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“Computers are good at following instructions, but not at reading your mind. ”
–Donald Knuth

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

–Donald Knuth





Abstract
Today, with the prevalence of many- and multi-core systems has it been sparked
a new interest for programming models that permits developer to exploit their
resources. This has sparked renewed interest in creating larger event-based
systems, systemswhere stack ripping occurs andwith an obfuscated control flow.
Both increases the complexity of debugging errors. During the development of
the event-based experimental research os and vmm Vortex saw we the need
for tools that could aid developers to handle these challenges.

This thesis design and implements two tools that allow users to gain insights
into an obfuscated control flow and see when and why a state change was
done. We propose a design and implements two tools that are simple, flexible,
and lightweight enough to live inside of the critical path of event processing in
Vortex. First is a tool to observe the messages being passed to and from one
resource, enabling the de-obfuscation of the control flow. The second tool uses
the built-in debugging tool in modern cpu to tie state access and change to
the processing of one event.

Both of these tools creates debug messages that are being visualized in an
remote client.
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1
Introduction
Concurrent programming has become ever more important for increasing
the performance of applications and systems after Central Processing Unit
(cpu)-developers hit the power-wall and were unable to increase performance
through clock-speed [1, 2]. Today, the prevalence of many- and multi-core
systems has sparked a renewed interest in programming models to permit their
exploitation.

There are two general programming models for achieving parallelism and
concurrency: threaded and event-based programming [3, 4, 5]. Each model
comes with its own benefits and drawbacks, exemplified by identifying shared
data structures and protecting them [6] and stack ripping [5].

Stack ripping occurs when it is discovered that the processing of an event has to
be postponed and continued at some later point. For example, processing of the
event might require completion of some i/o or other processing. Intermediate
processing of other events might then cause state changes or modifications
which will make continued processing of the event difficult. Thus, event state
typically has to be stored upon postponement and restored upon continued
processing.

Postponement and continued processing of events also obfuscate control flow,
making system behavior more complex and debugging more difficult [7]. In-
terleaved processing of messages makes it harder to deduce which message
resulted in what change of state and from where the message originated. Thus,
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finding the offending entity causing faulty state might be a complex challenge
that requires a large debugging effort.

The popularity of cloud services and availability of multi-core systems has
resulted in a rebirth of virtualization technology [8, 9]. The workload of
cloud customers are placed inside Virtual Machine (vm)s and Virtual Machine
monitor (vmm)s handle multiplexing of the underlying hardware resources on
physical machines. These demands have resulted in Operating system (os)s
being extended with vmm support [10, 11, 12].

Vortex is an experimental researchos and vmm created at University of Tromsø
(uit). Vortex implements the Omni-kernel architecture [13], which has been
designed to control allocation of system resources. The Omni-kernel factors
the os kernel into multiple components that exchange messages in order to
implement higher-level os functionality. By relying on asynchronous message
passing, the problems of stack ripping and obfuscation of control flow are
present in the Vortex kernel.

This thesis focuses on developing tools and techniques to aid the Vortex kernel
developer in tackling stack ripping and obfuscation of control flow.

1.1 Problem statement
The use of asynchronous message passing makes it difficult to deduce the cause
of a state change for components in the Vortex kernel.

Specifically, this thesis investigates the problem of how to reconstruct control
flow in the Vortex kernel. The thesis focuses on the design and implementation
of a system that:

1. Can reconstruct message processing order at a Vortex kernel component.

2. Can deduce what message caused a specific state change in a Vortex
kernel component.

1.2 Context
The thesis has been done as a part of the information Access Disruption (iad)
Centre[14] at UiT that targets core research for next generation precision,
analytics and scale in the information access domain. Partially funded by
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the Research Council of Norway as a Centre for Research-based Innovation
(SFI), iAD is directed by Microsoft Development Center (Norway) in collabo-
ration with Accenture, Cornell University, University College Dublin, Dublin
City University, BI Norwegian School of Management and the universities in
Tromsø (UiT), Trondheim (NTNU) and Oslo (UiO). The iAD project investigates
structuring techniques for future-generation large-scale information access ap-
plications. This includes fundamental research issues like, for instance, how to
best partition an application into a set of cooperating modules, how to optimize
interaction among them, how and where to deploy them, how to interact with
the users, how to provide integrity, security and auditing, and how to ensure
fault-tolerance.

1.3 Scope and limitations
The scope of this thesis is to devise and implement systems for gathering and
reconstructing the order of messages so that control flow in an Omni-kernel
system can be reconstructed. The thesis should also expand the debugging
possibilities in the system by creating a system for controlling the debug
registers that are present in a modern x86 cpu.

Limitations to this work is that the implementation for controlling debug reg-
ister will contain an Application programmable interface (api) for developers
to use and an exception handler for using the debug registers in combination
with the system for reconstructing control flow. Other scenarios might exist
when the exception handler created for this thesis is not the optimal solution
however; this thesis leaves the task of creating exception handler based on
their need up to the user.

1.4 Methodology
The final report of the ACM Task Force on the Core of Computer Science gives
three major paradigms that Computer Science is divided into [15]:

Theory is rooted in mathematics. They approach problems characterize
objects that are to be studied to defining a problem, create hypothesis and
theorems about relationships between objects. Before they try to prove that
the relationships are true. This is done to determine and interpret the results
found.
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Abstraction is rooted in the experimental scientific method. The approach
is to investigate a phenomenon by forming hypothesis, which are turned into
models and make a prediction. An experiments is designed and executed to
collect data for analysis and interpret results.

Design is rooted in engineering. They solve a problem through construction
of a system or device. Based on a set of stated requirements and specifications
are a system designed and implemented. This system allows for testing and
evaluation based on the set requirements and specifications.

Common for all paradigms is that they are split up into steps, which when
needed is repeated, e.g. due to discovery of new information.

This thesis is placed into the design paradigm, given a problem we construct
a system based on requirements and specifications set before testing the sys-
tem.

1.5 Contribution
The contributions of this thesis is the design and implementation of:

• A tool for reconstructing control flow in the Omni-kernel architecture.

• A tool for enabling and controlling debug registers that are in the x86
processors.

1.6 Structure
The rest of the thesis is structured as follows:

Chapter 2 explains some of the technologies used in this thesis.

Chapter 3 details the architecture and implementation the tools.

Chapter 4 evaluates the architecture and details how this type ofmonitoring
and debugging affects the performance of a Omni-kernel systems.

Chapter 5 described related work for this thesis.
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Chapter 6 concludes the thesis anddescribes some use-cases for the tools.





2
Background
This chapter presents some of the background for the thesis and employed
technologies.

2.1 Vortex
2.1.1 Virtual Machine Monitors
vmm technology has been around since the 1960s [8, 9]. The technology started
out as a way to multiplex applications, providing users a way to run multiple
applications at once on large expensive machines. With the decrease in cost of
machines during 80s and 90s, there was corresponding decline in the usage
of vmms both in the industry and in academia. However, vmm technology
became popular again during the 2000s, with the emergence of larger parallel
systems and vmms able to run on commodity hardware.

One can differentiate vmm, or hypervisor, software based on where it is situated
in a system. Type-1 vmm, exemplified by Hyper-V, Xen, and Vortex, run directly
on hardware or as part of a privileged os. Type-2 vmms [16]., on the other
hand, run on top of an os and typically implement execution environments for
programs written in a specific language. Examples of type-2 vmms include the
JavaVM and the .Net environment. These two types of vmms are illustrated in
figures 2.1 and 2.2.

