
 

 
  

Faculty of Science and Technology 
Department of Computer Science 

Multiparadigm Optimizing Retargetable 
Transdisciplinary Abstraction Language 
— 
Ove Kåven 
INF-3990 Master's Thesis in Computer Science - April 2015 
 





Abstract

Scientists and engineers require ever more powerful software and hardware to analyze

data and build models. Unfortunately, current solutions to the problem are often hard

to use for scientists that are not software engineers. And software engineers often do not

have the mathematical background to understand the scienti�c problem to solve.

This thesis describes MORTAL, a new general-purpose programming language and

compiler for high-performance applications, which aims to bridge this gap by o�er-

ing a multiparadigm programming environment that allows, for example, the mathe-

matical formulae written by the scientist (perhaps using declarative programming) to

be connected to the algorithms implemented by the software engineer (perhaps using

object-oriented or functional programming) in a natural way, understood by both. The

language will apply modern compiler and static analysis technology, along with contract

programming, in new ways to both prevent bugs and improve runtime performance.

The implemented compiler is self-hosting and able to compile itself, showing that the

language and its compiler, though not fully implemented yet, is already usable. The

performance of MORTAL programs is also on par with the performance of C programs.

We believe MORTAL has the potential to become a useful language for solving many

of the more demanding tasks of modern science.

3





Contents

1 Introduction 11

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Why another programming language? . . . . . . . . . . . . . . . . . . . . 11

1.3 Primary requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Design 15

2.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Self-hosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Syntactic issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Compiler frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Initial passes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Main passes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Memory management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9.1 Struct types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9.2 Non-reference-counted class types . . . . . . . . . . . . . . . . . . 20

2.9.3 Reference-counted class types . . . . . . . . . . . . . . . . . . . . 22

3 Syntax 23

3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Top-level syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Identi�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Imports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.4 Namespace blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5



Contents

3.2.5 Namespace imports . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.6 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.7 Typedefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.8 Enums and �ags . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.9 Structs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.10 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.11 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.12 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.13 Delegates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.14 C compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Variables and �elds . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Nullable (maybe) types . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Const types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.4 Type parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.5 C arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.6 Type quali�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Structs, classes, and interfaces . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Instance data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Static (class) data . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.3 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.4 Destructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.5 Allocators and deallocators . . . . . . . . . . . . . . . . . . . . . 38

3.4.6 Initializers and deinitializers . . . . . . . . . . . . . . . . . . . . . 39

3.4.7 Instance methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.8 Static (class) methods . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.9 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.10 Indexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.11 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.12 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.13 Subtype polymorphism . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.14 Parametric polymorphism . . . . . . . . . . . . . . . . . . . . . . 47

3.4.15 Metamethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.16 Runtime Type Information . . . . . . . . . . . . . . . . . . . . . . 51

3.4.17 Reference counting . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6



Contents

3.4.18 Abstract classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.19 Transparent classes . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.20 Inner classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.21 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.22 Member access control . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.23 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.24 Class Quali�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.25 Field Quali�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.26 Method Quali�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Functions, methods, and operators . . . . . . . . . . . . . . . . . . . . . 60

3.5.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.2 Return type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.3 Exception speci�cations . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.4 Abbreviated return syntax . . . . . . . . . . . . . . . . . . . . . . 63

3.5.5 Implicit parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.6 �this� reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.7 Variadic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.8 C-style varargs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.9 Output parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.10 Ad hoc polymorphism . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.11 Multimethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5.12 Parametric polymorphism . . . . . . . . . . . . . . . . . . . . . . 69

3.5.13 Transparent functions . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5.14 Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.15 The main function . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.16 Function Quali�ers . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.17 Parameter Quali�ers . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6.1 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6.2 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6.4 Members and dereferences . . . . . . . . . . . . . . . . . . . . . . 79

3.6.5 Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6.6 Typecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6.7 Metaexpressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7



Contents

3.6.8 Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6.9 Slices and ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6.10 Anonymous functions . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.7.2 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.7.3 Delete statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7.4 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7.5 Compound statements . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7.6 If statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7.7 Switch statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.7.8 While loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.7.9 Do-while loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.7.10 For loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.7.11 Control �ow statements . . . . . . . . . . . . . . . . . . . . . . . 88

3.7.12 Try statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.7.13 Goto statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.8 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.8.1 Checked exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.8.2 Argument-based exceptions . . . . . . . . . . . . . . . . . . . . . 93

4 Implementation 95

4.1 Language features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Library features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Compiler features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Syntax highlighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Evaluation 97

5.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Related work 101

6.1 Programming languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.1 Procedural languages . . . . . . . . . . . . . . . . . . . . . . . . . 101

8



Contents

6.1.2 Object-oriented languages . . . . . . . . . . . . . . . . . . . . . . 102

6.1.3 Array languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1.4 Functional languages . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.5 Declarative languages . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.6 Concurrent languages . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1.7 Dynamic languages . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1.8 Non-CPU languages . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.9 Multiparadigm languages . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Other languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.2 OWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.3 OBO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2.4 SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Libraries and frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1 GLib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.2 LLVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.3 Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Conclusion 119

8 Future work 121

References 122

9





1 Introduction

1.1 Background

Science is developing at an ever-accelerating pace, and so is the amount of science data

collected by researchers all over the world [1]. Scientists and engineers require ever

more powerful software and hardware to analyze data and build models. To help ful�ll

this demand, computer scientists have developed ever more sophisticated solutions, such

as concurrency, parallel programming, distributed computing, supercomputing clusters,

distributed storage, and so on.

Although these solutions work, it is hard for such scientists to implement them them-

selves [2], so they typically require trained computer scientists to implement e�ectively.

As such, new kinds of computational problems need to be explained to quali�ed com-

puter scientists, who will then try to write custom software for solving the problem,

based on currently available technologies (and limited by their understanding of them).

Unfortunately, not all computer scientists have the necessary mathematical background

to understand the computational problem that needs to be solved � and worse, expe-

rienced computer scientists are usually in short supply. A solution is needed for either

making the existing computer scientists more e�cient, or reducing the need for them,

or both.

In this thesis, we will explore a new general-purpose programming language that

aspires to do both.

1.2 Why another programming language?

It is certainly true that many frameworks and programming languages have already

been developed to help solve many of these problems. Unfortunately, most of them still

require trained computer scientists to use e�ectively. And for those that don't (while

still being expressive enough for most scientists), they are usually interpreted languages,

which implies that many things that could be done to make the program run faster on

11



1 Introduction

the available hardware (optimization) can't easily be done by the interpreter, but must

be done by the programmer. (Examples of this may include common subexpression

elimination, and loop optimizations such as loop-invariant code motion and strength

reduction. Or even taking advantage of the vector (SIMD) instructions of modern CPUs

and GPUs.) How to do this (or even knowing it's possible!) is not always intuitive to

someone who isn't a computer scientist.

Conversely, many problems of a deeply mathematical or statistical nature can be

di�cult for many computer scientists to understand, and many of them will implement a

computation without understanding what it does, and thus may be unaware of potential

mathematical transformations of the problem that might increase numerical accuracy or

reduce computation time.

We have investigated numerous programming languages (see Chapter 6), but none of

them seem to solve the above issues adequately.

