
	

	
	 	

Faculty of Science and Technology
Department of Computer Science

User profiling for diverse user contexts
—	
Jan Tore Karlsen
INF-3990 Master thesis - June 2015

ii

Contents

Abstract xv

1 Introduction 1

1.1 Problem statement . 1

1.2 Motivation . 1

1.3 Approach . 2

1.4 Contribution . 3

1.5 Structure . 3

2 Background 5

2.1 Context . 5

2.2 Data Cleaning . 6

2.2.1 Part-of-speech tagging 6

2.2.2 Stop words removal . 7

2.2.3 Regular Expression . 7

2.3 User profiling . 7

2.3.1 Behaviour . 9

2.3.2 Context . 10

iii

iv Contents

2.3.3 Interest . 10

2.3.4 Intention . 10

2.4 Content modelling . 11

2.5 Recommendation . 12

2.5.1 Rule-based filtering . 12

2.5.2 Content-based filtering 13

2.5.3 Collaborative filtering 13

2.5.4 Hybrid filtering . 14

2.6 Clustering . 14

2.6.1 Hierarchical clustering 15

2.6.2 K-means . 15

2.6.3 DBSCAN . 16

2.6.4 Distance . 17

2.6.5 Cluster evaluation . 21

2.7 Time Series Analysis . 21

2.7.1 Euclidean distance . 22

2.7.2 Edit distance . 22

2.7.3 Dynamic Time Warping 22

3 Related work 25

4 Approach and design 27

4.1 Overview . 27

4.2 Information gathering . 28

4.2.1 Interests . 29

v

4.2.2 Contextual information 30

4.2.3 Collection . 33

4.2.4 Privacy . 36

4.2.5 Data modelling . 37

4.3 User profile creation . 37

4.3.1 Distance . 40

4.3.2 Clustering . 46

4.3.3 User profile modelling 49

4.4 Recommendation . 51

4.4.1 Collection . 51

4.4.2 Storage and recommendation 53

4.4.3 Presentation . 55

5 Implementation 57

5.1 Server . 57

5.2 Interest Retriever . 57

5.3 Interest Receiver . 59

5.4 Interest Analyser . 60

5.4.1 Distance . 62

5.4.2 Cluster analysis . 64

5.4.3 Word cloud creation 65

5.5 Recommender . 66

5.5.1 Article Retriever . 66

5.5.2 Front-end . 67

vi Contents

5.5.3 Back-end . 68

6 Results and evaluation 73

6.1 Method . 73

6.1.1 Internal validity . 74

6.1.2 External validity . 74

6.2 User data . 75

6.2.1 Results . 75

6.2.2 Evaluation . 86

6.3 Generated data . 90

6.3.1 Generating fictive user data 90

6.3.2 Results . 94

6.3.3 Evaluation . 100

6.4 Different linkage . 101

6.4.1 Results . 101

6.4.2 Evaluation . 106

6.5 Higher resolution . 107

6.5.1 Results . 108

6.5.2 Evaluation . 115

6.6 Summary . 117

7 Future work 119

8 Conclusion 123

Acknowledgements

First I would like to express my gratitude to my supervisor, Professor Randi
Karlsen for her guidance, feedback and availability.

I would also like to express gratitude to my family and friends for the dis-
cussions, good times and memories supporting me.

Finally, a special thanks to my girlfriend, Silje Skogli for all the support and
motivation.

vii

viii Contents

List of Figures

2.1 A dendrogram displaying hierarchical clustering results[13]. . . 16

2.2 A comparison between K-means and DBSCAN clustering[17]. 18

2.3 Dynamic time warping example[41]. 23

2.4 Shortest warping path for DTW[41]. 24

4.1 High level system architecture. 29

4.2 Client information gathering flowchart. 34

4.3 Data model as UML diagram. 38

4.4 General approach for creating user profiles that reflect context 39

4.5 User profile creation flowchart. 41

4.6 Overview of the user profile content. 50

4.7 Article collection flowchart. 53

4.8 Recommendation flowchart. 54

5.1 Database entity-relationship model. 61

5.2 Example of word cloud from keywords in context 66

5.3 Screenshot of recommender front-end 68

ix

x List of Figures

List of Tables

2.1 Small sample of common English stop words 8

2.2 Attribute types. 19

4.1 Session object attributes with type. 42

4.2 Two domain datasets. 44

4.3 Session attribute weighting . 46

5.1 Session attributes . 62

6.1 Silhouette score for clusters in results 86

6.2 Session attribute values for fictive work context 91

6.3 Session attribute values for fictive animal interest context . . . 92

6.4 Session attribute values for fictive football interest context . . 93

6.5 Session attribute values for fictive interest context 94

6.6 Silhouette score for clusters from generated data 100

6.7 Silhouette score for clusters with different linkage 106

6.8 Silhouette score for different number of clusters 115

xi

xii List of Tables

List of Algorithms

1 Basic agglomerative hierarchical clustering algorithm[39]. . . . 15
2 Basic K-means algorithm[39]. 16
3 Basic DBSCAN algorithm[39]. 17
4 Session timeout . 58
5 Algorithm for distance between two time points 63
6 Algorithm for distance between two list of domains 64

xiii

xiv List of Algorithms

Abstract

The amount of content available for consumption online is increasing tre-
mendously. This make the job of recommender systems more important,
and at the same time, more demanding. Context-aware recommender sys-
tems might be a solution to this problem.

This work set out to discover user contexts dynamically by collecting con-
textual information from user actions and perform cluster analysis on the
data collected. User interests are collected from user actions as well, and are
sorted into groups based on the contexts discovered. These sorted interests
are considered the users’ user profile. The user profiles are in turn used to
recommend news articles based on the interests of the users, where the users
can select what context to receive recommendations from.

The results and evaluation of the system show that the approach used in this
work is not very successful and adjustments are recommended to improve
the results. The system designed and implemented in this work is only able
to identify two very broad contexts based on user data.

xv

xvi Chapter 0. Abstract

Chapter 1

Introduction

This chapter is an introduction to the thesis, it presents the problem state-
ment, which is the basis for this thesis, the motivation for doing this work, a
brief summary of the work and finally the structure of the remaining thesis.

1.1 Problem statement

”The goal of this thesis is to design, implement and test a system
that generate user profiles based on user interests and available
contextual information. The user profiles shall reflect the users’
contexts or situations and provide the users’ interests based on
context.”

1.2 Motivation

The volume of information on the internet is increasing at a tremendous
rate[8]. For users this means more content to consume, but also more con-
tent to sift through before finding information of interest. People can struggle
to find the intended information in the web, even with the help of search
engines[11]. To locate content, filtering and recommendation systems are
often used. This result in users discovering content the system deems relev-
ant based on the users’ interests or preferences stored in a user profile. The
information contained in the user profile in non-intrusive systems is often

1

2 Chapter 1. Introduction

collected by monitoring the users’ actions in the system. There are also pro-
files built by the user manually by answering a questionnaire[19][28]. These
techniques for building a user profile treats the user as one entity with a
consistent set of interests and preferences. This is not necessarily the case
in a lot of systems since users use the web and computers for a number of
different tasks and in a number of different circumstances. Users searching
for topics for a school project they have no interest in, can be plagued with
suggestions related to the school project in a traditional user profile. If the
user’s interests had been gathered in regards to context and the user could
choose to ignore the interests recorded in relation to the school project then
the recommendations could be more accurate. Also if a user could specific-
ally select a single context or situation to get recommendations from, the
user could get better tailored recommendations instead of general ones rep-
resenting all the user’s situations. This could increase the user experience
for systems generating a user profile bases on interests by providing a higher
recommendation accuracy and better customization.

1.3 Approach

The creation of a context-aware user profile and a recommender system de-
signed and implemented in this thesis can be divided into three parts. First
there is a collection part where user interests with contextual information
is collected and stored. The user interests and contextual information is a
necessity for creating a user profile.

The second part is the process of creating the user profile with the user
interests and contextual information. A major challenge here is the automatic
discovery of user situations. This is done by utilizing cluster analysis on the
contextual information to identify groups of similar contexts. These groups
are treated as separate user contexts. The interests associated with the
contextual information is grouped in the same manner and this constitute
the user profile.

The third and last part is a recommendation system whose role is to utilize
and test the user profiles created. The recommendation system collect articles
from the web and presents them to the user using content-based filtering,
based on the interests in the user profile and a chosen context.

The approach is discussed in detail in chapter 4.

3

1.4 Contribution

The contribution of this work is to explore the possibilities of user profiles
to reflect users’ context combined with interests. Identifying the different
contexts based on simple information gathered from user web browsing is the
core task of this work and the main contribution. To my knowledge there
is no other work that discover user context based on clustering contextual
information while treating computers and domains visited as a physical and
digital location for the user actions. Further, this work contribute with the
evaluation of the proposed system and ideas for further improvements.

1.5 Structure

The rest of this thesis is structured as follows. Useful background information
is presented in chapter 2. Related work with elaboration on similarities
and dissimilarities is in chapter 3. The approach and design of the work is
presented in chapter 4. Architecture and implementation is in chapter 5. The
results of the work done is presented in chapter 6. Future work is discussed
at the end in chapter 7. The conclusion is in chapter 8.

4 Chapter 1. Introduction

Chapter 2

Background

This chapter cover some of the important topics that needs to be familiar
for the rest of the thesis. The concept of context is covered in section 2.1,
data cleaning in section 2.2, user profiling in section 2.3, content modelling in
section 2.4, recommendations in 2.5, clustering in 2.6 and time series analysis
in 2.7.

2.1 Context

When humans communicate they have the ability to use situational inform-
ation to increase the communication bandwidth. This ability does not work
well in communication between humans and computers. Computers does not
have the ability to read and process the situational information without spe-
cifically being told to do so. Computers specifically told to read and process
situational information is called context-aware computing[2].

Context is a concept used in a wide variety of fields for many different reasons.
This result in context having a significant amount of definitions tailoring
context to individual fields[3]. A broad definition of context can be found
in the Merriam-Webster online dictionary. Merriam-Webster define context
as ”the situation in which something happens : the group of conditions that
exist where and when something happens”1. Gregory D. Abowd and Anind
K. Dey[2] define context as ”any information that can be used to characterize
the situation of an entity, where an entity can be a person, place, or physical

1http://www.merriam-webster.com/dictionary/context [Visited: 13. March 2015]

5

http://www.merriam-webster.com/dictionary/context

6 Chapter 2. Background

or computational object”. Both are in essence the same. Context is the
group of conditions or situation surrounding an entity.

Schmidt et. al[37]. categorizes context into six high level categories. They
include three human factors and three physical factors. The human factors
are the user (e.g. age, habits), social environment (e.g. social interactions)
and tasks (e.g. active tasks, goals). While the physical factors are conditions
(e.g. weather, light), infrastructure (e.g. resources) and location.

2.2 Data Cleaning

Data cleaning is often done as a stage in data processing to prepare the data
for the next stage. Data cleaning can be performed on all types of data, but
this section focus on cleaning textual data. Textual data or documents can
be cleaned for a number of reasons. Some of the most popular are to reduce
the size and noise of the dataset by removing words and characters that are
not useful for the given purpose. Some popular techniques is covered in the
following subsections.

2.2.1 Part-of-speech tagging

The process of identifying certain class of words in a sentence is known as
part-of-speech tagging (POS tagging), and this is done while analysing sen-
tences to understand them[30]. Part-of-speech tagging is part of the Natural
Language Processing (NLP) field. The technique relies on analysing the en-
tire sentence to determine what context words are used in. Even a simple
word as ”dogs”, which usually is consider a simple plural noun2, can also
be a verb3 in the sentence ”The sailor dogs the hatch”. Parsing a sentence
for Noun phrases or unknown proper nouns without a large cohesive text
for context is next to impossible since NPL requires a lot of context for the
machine learning aspect to successfully function. There are a lot of scenarios
where words get classified differently based on the meaning of the sentence.
As an example the simple sentence ”the car park” contains the words ”the”,
”car” and ”park”. This sentence can be POS tagged in three different ways
at least. The words ”car” and ”park” can be identified as nouns, or it can

2http://www.merriam-webster.com/dictionary/noun
3http://www.merriam-webster.com/dictionary/verb

http://www.merriam-webster.com/dictionary/noun
http://www.merriam-webster.com/dictionary/verb

7

be identified as a single noun ”car park”, or the word ”car” can be identified
as an adjective and ”park” as a noun. After POS tagging is performed the
desired classes of words can be kept and the other can be discarded. Before
POS tagging can be performed the language need to be identified, without
knowing the language, the system does not know what grammatical rules
apply[30].

2.2.2 Stop words removal

A simple technique for removing unwanted words are stop words removal4.
Stop words are commonly thought of as words without direct meaning, or
supporting words in sentences. Table 2.1 contain a sample of common stop
words. There is no absolute or complete list of stop words since the list
of stop words should reflect the desired goal by removing them. A very
comprehensive list of stop words can be found in MySQL database software5.
Removing stop words from the user’s interests is a very simple task, and
to support several languages simply provide a list of stop words for each
language. The system does not need to identify the language before removing
the stop words.

2.2.3 Regular Expression

Regular Expression6 (Regex) is often used to remove unwanted characters
or character sequences from text. Regex can remove characters based on
classes. For example can Regex be used to remove upper case characters,
digits, hyphens, the letter ”a” etc. Regex can remove patterns of characters,
repetitions of characters or patterns and patterns based on the location of it.
Regex is a powerful tool for removing or filtering text.

2.3 User profiling

This section cover fundamental information about user profiles and related
subjects in regards to building them. For a system to be able to provide an

4http://www.ranks.nl/stopwords
5https://dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.html
6http://pubs.opengroup.org/onlinepubs/007908799/xbd/re.html

http://www.ranks.nl/stopwords
https://dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.html
http://pubs.opengroup.org/onlinepubs/007908799/xbd/re.html

8 Chapter 2. Background

being should ourselves further ours what
if your most their same own
to will you in yourselves until

here both against these it or
so myself them there more not

any such had by during doing
am a than its on she

between only were some because which
that where he did our above
was out can no having as
after are themselves him before just
again me with they those then
once few the yourself when why
other into theirs now too itself

at herself up very off an
be i and for been himself

under all t nor whom have
hers below do s does this
we his each my is yours

how over of don from who
through down has but about while

her

Table 2.1: Small sample of common English stop words

experience tailored or adjusted for users’ interests the system need to know
something about each user. In personalization systems the user profile is a
central component because the system need relevant information about the
user to be able to recommend or filter content to that specific user. A popular
way to build the user profile is with a list of keywords generated by high-
frequency words from the user-browsed web pages[40] but this vary with the
requirements for each specific system. Typically a user profile is created in
regards to the information the system need or should know about the user.
This information can typically be general user information (e.g. age, gender),
user behaviour, context, interests and intentions, which is represented by
terms of keywords[32][19].

If the goal is to provide the user with appealing and relevant advertising, as it
often is for user profiles, the user profile should contain as much information
as possible about a user’s interests and other contextual information. If

9

the user profile contains the user’s current location, this can for be used to
provide advertising about nearby stores and facilities. This should could be
much more relevant to the user than advertisements of stores that might not
be available to the user.

User profiles can either be constructed on the client or on a server receiving
information about the user. Storing the user profile on the client has a
few advantages, given that the system requirements allow for it. The profile
can contain sensitive information about the user without this data being sent
where the user no longer has direct control over it. The system can outsource
the storage job to the client and relieve itself of this duty, simplifying the
server requirements. Systems might have requirements that does not allow for
client based user profiles. An example of this is recommender systems with
collaborative filtering (covered in subsection 2.5.3) where user profiles are
compared against each other to make recommendations. Other restrictions
for storing the user profile on the client might be size limitation on the clients
or computational requirements in regards to the user profiles that the client
does not have. Finally storing the user profile on a server instead of the client
give much greater data durability if the server is configured correctly.

Some information that can be typically stored in a user profile is covered in
the following subsections.

2.3.1 Behaviour

Behaviour modelling can be constructed by analysing user history and dis-
covering patterns[19]. The user history can be constructed by logging the
different actions a user performs in the system. These actions could be gen-
eral navigation like clicking hyperlinks and opening or consuming items or
content in the system. By storing this data and maintaining a timely struc-
ture the system can analyse the data and try to determine what action the
user might want to do next. By constructing a behaviour model for the user
the system can as an example determine the effectiveness of the user interface
or the effectiveness of advertisement campaigns.

10 Chapter 2. Background

2.3.2 Context

What contextual information a user profile contains reflect specific applica-
tion requirements. Applications like Netflix7 might use data like user age,
gender and location to improve recommendations based on demographics.
Mobile applications can be using location and connectivity information to
improve the user experience. Context in it self is covered further in section
2.1.

2.3.3 Interest

Users’ interests are the single most important information in recommenda-
tion systems. The users’ interests are used to locate items or content that
suits the users best[19]. Users’ interests are often stored in keywords with
a weight value to determine the importance of the keyword[28]. User pro-
files with interests as keywords are often used on documents or other items
containing text. The relevant data can then be retrieved by comparing the
interests in the user profile with item metadata containing relevant tags or
keywords from document modelling techniques like TF-IDF[19] (covered in
section 2.4). Systems with limited textual information often prefer to use col-
laborative recommendation filtering, which rely on a score users give items
instead of interests represented by keywords[19]. You can read more about
the collaborative recommendation filtering in chapter 2.5.3.

2.3.4 Intention

Intention modelling is done to identify the goal of the user in the system[19][18].
An example of this would be an online store identifying users with the in-
tention of buying a product, and users without the intention of buying a
product. A user intention can be classified into two levels: action intention
and semantic intention[12]. Action intentions are low level intentions like a
mouse click, keyboard stroke or page navigation. Semantic intentions are the
intentions of what a user want to achieve on a higher level. Such an intention
might be to buy a book on Amazon8. A high level semantic intention might
include several low level action intentions to achieve its goal[29].

7http://www.netflix.com/
8http://www.amazon.com/

http://www.netflix.com/
http://www.amazon.com/

11

Intention modelling is largely based on a classification system that has a set
of predefined categories[18]. There are several methods for identifying user
intention. Some of the most popular are SVM (support vector machines) and
Bayesian networks[18][19]. Both methods uses classification and supervised
machine learning to achieve intention modelling. Intention modelling is at a
higher level than behaviour and interest modelling. Analysing user intentions
is based on user behaviour, interests and context[19]. Note that tasks, which
is one of the six high level categories of context mentioned in section 2.1, can
be interpreted to be the same as intention. So based on that classification,
intention might be a part of the context.

2.4 Content modelling

For personalisation and recommendation systems, content modelling is an
important aspect. The system need to be able to identify the content of doc-
uments or content. This is usually done through keywords, which is primarily
obtained in two different ways[19]. The first is descriptive metadata, which
is often used on content without text that can be easily parsed. Content
like this might include videos, pictures and objects representing physical
items (e.g. item on Amazon9). The second way is to use content modelling
techniques like TF-IDF, which is short for term frequency–inverse document
frequency. This is common to use on content containing text that can be
analysed. This technique works by setting the term importance as the term
frequency in the document, since the more the term occurs in the document,
the better suited the term is for describing the document. Only relying on
term frequency is not good since some terms are more common than others.
For example the word ”The” is very common, and is very likely to be found
a lot in a document, but it is not suited to describe the document. Inverse
document frequency is therefore important for highlighting terms that oc-
cur in a particular document compared to the rest. The importance of the
word ”The” would have gotten reduced significantly because of the number
of occurrences in other documents.

Term frequency can be formulated as:

TF (t) =
Number of t occurrences

Total size of document

Where the parameter t is the term the term frequency shall be found for.

9http://www.amazon.com/

http://www.amazon.com/

12 Chapter 2. Background

Inverse document frequency can be formulated as:

IDF (t) = log
Total number of documents

Number of documents t occur in

Finally TF-IDF can be formulated as:

TF − IDF (t) = TF (t) ∗ IDF (t)

2.5 Recommendation

Recommendation methods uses the information in the user profile to find the
best matching results, be it movies, search results or advertisements. The
user profile is typically modelled to fit the information the recommendation
method requires to perform optimally.