7
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Hardware

Hypervisor/priviledged OS

VM VM VM

Figure 2.1: First type of Hypervisor, running directly on the hardware.

Hardware

Hypervisor

VM VM VM

OS

Hypervisor Hypervisor

Figure 2.2: Second type of Hypervisor where each of them acts as applications.

Type-1 hypervisors were defined in [17] as bare-metal hypervisors. This type
of hypervisor runs directly on the hardware or as a part of a privileged os.
The privileged os then provide access to hardware resources such as drivers,
abstractions, emulation of devices, and administrative tools. The hypervisor
adds its own functionality on top of the privileged os. Hypervisors of this
type range from special purpose os [9] to being implemented as a part of the
current running os of the machine, such as Xen[12] or Hyper-V [11].

Type-2 hypervisors run on top a host os as a process [18]. A pure type-2
hypervisor will have to emulate all I/O calls and is unable to provide a vm with
direct access to hardware. Examples of such hypervisors include Virtualbox [19]
and VMware Workstation [20].
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Type-1/2 hybrids exist,where some of the I/O calls are not emulated to optimize
performance and limit overhead [21].

Running multiple vms on a single machine is a way to increase the utilization of
modern multi-core and multi-threaded machines. During the 2000s we saw the
emergence of commodity multi-core systems, and with the many-core systems
being developed today [22], is it ever more important to be able to utilize the
resources in systems more efficiently.

In cloud environments, such as Amazon AWS[23], Google Cloud[24], and
Microsoft Azure[25], customers are typically offered service guarantees by
the particular provider. For the provider to satisfy such guarantees, the ability
to control how resources are multiplexed is important. Since vmms control
access to physical resources, they are also charged with multiplexing them
among hosted vms according to some predefined policy. Not multiplexing
resources according to policy at the vmm level hinders prioritization at other
levels of the software stack[26].

2.1.2 Vortex
Fine-grained control over system resources is required from a vmm, and if the
vmm is depending on a privileged os, this requirement carries over to that os.
Control over resource allocation is the goal of the Omni-kernel architecture [13].
Vortex is implementation of the Omni-kernel architecture created at the uit.
Vortex is designed for visibility and opportunity for fine-grained control over
resource allocations in a system and can function as a vmm.

TheOmni-kernel architecturewasmadewith three design principles inmind:

• Measure all resource consumption

• Identify the unit to be scheduled with the unit of attribution

• Employ fine-grained scheduling

Vortex enables cloud providers to accurately attribute resources consumption
to different activities, thus enabling fine-grained billing to be generated for any
tenant that share a host[27]. Fine-grained attribution makes Vortex unique:
every resource and system device, such as files, disk, processors, memory and
I/O controllers, can be controlled by schedulers and have their usage moni-
tored.

Vortex divides the os kernel into components, all residing in a single address
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space, that communicate using messages with schedulers interpositioned on
communication paths. These schedulers control the order in which messages
are processed at components, thereby prioritizing among system activities. The
activities might be processes, services, database transactions, vms or other
units of execution.

The use of messages passing and schedulers is the basis of the Omni-kernel and
the Vortex implementation of the architecture. Messages are passed between
resources in the Omni-kernel, where a resource is any software component
that exports an interface for accessing other components, e.g. hardware such
as I/O devices, or software components such as the TCP/IP stack or a file
system.

Resources uses other resource through sending a resource request message. This
message specifies arguments and a function to be invoked in the interface
specified for that receiving resource. The sender of the messages is not delayed
and the message is posted into a request queue associated with the target
resource. Between two resources there are schedulers that control the order
in which messages are processed.

These resources are configured into grids to implement higher-level kernel
features and abstractions. Different resources have different roles inside of the
grid; some resources are producers and other are consumers. Some resource
will have both roles depending on the operation that is being processed. E.g.
the network interface card (nic) will produce message based on what it is
being received on the network port, and consume message that should be sent
out.

In Vortex, processes run within the confines of a compartment. Compartments
are organized hierarchically and define separate namespaces for system re-
sources such as Transmission Control Protocol (tcp) ports etc. Hardware
resources are initially assigned to compartments and then subdivided among
hosted processes. A process within a compartment can create a new subcom-
partment and transfer to it fractions of available resources. This gives rise to
a hierarchy, where all system resources are assigned to a root compartment.
Compartments are used to group and separate vms belonging to different
tenants. One tenant can have a compartment as her tenant-specific ’root’ com-
partment and create subcompartments that host different vms. This allows her
to monitor and control resource usage at the level of individual vms and to
aggregate resource usage across compartments for more holistic views.
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2.2 CPU debug support
Our mechanism for identifying state changes with specific messages make
use of hardware-supported debugging features. Specifically, we make use of
the debugging features of Intel-based cpu[28]. Similar features exist in other
architectures, for example in the MIPS [29] and SPARC [30] architectures.
Support for use of Intel debugging registers was added to Vortex as part of the
work presented in this thesis.

The Intel debugging features were introduced in the 80386 as a set of hardware
debug registers along with a debug exception. Generally, these registers allow
the setup of watch points on specific memory addresses; when a memory access
or instruction fetch matches a watched memory location, the processor triggers
an exception.

Today, Intels x86 platform have 8 debug registers, Debug Register (dr)0
through dr7. These registers function as interfaces to the following features
and functionality:

DR0 through DR3 are available for storing the address of currently watched
memory address, either variables or functions. This provides debug registers
for watching up to four memory addresses at any given time.

DR4 and DR5 are reserved and any attempt to move values into these
register will cause Invalid-opcode exception.

Table 2.1: Bit configuration of register dr6 [28].

Bit Name Meaning
32-15 N/A
15 BT Task switch
14 BS Single Step
13 BD Breakpoint Debug Access detected
12-4 N/A
3 B3 Breakpoint #3 condition detected
2 B2 Breakpoint #2 condition detected
1 B1 Breakpoint #1 condition detected
0 B0 Breakpoint #0 condition detected

DR6 reports conditions at the time a debug exception was generated. This
includes which debug register that caused the exception to be created, as shown
in table 2.1. Bit 15 details if the exception was triggered from a task switch. Bit
14 details if the exception was triggered by the single-step execution mode.
Bit 13 indicates if the next instruction is one that will access any of the debug
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registers (dr0 through dr7). Bit 3-0 details which one of the breakpoint that
was the cause of this debug exception.

Table 2.2: Bit configuration of register DR7 [28].

Bit Name Meaning
31-30 LEN3 Length of DR3
29-28 R/W3 Read/write DR3
27-26 LEN2 Length of DR2
25-24 R/W2 Read/write DR2
23-22 LEN1 Length of DR1
21-20 R/W1 Read/write DR1
19-18 LEN0 Length of DR0
17-16 R/W0 Read/write DR0
15-14 Not used
13 GD General Detect enabled
12-10 Not used
9 GE Global exact breakpoint enable
8 LE Local exact breakpoint enable
7 G3 Global breakpoint enable
6 L3 Local Breakpoint enable
5 G2 Global breakpoint enable
4 L2 Local Breakpoint enable
3 G1 Global breakpoint enable
2 L1 Local Breakpoint enable
1 G0 Global breakpoint enable
0 L0 Local Breakpoint enable

DR7 specifies the forms of access that will generate an exception and the
data size that each memory address covers. This register hold most of the con-
figuration that is used for controlling the behavior of the debug registers.

