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A Multiscale Wavelet-based Test for Isotropy of
Random Fields on a Regular Lattice

Kevin Thon∗, Marc Geilhufe, and Donald B. Percival

Abstract—A test for isotropy of images modeled as stationary
or intrinsically stationary random fields on a lattice is developed.
The test is based on wavelet theory, and can operate on the
horizontal and vertical scale of choice, or on any combination
of scales. Scale is introduced through the wavelet variances
(sometimes referred to as the wavelet power spectrum), which
decompose the variance over different horizontal and vertical
spatial scales. The method is more general than existing tests for
isotropy, since it handles intrinsically stationary random fields
as well as second-order stationary fields. The performance of the
method is demonstrated on samples from different (an)isotropic
random fields, and compared to three existing methods. It
is competitive with or outperforms existing methods since it
consistently rejects close to the nominal level for isotropic fields
while having a rejection rate for anisotropic fields comparable
to the existing methods in the stationary case, and superior in
the intrinsic case. As practical examples, paper density images
of handsheets and mammogram images are analyzed.

Index Terms—Maximal overlap discrete wavelet transform,
wavelet variance, isotropy, anisotropy, random fields.

EDICS Category: TEC-MRS

I. INTRODUCTION

The use of random fields is ubiquitous in the study of natural
processes and in image analysis. A common assumption,
usually made for simplicity and computational purposes, is
that the field in question is isotropic [46], meaning that the
variability in the random field is independent of direction;
however, many processes have a clear directional component.
For example, an image of ocean waves would likely have a
clear directionality determined by the dominant wind direc-
tion [1], as would ripples in sediment surfaces in shallow
water formed by waves [34]. As part of seabed texture
characterization, it is of interest to determine the presence of
anisotropy in images of the seafloor obtained by autonomous
underwater vehicles with high-resolution, side-looking sonars
[10, 15, 17]. Anisotropy is indicative of areas of sand ripples,
and knowledge of their location will lead to improvements in
automatic target recognition. The visibility of sand ripples in
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sonar images is dependent on the viewing angle and can be
impaired if observed from a vehicle on a path perpendicular
to the sand ripple field’s major orientation. In radiographic
images of bone the presence of directionalities has been
shown to be a useful predictor of fracture risk [3], and in
[12], the level of anisotropy of plastic food wrapping is
connected to it having a higher tendency for micro-organisms
to adhere. A discussant for this paper specifically pointed
out the need for a test for isotropy. In modern cosmology
a topic currently receiving much attention is whether the
cosmic microwave background radiation is isotropic [7]. The
presence of anisotropies challenges the standard cosmological
model and points to the importance of a test for isotropy for
understanding the very nature of our universe (the random field
resides on a spherical grid in this case).

The examples above include both stationary and intrinsically
stationary random field models, and in this paper we will
present a new way to test for isotropy of both models. The
proposed method is based on the variances of the coefficients
from the two-dimensional maximal overlap discrete wavelet
transform (MODWT), a non-subsampled and shift invariant
version of the discrete wavelet transform. Originally wavelet
variance was used in the study of time series, decomposing
the variance of the time series over different temporal scales
[41]. In the context of spatial processes or images, the wavelet
variance can be used to decompose the variance over different
spatial scales. Papers in this journal that have investigated this
topic include [48], where wavelet variances are used for the
classification and segmentation of textures, and [40], where
many of the statistical properties of wavelet variances are
worked out and alternative variance decompositions are given.
Wavelet variances have also been used in, e.g., the analysis of
soil properties and variations [32, 31], aerial photographs of
lake patterns [38], sea ice synthetic aperture images [18], and
texture analysis based on locally stationary wavelet fields [14].

Currently there exist several approaches for assessing the
presence of anisotropy. Arguably the most common is a visual
evaluation based on variograms (a more general construct than
the covariance for expressing variability in a random field) for
different lags plotted in a rose diagram to find the anisotropy
axis [23]. The use of variograms is natural to identify and
model isotropy or anisotropy of random fields [8, 6], and
several formal statistical tests for isotropy exist that are based
on comparing variogram values over different lags [20, 46, 35].
Tests have also been developed using the periodogram to
assess certain symmetry conditions [44, 33]. In [39], a test
based on bivariate circular statistics and subsampling is derived
to detect anisotropy, and in [5] a test for isotropy for affine
processes based on level sets is developed. All of the tests
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above have been developed for stationary fields. For intrinsi-
cally stationary fields the only formal test we know of uses a
fractional Brownian field as a null hypothesis and is based on
evaluation of the Hurst index in different directions [43].

The main contribution of this paper is the development of a
scale-based test for isotropy of random fields. Our test differs
from existing ones in that it can be tuned to include exactly
the scales of interest for the application at hand and that it
can handle both intrinsically stationary and stationary random
fields. The performance of our test will be demonstrated on
realizations from (intrinsically) stationary random fields with
different underlying covariance functions (or variograms in the
intrinsic case), ranging from weakly to strongly correlated
processes. We compare our proposed tests to the methods
described in [20, 33, 43]. We focus on these three particular
methods because they are statistical tests especially devel-
oped for random fields on a regular two-dimensional lattice,
and they represent conceptually different ways of assessing
isotropy, from variograms [20] and periodograms [33] in
the stationary case to directional Hurst indices [43] in the
intrinsically stationary case of fractional Brownian fields.

The remainder of the paper is organized as follows. Sec-
tion II introduces necessary spatial concepts needed for the
assessment of isotropy. Theoretical background on the two-
dimensional MODWT wavelet coefficients and estimators of
the wavelet variance is given in Section III. The test for
isotropy including derivation of necessary estimators is de-
veloped in Section IV. Examples of (Gaussian) isotropic and
anisotropic random fields with different correlation structures
are presented in Sections V, which are used in Section VI to
check the validity of the asymptotics used for deriving the test
statistic, and in Section VII for a simulation study including
a comparison of the presented approach with several existing
methods. Finally we investigate the presence of isotropy in
two practical examples using paper density images in Section
VIII and mammogram images in Section IX (the former are
modeled as stationary fields, and the latter, as intrinsically
stationary fields). Our findings are summarized and discussed
in Section X.

II. ISOTROPY

Let {Xu,v : (u,v) ∈ Z2} denote a random field or ran-
dom process on a lattice. A random field is second-order
stationary (also known as weak or wide-sense stationary)
when it has constant mean and the covariance between its
elements only depends on the relative displacement of the
locations; i.e., C(κκκ) = sX ,κ1,κ2 = cov(Xu,v,Xu+κ1,v+κ2) for all
lags κκκ = (κ1,κ2) ∈ Z2. We will henceforth refer to second-
order stationarity simply as stationarity. A more general class
of random fields is that of intrinsic random fields, which
are defined in terms of their increments being stationary.
Following [29, 40], the random field {Xu,v} is intrinsically
stationary of order d if all increment processes of order d
are stationary. In this paper we will solely deal with intrinsic
stationarity of order 1 (henceforth referred to as intrinsic
stationarity); i.e., the increments have constant mean, usually
expressed as 0, and finite variance, which we express in terms

of the semivariogram γ(κκκ)= γX ,κ1,κ2 =
1
2 var(Xu,v−Xu+κ1,v+κ2)

for all κκκ = (κ1,κ2) ∈ Z2. The quantity 2γ(κκκ) is known as
variogram.

If the semivariogram of a (intrinsically) stationary process
{Xu,v} is only a function of magnitude and not direction,
i.e., γ(κκκ) = γ(||κκκ||), then {Xu,v} is called isotropic, other-
wise anisotropic. Note that for stationary processes γ(κκκ) =
C(0)−C(κκκ) [8] and for stationary isotropic processes C(κκκ) =
C(||κκκ||). For intrinsically stationary processes the variance is
allowed to be infinite; i.e., the covariance C(κκκ) need not exist
in the intrinsic case. Anisotropy occurs when the underlying
process evolves differentially in space. As [8] notes, sometimes
a linear transformation can correct anisotropy; i.e., there exists
a positive definite matrix B (rotation and scaling) for which the
anisotropic semivariogram γ(κκκ) = γ0

(√
κκκT Bκκκ

)
for all lags

κκκ ∈ Z2, where γ0 is an isotropic semivariogram. This case is
commonly known as geometric anisotropy. There also exist
anisotropy types which are not geometric. These are often
collectively referred to as zonal anisotropy [26], although there
is some ambiguity as to the precise definition and classification
of the non-geometric anisotropy types. For instance in [6]
the anisotropy types are classified as geometric and zonal,
but in addition a third type is introduced which is simply
referred to as other anisotropies. An alternative and more
detailed classification of types of anisotropy was proposed by
[49]. In this paper we will for simplicity exclusively consider
geometric anisotropy. The performance for other types of
anisotropies is discussed in [16].

III. WAVELET VARIANCE BACKGROUND

Let {h1,l : l = 0, . . . ,L− 1} and {g1,l : l = 0, . . . ,L− 1}
denote, respectively, the unit level one-dimensional MODWT
wavelet and scaling filters. The filters are from the commonly
used Daubechies class, and are of even length L and have
L/2 vanishing moments [41, 11]. This class is divided into
two families of filters, the Debauchies extremal phase filters
D(L) and the least asymmetric filters LA(L). The simplest
Daubechies wavelet is D(2), more commonly known as the
Haar filter. The Haar wavelet filter {1/2,−1/2} yields a
contrast between adjacent data values, while the scaling filter
{1/2,1/2} produces an average. In this paper we will focus
on Haar, D(4) and LA(8) filters. The MODWT filters for level
j are of length L j = (2 j − 1)(L− 1)+ 1. They are obtained
by operations on the unit-level filters that can be computed
with (inverse) Fourier transforms and a normalization such
that ∑l h2

j,l = ∑l g2
j,l = 1/2 j (see, e.g., [41] for more details).