Min Gao et al.[19] believes there are four filtering approaches for making
recommendations. (1) rule-based filtering, where the results are determined
by specified rules like ”If user has selected math as an interest, show math re-
lated items”, (2) content-based filtering, based on the users rating of content,
recommend content similar to content rated high by the user, (3) collabor-
ative filtering, which recommend content based on users with similar tastes
rating of the item, and (4) hybrid methods of filtering, which uses techniques
from some or all of the other approaches. The four filtering approaches is
covered more in depth in the following subsections.

2.5.1 Rule-based filtering

The rule-based filtering is the simplest approach to recommendations. In this
approach the system specifies rules that determine what results are shown
based on certain information known about the user. The rules and classes
of users are predefined and thus limits the complexity and flexibility of the
system to a degree. Systems using rule-based filtering are most likely relying
on users answering questions or filling out forms to provide the system with
information like name, age and preferences. An example of rule-based filter-
ing is when a user provides the system with information about his preferences
by selecting among predefined topics provided by the system, and then the
system return content related to the selected topics.

13

2.5.2 Content-based filtering

Content-based filtering relies on comparing the user profile with the descrip-
tion of items to calculate the degree of relevance[19]. The user profile can
in this case consist of keywords or tags of movies that is weighted equally as
the rating given to the movie by the user. The system can then recommend
movies with keywords or tags similar to the users most weighted keywords.
Content-based filtering is very effective in text heavy domains like news re-
commendation because the user profile can contain keywords from the users
browsing activities and use these to match news articles that are relevant.
For content-based filtering to work on multimedia content the content need
to have describing metadata.

A negative side effect of using content-based filtering is the discovery of new
content. If a new class of content is available in the system, the user might
not have any keywords relating to it, and will as a result not be recommended
items from the new class. This is also be true for undiscovered content in
general, if there is no relevance between the user profile and the content,
there is no match, so it is easy to be stuck with one type of content.

2.5.3 Collaborative filtering

While content-based filtering compares the user profile with the description
of items, collaborative filtering compares user profiles with other user profiles
and recommends items based on what is popular for similar user profiles[19].
This works by sorting users with similar interests into preference groups by
comparing users likes and dislikes. The collaborative filtering approach relies
on users discovering content by themselves, and with enough content dis-
covered, the user can be matched to a preference group. Once this is done
the user will be recommended items with high probability of being of interest
since users that enjoyed the same content as the user have enjoyed it. A prob-
lem with the collaborative filtering approach is the lack of usage information
on new items, this make them impossible to recommend[28]. Since the ap-
proach recommends only based on similar users preferences, the system does
not need to know any information about the item being recommended other
than the rating other users gave it. This results in this approach being very
effective in domains where items might lack textual information such as e-
vendors like Amazon10. With this approach the computation costs increases

10http://www.amazon.com/

http://www.amazon.com/

14 Chapter 2. Background

linearly with the number of users and items[19]. This makes the approach
not very scalable.

Collaborative filtering can also be used as an extension to content-based
filtering by building an item to item similarity matrix rather than a user to
user similarity matrix. This results in very fast recommendations because of
the pre computed similarity model.

2.5.4 Hybrid filtering

Hybrid filtering is simply put a mixture of both content-based filtering and
collaborative filtering. Using content-based filtering solve the new item prob-
lem and the complex computation problem that collaborative filtering suffers
from. Using collaborative filtering on the other hand, solve the new item
class problem that can occur in content-based filtering. A system using both
content-based and collaborative filtering work very well in certain domains
where the mentioned problems might occur, like e-commerce[19].

2.6 Clustering

This section cover clustering with a number of different clustering algorithms
and distance measures as well as techniques for evaluating clusters. Cluster-
ing is the unsupervised task of grouping (clustering) items in a dataset such
that each group or cluster contains the items in the dataset most similar
to each other, and dissimilar to items in the other clusters. Clustering is a
technique widely used in many fields for many purposes, and as a result have
many different approaches. Some of the most popular approaches are Hier-
archical clustering, K-means and DBSCAN[39]. These approaches is covered
in subsection 2.6.1, 2.6.2 and 2.6.3. Clustering is a form of data analysis
where the distance between the items in the dataset is calculated and the
distance matrix is used to group items by different algorithms. The distance
measure between items is a metric or quasi-metric on the feature space used
to quantify the similarity of items[22]. The distance measure is discussed
further in subsection 2.6.4. Cluster evaluation is the task of evaluating the
quality of the clusters after performing cluster analysis. It is important since
the quality of the results can vary greatly. Cluster evaluation is covered in
subsection 2.6.5.

15

2.6.1 Hierarchical clustering

In Hierarchical clustering the objects in the dataset is clustered in a hier-
archy of clusters. The hierarchy of clusters can be built Agglomerative or
Divisive (also known as bottom up or top down)[39]. The different stages in
Hierarchical clustering is based on the distance between the objects.

Algorithm 1 Basic agglomerative hierarchical clustering algorithm[39].

1: Compute the proximity matrix.
2: repeat
3: Merge the closest two clusters.
4: Update the proximity matrix to reflect the proximity between the

new cluster and the original clusters.
5: until One cluster remains.

Object distance or similarity can be stored in a distance matrix and must be a
numerical value. The algorithm for agglomerative hierarchical clustering can
be found in Algorithm 1. For the agglomerative approach, first, objects in the
dataset are clustered with each object placed in a separate cluster[39]. This
can be seen in the top row in figure 2.1, each letter is placed in its separate
circle. The clusters within a pre-determined distance interval are then joined
and a new distance is calculated between the clusters that was joined and
the other clusters. This last stage repeats until all clusters are combined in
one single cluster. This stage can be illustrated by following the arrows in
figure 2.1. For the divisive approach the same process as described is done in
reverse, as the objects start in a single large cluster and are divided in steps.
The distance between the clusters needed to define the ”closest clusters” can
be measured in several ways. The most popular ways are to use the two
closest objects in the clusters (single-linkage), the two furthest objects in
the cluster (complete linkage) or to use the mean or average value of all the
objects in the cluster (mean or average linkage). The clustering results may
vary greatly depending on this.

2.6.2 K-means

K-means is a clustering technique that attempts to find a user specified num-
ber of clusters (K). These clusters are represented by their centroids. A
centroid is in mathematics the arithmetic mean position of all the points in a
given shape. This is the same in clustering where the centroid is the average

16 Chapter 2. Background

Figure 2.1: A dendrogram displaying hierarchical clustering results[13].

position of all the objects located in the given cluster. K-means is also one
of the oldest and most used clustering methods[39]. The basic algorithm for
K-means clustering can be found in algorithm 2.

Algorithm 2 Basic K-means algorithm[39].

1: Select K points as initial centroids.
2: repeat
3: Form K clusters by assigning each point to its closest centroid.
4: Recompute the centroid of each cluster.
5: until Centroids do not change.

First the user must specify the number of clusters (K) desired. Each ob-
ject in the dataset is then assigned to the closest centroid in the cluster.
The centroids for each cluster is then recomputed based on the objects in
them. This is repeated until the centroids do not change, then all objects
are allocated to the closest cluster.

2.6.3 DBSCAN

DBSCAN[16] is a density based clustering algorithm, this means the tech-
nique locates areas with high density separated by low density areas. Op-
posite to Hierarchical clustering and K-means, DBSCAN does not necessary
cluster all objects in the dataset. Objects not in a high density area is
regarded as noise, while objects with many neighbours are core objects. Ob-
jects with few neighbours but in range of core objects are regarded as border

17

objects. This let it classify objects as noise, core or border.

Algorithm 3 Basic DBSCAN algorithm[39].

1: Determine object scan radius distance.
2: Label all objects as core, border or noise based on distance matrix.
3: Eliminate noise objects.
4: Make each group of connected core objects a cluster.
5: Assign each border object to the appropriate cluster.

A simple example of a DBSCAN algorithm is presented in algorithm 3. DB-
SCAN relies on two user specified values. The first one is the distance to
scan for other objects in the dataset. This will impact the result in a sig-
nificant way since a distance too short, relative to the object density, will
result in no clusters found or a number of smaller clusters where the density
is highest. Most object will be regarded as noise, and this is in most cases
not good. The result of setting the distance too long is that too many ob-
jects will be part of the cluster, and data that originally would have been
separate clusters can be grouped as one. The distance can and should be set
in response to the density of the dataset, and how dense the objects should
be to qualify to be clustered. The second user specified value is the minimum
number of objects required to create a cluster. This is simply to avoid each
pair of objects close enough creating their own cluster if this is not a wanted
outcome. Since DBSCAN is a density based clustering technique it is able
to identify clusters with many different shapes and sizes. It is also relatively
robust in regards to noise. This make DBSCAN able to locate many clusters
impossible to locate with hierarchical clustering and k-means. DBSCAN is
however weak in regards to high variety of density since density is harder to
define. A clustering comparison between k-means and DBSCAN highlighting
scenarios DBSCAN is able to recognize clusters k-means is unable to, can be
seen in figure 2.2.

2.6.4 Distance

In cluster analysis there is a fundamental need to measure the distance or
similarity of the objects in the dataset. Without this distance or similar-
ity it is virtually impossible to place the objects in vector space relative to
other objects. Distance is a quantitative degree of how far apart two objects
are. Distance measures that satisfies the metric property are called distance
metric, while non-metric measures are called similarity[9]. In this paper the

18 Chapter 2. Background

Figure 2.2: A comparison between K-means and DBSCAN clustering[17].

19

term distance is used to cover both distance metric and similarity. The dis-
tance measure depends on the attribute type and scale of the data. Data
can have attributes as presented in table 2.2. Since there is a variety of
attribute types and scales for objects, the distance measure chosen impact
the results significantly[22]. Objects are usually represented as points (vec-
tors) in multidimensional space where each dimension represents a distinct
attribute (variable) describing the object[38]. In a data matrix the objects
are represented as a m x n matrix, where m represent the number of objects
and n the number of attributes. Attributes in a data matrix is sometimes
transformed before use. This is because different attribute values can be on
different scales. Attributes using different scales can impact the result of the
cluster analysis significantly. It is common to standardize the data so that
all attributes are on the same scale. Another reason to transform the data
can be to reduce dimensions or attributes. In high dimensional space dis-
tance between points become relatively uniform[38]. While some clustering
algorithms use the original data matrix, many clustering algorithms use or
can use a similarity matrix. A similarity matrix is a n x n matrix mapping
the distance between the objects n.

Quantitative
Continuous (e.g., weight)
Discrete (e.g., number of kittens in a litter)
Interval (e.g., the duration of an event)

Qualitative
Nominal or unordered (e.g., color, religion)
Ordinal (e.g., military rank, good-better-best)

Table 2.2: Attribute types.

There are a lot of distance measures to chose from. The following subsec-
tions briefly elaborate some distance measures that are commonly used for
clustering.

Euclidean distance

Euclidean distance or Euclidean metric is the straight line distance between
two points[9]. In a plane space with p (p1, p2) and q (q1, q2) the distance
is:

d(p, q) =
√

((p1− q1)2 + (p2− q2)2)

For points in N dimensions, the Euclidean distance between two points can

20 Chapter 2. Background

be found with the formula:

d(p, q) =

√√√√ n∑
i=1

(pi− qi)2

Where pi (and qi) are the coordinates of p (and q) in dimension i.

Manhatten distance

Manhattan distance or Block distance is the distance between two points
measured along the axis at right angles[9]. In a plane with the points p (p1,
p2) and q (q1, q2) the distance is:

d(p, q) = |p1− q1|+ |p2− q2|

For n dimensional space, the distance is:

d(p, q) =
n∑

i=1

|pi− qi|

Jaccard distance

Jaccard distance or Jaccard index is used for measuring the dissimilarity
between datasets. It is calculated by dividing the difference of the sizes of
the union and the intersection of two sets by the size of the union[9]:

d(p, q) =
|p ∪ q| − |p ∩ q|
|p ∪ q|

Jaccard distance is useful for data objects contains binary attributes or in
some cases for nominal attributes.

Cosine similarity

Cosine similarity is a measure of similarity between two vectors that measure
the cosine of the angle between them[9]. Cosine similarity is most often
used in high dimensional space. Applications producing data with many
dimensions are typically text mining, where each term is assign a different

21

dimension and a document is a vector where the value of each dimension is
the number of times the term appears in the document. For the points P
and Q the formula for cosine similarity is:

d(P,Q) =

∑n
i=1 PiQi√∑n

i=1(Pi)2
√∑n

i=1(Qi)2

2.6.5 Cluster evaluation

Cluster evaluation is a task performed to control the results of clustering
algorithms. The two most important aspects of cluster quality is that inter-
cluster distance is high, and that intra-cluster distance is low[25]. In other
words that the distance or dissimilarity between clusters are as high as pos-
sible, and that the items in the clusters are as similar or close as possible.

The Silhouette index is an index to measure cluster quality[35]. The Silhou-
ette index has the following equation for K samples in the dataset[34].

S =
k∑

i=1

B(i)− A(i)

max{A(i), B(i)}

Where B(i) is the average nearest-cluster (inter-cluster) distance between the
sample and the nearest cluster, which measures how spread apart the sample
and the closest cluster are. A(i) is the average within-cluster (intra-cluster)
distance between the sample and all other data in the cluster.

The results from the Silhouette Coefficient is in the range of -1 to 1 where the
best value is 1 and the worst value is -111. Values near 0 indicate overlapping
clusters and negative values generally indicate that samples are assigned to
the wrong clusters. The higher value returned from the Silhouette index, the
better the clusters are.

2.7 Time Series Analysis

This section cover time series analysis with different measures. To compare
two time series and calculate the similarity between them, techniques from

11http://scikit-learn.org/stable/modules/generated/sklearn.metrics.

silhouette_score.html

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html

22 Chapter 2. Background

time series analysis can be used. A time series is a sequence of data points
typically consisting of sequential measurements made over a time period.
Time series can be difficult to compare based on a number of factors. There
can be a difference in length, noise points, misalignment and local time
shifting[15]. There are several ways to compare the similarity of two time
series, and the following subsections cover some of them.

2.7.1 Euclidean distance

Euclidean distance is largely covered in subsection 2.6.4, but not in regards
to time series. Euclidean distance is a lock-step measure, this means that
the points in the time series compared are fixed. Since each point is fixed
to the corresponding point in the other time series the measure is extremely
sensitive to noise and misalignments in time[15]. Euclidean distance is also
unable to handle local time shifting or in other words similar segments that
are out of phase[15].

2.7.2 Edit distance

Edit distance is the minimum number of operations needed to make one
sequence similar to another[33]. The basic edit distance measure is not very
well suited for time series analysis, so several distances based on edit distance
are developed[33]. The best known such distance is LCSS, which is short for
longest common subsequence[33]. This measure define a threshold parameter
that allow two points from different time series to match if they are inside
this threshold of each other[33]. The distance is based on the longest common
subsequence between two time series, and can be a very good measurement
if the data is not time shifting.

2.7.3 Dynamic Time Warping

Dynamic Time Warping (DTW) is a method used to compare the optimal
match between two sequences[33]. It was originally created to be used in
analysing speech in speech recognition since it allow time series to stretch and
compress in order to provide a better match[7][31]. DTW is not restricted to
comparing time series in lock-step, but can compare points one-to-many[33].
As can be seen in figure 2.3, DTW works by warping the time axis iteratively

23

in order to find the best possible match for the time series. This make the
measure capable of handling local time shifting and a varying degree of points
very well. To measure the distance between two sequences, DTW need to
create a M x N distance matrix based on a simple distance like Euclidean.
The shortest path is the straight line from the bottom left corner to the top
right corner. The warp path between the sequences is the path from the
lower left corner to the top right corner with the lowest distance values. See
figure 2.4 for an illustration on the lowest distance values. The sum of the
distances in the lowest distance path is the distance between the sequences.
There is no limit to how big this distance can be, so the resulting value is a
continuous value.

Figure 2.3: Dynamic time warping example[41].

24 Chapter 2. Background

Figure 2.4: Shortest warping path for DTW[41].

Chapter 3

Related work

This chapter cover related work and some of the differences in regard to this
work.

Hung-Jen Lai et. al. compare the results of tailoring the news based on
a user profile to the standard editorial pick in their paper Customized In-
ternet news services based on customer profiles [27]. In their system they
determine the users’ interests in an article based on the time used reading
the article. They take the relevant keywords, nouns (identified by Word-
Net1), identify synonyms, and calculate the frequency among other things
to eliminate noise. The recommendations is then determined by calculating
a match between articles and the weighted keywords in the user profile for
the user. Their results show that this approach outperforms the traditional
editorial picks. Hung-Jen Lai et. al’s work is related to this work in that
both utilize indirect information retrieval to determine the popularity of re-
corded keywords to recommend articles to the user. Their approach to use
reading time to determine the level of interests work for them because they
are operating strictly on the website of China Times2, while this work col-
lect interests from all over the web. Measuring the level of interest based on
reading time would be very inaccurate on websites with multimedia content,
as time spent on the page would be long compared to the amount of text,
which would inflate the perceived interest. Based on the user this could be
common in this work, and thus this approach might not be appropriate.

Annie Chen’s paper Context-Aware Collaborative Filtering System[10] use

1https://wordnet.princeton.edu/
2http://thechinatimes.com/

25

https://wordnet.princeton.edu/
http://thechinatimes.com/

26 Chapter 3. Related work

context in a collaborative filtering system to predict a user’s interests in
different contexts. Her work is related to this work in that both set out to
recommend content based on the users’ context and need to compare contexts
in the process. Her work utilizes collaborative filtering to predict the users’
interests in their given context, while this system use clustering to detect
contexts and to sort the users’ interests based on this, and then letting the
user choose the context to get recommendations from.

Mark van Setten et. al. has created a system that combine context-awareness
and interest recommendations into a system for tourists called COMPASS [42].
The system serve the users with information and services based on the tour-
ists’ context and interests. Their system is related to this work in that it
combine context-awareness with recommendation and separate criteria into
hard and soft, with context being a hard criteria in both their and this work,
and interests being a soft criteria in both. COMPASS use the mobile network
or GPS receivers to determine the users’ location and show this on a map.
The map display objects of interest for the user based on the user’s profile,
and can contain buildings, buddies, restaurants, shows or other objects. The
system is built on a platform called WASP where third parties can register
their services to be discovered. The items recommended are different for the
two works, as well as the technique used to recommend items. The COM-
PASS system also use different contextual information to recommend items,
such as last time visited.

Sofiane Abbar et. al. combine the ratings of users on items with the users’
contextual information in their system[1] to provide more accurate recom-
mendations based on user context. Similarly to this work, their system use
clustering to determine the contexts of the users based on the contextual
information collected. They describe in their approach that they use hier-
archical clustering to determine the number of clusters, and then use k-means
to cluster the data. This approach is different from using the elbow point to
determine the number of clusters and use hierarchical clustering to cluster
the data, as is done in this work. They deploy collaborative filtering to re-
commend content to the users while this work use content-based filtering
with keywords describing user interests to recommend content.

Chapter 4

Approach and design

This chapter cover the approach for solving the problem statement along
with the design details for the work. An overview of the work and the
general approach can be found in section 4.1. The three main components of
this work, information gathering, user profile creation and recommendation,
is covered in section 4.2, 4.3 and 4.4.

4.1 Overview

The system’s design can on a high level be divided into three main mechan-
isms. First there is a data collection mechanism that collect the interests and
contextual information from the users’ actions. The system gather and store
information describing users’ interests and contextual information from their
web activities in a non-intrusive manner. The user interests and contextual
information is gathered from the same events, so they are in relation to each
other. This step include a process of cleaning the information collected.

