2u(—e?(2uyy + uy) + u(u — uy — 2uy,))

Let £ C J*(C* x C) be an invariant differential equation. In some neighbor-
hood U of any point in J?(C?x C), we have ENU = {F (I, I, I3, Iy, I5) = 0}.
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Chapter 6

Appendix

Some of the expressions for the differential invariants are collected here.

2 2
Lai — I3 19 J33 + J5o J JazJ34
L A N e
23 23 23
Iy = (754J§3J32+18(J21J34+6J22J33)J§’371§J34(J33+4J222)J223+18J22J23J§4*J§4)2
‘]23

Isz = ((=72J3, 4 108.J31) J55 + (—324J00 T35 + 14403, Jo1 — 180.J21J53) J3s
+ (54 J34 50 + 18091 Jog J34 + 50433 T35 — T2.J0 + 90.J33) Jos

— 24034 (Jo1 J3q + 12J00 53 + 12.J5,) Jow + J3,(168.T5, + 24.J33) Jas

— 24Jo9 Jo3 T3, + J§4)/J263

_ Jis — 12(JogJsq + J33Jo1 — J3pJog — J33.J23)

Iy
J3s
J2
Ky = Jay — J—Z
J2
Ky =2
J3s
Koy — Jsz J34;]22
Jaz g
2
1 2J33J29 + J34J01 J31J3
Kso = — | Js2 — 2
32 o3 ( 32 o + 72
J33J: J3oJ. 2J53J2, + J34.J01J Jaa J3
Ky = Joy — 322omt E el g2y & Tl oty
J23 J23 J23
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a1 = ( - 12J31J§13 + 12J43J§’3 - 12J§3J223 + 24J221J§3 - 3J§4J33
+ 48033035 T3y — 4834 Jo3 Sy — 124402 Joy — 4851 T35 J3,
+ 6J3, 5 + 2405 Ty — 1254050 T2 + 24434003 — 12.J01 J33. T,
+ 24051 J31 35 J00 + 18J34 05302322 [ (s (12J0a T35 — 360325
— 3J3, — 12J450 55 J20 — 30J34 53 55 + 7233 55 Jon + 12.J01 J34 T3,
— 48.J34 03505, 4 30J3,Ja3J0 + 2J45J34.J23))
Jas
72033 T3J00 + 12001 34 Ty — 48054 T2, T2, + 302, Jo3J0s + 2Ju5 JasJs)
_ J3s
g (Jaad + Jsadd — 2J33023002)
203035 — J51J3y — Adar Jaz 3, + 250 Ja3 00 + 255 — J33J5
- Uy (J3a 3y + J32J35 — 2J33J23.J20)
= (2J21J23 C2J2 + JorJas — 2Js0dan + J31J23>e‘2" / (u§u§(4J33J232

+ 203403y — 202 Joy + 2J34Tsn oy — 2J01 Jsu ey — 23005305
— 4J33J03J00 + 2J30 035 + 2J01 T30 oy + J33J30.003

— J31 3403 + 2J3) T34 oz — 4J21J33J23J22)>

ay = "2 (12044035 — 363255 — 3J5; — 12J45J53.T22 — 30J34J53.03,

Qs

Qg

Br=— <2<]21J23 — 2J35 — JorJsa + JorJss + 2053000 — 25002
N J31J23>e_2“ / <u§ug(4J33J§2 25002, — 202 Jon + 2034 32T
— 2J21J34J222 — 2J32J23J222 — 4332392 + 2J32J223 + 2J21J32J223 + J33J32.J03
— J31J3ados 4 203 34 Ja3 — 4J21J33J23J22)>

ag = <2J23 — 22, 4 21 oy + Jgg)e*% / (u§u§(4J33J§2 420502 — 22, o
+ 23430090 — 2J21J34J222 - 2J32J23J222 — 4J33.J53. 090 + 2J32J223 + 2J21J32J223
+ Ja3 32 Jo3 — Js1J3aSas + 2J3 Jag oz — 4J21J33J23J22)>

By = — (225 + 2Iar oy = 20 — Jaa g e 2 [ (w2 (Wsa Ty + 2050 T
— 2035 T + 2Ja4 30 Jog — 291 Jsudyy — 2J30 003050 — 4T3z J03 0 + 2J30. 5
+ 2051 J32J35 + Jaz 2oz — Ja1Jsados + 203 JsaJas — 4J21J33J23J22)>
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1
L§2 = E <( (—a12u + 2ui0q + usasay — ulyl) U2
— U2 (Uz (o — ag) — u1,2) )01,1 + U ((UOéQ —up) upp + U2U1,2) )
1

L%; = u_22 (( - UQsOéQOély + ((UOCQ — Ul) a1 — QU + ul,l) U22

+ 2 U1,2 (—Ul + alu) (%) -+ U272 (—u1 + alu)2 )C1y1 + U23u (Oél — Oég) >

111 _ 1
2 = T o~
U2202,0

( (—02,0043061y —u(—as+ az) (o — a2)) us’

+ Oy (042 (—as+ag+ar)u+u g —uoq — OZ3U1) Uuy?