Table 2.2 describes the bits of DR7. Bits 31-30, 27-26, 23-22, and 19-18 detail the
size of the memory location that the specified debug register points to. These
fields are interpreted as following:

1. Value: 00 - 1-byte (Also used for triggering on instructions)

2. Value: 01 - 2-byte

3. Value: 10 - 8-byte

4. Value: 11 - 4-byte
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Bits 29-28, 25-24, 21-20, and 17-16 detail the breakpoint condition that are
needed for triggering the specified breakpoint. These fields are interpreted as
following:

1. Value: 00 - Break on instruction execution only.

2. Value: 01 - Break on data-write

3. Value: 10 - Break on I/O reads or writes

4. Value: 11 - Break on data reads or writes, but not instructions fetches.

Bit 13 enables the debug-register protection. This will cause a debug exception
be a created if any MOV instruction will access a debug register. Bit 9-8 is no
longer supported in modern CPUs, and should be set to the value 0x1 due to
backwards compatibility. Bits 7, 5, 3, 1 enables the breakpoint condition for
a specified debug register. This is a global flag and is not cleared by the CPU
meaning that the breakpoint can be triggered by other tasks in the system Bits
6, 4, 2, 0 enables the breakpoint condition for a specified debug register. This
is a local flag and is cleared by the CPU. This avoids unwanted breakpoints in
other tasks.

It is possible to set DR registers to point at either variables or functions. But
for variables, the debug exception is generated after the memory has been
accessed. For functions, the exception is generated before access.

2.2.1 Enabling and disabling debug registers
Enabling and disabling the debug registers are done throughwriting the correct
values to the correct register.

There some steps that has to be done for the debug register to be enabled.
First, the Debugging Extensions (de) flag in Control Register (cr)4 must have
been enabled earlier. The DE flag is bit 3 of the CR4 register. The next actions
are:

1. Moving the address for the debug condition into a debug register.

2. Enabling that debug register and debug condition in DR7.

3. Registering an exception handler for the interrupt vector 1.

The processes of disabling the debug registers involve:
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1. Disabling the Debug register in DR7.

2. Removing exception handler.

2.3 Programming model
Today, developers have a choice between two different programming mod-
els when creating parallel systems: threaded and event-based programming.
These two programming models enable developers to execute parallel systems
and applications that utilizes the many-core systems that are popular today.
However, the properties that they provide is very different, and designing a
solution for one model might make it very challenging to use the other model.
This means that choosing the correct model is important and can impact the
design and performance of the program to a large degree [31, 32, 33].

2.3.1 Threaded Programming
Threads is a commonly used method to create parallel programs. Threads
allow the developer to split his program into parts that are being executed in
parallel, and then pass any needed information between the different threads
that make up the program, as shown in figure 2.3. This method requires the
developer to identify the parts of the program that would benefit from being
executed in parallel. The parts that can or needs to be running in a separate
thread is split from the rest of the function into a function of their own and a
thread started with that function as its main function. This allows the program
to stay responsive even when starting large and long running tasks.

Creation of a thread is an operation that typically has been expensive and taken
time, resulting in that the code-parts that should be threaded has to be bigger
than in e.g. event based programs [6]. Work in this area has created thread
packages that are lightweight and scales to 100,000 threads [4]. However,
being able to quickly and efficiently create many threads is important for those
times when there are many small tasks that should be executed, e.g. in web
servers as shown in [7]. But threads do not scale well when having more
CPU-intensive threads than the number of cores in the system [32].

Input/Output (i/o) operations are very often the reason for creating multi-
threaded programs, to achieve the ability to continue processing whilst waiting
for i/o operations to finish. Whilst the I/O operation often does not take
up very much cpu, they can take up time and resources in other devices
such as Graphical Processing Unit (gpu), network, and disk. Being able to
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Main function

Thread 1 Thread 2 Thread 3

Blocked waiting 
for I/O

Prorgram finished

Thread 1

Thread 1

Thread 2

Thread 2 Thread 3

Figure 2.3: The threaded programming model.

efficiently distribute resources among all threads in system is often a challenge,
as each program does not have overview of other programs threads and their
operations [6].

Threads also has challenges in creating safe programs where all data access to
shared data is handled correctly [6], where scheduling is done as efficiently
as needed [32], and being able to debug race conditions and corner cases is
difficult [34].

Thread-based programming requires the developer to identify parts that can
be split into another thread to achieve parallelism as can be seen in figure
2.3. Each thread will execute i/o requests and block while waiting for results.
While one thread is blocked, another can be executed and this way one achieves
concurrency or parallelism [31].

The drawback of threaded programming is the need to identify shared memory
and protect those parts with locks. This process can be complex and improper
handling of shared memory can create data races and dead-locks. For ex-
ample, there are many situations where dead-locks can occur in the Linux
kernel [35].

Another challenge with threaded programming is choosing the correct number
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of threads. As shown in [32], threads executed in parallel will affect each
other and running too many threads can degrade performance. The challenge
is that when the program is running alone, there will be enough resources
for it to be running with a high number of threads, as was often the case
before when parallel programming was used for High performance computing
(hpc). However, modern parallel programming is on multi-core systems which
is being shared with many other applications and a high number of other
threads running in parallel. This limits the number of resource available for
each application.

2.3.2 Event-based programming
Event-based programming is the alternative to thread based programming
and is another way to achieve parallel execution. The model is based around
asynchronous execution of small jobs, where the issuer typically is informed
of job completion through a call-back or by waiting for a completion-code
associated with a token/future. This allows a program to continue executing
whilst waiting for operations to finish.

One event is a happening of interest [36, 37], e.g. a state change in a component.
The component issues a notification that describes the event, these notifications
are moved from the producers and to the consumers. The consumers will
register for a specific type of notification that they will receive and handle. A
event might be a block of code as in Grand Central Dispatch (gcd) [6], input
to function or closures as in Vortex [27]. The event are sent to the consumers
that will based on the type and content of the event process it and return the
produced result.

Supporting asynchronous i/o operations has become more and more popular,
as it has been shown to be a good way of increase performance [38, 39]. It
has been added to the Linux Kernel [40], and ssynchronous I/O is also the
basis of Node-js [41], a event-driven platform built on Chrome’s JavaScript (js)
runtime. Common across these is that I/O takes time; a disk is slow and network
operations is even slower. Instead of having a full thread blocking for every I/O
that the program has to do, can the operations be created using events and
asynchronous I/O operations. This will allow the program to continue while
waiting for the result. Node JS has taken this as a basis for their design [42]
and each Node application is only a single process, never executing its core
logic in parallel. Most of the operations is implemented as events leaving very
little logic in the main loop.

As shown in figure 2.4, the main program will run the logic of the program
inside e.g. a main loop, creating events based on user input or other events.
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Main function

Main Loop

Event

Main Loop

Main Loop

Event

End

Event processor

Figure 2.4: Event-based programming. A main loop that contains the logic and event
handlers that handle I/O or longer requests.

For any operations that can block or might take time, the main loop spawns an
event. This event is passed over to the event processor, that handles the event
which might consist in passing it to another resource or directly replying with
a result. For many systems, this results in one thread running the program and
one or more threads handling all of the events being generated. The developer
does not see the threads that handle the events, so for him is there only one
thread.