Second there is a mechanism sorting the interests based on the contextual
information to reflect the different contexts. In this step the system analyse
the information gathered and create user profiles based on the results. This
is achieved by using cluster analysis on the contextual information. The
clusters created by the cluster analysis contain the most similar contextual
information while the contextual information in different clusters are as dis-
similar as possible. The clusters represent the different user contexts and by
sorting the user interests by the clustering results the system can create a

27

28 Chapter 4. Approach and design

user profile that reflect the users’ contexts.

Third there is a recommendation mechanism that utilize the user profiles
generated in the second mechanism and recommend articles from the internet
based on the interests registered. The recommendation system provide users
with the option to choose a context from the user profile and recommend
articles collected from the web based in the interests associated with the
context chosen.

Figure 4.1 presents the different mechanisms and demonstrate a dependency
between them. Clients send interests and other contextual data (described
in subsection 4.2.2) to a server that store the information. The mechan-
ism sorting the interests based on contextual information collects the data
needed from the first server’s storage and perform the clustering and store
the result. When clients request recommended articles the recommendation
mechanism check the separation mechanism storage for a user profile and
present articles based on the users’ interests. The recommendation mechan-
ism has a component that continuously collect articles from the internet so
the recommendation mechanism has content to present.

4.2 Information gathering

This section cover the information that is collected by the system to create
the user profiles, and how to collect it.

There is two types of information to gather. The first type is the user in-
terests. This information give the system the ability to find content that
is related to the users’ interests. Without the interest information the best
a user profile could do is to predict interests based on demographics and
similar data. The interest information is discussed in detail in subsection
4.2.1 The second type is the contextual information for the user. To create
a context-aware user profile the system need to have contextual information
related to the users. The contextual information is discussed in detail in
subsection 4.2.2. Subsection 4.2.3 cover how this information is gathered.
Finally subsection 4.2.5 cover the data model for the information gathering.

29

Database

User id
Session id

Location id
Interest keywords

Session id
Domain name Interest Receiver

AnalyserRecommender

Article
Retriever

Database

Web

Database

Interest

Domain

Figure 4.1: High level system architecture.

4.2.1 Interests

Users’ interaction with something of interest on the web is often by clicking
a link to access it. To illustrate, a user navigating a news website will click
and navigate to the articles of interest by clicking on the headlines displayed.
Similarly a user interested in content without knowing the location of the
content will typically use a search engine. The results the user potentially
click on after the search is finished will also contain keywords describing the
interests, if it did not the user would not be inclined to click on the link.
So in that sense it should be enough to collect interests just from links, and
not from a query, since it would only be the same interest two times. If
the client were to capture text from input element on websites the risk of
the data captured being social security numbers, bank account numbers and
personal information captured from chatting and social network services are
high. More on this can be read under the subsection 4.2.4 Privacy.

30 Chapter 4. Approach and design

Cleaning interests

The data collected through parsing link texts and search queries can contain
a lot of unnecessary words that do not describe or indicate any interests.
Trying to clean the text with Part-of-speech tagging (POS tagging) can be
difficult, considering the input can be anything, not just properly constructed
sentences. Another problem with the input is language. The interests are
not exclusively in English and this result in an increased complexity since the
POS tagging have to identify the language first, then process it if it support
the language. Without supporting the language, the POS tagging would
have a hard time identifying classes of words.

A simpler and more consistent solution is to use a technique called stop
words removal. The downside of using stop words is the number of words
not describing an interest, not being removed. There is also words that
should be removed in certain situations and not in other. The most common
problem here is Noun phrases where common stop words can be part of the
Noun phrase. If a user is interested in The Who1 and records the phrase
”The Who”, the list of stop words might contain both the word ”the” and
the word ”who”, so the entire name is removed. The only possibility is to
add exceptions to certain stop word combinations with capitalisation, but
this require the knowledge of these names in advance. This would in a lot of
cases still be a problem using NLP instead, because successfully discovering
unknown proper knowns is a very complex and hard task. Some margin of
error is then expected when cleaning the interest keywords for unnecessary
words.

Besides stop words removal it is good to also remove unwanted characters
from the text with regular expressions (regex). This can for instance be used
to remove all numbers and special characters, since they are most likely not
of interest.

4.2.2 Contextual information

Context is captured either explicitly by requiring the user to specify it, or
implicitly by monitoring the user and the user’s activities[37]. To use the
context in relation to the users’ interests, there need to be an association
between context and interests. This means that the context need to be cap-

1http://thewho.com/

http://thewho.com/

31

tured for each interest[10]. Context can often be captured from multiple
sources depending on the type of information. Personal assistant applica-
tions similar to Cortana2 and Siri3 might collect weather information from
an external source, events from another external source and personal inform-
ation like calendar events from the local device. Based on the infrastructure
that is accessible to the current environment, different contextual information
might be available and unavailable[10].

The basis for the contextual information in this thesis is the six high level
categories from Schmidt et. al[37].

• User (e.g. age, habits)

• Social environment (e.g. social interactions)

• Tasks (e.g. active tasks, goals)

• Conditions (e.g. weather, light)

• Infrastructure (e.g. resources)

• Location (e.g. physical location)

Since the contextual information is collected on a per user basis, the user
category is not relevant, since it would be identical each time it is collected.
Social environment which is the second category, and cover social interaction
and group dynamic among other things, is very difficult to collect indirectly.
This information is typically not available without users’ explicitly providing
it. It could be available by possibly monitoring social network interactions,
but this is beyond the scope for this work. The third category of contextual
information is tasks. Tasks can be actions the users performs, goals the users
try to achieve or users’ intentions. Users’ actions can be directly monitored
since they are concrete, but not goals, as it is an abstract concept.

The last three categories are physical aspects of the context. Conditions,
which can be weather, light conditions or other environmental variables, are
difficult to collect indirectly. Weather can be collected from external weather
services based on location, but this might not be that relevant since users
will more than often be inside. If users were to be affected it would probably
only be when there are extreme weather conditions. The time of day and day

2http://www.windowscentral.com/cortana
3https://www.apple.com/ios/siri/

http://www.windowscentral.com/cortana
https://www.apple.com/ios/siri/

32 Chapter 4. Approach and design

of week are both conditions that can be easily collected simply by recording
the current time. As for other conditions for the user, there is simply no way
to collect information about the conditions in the room the user is located
in without the user explicitly provide the information or without the use of
sensors. Infrastructure is another contextual information category that is
difficult to capture indirectly. Location is the last category for contextual
information. It might be the absolute location or relative location. Absolute
position might be represented by latitude and longitude values while relative
location might be represented by a simple ”is it the same location or not” or
any other relational value. Relative location might be much more accurate
in describing the location compared to absolute position, since two location
(two computers) might be physically very close, but they have significant
different uses.

The following subsections cover the contextual information recorded together
with interests.

Time

A study by Karlson et al.[24] done on PC and smartphone usage for inform-
ation workers show that work computers are primarily used in typical work
hours. Time is then important for the indication of the user context. Most
importantly is the time of day, since many user’s context change based on
what time of day it is. An example of this is a person that begins work at
8 am. This person’s context will change at 8 am if the person is on time to
work.

Another piece of information that is important for indication of user context
is the day of week. It is still time, but on a slightly larger scale. What day
it is in the week might determine if the user is at work or has a day off, or if
certain activities take place for the user. These are tasks that might change
the context considerably.

Physical location

For most users a change in location means that the user is at a new computer,
possibly with a different context. A common scenario is users that use two
different computers through out the day, where one is a computer at work,
and the second is a personal computer at home. The physical location of

33

the computers does not matter much. The important aspect here is the
separation of the different contexts (e.g. work and personal) on two different
computers. This is why it is reasonable to use a relative position for each
computer the user uses and make the relative distance between locations
either ”similar” or ”dissimilar”. The location can then be a unique machine
id for each computer.

A study of device usage for industry and academia workers[14] show that
separating work between a work computer and a personal computer was
preferable for the subjects working in industry, but that they had trouble
doing so in practice. The situation is then that not every user that have
separate computers for work and private will have a clear distinction between
them. Even though the difference in hardware can be a very good indication
to the difference in context, it is not definite and exceptions may apply. The
same way that a user may be doing personal tasks on a work computer.

Digital location

A user browsing the web will be visiting websites located at domains. This
is a digital location the user visits, and is not the user’s physical location.
A user going to a domain location is an abstract concept, since the user
does not in any way visit the domain, but simply request content from the
address. These domains often evolve around certain topics or activities, so
users’ domains visited can contribute to the description of the users’ context.

4.2.3 Collection

There are three approaches for collecting user information, direct, semi-direct
and indirect[19][36][28]. The direct approach would typically present the user
with a questionnaire containing pre-defined interests the user can choose
from. This is the simplest way to get the user’s interests, but not the most
accurate, and certainly not the most convenient. The semi-direct approach
can be conducted by allowing the users to rate the items they consume, and
with this create a profile of what the user like and dislike. Letting the user
provide a rating on items does, in general, work as intended and provide the
system with data related to user interest. This solution does require user
interaction, and it can be very complicated to recommend content if similar
items are rated differently. Opposed to the direct and semi-direct approaches,

34 Chapter 4. Approach and design

the indirect approach does not require the user to actively provide the system
with preference information. It will monitor the user activity and record
consumed items as interests automatically. Recording consumed items as
interests is not a fair representation of reality since the user can consume
content and not enjoying it. This problem can be overcome by looking at
the consummation frequency. If similar content is consumed by the user on
a regular or continuous basis it is safe to assume that the user is interested
in this content.

A flowchart of the information gathering process for the clients can be found
in figure 4.2. The flowchart has two parallel paths, one for domains and one
for interests.

Website
opened

Get
location

Click
link

Collect text from
link element

Clean text

Send interest to
Interest Receiver

Stay on
website

Collect domain
name

Send domain
to Interest
Receiver

Figure 4.2: Client information gathering flowchart.

35

As discussed in subsection 4.2.1, the interests will be captured as keywords
from links clicked on by the users. Contextual information will be captured
along with the interests so each interest have contextual information associ-
ated with it. The contextual information; time, physical location and digital
location might not be enough to successfully reflect the different user con-
texts. To address this the contextual information will be collected in sessions,
where sessions are simply a collection of interests collected in a small time
period. The assumption is that more contextual data is better.

Session

A session is a collection of the information gathered in a limited time period.
By gathering the information in distinct time periods there are more aspects
to analyse then with single interests. The contextual information for a single
interest is:

• Time

• Relative physical location

• Relative digital location

By collecting and analysing interests in sessions there are more information
available to analyse. The information is given an extra dimension. A session
will have a time frame, instead of a time point. This is represented by the
session start and stop time points. The relative physical location will be the
same for all interests in the session, and thus the same for the entire session.
The relative digital location on the other hand will possibly be different for
each interest, and this give a session a collection of relative digital locations,
instead of a single relative digital location for a interest. The advantage
of this is when two sessions are compared, the collections of relative digital
locations can match in varying degrees (e.g. 50% match) while single relative
digital locations will either be similar or dissimilar. Finally while analysing
interests in sessions, the system can utilize the second dimension added, by
analysing the series of time points for recorded interests. If a session contain
ten interests, there is ten time points in the session. These time point series
can be analysed as time series when comparing two sessions, to see to some
degree if the usage pattern of the sessions are similar or dissimilar. The
recording pattern will represent users’ behaviour and be considered a part of

36 Chapter 4. Approach and design

the contextual information. The contextual information for a session is then
as follows:

• Session start time

• Session stop time

• Relative physical location

• Multiple relative digital location

• Interest recording pattern

The drawback of capturing interests in sessions is the risk of collecting dif-
ferent contexts in the same session. This risk can be reduced by setting a
time duration limit on sessions and not allow multiple physical locations in
one session. This will limit the contextual differences between the interests
in the session.

Sessions begin when an interest is captured and there exist no valid active
session. A session timeout value is then set, so if the session is inactive for
the duration of the timeout value, the session is retired. A timeout value for
this can for example be one hour. The timeout value will limit the session
duration to the amount of time a user is accessing the web, so when a user
is done the session will timeout after a while. This can potentially be a long
duration, if the user is continuously browsing the web. So a maximum time
to live value is also set, so the session cannot be continuously kept alive for
too long. Sessions should not be closed when a new session is created to
accommodate situations where users use two computers at the same time or
a virtual machine and is doing some browsing on each machine.

4.2.4 Privacy

This system will gather information about what users are clicking on, when
they do it and what domains they visit. This is a major intrusion in a users’
privacy, but an intrusion users implicitly agree to when they install the client
recording the data and create a user account. For applications designed to
collect user data, transparency in how and when it is done is very important
to gain users’ trust. It is also important that the software does not overstep
the boundaries the user can expect the software to stay within. The source

37

code for the client is available at Github4 and the JavaScript will not be
minified or uglyfied to hide the code from the user. Preferably there would be
no manual oversight of the interest keywords captured, but without manual
oversight there is no proper way to evaluate the success of the stage clustering
the contexts described in section 4.3. While collecting data there are a lot of
considerations to take, especially when it comes to privacy. There is a need to
weigh the advantages of collecting certain data against the disadvantages. A
simple approach would be to collect all keywords entered into input elements
in the websites being monitored. This would result in the client collecting
all the data and potential interests provided by a user. The problem with
this approach is that is does not discriminate against websites like online
banking, social networks and other websites that contains a lot of sensitive
information.

4.2.5 Data modelling

The data model as can be seen in figure 4.3, is constructed based on logical
separation of data. The session is the main entity in the data model. It is
the core that combines the other entities. It combines the user with every
interest recorded in a time series, as well as all domains recorded in the same
time series. Each session contain several domains, and each domain can
occur in several sessions, so there is a many-to-many relation between these
entities through a session-domain mapping entity. Interests are recorded
with possibly a collection of keywords. This is reflected with a one-to-many
relation between an interest entity and interest keyword entities.

4.3 User profile creation

The core task in this project is to create user profiles with dynamically separ-
ated interests into different groups based on the context. The basic premise
for this stage is to group the sessions with similar contextual information to-
gether and create a user profile from this data. This is only possible if there
is a valid relation between similar contextual information and context. The
premise for this is that there is a relation between the contextual information
and the context, and by grouping sessions with similar contextual informa-
tion, the sessions with similar context is also grouped. If a user’s sessions

4https://github.com/jtkarlsen/InterestsRecorder

https://github.com/jtkarlsen/InterestsRecorder

38 Chapter 4. Approach and design

Session

Domain

session_domain

Interest

User

Interest keyword

session idPK

machine id

user id

idPK

name

created time

idPK

session id

domain id

idPK

timestamp

session id

idPK

username

password

idPK

keyword

interest id

Figure 4.3: Data model as UML diagram.

can be grouped in two groups, this means the user has two different contexts
where interests have been recorded. When a user’s sessions is grouped, the
keywords representing the user’s interests can be grouped based on the ses-
sions, and the user profile can be created with the interest keywords sorted
by contexts. This concept is illustrated in figure 4.4. Stage 1 (Subfigure a)
illustrate the interests with the corresponding contextual data stored after
collection, which is the initial stage for the process of creating the user pro-
files. Stage 2 illustrate the contextual data sorted in groups based on their
similarity. The groups represent two different contexts for the user. Stage 3
is the completed stage where the interests are sorted by the contexts.

39

Contextual
data

Interests

(a) Stage 1 - Initial state

Contextual
data

Interests

Context 1 Context 2

(b) Stage 2 - Contextual data sorted by similarity

Contextual
data

Interests

Context 1 Context 2

(c) Stage 3 - Interests sorted by context

Figure 4.4: General approach for creating user profiles that reflect context

40 Chapter 4. Approach and design

A very popular technique for detecting similar data in a large dataset is
cluster analysis. You can read more about the basics of cluster analysis in
section 2.6. The technique locate similarities or patterns in a large dataset
and group them together based on this. Clustering is a type of classification,
and is often called unsupervised classification[38]. This will allow the system
to detect the different contexts in the dataset dynamically. With simpler
methods such as supervised classification, where data is sorted in pre-defined
classes, it is impossible to discover new or undefined groups[38]. Clustering
can be a subset of unsupervised machine learning. In clustering, similarity is
perhaps the most difficult step to overcome. The next subsection 4.3.1 cover
how similarity is defined and calculated for this project. The clustering
algorithm cannot perform clustering on data without knowing the relation
between the items in the dataset. The task of differentiating contexts then
comes down to two steps. (1) Calculate the distance or similarity of the
sessions based on contextual information. (2) Apply a clustering algorithm
on the dataset with the distance from the first step. The clustering algorithm
will then sort the dataset into clusters or groups based on the parameters
provided. Clustering is covered in subsection 4.3.2.

4.3.1 Distance

For cluster analysis on a dataset to work, each data in the dataset need to
have a defined metric separating them in distance or dissimilarity[22]. The
distance measure should be chosen based on the attribute type of the data in
the dataset, since different distance measures will be affected differently by
attribute types. For Euclidean and Manhattan distance the attribute types
should be normalised quantitative values[22][38]. In other words the values
can be continuous, discrete or interval, as long as the type is consistent. A
mixture of attribute types will result in unintentional weighting of certain
attributes. Jaccard distance is a measure suited for attribute types that are
binary or nominal[38]. Cosine similarity is a measure suited for attributes
of quantitative types, but with a lot of attributes and thus with a lot of
dimensions in vector space[38]. To identify the most suited distance measure,
the data attributes of the data recorded in this project need to be examined.

The data objects to perform clustering on is the sessions recorded from user
activities. These objects have a number of attributes that need to be taken
in to account. From table 4.1 the attributes and their type is listed. There
are two different attribute types in the data object and none of the distance

41

Clustering
triggered

Get contextual
information

Get user

Compute distance
matrix with contextual

information

Perform
cluster
analysis

More
users?

Yes

Create
wordclouds

Sort interests
by results

No

Figure 4.5: User profile creation flowchart.

measures covered will work on the data as it is. The attributes correspond
poorly with the attribute requirements for Jaccard distance, so that distance
can be ruled out since it is not very meaningful to convert discrete or con-
tinuous data to nominal or binary values. The objects that shall be clustered
has six attributes and does not qualify to be categorized as high dimensional,
so the obvious advantages of cosine similarity measurement does not apply
to this dataset[4]. High dimensional data usually have from dozens of at-

42 Chapter 4. Approach and design

tributes to several thousands[4]. Three of the attributes are nominal values,
that makes the Euclidean and Manhattan distance also not usable without
normalising the data. The book ”Finding Groups in Data: An Introduction
to Cluster Analysis”[25] by Kaufman et. al. says ”The use of the Manhattan
distance is advised in those situations where for example a difference of 1 in
the first variable, and of 3 in the second variable is the same as a difference
of 2 in the first variable and of 2 in the second.”. This is not the case in
our clustering analysis, since a comparison of a session starting at 10.00 and
ending at 16.00 and a session starting at 14.00 and ending at 18.00 is not the
same as a comparison of a session starting at 15.00 and ending at 17.00 and a
session starting at 16.00 and ending at 18.00. Euclidean distance is the best
fitted distance measure for the data, since converting nominal attributes to
discrete attribute does work to a degree depending on the data.

Attribute Type
Physical location Nominal
Time of day start Discrete
Time of day stop Discrete
Day of week Discrete
Domains Nominal
Recording pattern Nominal

Table 4.1: Session object attributes with type.

Based on the attribute types the session object have, three nominal and three
discrete, the obvious choice is to convert the nominal attributes to discrete
and try to normalise the values in a reasonable manner. Some attributes will
matter more than others for the clustering to be as accurate as possible, so
the values need to be weighted after importance as well. The values in the
session object need to be broken down and converted to normalised discrete
values. These values can be in the range of 0 to 100, without considering
weighting.

After all the session’s attributes have been normalised, they are all discrete
values in the range from 0 to 100. This is very good values for the euclidean
distance measure to calculate the distance between the different sessions.
The different attributes for the session objects are all in the range from 0 to
100, and have with this the same effect on the distance results. In reality
the different attributes have a different impact on the identification of the
context. This is where weighting come in, and this will be discussed in
subsection 4.3.1.