+ 2wy 2050 (wag — uy) ug + Uz 2C 0 (uay — U1)2 >
1

211
Ly =—
U

(< - u23ya12 + ((—oz22 + 2 042041) u— 2uiaq + um) Us?
+ 2 ’LLLQ (U,Oég — Ul) U9 + u272 (U,Oég — U1)2 >0270 + ’LL23U, (a1 — 0[2)2>

Ly= <((—U + yus) on® + 2w — ) U + U1,22> Ci2 — 2ugpuus
1
2 Cl,l2 + usCh o
+ ((-Ul + Oélu) U2,2 + UQULQ) )Cl’g
1

L3 = u_( <((_U + yug) @y + 2upay — U1,1) Ug o + U1,22> 01,22
2,2

33 __
L21 -

< (2u12 + 2a1uz2y) C1i” + 2uz0uCly

+ ( ((<_2u - 2yu2> aq + 2“1) Cl}l — 2U2’LL> 'U,272
—4 C’1,1U2U1,2> Cio—4 ((C’l,laly + u) U + uLQCLI) C1,12)
1
Ly = — (2 (Cl,l —1/2C15 (00 — 042)) Uy 2y

U22

+ ( (2 Qo 1YUg 2 — 2U172 (Oél — 042)) 01712 + 2 (UOQ — U1> 'U/Q’QCLl
— Cl72u272 (Oél — Oég) <—U1 + Oélu) >U2

-2 ((Oqgu — 2wy + u1,1) U9 — U1,22> 01,12>
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42
L2

43
L2

212
L21

212
L22

212 _
Ly~ =

22
L2

1
- u_( (6 Oélu272y -+ 67]11’2) 01713 + 6 0171271/2’2'&
2,2

+ <(<—U + yug) @y + 2upay — U1,1) U2 + U1,22> C13C11

+ up ((_ul + alu) U2,2 + U2U1,2) 0173>

1
= —(( (—3 ar’u + 6uroq + 3 oq2yus — 3u171) 01722 — 6uguC 2
U2,2

-2 U2CL3 <_U1 + Oé1U) >UQ,2 -2 u22C’1,3u1,2 + 3 01722151’22)
1

B (o1 — a2) (us — Cop) Cra + Cagus < (a2 — ) ( (rus oy + u12) Cap

+ UrUz2 — Q1 UU2 2 — U2U1,2)Cl,1 + sy (U2,2U042 — UrUz2 + UQULZ) >

1
= u_(< — a’yCyug g + ((2 Yuo oo — u12) Cig + uQ,quy> a?
2,2

+ <—a2 (yu2,2042 - 2“1,2) Ciy+ 2“2“1,2) a1 — U1,201,10422

+ (—ur1 — '+ 2a0ur) Uz — 2 anust o + u1,22)C’2,02

+ (1 — an) (CLIUM (u + yug) ar® + (( ((—u — yu2) az — ug) uss
+ 2U2U1,2)Cl,1 - U2,2UU2>041 + s (Uluz,z - 2U2U1,2) C1,1

— Uy ((—2 Uy + ug) ugg + 2 ugul,g) )C’g,o

2
- 01,1U2 (041 - 042) (041UU2,2 — UlUg 2 + U2U1,2) >
1

(041 - 042) Uz 2

+ <UQ,2 <u@2 + ag (—u + C’z,oy)> ag + (a3 — az) (uLQCg’O + ulum) >u2

((041 — ) (101,21622 (—as + az)

2
o ((ua2 — u1) U200 — UilU220p — Uy 2" + U1,1U2,2) Cz,o) Cia

+ us (a1 — ) ((ua2 —up) U + UQULQ) C’Q,O>
1

- u_(< ((u2a2a1y + (u1 — uoz) aq + aguy — ul,l) U2 + u1,22> Caq
2,2

+ up (0w — wy)ugp + uzul,2)> Cha + uaCa ((uae — up) ugp + u2u172)>
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312
L2