Building a tensor product of the filters on a lattice process
{Xu,v} yields the two-dimensional wavelet coefficients for
levels j and j′ [40]; i.e.,

Wj, j′(u,v) =
L j−1

∑
l=0

L j′−1

∑
l′=0

h j,lh j′,l′Xu−l,v−l′ , (1)

U j, j′(u,v) =
L j−1

∑
l=0

L j′−1

∑
l′=0

g j,lh j′,l′Xu−l,v−l′ , (2)
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Vj, j′(u,v) =
L j−1

∑
l=0

L j′−1

∑
l′=0

h j,lg j′,l′Xu−l,v−l′ , (3)

Equations (1) – (3) describe wavelet-wavelet (ww), scaling-
wavelet (sw) and wavelet-scaling (ws) coefficients. They differ
by the application of either the wavelet or scaling filter to the
rows and/or columns of {Xu,v}.

Let τ j = 2 j−1 denote the scale associated with level j.
The notion of scale is fundamental in wavelet analysis and is
related to how much data are effectively covered (or spanned)
by a particular filter. A scaling filter {g j,l} produces weighted
averages over a scale of 2τ j, whereas a wavelet filter essen-
tially produces differences of adjacent weighted averages, each
of which has a scale of τ j. Hence, the sw process {U j, j′,u,v}
is associated with changes at scale τ j′ = 2 j′−1 of the row
averages corresponding to scale 2τ j. Similarly, the ws process
{Vj, j′,u,v} is associated with changes at scale τ j = 2 j−1 of the
column averages corresponding to scale 2τ j′ . The ww process
{Wj, j′,u,v} is associated with changes along the rows at scale
τ j and along the columns at scale τ j′ .

The coefficients can be calculated efficiently by a two-
dimensional pyramid algorithm described in [18] for all pos-
sible combinations of levels j and j′. Note that it is common
in the literature to focus only on the case where j = j′; i.e.,
the same scales are considered for the horizontal and vertical
direction (see, e.g., [19]). Following the convention in [40, 18]
we will refer to this as the diagonal case, which is not to
be confused with the nomenclature in, e.g., [32], where the
term refers to the part of the decomposition involving ww
coefficients.

Let C stand for the coefficients listed in Equations (1) –
(3), i.e., W , U or V . Then the variance of C for levels j, j′

is defined as ν2
C, j, j′ = var{C j, j′(u,v)}. For an (intrinsically)

stationary field {Xu,v} with known semivariogram γX ,κ1,κ2 the
wavelet variances can be written as

ν
2
W, j, j′ =−

L j−1

∑
l,l′=0

L j′−1

∑
k,k′=0

h j,lh j,l′h j′,kh j′,k′γX ,l−l′,k−k′ , (4)

ν
2
U, j, j′ =−

L j−1

∑
l,l′=0

L j′−1

∑
k,k′=0

g j,lh j,l′g j′,kh j′,k′γX ,l−l′,k−k′ , (5)

ν
2
V, j, j′ =−

L j−1

∑
l,l′=0

L j′−1

∑
k,k′=0

h j,lg j,l′h j′,kg j′,k′γX ,l−l′,k−k′ . (6)

When {Xu,v} is stationary, we can express Equations (4) – (6)
equivalently in terms of its covariance function sX ,κ1,κ2 ,

ν
2
W, j, j′ =

L j−1

∑
l,l′=0

L j′−1

∑
k,k′=0

h j,lh j,l′h j′,kh j′,k′sX ,l−l′,k−k′ .

Similar forms exist for ν2
U, j, j′ and ν2

V, j, j′ .
As shown in [40] an unbiased estimator for the wavelet

variances of a realization of {Xu,v} on a finite grid of size
N×M is given by

ν̂
2
C, j, j′ =

1
N jM j′

N−1

∑
u=L j−1

M−1

∑
v=L j′−1

C2
j, j′(u,v), (7)

where N j = N−L j +1, M j′ = M−L j′ +1 (this presumes the
level j is small enough so that N j > 0 and M j′ > 0).

IV. TEST FOR ISOTROPY

For an isotropic (intrinsically) stationary process γX ,κ1,κ2 =

γ

(√
κ2

1 +κ2
2

)
= γX ,κ2,κ1 , (κ1,κ2)∈Z2. A necessary condition

for isotropy is therefore that

γX ,κ1,κ2 = γX ,κ2,κ1 . (8)

For a realization from a random field {Xu,v}, we will test the
validity of Eq. (8) by looking at the variances of the wavelet
coefficients from Equations (1) – (3), which capture distinct
features in {Xu,v}. The sw coefficients U j, j′ are constructed
from the original image by applying differencing filters of
length L j′ in the horizontal direction and averaging filters
of length L j vertically. The ws coefficients Vj, j′ , on the
other hand are constructed by applying averaging filters of
length L j′ in the horizontal direction and differencing filters
of length L j vertically. When the random field is isotropic, the
variance of the sw coefficients indexed j, j′ should therefore
be equal to the variance of the ws coefficients indexed j′, j; i.e.
ν2

U, j, j′ = ν2
V, j′, j. The ww coefficients Wj, j′ are built somewhat

differently. Here averages over diagonal blocks vs. counter
diagonal blocks are created leading to the symmetry condition
ν2

W, j, j′ = ν2
W, j′, j if the field in question is isotropic. These

relations are also readily deduced from Equations (4) – (6)
when the condition in Eq. (8) is fulfilled, in which case the
following relations are valid under the null hypothesis H0 of
isotropy:

ν
2
U, j, j′ = ν

2
V, j′, j ⇔ log

(
ν2

U, j, j′

ν2
V, j′, j

)
= 0, (9)

ν
2
W, j, j′ = ν

2
W, j′, j ⇔ log

(
ν2

W, j, j′

ν2
W, j′, j

)
= 0. (10)

A test for isotropy can therefore be constructed using any
of the ratios above, or any combination of them, replacing
the variances with their estimators from Eq. (7) and using
large sample results to approximate their distributions. The
estimators are shown in [40] to be unbiased and asymptotically
normal. Hence the delta method [13] may be used to find the
asymptotic distribution of the log-ratios in question, leading
to a statistical test for isotropy. The log-ratios are chosen as a
test statistic rather than the ratios themselves since a test that
is simultaneous over several ratios can readily be developed
through simple matrix operations for the log-ratio case (this
is not the case for the ratios directly). In the subsections
that follow, we first derive the test for single ratios and
subsequently a simultaneous test over all ratios of interest
(Matlab code for the tests is available from the authors).

Prior to developing the proposed test, we note one important
potential weakness, namely that the log-ratios will be zero
for the geometrically anisotropic case when the direction of
anisotropy is 45◦ to the image axes, since the condition
in Eq. (8) will be met for this anomalous case. To guard
against this pitfall, we propose a two-stage test where both
the image and a 45◦ rotated version of the image are tested.
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This will, for images that are anisotropic, guarantee that the
direction of anisotropy cannot be 45◦ to the image axes
in both stages of the test. With regard to the significance
level, α , of the resulting two-stage test, we apply a simple
Bonferroni correction. Hence, we set the significance level
of the individual tests to α1 = α/2, thus making sure that
P(Rejection in at least one test |H0) ≤ α . Note that in a
practical application of the test, the first stage will often be
sufficient (see Section VII-D for details).

A. Delta method: Single ratio

From [40] we know that for a stationary or intrinsi-
cally stationary Gaussian field the large sample distribution

of β̂ββ =
[
ν̂2

U, j, j′ , ν̂
2
V, j′, j

]T
is that of a normal with mean

βββ =
[
ν2

U, j, j′ ,ν
2
V, j′, j

]T
and whose covariance matrix can be

deduced as

ΣΣΣ =

[
σ2

U j j′
σU j j′V j′ j

σU j j′V j′ j σ2
V j′ j

]
.

The diagonal elements of ΣΣΣ are the large sample variances
of the wavelet variance estimators (Eq. (7)), while the off-
diagonal elements are the large sample covariances between
them. A general expression for the elements of ΣΣΣ is given in
Eq. (17) in Section IV-C. The delta method (see e.g., [13],
pages 37–39) says that if the large sample distribution of β̂ββ is
that of a normal with mean βββ and covariance matrix ΣΣΣ, then the
large sample distribution of a nonlinear function g(β̂ββ ) is that
of a normal with mean g(βββ ) and variance ∇g(βββ )TΣΣΣ∇g(βββ ).
Letting g([x y]T ) = log(x/y), we find that for large sample
sizes log

(
ν̂2

U, j, j′/ν̂2
V, j′, j

)
is approximately normal with mean

log
(

ν2
U, j, j′/ν2

V, j′, j

)
and variance

σ2
U j j′

(ν2
U, j, j′)

2 −2
σU j j′V j′ j

ν2
U, j, j′ν

2
V, j′, j

+
σ2

V j′ j

(ν2
V, j′, j)

2 . (11)

A test for isotropy can now be designed for the single-ratio
case:

H0 : log
(

ν
2
U, j, j′/ν

2
V, j′, j

)
= 0; H1 : log

(
ν

2
U, j, j′/ν

2
V, j′, j

)
6= 0.