43

The following subsections cover the measurement of similarity between the
different attributes associated with sessions and discuss the weighting of the
distances.

Physical location

Physical location or machine id is a unique nominal value representing a
specific machine. When comparing two machine ids the outcome is binary, it
is either equal or unequal. It is either the same machine or not. The physical
distance between machines does not matter as it would be impossible to use
it to analyse the contexts. Since the result of comparing two machine ids is
binary, it can be normalised to be either the minimum value or the maximum
value. In our case this results in the value 0 for equal values and the value
100 for unequal values.

Time of day

Time of day start and Time of day stop are discrete values in the range of
0 to 24 hours. They are both in the same scale and in the same range so
we can cover them together. When comparing the time of day values, the
resulting difference can be in the same range as the values them self, 0 to 24.
All we need to do for these discrete values is to change the range from 0 to
24 to 0 to 100, and this is easily done by dividing the resulting value with
24 and multiply with 100. For example the time 14.33 is 873 minutes, and
the time 16.47 is 1007 minutes. In minutes the range is from 0 to 1440. The
difference between the times are 134 (1007 - 873) in the range of 0 to 1440.
In the range of 0 to 100 the difference is 134 divided by 1440, multiplied by
100, so 93. The tricky part is to take into account the circular nature of time.
00.05 and 23.55 can be either 23 hours and 50 minutes apart, or 10 minutes.
Since the clustering algorithm is comparing session from different days there
is no basis for using the date of the time to solve this. The best solution is
to use the shortest distance, since it is the real distance in time between the
values we are comparing, without considering the date.

44 Chapter 4. Approach and design

Day of week

Day of week is also a discrete value in a different range than the proposed
0 to 100. The approach used for normalising the time of day start and stop
applies to day of week as well. We need to change the range from 0 to 6
(zero indexed 7 day week), to 0 to 100. The approach is then to divide the
difference between the day of week with 6 and multiply with 100 and the
result is normalised. We need to remember that the day of week also is a
circular number as the time of day is, and need to be handled accordingly.

Domains

Domains are a list of nominal values that are collected throughout the ses-
sion. Since the domains are a list of nominal values, we can use the Jaccard
distance to calculate the similarity. The Jaccard distance is based in the
rate of overlapping items in two datasets and will suit this data. Jaccard
distance is the difference of the sizes of the union and the intersection of two
sets divided by the size of the union. When measuring the distance of the
two set of domains that are listed in table 4.2 by using Jaccard distance,
we get 0,875. We get this value by first figuring out the union of the two
datasets, which are 16, and then the intersection, that is 2 (en.wikipedia.org
and www.amazon.co.uk). Applying these numbers to the Jaccard distance
formula give us 16−2

16
= 0, 875. The distance returned from the formula is in

the 0 to 1 range, so by multiplying with 100 we get the desired range.

Domains A Domains B
elinux.org en.wikipedia.org
www.amazon.co.uk www.investopedia.com
www.sdcard.org www.mathisfun.com
mega.co.nz cs.bu.edu
support.google.com stat.ethz.ch
kodi.wiki cs229.standford.edu
www.raspberryp.com mathoverflow.net
www.modmypi.com www.amazon.co.uk
meta.stackexchange.com
en.wikipedia.org

Table 4.2: Two domain datasets.

45

Interest recording pattern

Recording pattern is a list of time values that represent the time each interest
in the session was recorded. The list of time values or pattern is a nominal
value seen as a single attribute, but each item in the list is a discrete number
type. Time can be seen as either a continuous value or a discrete value
based on the application. For this project a place in time will be viewed
as a discrete number value, since it in computer science often is represented
by a whole number. There are several different approaches to calculating
the distance between two set of numbers. We can look at the sequence as a
vector with each value as an attribute and measure the similarity between
them with euclidean distance. This will result in a similarity measure that
does not consider patterns in the sequence, but just compares the vector
as an average combination of attributes. We can apply the edit distance
algorithm to calculate the similarity by finding the number of edits required
for the sequences to be equal. This is an approach that is more suited for
words and unordered sets of numbers, and it will not take into account the
frequency of the sequence. For two sequences [1, 2, 3, 4, 5] and [1, 3, 4, 5]
the edit distance would at index 2 change the number and add one to the
distance, and this will continue for every number since one of the sequences is
lagging behind with one value. The distance measured would be 3 edits out
of 4 items, so a large distance, while the sequences are very similar with only
one number missing in one set. The last technique is to look at the sequence
as a time series and to calculate the similarity between them with dynamic
time warping (DTW). DTW adjusts for local time shifting and sequences
out of phase when measuring the distance. This is good for the accuracy of
the distance measure since the patterns recorded is in no way guaranteed to
be with the same frequency and without acceleration or deceleration. The
sequences are also not guaranteed to be synchronized and the DTW distance
measure adjusts for this as well. DTW is explained further in subsection
4.3.1. The resulting value from the DTW distance measure is a continuous
value type and does not fit in to the 0 to 100 range. This can be handled by
setting a maximum distance and converting all values over this to 100, the
maximum value, and normalising the rest in the range of 0 to 100.

Attribute weighting

The approach for setting the weight values was first to evaluate the import-
ance of the attributes against each other. This is to have some initial values

46 Chapter 4. Approach and design

as a starting point. After some initial values have been selected, they are
changed based on a trial and error approach to see what weighting values
provide good results. I have yet to locate a measure that will successfully
measure what value weight provide good results without having a pre-defined
set of classes or results to compare to. Because of this a trial and error ap-
proach to determine the weighting is considered the best approach. Good
results are relative, and different session data will react differently to differ-
ent weight values, so the weight values are difficult to evaluate. The values
used to weight the attribute distances when determining session distance is
presented in table 4.3. This is the result of preliminary testing with trial and
error based on initial values.

For the initial values time of day start and domains was set higher than the
other attributes, because they were considered more important. The prelim-
inary testing with the trial and error alteration of the weighting resulted in
better results than the initial values when the other attributes were reduced
further. So as a result time of day start and domains are very dominant
attributes, while the others and especially day of the week is low.

Attribute Weight
Physical location 2
Time of day start 6
Time of day stop 2
Day of week 1
Domains 4
Recording pattern 2

Table 4.3: Session attribute weighting

4.3.2 Clustering

This work will use cluster analysis to group similar sessions together and to
keep dissimilar sessions apart. The clusters will represent the users’ different
contexts in the user profile. The idea behind this is that the different contexts,
also have different contextual information associated with them. Then by
clustering the interests with similar contextual information, the interests with
similar context is clustered. It is also important to limit the number of
contexts to a reasonable number while still representing the users’ actual
contexts. This is to reduce the complexity of the user profile. If the contexts

47

were to be too precise, the user profile would have a context for every single
action the user performed.

Clustering algorithms

Based on the euclidean distance metric used to measure distance between
the sessions, we can choose between several clustering algorithms. Some of
the most popular clustering algorithms are hierarchical clustering, k-means
clustering and DBSCAN. These three clustering algorithms cluster the data-
sets in distinct different manners, and we will need to choose the one that
fits our data best.

Hierarchical clustering is as the name indicates a technique that cluster the
data in a hierarchy of clusters. Hierarchical clustering is explained further in
section 2.6. The results from hierarchical clustering will vary depending on
how ”the closest pair of clusters” is defined. It can be defined by the closest
points, furthest points or mean of all points in the clusters. To use the results
from hierarchical clustering we need a notion of how many clusters we want,
or a threshold for a maximum distance between clusters, or else the end result
for the agglomerative clustering is one cluster. With a distance threshold the
clustering algorithm can stop combining clusters after the closest clusters
are further away than the threshold distance. With hierarchical clustering
we can get robust clusters that are formed up to the threshold distance.
This threshold is the maximum distance before clusters no longer are deemed
similar, and no longer merged. By ignoring the clusters where there are too
few members we can also ignore outliers from the results of this algorithm.

K-means clustering is a technique where the user specifies the number of
clusters and the data is sorted into the closest cluster based on the centroid.
The centroid is the mean position of all points in a cluster. K-means cluster-
ing is explained further in section 2.6. Since k-means divide all data items
into the closest cluster, the algorithm has a hard time discovering shapes in
the dataset.

DBSCAN is a density based algorithm that create clusters where there is
enough data items in a given area. The user has to specify the range each
item has to search for neighbours and how many items it is needed to create a
cluster. DBSCAN is explained further in section 2.6. DBSCAN can be very
sensitive to the parameters chosen and tiny changes in them can on some
datasets result in massively different results. Furthermore the algorithm has

48 Chapter 4. Approach and design

a weakness for varying densities in the dataset, since the requirements for
a cluster is based on hard values. The algorithm is on the other hand very
robust in regards to outliers and noise and is one of the best algorithms for
discovering arbitrary shapes.

All of the above mentioned clustering algorithms should perform sufficiently
for the task of clustering the contextual information. All with their advant-
ages and disadvantages. The data to perform cluster analysis on is generated
by user actions, and has no clear structure. For different users the data can
take completely different shapes, based on the users’ usage. This means we
cannot make any assumptions about the shapes or the density of the data-
set. Since DBSCAN has a weakness for varying densities the results may vary
greatly depending on the dataset, so DBSCAN might be the least feasible
option. Between k-means and hierarchical clustering there is a significant
difference in the result structure. K-means provide flat clusters while hier-
archical provide a hierarchy of clusters. This hierarchy can easily be used to
explore the accuracy of the clustering by increasing the depth. Based on this
the choice of clustering algorithm fall on hierarchical clustering.

The next subsection discuss the linkage to use for the hierarchical clustering.

Linkage

Single-linkage hierarchical clustering risk making the entire dataset a cluster
if the items in the dataset are close enough. Since single-linkage is measuring
the distance between the closest items in the clusters, there is a risk of there
always being a point in range of one of the outer points and in the end the
entire dataset is one large cluster. There is no limitation to the size of the
dataset, so this is a potential problem. For complete linkage hierarchical
clustering the distance between the clusters is measured from the points
furthest away. It will force clusters to be spherical in shape as long as there
is enough data and it will force the clusters to have a maximum diameter
equal to the threshold value if the threshold is based on distance. For average
linkage hierarchical clustering the average distance between all items from one
cluster to another is the distance. There is also a modified average linkage
called weighted average linkage that is similar to average linkage except that
the distance is weighted based on the cluster size. Average linkage is a middle
ground between single-linkage and complete linkage hierarchical clustering.
It can be computational intensive, but the result can potentially be significant
better. It also is less sensitive to outliers in clusters, since the distance will

49

not be based on single items on the edge, which is a major drawback for
single-linkage and complete-linkage.

It can be hard to decide what linkage to use for hierarchical clustering but
considering the shortcomings of single-linkage and complete linkage cluster-
ing for an unknown dataset, the best looking alternative is average linkage.
Average linkage hierarchical clustering will simply put produce relatively
compact clusters that are relatively far apart. Preliminary testing supports
this assumption as well.

Number of clusters

Determining the number of clusters is done with the elbow method. This
method consist of locating when the effectiveness of adding new clusters
drop[26]. Optimally the drop in effectiveness will be significant at some point.
This elbow point cannot always be unambiguously identified[26], but the
best point will still be chosen. By using hierarchical clustering the hierarchy
of clusters can be used to determine the increase in efficiency in a single
calculation.

4.3.3 User profile modelling

A user profile is simply put a collection of relevant data to perform the desired
actions related to the user. A user profile can be a metaphorical object that
includes different user data from different parts of the system. The user
profile for this system represent users’ interests in regard to the different
contexts they might have. After performing the cluster analysis covered in
subsection 4.3.2 the user profile can be visualised as in figure 4.6. The user
profile will contain a set of contexts that the sessions are sorted into. The
sessions in the contexts each contain one or more interests and the interests
contain one or more keywords describing them.

The user profile is dynamic and will change for each time the cluster analysis
is performed with new data available. The sessions, interests and keywords
will all stay static, with the exception of adding new ones. The aspect of the
user profile that will change is the contexts. The user profile will be construc-
ted on the backend of the system because of the computational requirements
to perform the cluster analysis and the consistency it provides for multiple
clients.

50 Chapter 4. Approach and design

User profile

Context

Session

Interest

Keyword

Figure 4.6: Overview of the user profile content.

Boosting and importance

If a specific keyword is recorded multiple times, the interest it represent is
most likely of higher importance to the user than an interest with a keyword
that only occur once. For a recommendation system to reflect this, a term
weighting scheme need to be added. The simplest way of solving this is
to multiply the keyword boost value by the number of occurrences for the
keyword. A keyword that occurs twice is with this logic twice as important
as a keyword that occur once. This solution does have a significant problem.
Interests the users has had over a long period of time will potentially have a
lot of keywords with multiple occurrences collected over time. Newer interests
will not have the same amount of keyword occurrences for most likely a long

51

time and will be seen as not very important in the user profile. Users also
might have a lot of keywords for topics that they no longer find interesting,
but the amount of keywords will be stable on the current level and it will be
counted as important until the other interests surpasses it at a later time.
This is not a good way to handle recommendations. To solve this, keywords
will be associated with the time they were recorded by the system. The
importance of the keyword will be decreasing by time passing since it was
recorded. This will result in old keywords retiring with time and they will
make room for new and possibly more important keywords. The age of the
keyword will be used to decrease the boost value to create a more accurate
representation of user’s interests at the time of use.

4.4 Recommendation

To test the user profiles created, a recommendation system is created. The
system will use the users’ user profiles to provide relevant articles from se-
lected sources on the web. The system will provide the option for users to
select what context in the user profile the recommendations will be based on.
Since users’ interests are gathered based on links clicked, the users’ interests
should correspond well with articles from websites. A user’s taste in movies
might not have been such a good match since there is not necessarily a re-
lation between interests from links clicked and movie interests. So with that
assumption, recommending articles based on what users’ click on the inter-
net should work well, since users often click on links to read articles or other
information. The recommendation system can be divided into three parts;
collection, recommendation and presentation. These parts will be covered in
detail in the following subsections.

4.4.1 Collection

For the system to be able to recommend articles to the users, it need to first
have access to articles. The articles need to be available to search through
to find matching keywords if they are to be used for recommendations. For
performance reasons this require they are stored locally and indexed, or that
a service taking a large set of keywords with weighting is available. There
are several approaches to collecting and storing articles from the web. An
obvious option is to crawl the web for articles and store the information

52 Chapter 4. Approach and design

needed. This approach either requires a predefined set of websites to crawl,
or a crawler collecting articles from all over the web. A crawler can be a
considerate amount of work to produce, but luckily there are several free
and open source options available. Some alternatives include Nutch5 and
Scrappy6. Crawling the web for articles can be a complicated task, and the
results varying depending on implementation. Another option to this is to
use widely supported web feed formats to collect well formatted articles from
multiple sources in a homogeneous way. The number of potential sources will
rely on the number of websites that use and support a web feed standard to
provide articles. This is not a big issue since the recommendation system is
only to demonstrate the results of the user profile created. Another drawback
from using web feed standards is that the content usually is not the entire
article, but a headline and a summary. This should however be more than
enough to query for the articles based on the user profile. Following web feed
standards to collect articles is the simplest and perhaps best option in regard
to implementation and our requirements for this system.

A web feeds is, simply speaking, websites that follow and present their con-
tent by a standard so feed readers can consume content from different sources
the same way. This means that to collect articles from web feeds the sys-
tem need a list of sources that can be checked for new content periodically.
The system need a mechanism to check if the content has been consumed or
collected previously to prevent duplicate data. A component that periodic-
ally check sources with a web feed standard and consume them based on the
standard they are presented in should be enough for collecting articles for
the recommendation system. This component is illustrated by a flowchart in
figure 4.7.

As a source for the articles collected, Google News should be an excellent
option. Google news already apply advanced mechanisms for providing a
large selection of the most popular news articles7. Another great reason
to choose Google News as a source is they collapse similar articles into a
single article, so the system will have one article instead of possibly a lot of
articles about the same situation from dozens of different sources. Because
the alternative to Google News would be to manually compile a list of sources,
and this could be skewed in favour of sources the author personally prefer.

5https://nutch.apache.org/
6http://scrapy.org/
7https://www.google.com/intl/en_us/about_google_news.html

https://nutch.apache.org/
http://scrapy.org/
https://www.google.com/intl/en_us/about_google_news.html

53

Collection
triggered

Get article
source

Get articles
from source

Store new
articles

More
sources?

Yes

Collection
done

No

Figure 4.7: Article collection flowchart.

4.4.2 Storage and recommendation

To recommend articles to users based on their user profile containing keywords
representing their interests, we need to be able to query the articles for
matches with the said keywords. We need to store the articles in such a
manner that they can be queried and preferably indexed beforehand. The
best possible scenario is that we can query with a large selection of keywords
and their weight and get a list of articles sorted by the degree of match to the
keywords and weight. It is important that the solution support TF-IDF or

54 Chapter 4. Approach and design

similar methods for searching, so common words do not get overrepresented.

A good solution to solve the storage and recommendation aspect for the
recommendation system is to use a full text search engine with support for
term weighting. This would result in minimal implementation and a quality
verified by many existing users. Figure 4.8 is a flowchart illustrating the
recommendation process.

Recommendation
system start

Get contexts from
user profile

Select
context

Get interests for
selected context

Construct query with
weighted interests

Weight interests based on age
and number of ocurrances

Perform search
with query

Display results

Figure 4.8: Recommendation flowchart.

55

4.4.3 Presentation

The goal for the recommendation system is to test and demonstrate the user
profiles generated. Because of this, the articles recommended to users should
be presented in a clean and structured matter so it is easy to locate the most
recommended content and evaluate the user profile. Since the user profile
is separated in several sections based on the contexts, the recommendation
system must provide an option for users to select what context to get re-
commendations based on. Without this option it will be impossible for users
of the recommendation system to assist in evaluating the correctness of the
different clusters. There is no way for the system to determine what the
different contexts are, just that they are different, so they will by default be
without a descriptive label. They will need to be described by some available
information like the most prominent keyword(s) in them. With a successful
stop words removal the most prominent keywords should be descriptive of
the content.

Since the different contexts are generated by contextual information there
is no labels or key identifiers on the different contexts. The contexts will
be presented to the user as a word cloud. A word cloud will in a good
way illustrate the most prominent words in the group, and this will make it
possible to identify them. Word clouds in itself are a very good tool to judge
the quality of the groups since it make it easy to see if the prominent terms
are somewhat related.

56 Chapter 4. Approach and design

Chapter 5

Implementation

This chapter cover the architecture and implementation of the software for
this thesis. Figure 4.1, on page 29, illustrate the different components. The
software consist of five separate components, the Interest Retriever, Interest
Receiver, Interest Analyser, Article Retriever and the Recommender. They
are described in section 5.2, 5.3, 5.4 and 5.5 respectively. The Article Re-
triever and Recommender are both covered in section 5.5.

5.1 Server

The server hosting the solution is running on an Intel(R) Core(TM) i5-650
(3.2 GHz) processor with 4 GB of DDR3 memory and a 200 GB 7200RPM
hard disk drive. The server is using Microsoft Windows Server 2012 64-bit
as the operating system. The hardware and software is not chosen by any
other reason than that it was already available for use and sufficient. At the
time of testing the server had no other tasks than hosting this system.

5.2 Interest Retriever

The Interest Retriever is a Google Chrome browser extension1 that collect in-
terests and contextual information from users’ link clicks in the web browser.

1https://developer.chrome.com/extensions

57

https://developer.chrome.com/extensions

58 Chapter 5. Implementation

It is primarily written in JavaScript with a small amount of HTML. The
choice of exclusively creating an extension for Google Chrome is based the
browser usage of the potential application testers. I found Google Chrome
to be the most used browser by a landslide. The browser extension work by
injecting a script into every website that is rendered by the browser. The
script add an event listener to the body of the website that check whether
the tag clicked is a link or not. If the target is a link the text is read and an
chrome.runtime.message2 event is activated, sending the content of the target
to a background script in the extension. The injected script will also send
the current domain to the background script after ten seconds has passed.
The ten second limit is to exclude domains that are visited briefly, since it
is a high chance the user did not intend to visit it or saw that it was not of
interest.