112
L21

112
L22

1
= o aag (@1 ) (vaata (u+ Cogp) o’
1— Q) Uzo

+ (((u1 — UOQ) 0270 + U2 (UOQ + ul)) Uz,2 — U2U7 2 (Ug — 02,0)> (6%}
+ ((—Um + 042”1) Copo — U1U2062> Ug 2 + U1,2( (—042U2 + U1,2) Cay

+ 042U22)>01,2 + 2uy ((UOéz —Uup) U2 + u2U1,2) CQ,O)
1
— —( — 2 Ul’g (0270 + ]./2 02’1 (Oél — OéQ)) (Oél — 012) U22

U2.2

+ ((02,02a12y — (o1 — ag) (a1u — 2u; + uay) Cayp
- 02,1 (041 - a2)2 (UOéz - Ul) )U2,2 +2 02,021/4,2 (Oél - 042) >U2

— 02,02 <(0422U +uy — 2 062“1) U2 — u1,22> )
: (
((—CY2 + a3) Cs0 + uz (a1 — 043)) Cs0 — Csous (a1 — )

( — (—ag + az) (041U2,2y + U1,2) Cs0+ (a1 — ag) ( (uag — uy) ug o

+ U2U1,2))02,0 - ((—Ul + asu) ugp + U2U1,2) (1 — ) C3,0>

1

- (_053 + 052) U9 2 (< <_CY3 + aQ) ((ya12u2,2 + 2/1,61’2(—1/2 9 + oy

— 1/2 Ctg))’dz + ((—agu + Ul) Qg — Uy + agul) Uz 2 + U1722>03,0
— Ug ((U,Oég — Ul) U2’2 + UQULQ) (Ozl — Oé3)2 >CQ70 —+ UQ( (—u1 —+ Oé3u) u2,2

+ u2U1,2) (041 - a2)2 Ca,o)

1
= 12 aqyCy 1% + 12uC 12
(2 01730171 B 301722) Upo (( 1YL 1,1

+ (((6U + 6yU2)Oél — 6U1)CL2 + 2 01’3((—u + yUQ) 0612 + 2U1()41

- u1,1)>C'171 + ((3u — 3yug) a1’ — 6ujoq + 3u1,1) 01,22 + 6 uouCh o
+2usCh 3 (—uy + aqu) )U2,2 +2uyp (6 C'1,13 + (01,3U1,2 +6 U2CL2) Cia

— 3/2 U/LQCLQQ + UQ2CL3>>
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313
2

221
L2 —

: (
(2 C2,0C11 — C12C 000 + C1 2C gy + 2 C'1,12061 -2 01,12042) U3 2

Uz (2C10% +1Cha) (—u+ Cagy) ar® + (((2yus +2u = 4Co09)C1°
+ Chp ((u 4 yus) Cog — 2usu) Jug s + g (4Cy 2

+ Craluz + Co0))tiag = i (2C1% + 421 2) (13 = Cag) Yo

- ( —2 (1/2C12u + yC11%) uzs (us — Cap) ao® + (( — 40 1%

+ (4w +2yuz) Cop + 2ugu) Cry — 2usClaus J o + 2up 2(2 Cy.?
+ u2C2) (up — Cay) >a2 + ug,g( —2u11011% — 2wy (u2 — 2Cs) Cha

2 u1,2C1,2C3,
— U1,1C1,202,0) + 2uy 9 <U1,201,1 + ug (U2 - 02,0) Ci1+ %) >041

uy — Cay) ((—01,2U1/2 +uClh) ugp + 222 (2014 + U201,2)> s

2
+(
2

~—

/N

2 U1,101,12 + 20 quguy + Cap (U1,101,2 +2 U2U)> U2 2

~

U1,201,12 + u2 (Uz - 02,0) Cip+1/2 U1,2C1,202,0)U1,2>042

—2 02,0( (U1U2 + U1,1C1,1) U2 — U1,2U22 - U1,2201,1))
1

(041 — Q2

+ ag (—u + C'Q,oy) )041 — (a3 + o) (U1,202,0 + U1U2,2) )U2

((Oél — 042) (ULQT,ng (—063 + 062) + (u2’2 (UO[Q
) U229

2
- ((UOQ - U1) Ug200] — U Uz 2002 — U1 2" + U1,1U2,2) Cz,o) 01,1

+ uy (o — a3) ((UOé2 — 1) ug o + U2U1,2) 0270)

1

- — — 2
R ((c1 — ) Ci,1 + Cap) Cha ( (1 — ) (U2,2 (—u 4+ yCap)