Under the null hypothesis the log-ratio is approximately nor-
mal with mean zero and variance given by Eq. (11), so using

χ̂
2 =

ν2
U, j, j′ν

2
V, j′, j log

(
ν̂2

U, j, j′/ν̂2
V, j′, j

)2

σ2
U j j′
−2 σU j j′V j′ j +σ2

V j′ j

D−→ χ
2
1 (12)

as a test statistic, we find that, for significance level α , H0
will be rejected when χ̂2 > q

χ2
1
(α), where q

χ2
1
(α) denotes the

upper (100α)th percentile of the chi-square distribution with
one degree of freedom. In Eq. (12) we have used the fact that
ν2

U, j, j′ = ν2
V, j′, j under the null hypothesis.

In a practical implementation of the test, the unknown
quantities must be replaced by estimates. The development
of these estimators is the subject of Section IV-C.

B. Delta method: Multiple ratios

We will first show how to develop the test based on
two distinct ratios ν̂2

U, j, j′/ν̂2
V, j′, j and ν̂2

U,k,k′/ν̂2
V,k′,k, and later

describe how the method generalizes to include as many
ratios as desired. First we define the four element vector
β̂ββ = [ν̂2

U, j, j′ , ν̂
2
V, j′, j, ν̂

2
U,k,k′ , ν̂

2
V,k′,k]

T . Again we can utilize results
from [40] to state that the large sample distribution of β̂ββ is that
of a normal with mean βββ and covariance matrix

ΣΣΣ1 =


σ2

U j j′
σU j j′V j′ j σU j j′Ukk′ σU j j′Vk′k

σU j j′V j′ j σ2
V j′ j

σV j′ jUkk′ σV j′ jVk′k

σU j j′Ukk′ σUkk′V j′ j σ2
Ukk′

σUkk′Vk′k
σU j j′Vk′k σVk′kV j′ j σVk′kUkk′ σ2

Vk′k

 .
βββ is defined analogously to β̂ββ but with the actual variances in
place of the estimates. Proceeding with the multivariate version
of the delta method we find that, with g(x) = log(x), the large
sample distribution of log(β̂ββ ) is that of a multivariate normal
with mean log(βββ ) and covariance matrix ΣΣΣ2 given by

ΣΣΣ2 = diag(βββ ? (−1))ΣΣΣ1diag(βββ ? (−1)). (13)

Here ? denotes the operation of raising each element in
the vector to the given power, and the diag operator cre-
ates a matrix with its vector input on the diagonal and
zeros elsewhere. Next, introducing a differencing matrix B =[

1 −1 0 0
0 0 1 −1

]
gives us the vector of estimated log-ratios,

θ̂θθ = B log(β̂ββ ) =
[
log(ν̂2

U, j, j′/ν̂2
V, j′, j), log(ν̂2

U,k,k′/ν̂2
V,k′,k)

]T
.

Using standard results from multivariate theory (see, e.g.,
[25]), we find that θ̂θθ is approximately bivariate normal with

mean θθθ =
[
log(ν2

U, j, j′/ν2
V, j′, j), log(ν2

U,k,k′/ν2
V,k′,k)

]T
and co-

variance ΣΣΣ = BΣΣΣ2BT =

[
Σ j, j′, j, j′ Σ j, j′,k,k′

Σ j, j′,k,k′ Σk,k′,k,k′

]
with elements

Σ j, j′,k,k′ =
σU j j′Ukk′

ν2
U, j, j′ν

2
U,k,k′

+
σV j′ jVk′k

ν2
V, j′, jν

2
V,k′,k

−
σU j j′Vk′k

ν2
U, j, j′ν

2
V,k′,k

−
σV j′ jUkk′

ν2
V, j′, jν

2
U,k,k′

.

This allows us to formulate a test for isotropy which is
simultaneous over two ratios,

H0 :

[
log(ν2

U, j, j′/ν2
V, j′, j)

log(ν2
U,k,k′/ν2

V,k′,k)

]
= 000; H1 :

[
log(ν2

U, j, j′/ν2
V, j′, j)

log(ν2
U,k,k′/ν2

V,k′,k)

]
6= 000,

where 000 is the null vector of length 2. Under the null
hypothesis E[θ̂θθ ] = 000, so again using standard results from
multivariate theory,

χ̂
2 = θ̂θθ

T
ΣΣΣ
−1

θ̂θθ (14)

is distributed as χ2
2 , the chi-square distribution with 2 degrees

of freedom. Using χ̂2 as the test statistic, we find that for
significance level α , H0 will be rejected when χ̂2 > q

χ2
2
(α),

the upper (100α)th percentile of the χ2
2 distribution.

To create a simultaneous test over any subset of ratios, the
vector β̂ββ is constructed by placing pairwise the corresponding
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estimates of the nominators and denominators from Eq. (9)
and/or (10) for any choice of levels j, j′. With r ratios chosen,
this defines β̂ββ = [β̂1, · · · , β̂2r]

T of length 2r. The large sample
distribution of β̂ββ is that of a normal with mean βββ and
covariance matrix ΣΣΣ1 of size 2r× 2r defined in terms of the
ratios used in β̂ββ . βββ is defined analogously to β̂ββ but with the
actual variances in place of the estimates. The delta method
again results in the large sample distribution of log(β̂ββ ) being
that of a multivariate normal with mean log(βββ ) and covariance
matrix ΣΣΣ2 given by Eq. (13). With the differencing matrix B
from above expanded to size r× 2r in the obvious way, we
find that the vector of estimated log-ratios, θ̂θθ = B log(β̂ββ ), is
approximately multinormal with mean θθθ , the vector of r true
log-ratios, and covariance ΣΣΣ = BΣΣΣ2BT of dimension r×r with
elements

Σs,t =
σβ2s,β2t

β2sβ2t
+

σβ2s−1,β2t−1

β2s−1β2t−1
−

σβ2s,β2t−1

β2sβ2t−1
−

σβ2s−1,β2t

β2s−1β2t
.

Since the general term for Σs,t should cover any conceivable
combination of ww, ws, and sw-variances, we have to express
it with dependence on the respective elements in βββ . The
hypothesis test is H0 : θθθ = 000 versus H1 : θθθ 6= 000, where 000
denotes the null vector of length r. The test statistic χ̂2 from
Eq. (14) now follows a chi-square distribution with r degrees
of freedom. Thus, for significance level α , H0 will be rejected
when χ̂2 > qχ2

r
(α).

Note that there is a large number of ratio subsets available
to base a test on. Letting J denote the maximum horizontal and
vertical scale index considered, there are 2(3J2−J)/2−1 distinct
subsets that can be formed from r = (3J2−J)/2 distinct ratios
(e.g., for J = 4 this gives r = 22 ratios and 4194303 possible
subsets). In Section VI we will explore which subsets can
reasonably be expected to be useful in a practical setting.

C. Estimating the covariances

With C j, j′ and Dk,k′ denoting the coefficients U j, j′ ,
Vj, j′ ,Wj, j′ , or Uk,k′ , Vk,k′ , Wk,k′ , respectively, the isotropy test
statistics involve both the unknown wavelet variances ν2

C j, j′
or

ν2
Dk,k′

and the unknown covariance between their estimators. In
practice, these quantities must be estimated. In [40], estimators
are developed for the variances, and for the variance of the
variance estimators, but not for the covariance between the
variance estimators (sw, ws and ww). Here we will derive the
more general case of the large sample covariances between the
variance estimators, from which the variance of the variance
estimator is a special case.

Applying Eq. (7), cov
{

ν̂2
C, j, j′ , ν̂

2
D,k,k′

}
equals

cov

 1
N jM j′

N−1

∑
a=L j−1

M−1

∑
b=L j′−1

C2
j, j′,a,b,

1
NkMk′

N−1

∑
c=Lk−1

M−1

∑
d=Lk′−1

D2
k,k′,c,d


=

1
N jM j′NkMk′

N−1

∑
a=L j−1

M−1

∑
b=L j′−1

N−1

∑
c=Lk−1

M−1

∑
d=Lk′−1

cov
{

C2
j, j′,a,b,D

2
k,k′,c,d

}
.

Since the coefficients C j, j′,a,b and Dk,k′,c,d are zero mean
normal random variables, we can use the Isserlis theorem [24],

from which it follows that

cov
{

C2
j, j′,a,b,D

2
k,k′,c,d

}
= 2cov2{C j, j′,a,b,Dk,k′,c,d

}
. (15)

When the underlying image is an intrinsically stationary
Gaussian field, the coefficients need not be zero mean for
the Haar wavelet. In the case of a non-Gaussian field, a
central limit argument says that Gaussianity becomes a more
viable approximation as the filter lengths increase [36]. For
this reason D(4) filters or longer might be preferred over
the Haar wavelet when the image size permits it, and in
general the results at higher scales can be trusted more than
those of the lower scales. There is, however, a trade-off in
practical applications between the validity of Eq. (15), favoring
long filters and higher scales, and the fact that the number
of coefficients available to estimate the quantities of interest
decrease as a function of the filter length L and level j.