The background script evaluate the text from the link clicked and remove
stop words. The script remove any individual numbers and special characters
from the text. The background script store stop words from ranks.nl for
both English3 and Norwegian4. If the content is not empty after removing
stop words, the interest is sent to the backend with the machine id, session
id and user identification. The machine id is created only once and is a
practically unique UUID (128-bit number). When it is created it is stored
in the extensions local storage. For each time the machine id is needed, it
is retrieved from the storage. If there is no machine id in the storage (e.g.
first time use or storage deleted), the background script will generate a new
UUID. This ensures the same physical machine has the same relative location
in the system, unless the storage is deleted. The session id is similarly with
the machine id a practically unique id that represent the current session.

Algorithm 4 Session timeout

1: Session start
2: repeat
3: Interest recorded
4: Session timeout value updated
5: until Session has timed out or max time to live reached

A new session (session id) is set when an interest is recorded and there is no
existing session, or the existing session is expired. Each time an interest is
submitted to the backend, the current session will refresh it’s timeout value

2https://developer.chrome.com/extensions/messaging
3http://www.ranks.nl/stopwords
4http://www.ranks.nl/stopwords/norwegian

https://developer.chrome.com/extensions/messaging
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords/norwegian

59

as shown in algorithm 4. This value will be checked when the next interest
is submitted to see if the session has timed out. If the session is timed out
a new session will start, but if not the current session will be used and the
timeout value will be overwritten. Sessions also have a maximum time to
live, so if this value is exceeded, a new session will begin even if the timeout
value is still valid.

The background script send the domain received from the injected script to
the backend. If there currently is no valid session, a new session will be
created. This is to ensure the domain will be in the session with the interests
that will potentially be collected from the website.

The user is authenticated through the Interest Retriever by entering the
username and password in a small pop-up window available for extensions
in Google Chrome. The credentials is verified with the backend, and when
authenticated the Interest Retriever will submit interests recorded. Without
an authenticated user the Interest Receiver will not submit anything to the
backend. The small pop-up window mentioned is hidden behind an icon5

licensed under creative commons6. This icon will change to display an addi-
tional red exclamation mark when the user is not authenticated. When the
user is authenticated the username will be stored using chrome.storage.sync7.
This ensure the user will be authenticated automatically on all Google Chrome
browsers the user is logged in with a Google account.

The Recommender website is constantly listening for an event emitted by
the browser extension with the user identification, and thus use the Interest
Receiver for user authentication. This is a practical solution that allow users
to log in only once for two separate applications.

5.3 Interest Receiver

The Interest Receiver is a backend component that provide a rest API to
the Interest Retriever Google Chrome extension. It receive and store the
information collected by the Interest Retriever. The component is developed
in Python 2.7 with the Flask8 package. Besides the Flask package the com-

5http://www.flaticon.com/free-icon/eye-close-up_61916
6http://creativecommons.org/licenses/by/3.0/
7https://developer.chrome.com/extensions/storage
8http://flask.pocoo.org/

http://www.flaticon.com/free-icon/eye-close-up_61916
http://creativecommons.org/licenses/by/3.0/
https://developer.chrome.com/extensions/storage
http://flask.pocoo.org/

60 Chapter 5. Implementation

ponent also relies on the MySQLdb9 package for connection to the database
and the json10 package to easily interpret the data sent from the browser
extension. The hashlib11 package is used for a sha1 hash of user passwords in
the database. The component has very basic storage requirements, so to use
a MySQL database is simple, and provide the functionality the component
need. The entity-relationship model for the database can be found in figure
5.1. The Interest Receiver provide an API with an endpoint for submitting
interests, submitting domains, authenticating users, and creating new users.

• /interest - Post serialized interest object

• /domain - Post serialized domain object

• /user - Post serialized user credentials

• /user/new - Post serialized user credentials

These are the functionalities the Interest Receiver component provide. In-
terests received will create a new session in the database if there is none with
the id already existing. The Interest Receiver will store interest keywords in
many-to-one relation since keywords can be very diverse and while duplic-
ation will happen it is not very significant. For applications that are more
than a proof of concept the interest keywords should be stores with a many-
to-many relation to save storage. Domains received is on the other hand is
a many-to-many relation since domains are often similar and there will be a
lot of duplicates.

Sessions are a possession for users, and the database reflect this. Each session
is associated with a user, and the user identity is verified for each request.
Users’ passwords are hashed with sha1 before storage for security and privacy
concerns.

5.4 Interest Analyser

The Interest Analyser is a Python application that use cluster analysis to
sort similar sessions into groups for each user. A group represent a context

9http://mysql-python.sourceforge.net/MySQLdb.html
10https://docs.python.org/2/library/json.html
11https://docs.python.org/2/library/hashlib.html

http://mysql-python.sourceforge.net/MySQLdb.html
https://docs.python.org/2/library/json.html
https://docs.python.org/2/library/hashlib.html

61

Figure 5.1: Database entity-relationship model.

for the user. The Interest Analyser also create word clouds based on the
interests in each context when the cluster analysis is done. The application
run in an interval of one hour, to ensure reasonable fresh contexts to use in
the Recommender system (section 5.5).

The first thing the application does is to get all users from the MySQL
database, since the clustering will be performed on the sessions for each user.
For each user, the application collect the user’s sessions. If the user has more
than ten sessions, the system will perform cluster analysis on them, if not it
will do nothing and go to the next user. If there is fewer than ten sessions
it is not enough data to get any meaningful results. The distance measure,

62 Chapter 5. Implementation

cluster analysis and the word clouds is covered in the following subsections.

5.4.1 Distance

The cluster analysis require a distance measure stored as a distance matrix.
The distance matrix is created by looping over the sessions with two loops,
one for each session, and another to calculate the distance between it and
every other session. The distance measure between each session is performed
by calculating the distance between each session attribute and summarizing
it as the distance. The sessions have six attributes used to describe the
context the session is captured in. These are presented along with their data
type in table 5.1.

Attribute Data type
Physical location String
Time of day start Timestamp
Time of day stop Timestamp
Day of week Timestamp
Digital locations String array
Interest recording pattern Timestamp array

Table 5.1: Session attributes

All distances calculated must be normalized so they have the same impact
on the distance between the sessions compared, before they are weighted. If
not they will be unintentionally weighted, instead of intentionally weighted
and the results will be unpredictable. The distance range the results must
fall within can be any value, since it is relative, so we set it to be 0 to 100.
The weighting scale used in this application is from 1 to 10, where 1 is no
boost in importance and 10 is a significant boost. All distance values are
multiplied with their weight value discussed on subsection 4.3.1.

Relative location

The relative location described with a unique machine id can either be similar
or dissimilar. The distance measure between two machine ids is then straight
forward. The distance is 0 if they are equals, and 100 if they are not.

63

Time

Both time of day start and stop use the same distance measuring function.
The function convert the Timestamp to seconds since midnight that day.
If both times are equal, the function return 0 since they have no distance.
The function subtract the smallest of the times from the largest, to get the
difference in milliseconds between them. The returned distance is then the
distance in milliseconds between the times divided by the total amount of
milliseconds in a day multiplied by 100. To escape the problem of the distance
not taking into account the circular nature of time, in other words that 23:59
is 120 seconds from 00:01, the function check if the distance is higher than
half the day. If this is the case, the new distance must then be the distance
subtracted from the total seconds of a day (86400 seconds) before normalizing
it in the range from 0 to 100. Algorithm 5 illustrate the algorithm used to
determine the distance between two time points just described.

Algorithm 5 Algorithm for distance between two time points

1: Convert t1 and t2 to seconds since midnight
2: if t1 > t2 then
3: distance = t1− t2
4: else if t2 > t1 then
5: distance = t2− t1
6: else
7: return 0
8: if distance > 86400/2 then
9: distance = 86400− distance

return (distance/86400) ∗ 100

The day of week is calculated in the same manner since the nature of the
distance is the same, the difference is the scale of the values. The Timestamp
is converted to days since the start of week and the maximal value is 7 because
a week has 7 days.

Domains

Domains are the locations visited on the web and it is represented as a string
array. The strings in the arrays are compared similarly as the machine ids,
either similar or dissimilar. The distance between the two lists of domains is
then calculated by taking the number of similar domains and divide it with

64 Chapter 5. Implementation

the length of the shortest list. The number of similar domains is calculated by
comparing the lists in a double loop. Since the distance value from dividing
the number of similar domains on the length of the shortest list is return
the similarity between them, and not the distance the function normalize the
result to the 0 to 100 scale and return the value subtracted by 100 to reverse
it. This is illustrated in algorithm 6.

Algorithm 6 Algorithm for distance between two list of domains

1: Count number of equal items in the two lists(list1, list2)
2: if number of equal items == 0 then return 100

3: if list1 > list2 then
4: distance = 100− (number of equal items/list2.length ∗ 100)
5: else
6: distance = 100− (number of equal items/list1.length ∗ 100)

return distance

Recording pattern

Calculating the distance between two time series is done with Dynamic Time
Warping (DTW). Machine Learning Python[5] or mlpy12 is a library provid-
ing a large set of both supervised and unsupervised machine learning func-
tionality. The library has a great implementation of the Dynamic Time
Warping algorithm13 and this application use this function to calculate the
distance between the recording patterns in two sessions. The DTW function
does not return a result in a range, so to normalize the data a limit is set
where any value higher than this result in the distance 100. I found the result
1 from the DTW function to be a good maximum value and the result is then
simply multiplied by 100 to normalize it.

5.4.2 Cluster analysis

When the application has created a distance matrix as described in the previ-
ous subsection, it can perform the cluster analysis on the sessions. Hierarch-
ical clustering is a common clustering technique, and because of this there
exist a large number of implementations for it. In Python one of the most

12http://mlpy.sourceforge.net/
13http://mlpy.sourceforge.net/docs/3.5/dtw.html

http://mlpy.sourceforge.net/
http://mlpy.sourceforge.net/docs/3.5/dtw.html

65

popular implementations is in the SciPy[23] ecosystem. This implementation
provide the configuration the application require to perform the cluster ana-
lysis and is well suited for the task. To use the scipy.cluster.hierarchy.fcluster14

function, the application need to create a linkage matrix from the distance
matrix to provide the function as a parameter. The function also require
a threshold parameter to determine when to stop clustering. The linkage
matrix can be obtained from the scipy.cluster.hierarchy.linkage15 function. It
require a condensed version of the distance matrix along with the linkage
method, which is average linkage. For the threshold parameter of the func-
tion I use the elbow point, which is covered in subsection 4.3.2. Preliminary
testing indicate the number of clusters usually amount between 2 and 3.

After the fcluster function has run, the application use the output from the
function to assign sessions to the different contexts (clusters) based on the
data. A new set of contexts is created in the database and sessions are
assigned accordingly. The old and now empty contexts are then deleted as
they are no longer of use.

5.4.3 Word cloud creation

After the cluster analysis has been performed and new contexts are created,
the application will create word clouds for each context to be used as a label
in the Recommender system. The creation of word cloud images is done
with an external package called WordCloud16. The package have a lot of
functionality like using an image to determine the shape of the cloud and
setting the colours to be used. The result is a 400*200 png image with the
words provided sized by number of occurrences with different colours. An
example of a word cloud created can be seen in figure 5.2. The words in the
image are not sized based on the number of occurrences directly, but also
affected by the need to make the words fit nicely. The application get the
words for the word cloud by collecting all keywords for each session in each
context. After the word cloud images are created, they are stored to disk in
a location on the web application in the Recommender. They are stored in a
folder called images, so they can be accessed by the path ’images/{id}.png’
where id is the context id from the database. Word clouds can also be used

14http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.

hierarchy.fcluster.html
15http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.

hierarchy.linkage.html
16https://amueller.github.io/word_cloud/

http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://amueller.github.io/word_cloud/

66 Chapter 5. Implementation

to evaluate the results from the clustering.

Figure 5.2: Example of word cloud from keywords in context

5.5 Recommender

The Recommender is a web application written in Java and JavaScript. It
has a component that collect and store articles called the Article Retriever.
There is two parts to the Recommender application, the back-end written in
Java, and the front-end written in JavaScript. These parts will be covered
separately after the Article Retriever in the following subsections.

5.5.1 Article Retriever

The Article Retriever is a Java application that collect items from web feeds
and store them for the Recommender. The application use Maven17 for
simple dependency management. The dependencies for the application are
ElasticSearch Java API18, Apache HttpComponents19 and Gson20. Elastic-
Search is a full-text search engine the Recommender use. The Article Re-
triever will use the ElasticSearch Java API to store the articles retrieved in
ElasticSearch.

17https://maven.apache.org/
18https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/
19https://hc.apache.org/
20https://code.google.com/p/google-gson/

https://maven.apache.org/
https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/
https://hc.apache.org/
https://code.google.com/p/google-gson/

67

The Article Retriever is a continuous job that for each hour check the feeds
specified for new items. The source or address for the feeds are specified in
a .txt file that is read for each check. The Article Retriever parses the list
of urls in the file and download the xml from each source. Each xml is a
RSS representation of the source content. The application parse the xml and
create java objects representing the feed and the feed items. The feed items
is then stored in ElasticSearch. ElasticSearch uses json as data format, so
the application uses Gson to convert the java objects to json before storing
the items.

5.5.2 Front-end

The front-end of the recommender is using the AngularJS21 framework and
the jQuery22 library. Using the AngularJS framework make it possible for two
way data binding which make developing web applications significant more
enjoyable and efficient. AngularJS is made for dynamic websites, and does
this well because it extends html and JavaScript to provide powerful dynamic
functionality. The front-end application consist of one module. A module
in AngularJS is a container for controllers, services, and other components.
The module contains a controller and a factory. The factory contains the
http request methods for fetching contexts and articles from the back-end.
The controller contains a listener for the user identification event sent by the
Interest Retriever when the site is loaded. When the listener is triggered and
the user identification is received, the application send a request to the back-
end to get the contexts that belong to the user identification. If the contexts
are returned, the application also requests the articles for the first context,
so the websites have some initial content. The controller also contains some
support functions and a method for fetching articles from the back-end based
on the context id. This function is called when a user select a context to fetch
articles for.

When the application get the user’s contexts from the back-end, a list in the
view is populated by images of word clouds. This can be seen to the left of
figure 5.3. The word clouds are generated by the Interest Analyser (section
5.4) and are stored with the name set to the context id they belong to. So
the list of images fetches the correct image based on the context id. The
images have click event listeners and when pressed trigger the function to

21https://angularjs.org/
22https://jquery.com/

https://angularjs.org/
https://jquery.com/

68 Chapter 5. Implementation

Figure 5.3: Screenshot of recommender front-end

get articles for the specific context. Articles populate a dynamic list that
contains the headline, a html summary (that can contain images, urls etc.),
date and time for the article, a score that tell how relevant the article is and
the name of the article source. The articles can be seen visualised to the
right in figure 5.3. Each article headline is a link to the actual article. A
small top bar contain information from the ElasticSearch query results and
include how much time the request took to perform, how many hits in total
and how many of them are displayed.

5.5.3 Back-end

The back-end is a CRUD application written in Java with Maven as depend-
ency manager. It use Jersey23 to provide a RESTful API to the front-end.

23https://jersey.java.net/

https://jersey.java.net/

69

It use mysql-connector24 for connection to the MySQL database. It also use
ElasticSearch Java API25 for interaction with the ElasticSearch engine. The
back-end application provide an API with three endpoints for the front-end
to utilize.

• /groups/{id} - Get context list for a user id

• /images/{id}.png - Get word cloud image for a context id

• /articles/{id} - Get article list for a context id

The first endpoint return a list of contexts created by the Interest Analyser
(subsection 5.4). These contexts are used by the front-end to provide users
the choice of what context to get recommendations based on. The contexts
are collected from the MySQL database since the Interest Analyser store
them there. The front-end use the context ids for the second endpoint to get
a word cloud image also created by the Interest Analyser. The word cloud
image is used to describe and identify the contexts for the user. The image is
stored on the web server in a folder and is simply accessed through the folder
name (images) and by name (context id) extended with the image type.

The third endpoint is the most comprehensive and the main aspect of the re-
commendation system. The endpoint provide a list of recommended articles
based on the interests in the context selected. To accomplish the recommend-
ations, a full text search engine with support for query boosting is utilized.
This is done because the efficiency and accuracy of existing search engines
surpasses that of what I could have built with limited time and resources.
The recommendation system is also for testing purposes, and using a system
that is tested and used by a number of large enterprises is good to avoid the
need for in-depth testing of the testing system.

Search engines

The system requirements for the search engine is that it is easy to use, provide
good full text search results, support term boosting, and at last is reasonable
fast with a reasonable low footprint. There are a few candidates available

24https://www.mysql.com/products/connector/
25https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/

https://www.mysql.com/products/connector/
https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/

70 Chapter 5. Implementation

that would have done the job well. Solr26, Sphinx27 and ElasticSearch28 are
the most prominent candidates. They all cover the requirements reasonable
well, but to a varying degree. Both Solr and ElasticSearch is built on top of
Apache Lucene29 and use the Apache Lucene core as the basis for the search
functionality. Sphinx is on the other hand built from the ground up. Of these
three candidates the most similar and also feature rich is Solr and Elastic-
Search. Sphinx is a good candidate for very large indexing jobs on existing
databases but in short that is the only significant advantage it holds over
Solr and ElasticSearch, and this is not needed in this use-case. Both Elast-
icSearch and Solr would be a good match for the requirements and are quite
similar functionality wise30. I have previous experience with ElasticSearch
and this influences the choice to be ElasticSearch, since it will be easier and
quicker to get started. I know from experience and recommendations that
ElasticSearch is very easy to setup and use. It is also the system with highest
popularity increase rate31, which is positive even if it is currently below Solr
in popularity.

ElasticSearch

ElasticSearch is a real-time search engine, and this means the data is avail-
able for search normally within a second of being indexed. In ElasticSearch
data items is referred to as documents, and these are the items that are in-
dexed and then searchable. A document is expressed in json, which is an
internet data interchange format. An index is a collection of documents that
is somewhat similar. In our case the collection of articles will be in a single
index. ElasticSearch operates with clusters and nodes. A node is a server
(virtual or physical) that contain data and participate in a cluster’s index-
ing and search capabilities. A cluster is simply a collection of nodes with a
common indexing and search mechanism. A cluster can be populated by just
a single node. For redundancy and performance ElasticSearch also supports
sharding and replication. An index can be divided between multiple nodes,
this is called sharding. This will enable an index to exceed the capabilities in
both storage and performance of a single node. The system can also create
backup shards which will duplicate data from other shards for redundancy.

26https://lucene.apache.org/solr/
27http://sphinxsearch.com/about/sphinx/
28http://www.elasticsearch.org/overview/elasticsearch/
29https://lucene.apache.org/
30http://solr-vs-elasticsearch.com/
31http://db-engines.com/en/ranking_trend/search+engine

https://lucene.apache.org/solr/
http://sphinxsearch.com/about/sphinx/
http://www.elasticsearch.org/overview/elasticsearch/
https://lucene.apache.org/
http://solr-vs-elasticsearch.com/
http://db-engines.com/en/ranking_trend/search+engine

71

ElasticSearch provide a simple and powerful REST api to interact with the
cluster. Alternatively there exist a number of language specific interfaces to
use. For example the recommender system use the ElasticSearch Java API.
With the api a user can: (1) Check cluster, node and index health, status
and statistics. (2) Administer cluster, node and index data and metadata.
(3) Perform create, read, update, delete and search operations against the
indexes. (4) Execute advanced search options like paging, sorting, filtering,
scripting, faceting, aggregations and more. Searching in ElasticSearch, which
is the main attribute we are interested in, is simple and powerful. Elastic-
Search provide a massive amount of query options to customize the search
capabilities. The recommender system require the ability to search for a large
number of keywords with individual term weighting. This is possible in the
ElasticSearch query by utilizing a bool query with a boost attribute. The
bool query is a query that allow multiple queries to be nested within. For
the recommender system this could entail a series of multi match queries for
each keyword with a boost attribute. A multi match query is a query that
searches multiple attributes on a document, as for this system it will be the
title and the summary of the article. By nesting a series of boosted queries
for each keyword, ElasticSearch will return a list of documents by the degree
of match with the query, with a score value for how well of a match the
document is. The query is constructed and executed with the ElasticSearch
Java API. This can be done quite simply by creating a bool query from the
QueryBuilder provided by ElasticSearch and for each keyword (and boost
value) create a multi match query object and add it to the bool query.