+ ((y (U2 — C'2,0) o + 2u1) Ug9 — Up 2 (U2 - 02,0)) Q) — U 2U7 1
+ <(U2 - 0270) Qg + U1,2) U1,2)C1,12 + (((((—QU + yuz)Ca
+ UU2)042 — Uy (—2 Coo + U2) )U2,2 + UsU1 2 (U2 - Cz,o) )041

2
+ (—U (U2 — 02,0) Q2" + UsoUuy — u1,102,0) U2.2

- <U2 (UQ - 02,0) Qg — U1,202,0> U1,2> Ci1+ Cyp ((UCYQ —uy) Ug 2 + U2U1,2) u2>
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32
L22

223
LQ

1
= _<<(0412yc2,0 — (o0 — ) (g — 2uy + ua) Jus

— Cap (=2 00wy + g + uan®) )Uz,z —2us ((1 — a2) ug® — Co (a1 — ) up — 1/2 3 2Co) >

1
T2 (( — up’yan® + (a12u — 2w + U1,1) Up? + 2up g (—up + aqu) ug
2

+ Uz,2 (—Ul + CY1U>2 )01’2 + 2 u23u)

1
B (—01,1a2202,1 + Cy0® — C11012Co 1 + 204202,101,1041) U2 <UQ’2<
— O (yus — u) o + (02,01/ - U) ug — Coqup — yC'2,02 + UCz,o) C'1,10413
+ (2 Cy1Cy g o (yug — u)as — 2 U2,2(((C2,oy —u)uy + uCyp — yCy°
— C'2,1U1/2) Cia+1/2 U02,1U2>042 + ( (—02,0U1 + uyug + 02,1U1,1) U2
— U12 (CQ,1U1,2 —2C5pus + C'2,02 + U22) )01,1 + UQ((Cz,lul + yczz,o
—uCy)ug g — 02,1U1,2U2)>Oé12 + ( — Cy1C1ug2 (—u + yusg) ay®
+ Ug (((—u + Cooy)us + uCsp — yCap” + Coyur ) Crq + 2 ungluz)aQZ
+ (((2 Coour — 2ugug — 2 Cyquyq)ugg + 2up o(Corur g — 2 Copus
+ C'2,02 + U22)>01,1 —2uCy (—U2U1,2 + U1U2,2) )CY2 + 205 pus (U1U2,2

— Uy 9(ug — 02,0))>041 — U220 (UQU + Ulol,l) ag® + (((—02,0U1
+ urug + Co g 1 )uge — U1 2(Coiur 2 — 2 Copug + 02,02 + U22))Cl,1
+ ((Ucz,o + 02,1161) Uy — Cz,OZU) Uz — C'2,17«622U1,2)C‘é22

-2 02,0 (UQ - C2,0) (—U2U1,2 + U1U2,2) Oy — Cz,o2 (U1,1U2,2 - U1,22) )
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L;lll — —u2<( (—as + az) (U1,2 + a4yu2,2) Cs0 — (a2 — ) (U2
+ ug oyar3)Cuo + (—ou + o) (U2,2U042 — Ug2U7 + U2U1,2) )02,0

+ ( (—ay + a3) (Ul,z + 042“2,29) Cyo — (a2 — o) (gug ot — ug 2wy

+ usti12)) Ca0 + Cuo (—a3 + ) (Ustr 2 — ooty + Qguus ) >a12+
(( (—as + az) ( — Uz oy (—ay + ag) (g — ay) Cuo + (guz2u — Uz 02Uy
+ uguy o) + (U2U1,2 - U2,2U1) 0 U1,22 + oszsz,Q + u2,2u1,1)0370
- ( (Uzul,z — U 2U1 + 044UU2,2) Qo + 0432U2?JU2,2 + (U2U1,2 - U2,2U1) Qy
— Uy + uQ,guM) (a2 — ) Cuo + us (—au + as) (a3 + au) (ugpuas
— Uz 2U1 + U2U1,2)>02,0 + ((u2a22yu2,2 + (U2U1,2 — Ug2Uy + 044UU2,2) Qg
+ (U2U1,2 - U2,2U1) Qy — U1,22 + U2,2U1,1) (—ay + a3) Cyp

— Uy (a2 — o) (g + ay) (043U2,2U — Ug2U1 + U2U1,2) )03,0

+ usClap (—ag + az) (g + a3) (U2U1,2 — Ug2U1 + CY4UU2,2) )Oél

+ ( — (ul,g (—ay+ as) (g — ay) Cap + a4((a3uQ,2u — U Uy

+ gty 2) g + (U2U1,2 — U2,2U1) Q3 — Ul 2 + U2 2U7 1

- U1,22)) (—063 + 062) C'3,0 - ( - (042 - 044) ((U2U1,2 — U2, 2U1

+ quug 9 )0y — UsCrzU o + (U2U1,2 - U2,2U1) oy — U1,22 + U2,2U1,1)C4,0
+ ugry (—auy + a3) (U2,2U042 — Ug2U1 + U2U1,2) )043> Ca0