Denoting the cross-covariance function sC j, j′Dk,k′ (t, t
′) =

cov
{

C j, j′,u,v,Dk,k′,u+t,v+t ′
}

, we may write cov{ν̂2
C, j, j′ , ν̂

2
D,k,k′}

as

2
N+M+

M−−1

∑
t ′=−(M−−1)

N−−1

∑
t=−(N−−1)

(
1− |t

′|
M−

)(
1− |t|

N−

)
s2
C j, j′Dk,k′

(t, t ′)+R, (16)

where N+ = max(N j,Nk), M+ = max(M j′ ,Mk′),
N− = min(N j,Nk), and M− = min(M j′ ,Mk′). The exact
form of the remainder term R is intricate, but is similar for all
cases. As N → ∞ and M→ ∞ this term becomes negligible,
and following the reasoning in [27], a Cesàro sum argument
(see, e.g., [47]) allows the double summation in Eq. (16) to
be approximated as

σC j, j′Dk,k′ =
2

N+M+

∞

∑
t=−∞

∞

∑
t ′=−∞

s2
C j, j′Dk,k′

(t, t ′) =
2A j, j′,k,k′

N+M+
,

(17)

where, by Parseval’s theorem,

A j, j′,k,k′=
∞

∑
t=−∞

∞

∑
t ′=−∞

s2
C j, j′Dk,k′

(t, t ′)=
∫ 1/2

−1/2

∫ 1/2

−1/2
|SC j, j′Dk,k′ ( f , f ′)|2 df df ′,

(18)

SC j, j′Dk,k′ ( f , f ′) being the cross-spectral density between C j, j′

and Dk,k′ . Since the ws and sw coefficients are obtained by
linear filtering operations on the same underlying field, their
magnitude squared coherence is unity, so we can write

|SC j, j′ ,Dk,k′ ( f , f ′)|2 = SC j, j′ ,C j, j′ ( f , f ′)SDk,k′ ,Dk,k′ ( f , f ′),

with SC j, j′ ,C j, j′ ( f , f ′) and SDk,k′ ,Dk,k′ ( f , f ′) denoting the spectral
density functions (SDFs) of C j, j′ and Dk,k′ , respectively.

An estimator for the covariance in Eq. (17) can be found by
replacing the cross-spectral density in Eq. (18) by a standard
estimator. We use the cross-periodogram. With Ŝ(p)

·,· ( f , f ′)
denoting the (cross-)periodogram, the identity

|Ŝ(p)
C j, j′ ,Dk,k′

( f , f ′)|2 = Ŝ(p)
C j, j′ ,C j, j′

( f , f ′)Ŝ(p)
Dk,k′ ,Dk,k′

( f , f ′)

follows immediately from basic definitions. Accordingly,

E
{
|Ŝ(p)

C j, j′ ,Dk,k′
( f , f ′)|2

}
≈ SC j, j′ ,C j, j′ ( f , f ′)SDk,k′ ,Dk,k′ ( f , f ′)+ |SC j, j′ ,Dk,k′ ( f , f ′)|2

= 2|SC j, j′ ,Dk,k′ ( f , f ′)|2, (19)
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where the approximation follows from the asymptotic unbi-
asedness of the periodogram and from the fact that

cov
{

Ŝ(p)
C j, j′ ,C j, j′

( f , f ′), Ŝ(p)
Dk,k′ ,Dk,k′

( f , f ′)
}
≈ |SC j, j′ ,Dk,k′ ( f , f ′)|2

(see, e.g., [2, 42]). The (cross-)periodogram and the standard
biased (cross-)covariance estimator

ŝC j, j′Dk,k′ (t, t
′) =

1
N−M− ∑

u
∑
v

C j, j′,u,vDk,k′,t+u,t ′+v

are a Fourier pair. This fact, along with Equations (18) and
(19) says that

Â j, j′,k,k′ =
1
2

N−−1

∑
t=−(N−−1)

M−−1

∑
t ′=−(M−−1)

ŝ2
C j, j′Dk,k′

(t, t ′)

is an approximately unbiased estimator for A j, j′,k,k′ . This

makes σ̂C j, j′Dk,k′ =
2Â j, j′,k,k′
N+M+ an asymptotically unbiased esti-

mator for σC j, j′Dk,k′ .

V. RANDOM FIELDS USED IN SIMULATION STUDIES

For the simulation studies in Sections VI and VII we
consider exponential, spherical and fractional Brownian fields,

γX ,κ1,κ2 = λ

(
1−φ

||κκκ||
)
, (20)

γX ,κ1,κ2 =

{
λ

(
3

2m ||κκκ||−
1

2m3 ||κκκ||3
)

if 0≤ ||κκκ|| ≤ m

λ otherwise,
(21)

γX ,κ1,κ2 = λ ||κκκ||2H , (22)

with scale parameter λ and smoothness parameters φ , m or H,
where φ ,H ∈ (0,1) and m > 0. Higher values of the smooth-
ness parameter result in smoother random fields. Eq. (22)
characterizes fractional Brownian fields (FBFs), which are in-
trinsically stationary, whereas exponential and spherical fields
are stationary and can be characterized equivalently via their
covariance functions.

Throughout our study we generate samples using the R
package RandomFields [45]. We consider random fields
with scale λ = 1 that are weakly, moderately and strongly
correlated; i.e., the respective smoothness parameters are φ =
{0.125,0.5,0.875}, m = {2,5,8} and H = {0.125,0.5,0.875}.
For random fields the range is defined as the minimum
distance at which points become uncorrelated, and for fields
where this happens only asymptotically, the effective range
is defined as the minimum distance at which the covariance
function reaches 0.05 times its value at lag zero. For the
exponential fields the φ values above correspond to effective
ranges r = {1.44,4.32,22.43}, while for the spherical fields
m denotes the ranges. FBFs are not even asymptotically
uncorrelated, so neither the range nor the effective range is
well defined. Here the Hurst index H is linearly related to the
fractal dimension D of FBFs via D = 3−H [8]. Fig. 1 shows
example realizations of 128×128 random fields.

Geometric anisotropy is introduced by a rotation matrix R
with rotation angle θ and an axis scaling matrix S, i.e.,

R =

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
, S =

[
au 0
0 av

]
.

Figure 1. Realizations of random fields from Equations (20) – (22). Upper
row: exponential fields with φ = {0.125,0.5,0.875}, middle row: spherical
fields with m = {2,5,8}, lower row: FBFs with H = {0.125,0.5,0.875}. For
purposes of illustration, all realizations are generated starting with the same
random seed, and all images have been normalized to the same range.

Figure 2. Realizations from spherical random fields with m= 8 corresponding
to the constant semivariogram contours immediately above.

We replace ||κκκ|| in Equations (20) – (22) with
||κκκ||B =

(√
κκκT Bκκκ

)
, where B = RT ST SR. Denote

B1 =

[
1 0
0 1

]
, B2 =

[
1 0
0 2

]
and B3 =

[
1 0
0 4

]
. Matrix

B1 ensures isotropy, while B2 and B3 lead to anisotropy with
ratio between major and minor anisotropy axis of

√
2:1 and

2:1 respectively. For the anisotropic cases, we also consider
four rotations of matrices B2 and B3, namely, 11.25◦, 22.5◦,
33.75◦ and 45◦. The lower row of Fig. 2 shows realizations
of anisotropic fields with m = 8 on a 128× 128 grid, with
the corresponding elliptical constant semivariogram contours
immediately above. For comparability, these realizations are
generated with the same random seed as in Fig. 1.

VI. DISTRIBUTION UNDER THE NULL HYPOTHESIS

The tests developed in Section IV rely on asymptotic results
both for finding the distribution of the test statistics under
the null hypothesis and in finding unbiased estimators of the
covariances needed to construct them. Here the validity of
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these asymptotic results will be explored through simulations
from the nine different isotropic random fields shown in Fig. 1,
each involving 1000 realizations on a regular 512×512 lattice.
We chose this image size to demonstrate the performance of
the simultaneous test over multiple log-ratios and for longer
filters. We only present the results for the D(4) wavelet with a
maximal horizontal and vertical scale index of J = 4 (the Haar
and LA(8) wavelets yield similar results, the only exception
being the Haar-based test for FBFs, as discussed in Section
IV-C).

We assess how well our test statistics agree with their
theoretical distributions using Kolmogorov–Smirnov (K-S)
tests with significance level α = 5%, and with visualization
via histograms and Q-Q plots. Figures 3, 5 and 6 display
these for the isotropic exponential random field with φ = 0.5
(other random fields with different smoothness parameters
have qualitatively similar results). In the Q-Q plots, there
is a solid line with a slope of unity passing through the
origin. A Q-Q plot fluctuating about this line indicates a good
match between the samples and the theoretical distribution. If,
however, the Q-Q plot follows a line with a different slope
and/or does not pass through the origin, the samples are from
a scaled and/or shifted version of the theoretical distribution.
Scaling and shifting matter here since we wish to set thresholds
for the test based on a theoretical asymptotic distribution,
so deviations from the solid line are important. The dashed
lines indicate the confidence bands for population distribution
functions based upon the K-S goodness of fit test for a fully
specified distribution. We do not reject the null hypothesis if
the solid line lies entirely within the confidence bands.

As pointed out in Section IV-B, there is a prohibitive number
of ratio subsets that can be formed from the full set of ratios
from Equations (9) and (10), so it is not practical to compre-
hensively study all possibilities. Instead, we concentrate on the
single-ratio and two-ratio tests; however, our study of two-ratio
tests suggests multiple-ratio tests worthy of consideration. As
a cautionary note, we also consider a test consisting of all
possible ratios, for which it is unrealistic to expect asymptotic
results to hold for sample sizes encountered in practice.