72 Chapter 5. Implementation

Chapter 6

Results and evaluation

This chapter present and evaluate the results of the system developed in this
thesis. The evaluation is performed on user data collected from the author of
this thesis over a 77 day long period and on generated fictive user data from
use cases. Some of the results is also compared with the results achieved from
using different linkage and number of clusters for the clustering algorithm.

The method used to evaluate the results is presented in section 6.1. The
results and evaluation of the user profiles created with user data is presented
in section 6.2. Section 6.3 contain the results and evaluation of the generated
data results. Section 6.4 contain the results and evaluation using different
linkage on the full user dataset. Section 6.5 contain the results and evaluation
from increasing the number of clusters on the full user dataset. A summary
of the evaluations is in section 6.6.

6.1 Method

The evaluation compare and evaluate the clusters in the user profiles created
by the system. There are two general approaches for evaluating the results
of a clustering algorithm, internal and external validity indices[21]. Internal
validity will measure the quality of the clusters in regards to the dataset
the clustering is performed on. External validity will measure the quality of
the clusters in regards to the expected results. Both these measures will be
explained further in subsection 6.1.1 and 6.1.2.

73

74 Chapter 6. Results and evaluation

The evaluation will look at the results of clustering with different linkage to
see if there is configurations that yield better results. The linkage for the
hierarchical clustering algorithm used in the system is average linkage. The
clustering performed on the user data and synthetic data described above
will also be performed with single, complete and weighted average linkage to
see if the results improve.

The evaluation will also look at the results from increasing the number of
clusters to see if the method of determining the number of clusters work well,
and if the higher number of clusters result in an increased accuracy.

6.1.1 Internal validity

Internal criteria can be seen as evaluating the clusters based on the vectors of
the dataset themselves[20]. The dataset would constitute the distance matrix
the clustering is performed on. Typical internal criteria evaluation is to look
for high intra-cluster similarity and low inter-cluster similarity[25]. This is
when the items in the clusters are similar, but not similar to items in other
clusters.

Based on ”An extensive comparative study of cluster validity indices”[6] by
Olatz Arbelaitz et.al., the Silhouette Coefficient is generally the best score to
use for evaluating internal clustering validity. The silhouette score is covered
more in depth in section 2.6.5.

6.1.2 External validity

External criteria rely on comparing the results to a pre-defined expectation of
the results[20]. This is in its most basic form to see if the results are random
or not. An example of this could be the clustering of ”jaguar” objects. We
may expect the results of the clustering to be three clusters, one for each
class of object, jaguar the animal, the car and the operating system.

Performing cluster evaluation on external criteria is difficult and not an accur-
ate measure. This is because the system is performing unsupervised machine
learning and there is no correct data to compare the results to in this case.
The only pre-defined expectation to compare the results to, is the assump-
tion that similar interests will, to a degree, be contained in sessions that are
clustered into groups. The expectation is that the keywords, representing in-

75

terests, should be somewhat semantically related in each cluster. The system
visualise the keywords by creating word clouds for each cluster. These word
clouds will be used to evaluate the clusters based on the pre-defined expect-
ation. Evaluating the correctness of the interests represented by word clouds
for each context require knowledge of the actual interests and contexts they
represent. The external validity evaluation is a subjective evaluation based
on how accurate the author of this thesis think the results look based on his
own perception of the reality.

Common external clustering validity measures like entropy, purity and F-
measure cannot be utilized without a pre-designated structure or classes to
compare the results to [34]. Since the generated data have a correct answer
to compare the results to, the precision and recall for the clusters will be
calculated. This is covered more in depth in section 6.3.

6.2 User data

The user data is evaluated based on three user profiles created. They are
generated from the data recorded by the author of this thesis in a time period
of 77 days. Each is generated based on a portion of the data collected. The
first user profile with only the first 25 days of the dataset. The second user
profile with the first 50 days of the dataset and the third with the full 77
days.

There is only user data from a single user, the author of the thesis. There
was no testers willing to let the system monitor their actions for an extended
period of time. The reason for this is that the evaluation require manual
overview and analysis of the word clouds generated to evaluate the success of
the clustering. This is however not that bad. It would have been problematic
to evaluate the word clouds for other users in some instances without prior
knowledge of the usage of the testers.

6.2.1 Results

The results presented is marked with the result number, the dataset and the
cluster number. The results contain a word cloud visualizing the keywords
in the cluster based on the number of occurrences. Note that the size of
the keywords are not directly related to the number of occurrences, but

76 Chapter 6. Results and evaluation

might vary to fit the words nicely. For a more accurate presentation of the
keywords and the number of occurrences, a word count list is included with
the 80 most popular terms in the cluster. The results from the complete
dataset also contain the headlines from the articles recommended by the
recommender system, along with the source and accuracy score given by
the system. The accuracy score measure the relevance of the article to the
keywords and weighting in the user profile.

The silhouette score of the results is presented in table 6.1.

77

Result 1: 25 days
Cluster 1/3

10 Sessions
Ordered word count list*

7 next

7 episodes

6 comments

6 images

5 openelec

4 meldinger

4 anime

4 one

4 piece

4 raspberry

4 forum

4 file

3 varsler

3 last

3 full

3 pi

3 gif

3 stack

3 exchange

2 suit

2 popcorn

2 time

2 windows

2 linux

2 gjør

2 jobber

2 wikipedia

2 mediacenter

2 power

2 add

2 latex

2 audio

2 technica

2 nok

2 svar

1 forespørsler

1 quick

1 slett

1 facebook

1 previous

1 episode

1 norsk

1 barnevern

1 mens

1 obama

1 merkel

1 snakket

1 diplomati

1 virkeligheten

1 ukraina

1 oppskriften

1 bedre

1 økonomi

1 piother

1 mini

1 computers

1 version

1 mer

1 innstillinger

1 søket

1 siste

1 uken

1 commits

1 raspberrypi-
firmware

1 github

1 airplay

1 doesnt

1 work

1 nightan

1 egyptian

1 satirist

1 americawatch

1 mac

1 nokas-utbytte

1 ti

1 år

1 måtte

1 james

1 g̊a

1 km

*List contain the 80 most popular words out of 231 in total

78 Chapter 6. Results and evaluation

Result 1: 25 days
Cluster 2/3

15 Sessions
Ordered word count list*

44 wikipedia

42 free

35 encyclopedia

29 distance

27 stack

27 clustering

24 search

19 similarity

18 open

17 overflow

16 time

15 data

15 elasticsearch

13 rss

12 latex

12 facebook

12 oslo

11 cluster

11 euclidean

11 query

10 list

10 text

10 analysis

10 raspberry

10 pi

10 solr

9 words

9 sphinx

8 windows

8 rogue

8 legacy

8 images

8 vis

8 stop

8 language

8 math

8 series

7 processing

7 nlp

7 wikibooks

7 books

7 hierarchical

7 google

6 python

6 get

6 english

6 excel

6 vs

6 correlation

6 space

6 feature

6 measures

6 metric

6 atom

6 color

6 texmaker

6 hamburger

5 gikk

5 stopwords

5 natural

5 java

5 tex

5 growth

5 manhattan

5 measure

5 bilder

5 vector

5 download

5 difference

5 varsler

5 les

5 mer

5 full

5 exchange

5 index

5 leie

5 rom

5 web

5 forespørsler

4 date

*List contain the 80 most popular words out of 1411 in total

79

Result 1: 25 days
Cluster 3/3

36 Sessions
Ordered word count list*

38 wikipedia

38 free

37 openelec

36 clustering

30 pi

29 encyclopedia

28 distance

25 raspberry

22 kodi

21 data

21 analysis

20 images

20 forum

18 generate

17 time

17 comic

16 xbmc

15 stack

15 cluster

14 javascript

12 netflix

11 overflow

11 slideshow

10 oslo

10 addon

9 artist

9 mediacenter

9 python

9 number

8 se

8 using

8 download

8 matrix

8 algorithm

8 sd

8 community

8 series

8 index

8 sum

8 chrome

7 get

7 vis

7 dynamic

7 quartz

7 file

7 pattern

7 sequence

7 hierarchical

7 value

6 facebook

6 mer

6 difference

6 continuous

6 sitr

6 bibtex

6 cards

6 two

6 skin

6 evaluation

5 w3schools

5 svar

5 windows

5 latex

5 apple

5 program

5 premise

5 dictionary

5 methods

5 finding

5 clusters

5 minnekort

5 edit

5 definition

5 help

5 addons

5 wiki

5 warping

5 interval

5 similarity

5 calinski-
harabasz

*List contain the 80 most popular words out of 1635 in total

80 Chapter 6. Results and evaluation

Result 2: 50 days
Cluster 1/2

34 Sessions
Ordered word count list*

32 download

25 rom

23 images

22 click

19 java

17 stack

15 pi

14 raspberry

13 last

13 super

12 json

12 retropie

12 mario

11 meldinger

11 svar

11 overflow

10 innboks

10 nintendo

9 episodes

8 facebook

8 next

8 one

8 comments

8 søket

8 siste

8 repositories

8 web

8 repository

8 petrockblog

8 psx

7 oslo

7 forum

7 free

7 elasticsearch

7 bios

6 mer

6 innstillinger

6 application

6 using

6 maven

6 string

6 vs

6 sql

6 vis

6 thomson

6 delete

6 war

6 ps3

6 controller

6 emulator

6 gpsp

5 netflix

5 everything

5 time

5 full

5 openelec

5 wikipedia

5 file

5 angularjs

5 javascript

5 mysql

5 jackson

5 best

5 google

5 bredb̊and

5 neste

5 context

5 games

5 comics

5 mount

5 blade

5 wiki

5 kong

5 legend

5 zelda

4 kjøp

4 billetter

4 program

4 aurora

4 fokus

*List contain the 80 most popular words out of 1375 in total

81

Result 2: 50 days
Cluster 2/2

97 Sessions
Ordered word count list*

123 stack

114 wikipedia

113 free

90 encyclopedia

88 python

86 overflow

70 clustering

63 java

63 distance

45 download

44 data

41 time

41 pi

40 maven

39 generate

39 file

38 raspberry

38 elasticsearch

37 openelec

35 images

34 using

34 google

33 analysis

33 next

32 facebook

32 se

32 web

31 comic

31 vis

31 search

30 text

30 cluster

29 pdf

28 get

28 oslo

27 bibtex

27 query

26 windows

25 open

24 words

24 similarity

23 return

23 index

23 rss

23 tomcat

22 mer

22 kodi

22 forum

21 meldinger

21 latex

21 stop

21 list

21 innboks

20 javascript

20 context

20 documenta-
tion

19 chrome

19 sitr

17 project

17 tex

17 two

17 nltk

17 hierarchical

17 roms

16 news

16 stopwords

16 language

16 processing

16 full

16 series

16 sql

16 retropie

15 svar

15 last

15 image

15 matrix

15 article

15 use

15 xbmc

15 error

*List contain the 80 most popular words out of 3995 in total

82 Chapter 6. Results and evaluation

Result 3: 77 days
Cluster 1/2

68 Sessions
Ordered word count list*

80 facebook

64 images

44 svar

39 download

32 java

32 the

31 rom

31 stack

31 online

31 elder

31 scrolls

30 view

28 click

27 meldinger

24 vis

21 petrockblog

20 raspberry

20 pi

20 overflow

19 game

18 last

18 retropie

17 mupen64plus

17 to

16 varsler

16 openelec

16 repositories

16 guide

16 flere

15 wiki

15 super

14 søket

14 siste

14 forum

14 free

14 file

13 episodes

13 innstillinger

13 innboks

13 mario

12 using

12 json

12 games

12 nintendo

11 wikipedia

11 web

11 se

10 oslo

10 episode

10 full

10 war

10 de

10 gb

9 mer

9 comments

9 time

8 next

8 one

8 github

8 application

8 maven

8 repository

8 properties

8 neste

8 ps3

8 psx

8 this

7 anime

7 work

7 latex

7 bilder

7 f̊ar

7 javascript

7 elasticsearch

7 tomcat

7 string

7 vs

7 google

7 kommentarer1

7 project

*List contain the 80 most popular words out of 2498 in total

83

Top headlines from recommender system

Headline Source Score
This INSANE Facebook letter is outra-
ging everyone online

komando.com 0.06397697

Slik �snikleser� du Facebook-
meldinger

aftenposten.no 0.06322565

Google now lets you download your
search history

cnet.com 0.059937824

Facebook brings mobile Messenger app
to desktops

cnet.com 0.056345195

Facebook introduces Hello, an app to
replace the Android dialer

theverge.com 0.05602319

Viber vs Facebook Free Messenger on
iOS, Windows PC and Android

thefusejoplin.com 0.05502811

Facebook reveals the logic behind its
forced Messenger split

pcworld.com 0.053710956

Facebook Messenger blir s̊a mye mer dinside.no 0.051333155
New spectroscopic images of Mercury
are a rainbow of colour

cnet.com 0.048418887

OnePlus’s Android Lollipop-based
ROM, OxygenOS, is available to
download now

venturebeat.com 0.045409285

Facebook Launches a Mobile Ad Ex-
change on Top of LiveRail

recode.net 0.043863643

First Click: Nintendo could learn a lot
from Netflix

theverge.com 0.043093774

Facebook Removes ’Feeling Fat’ Status
Expression, Replaces it With ’Feeling
...

socialmediaseo.net 0.04280837

Facebook-tabbe: Gotland har blitt
norsk

e24.no 0.04249633

Facebook wants solar drone to bring In-
ternet far and wide

cnet.com 0.042136293

84 Chapter 6. Results and evaluation

Result 3: 77 days
Cluster 2/2

133 Sessions
Ordered word count list*

156 wikipedia

154 free

148 stack

129 python

127 clustering

122 encyclope-
dia

109 overflow

90 the

83 facebook

66 distance

64 vis

64 pi

61 se

61 java

60 raspberry

59 download

59 elasticsearch

58 data

57 to

54 images

54 comic

48 time

44 cluster

43 openelec

43 google

40 generate

40 pdf

39 using

39 search

38 maven

37 previous

34 oslo

34 analysis

34 next

33 varsler

33 kodi

33 file

32 list

32 hierarchical

32 documenta-
tion

31 web

31 with

30 query

29 mer

29 text

29 forum

28 meldinger

28 bibtex

27 windows

27 get

27 matplotlib

26 innboks

26 sql

26 scipy

25 number

24 vs

24 open

24 words

24 similarity

24 return

24 clusters

24 apache

23 chrome

23 sitr

23 index

23 rss

22 two

22 full

22 solr

21 stop

21 wiki

21 tomcat

21 svarene

21 retropie

20 context

19 javascript

19 latex

19 stopwords

19 matrix

18 svar

*List contain the 80 most popular words out of 5308 in total

85

Top headlines from recommender system

Headline Source Score
Wikipedia to file lawsuit challenging
mass surveillance by NSA

ca.reuters.com 0.03325456

Viber vs Facebook Free Messenger on
iOS, Windows PC and Android

thefusejoplin.com 0.02752973

The Strange Thing About ’Free-Range
Parenting’ Is That The Phrase Exists

inquisitr.com 0.024754943

How to Get Free 12 Krispy Kreme
Donuts Today

time.com 0.024412466

7 awesome paid iPhone apps on sale for
free for a limited time

bgr.com 0.024213756

Facebook lets you choose what to share
with 3rd party apps

engadget.com 0.024091031

Google now lets you download your
search history

cnet.com 0.024028001

How do you find a Burmese python in
the Everglades?

cbsnews.com 0.023992304

Play Cards Against Humanity On the
Web, for Free

pcmag.com 0.02348086

3 ways to free up space on your smart-
phone or tablet

postandcourier.com 0.021198826

An Open Google Now Is About to
Make Android Super Smart

wired.com 0.020137079

Adobe’s new Slate app aims to turn
anyone into a web designer for free

mashable.com 0.019818576

Here’s what happens when John Oliver
hosts a ’Monty Python’ panel

entertainthis.usatoday.com 0.019171933

Yahoo shows off password-free logins
and new encrypted email technology

theverge.com 0.019086389

Even pirates will get a free upgrade to
Windows 10, Microsoft says (+video)

csmonitor.com 0.018920645

Google takes on real-time big data ana-
lysis with new cloud services

pcworld.com 0.018224718

86 Chapter 6. Results and evaluation

Result Silhouette score
Result 1 0.362
Result 2 0.377
Result 3 0.430

Table 6.1: Silhouette score for clusters in results

6.2.2 Evaluation

The clusters in the user profiles from the user data is broadly divided into
two main contexts based on the results. The two main contexts are work
and everything else. This can be seen as a trend through results 1 to 3.

22 days of user data

For the first third of the user data, the user profile has three clusters as
presented in result 1, so the system identify three contexts. The first cluster
contains 10 of the 61 total sessions. Some of the most prominent words
in this cluster is ”next” and ”episodes” as well as ”comments”, ”images”,
”openelec”, ”meldinger” and ”anime”. With the assumption that the con-
text of this cluster is as broad as ”free time activities” or ”everything other
than work” the terms fit very well. ”next”, ”episodes” and ”anime” are
terms that result from me watching several episodes of an anime series. The
terms recorded also include ”one” and ”piece” which combined is the name
of the show. The terms ”comments” and ”images” come from the popular
news aggregation website Reddit1 which I frequent in my spare time. The
term ”meldinger” is from the social media site Facebook2. ”openelec” is an
operating system I partially use on my raspberry pi3, and the terms ”rasp-
berry” and ”pi” are also quite prominent in this cluster. Most of the terms
and possibly all of the terms in this cluster is related to my spare time activ-
ities and interests. The terms with only one word count seem to be related
to news articles I have clicked on. The only possible misplacement in this
cluster is the terms ”stack” and ”exchange”, which can be related to work.
There is however still a significant chance that the terms could come from

1http://www.reddit.com/
2http://www.facebook.com/
3https://www.raspberrypi.org/

http://www.reddit.com/
http://www.facebook.com/
https://www.raspberrypi.org/

87

me looking up something on ”raspberrypi.stackexchange.com” or other stack
exchange sites. With the assumption that this cluster represent a broad
context containing my spare time interests the content of it fit well.

The second cluster contain 15 sessions and have a much higher word count
with a total of 1411 words compared to the first cluster which had 231 words.
The most prominent terms in this cluster are related to me working on my
master thesis. The terms ”wikipedia”, ”enclycopedia” and ”free” are the
three most recorded terms in the cluster, and this is most likely because
Wikipedia4 include ”Wikipedia, the free encyclopedia” at the end of the
link text in Google5 results. Terms like ”distance”, ”clustering”, ”search”,
”similarity”, ”time”, ”elasticsearch”, ”rss”, ”latex” and more are directly
related to my work, and very prominent in the cluster. The terms that
do not fit in this cluster representing the context of work, is ”facebook”,
”oslo”, ”raspberry”, ”pi” and also ”rogue” and ”legacy”. These terms are
not insignificant in the cluster in terms of word count values, as they have
between 12 and 8 counts each, but they are significantly outnumbered by
work related terms.