Event-based programs has the benefit of an possible less memory overhead,
as the number of threads needed can be lower or better utilized [43]. This
also has the benefits of allowing the os to build the event-based framework
directly into the os as has been done with Vortex [27] andgcd [6]. Having the
frameworks as integral parts of the system allows the system to handle the work
of balancing the load between the different applications that generates events
and the resource that they have been allocated. In thread-based programming
is it up the to developer to ensure that his threads does not consume more
resource than needed, or in such a manner that they negatively affect the
system. Using event-based frameworks built-into the os allows the OS to
control the resource usage of application and ensure that starvation does not
happen. The framework will implement a set of queues and schedulers running
on those queues; every event created is inserted into a queue and based on the
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the event, the sender and the receiver is the event scheduled. Different queues
might e.g. be used for different levels of priority or different types of events.
This queue and scheduler design allows the framework to effectively control,
optimize and attribute resources that the events needs on a system level.

There have been many different frameworks and packages create to enable and
help developers implementing event-based programs, and handle those events
in optimized way [44, 6, 43, 3]. One of these is the gcd [6] implemented in
OS X 10.6 Snow Leopard. gcd is a framework for event-based programming
built in to the OS X os, enabling developers to create blocks of code that will
be executed as an event. As a part of gcd they built-in queues for different
priority levels, which allows multiple programs to be running at once with
all of them producing events and have them execute as fast as the hardware
is able to do. This allows developers to create as many events as they need
without having to think about how many threads they can create and how
many system resources that are available, as this is handled by the framework
which can optimize the amount of events running in parallel based on the
number of applications and available system resources. This also allows the
system to prioritize some events above other based on the wanted behavior.
These frameworks hides the challenges that are present with the event-based
programming model such as obfuscated control flow and stack ripping.

One of the challenges in creating event-based system is the obfuscation of
control flow [7]. In these systems, one method calls a method in another
resource/module by sending a message or event and expect an answer using
the same event method. This requires the developer to keep track of where
each of the call/return methods are and which resource they represent when
these can be in very different parts of the code-base. In addition to these
call/return methods, the developer has to save and restore the state in the
process called stack ripping, as he has to rip out the needed state for his event.
The complexity and challenges of stack ripping is discussed in more detail in
Chapter 2.3.2.

The obfuscation of control flow is showing when looking at the processing
order of events. Messages being sent from resource to resource and interleaved
with messages from the other resources in the system can make it hard to see
exactly why one state in a resource was achieved instead of the expected one.
The processing order of messages in one resource will be affected by how many
other resources is using it. This means that bugs can be very complex and
intermittent, increases the debugging challenge and the amount of developing
work to solve bugs. Bugs might require a given sequence of events or states
to happen and thus be complex and intermittent, this can make them very
complex and complicated to debug.
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Designing event-based systems might be hard as they often rely on a flat
structure [36, 37]. This means that as these systems grow, it becomes harder
and harder for the developer to keep track of the code base and design. The
less overview that he has of the system, the easier it is for a change to result in
faults.

There has been done work to unify the two different models and creating
hybrid solutions that combines the best from both models [45]. These types
of systems allows the developer to use the threaded and event based model in
the same program.

Stack ripping

One of the most prominent challenges when creating event-based systems is
stack ripping [5]. Adya et al discussed the concept and introduced two differ-
ent styles of stack management: automatic and manual stack management.
They claim that the style of task management (cooperative or preemptive) is
orthogonal to its style of stack management. Stack ripping is done in event
based programming where parts of the program are ripped out and saved. The
event handlers have to rip out the needed state for the programs, so that once
the event trigger the program is able to continue the computations.

The process of ripping is needed to save the state for the currently running
program, as the sender often continues to execute once the event is sent, and
this might change or remove state that is needed.

Consider requests received by a web server. One request might come in from a
web browser for a Hyper Text Markup Language (html) page. This request
will result in multiple events being created from a high-level view. First, one
event to process the incoming packet, then reading the block with the web
page, and an event for sending packet back to the client. Each of these events
might create multiple events of their own to be able to produce the wanted
result. Reading the disk block might be one event for initiating the disk i/o,
and one event for reading and for returning the block to the web server. The
imagined web-server can whilst waiting for the events to return continue to
operate and handle more incoming requests.

In [5] they argue that this approach breaks up the control flow between many
different events, possible different languages. The result of this is that the
scoping features of the programming language is disregarded. This increases
the complexity that process of stack handling, requires more manual stack
management, and it can become harder to deal with as the complexity of the
application or system increases.
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Adya et. al. introduced the concept of stack management and its two different
types: manual and automatic. Automatic stack management is the type that
is being used in multi-threaded programming where the developer does not
have to think about the stack or saving state between two threads. This is
done automatically for him. Manual stack management is the type of stack
management that message based systems provides. The developer has the
responsibility to store enough state for the message to be able to execute
once processed. The result of this is that more responsibility is placed on the
developer and provides new avenues for bugs.

Preemptive task management is often for hpc, so that task can be interleaved
or overlap on the multi-core processors that are used in these systems. This
allows the programs to utilize the resources available. Serial task management
is each task is run to completion before starting a new one. The benefit of serial
is that it does not have any shared state conflicts, as those that might arise in
preemptive. This because only one task being executed at once.

Choosing the correct type of task management is important as it will affect the
performance of the systems. For systems with multiple cpus or with some slow
tasks and many small quick tasks, the usage of serial can limit the performance
that one would get out of the system or increase delays.

A third type of task management is cooperative. Whilst being similar to serial
where each task run is executed alone, it has an advantage over preemptive
where tasks are able to yield on specified points during its execution. One
example of a point to yield is whilst waiting for i/o. This means that there are
only specified set of points where state has to be saved, so that it can be resumed
once the task resumes. Cooperative with its yielding is more complicated than
serial due to the need to save state. It gets more complicated if the state of the
task is dependent on global state, as the global state might have changed once
the task resumes. This is the same problems that preemptive suffers from.

However, the type of stack management that is used in the system influences
the type of task management. According to [5], the combination of these types
of stack management and task management can be seen as the basis of the
two types of programming models that we currently have. Event driven and
multi-threaded. Event driven programming is the combination of manual stack
management and cooperative task management whereas multi-threaded is the
combination of automatick stack management and preemptive task manage-
ment.

The processes of stack ripping is a challenge in event based systems, such as
Vortex, as it hides the control flow in an application or system [4]. This results
in systems where it is hard to understand the cause and effect of state in
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various resources, to see why one resource was in the state that it was. Stack
ripping and the process of storing and restoring state can be troublesome to
debug, and creates new often intricate avenues that intermittent bugs might
be created from. The developer has to match the call and return methods in
his head, whilst ensuring that he saves and restore the state correctly.





3
Design and
implementation
The presence of stack ripping and obfuscated control flow poses challenges
for Omni-kernel developers. This chapter describes the design and implemen-
tation of tools to help Omni-kernel developers handle and overcome these
problems.

3.1 Design goals
In a message-based system, it can be hard to determine the originating ac-
tivity of a message. The Omni-kernel design goal of being able to attribute
all message processing to an activity alleviates this problem somewhat; all
messages carry an identifier that ties the message to a particular activity. Still,
knowing the originating activity of a message is often not sufficient when
debugging complicated bugs that might require replicating or knowing the
history of messages leading up to the bug triggered when a particular message
is processed.

The overall design goal for this thesis is to create a system that can monitor
message processing at a particular resource in the Vortex Omni-kernel im-
plementation, and create message processing traces sufficiently detailed to

23
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reproduce the history of messages leading up to a particular state change in a
resource.