We begin by comparing the empirical distribution of the test
statistic χ̂2 in the single-ratio case (Eq. (12)) to its asymptotic
χ2

1 distribution. We do so by applying a level α = 5%
Kolmogorov–Smirnov goodness of fit test on all 22 single
ratio test statistics calculated from 1000 samples from each
random field above. There are 198 goodness of fit tests in all,
out of which only 12 (6.1%) resulted in rejection, suggesting
that the empirical distribution of χ̂2 is well approximated by a
χ2

1 distribution. Even when the K-S test rejects, the visual fit is
still good, as is evident from the worst case scenario shown in
Fig. 3. Here we plot the histogram along with the probability
density function (pdf) of the χ2

1 distribution, as well as the
Q-Q plot, for the test statistic with the lowest observed p-
value (p = 0.043, which happened for χ̂2 = log(ν̂2

W,1,3/ν̂2
W,3,1)

for the exponential field with φ = 0.5). While the Q-Q plot
shows that the tail is not in keeping with the hypothesized
pdf, the histogram fits nicely. Here the rejection level of the
isotropy test is 4.0% for α = 5%, which indicates that the χ2

1
distribution fits the empirical distribution even when the K-S
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Figure 3. Left: Histogram of the test statistic based on the ν̂2
W,1,3/ν̂2

W,3,1 ratio,
along with the theoretical χ2

1 distribution for isotropic exponential fields of
size 512×512 with φ = 0.5. Right: Q-Q plot of the corresponding test statistic,
where the theoretical distribution is represented by the solid line, while the
sample quantiles are shown dotted and the two dashed lines display the upper
and lower confidence band.

test rejects. The fit improves with increasing p-values.
Next, we consider the simultaneous test over two ratios.

Using all possible ratio combinations for the nine random
fields considered yields 2079 K-S tests, and out of these 212
(10.2%) are rejected. This is higher than to be expected if all
test statistics were well described by a χ2

2 distribution. In Fig. 4
the K-S test rejections are displayed in terms of the specific
ratio combinations. A clear pattern emerges (particularly for
the sw/ws ratios): the number of rejections is high when the
wavelet filters in both ratios operate on the same scale τ j′

(with the exception of the lowest level j′ = 1). The effect is
compounded when one of the scaling filter indices is close or
equal to j′. For a simultaneous test with two ratios, as many
as ten covariances are estimated, and some of the estimates
are highly correlated. Searching for the strongest correlations
reveals that the correlation between σ̂U j j′U j j′ and σ̂Uk j′Uk j′ as
well as between σ̂V j′ jV j′ j and σ̂V j′kV j′k stand out, i.e., the cases
where the differencing is performed on the same scale τ j′ .
The correlation coefficient between σ̂V j′ jU j j′ and σ̂V j′kUk j′ is
also high in this case but the values are negligibly small
compared to the above mentioned. We have also simulated
from 4096×4096 exponential random fields. The correlations
are still present, so for image sizes of practical interest this
effect persists. Since the inverse of ΣΣΣ is used for calculating
the test statistic, it is a non-trivial task to determine how small
errors in the covariance estimates (and also wavelet variance
estimates) collectively propagate into the test statistic, even for
the simplest simultaneous test using only two ratios; however,
[30] illustrates that small deviations in dependent estimates
can lead to large overall errors.

We can conclude that a simultaneous test should not include
more than one sw/ws ratio operating on the same wavelet filter
scale τ j′ . Thus, with a maximum horizontal and vertical scale
index of J, at most J sw/ws ratios should be combined in a
simultaneous test. An obvious choice that fulfills this criterion
uses only the diagonal ν̂2

U, j, j/ν̂2
V, j, j ratios, here with j = 1, ...,4.

That this is a reasonable choice is supported by the K-S test
not rejecting the test statistic being χ2

4 distributed for any of
the nine fields. Also, the visual fit in Fig. 5 is remarkably good,
as evidenced by the Q-Q plot and the agreement between the
histogram and the theoretical χ2

4 distribution.
Another choice is to use all ν̂2

W, j, j′/ν̂2
W, j′, j ratios. In this

case the K-S test rejects the hypothesis that the test statistic
is χ2

6 distributed for one out of the nine fields. While nine is
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Figure 4. Number of K-S test rejections of two-ratio test statis-
tics based on 1000 samples for each of the nine random fields. The
point indexed (U j, j′ ,Uk,k′ ), (U j, j′ ,Wk,k′ ) or (W j, j′ ,Wk,k′ ) refers to, re-
spectively, the number of K-S rejections of the test statistic based
on subset {ν̂2

U, j, j′/ν̂2
V, j′, j, ν̂

2
U,k,k′/ν̂2

V,k′,k}, {ν̂
2
U, j, j′/ν̂2

V, j′, j, ν̂
2
W,k,k′/ν̂2

W,k′,k} or
{ν̂2

W, j, j′/ν̂2
W, j′, j, ν̂

2
W,k,k′/ν̂2

W,k′,k} being distributed as χ2
2 .
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Figure 5. As Fig. 3, now based on all four diagonal sw/ws ratios, along with
the theoretical χ2

4 distribution.

a small number to base any conclusions on, a single rejection
is not inconsistent with the claim that the distribution of the
test statistic is well described by a χ2

6 distribution. Choosing
only four out of six ww/ww ratios gives 15 distinct ratio
subsets. Applying the K-S test on the test statistics based on
these for each of the nine fields, gives seven rejections out of
135 tests (5.2%). This indicates that the isotropy test based
on ww/ww ratios performs well under the null hypothesis,
particularly if the number of ratios included is limited. In
general, caution should be exercised in including ratios in a
simultaneous test. Consider, e.g., the test based on all diagonal
ν̂2

U, j, j/ν̂2
V, j, j ratios and all ν̂2

W, j, j′/ν̂2
W, j′, j ratios. Although these

perform well separately, the K-S test rejects the resulting test
statistic being χ2

10 distributed for seven out of the nine fields.
Finally, we consider a simultaneous test based on all 22

ratios available. The K-S test now rejects the null hypothesis
for all nine fields. The upper row in Figure 6 shows the
histogram of the test statistic along with the pdf of the
theoretical χ2

22 distribution, as well as the Q-Q plot. The
Q-Q plot and the mismatch between the histogram and the
theoretical distribution both indicate that the distribution of
the test statistic is not well approximated by a χ2

22 distribution.
This is to be expected due to the large number of ratios, of
which several have wavelet filters operating on the same scale.
The poor performance is likely due to correlations amongst the
covariance estimators, a view that is consistent with the bottom
row in Fig. 6. Here we use the theoretical ΣΣΣ in forming the test
statistic χ̂2 of Eq. (14) rather than estimating the components
of ΣΣΣ. There is a near perfect match between the samples and
the theoretical χ2

22 distribution. The K-S test, in this artificial
setting, does not reject any of the nine instances.
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Figure 6. As Fig. 3, now based on all 22 ratios with the estimated (upper
row) and theoretical covariances (lower row), along with the theoretical χ2

22
distribution.

In summary, the large-sample distribution of Eq. (14) is
a reasonably accurate approximation for finite sample sizes
of practical interest if care is taken in choosing the ratios
involved. Replacing true covariance/variance values with es-
timates has a deleterious effect on the distribution of the
test statistic; however, this effect is small if the number of
ratios is limited and if use of subsets including more than
one ν̂2

U, j, j′/ν̂2
V, j′, j with the same j′ is avoided. In addition to

single-ratio tests, we recommend using the simultaneous test
based on either all diagonal sw/ws ratios or all ww/ww ratios
(or any subset of these).

VII. RESULTS AND COMPARISON WITH OTHER METHODS

A. Study design

We set up the simulation study as follows. For each
correlation structure defined in Equations (20) – (22) with
parameters as given in Section V and (an)isotropy matrix B1,
B2 and B3, we generate 1000 samples on N ×N grids for
N = {20,40,128}. For FBFs the largest grid will be N = 512.
For B2 and B3 we also consider fields with 11.25◦, 22.5◦,
33.75◦ and 45◦ rotations of the major anisotropy axis. Due
to space limitations we only present averages B2 and B3 over
all five rotations in Tables I and II, but we do discuss the
performance at different rotations in the text.

We compare the performance of the wavelet-based isotropy
test with approaches described by Guan, Sherman and Calvin
(GSC) [20], Lu and Zimmerman (LZ) [33], and Richard and
Bierme (RB) [43]. We chose these three methods because, as
opposed to simple qualitative visual aids, they are statistical
tests especially developed for random fields on a regular two-
dimensional lattice. The GSC and LZ tests are applicable
to stationary random fields, while method RB is explicitly
designed for FBFs. GSC use the property that under isotropy
the values of the variogram at two different lags with the
same Euclidean distance are equal. The LZ method [33] tests
for a necessary condition for isotropy based on directional
symmetries assessed by periodogram ratios using a Cramér-
von Mises test statistic [9]. The RB method tests if the Hurst
index H in FBFs is the same in different directions.
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In our implementation of the other methods we have used
a fixed parametrization based on the recommendations in the
relevant papers. To not unfairly bias the comparison in our
favor, we stick with the same wavelet-based test statistic for
all fields and grid sizes. Specifically, we use the test statistic
based on the first diagonal single level ratio ν̂2

U,1,1/ν̂2
V,1,1 and

the D(4) wavelet. For images as small as 20× 20 we cannot
use more than a single ratio since the number of coefficients
available to estimate the required variances and covariances is
so low. We chose the D(4) wavelet because it is the smallest
wavelet that works in the intrinsic case, (use of the Haar would
likely be preferable for the smallest stationary fields because
of the increase in the number of coefficients). For the image
rotation necessary for the second stage of the test, the Matlab
function imrotate is used. Here, bilinear and bicubic inter-
polation are both to be preferred over the nearest neighbor
method [19], since the latter can distort the covariances in
the original image. Bilinear and bicubic interpolation give, in
our examples, practically identical results, so we have chosen
bilinear interpolation for its speed and because it assures
values inside the original range.