1.3 Primary requirements

For solving the above issues through developing a new language, we believe that it must

have at least the following features:

1. Multiparadigm: it must be possible for the language to be used e�ectively by both

software engineers (whose intuition tend to imperative or functional programming)

and scientists (whose intuition tend to declarative programming). By having mul-

tiple paradigms in the same language, the mathematical formulae declared by the

scientist can be connected to the computation frameworks and algorithm libraries

implemented by the software engineer in a natural way, understood by both.

2. Optimizing: the language should be designed for minimal overhead, and for compil-

ing to optimized machine code that can take full advantage of the fastest hardware

available to the user (possibly supercomputing clusters).

3. Retargetable: the language should make it possible to abstract away platform

speci�cs without losing performance. It should be possible to allow the same

source code to compile for various desktop or mobile OSes, for GPUs (Graphics

Processing Units), or, at some point, even FPGAs (Field-Programmable Gate

Arrays). Ideally, the business logic should even be independent of the software

libraries used to perform the computations.

12



1.4 Contributions

4. Transdisciplinary: the language should be general-purpose, and make it possible

to write programs that can combine knowledge from di�erent domains. There

should be no inherent limitations to what �elds it can be used in.

5. Abstracting: the language should be easy and intuitive to use, and automate away

as many implementation details as possible, allowing the programmer to focus on

the concepts that are really of concern.

A promising way to achieve these goals without making the language impossibly complex

is to have the language take full advantage of modern compiler technology, and more

importantly, have it provide strong metaprogramming facilities. Metaprogramming can

be roughly described as writing code that can generate or transform code. (Well-known

facilities that can be used for this include C++'s templates [3], and Lisp's macros.)

Su�ciently powerful metaprogramming systems even allow the construction of domain-

speci�c languages (DSLs) within the host language. The new language should therefore

strive to be �exible and provide a good metaprogramming system.

1.4 Contributions

• The design for the syntax of a new metaprogrammable language for use in high-

performance applications.

� To allow it to interoperate with existing libraries and frameworks, it ini-

tially implements the traditional procedural and object-oriented program-

ming paradigms (including exception handling), with a few adaptations for

metaprogrammability, automatic memory management, performance, and

productivity. The corresponding declarative paradigms are not yet designed,

but the syntax is left �exible enough to allow them to be integrated later.

(This partially satis�es the Multiparadigm and Retargetable requirements.)

� To make it customizable and be usable in di�erent domains, it provides a

number of overloadable operators and su�cient metaprogramming power to

grant a natural syntax to the use of external libraries and frameworks. (This

satis�es the Transdisciplinary and Abstracting requirements.)

� To make it run at high performance on any available hardware, it is a compiled

language that also makes provisions for runtime code generation and runtime

algorithm specialization. (This satis�es the Optimizing requirement.)

13



1 Introduction

� To make it easy to learn for programmers familiar with other languages, it

uses a classic curly-braces syntax, with a few adaptations to make the syntax

ambiguity-free.

� To facilitate writing bug-free programs, the language integrates the static

analysis capabilities of modern compilers. In particular, the principles of

contract-based programming (also known as �Design by Contract� [4]) are

integrated as a compile-time static analysis and code optimization tool with

zero runtime overhead, instead of its original role as a runtime testing aid.

As far as we know, this approach has never been attempted before.

• The design and implementation of an optimizing compiler for said language.

� It already implements a large part of the language design, and some of the

memory management.

� It is self-hosting (i.e., it is written in its own language, and compiles itself).

� It currently generates C code, which can in turn be compiled to machine code.

Other code generators are planned (needed for the Retargetable requirement).

� It is released as open source.

Although the language's design and implementation is not yet complete, the current

work already meets several of the major objectives, and work is ongoing to meet the

remaining ones.

1.5 Thesis overview

• Chapter 2 describes the overall design of the language and its compiler.

• Chapter 3 describes the syntax of the language.

• Chapter 4 outlines what has been implemented so far.

• Chapter 5 evaluates the current implementation.

• Chapter 6 surveys a selection of other languages and frameworks.

• Chapter 7 is the conclusion.

14



2 Design

This chapter describes how the MORTAL language and its compiler is designed.

2.1 Principles

MORTAL is designed to be easy to learn and use, while providing powerful metaprogram-

ming and resource management facilities that helps automate tasks that programmers

may �nd tedious or confusing, as well as support for paradigms that allow scientists to

express their problems in a simple, concise manner.

MORTAL aims to keep the core language intuitive, �exible, and customizable, leaving

libraries and class frameworks able to de�ne how the language should work with them,

and to provide the necessary runtime support for MORTAL's more advanced program-

ming models. The goal is to enable seamless, minimal-overhead integration between

MORTAL programs and any number of external libraries, with the user-friendliness and

expressivity of domain-speci�c languages, but within the framework of a general-purpose,

optimizing language.

MORTAL tries to be a practical language, able to solve a wide range of real-world

problems. Every MORTAL feature is designed to work together to build a language

that balances expressive power, practicality, optimizability, machine veri�ability, and

user friendliness.

2.2 Static analysis

MORTAL aims to help programmers avoid bugs by performing extensive static analysis

of the program. Static analysis is a di�cult problem in general, in part because the

analyzer does not really know what the programmer intended, and must infer it from

the code. MORTAL approaches the problem by taking contract programming (also

known as �Design by Contract� [4]), which in most other languages results in runtime

checks, and turn it into a compile-time construct which allows the static analyzer to
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know the programmer's intentions. The extra information allows the static analyzer to

verify the correctness of the program more easily and e�ciently than traditional static

analysis, while potentially also catching more bugs. Types of bugs that can easily be

caught this way include out-of-range arguments and bu�er over�ows.

In some cases, the extra information may also allow MORTAL to perform additional

optimizations, resulting in faster code. An example of this would be in alias analysis,

where contracts may be used to ensure that two parameters will not alias (refer to

the same object). Parameters that may alias reduce optimization possibilities (such as

reordering code and keeping values in registers), so telling the compiler that they won't

alias may result in more optimal code.

2.3 Self-hosting

MORTAL's compiler is self-hosting. This means the MORTAL compiler is written in

its own language. In addition to allowing MORTAL features to be used in the compiler

itself, this makes it easier to embed parts of the compiler into MORTAL programs. A

long-term goal of MORTAL is to make it simple to generate code at runtime (e.g., to

speed up certain kinds of computations through runtime algorithm specialization), and

being able to use the same code generator at compile time and runtime will make this

easier to achieve.

Writing a compiler in its own language has certain challenges, such as the problem of

how to compile the compiler from scratch, or how to recover from a broken compiler.

Both of these problems are currently addressed by having the MORTAL compiler gen-

erate C code (Section 6.1.1.2), which is then checked into version control along with

the MORTAL source code. A regular C compiler is then enough to compile a working

MORTAL compiler. (The chicken-and-egg problem of how to write the �rst compiler

was handled by �rst writing an initial (non-self-hosting) compiler in Python (Section

6.1.7.2), and using it to bootstrap the self-hosting compiler.)

2.4 Syntactic issues

MORTAL does not use header �les, but allows modules to import each other directly.

These imports may be circular, i.e., module A may import module B, and module B

in turn may import module A. This has implications for MORTAL's syntax, because

it means the compiler frontend must be able to parse module A without �rst parsing
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module B, or vice versa. This is only possible if the syntax is su�ciently rigid and

ambiguity-free. Thus, MORTAL uses a fairly �xed and non-customizable syntax, while

leaving the corresponding semantics much more �exible and customizable.