We approach this goal by adopting the general design principles of attempting
creating a simple and lightweight system. The system should filter message
sent to and from the watched a resource and store just enough information
about each message so that it can be identified and connected to the sending
process.

We also desire for the system to be flexible and easy-to-use. The design should
allow developers to expand on the information captured from messages, and
have accessible ways to view message histories.

We have tried to meet these design goals by creating a set of tools. The first tool
enables a developer to track messages processed by an Omni-kernel resource.
The tool can e.g. be used to reconstruct the flow of messages originating from
a particular system activity. The second tool aids the developer in identifying a
message with a particular state change. By activating cpu debugging support
upon message dispatch, access to a variable or invocation of a function can
be intercepted and tied to a particular message. An common infrastructure
handles the information produced by these two tools. Last, an external gui-tool
can be used to retrieve and visualize message flow to a resource.

The design principle of creating a simple and lightweight system is shown
throughout the system, where each part has been designed to handle a high
amount of messages during the task processing path without affecting Vortex
negatively. The tools are small and with an implementation that limits the
amount of computations done for each message.

Designing debugging tools requires them to be flexible and easy-to-use, as
they will be used by other developers, in scenarios that might differ greatly
from ours. They might be required to work under different circumstances and
hardware combinations that we use today with a greatly increased number
of cores and resources. Creating flexible and easy-to-use tools are achieved by
allowing developers to change different parts of the tools easily and making
tools that can be used on different levels based on need.

The tools designed for this thesis fits with the demands set and provides the
ability to reconstruct the control flow for an kernel-resource.
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3.2 Architectural overview
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Figure 3.1: Architectural overview of the message gathering tool.

Figure 3.1 depicts the overall architecture of our system. The tools for tracking
message flow and identifying messages with state changes both produce debug
messages in their operation. These messages describe e.g. pertinent details of
a message processed by a resource or that a particular message has caused
access to a specific variable. Each message contains enough information to
discover the intent and ownership of the original event.

Debug messages are in turn handled by a common infrastructure that consists
of both kernel- and user-side components. The kernel-side components handle
message queueing and provides access to queuedmessages through the general
Vortex resource interface.

The user-side components interface with the kernel to retrieve debugging
messages, to expose them externally through a network-based interface.

Last, the infrastructure provides a client-side tool for visualizing and creating
views on a set of retrieved debug messages. The view will recreate the control
flow for the given kernel resource, showing every message sent to and from
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that resource.

3.3 Filtering messages
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Figure 3.2: Filtering of events and creation of debug messages

All work in the Omni-kernel is represented as a message. Thus any state change
in the kernel occurs as a result of processing a message. Every message targets
an Omni-kernel resource and our first tool allows for the capture and profiling
of messages sent to specific resources.

This results in a very large number of messages being sent and processed from
every type of resource and program in the system. When active, the message
filtering tool inspects, at the time of dispatch, all incoming messages for a
resource and produces a corresponding debug message as shown in figure 3.2.
Creation of debug messages thus occur in the critical path of Omni-kernel
message processing. This means that to reduce overhead, debug message
creation should be very lightweight and the debug message should only include
pertinent details. Trying to gather toomuch information would negatively affect
the running system.
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Listing 3.1: Contents of a debug message.

// Gathered from r e s ou r c e and r e qu e s t
to :%s , // R e c e i v i n g Resource
from:%s , // Sending r e s ou r c e
timestamp:%D, // Timestamp o f message
func t ion :%s , // Func t ion to be c a l l e d
funct ionType:%d , // What type o f r e qu e s t
c l _a rg c :%d , // Number o f arguments
c l_ fmt :%s , // Type o f argument , r e f e r e n c e

counted o b j e c t or not
cpu_id:%d , // CPUID
msg_id:%d , // ID o f message
// Gathered from compartment and p r o c e s s s t r u c t
cmp_name:%s , // Name o f compartment
pid:%d // Sending p r o c e s s ID
// Added i f message caused by br eakpo in t
dr:%d , // Was t h i s message s en t

be cause o f debug e x c e p t i o n
dr_reg:%d , // Which debug r e g i s t e r caused

the e x c e p t i o n

Figure 3.1 shows the contents of a debug message. The information captures
salient aspects of a message, such as which function the message targets and
what process caused the creation of the message. This information is recorded
both from the correspondingmessage data structure itself as well as information
drawn from other sources.

To capture information not part of the message data structure, our code tra-
verses many Vortex kernel data structures. For example, a message does not
include a process or compartment identifier, but rather an IOshare identifier.
The IOShare identifier refers to an instance of the IOshare abstraction. In-
ternally in the Vortex kernel, IOshare instances are the clients, or activities,
among which I/O resources are multiplexed and shared. An IOshare instance
is associated with each instance of the IOAggregate abstraction. The IOAggre-
gate abstraction is exposed in the Vortex system call interface, and from the
perspective of a process, instances of this abstraction are the entities among
which I/O resources are multiplexed and shared. Code for tying an IOShare
identifier to IOAggregate to process was not readily available, and something
we added to the Vortex kernel.

Choosing which information to save can greatly affect the tools ability to scale
with load. Gathering too much information or information that takes time
will affect the overhead of the tools. The information we gather is enough to
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gain the insights that was needed, and for the tools to help developers. One
have to be careful when increasing the amount of information for each debug
message. As the amount of messages being processed is very high, we have
seen 43000 messages every second being sent to and from one resource, can
one extra entry cause the overhead to increase so much that it negatively affect
the system.

3.4 Monitoring state access and change
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Figure 3.3: Monitoring access to state and creating debug messages.

Our second tool can be used to track accesses and changes to the state of
a Vortex kernel resource. Specifically, this monitoring tool makes it possible
to identify a particular message with some state access or update. This is
accomplished by allowing the developer to set breakpoints on specific memory
addresses and have a debug exception be generated when that memory address
is being used as shown in figure 3.3. This enables a developer to ascertain when
a variable is being accessed or when a function-call happens.

To perform its task, the tool makes use of the built-in debugging support of Intel
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cpus. Functionality for use of these cpu debugging facilities was added to the
Vortex kernel as part of our work. Since we expected that the functionality
could be of interest beyond its use in our tool, the functionality is designed
and implemented separately from our tool.

Listing 3.2: Low level APIs for enabling and disabling an individual debug register.

vxe r r _ t dr_add_debug_reg i s ters ( vaddr_t address ,
v a r i a b l e _ s i z e _ t s i ze ,

d ebug_ r eg i s t e r _ f l a g s _ t f l ag , debug_ reg i s t e r s _ t dr )
vxe r r _ t dr_remove_debug_regis ters ( debug_ reg i s t e r s _ t dr )
vxe r r _ t dr_se t_except ion_hand le r ( vx_vaddr_t func t ion )
vxe r r _ t dr_remove_exception_hander ()

Listing 3.3: Default exception handler.

vxe r r _ t predef ined_exp_handler ( e x c d e t a i l _ t *exc )

The interface for controlling the cpu debugging registers is shown in Listing 3.2.
It consists of four functions:

1. dr_add_debug_registers enables the specific debug register identified by
the dr argument. The address and size arguments identifies a memory
address range. The flag argument specifies what to monitor:

• INSTRUCTION_EXECUTION
Triggers only on instruction fetched from the address. This will
trigger before the instruction is executed

• DATA_WRITE
Triggers on writing to the address. This will trigger after the value
has been updated.

• IO_READ_WRITE
Triggers on IO reads and writes

• DATA_READ_OR_WRITE
Triggers on reads and writes to the address. This will trigger after
the values has been updated.