For a well tuned test, the type I error, i.e., rejection of the
null hypothesis for isotropic fields, should correspond to the
significance level α (set here to 5%). The type II error, i.e.,
not rejecting anisotropic fields, should ideally be zero. The
power of the test (one minus the type II error) is ideally one.

B. Stationary case
Table I shows the rejection rates in the simulation study for

the exponential and spherical fields presented in Section V.
The first row in each block of rows corresponds to our wavelet-
based isotropy test; the second row, to the GSC method
[20]; and the third, to method LZ [33]. For the isotropic
case B1, numbers in bold reflect that the anticipated α = 5%
significance level is within the 95% confidence region of the
rejection rate. The confidence region is based on the Clopper–
Pearson method for a binomial confidence interval with trial
parameter 1000 and “success” probability equaling the number
of rejections. Table I shows that our test has the 5% point
within its confidence region in all cases except for the spherical
field with moderate correlation m = 5 on the smallest grid
size N = 20, where it is slightly above the bounds (the upper
limit is 6.44%). For GSC the 5% point is outside the binomial
confidence bounds for the type I error in 4 of 9 grid and pa-
rameter choices, both for the exponential and spherical fields.
With 12.4% and 12.6% rejection of isotropic exponential and
spherical fields, respectively, the type I error is particularly
high for strongly correlated samples on the smallest grids. On
larger grids (N = 128) the type I error shrinks, with a tendency
to be smaller than the significance level. The LZ test is outside
the confidence bounds in 3 of 9 cases for both types of fields.
Interestingly, isotropic exponential fields with a high level of
smoothness (i.e., φ = 0.875) lead to a rejection rate > 10% no
matter the grid size.

Our wavelet-based test correctly rejects anisotropic fields
more often for cases with larger grids and/or with higher
smoothness parameters. Already on a 40×40 grid high rejec-
tion rates are achieved for medium and strongly correlated and

– in the spherical case – even for the weakly correlated fields,
while on a 128×128 grid all those realizations are correctly
rejected. The test performs better on the anisotropic B3 fields
of different rotations than on the corresponding B2 fields. In
general, the results become progressively worse as the rotation
approaches 45◦. None of these results are surprising. For larger
grids, more data are available, so the performance of the test
statistic should improve. Grid size is part of the reason why
performance deteriorates with increasing rotation: the closer
the rotation is to 45◦, the more we have to rely on the second
stage of the test which operates on a rotated image of smaller
size N∗×N∗, with N∗ = bN/

√
2c. While errors introduced by

the interpolation might affect the results, high rejection rates
achieved for the rotated versions on larger grids indicate that
the interpolation is not adversely affecting the properties of
the resulting fields. That the test performs better on B3 fields
than on B2 fields is to be expected by considering Fig. 2.
The larger the ratio between major and minor axis of the
constant semivariogram contours, the larger the difference will
be between ν2

U, j, j′ and ν2
V, j′, j, and between ν2

W, j, j′ and ν2
W, j′, j

as calculated by Equations (4) – (6) using the corresponding
semivariograms (only the ν2

U,1,1/ν2
V,1,1 ratio is used in Table I,

but the statement holds in general). This causes the log-ratios
to deviate more from zero in the B3 case, representing a more
pronounced violation of the null hypothesis. The test should
perform worse for weakly correlated fields as there is little
structure there to begin with (see the first column of Fig. 1). In
particular, the exponential field with φ = 0.125 is visually very
similar to random noise. Hence, introducing stretching and
rotation to the covariance structure of the weakly correlated
fields does not affect the resulting fields nearly as much as for
the moderately and strongly correlated fields, with predictable
results for the power of the test.

For the anisotropic fields based on B2, the performance of
the wavelet-based approach is comparable with the GSC test
and has power consistently higher than or equal that of the
LZ method. With rotation of the major anisotropy axis, the
power of all tests decreases, particularly on smaller grids and
for weakly correlated random fields. This effect persists for
the more pronounced anisotropic fields based on B3.

C. Intrinsically stationary case

Table II shows the rejection rates in the simulation study for
the FBFs presented in Section V. The first row in each block
of rows corresponds to our wavelet-based isotropy test, the
second row to the RB method [43]. Our method performs on
par with the stationary case. The type II error vanishes quickly
with increasing grid size and correlation. The significance level
of the test is within the binomial confidence bounds of the
rejection rates for all considered grid sizes and smoothness
parameters, with the exception of one case (N = 40 and
H = 0.875), where the rejection rate is slightly above the
upper confidence bound. On the other hand, on small grids the
RB method has rejection rates for anisotropic FBFs which are
barely above the type I error of the isotropic case. Basically,
for N = 20 and 40 no difference in the results for isotropic and
anisotropic fields is visible. Since in [43] the examples are on
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Table I
REJECTION RATES FOR ISOTROPIC (B1) AND ANISOTROPIC (B2&B3)

EXPONENTIAL AND SPHERICAL FIELDS OF SIZE N . FIRST ROW IN EACH
BLOCK: METHOD FROM THIS PAPER, SECOND ROW: METHOD GSC [20],

THIRD ROW: METHOD LZ [33]. BOLD NUMBERS FOR B1 INDICATE TYPE I
ERROR WITHIN THE 95% BINOMIAL CONFIDENCE REGION, WHILE FOR

B2&B3 THEY INDICATE THE METHOD WITH THE HIGHEST POWER.

N = 20 N = 40 N = 128
B1 B2 B3 B1 B2 B3 B1 B2 B3

E
xp

on
en

tia
l,

φ
= 0.
12

5 4.4 8.4 12.7 4.8 23.9 39.3 4.1 82.6 91.1
6.1 9.1 11.6 4.0 16.3 28.5 3.2 90.4 98.0
5.0 7.4 9.0 4.9 15.0 24.0 4.6 77.5 89.5

0.
50

0 5.0 37.2 72.2 5.4 87.3 99.6 5.4 100 100
6.7 33.7 73.6 4.4 93.0 100 3.8 100 100
5.4 25.4 61.5 4.6 79.3 99.7 5.7 100 100

0.
87

5 5.2 56.1 95.4 3.8 98.1 100 6.2 100 100
12.4 52.6 95.8 5.3 99.5 100 3.0 100 100
10.5 34.1 79.1 10.7 89.1 100 10.7 100 100

Sp
he

ri
ca

l,
m
=

2

5.6 36.3 58.6 5.2 79.2 84.1 5.0 100 100
8.8 33.6 49.0 4.9 89.9 89.1 3.7 100 100
5.0 27.9 45.5 5.2 78.3 80.7 4.3 100 100

5

6.5 61.8 97.1 5.6 98.5 100 5.4 100 100
12.1 53.2 95.5 5.1 99.8 100 4.4 100 100
6.7 38.6 85.4 6.1 94.8 100 5.3 100 100

8

6.1 61.2 96.6 5.9 98.7 100 5.2 100 100
12.6 53.3 96.3 7.1 99.4 100 4.9 100 100
9.0 34.6 84.2 10.2 92.1 100 6.3 100 100

Table II
AS TABLE I, NOW FOR FBFS, COMPARING THE WAVELET-BASED TEST

(FIRST ROW IN EACH BLOCK) TO METHOD RB [43] (SECOND ROW).

N = 20 N = 40 N = 512
B1 B2 B3 B1 B2 B3 B1 B2 B3

FB
Fs

,H
= 0.

12
5 4.6 9.4 23.0 3.7 27.4 72.3 5.1 100 100

10.1 8.7 10.9 10.6 10.9 13.3 7.1 21.7 48.2

0.
50

0 5.9 58.9 95.6 5.1 98.5 100 4.5 100 100
4.5 5.2 7.4 4.1 6.0 8.9 2.9 12.5 48.9

0.
87

5 6.3 83.8 99.8 6.7 99.96 100 6.3 100 100
2.6 2.0 2.3 1.2 1.7 2.4 0.4 1.1 10.0

a 512×512 grid, we also include this case in our comparison.
Here the type II error further shrinks, but nevertheless the
method is clearly worse than the wavelet-based approach.

It is not surprising that the RB method has problems in
detecting fields with rotated major anisotropy axis. Of the
several test statistics proposed in [43], there is one that in
principle should be able to capture rotation. We looked into
this test statistic, but the results were worse than those for
the RB test statistic reported in Table II. The same two-stage
approach we used in the wavelet-based test might improve the
RB test, but this modification was not explored in [43].

The variance of the RB test statistic, and hence the rejection
bounds for a chosen size α of the test, cannot be estimated
on an image to image basis. For a particular image size sim-
ulations from a large number of isotropic fractional Brownian
fields with different Hurst indices are required to determine the
threshold for the test. For generating Table II we determined
the thresholds by sampling 1000 isotropic fields for 9 values
of the Hurst index H ranging from 0.1 to 0.9 in steps of
0.1. In particular, for grids with N = {20,40}, we calculated
the standard deviations of the test statistic for each of the
9 indices and used the mean of the standard deviations to
set the threshold. FBFs with H = 0.5 (the mean Hurst index)
are close to the significance level α = 5%, whereas the type
I error increases for smaller H and decreases for larger H,
in both cases outside the binomial confidence bounds. For

Table III
REJECTION RATES BASED ON 1000 REALIZATIONS OF ANISOTROPIC
RANDOM FIELDS OF SIZE 256×256 WITH ROTATION OF THE MAJOR

ANISOTROPY AXIS OF 42◦ , 43◦ AND 44◦ .