Other advantages of using a �xed syntax is that it is relatively easy for IDEs to

do syntax highlighting, and that the parser could run independently of the rest of the

compiler (which happened to be useful when bootstrapping the self-hosting compiler).

The chosen syntax is described in Chapter 3.

2.5 Compiler frontend

Currently, the frontend parser is written in C. It uses a hand-written lexer (using the

GLib library (Section 6.3.1) for string handling, error handling, and Unicode support),

and a parser written in GNU Bison1 (a tool which compiles context-free grammars

described with a variant of Backus-Naur Form (BNF) to C code). The parser converts

MORTAL source code to an Abstract Syntax Tree (AST), which the remainder of the

compiler can work with.

The AST representation is designed to be serializable. This has the following advan-

tages:

• For source �les that does not change, their ASTs may be cached on disk, resulting

in faster compilation times.

• For generating code at runtime, ASTs may be embedded into the generated exe-

cutable.

• The compiler frontend could run independently of the rest of the compiler.

2.6 Initial passes

Since there are no header �les, and objects may refer to each other circularly, at least

two initial analysis passes must be used to augment the initial AST. The compiler's

intermediate representation (IR) is similar to the original AST (uses the same classes),

but is kept separate from the original AST, and contains additional annotations.

• All imported modules are loaded and parsed.

1https://www.gnu.org/software/bison/
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• (Pass 1) For each loaded module, a skeletal IR is made from the AST. Special

arguments, such as the this argument of methods, are added to the IR.

• (Pass 1) For each loaded module, each de�ned top-level object (such as types and

functions) in the IR are entered into a symbol table.

• (Pass 2) Types of top-level objects and their parameters are determined by taking

type annotations from the original AST, searching for the type de�nition in the

symbol tables in scope, and adding the resulting types to the corresponding IR.

• (Pass 2) Implicit objects, such as vtables, are added to the IR.

2.7 Main passes

The main passes only need to be run on the module to be compiled, not on imported

modules. They transform the IR into a form suitable for code generation.

• All statements and expressions in the original AST are evaluated and added to the

IR.

When declarative paradigms are implemented, they may transform declarative programs

into imperative ones at this point, by applying rewrite rules from imported modules.

• A control �ow graph is constructed from the IR. (The control �ow graph can

immediately be used to �nd errors such as not returning a value.) [5]

• The dominators of the control �ow graph are found, using the Lengauer-Tarjan

algorithm [6] (with some optimizations described by L. Georgiadis et al [7]). Dom-

inators and dominance frontiers are of interest in some types of analysis, in par-

ticular to transform code to SSA form (see below).

• Live variable analysis is performed, using the IR and the control �ow graph. [8, 9]

From here, the IR can be transformed into Static Single Assignment (SSA) form using

the algorithm described by R. Cytron et al [10], but this has not yet been implemented.

SSA form is used in many modern compilers, as it facilitates advanced optimization

and static analysis. In SSA form, every variable is assigned to exactly once. (If the

original program assigns to a variable more than once, the original variable will map to

multiple SSA variables, each being a di�erent �version� of the original variable. Special

18



2.8 Backend

functions, called φ-functions, are inserted wherever it's necessary to select a version

based on control �ow. Dominance frontiers determine where this is necessary.) Due to

SSA variables being e�ectively immutable after assignment, SSA form is comparable to

functional programming paradigms, which makes SSA easy to analyze and optimize for

many of the same reasons functional languages are. However, neither transforming into

or back out of SSA form are trivial operations, and research is still being done in this

area.

• Transparent structs and classes (Section 3.4.19) are rewritten away.

• Memory management (Section 2.9) is performed, using live variable information

to minimize runtime overhead.

• The control �ow graph and IR is serialized into a �nal form useful for code gener-

ation.

2.8 Backend

MORTAL is designed to support several possible backends (code generators). Since the

IR given to the backend has the structure of an AST, it is fairly easy for backends to

output source code for other languages, and have it resemble the original MORTAL

program. Eventually, MORTAL aims to support generating C (Section 6.1.1.2), C++

(Section 6.1.2.3), OpenCL/CUDA (Section 6.1.8.1), and VHDL (Section 6.1.8.2). How-

ever, only the C backend is currently implemented.

A backend to generates machine code directly is also planned, by using LLVM (Section

6.3.2). The backend would convert MORTAL IR to LLVM IR, which can then be passed

to LLVM for code generation. LLVM uses SSA form internally, which means there may

be no need for the main passes to transform out of SSA in this case.

2.9 Memory management

MORTAL is designed to be able to manage memory without the need for a tracing

garbage collector. Although using a tracing garbage collector with MORTAL should be

possible, MORTAL primarily focuses on reference-counting-based memory management.

This allows memory to be released as early as possible, in a deterministic way, and also

allowing resources other than memory to be managed using the same mechanisms (i.e.,

MORTAL supports the RAII (Resource Acquisition Is Initialization) idiom).
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The programming model used by MORTAL is inspired by the Vala programming

language (Section 6.1.2.9), allowing user-de�ned types to choose between three memory-

management strategies. MORTAL's type system enforces the chosen strategy, to the

extent possible.

2.9.1 Struct types

Structs are value types. A variable or �eld of struct type holds the struct instance

directly, and the struct instance data is destroyed when the corresponding variable or

�eld goes out of scope.

• If a local variable is of struct type, the struct is allocated on the stack, and de-

stroyed when the local variable goes out of scope.

• If a function parameter is of struct type (and is not an output parameter), the

struct is copied onto the stack when the function is called, and destroyed when the

function returns.

• If an instance data �eld is of struct type, the �eld is allocated as part of the

instance allocation, and is destroyed when the instance is destroyed.

2.9.2 Non-reference-counted class types

Classes are reference types. A variable or �eld of class type holds a reference to a class

instance. More than one variable or �eld may refer to the same class instance. However,

a non-reference-counted instance may only have one owner at any time.

• The type of the owner's reference should be quali�ed with owned. When the

owner ceases to exist (which includes being overwritten), the owned instance is

also automatically destroyed, by calling its deallocator/destructor.

• The type of other references may be quali�ed with unowned. Unowned references

do not a�ect the lifetime of the referenced instance. (Note that there may be a

risk of dangling references, if the instance is destroyed while unowned references

still exist. If this is possible, weak references may be a better option, if the class

supports it. In the future, static analysis may be used to detect potentially dangling

references.)
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• If the class supports weak references, variables or �elds (that are not the owner)

may be quali�ed with weak. If the referenced instance ceases to exist, then weak

references will be set to null. Local variables cannot be weak. (Also note that weak

is an object quali�er, while owned/unowned are type quali�ers. This is because

classes must store the memory address of weak references, but type quali�ers would

also a�ect values that are not necessarily stored in memory, such as function return

values. Weak references should be of unowned type.)

• Instances of class type are always allocated on the heap. Newly created instances

must be assigned to an owned variable or �eld, or be returned from a function with

an owned return type.

• Attempting to assign a reference that's not newly created (and is not an owned

return value) to an owned reference (which includes returning it from a function

with an owned return type) may result in the instance being copied, and the copy

being assigned to the latter reference. If the instance cannot be copied (e.g., if

the class does not have a copy constructor), this will result in a compilation error.

(Exception: If the source reference is a local variable that's no longer used after

the assignment, then MORTAL may do an ownership transfer instead of creating

a copy. This will always succeed.)