For example, enabling the debug register to trigger on function call should
a size of one byte and the flag INSTRUCTION_EXECUTION should be used.

2. dr_remove_debug_registers disables a specific debug register.
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3. dr_set_exception_handler is called to specify a handler that will be invoked
when a debugging exception is generated. The function has to have the
signature as detailed in Listing 3.3, with the return value of VXERR_OK
as this function is called from the general exception handler in Vortex.

4. dr_remove_exception_hander removes the previously set exception handler
for the debug exception.

Listing 3.4: breakpoint data structure

s t ruc t breakpo in t_ t {
vaddr_t address ;
v a r i a b l e _ s i z e _ t s i z e ;
d ebug_ r eg i s t e r _ f l a g s _ t f l a g ;
debug_ reg i s t e r s _ t dr ;
boo l_ t s e t ;

} ;

Listing 3.5: API for controlling all of the debug registers.

vxe r r _ t d r_ se t_breakpo in t_ regs ( rb s _ t * rbs )

vxe r r _ t d r_ re se t_b reakpo in t_ reg s ( rb s _ t * rbs )

vxe r r _ t dr_remove_breakpoint_regs ( rb s _ t * rbs )

rb s _ t * c r ea t e_b reakpo in t _ s t ru c tu r e ()

The monitoring tool is built on top of the debugging interface and provides an
interface centered around a breakpoint abstraction. The interface is shown in
Listing 3.5.

Each breakpoint is described by the data structure shown in Listing 3.4. The
breakpoint describes an address to monitor and how it should be monitored.
When a user sets the breakpoints by invoking dr_set_breakpoint_regs, are all
enabled breakpoints set.

Listing 3.6: rbs data structure

s t ruc t r b s _ t {
breakpo in t_ t dr [DR_MAX] ; // One s l o t per

debug r e g i s t e r
boo l_ t DR_set ; // I s debug

r e g i s t e r enab led
ob j e c t _ t obj ; // Ob j e c t f o r

mutex− l o c k i n g
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boo l_ t l o c a l ; // I s t h i s s e t
to look at a s t a c k addr e s s ?

} ;

Information about current debug register allocations is described by the data
structure shown in Listing 3.6. Much of this information corresponds to what
is needed when the debug interface functions are invoked. Some additional
information is stored, however. A boolean value identifies if the register should
be enabled. Thus, a debug register can be allocated but not active. The data
structure also contains a bool to tell if this address is a local or global variable.
Local stack variables are unique for each function due to the scoping of the C
language, however, the stack memory location is reused because of unwinding
and subsequent function calls. This can cause problems when a stack variable
is monitored (see Section 3.4.1).

In short, the functions in the interface shown in Listing 3.5 can be invoked
to:

1. dr_add_debug_registers is invoked to enable a debug register.

2. dr_set_breakpoint_regs enables the debug registers according to the pa-
rameters described by the rbs pointer argument.

3. dr_reset_breakpoint_regs disables debug registers according to the rbs
argument descriptions. The allocation of registers is kept, however.

4. dr_remove_breakpoint_regs disables and removes all debug register allo-
cations and configurations.

5. create_breakpoint_structure allocates a new rbs data structure.

The tool code will set up its own debug exception handler by invoking the
dr_set_exception_handler debug interface function. When an exception invokes
the handler, will it (1) determines what debug register caused the exception,
and (2) generates a debug message that describes the exception. The debug
message is shown in 3.1. Only the fields dr,msg_id and dr_regwill be populated.
Sending the whole debug message was chosen to simplify the receiving in
clients, as every message is of the same size and data structure.
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3.4.1 Breakpoints on variables local to a function
C compilers typically produce code that places variables local to a function on
the stack. As the stack contracts and expands due to function calls and returns,
particular memory locations on the stack are potentially reused multiple times
to hold different types of state. This causes complications when a developer
wishes to use our debugging functionality to monitor access to a specific local
variable in a function.

If a local variable in a function is monitored, the number of debug exceptions
might be higher than expected due to stack memory reuse. For example, we
observed that as many as six to eight debug exceptions would be generated
when our code seemingly only contained one reference to a monitored vari-
able.

To address this problem we included an extra boolean in the rbs data struc-
ture (see Listing 3.6). If this variable is set to TRUE, the developer informs
that a breakpoint is set up for a local variable and that he is aware of the
challenges.

If the variable is set to FALSE and the developer tries to set up debug registers
on local variables, will an critical syslog message be generated. This message
will halt the Vortex system, halting was chosen as enabling debugging on local
variables can have very negatively effect on a Vortex system if not done correctly,
and might change system behaviour.
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3.5 Storing debug messages

Client

Breakpoint?ProcessMessage

Breakpoint?ProcessMessage

Breakpoint?ProcessMessage

Breakpoint?ProcessMessage

Statistics message
Kernel resource

Task 
processin

g

Task 
finished

D
ebu

g 
exce

ptio
n

D
ebu

g 
m

essag
e

Task 
processin

g

Task 
finished

D
ebu

g 
m

essag
e

Figure 3.4: Storing of debug messages in rounded buffer.

To store debug messages, we associate a circular buffer with every Vortex
kernel resource. Debug messages are deposited in the appropriate buffer, and
the buffer is emptied upon user-level software requesting profiling data via
the Vortex statistics message interface (see Section 3.6). This is shown in
figure 3.4.

A debug message will be dropped if the circular buffer is not emptied at a rate
at least matching that of message insertion. Another design option would be
to start overwriting old debug messages if no room to store them. We decided
on the policy of dropping messages because both of the options would result
missing information. By dropping new messages are the old ones kept so that
the history up to where any messages was dropped is complete.

The circular buffer is represented using a fixed size array. The size of the
array may be changed at compile-time, but remains fixed in a running system.
Using fixed size arrays decreases complexity and ensures that the overhead
of gathering messages is kept low: a circular buffer allows both inserting and
removing from the buffer to happen at constant time with a complexity ofO(1)
as there is no need to resize, lookup or traverse the data structure.

Another reason for a fixed size array is the need for performance; store of
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a debug message is on the critical path in the Vortex kernel. For example,
resizing the array during message processing would have added overhead,
whichmight have affected system performance substantially. This design lowers
the complexity and overhead of the buffer operations whilst ensuring that buffer
is of sufficient size at the drawback of requiring developer interaction.

3.6 A programmatic user-level interface to our
tools
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Figure 3.5: Opening the kernel side resource and reading any buffered messages.

To fulfill our design goals of creating a flexible and easy-to-use system, we
provide user-level processes with a programmatic interface to our tools. A goal
with this interface is to allow run-time configuration of the tools. This promotes
flexibility and makes use of the tools more convenient, as opposed to static
kernel-side options and configuration that would have required re-compilations
of the kernel and reboots for activation.

Vortex exposes most abstractions through a namespace akin to the conventional
hierarchical file system namespace. For example, a process can create a new
client tcp connection by performing a vx_aopen system call with the path
“/network/tcp/client” as an argument.
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Our first step in exposing our tools to user-level processes was to add a new
resource to the Vortex kernel, the statistic message resource. Creation of a kernel
resource in turn allows the resource to be registered as accessible through the
Vortex namespace. This enables a process to perform vx_aopen system calls
with the path “/statistics/message” as argument. The vx_aopen calls end up
in an open handler in our profile resource, where arguments to the call are
extracted ¹. This process is shown in figure 3.5.