B2 B3

42◦ 43◦ 44◦ 42◦ 43◦ 44◦

E
xp

. φ=0.125 25.6 14.9 7.8 31.9 17.7 6.8
φ=0.500 96.3 70.1 23.6 100.0 98.4 57.0
φ=0.875 99.8 90.1 34.0 100.0 100.0 85.6

Sp
h. m=2 96.9 76.1 24.3 100.0 96.0 46.5

m=5 99.7 89.8 39.4 100.0 100.0 88.9
m=8 99.8 88.0 37.0 100.0 100.0 87.1

FB
Fs

H=0.125 29.4 15.7 9.1 73.1 38.9 14.5
H=0.500 99.4 90.7 34.6 100.0 100.0 86.8
H=0.875 100.0 99.1 56.3 100.0 100.0 98.0

the 512× 512 case, we used thresholds given in [43], which
were calculated in an manner analogous to what we described
above, but only for fields with Hurst index ranging from 0.1
to 0.7 (this might explain why the number of rejections for
isotropic fields with H = 0.5 is not within the confidence
bounds for the given significance level).

D. Practical considerations

In this paper we propose a multiscale test for isotropy of
random fields, but, to capture the case of geometric anisotropy
oriented 45◦ to the axes, we must test both the original image
and one with a 45◦ rotation. This two-stage procedure is not
without problems, since the second stage uses a cropped and
interpolated version of the original image. This can cause
problems in interpreting results on different scales, as well
as potentially distorting the structure of the underlying field
(our simulation study in Sections VII-B and VII-C indicate
that in practice the interpolation does not have a detrimental
influence, but there is no theoretical support for this claim).

In Table III we investigate how close to 45◦ the anisotropy
axis has to be for our test to fail. The table shows the rejection
rates for 1000 realizations of anisotropic exponential, spherical
and fractional Brownian fields of size 256×256 with 42◦, 43◦

and 44◦ anisotropy axes. We follow the setup of the simulation
study and use the D(4) wavelet and the log(ν̂2

U,1,1/ν̂2
V,1,1)

test statistic. The test correctly rejects close to 100% of the
anisotropic fields with a rotation angle of 42◦, and for more
pronounced anisotropy B3 also 43◦, with the exception of
weakly correlated exponential and fractional Brownian fields
(i.e., φ = H = 0.125). Thus, for sufficiently large images, the
power of the first stage is high enough to capture anisotropy
oriented close to 45◦ for all but weakly correlated fields.
In practical applications, it is unlikely for structures to be
oriented exactly on 45◦ axes, so performing a single stage test
should usually suffice. Testing only the original image has a
computational advantage but, more importantly, the results on
different scales should be easier to interpret.

VIII. PAPER DENSITY EXAMPLE

In this section we apply our wavelet-based isotropy test
to a real-world example using relative mass density plots of
paper handsheets with size 256× 256 from the School of
Environmental and Forest Sciences, University of Washington.
Fig. 7 shows two examples of this type of image, which is used
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Table IV
P-VALUES FOR SINGLE RATIO TESTS STATISTICS ON IMAGES A (UPPER
ROW IN EACH BLOCK) AND B (LOWER ROW) FROM FIG. 7. BOLDFACE

INDICATES REJECTION FOR α = 5%.

ν̂2
U,1,1/ν̂2

V,1,1 ν̂2
U,1,2/ν̂2

V,2,1 ν̂2
U,1,3/ν̂2

V,3,1 ν̂2
U,1,4/ν̂2

V,4,1 ν̂2
U,1,5/ν̂2

V,5,1
0.18 < 0.0001 < 0.0001 0.0005 0.38
0.018 0.035 0.26 0.80 0.12

ν̂2
U,2,1/ν̂2

V,1,2 ν̂2
U,2,2/ν̂2

V,2,2 ν̂2
U,2,3/ν̂2

V,3,2 ν̂2
U,2,4/ν̂2

V,4,2 ν̂2
U,2,5/ν̂2

V,5,2
0.28 < 0.0001 < 0.0001 0.0002 0.42
0.032 0.032 0.22 0.60 0.12

ν̂2
U,3,1/ν̂2

V,1,3 ν̂2
U,3,2/ν̂2

V,2,3 ν̂2
U,3,3/ν̂2

V,3,3 ν̂2
U,3,4/ν̂2

V,4,3 ν̂2
U,3,5/ν̂2

V,5,3
0.86 < 0.0001 < 0.0001 < 0.0001 0.19
0.039 0.004 0.20 0.40 0.13

ν̂2
U,4,1/ν̂2

V,1,4 ν̂2
U,4,2/ν̂2

V,2,4 ν̂2
U,4,3/ν̂2

V,3,4 ν̂2
U,4,4/ν̂2

V,4,4 ν̂2
U,4,5/ν̂2

V,5,4
0.84 < 0.0001 < 0.0001 < 0.0001 0.063
0.13 0.006 0.22 0.43 0.19

ν̂2
U,5,1/ν̂2

V,1,5 ν̂2
U,5,2/ν̂2

V,2,5 ν̂2
U,5,3/ν̂2

V,3,5 ν̂2
U,5,4/ν̂2

V,4,5 ν̂2
U,5,5/ν̂2

V,5,5
0.31 0.0002 < 0.0001 < 0.0001 0.022
0.064 0.016 0.12 0.30 0.13

ν̂2
W,1,2/ν̂2

W,2,1 ν̂2
W,1,3/ν̂2

W,3,1 ν̂2
W,1,4/ν̂2

W,4,1 ν̂2
W,1,5/ν̂2

W,5,1 ν̂2
W,2,3/ν̂2

W,3,2
< 0.0001 < 0.0001 0.091 0.22 < 0.0001

0.004 0.18 0.013 0.86 0.56

ν̂2
W,2,4/ν̂2

W,4,2 ν̂2
W,2,5/ν̂2

W,5,2 ν̂2
W,3,4/ν̂2

W,4,3 ν̂2
W,3,5/ν̂2

W,5,3 ν̂2
W,4,5/ν̂2

W,5,4
0.0002 0.001 < 0.0001 < 0.0001 0.13
0.14 0.12 0.86 0.59 0.53

for assessing the quality of paper handsheets, where patchiness
is particularly of interest. The paper handsheets are made by
stirring a slurry of water and wood in a cylindrical vessel.
On the bottom of the vessel there is a trap door, which lets
the water flow out through a screen collecting the fibers. The
wet mats are taken off the screens and squeezed before being
stacked and dried on clean metal plates. The images A and B
from Fig. 7 are the result of placing the sheets on a film which
is sensitive to radiation, and covering them by a plate with an
embedded uniform distribution of radioactive elements with
low emission rates, followed by developing and digitizing the
film negatives. The thickness of the sheets changes from point
to point, so each pixel in the images represents a value for the
mass per area, also known as basis weight. Visible patches are
clumps of fibers, where the fiber length is on the order of a
millimeter. Ideally, there should be no directionality in these
images; i.e., the mass distribution and thus the thickness of the
sheets should be isotropic throughout the image. Hence, if the
paper density plot is anisotropic, it might indicate a need to
look at the manufacturing process. We use the wavelet-based
isotropy test to test this hypothesis.

Following Sections VII-D and IV-C, for 256×256 images,
it suffices to perform tests on the original image and to choose
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Figure 7. Images of size 256× 256 showing the relative mass density of
paper handsheets.

Table V
P-VALUES OF SIMULTANEOUS TEST STATISTICS BASED ON ν̂2

U, j, j/ν̂2
V, j, j

SUBSETS. BOLDFACE INDICATES REJECTION FOR α = 5%.

j = {1,2,3,4,5} j = {2,3,4,5} j = {3,4,5} j = {4,5}
A < 0.0001 < 0.0001 < 0.0001 < 0.0001
B 0.07 0.08 0.20 0.14

the D(4) wavelet using levels up to and including J = 5. The
tests require that the wavelet coefficients be zero mean normal
random variables. Since the images considered here are well
modeled as stationary fields, we choose to histogram equalize
them to standard normals to ensure this requirement. This will
not effect any directionalities present in the image.

First we apply the single ratio test of Section IV-A. As
we consider J = 5 levels, there are 35 possible single ratios.
The p-values of their respective test statistics are displayed
in Table IV and presented in boldface if they are below the
significance level of α = 5%. The test rejects the isotropy
hypothesis for 23 out of 35 single ratios for image A from
Fig. 7, while only 10 out of 35 ratios indicate anisotropy
for paper sheet B. The results for ratios involving the unit-
level wavelet filters seem to contradict those of other ratios. A
wavelet filter of level j′ = 1 only differences neighboring pixel
values so, if the scaling filters also operate on the lower scales,
this might simply be an effect of noise. The effect persists for
scaling filters up to level three, so it is hard to say if the results
point towards there being (an)isotropies present at the smallest
scales, or if it is simply the effect of random noise. When
disregarding the ratios involving unit level wavelet and/or
scaling filters, 18 out of 22 possible ratios lead to rejection
for the first image, but only 4 for the second one.

Anisotropy in image A is most significant for tests based
on any single ratios ν̂2

U, j, j′/ν̂2
V, j′, j or ν̂2

W, j, j′/ν̂2
W, j′, j with j′ = 3.

Here the differencing operation is performed on rows and/or
columns (depending on the chosen ww, ws or sw coefficients)
corresponding to scale τ3 = 4 pixels, on column/row averages
on scale 2τ j = 2 j pixels (τ j = 2 j−1 for the ww case). Image A
has a dominance of horizontal patches with thickness close
to four pixels, longer ones across the center of the image
and many shorter ones throughout the image. These are likely
causes for the anisotropy, but are not evident in the second
image, where the p-values of the corresponding test statistics
do not indicate anisotropy.