• The following objects are owned by default:

� Global variables that are not weak

� Struct/class �elds that are not weak

� Function/operator return values, other than property getters

� Local variables that has at least one newly created instance, or owned return

value, assigned to it

• The following objects are unowned by default:

� Weak variables/�elds

� Function/operator parameters

� Property getter return values

� Local variables that do not have any newly created instance, or owned return

value, assigned to it
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2.9.3 Reference-counted class types

Classes support reference counting if they de�ne the appropriate methods. MORTAL

will call the appropriate reference-counting methods automatically, but requires class

frameworks to provide their own method implementations. Thus, the reference count

itself is under the control of the frameworks themselves, and there is also no need for a

special �smart pointer� type.

In general, thread-safe reference counting can be slow (atomic operations may stall

the CPU pipeline). For this reason, MORTAL goes to lengths to minimize the number

of reference-counting operations.

• Most of the rules about owned, unowned, and weak still applies to reference-counted

class types. However, there can now be more than one owned reference. To min-

imize reference-counting method calls, only owned references a�ect the reference

count.

• A newly created instance should be given a reference count of one.

• When an owner ceases to exist, the reference count is decremented. The class

should destroy itself when the reference count becomes zero.

• Unlike non-reference-counted class types, attempting to assign a reference that's

not newly created (and is not an owned return value) to an owned reference does

not result in a copy, but in incrementing the reference count. (In case of an

ownership transfer, the reference count does not change.)

• Reference cycles can usually be avoided by making references in one direction (e.g.,

from child to parent) unowned or weak. Static analysis may be used to �nd and

warn about potential reference cycles.
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This chapter describes the syntax of MORTAL's imperative (procedural and object-

oriented) paradigm, as currently envisioned and partially implemented. In the future,

MORTAL also plans to support certain declarative paradigms, but they are not described

here (see Section 8).

3.1 General

MORTAL's syntax is a variant of the classic free-form curly-braces syntax, similar to

C++ and Java. (This is a widely used style, which might help programmers familiar

with other languages feel more at home in MORTAL, and the curly brace is a reasonable

way of delimiting various language constructs.) Normally, imperative statements must

be terminated by either a semicolon, or, where allowed, a curly-brace-delimited block.

It is, in general, not necessary to use a semicolon after a closing curly brace.

MORTAL uses block scoping. Variables de�ned within an inner block are not acces-

sible from outer blocks.

The syntax may change. For example, it may be possible for a future revision of the

language to include an option to make semicolons completely optional, relying on line

breaks instead.

3.2 Top-level syntax

The preferred �le extension for MORTAL source code is .mtl. Each source �le represents

an independently compiled module. This section gives an overview of the constructs that

are valid in top-level (module) scope.
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3.2.1 Comments

To write a comment that runs to the end of the line, use a double slash (//). Otherwise,

a comment block should start by a slash-asterisk (/*) and end with an asterisk-slash

(*/). Comment blocks may be nested.

3.2.2 Identi�ers

Identi�ers are used to name things, such as types and variables. They may use ASCII

or Unicode alphanumeric characters, plus ASCII underscore. The �rst character of an

identi�er cannot be a numeric digit, but any subsequent character may be.

3.2.3 Imports

Source modules will usually need to access symbols from other source modules. To do

this, other source modules can be �imported� using the import statement. The import

statement can have any number of string arguments, where the strings represent �le

paths (absolute or relative). The .mtl extension may be omitted.

Example:

import " s t d i o " ; // imports the s t d i o module

3.2.4 Namespace blocks

Code may be placed inside namespace blocks. All symbols de�ned within that block will

then be accessible from other blocks and modules by using explicitly quali�ed references,

or by importing that namespace with the using statement (Section 3.2.5).

Example:

namespace ABC {

// a l l symbols de f ined here are p laced in the "ABC" namespace

c l a s s foo ;

}

bar : ABC. foo ; // q u a l i f i e d r e f e r e n c e to " foo " o f "ABC"
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3.2.5 Namespace imports

To avoid the need for quali�cations, the symbols of a namespace can be imported into

the current block with the using statement. (All imported namespaces are searched in

import order, after searching the symbols of the current block.)

Example:

us ing ABC;

bar : foo ; // unqua l i f i e d r e f e r e n c e to " foo " with in "ABC"

3.2.6 Variables

Ordinary variables can be de�ned in module, namespace, function, or method scope. (If

they are de�ned in struct or class scope, they're called �elds instead.) Their lifetime

is limited to the lifetime of the scope they're de�ned in. All variables have a type, and

may optionally have an initializer.

If no initializer is provided, a default initializer will be used. (Integers and �oating-

point values are initialized by zero by default. References are initialized to null by

default. For user-de�ned value types, the constructor is called.)

When a variable is de�ned within a function/method, the compiler may be told to

infer its type from its initializer, to make de�ning temporary variables easier.

Examples:

v1 : i n t ; // v1 i s a va r i a b l e o f type " i n t " , i n i t i a l i z e d with zero

v2 : i n t = 2 ; // v2 i s i n i t i a l i z e d with 2

// assume that " foo " i s a c l a s s

v3 : foo ; // v3 i s an ( i n i t i a l l y nu l l ) r e f e r e n c e to " foo "

v4 : foo = foo ( ) ; // v4 r e f e r s to a new " foo " ob j e c t

v5 : foo = func ( ) ; // v5 r e f e r s to the ob j e c t returned by func

v6 : foo ( ) ; // same as v4 ( s yn t a c t i c sugar )

// assume that "bar" i s a s t r u c t

v7 : bar ; // bar ' s d e f au l t c on s t ruc to r i s used

v8 : bar = func ( ) ; // v8 cop i e s the ob j e c t returned by func

v9 : bar ( ) ; // same as v7

// type i n f e r e n c e i s p o s s i b l e with in f unc t i on s /methods

v10 : := foo ( ) ; // same as v4
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v11 : := func ( ) ; // same as v5/v8

3.2.7 Typedefs

The typedef statement allows making types from other types.

Examples:

// Def ine Counter as an a l i a s f o r " long "

typede f Counter : long ;

// Def ine CounterList as a s p e c i a l i z a t i o n o f the

// g ene r i c conta ine r L i s t f o r the Counter type

typede f CounterList : L i s t <:Counter >;

// Def ine ConstCounter as an immutable long , and

// l e t ex t e rna l C code r e f e r to i t as "c_counter_t"

typede f ConstCounter : const long => __c_type . c_counter_t ;

3.2.8 Enums and �ags

The enum and flag statements can be used to de�ne certain kinds of value types. In-

ternally, enums and �ags are integers, except that particular values have names. Enums

hold one value at a time, while �ags allow bitwise combinations of multiple values (or

none). Because of the bitwise nature of �ags, named �ag values should, in general, be

powers of 2. However, there's often reason to give names to particular bit combinations.

Examples:

enum ErrorCode {

NoError = 0 ,

PEBKAC = 1

}

r e s u l t s : ErrorCode = ErrorCode . NoError ;

f l a g ProcessOpt ions {

WithBacon = 1 ,

WithCheese = 2 ,

WithFries = 4 ,

WithEverything = 7 // a l l o f the above

}
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requ i rements : ProcessOptions =

ProcessOptions .WithBacon |

ProcessOptions . WithCheese ;

3.2.9 Structs

The struct statement is used for de�ning new value types. (Value types are, in general,

allocated on the stack, and passed by value (i.e. copied) when calling other function-

s/methods. However, it's still possible to pass structs by reference; see Section 3.5.9.)