+ (( — ( — Uy o0t + (UgUly 9 — U oUy + QU9 2) s + (Ul 2

— U 2Uy )Oly — U1,22 + U2,2U1,1) (—au + a3) Cyp

+ vy (2 — ou) (o U — U oty + Usly 2) )03,0

— usCypas (—az + az) (U2U1,2 — Ug2U7 + 044UU2,2) )062
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(01(2) (~as (2) fhaa () + a3 (x) oy (2)) w2 (
UQ((UQ,QU%@ (2) + a3 () w2) g (@) + (= w1202 ()
iag (1) = (= a3 (@) 02 (0)
) uQulz—i—Uﬂng)) 01 () + (e (2)) (

+ as
— Uy <uz,guﬁa3 (2) — a3 (z) (—usur o + urus ) &y (2)
+ Uy (uz,zu%az (z) — as (z) (—usur 2 + urug ) & b3 (2)

+ (U2,2U%G3 () —az (x) ( UgU1,2 + U1U2,2)) 22 as ()
—U2,2U%a2 (x) + as (x) (—U2U1,2 + U1U2,2)> j—;za:a (z)

(
_ <_a3 (z) Lay (z) + a2 (x) Las (w>) (w1122 = w12”) ))

1

A



= (wa((Fas(0)as(@) = as(x) as(2) fa(x) + (Ear(e))as(x)
— (gras(@))as(2)) 2 ds(x) + (L oa(2))(—as(r) faz(w)
+a2($)£a3($)))>_1 s ((—u(Eaa(r))ugs + as(z)(—ugui o
+urus2)) o ds (@) + (uspugras(e) — az(w)(—ugwr 2 + wrus2)) g da(w)

- U1,2((dcia4($ Jaz(z) — a4(I)dCf,;a3(fC)))dx2¢2( ) —ua((— U(%%(x))uz‘,z
+ a4( )( UgUy 2 + U1U2,2))dm¢2( ) + (U2 2Ud(ia2(fl7) - ag(x)(—uwm
+ugtin2)) 2 hy(r) — ur (4 as(x))as(x) — (Laz(r))as(z))) 1 ¢s(x)
+ ug ((—uq Qud‘iag( )+ az(x)(—ugui o + U1U2’2>)%¢2<3§’) + (ugpuas(z)
— as(7)(—uzui 2 + urtz2)) L 03(x) — ui2(—az() Laz(w)
+ ag(w) fas(x )))%@( ) + ((u(ghaa())ugs — as(z)(—uguy o
+ u1u2,2>)dz¢3( x) + (—uq QUdia{i( )+ as(x)(—ugui 2 + U1u2,2))%¢4($)
+ura((Faa(x))as(x) — as(x) Las(z )))d‘fzaz(x) + ((—u(Laa(z))uss
+ as(2)(—usur g + uruo2)) L do(x) + (Uzpu-tas(x) — as(x)(—usus
+uruz)) g éa(r) — ui2((4 ( ))as(x) — (as(x))as(z))) fzas(x)
+ ((ugpuftas(v) — ag(w)(—ugur o + urugg)) f-da(x) + (—ugpu f-as(x)
+ as(z )(—U2U12+U1U22))d () + w1 o(—as(x) Las(x)
iaa(2))as(z) — ay(z) Fas(x)) oo (x)

2(2)) b3 (@) + (G oa (@) (—as(w) fas(x)

(((
))az(z
U1,2 ))

— U222 Uzzuda:% z
)>( 2 (wzaugbas (@)

Unls 22 (—a3 (x) %ag (x) + az (x) %ag (x

+ as (1) fras(2))) sz aa(e) +
+((fa (x))a4(w) (fraa(z

+G2() Cl3( )(up g0 —

—ag (z) (—ugur 2 + uyusy) > Loag (x) + ( — Uz utay (z)
“+ ag (33) ’11,2’22 (—UQULQ + ’U/1U2,2) >dd?a3 (.T) + ( - U2723U1,1
+ (U1,22 + U2U1,1,2) U2,22 -2 Uzl 2U7 22U2 2 + U2u2,2,2u1,22> (

— s (1) e (0) + 2 (0) s (0))
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