By not looking at the terms ”wikipedia”, ”free” and ”encyclopedia” the
third and last cluster is a mixture of work and spare time interests based on
the most popular terms. The terms ”openelec”, ”pi”, ”raspberry”, ”kodi”,
”comic”, ”xbmc” and ”netflix” are obvious spare time activities related
terms, and these are quite prominent in this cluster. Equally prominent
terms in this cluster are ”clustering”, ”distance”, ”data”, ”analysis”, ”time”,
”cluster” and ”javascript”, which are work related. The last cluster is a
mixture of work and other interests without any obvious context.

The first two clusters contain each distinct broad context that was easily
identifiable, work and spare time, while the last cluster contained a mixture
of the first two contexts.

50 days of user data

For two thirds of the user data presented in result 2, there are two clusters.
At first glance it looks like the data is clustered into two contexts, work and
spare time interests.

4http://en.wikipedia.org
5http://www.google.com

http://en.wikipedia.org
http://www.google.com

88 Chapter 6. Results and evaluation

The first cluster look like it contain the spare time interests with terms
like ”download”, ”rom”, ”images”, ”pi”, ”raspberry”, ”super”, ”retropie”,
”mario”, ”meldinger”, ”innboks”, ”nintendo”, ”episodes” and ”facebook” as
very prominent terms in the cluster. The terms reflect my new interest,
since the one third user data results, well. The new interest is emulating
old consoles on the raspberry pi. This is reflected by the terms ”download”,
”rom”, ”retropie”, ”mario”, ”super” and ”nintendo”. The cluster also include
prominent terms that relate to the context of work, and not spare time
interests, such as ”java”, ”stack” and ”overflow”. Among the less prominent
terms there is a mixture of work related and spare time interests related
terms. The cluster reflect the context of spare time interests, with flaws.

The second cluster’s most prominent terms reflect the context of work neatly,
with some exceptions that should optimally have been in the first cluster.
The exceptions include ”pi”, ”raspberry”, ”openelec”, ”images”, ”comic” and
”oslo”. The most prominent terms related to work are ”stack”, ”python”,
”overflow”, ”clustering”, ”java”, ”distance”, ”data”, ”time”, ”maven” and
”elasticsearch”. The cluster is based on the word count list mostly popu-
lated with work related terms, but there is many terms related to spare time
interests.

The two clusters are somewhat successful of representing two very broad
contexts. There are too many terms placed in the wrong cluster and the
contexts are too broad to call it a complete success.

77 days of user data

Using all user data provide similar results as using two thirds of the user
data. There are two clusters, as shown in result 3, which on a broad term
represent work and spare time interests.

The first cluster represent the spare time interests context, with a lot of
similar terms as with two third user data. The main difference is that the
term ”facebook” is the most popular term by a large margin compared to
previously, and the addition of terms describing the game ”The elder scrolls
online”, which was a new interest in the last 27 days of user data. The terms
”java” and ”stack” which were the most prominent terms that did not belong
in the cluster is still present and fairly prominent.

The second cluster which evidently represent the work context is very similar
to the cluster representing the work context with two thirds of the user data.

89

For the clustering to be successful it should have detected contexts in more
detail and with better accuracy.

Silhouette score

The silhouette score (shown in figure 6.1) increase with the size of the dataset
used. It does not necessarily mean anything since the score is an indication
of how good the clustering is based on the dataset, and the dataset changes,
so the results are not directly comparable. The clustering performed with the
full dataset score 0.43 with 1 as the best possible score and -1 as the worst
possible score. This indicate the clustering is fine based on the dataset.

Recommendations

The recommendations from the recommender system is heavily influenced by
the most popular terms in the clusters. In the word count list for cluster 1
in result 3, the word ”facebook” is by far the most popular term, and this is
reflected in the recommendations. Of the 15 highest recommended articles
based on the user profile from cluster 1 in result 3, the term ”facebook”
is present in 11 of them. The results from the recommender system is not
affected by time, so articles from today is not more recommended then articles
from yesterday. This result in a lot of articles containing popular topics
or more specifically terms like ”facebook”. Out of 23 398 articles in total
(at the time of receiving the recommendations in results), it is somewhat
surprising that not all 15 articles contained the term ”facebook”. This is
of course explained by the fact that a combination of other relevant terms
might generate a higher score.

The recommendations for the second cluster all have a significant lower score
than the first cluster. This is caused by the higher number of terms in the
second cluster, since it is harder to find a good match with more terms to
match. The recommendations for the second cluster also have much more
diverse content than the first cluster, and this can be explained by the most
popular terms being relatively equal in their count compared to the first
cluster. The recommendations also contain several headlines which contain
multiple relevant keywords boosting their importance and making the recom-
mendations more mixed then for the previous cluster.

90 Chapter 6. Results and evaluation

6.3 Generated data

To evaluate the system further than using only the collected user data, some
fictive user scenarios was generated and tested on the system as well. The
generated user profiles will be generated based on data ranging from com-
pletely structured to completely random, based on fictive use cases. The
results from the generated data will be presented with a word cloud for
each cluster in the user profile, and with a precision and recall value for
each context in the cluster. This is possible since the generated data has
pre-designated classes for the data to be grouped by. The precision is the
number of terms related to the context in the cluster, divided by the total
number of terms in the cluster.

Precision =
Terms related to context in cluster

Terms in cluster in total

The recall is the number of terms related to the context in the cluster, divided
by the total number of terms related to the context in total.

Recall =
Terms related to context in cluster

Terms related to context in total

Precision and recall together give a great indication of the success of each
cluster in the user profiles. Because precision and recall can be calculated,
there is no need to list the keywords for each cluster.

6.3.1 Generating fictive user data

There are four different user scenarios that was generated, and they range
from structured to unstructured. The scenarios contain fictive contexts that
the system tried to detect as accurately as possible. Some of the attribute
values is chosen at random in a value range. To ensure that the results
used are representative the generating was done several times for each user
scenario to see if the results are representative.

The first of the four user scenarios is a distinct work and interest routine,
where the fictive user only has two contexts, work and an interest. The
second scenario is similar to the first but with two interests in the afternoon
with overlapping time ranges. The third scenario is four interests in the
same time frame spanning the entire day. Finally, the fourth scenario is four
interests in the same time frame and with the same domains, so there is no
way to separate them.

91

• Structured work and single interest

• Structured work and two interests

• Four interests in same time frame

• Four interests in same time frame and with same domains

The following subsections will cover how the sessions in the different scenarios
are generated.

Structured work and single interest

The first user scenario consist of two completely different contexts the system
will try to detect. The first context is work and the second context a hobby,
in this case animals. The attribute values selected for the work context is
displayed in table 6.2, and the attribute values for the animals hobby is
displayed in table 6.3. Note that in addition to having different time periods
and digital locations, they also have different relative locations.

Attribute Data type Data range
Relative location String Static value
Time of day start Timestamp Random between 07.30 and

08.30
Time of day stop Timestamp Random between 15.30 and

16.30
Day of week Timestamp Random between Monday

and Friday
Digital locations String array Random 20 out of 26 total
Interest recording pattern Timestamp array Random between 20 and 40

timestamps with between
30s and 60s interval

Keywords String Random 10 out of 30 IT
work related terms

Table 6.2: Session attribute values for fictive work context

92 Chapter 6. Results and evaluation

Attribute Data type Data range
Relative location String Static value (Different then

work context)
Time of day start Timestamp Random between 16.30 and

20.00
Time of day stop Timestamp Random between 20.00 and

24.00
Day of week Timestamp Random between Monday

and Sunday
Digital locations String array Random 20 out of 26 total
Interest recording pattern Timestamp array Random between 20 and 40

timestamps with between
30s and 60s interval

Keywords String Random 10 out of 38 animal
related terms

Table 6.3: Session attribute values for fictive animal interest context

Structured work and two interests

The second fictive user scenario consist of a work and hobby context similarly
to the previous user scenario, but with an additional hobby in the same time
frame as the other hobby. The added hobby is of the topic football, and the
attribute values is displayed in table 6.4. The contexts for work and animals
is identical so the attribute values can be found in table 6.2 and 6.3.

93

Attribute Data type Data range
Relative location String Static value (Same as an-

imal hobby)
Time of day start Timestamp Random between 16.30 and

20.00
Time of day stop Timestamp Random between 20.00 and

24.00
Day of week Timestamp Random between Monday

and Sunday
Digital locations String array Random 20 out of 26 total
Interest recording pattern Timestamp array Random between 20 and 40

timestamps with between
30s and 60s interval

Keywords String Random 10 out of 38 foot-
ball related terms

Table 6.4: Session attribute values for fictive football interest context

Four interests in same time frame

The third fictive user scenario is a scenario with work and three interests at
the same relative location, and in the same frame of time. This can be seen
as a person working from home and work sporadically along with looking up
interests. The attribute values for work, and the three interests can be found
at table 6.5. They all share the same attribute values, except for context
related terms and digital locations.

94 Chapter 6. Results and evaluation

Attribute Data type Data range
Relative location String Static value
Time of day start Timestamp Random between 09.00 and

18.00
Time of day stop Timestamp Random between 21.00 and

24.00
Day of week Timestamp Random between Monday

and Sunday
Digital locations String array Random 20 out of 26 total
Interest recording pattern Timestamp array Random between 20 and 40

timestamps with between
30s and 60s interval

Keywords String Random 10 context related
terms

Table 6.5: Session attribute values for fictive interest context

Four interests in same time frame and with same domains

The fourth and final fictive user scenario consist of five different interests
with identical time frames and domains/digital locations. This user scenario
can be seen as someone with absent of leave from work and use the computer
whenever they want to do whatever they want, and with interests that share a
similar location on the web. There are five different interests in this scenario;
work, animals, football and cars. The session attribute values are identical
to the attribute values in table 6.5 used for the previous scenario, but with
all interests sharing the same pool of digital locations.

6.3.2 Results

The results listed here have a result number and a title for the user scenario.
Each result contain a word cloud and a table with precision and recall for
each cluster. At the end the silhouette scores is listed in table 6.6.

95

Result 4: Structured work and single interest

Cluster 1: 50 Sessions
Context Work Animals
Precision 0 1
Recall 0 1

Cluster 2: 50 Sessions
Context Work Animals
Precision 1 0
Recall 1 0

96 Chapter 6. Results and evaluation

Result 5: Structured work and two interests

Cluster 1: 50 Sessions
Context Work Animals Football
Precision 1 0 0
Recall 1 0 0

Cluster 2: 25 Sessions
Context Work Animals Football
Precision 0 1 0
Recall 0 1 0

Cluster 3: 25 Sessions
Context Work Animals Football
Precision 0 0 1
Recall 0 0 1

97

Result 6: Four interests in same time frame

Cluster 1: 13 Sessions
Context Work Animals Football Cars
Precision 1 0 0 0
Recall 0,26 0 0 0

Cluster 2: 37 Sessions
Context Work Animals Football Cars
Precision 1 0 0 0
Recall 0,74 0 0 0

Cluster 3: 25 Sessions
Context Work Animals Football Cars
Precision 0 0 0 1
Recall 0 0 0 1

98 Chapter 6. Results and evaluation

Cluster 4: 25 Sessions
Context Work Animals Football Cars
Precision 0 0 1 0
Recall 0 0 1 0

Cluster 5: 12 Sessions
Context Work Animals Football Cars
Precision 0 1 0 0
Recall 0 0,48 0 0

Cluster 6: 13 Sessions
Context Work Animals Football Cars
Precision 0 1 0 0
Recall 0 0,52 0 0

99

Result 7: Four interests in same time frame and with same domains

Cluster 1: 77 Sessions
Context Work Animals Football Cars
Precision 0,3 0,3 0,22 0,19
Recall 0,46 0,46 0,34 0,3

Cluster 2: 123 Sessions
Context Work Animals Football Cars
Precision 0,22 0,22 0,27 0,28
Recall 0,54 0,54 0,66 0,7

100 Chapter 6. Results and evaluation

Result Silhouette score
Result 4 0.951
Result 5 0.790
Result 6 0.456
Result 7 0.482

Table 6.6: Silhouette score for clusters from generated data

6.3.3 Evaluation

Result 4 and 5 present the results of the generated data with structured work
as one context and one and two other interests. The system successfully
detect the different contexts with this data. The work and interests in result
4 and 5 have distinct different times, relative physical location and digital
location. So differentiating work and the interests should be, and is, without
problems. The system also successfully differentiate between the two interests
in result 5, even though the only difference is the digital locations. This is
to be expected since the difference in digital location should be enough to
differentiate the two when the other attributes are similar. Both result 4
and 5 is completely successful with the best possible score in precision and
recall, which is values that indicate how well the clustering is based on the
pre-defined contexts.

Result 6 is from four interests in the same time period. The start and stop
times have a wide range, and the real difference between all four interests
is similarly to the interests in result 5 the digital location. Because of the
wide range there is a bigger variance in the time attributes for the sessions,
and detecting similar contexts will be more difficult. The system detect six
contexts in result 6, while there are only 4 contexts in the dataset. The
precision value for all four contexts are as good as it can get, while the recall
value for two of the contexts are 0,26 and 0,74, and, 0,48 and 0,52. This
combined with the word clouds for cluster 1 and 2, and cluster 5 and 6
show that two of the contexts are split into two clusters each. The system
has probably split two of the contexts because the time values have a wide
range and some of the sessions values have thus had a large distance, making
them too distant to naturally be in the same cluster. The result is not very
positive as the system should be able to successfully locate interests with such
distinct digital locations. The result indicate that the time attributes of the
sessions are weighted too much when the distance is measured, since two of

101

the contexts are split in two clusters, and time is the only major difference.

For result 7 the four interests are constructed similarly to result 6, but the
digital location is similar between all interests. This means there is practically
no difference between the different contexts. The system behave as expected
and cluster the sessions seemingly random in two clusters.

The silhouette score, as shown in table 6.6, for the results are not directly
comparable since the dataset is different for each result. A trend in the score
is that the score decreases as the complexity increases. For result 4 where the
difference between work and the interest was significant, the score is almost
perfect at 0.951. It is however curious that the score increase from result 6
to 7, but the data in result 6 was not very good since contexts with similar
data was split up.

6.4 Different linkage

This section present and evaluate the results from using different linkage in
the hierarchical clustering algorithm. Previously average linkage was chosen
as the best linkage based on evaluation of their properties and prelimin-
ary testing. The other alternatives evaluated here is single, complete and
weighted average linkage. This section will evaluate if that choice was cor-
rect. The results presented here are from using the full user data.

6.4.1 Results

The results listed here have a result number and a title describing the linkage.
Each result contain a word cloud for each cluster. At the end the silhouette
scores is listed in table 6.7.

102 Chapter 6. Results and evaluation

Result 8: Single linkage

Cluster 1: 197 Sessions

103

Result 9: Complete linkage

Cluster 1: 28 Sessions

Cluster 2: 70 Sessions

Cluster 3: 34 Sessions

104 Chapter 6. Results and evaluation

Cluster 4: 69 Sessions

105

Result 10: Weighted average linkage

Cluster 1: 56 Sessions

Cluster 2: 52 Sessions

Cluster 3: 93 Sessions

106 Chapter 6. Results and evaluation

Result Silhouette score
Original: Average 0.430
Result 8: Single -0.213
Result 9: Complete 0.269
Result 10: Weighted average 0.389

Table 6.7: Silhouette score for clusters with different linkage

6.4.2 Evaluation

Using different linkage in the clustering algorithm as presented in result 8, 9
and 10 with single, complete and weighted average linkage offer no improve-
ment based on the results.

Single linkage

As expected from the discussion in subsection 4.3.2, the single linkage com-
bine all sessions into one cluster except for some outliers that are excluded
in the results. This is not a good result in any way as it is obvious more than
one context.

Complete linkage

Complete linkage, shown in result 9, provide four clusters which looks like the
results from average linkage (result 3) except with both the work context and
the spare time interests context split in two clusters each. Where cluster 1
and 2 cover the work context and cluster 3 and 4 cover the spare time interests
context. There are differences between the clusters representing the broad
context of spare time interests. For instance in cluster 3 the terms ”rom”,
”download”, ”super”, ”nintendo” and ”mario” is much more prominent then
cluster 4, and these terms are related to the context of old console emulation.
Cluster 3 and 4 still share a lot of terms such as both having ”raspberry”,
”pi”, ”elder”, ”scrolls”, ”online”, ”retropie”, ”petrockblog” and ”java”. The
terms ”retropie” and ”petrockblog” is related to old console emulation, so
this context is not exclusive to cluster 3 either. The term ”java” is still fairly
prominent in both cluster 3 and 4 so they still contain terms from the work

107

context. Cluster 4 have the term ”maven” as well, which is a new addition
of work context terms added to the spare time interest context cluster. So
to some degree the split of the spare time interests context has advantages,
but also disadvantages. Cluster 1 and 2 seem very similar based on the
word clouds they produce, and I see no advantage of there being two clusters
instead of one as in average linkage.

Weighted average

For weighted average linkage the result is similar to average linkage, except
for a third cluster added which is a combination of both the work context and
the spare time interests context. There is no advantage of having cluster size
weighting when trying to identify different contexts in the data, this would
only result in more mixture of context between clusters.

Silhouette score

The silhouette score for the results can be found in table 6.7. The scores
in this table are all based on results from the same dataset, so the scores
are directly comparable to each other. The original result which is with
average linkage has the highest score, and support my evaluation that none
of the other linkages was an improvement. The silhouette score is however
not necessarily the best tool to judge this, since I thought the complete
linkage was better than the weighted average, but this is not supported by
the silhouette score.

6.5 Higher resolution

This section will present and evaluate the results from increasing the number
of clusters wanted out of the clustering algorithm. Originally the number of
clusters are determined by the elbow point described in subsection 4.3.2.
This sections will evaluate if the results improve with a higher number of
clusters than the two clusters in the results from the user data. It will also
evaluate of the contexts can be more accurate by increasing the number of
clusters and thus the number of perceived contexts. The results presented
here are from using the full user data.

108 Chapter 6. Results and evaluation

6.5.1 Results

The results listed here have a result number and a title for describing the
number of clusters. Each result contain a word cloud for each cluster. At
the end the silhouette scores is listed in table 6.8.

Result 11: 3 clusters

Cluster 1: 68 Sessions

Cluster 2: 55 Sessions

Cluster 3: 78 Sessions

109

Result 12: 4 clusters

Cluster 1: 35 Sessions

Cluster 2: 33 Sessions

Cluster 3: 55 Sessions

110 Chapter 6. Results and evaluation

Cluster 4: 76 Sessions

111

Result 13: 5 clusters

Cluster 1: 35 Sessions

Cluster 2: 32 Sessions

Cluster 3: 54 Sessions

112 Chapter 6. Results and evaluation

Cluster 4: 40 Sessions

Cluster 5: 35 Sessions

113

Result 14: 6 clusters

Cluster 1: 35 Sessions

Cluster 2: 32 Sessions

Cluster 3: 49 Sessions

114 Chapter 6. Results and evaluation

Cluster 4: 5 Sessions

Cluster 5: 40 Sessions

Cluster 6: 35 Sessions

115

Result Silhouette score
Original: 2 clusters 0.430
Result 11: 3 clusters 0.407
Result 12: 4 clusters 0.305
Result 13: 5 clusters 0.220
Result 14: 6 clusters 0.219

Table 6.8: Silhouette score for different number of clusters

6.5.2 Evaluation

The number of clusters in the results, especially on the user data, is low. The
contexts they represent in the user data is very broad, with only work and
spare time interests identified to a degree. Subsection 6.5 cover the results
of increasing the number of clusters desired from the natural elbow point.
This will tell how detailed the results can be, and if the system can produce
more fine grained contexts by increasing the number of clusters. Result 11
to 14 cover the results from increasing the number of clusters from 2 in the
original result with all user data, to 6 clusters.