Structs may contain data �elds, methods, operators, and other type de�nitions. Structs

can inherit from other structs, but does not, in general, support subtype polymorphism

(subclassing). They do, however, support parametric polymorphism (generics).

Example:

s t r u c t Counter {

pub l i c count : long ;

t i c k ( ) {

count = count + 1 ;

}

}

. . .

count : Counter ;

count . t i c k ( ) ;

Structs are described in more detail in Section 3.4.

3.2.10 Classes

The class statement is used for de�ning new reference types. (Reference types are,

in general, allocated on the heap, and passed by reference when calling other function-

s/methods.) Classes can do everything structs can, but are more �exible, and supports

subtype polymorphism (subclassing). However, class lifetime management is more com-

plex, which may make them slower, depending on how they're used.

In order to be compatible with as many object-oriented class frameworks as possible,

MORTAL leaves it to the programmer to implement certain aspects of the meta-object

protocol, such as Run-Time Type Information (RTTI) and reference-counted memory
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management. This is done by de�ning certain special methods and operators. Hence,

users who want to use RTTI are expected to inherit from a base class which implements

it, and each class framework is expected to provide its own base class that implements

its own style of RTTI.

Example:

ab s t r a c t c l a s s Geometry {

pub l i c center_x : i n t ;

pub l i c center_y : i n t ;

pub l i c c on s t ruc to r ( center_x : int , center_y : i n t ) ;

pub l i c ab s t r a c t v i r t u a l draw ( ) ;

}

c l a s s C i r c l e : Geometry {

pub l i c rad iu s : i n t ;

pub l i c c on s t ruc to r ( center_x : int , center_y : int , r ad iu s : i n t ) ;

pub l i c ov e r r i d e draw ( ) { . . . }

}

. . .

obj : Geometry = C i r c l e (50 , 50 , 2 0 ) ;

obj . draw ( ) ; // c a l l s C i r c l e ' s draw method

// The f o l l ow i ng would be l e g a l i f Geometry implemented RTTI

i f obj i s C i r c l e { . . . }

Classes are described in more detail in Section 3.4.

3.2.11 Interfaces

The interface statement can be used to de�ne a special type of class that do not

contain code or data, only abstract methods and operators. That is, they function as

protocols, not as implementations. Although abstract classes can do the same, using

interfaces instead avoids certain issues with subtype polymorphism (subclassing) and

multiple inheritance. Since interfaces, unlike abstract classes, cannot contain code or

data, implementations are never inherited from them, which avoids any con�icts or

ambiguities that may arise when a class inherits from multiple base classes. When
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classes can only inherit implementations from one base class, and all other bases must

be interfaces, such con�icts can never occur.

However, MORTAL does not restrict multiple inheritance in this way, meaning it's

possible for such con�icts to occur in MORTAL. MORTAL allows the use of interfaces

to avoid them, but also allows con�icts to be resolved in other ways (see Section 3.4.12).

However, some class frameworks may restrict multiple inheritance, requiring the use of

interfaces.

Interfaces are described in more detail in Section 3.4.

3.2.12 Functions

Ordinary functions can be de�ned in module or namespace scope. (If they are de�ned in

struct, class, or interface scope, they're called methods instead.) They can currently

not be nested, but this might change in the future.

A function is intended to contain a piece of code that operates on its arguments (if

any), and (optionally) returns a value. (Functions that operate on other objects than

their (explicit or implicit) arguments are possible, but such functions are said to have

�side e�ects�, and some programming paradigms may restrict their use.) The argument

types (if any), and the return type (if any), must be explicitly declared. (Type inference

for the function signature is not currently possible.) On the other hand, functions

support parametric and ad hoc polymorphism (generics and overloading). Furthermore,

if a function is declared transparent, it can work much like a macro.

Example:

// Function that squares an i n t e g e r

square ( x : i n t ) : i n t {

re turn x ∗ x ;

}

// Can be wr i t t en shor te r , l i k e t h i s

square ( x : i n t ) : i n t { x ∗ x }

// Generic max func t i on f o r any type

// ( dec l a r ed transparent , so i t works l i k e a macro )

t ransparent max<T>(x : T, y : T) : T { x >= y ? x : y }

Functions are described in more detail in Section 3.5.
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3.2.13 Delegates

The delegate statement can be used to de�ne types of references to functions or meth-

ods, along with any contextual information. The function/method signature (parameter

and return types) is de�ned as part of the delegate type. Actual references can then

be created by de�ning variables of the delegate type. Any function/method that match

the delegate's signature can be assigned to such a variable, and the variable can then

be called in order to call the referenced function/method. A delegate variable can also

store contextual information, typically the instance to use if the variable refers to an

instance method. Once anonymous (lambda) functions are implemented, delegate vari-

ables should also be able to store references to their closures.

If the delegate statement is quali�ed with static, it de�nes a delegate type that does

not store contextual information. Static delegates are thus equivalent to C function

pointers.

Example:

s t a t i c d e l e ga t e Xform(x : i n t ) : i n t ;

// two func t i on s with matching s i gna tu r e s

i d e n t i t y (x : i n t ) : i n t { x }

square ( x : i n t ) : i n t { x ∗ x }

. . .

func : Xform ; // d e f i n e de l e ga t e va r i ab l e

func = i d en t i t y ;

y = func ( 5 ) ; // c a l l s i d en t i t y , y = 5

func = square ;

y = func ( 5 ) ; // c a l l s square , y = 25

3.2.14 C compatibility

MORTAL tries to make it straightforward to write wrappers for external libraries with

a C interface. Note that such external libraries need not actually be implemented in C,

as long as the public interface is compatible with C (which most are).

When writing a module that is intended to wrap an existing C library, the C header

�les to use can be declared with the __c_include statement. The de�nitions from that

C header �le can then be used when pre�xed with __c_lib, __c_type, __c_ptr, or

__c_ptrtype.

Example:
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__c_include " time . h"

// de f i n e t as a va r i ab l e o f C type "time_t"

t : __c_type . time_t ;

Wrapper modules can be completely inlined (i.e., users will link directly to the C

library, not the compiled MORTAL module). To declare such a wrapper module,

all __c_include statements must be at the top of the module, and be quali�ed as

transparent. Also, all de�nitions in the �le must be declared in an inlineable way (e.g.,

as transparent, see Section 3.4.19), or as aliases (which, in cases of addressable objects,

such as functions, must be quali�ed with extern).

Example:

t ransparent __c_include " time . h"

// de f i n e "UnixTime" as an a l i a s o f the C type "time_t " ,

// which behaves l i k e a s igned long i n t e g e r

typede f UnixTime : long => __c_type . time_t ;

// d e f i n e " time" as an a l i a s o f the C func t i on " time " ,

// which takes a ( po s s i b l y nu l l ) write−only r e f e r e n c e

// to an argument o f type UnixTime , and re tu rn s a UnixTime .

extern time ( out ? t imer : UnixTime ) : UnixTime => __c_lib . time ;

// d e f i n e "Time" as a wrapper f o r the C s t ru c tu r e " s t r u c t tm"

// ( the generated code w i l l use s t r u c t tm d i r e c t l y )

t ransparent c l a s s Time : __c_ptr . s t r u c t . tm {

// s t r u c t members can be dec l a r ed us ing the o r i g i n a l name ,

// or with d i f f e r e n t names

tm_sec : i n t ; // d e c l a r e o r i g i n a l name

sec : i n t => __c_lib . tm_sec ; // de c l a r e sho r t e r name

. . .

s t a t i c extern l o c a l t ime ( t imer : UnixTime ) : Time => __c_lib . l o c a l t ime ;

// f o r non−s t a t i c methods , the f i r s t argument i s a r e f e r e n c e

// to the s t r u c t / c l a s s i t s e l f

extern asct ime ( ) : CString => __c_lib . asct ime ;

// s i n c e the c l a s s i s t ransparent , a l l methods w i l l be i n l i n e d
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s t r f t ime ( fmt : CString ) : CString {

. . . __c_lib . s t r f t ime ( . . . , fmt , t h i s ) . . .