The open call arguments identify what Vortex kernel resource to monitor and
how, causing creation of the circular buffer described in Section 3.5. Breakpoints
and debug register configurations has to initiated manually by the programmer.
Note that multiple monitoring sessions can be active concurrently.

Beyond exposing itself in the Vortex namespace, a kernel level resource can
register itself as capable of being the source and/or target of asynchronous i/o.
This means that the resource identifier, or rid, returned from the vx_aopen
call can be used as an argument when creating a Vortex flow. A Vortex flow
essentially is an asynchronous write operation, with a source providing data
and a sink consuming data.

Our profile resource registers itself as capable of being an asynchronous i/o
source. This allows a user-level process to issue vx_aopen call to activate
monitoring for some resource. Then, the process can use the returned rid
to create a flow that reads from the profile resource. These reads provide a
mechanism and interface for the process to retrieve debugging messages—
when the profile resource receives a aio_read message ², it can respond with
data from the circular buffer containing debugging messages.

1. Vortex allows the namespace path string to also encode arguments; these can be utf_8
encoded strings and integers.

2. Kernel resources involved in I/O receive different types of read and write messages that
they have to respond to.
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3.7 User-level profiling service
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Figure 3.6: User-level service allowing for external retrieval of debug messages.

We have designed and implemented a user-level service that allows profiling
to be configured and profile data to be retrieved externally from the machine
running Vortex.

The profiling service runs as a user-level process on Vortex. Its services are
exposed through tcp, allowing external software to interface with the service
over a conventional network connection.

For external software, setting up a profiling session for a specific Vortex kernel
resource involves connecting to the profiling service and communicating the
identifier of the kernel resource that should be monitored.

Having received the appropriate parameters, the service uses the system call
interface described in Section sec:prginterface to activate the monitoring. Then,
the service sets up a long running asynchronous read operation to retrieve
debug messages. Retrieved debug messages are translated into JavaScript
ObjectNotation (json) objects, shown in 3.1, andwritten to the tcp connection
to the external software.

Use of json to represent debug messages is convenient because of wide
platform and language support, simplifying the creation of applications or
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tools that process profiling messages. It also has the benefit of being easily
extensible, allow for easily adding new items to a debug message.

For our tools have we opted to choose scalability and simplicity whenever
design choices came up. One of those choices is security. The user-level service
does not require the clients to authenticate and does not encrypt the stream of
messages. Both of these can result in unwanted clients connecting or gaining
access to the debugmessages. However, these tools as a part of the development
for Vortex and should not be running while the system is in production. They
are designed to be used for specific situations and not continuously. To keep
the overhead and resource usage of the tools down, opted we to not have any
security implemented into the tools.

3.8 Visualizing monitoring data
To demonstrate the applicability of our tools, we have created an application
that visualizes profiling data. This application is implemented in C# on .Net
platform and uses Windows Forms for its graphical elements. The application
allows developers to trace message sent to a resource, thereby seeing what
process instigated the message, what other resource sent the message, and so
on.

Figure 3.7: The remote client.

After being configured with what Vortex kernel resource to profile, the applica-
tion connects to the Vortex profiling service over a tcp connection and requests
profiling data. Figure 3.7 exemplifies how the application performs visualiza-
tion when instructed to profile the Vortex kernel tcp resource. Shown in the
figure are messages from a live system, detailing which process, compartment,
and resource that sent each message.

The application uses a grid view to lists messages. Windows forms and grid view
have poor draw performance, which means that drawing the grid is a costly
process. For scenarios where Vortex experiences high load, a correspondingly
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high number of profiling messages will be produced. For example, we have
experienced sessions with over 43000 messages per second. Re-drawing the
grid for every message proved to scale poorly, resulting in the drawing lagging
behind message receipt.

We initially attempted to solve this problem by creating separate grid drawing
and message receipt threads in the application. This improved the situation,
allowing drawing to scale with message receipt until tcp experienced about
50% of the load needed to saturate a gigabit network interface card. Beyond
that point, drawing started to lag behind message receipt. Our final solution
to the drawing problem was to batch messages and initiate grid drawing only
when a batch was full. For a heavily loaded Vortex system batches had to
contain 40 messages for drawing to keep up with message receipt.

We also took steps to limit memory usage, which became a problem when
monitoring heavily loaded Vortex systems. This steps was to limit the number
of messages that are stored and presented to 4096 messages. Not having this
limit would result in the client filling up its memory.

3.9 Summary
In this chapter have we presents the design and implementation of the two
tools and their properties. We look at how they are designed and fit into
the Omni-kernel. For the message-gathering tool we look at what types of
information it gathers and how to gather it during event processing without
affecting system performance. For the tool to control the debug registers we
look at how to create a flexible and simple layered api that enables developers
to utilize the debug registers in different debugging scenarios.



4
Evaluation
The tools implemented for this thesis are placed in the critical path for the
Omni-kernel, and can therefore have a large effect on the performance of the
system it is monitoring or debugging. The effect that the tools might have on
a Vortex is important to measure, so as to verify that it does not hinder the
system or change behavior.

This chapter describes the results of a set of measurements performed on a live
Vortex system, with the goal of quantifying the resource use of our monitoring
tools.

All experiments were done with Vortex running on Hewlett-Packard (hp)
BL460c G1 blade with two Intel Xeon X5355 Quad-Core processors. Each of the
cores run at 2.66Ghz and are connected to 16GB of DDR-2 memory running at
667Mhz. Vortex is running with a RAM-based file system.

Two different types ofmachine load are used during these experiments; idle and
busy. An idlemachine is a machine that is only running the Vortex performance
profiling framework. This framework collects detailed performance data on a
running Vortex systems and presents the data in graph form, on a Windows
client machine.

A busy machine runs the Apache 2 web-server with a client continuously re-
questing a 4MB large file using Siege 3.0.5, with no delay between requests.
We configure our tools to profile the Vortex kernel tcp resource, as this re-
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source is heavily loaded due network traffic. By selecting this resource we will
also observe load on an idle machine, because of the performance profiling
framework requesting performance data samples.
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Figure 4.1: Idle machine running only the statistics framework
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Figure 4.2: Idle machine running only the statistics framework while profiling the
TCP kernel resource
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Our first experiment quantifies the overhead of our tools in an idle system. This
experiment establishes the base resource usage of our tools.

Figure 4.1 and Figure 4.2 show the impact of gathering message of an idle
system. The figures show that the impact of doing message profiling in an idle
system is very small and that overhead should not impact the performance and
behavior of the system.
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Figure 4.3: Core zero of an idle machine with and without profiling.

Although resource use in an idle system is low, our tools are involved on the
critical path in the Vortex kernel scheduling of message process. To determine
if our tools significantly impact performance in a busy system, we compare
cpu consumption with and without our tools enabled.

Figure 4.3 shows load for core 0 in a busy system, as this it is the most
loaded core. Whilst with profiling the core does have a load spike at around
7000 ms, the percentage of cpu consumption is so low that any extra system
maintenance being done will show up like spikes. This figure shows that a very
limited amount of extra resources is use when our tools are active; the base cost
of message profiling is low. The same can be observed on other cores.

Figure 4.4 shows the cpu consumption of our kernel-side profiling resource
in an idle system. As described in Section 3.6, this resource is involved in
asynchronous read operations, to transfer debug messages to the user-level
profiling process. From the figure we can see that cpu consumption is very
low in an idle system.
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Figure 4.4: Showing the CPU usage of our kernel-side profiling resource on an idle
machine running only the statistics framework while profiling the TCP
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Figure 4.5: Busy machine running the statistics framework and Apache.
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Figure 4.6: Busymachine running the statistics framework andApachewhilst profiling
the TCP kernel resource.