Three clusters

In result 11 we can observe from the word clouds of the three clusters that
the cluster representing the spare time interests is unchanged, with the same
amount of session and the same terms. The other two clusters are the work
context split in two. Both these clusters share most of their prominent terms
such as ”stack”, ”wikipedia”, ”free”, ”python”, ”clustering” and ”overflow”.
The difference is that cluster 3 contain several raspberry pi related terms,
while cluster 2 does not. The result is then that the work context in cluster 2
is much more accurate then before, while cluster 3 is more of a mix between
work and spare time interests, while still being more related to work. This
is not necessarily an improvement, but I think it is better to have two more
accurate clusters and a mixed one, then to have two less accurate clusters.

116 Chapter 6. Results and evaluation

Four clusters

Increasing the number of clusters to 4 as shown in result 12, split the previ-
ous spare time interest cluster into two clusters, while the clusters that was
covering the work context stay relatively the same. The split up give similar
results as when the work context split when the clusters was increased from
2 to 3, the resulting clusters have one accurate and one mixed. Cluster 1
contain the mixture between the work context and the spare time context
with some of the most popular terms being ”facebook”, ”image”, ”stack”,
”java”, ”game”. While cluster 2’s most popular terms are ”rom”, ”down-
load”, ”svar”, ”facebook” and ”image”. The results from using 4 clusters
are not great. Having one cluster for mixed context is acceptable to some
degree, but having two clusters with mixed context is not a good result in
my personal opinion. The result have increased in accuracy in two clusters,
but created two clusters with very low accuracy at the same time. Increasing
the number of clusters to 4 have also not provided any new contexts.

Five clusters

Increasing the number of clusters to 5 as presented in result 13 practically
split what was cluster 4 in the previous result in to two smaller clusters.
This means the previous work context is now divided into three separate
clusters. There is a lot of overlapping terms between the three clusters, such
as ”stack”, ”overflow”, ”wikipedia”, ”free” and ”encyclopedia”. These terms
are all generic in the sense that they come from Wikipedia and Stack overflow,
which are sites that contain a broad spectre of data, and can be related to
a lot of topics. Ignoring these terms we can see from the word clouds for
cluster 3 and 4 that they are pretty similar, with some of the most popular
terms being ”clustering”, ”python”, ”distance” and ”facebook”. The cluster
that distinguish itself is cluster 5 with the most popular terms being ”maven”
which is hardly present in cluster 3 or 4. Both cluster 4 and 5 contain terms
related to the raspberry pi, so this topic has not been more centralized than
before, rather the opposite. So splitting the work context now into three
clusters have resulted in some terms being only present in one or two of the
clusters, but overall they share too many terms to be considered more fine
grained results.

117

Six clusters and more

When the number of clusters are increased to six, as shown in result 14, the
previous cluster 3 is split. The result is a new smaller cluster containing
the terms ”rogue” and ”legacy” as the most popular. Rogue Legacy is a
game I played in a period while the user data was collected. This cluster
also contain a lot of terms that are totally unrelated to this game, such as
”stack”, ”search”, ”python” and ”overflow”, so it is not entirely successful in
identifying a context, but it is the closest yet.

Increasing the number of cluster further does in some cases create more
specific clusters, but it also seemingly equally often split topics between more
clusters. Increasing the number of clusters further therefore does not make
the results any better in my opinion.

Silhouette score

The silhouette score decrease with the addition of more clusters in the results.
As sees in table 6.8, the score decrease slightly when the number of clusters
is increased to 3, but fall rapidly after that, only to flatten at the end. This
indicate the results are best with the original number of clusters, and getting
worse by increasing the count.

6.6 Summary

The results from using the user data indicate two very broad contexts being
discovered; work and spare time interests. These contexts are represented by
clusters that to a large degree contain terms related to the other context as
well as the context it represent. The precision and quality of the clusters in
the results is therefore not very good, and the results is at par with my bare
minimum of expectations.

Evaluating the system with generated data result in the system managing
to successfully identify both work and a separate interest, and work with
two separate interests in the same time frame. When the system is tested
with four interests with different digital locations in the same time frame the
results are close to successful. The system identifies the contexts, but two of
the four contexts are split into two clusters. When the system is tested with

118 Chapter 6. Results and evaluation

what can be described as random data the results are as expected, random.

Using different linkage in the clustering algorithm on the user data did not
provide any better results. When the number of clusters was increased the
results was mixed. Increasing the number of clusters from 2 to 3 gave a
result that might be considered better, but overall increasing the number of
clusters gave a worse result.

Chapter 7

Future work

In this chapter, some possible future work will be discussed.

The solution in this thesis collect user data in sessions, and these sessions can
be up to 4.5 hours long. This is problematic in the sense that those 4.5 hours
can contain a lot of different activities and contexts. The results achieved
in chapter 6 are very broad and not very accurate. Sessions that include a
lot of data and possibly contain different contexts can be a large contributor
to this. I have learned throughout the project by being aware of my actions
that context change much quicker than I initially thought. It would be very
interesting to perform a similar clustering on user data collected without the
use of sessions. With my approach this would limit the attributes to relative
physical location, digital location and time.

The terms that are recorded is collected from the links that users click to
navigate the web. The idea behind this is that the link will contain text
that describe something of interest to the user, and therefore the user will
click it. In reality, words present in links are often just a small part of
describing the content. An example of this is web comics like xkcd1 where
links with the words ”prev” and ”next” are used to navigate the comics. It
is implied that this link will provide a new xkcd comic, but all the system
get is the term ”prev” not describing anything. Based on this, collecting the
terms describing interests more intelligently by for example using NLP on
the entire website to collect a description of the content should be explored
further.

1https://xkcd.com/

119

https://xkcd.com/

120 Chapter 7. Future work

Determining the weighting of the session attributes for the distance measure
is done on a trial and error basis with a subjective evaluation, or in other
words by manually evaluating the results by changing the weighting values
and determine if the results improved or not by looking at the word clouds.
This might be one of the weakest links in this project as the weighting has
significant impact on the results. It would be interesting to explore the
weighting further and in a more objective manner to see how much better
the results could be. This could be done by having an advanced and compre-
hensive dataset with a known correct state and by looking at the precision
and recall for the clusters automatically while changing the weighting. My
trial and error approach is also performed on the user data collected and the
user data might not be the best data to calibrate the weighting on, since it
might favour setting that would give bad results on other data.

The recommender system has played a much less important role then initially
expected, since it was replaced by word clouds to represent the user interests
in the evaluation of the system. Despite this, it would be interesting to see
the result of using a web crawler or similar techniques to gather content
for the recommender system, instead of web feeds. This could expand the
content recommended to anything available online, instead of just news art-
icles made available through a select number of feed sources. Recommending
more content than just news articles will potentially provide a much better
representation of the users’ interests.

The recommender system recommend articles without considering their age.
This result in recommendations containing old news that are no longer relev-
ant. A major improvement would be to make fresher articles more prioritized
by the system. This would make the recommender system useful, and not
only a proof of concept to see what results is most relevant. This would also
reduce the amount of articles covering a single term, as the most popular
terms tend to dominate in the recommendations based on the results.

Further improvement of the recommendation system should include auto-
matically selecting the context of the user to get recommendations based on
the current contextual information available. This would make the system
fully automatic and smarter. It seems counter intuitive to make the sys-
tem detect the users’ contexts and not identify the context of the user when
accessing the recommender system.

With the somewhat disappointing results from using hierarchical clustering
as the clustering algorithm in the system, even though there is no indication
that the algorithm is at fault, it would be interesting to explore the results

121

gained from using the DBSCAN or k-means algorithm instead. It is quite
possible that one or both of the algorithms would perform better than the
hierarchical algorithm on the dataset available.

An interesting approach to identify the contexts in the user profiles would
be to utilize the terms registered as an attribute as well. In this thesis it has
been a conscious choice to only utilize the contextual data available, and not
to use the keywords describing the interests to perform the identification of
contexts. The terms describing users’ interests could be utilized to reduce the
number of clusters terms are present in, and to concentrate the occurrence
of terms to specific clusters. This should contribute to clusters reflecting
specific interests and in turn specific contexts to a larger degree than in the
results gained in this thesis.

This thesis has not considered the performance aspect in the design of this
solution, as it is a proof of concept. It would be very interesting to explore
the performance requirements for a large scale system with clustering to dy-
namically detect contexts in the user profile data. It would also be interesting
to look at the design of the solution in regard to performance, since I am
sure there would be a lot done differently.

122 Chapter 7. Future work

Chapter 8

Conclusion

In this thesis a system that collect and analyse user data to create user
profiles, that reflect the contexts of the users, is developed and tested. The
system use these user profiles to recommend content to users on a per-context
basis.

The evaluation of the system is performed by collecting user data through a
time period of 77 days, and then evaluating the clusters of recorded keywords
created by the system. The user data collected is from a single user, the
author of the thesis. The system is also evaluated with generated fictional
user data to compensate for the lack of diversity in the user data. Further,
the system is tested in regard to the linkage method chosen in the clustering
algorithm. Finally the system is evaluated in regards to the level of details
in the contexts identified.

The evaluation show that the system can to some extent detect the user’s
contexts from the data collected. The contexts detected are very broad and
not very accurate. Despite this, the system demonstrate that it is possible to
detect contexts with clustering algorithms on contextual data. The contexts
detected are based on my evaluation ”work” and ”spare time interests”.
These two categories define the broadest contexts I have been operating under
while collecting the user data.

The generated user data provide an overview of the capabilities of the system.
It show in the evaluation that the system does not handle similar contexts
well. This support the findings with the collected user data.

The evaluation of the system further show that based on testing with the

123

124 Chapter 8. Conclusion

collected user data the best linkage for the clustering algorithm is average
linkage as originally used. It also show that increasing the number of clusters
to detect more specific and detailed contexts do not work, at least not with
the available test data. The results of this show that the system is not
very accurate, and only handle broad contexts, as indicated by the previous
results.

The goal of this thesis was to design, implement and test a system that gener-
ate user profiles based on user interests and available contextual information.
The user profiles shall reflect the users’ contexts or situations and provide the
users’ interests based on context. This goal is achieved, but not in a satis-
factory degree. There is a lot of variables that have to be taken into account
in the design of this system. Because of this there is a lot to try differently to
improve the results. Future work have the potential to significantly improve
the results.

Bibliography

[1] Sofiane Abbar, Mokrane Bouzeghoub, and Stéphane Lopez. Context-
aware recommender systems: A service-oriented approach. In VLDB
PersDB workshop, pages 1–6, 2009.

[2] Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a better understanding of context
and context-awareness. In Handheld and ubiquitous computing, pages
304–307. Springer, 1999.

[3] Gediminas Adomavicius and Alexander Tuzhilin. Context-aware recom-
mender systems. In Recommender systems handbook, pages 217–253.
Springer, 2011.

[4] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and
Prabhakar Raghavan. Automatic subspace clustering of high dimen-
sional data. Data Mining and Knowledge Discovery, 11(1):5–33, 2005.

[5] Davide Albanese, Roberto Visintainer, Stefano Merler, Samantha Ric-
cadonna, Giuseppe Jurman, and Cesare Furlanello. mlpy: Machine
learning python, 2012.

[6] Olatz Arbelaitz, Ibai Gurrutxaga, Javier Muguerza, Jesús M Pérez, and
Iñigo Perona. An extensive comparative study of cluster validity indices.
Pattern Recognition, 46(1):243–256, 2013.

[7] Donald J Berndt and James Clifford. Using dynamic time warping to
find patterns in time series. In KDD workshop, volume 10, pages 359–
370. Seattle, WA, 1994.

[8] Petter Brandtzag. Big Data – for better or worse, 2013 (Accessed March
5, 2015). URL: http://www.sintef.no/home/corporate-news/

Big-Data--for-better-or-worse/.

125

http://www.sintef.no/home/corporate-news/Big-Data--for-better-or-worse/
http://www.sintef.no/home/corporate-news/Big-Data--for-better-or-worse/

126 Bibliography

[9] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures
between probability density functions. City, 1(2):1, 2007.

[10] Annie Chen. Context-aware collaborative filtering system: Predict-
ing the user’s preference in the ubiquitous computing environment. In
Location-and Context-Awareness, pages 244–253. Springer, 2005.

[11] Hsinchun Chen, Yi-Ming Chung, Marshall C Ramsey, and Christopher C
Yang. A smart itsy bitsy spider for the web. Journal of the Amer-
ican Society for Information Science, Special Issue on AI Techniques
for Emerging Information Systems Applications, 1998.

[12] Zheng Chen, Fan Lin, Huan Liu, Yin Liu, Wei-Ying Ma, and Liu
Wenyin. User intention modeling in web applications using data mining.
World Wide Web, 5(3):181–191, 2002.

[13] Wikimedia Commons. Hierarchical clustering simple diagram, 2009 (Ac-
cessed February 28, 2015). URL: https://en.wikipedia.org/wiki/
File:Hierarchical_clustering_simple_diagram.svg.

[14] David Dearman and Jeffery S Pierce. It’s on my other computer!: com-
puting with multiple devices. In Proceedings of the SIGCHI Conference
on Human factors in Computing Systems, pages 767–776. ACM, 2008.

[15] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and
Eamonn Keogh. Querying and mining of time series data: experimental
comparison of representations and distance measures. Proceedings of the
VLDB Endowment, 1(2):1542–1552, 2008.

[16] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A
density-based algorithm for discovering clusters in large spatial data-
bases with noise. In Kdd, volume 96, pages 226–231, 1996.

[17] The Apache Software Foundation. Comparison between k-means
and DBSCAN clustering, Edited, (Accessed March 3, 2015).
URL: https://commons.apache.org/proper/commons-math/images/
userguide/cluster_comparison.png.

[18] E Frias-Martinez, G Magoulas, S Chen, and R Macredie. Automated
user modeling for personalized digital libraries. International Journal of
Information Management, 26(3):234–248, 2006.

[19] Min Gao, Kecheng Liu, and Zhongfu Wu. Personalisation in web com-
puting and informatics: Theories, techniques, applications, and future
research. Information Systems Frontiers, 12(5):607–629, 2010.

https://en.wikipedia.org/wiki/File:Hierarchical_clustering_simple_diagram.svg
https://en.wikipedia.org/wiki/File:Hierarchical_clustering_simple_diagram.svg
https://commons.apache.org/proper/commons-math/images/userguide/cluster_comparison.png
https://commons.apache.org/proper/commons-math/images/userguide/cluster_comparison.png

127

[20] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. On cluster-
ing validation techniques. Journal of Intelligent Information Systems,
17(2-3):107–145, 2001.

[21] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. Cluster
validity methods: part i. ACM Sigmod Record, 31(2):40–45, 2002.

[22] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering:
a review. ACM computing surveys (CSUR), 31(3):264–323, 1999.

[23] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python, 2001– (Accessed 2015-03-24). URL: http:
//www.scipy.org/.

[24] Amy K Karlson, Brian R Meyers, Andy Jacobs, Paul Johns, and
Shaun K Kane. Working overtime: Patterns of smartphone and pc
usage in the day of an information worker. In Pervasive computing,
pages 398–405. Springer, 2009.

[25] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data:
An Introduction to Cluster Analysis. Wiley-Interscience, 9th edition,
March 1990.

[26] David J Ketchen and Christopher L Shook. The application of cluster
analysis in strategic management research: an analysis and critique.
Strategic management journal, 17(6):441–458, 1996.

[27] Hung-Jen Lai, Ting-Peng Liang, and Yi-Cheng Ku. Customized inter-
net news services based on customer profiles. In Proceedings of the 5th
international conference on Electronic commerce, pages 225–229. ACM,
2003.

[28] Ting-Peng Liang, Yung-Fang Yang, Deng-Neng Chen, and Yi-Cheng
Ku. A semantic-expansion approach to personalized knowledge recom-
mendation. Decision Support Systems, 45(3):401–412, 2008.

[29] Fan Lin, Liu Wenyin, Zheng Chen, Hongjiang Zhang, and Tang Long.
User modeling for efficient use of multimedia files. In Advances in Mul-
timedia Information Processing—PCM 2001, pages 182–189. Springer,
2001.

[30] Christopher D Manning and Hinrich Schütze. Foundations of statistical
natural language processing. MIT press, 1999.

http://www.scipy.org/
http://www.scipy.org/

128 Bibliography

[31] Meinard Müller. Dynamic time warping. Information retrieval for music
and motion, pages 69–84, 2007.

[32] You-Jin Park and Kun-Nyeong Chang. Individual and group behavior-
based customer profile model for personalized product recommendation.
Expert Systems with Applications, 36(2):1932–1939, 2009.

[33] François Petitjean, Alain Ketterlin, and Pierre Gançarski. A global aver-
aging method for dynamic time warping, with applications to clustering.
Pattern Recognition, 44(3):678–693, 2011.

[34] Eréndira Rendón, Itzel Abundez, Alejandra Arizmendi, and Elvia M
Quiroz. Internal versus external cluster validation indexes. International
Journal of computers and communications, 5(1):27–34, 2011.

[35] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. Journal of computational and applied
mathematics, 20:53–65, 1987.

[36] Hidekazu Sakagami and Tomonari Kamba. Learning personal prefer-
ences on online newspaper articles from user behaviors. Computer Net-
works and ISDN Systems, 29(8):1447–1455, 1997.

[37] Albrecht Schmidt, Michael Beigl, and Hans-W Gellersen. There is more
to context than location. Computers & Graphics, 23(6):893–901, 1999.

[38] Michael Steinbach, Levent Ertöz, and Vipin Kumar. The challenges
of clustering high dimensional data. In New Directions in Statistical
Physics, pages 273–309. Springer, 2004.

[39] Pang Ning Tan, Kumar Steinbach, and Vipin Kumar. Data mining
cluster analysis: Basic concepts and algorithms, 2006.

[40] Jie Tang, Limin Yao, Duo Zhang, and Jing Zhang. A combination
approach to web user profiling. ACM Transactions on Knowledge Dis-
covery from Data (TKDD), 5(1):2, 2010.

[41] Elena Tsiporkova. Dynamic Time Warping Algorithm for Gene Expres-
sion Time Series, (Accessed March 15, 2015). URL: http://www.psb.
ugent.be/cbd/papers/gentxwarper/DTWAlgorithm.ppt.

[42] Mark Van Setten, Stanislav Pokraev, and Johan Koolwaaij. Context-
aware recommendations in the mobile tourist application compass. In
Adaptive hypermedia and adaptive web-based systems, pages 235–244.
Springer, 2004.

http://www.psb.ugent.be/cbd/papers/gentxwarper/DTWAlgorithm.ppt
http://www.psb.ugent.be/cbd/papers/gentxwarper/DTWAlgorithm.ppt

	Abstract
	Introduction
	Problem statement
	Motivation
	Approach
	Contribution
	Structure

	Background
	Context
	Data Cleaning
	Part-of-speech tagging
	Stop words removal
	Regular Expression

	User profiling
	Behaviour
	Context
	Interest
	Intention

	Content modelling
	Recommendation
	Rule-based filtering
	Content-based filtering
	Collaborative filtering
	Hybrid filtering

	Clustering
	Hierarchical clustering
	K-means
	DBSCAN
	Distance
	Cluster evaluation

	Time Series Analysis
	Euclidean distance
	Edit distance
	Dynamic Time Warping

	Related work
	Approach and design
	Overview
	Information gathering
	Interests
	Contextual information
	Collection
	Privacy
	Data modelling

	User profile creation
	Distance
	Clustering
	User profile modelling

	Recommendation
	Collection
	Storage and recommendation
	Presentation

	Implementation
	Server
	Interest Retriever
	Interest Receiver
	Interest Analyser
	Distance
	Cluster analysis
	Word cloud creation

	Recommender
	Article Retriever
	Front-end
	Back-end

	Results and evaluation
	Method
	Internal validity
	External validity

	User data
	Results
	Evaluation

	Generated data
	Generating fictive user data
	Results
	Evaluation

	Different linkage
	Results
	Evaluation

	Higher resolution
	Results
	Evaluation

	Summary

	Future work
	Conclusion