Having established (an)isotropy on a scale by scale basis, let
us now consider if the images are isotropic over several scales
simultaneously. Following the recommendation from Section
VI, we look at subsets consisting of diagonal sw/ws ratios,
i.e., ν̂2

U, j, j/ν̂2
V, j, j for a set of levels j. The p-values displayed in

Table V indicate that the first image is significantly anisotropic,
while evidence for anisotropy in the second is lacking.

The anisotropy of the first handsheet might be due to a
directed flow field as the water drains through the screen.
If clumps of fibers in the slurry stick to the screen, it may
cause the fluid slurry to move sideways to less resistant flow
pathways, thereby causing a distorted structure. This might
explain the apparent dominance of horizontal patches in image
A, though a well controlled experiment is needed to test
this further. The relative mass density values of the second
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Table VI
EVALUATION OF NULL HYPOTHESIS OF ISOTROPY FOR 106 MAMMOGRAM

IMAGES USING RICHARD–BIERME (RB) [43] AND WAVELET-BASED
TESTS.

wavelet-based test
R

B
rejection no yes

no 4 (3.8%) 60 (56.6%)
yes 4 (3.8%) 38 (35.8%)

image appear to be distributed as desired in theory; i.e., our
simultaneous tests do not suggest directionality in this image.

IX. MAMMOGRAM EXAMPLE

As a second example we apply our proposed test to mam-
mogram density images. These images have been modeled as
isotropic fractional Brownian fields, which are a subclass of
intrinsically stationary random fields (see, e.g., [4, 21, 22, 28]).
In Section VII we compared the Richard–Bierme (RB) test for
isotropy to our wavelet-based test. The paper introducing the
RB test [43] applied it to a set of mammograms and concluded
that it is more appropriate to model mammograms as Extended
Fractional Brownian Fields, a more general class of FBFs
that allows anisotropic features to be modeled. In this section
we compare the performance of our wavelet-based test with
the RB test using the same mammogram images as used in
[43]; however, it was not possible to use the same regions
of interest, i.e., the manually chosen 512×512 regions from
the mammograms, as in the original paper. In addition, we
have excluded images that are contaminated with large areas
consisting of just zeros, thus leaving a total of 106 images from
the original 116. The rejection rates reported in [43] for the RB
test therefore do not apply here, but we have recalculated this
test statistic based on code kindly supplied to us by the authors.
For simplicity (and in contrast to the paper density image
example), we here concentrate on a single scale combination
in the wavelet-based test. As per Section VI, we focus on the
diagonal sw/ws ratios using the D(4) wavelet. Since the lowest
scales are more sensitive to noise and the highest suffer from
a paucity of coefficients, a reasonable choice for the 512×512
images is to use diagonal scales 3 – 6. For the RB test, we
follow the authors’ recommendation and use what they call
their second test (with sampling factor ν = 2) [43].

Table VI summarizes the results of the RB and wavelet-
based tests. The overall rejection rates for the wavelet-based
and RB tests are, respectively, 92.5% and 39.6% (the latter
was about 60% in [43]). Our test rejects the isotropic as-
sumption for more mammograms than the RB test does, thus
strengthening the overall conclusion in [43] that isotropic FBF
models are too simplistic. If the isotropic hypothesis is indeed
untenable, the higher rate of rejection by the wavelet-based
test is consistent with the simulation study in Section VII-C.
Table VI gives the number of cases where the two tests agree
or disagree. Since our method rejects more often, the largest
category is when our test rejects, but RB test does not. Fig. 8
shows three examples of mammograms falling into each of
the four categories (one column for each category). The first
(last) two columns show images for which the wavelet-based
test failed to reject (rejected) the null hypothesis of isotropy;

Figure 8. Three examples of mammogram images for each of the four
categories from Table VI (one column for each category). First column: RB
and wavelet-based tests both do not reject the null hypothesis of isotropy
(i.e., rejection: no/no). Second column: yes/no. Third column: no/yes. Fourth
column: yes/yes (i.e., both tests reject the null hypothesis and thus agree on
anisotropy).

however, it is difficult to ascertain by visual inspection what
is causing rejection/non-rejection, and it is also not clear what
is causing disagreements between the two tests.

In conclusion, while the results from the RB and wavelet-
based tests do not agree in fine detail, both tests reach the same
conclusion about the efficacy of isotropic FBF models, namely,
that the isotropic assumption is highly questionable. An open
research question is whether the scaled-based nature of the
anisotropy would be useful in either detecting or classifying
tumors.

X. SUMMARY AND DISCUSSION

We have presented a novel method for testing for isotropy of
random fields on a regular two-dimensional lattice. We demon-
strated its performance on isotropic and anisotropic random
fields of different types, parametrizations and sizes. The test
consistently rejects close to the nominal level for isotropic
fields and has a rejection rate comparable to or exceeding
existing methods for anisotropic fields. For wavelets other
than the Haar, the method applies, without modification, to
intrinsically stationary fields. Since intrinsic models are com-
monplace (see, e.g., [6, 37]), this is a considerable advantage
over existing methods which normally assume stationarity.

The method is computationally efficient, since the wavelet
coefficients can be calculated efficiently [18] and the covari-
ance estimates needed for the test can be calculated with the
fast Fourier transform. Computational speed depends on the
computer in use, image size, the number of ratios included, the
length of the unit-level wavelet filter, and on which ratios are
to be used in the test. As an example, for a 512×512 image,
using the D(4) wavelet and including all permissible ratios up
to level four, we need 63 seconds to calculate and perform the
test on a Intel Core i7 Q 820 @ 1.73GHz computer with 8GB
RAM running on Linux Ubuntu 12.10 (64-bit) with Matlab
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version 7.12.0 (R2011a). Using only the diagonal sw/ws ratios
along with the ww/ww ratios, this reduces to 25 seconds, and
if using only the unit-level sw/ws ratio, 0.22 seconds.

The ability to handle intrinsically stationary fields is a
strength of the proposed method, but care must be taken in
interpreting the results. A property of intrinsically stationary
random fields is that their mean is defined only up to the
addition of a plane. Hence, the ability of the method to
handle these cases also means that the method will not detect
apparent directionality that is caused by a drift or linear
trend in otherwise isotropic data when using unit-level wavelet
filters longer than two. If it is of interest to capture this, the
recommendation would be to use the Haar wavelet and sw/ws
ratios. Depending on the slope of the drift, the higher level
sw/sw ratios should still detect such a trend in the data. In
fact, if using unit-level wavelet filters of length L, the method
is essentially invariant to the addition of polynomials of order
d < L/2 to the random field, so any polynomial trends of order
d or lower will not be detected by the proposed methodology,
no matter the effect it has on the image in terms of apparent
directionalities. When deciding what wavelet type to use in
a practical setting, this is yet another factor to consider. As
noted in Section IV-C use of longer unit-level wavelet filters
yields coefficients well modeled as zero mean normals, but
at the price of a reduction in the number of coefficients
available for parameter estimation. The additional desire to
detect anisotropies due to higher order polynomials suggests
avoiding unit-level wavelet filters longer than four, unless the
model in question specifically requires it. The existence of a
polynomial trend of order higher than unity can violate the
assumption of both stationarity and intrinsic stationarity, so
it is hardly surprising that the method cannot handle these
cases. A full two-dimensional wavelet decomposition will also
yield scaling-scaling coefficients which retain the polynomial
information that is filtered out by the wavelet filter. These can
conceivably be used for capturing polynomial directionalities,
though this would require further theory to be developed.

In this work we have exclusively considered intrinsic sta-
tionarity of order one, since isotropy is normally defined in
terms of the variogram, which is well defined only for intrinsic
stationarity up to order one. In the literature on Gaussian
Markov random fields it is common also to use models which
are second order intrinsically stationary. While isotropy cannot
be defined in terms of the variogram in this case, the concept
of directionality of the field still makes sense, and the proposed
method can capture directionalities that are not an effect of the
mean being defined only up to the addition of a second order
polynomial, except when using the Haar wavelet.

A strength of the proposed method is that isotropy can be
assessed on a scale by scale basis, capturing if there is a
significant difference in the amount of predominantly verti-
cal structure compared to predominantly horizontal structure.
Unfortunately, the test does not provide information on the
direction of anisotropy. If this is of interest, other methods
should be considered, e.g., the rose diagram.

The method allows for a large number of tests to be
performed, so spurious findings due to the effects of multiple
testing is an issue that must be considered. Hence, if many

tests are performed, the level of the test should be adjusted by
Bonferroni or some other procedure for correcting for multiple
testing. One way of minimizing the risk of spurious findings
might be to predetermine what scales (preferably only a few)
are of interest for the application at hand. Once this has been
decided, the first step would be to perform the multiple ratio
test including all scales of interest. If there is no rejection here,
there is no reason to proceed. If, however, the null hypothesis
is rejected, one can perform the single ratio tests for all scales,
and ascertain what scales are the most anisotropic.

For simplicity and computational reasons we used the peri-
odogram in Section IV-C for estimating the covariances needed
to construct the test. Other spectral estimators might improve
the results, as the periodogram is known to be suboptimal.
The increase in computational complexity is a drawback, but
might be justified if only a few scales are of interest.

So far we have only applied the test globally over an entire
image. If applied locally within an image, the test might be a
useful texture measure for segmentation and/or classification.
A simple approach is to apply the method as is on subimages,
doing the wavelet transform on each subimage. A more
appealing approach is to calculate the wavelet coefficients over
the entire image, and base the local isotropy tests on these, but
this would require the development of further theory, as the
method developed herein only applies to full images.
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