}

}

The pre�xes for accessing C types and objects are:

Pre�x C MORTAL Examples

__c_lib Addressable object stdout, printf

__c_type Non-pointer type Value type off_t, struct in_addr

__c_ptr Non-pointer type Reference type FILE, struct tm

__c_ptrtype Pointer type Reference type iconv_t, gpointer

3.3 Types

MORTAL uses a nominal, static type system. (It is the most common type system

among compiled languages, including C/C++, which MORTAL aims to be compatible

with.)

Every addressable object in MORTAL must have a type. This section is about how

to use types; de�ning new types is covered in other sections. Note that high-level data

types such as matrices, strings, and associative arrays are intended to be provided by

libraries (such as the GLib wrapper in MORTAL's standard library), not by the core

language, and are not discussed here.

3.3.1 Variables and �elds

For data objects, such as variables and �elds, the type must be declared after a colon.

Example:

v : C i r c l e ; // v i s a va r i a b l e o f type " C i r c l e "

For local variables inside functions, it's also possible to use type inference.

Example:

v : := 5 ; // s i n c e the type o f 5 i s " i n t " , v i s i n f e r r e d to be " i n t " .

3.3.2 Nullable (maybe) types

Reference types (classes) can be nullable, i.e., variables of such types can refer to null.

To declare that a variable can refer to null, add a question mark after its type.
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Example:

v : C i r c l e ? ;

. . .

v = nu l l ;

For local variables inside functions, this is not necessary. Local variables are always

formally nullable, and static analysis is then used to determine whether a local variable

can actually be null at any given point.

3.3.3 Const types

Types can be declared as const, which basically makes the corresponding objects im-

possible to modify. For example, it will not be possible to call methods that are not

quali�ed with const, as non-const methods might modify the object.

Note that constness applies to the object reference, not to the object itself. There

may be both const and non-const references to the same object. The object cannot be

modi�ed through the const references, but can be modi�ed through the regular refer-

ences.

Example:

v : const C i r c l e ;

// A non−const r e f e r e n c e can be as s i gned to

// a const r e f e r en c e , but not v i c e ver sa .

v = C i r c l e ( ) ;

3.3.4 Type parameters

Parametric types may take arguments in the form of either other types, or as expressions.

(See Section 3.4.14.) The argument list is enclosed in angle brackets, and arguments are

delimited by commas. Type arguments must be pre�xed by colons, and expression

arguments enclosed in square brackets.

Example:

import " g l i b " ;

// Create a GLib hash tab l e us ing the type

// "CString " as the key type , and " i n t " as

// the value type .

t ab l e : GLib . HashTable<:CString , : int >;
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3.3.5 C arrays

It is possible, but intentionally somewhat inconvenient, to de�ne C arrays in MORTAL.

De�ning C arrays directly is discouraged because they do not have strict bounds check-

ing, making over�ows possible. Instead, class frameworks are encouraged to de�ne their

own safe array types that add bounds checking (possibly using contract programming

(Section 3.5.14), which in MORTAL need not add any runtime overhead), and program-

mers should use such types instead. Thus, C arrays should only be used in the internal

implementation of safe array types, or for compatibility with external libraries written

in C.

To de�ne a C array in MORTAL, use the builtin parametric type __c_array. It takes

two parameters, a type and an expression. The type may be any type of constant size

(including another array). The expression represents the array size. The array size may

be omitted in function parameters, as the size does not need to be known in this case.

However, it's still good practice to specify it whenever it is known.

Example:

// Def ine array ho ld ing 10 i n t e g e r s .

a r r : __c_array<: int , [ 10 ] >;

// C arrays i n d i c e s s t a r t at 0 .

a r r [ 0 ] = 1 ; // Set the f i r s t entry to 1 .

a r r [ 9 ] = 5 ; // Set the l a s t entry to 5 .

3.3.6 Type quali�ers

Types may have the following quali�ers applied to them.

const The reference is immutable. See Section 3.3.3.

owned The reference is owned. See Section 2.9.

unowned The reference is unowned. See Section 2.9.

3.4 Structs, classes, and interfaces

Structs, classes, and interfaces allow de�ning the various entities within a system in an

abstract, object-oriented way. A typical struct or class can have any number of instances,

called objects. Structs and classes may contain data �elds, methods, operators, and

other type de�nitions. Interfaces may contain abstract methods, operators, and other
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type de�nitions.

The following sections mostly discuss classes. It should be understood that any-

thing said about classes also applies to structs and interfaces, unless otherwise speci�ed.

Anything said about class instances also applies to struct interfaces, unless otherwise

speci�ed. Interfaces cannot have instances.

3.4.1 Instance data

Per-instance data �elds are de�ned using the same syntax as variables. Initializers are

allowed; they are evaluated when the instance is constructed, just before the user-de�ned

constructor code (if any) is executed. If no initializer is provided, a default initializer will

be used, just as with variables. Any particular instance's instance data is automatically

deleted when the instance ceases to exist.

Example:

c l a s s SampleData {

pub l i c data : i n t = 5 ; // i n i t i a l i z e d to 5 on con s t ru c t i on

pub l i c count : i n t ; // i n i t i a l i z e d to 0 on con s t ru c t i on

pub l i c t i c k ( ) { count += 1 ; } // i n c r e a s e count

}

3.4.2 Static (class) data

If a data �eld is quali�ed with static, then the �eld becomes class data, instead of

per-instance data. Class data exists independently of any class instances, and instances

do not get their own copy of it; all instances access the same �eld. Class data �elds

are typically initialized whenever the module containing them is loaded, and deleted

when the module is unloaded. Typically, this means on program startup and program

shutdown, respectively.

Example:

c l a s s GlobalData {

pub l i c s t a t i c count : i n t ; // i n i t i a l i z e d to 0 on program star tup

pub l i c s t a t i c t i c k ( ) { count += 1 ; } // i n c r e a s e count

}
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3.4.3 Constructors

Constructors are used to initialize struct or class instances after memory has been allo-

cated for them. They may be user-de�ned or automatically de�ned, or a combination

of both. If MORTAL's automatically-generated code su�ces, the constructor's body

may be omitted. Like ordinary methods, constructors can be overloaded. However, they

cannot return a value.

Two special types of constructors exist:

• The default constructor. This is the constructor that can be called without argu-

ments. For struct types, it is automatically used when a variable or �eld is de�ned

without an initializer.

• The copy constructor. This is the constructor that can be called with a single

argument, with a type of the struct/class itself. For struct types, it is automatically

used when a variable or �eld is de�ned with an initializer. For class types, it is

automatically used when a non-reference-counted object needs to be copied (see

Section 2.9).

MORTAL constructors do the following:

• Calls the constructors of all base classes. By default, their default constructors are

called, but it's possible to specify other constructors.