Some bugs and errors might require high load for them to trigger, or that a
specific system state has to be reached. This means that the message profiling
tool has to scale with the load of the system. Using few resources on an idle
system is good, but once the number of messages increases, load due to our
tools should not be so high as to negatively affect the system.

Shown in figure 4.5 and figure 4.6 are results of profiling of messages on a
system with around 50% load. By comparing the figures one can see that even
for a busy system, additional load due to our tools is low.

Shown in Figure 4.7 and Figure 4.8 is the cpu consumption of core 0 and 6
in the experiment presented in Figure 4.5 above. This further validates that
use of our tools do not result in substantial additions to system load. Further,
Table 4.1 shows the number of messages processed by Vortex is relatively high,
underlining that the overhead impact of our tools is low.

Comparing Figure 4.9 with Figure 4.4 shows how the cpu usage of our kernel-
side profiling resource increases with additional message load. The increase
from 19 to 43.000 message per second, as shown in Table 4.1, results in a
moderate increase in cpu consumption.

We have demonstrated that the overhead of our tools is low, irrespective of
system load. One interesting question is how an increase in load affects the
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Figure 4.7: Core zero of a busy machine with and without profiling.
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Figure 4.8: Core six of a busy machine with and without profiling.

number of messages processed by the Vortex kernel, since use of our profiling
tools also result in the production of messages.

Shown in table 4.1 is the number of messages per second that is gathered for
different system loads. Scaling from 19 message per second and up to 43.000
is a challenge, and results in a very high number of messages in a short amount
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Figure 4.9: The CPU usage of the kernel-side profiling resource on a busy machine
running Apache whilst profiling the TCP kernel resource.

Configuration Message per second
Idle machine profiling TCP 19
Busy machine profiling TCP 43017
Busy machine profiling TCP with debug registers 32000

Table 4.1: The number of messages per second during message profiling.

of time. This means that for problems that requires a very high load, there
a challenge in storing and presenting the message in a manner that allows
the developer to gain insight from them. This affects the remote client as it is
unable to store every message sent; it will store the latest 4096 messages to
limit the amount of memory that are being used. 4096 was chosen as that is
large enough so that some history is kept but the amount of resources spent is
not too high. The number of kept message can be increased if needed.

When use of debugging registers is enabled, the number of messages drop no-
ticeably. Since load is generated in a closed-loop fashion, with new connections
only established after completion of the last one, this shows that use of debug
registers and their accompanying debug exceptions is costly and does affect
the system negatively.

Shown in figure 4.10 is the cpu consumption of a busy machine whilst the
debug registers are enabled. They are triggered as a part of the tcp aio write
function, which happens every time the machine writes data in the tcp kernel
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Figure 4.10: Showing the CPU of a busy machine with debug registers enabled.

resource. As seen in the figure, the cpu consumption increased drastically.
Comparing the figure with Figure 4.6, one can see one core going from around
50% cpu consumption to almost 100% cpu consumption. This fits very well
with table 4.1, as the number of messages per second drops by almost 10.000
messages whilst the load is still the same.

4.1 Summary
In this chapter have we have presented the results of experiments designed
to quantify the overhead of our tools under various system loads. The evalu-
ation shows that the process of profiling messages does require some system
resource and that the amount of resources needed scales with the load of the
system.

The experiments show that overhead is very high if use of debug registers is
enabled. But our tools were not made to be used on a system during normal
operation. They are development tools, and were designed to be used in
development and debugging use and sessions. Still, it is important that they
do not affect the system too much, preventing e.g. bugs from occurring.



5
Related work
This chapter presents some related work for this thesis.

Debugging oss are often more complex than normal application due to their
standalone, long running nature. In [46] they introduce the concept of a time-
travelling vm to help debug non-deterministic bugs that requires long runtime
to trigger. Time-travel allows the developer to more forwards and backwards
in the execution path.

5.1 Event based debugging
One problem with larger systems is how to keep track of everything and sim-
plifying debugging. Being able to group code together can help the developer
to keep track and narrow down where in the code the fault might be. Using
events as an abstraction is not new, and the event-based programming model
has been around for many years.

Events creates a very useful level of abstraction that allows developers to
structure events and their dependencies in their head. This has also earlier
been used to aid developers in debugging [47, 48, 49]. Allowing the creation
of events and having the ability to group code makes large systems and
applications more orderly and transparent. Vortex is already an event-based
system. This allows us to present some of the same information as these
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systems. e.g. in [48] they created events based on the behaviour they expect
and compare them to the actual behaviour. Any event not behaving correctly
can then quickly and easily be identified and it narrows down potential bug
locations.

In [50] they use events to create global break-points by grouping code in events
that allows the user to see high level patterns and then dig deeper on the faulty
event. Others, as in [51], use events to debug large scale applications running
on massive parallel systems, systems that generated huge amount of data that
would have to analysed. Using events can limit the amount of data that has
to be analysed and simplifies the debugging process. These systems are often
designed to help developers debug distributed and large scale systems.

Similar to the work done in this thesis is [49], where they also uses events
to debug object/actions programs in distributed systems. Their own Clouds
distributed system has the notions of objects/actions implemented as a part of
the os. Action in Clouds is a unit of work, similar to events in the event-based
model and Vortex.



6
Conclusion
In this thesis, we have shown that it is possible to create a tool for recreating
the control flow, and creating new tools for debugging by visualizing messages
sent to and from resources. We show that these tools can be created and used
whilst the system is active and can help a developer with debugging errors and
bugs in an event-based system. We also see that these systems can be enabled
during normal systems operations with an affect that scales with the load of
the system. This means that the tools can be used to find faults that might
require time and different levels of load to trigger.

The tools created in this thesis expand the possible methods that a developer
has when debugging bugs in event-based systems and show how to use the
control-flow as an important step during debugging.

6.1 Use cases
6.1.1 Expand debugging possibilities
Developing os and large event-based systems requires tools and properties to
aid when debugging the complex and intermittent bugs that will be in such
systems. Being able to add to tools to the tool-belt that developers has available
is important and this thesis creates two more tools that can be used to debug
errors.
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Vortex is a separate os and running on a machine without the possibility to
attach a debugger to it. This means that it is not possible to set breakpoints in
the code as one would normally do, and that way see the when different parts
of the code is executed. Creating a tool that enables controlling the debug
registers enables the developer to add breakpoints in his code and provide
more of a normal debugging environment. The tool for controlling the debug
registers enables developers to set break-points in the code, and bring their
own exception handler. This allows them to use some of the normal debugging
techniques, e.g. checking the value of variables during run-time and see how
they change.

6.1.2 Connect one message with the sending process
One important question when debugging situations where one message caused
the system to fail or a bug to emerge is who sent the message. Being able to
identify the sending process is important is identifying the circumstances that
caused the bug to appear and the ability to reproduce. The tools created in
this thesis enables the user to see more information about each message and
that way being able to connect a given message to a process. Being able to tie
a specific fault to state created by one process can help to narrow down the
set of circumstances that caused the fault and reduce the complexity in the
debugging.

By using the debug registers is the developer also able to see which message it
is that updates the offending variable or makes the function-call. This enables
him to see which process sent the messages and the effect of the message.
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