• For any instance �elds that have the same name as a constructor parameter, ini-

tializes the instance �eld using the corresponding argument.

• If a constructor parameter is named _ (an underscore), initializes any remaining

instance �elds that have the same name as some �eld in the object referenced by

the corresponding argument.

• Runs the initializers of all remaining non-inherited instance data �elds, if any.1

• Executes any user-de�ned constructor code.

Example:

1This may be redundant if the user-de�ned constructor code also initializes the �eld. If so, the
optimizer would remove the redundant initialization from the �nal code.
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abs t r a c t c l a s s Geometry {

pub l i c center_x : i n t ;

pub l i c center_y : i n t ;

// Defau l t con s t ruc to r . Auto− i n i t i a l i z e s f i e l d s to 0 .

pub l i c c on s t ruc to r ( ) ;

// Copy cons t ruc to r .

pub l i c c on s t ruc to r (_: Geometry ) ;

// Auto− i n i t i a l i z e s f i e l d s to cons t ructor ' s arguments .

pub l i c c on s t ruc to r ( center_x : int , center_y : i n t ) ;

}

c l a s s C i r c l e : Geometry {

pub l i c rad iu s : i n t ;

// Defau l t con s t ruc to r . Auto− i n i t i a l i z e s f i e l d s to 0 .

pub l i c c on s t ruc to r ( ) ;

// Copy cons t ruc to r .

pub l i c c on s t ruc to r (_: C i r c l e ) ;

// Ca l l s Geometry ' s non−de f au l t cons t ructor ,

// and auto− i n i t i a l i z e s rad iu s f i e l d .

pub l i c c on s t ruc to r (c_x : int , c_y : int , r ad iu s : i n t ) :

Geometry (c_x , c_y ) ;

// Ca l l s Geometry ' s non−de f au l t cons t ructor ,

// and "manually" i n i t i a l i z e s rad iu s f i e l d .

pub l i c c on s t ruc to r (c_x : int , c_y : int , c : C i r c l e ) :

Geometry (c_x , c_y)

{

rad iu s = c . rad iu s ;

}

}
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3.4.4 Destructors

Destructors are used to clean up struct and class instances before their memory is freed.

They may be user-de�ned or automatically de�ned, or a combination of both. If MOR-

TAL's automatically-generated code su�ces, the destructor's body may be omitted. Like

ordinary methods, destructors can be overloaded. They can also return a value.

A special type of destructor exist: the default destructor. This is the destructor that

can be called without arguments. For non-reference-counted objects, it is automatically

used when the object goes out of scope, or its owner is deleted.

MORTAL destructors do the following:

• Executes any user-de�ned destructor code.

• Runs the default destructors of all non-inherited instance data �elds.

• Calls the default destructors of all base classes.

• Returns the value returned by the user-de�ned destructor code, if any.

Example:

c l a s s SampleData {

pub l i c count : i n t ;

// Defau l t d e s t ru c t o r . Returns the f i n a l va lue o f the counter .

pub l i c d e s t ru c t o r ( ) : i n t { count }

}

3.4.5 Allocators and deallocators

Allocators and deallocators only apply to classes, not to structs. Struct memory alloca-

tion cannot be overridden.

Constructors and destructors do not allocate or free the memory on their own. By

default, MORTAL allocates class objects on the heap using malloc and frees them using

free, but if desired, this can be overridden by de�ning allocators and deallocators.

This is of particular interest for wrapper modules, which often want to wrap external

allocators. (An example is the C library's fopen, which allocates memory for the object

it constructs.)
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To override MORTAL's default allocation strategy, every public constructor should

have a corresponding allocator, and the allocator should call it explicitly. Alternatively,

the class can de�ne only allocators, and not depend on constructors at all. (However,

if the class is subclassed, the subclasses call up to the base constructors, not the base

allocators.)

If an allocator or deallocator is de�ned without a body, MORTAL generates a default

body that does the same thing that MORTAL would do if no allocator/deallocator was

de�ned. This can be useful if such methods need to be made available to external C

code.

Example:

c l a s s SampleData {

// Defau l t a l l o c a t o r with d e f au l t body ,

// wrapping the d e f au l t c on s t ruc to r .

pub l i c new ( ) ;

// Non−de f au l t a l l o c a t o r .

pub l i c new( i n i t : i n t ) {

data : SampleData = __c_lib . mal loc ( s i z e o f ( SampleData ) ) ;

data . c on s t ruc to r ( i n i t ) ;

r e turn data ;

}

// Defau l t d e a l l o c a t o r with d e f au l t body ,

// wrapping a d e f au l t d e s t ru c t o r that

// r e tu rn s an i n t e g e r .

pub l i c d e l e t e ( ) : i n t ;

}

3.4.6 Initializers and deinitializers

Similar to static constructors and destructors in other languages, initializers and deini-

tializers can be used to initialize and clean up the classes themselves, rather than their

instances. For example, initializers can be used to initialize the static �elds of a class,

or auto-register the class in a class factory. Initializers and deinitializers cannot have

arguments or return values.

Example:

c l a s s GlobalData {
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pub l i c s t a t i c count : i n t ;

i n i t i a l i z e r ( ) {

count = load_from_fi le ( ) ;

}

d e i n i t i a l i z e r ( ) {

save_to_f i l e ( count ) ;

}

}

3.4.7 Instance methods

Instance methods are de�ned using the same syntax as functions. Within instance

methods, a special variable, this, always refers to the current instance. Using it directly

is rarely necessary, however; it is implicitly used when referring to any instance data �eld

or method.

Example:

c l a s s SampleData {

pub l i c count : i n t ;

// Imp l i c i t r e f e r e n c e to " t h i s "

pub l i c get_count ( ) : i n t { count }

// Exp l i c i t r e f e r e n c e to " t h i s "

pub l i c inc_count ( ) { t h i s . count += 1 ; }

}

Methods are described in more detail in Section 3.5.

3.4.8 Static (class) methods

If a method is quali�ed with static, then the method becomes a class method, instead

of an instance method. Class methods work independent of any class instances, and

cannot implicitly refer to any instance data �eld or method. In particular, the special

variable this does not exist within a static method. Static data, however, is accessible

from static methods.

Example:
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c l a s s GlobalData {

pub l i c s t a t i c count : i n t ;

pub l i c s t a t i c t i c k ( ) { count += 1 ; }

}

In some languages, class methods get a this variable that refers to the class object

itself, rather than to a class instance. (In such languages, class objects are instances of

a metaclass type.) This kind of class method do not currently exist in MORTAL. but

metamethods o�er comparable functionality (Section 3.4.15).

3.4.9 Properties

Properties allow objects to expose state in a safe way. They o�er the same encapsulation

safety that accessors and mutators do in many object-oriented languages (such as C++

and Java), but are easier to use, since they are used just like regular data �elds. When a

property is read from, the getter is called, and when it's written to, the setter is called.

The getter is expected to return a value. The setter gets a single argument, named

value, which it can use to update the object's state. If no setter is de�ned, then the

property is read-only.

Example:

c l a s s SampleData {

p r i va t e real_count : i n t ;

pub l i c my_count : i n t {

get { real_count } // r e tu rn s real_count

s e t { real_count = value ; } // updates real_count

}

}

. . .

data : SampleData ( ) ;

data . my_count = 10 ; // c a l l s the s e t t e r ( with value 10)

x = data . my_count ; // c a l l s the g e t t e r
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3.4.10 Indexers

Indexers allow objects to act as key-value stores. (If the key is an integer, then the object

can act as an array.) Indexers work like properties, except that they have additional

arguments in the form of keys. Indexers can have more than one key (e.g., for matrices

and multidimensional arrays), and they can also be overloaded. Indexer keys are given

in square brackets.

Example:

c l a s s SampleData {

p r i va t e data : i n t ;

pub l i c [ key : i n t ] : i n t {

// r e tu rn s data i f key i s 0 , o therwi s e r e tu rn s −1
get { key == 0 ? data : −1 }

// updates data i f key i s 0 , o therw i s e does nothing

s e t { i f key == 0 then data = value ; }

}

}

. . .

data : SampleData ( ) ;

data [ 0 ] = 10 ; // c a l l s the s e t t e r ( with key 0 , va lue 10)

x = data [ 0 ] ; // c a l l s the g e t t e r ( with key 0)

3.4.11 Operators

By overloading operators, objects can make it possible to work with them in familiar

and comprehensive ways. Modern science makes use of many high-level operators (e.g.,

matrix multiplication and division), and so MORTAL de�nes a large number of operators

that can be overloaded by libraries that implement the functionality that the programmer

needs. (For a list, see Section 3.6.3.)

Example:

s t r u c t ComplexNumber {

pub l i c r : double ;

pub l i c i : double ;

pub l i c c on s t ruc to r ( r : double , i : double ) ;
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// Adding two complex numbers toge the r

// w i l l c r e a t e a new complex number .

pub l i c + (x : ComplexNumber ) : ComplexNumber {

ComplexNumber ( r + x . r , i + x . i )

}

}

Operators are described in more detail in Section 3.5.

3.4.12 Inheritance

In object-oriented programming, there are two aspects to inheritance. Implementation

inheritance allows child classes (subclasses) to extend or modify the functionality of one

or more parent classes (superclasses or base classes), without needing to reimplement

everything. The �elds, methods, and operators of the base classes become part of the

child class, or can be overridden as necessary. Protocol inheritance, on the other hand,

allows for subtyping. When inheriting from another class, you generally do both, but

this section will focus on implementation inheritance. (Protocol inheritance is covered

in the next section.)

MORTAL supports multiple inheritance; structs and classes may inherit from any

number of other structs and classes. Also, classes may inherit from structs and interfaces.

However, whenever multiple inheritance is available, there's generally a risk of con�icts

between the members of the base classes. Furthermore, if these base classes have a

common base class, then that base class may need to be inherited more than once,

and its methods and operators may be overridden in di�erent ways (the �Diamond

Problem�). MORTAL aims to allow con�ict resolution using the following approaches:

• If all bases (possibly except one) are interfaces (or mixins, see Section 3.4.19), then

there can be no con�icts. If a member of a base interface has the same name as a

member of a base class, then that interface member is simply implemented by that

base class. Also, although interfaces can themselves inherit, they can't contain

code, so they can't refer to their base classes in a particular way. Hence, their base

classes do not need to be inherited in a particular way, so duplicates can safely be

removed.

• Class frameworks may optionally forbid multiple inheritance of non-interface types,

thus making the above rule the only allowed rule for that class framework.
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• Abstract members cannot con�ict, for the same reason that interface members

cannot con�ict. (However, bases of abstract classes can.)

• Referring to a particular base class's version of a member is possible by explicitly

qualifying the reference with the appropriate base class (whether or not a con�ict

exists). For di�cult situations (e.g., accessing a particular version of a common

base class), multiple quali�ers may be necessary.

• Classes may indicate which member versions they wish to inherit with using state-

ments.

• Otherwise, unquali�ed member references can be resolved by ordering all base

classes in some reasonable order of preference (e.g. breadth-�rst search). C3

linearization [11] o�ers a consistent way to do this, and is gaining in popularity

among other languages. MORTAL will thus also use this ordering.

• At some point, to solve the issue of a common base class, MORTAL might also

support C++-like virtual inheritance. However, it is hoped that interfaces are a

good enough solution for the problems that virtual inheritance would solve, so that

MORTAL might not need it.

For overloaded methods and operators, there are additional complications.

• All overloads for a particular method name are, by default, taken from the same

class. That is, if a child class de�nes a method with the same name (but di�erent

parameters) than a method in a base class, then the base class's version is hidden,

and only accessible through quali�ed references. Similarly, if two base classes

de�nes methods with the same names, then only the versions in one of the base

classes (chosen using the rules above) will be visible.

• Classes that want to combine overloads from their base classes (possibly with their

own overloads) may indicate this with using statements.

Example:

ab s t r a c t c l a s s Veh ic l e {

pub l i c ab s t r a c t d r i v e ( ) ;

pub l i c ab s t r a c t wash ( ) ;

}
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// LandVehicle and WaterVehicle i n h e r i t s from Vehic l e

// and implements the " dr i v e " and "wash" methods .

c l a s s LandVehicle : Veh ic l e {

pub l i c d r i v e ( ) { . . . }

pub l i c wash ( ) { . . . }

}

c l a s s WaterVehicle : Veh ic l e {

pub l i c d r i v e ( ) { . . . }

pub l i c wash ( ) { . . . }

}

c l a s s AmphibiousVehicle : LandVehicle , WaterVehicle {

// Exp l i c i t l y i nd i c a t e which "wash" to i n h e r i t

us ing WaterVehicle . wash ;

}

. . .

c r a f t : AmphibiousVehicle ( ) ;

// S ince LandVehicle i s the f i r s t base c l a s s ,

// LandVehicle . d r i v e ( ) i s chosen here .

c r a f t . d r i v e ( ) ;

// WaterVehicle . wash ( ) i s used here .

c r a f t . wash ( ) ;

3.4.13 Subtype polymorphism

In object-oriented programming, protocol inheritance allows for subtyping by allowing

subclass instances to be used as if they were superclass instances, i.e., the subclass

exposes the same methods and operators as the superclass, and can be used in place of

the superclass, but may have a di�erent implementation.

In order for a class to support subtype polymorphism, it must allow its methods

and operators to be overridden (reimplemented) by subclasses. This can be done by

qualifying them with virtual. Subclasses can then override virtual methods by de�ning

its own implementation of them, quali�ed with override.

MORTAL interfaces are implicitly polymorphic; all the methods and operators of an
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interface are implicitly virtual and can (and usually must) be overridden by its subclasses.

However, non-interface classes must explicitly qualify its methods and operators with

virtual. Structs do not support subtype polymorphism at all.

Declaring a member as virtual means that its implementation may need to be selected

at runtime, based on the instance's dynamic (runtime) type. For this reason, calling

virtual methods may be slightly slower than calling non-virtual methods.

A subclass may declare that a virtual method cannot be overridden further by qual-

ifying its implementation with final. In some cases, this may allow the compiler to

select the implementation at compile time instead of runtime.

Example:

i n t e r f a c e Washable {

wash ( ) ;

}

c l a s s LandVehicle : Washable {

pub l i c ov e r r i d e wash ( ) { . . . }

pub l i c v i r t u a l d r i v e ( ) { . . . }

}

c l a s s Automobile : LandVehicle {

pub l i c ov e r r i d e d r i v e ( ) { . . . }

}

. . .

car1 : LandVehicle = Automobile ( ) ;

car2 : Washable = Automobile ( ) ;

// Automobile . d r i v e ( ) i s used here .

car1 . d r i v e ( ) ;

// LandVehicle . wash ( ) i s used here .

car2 . wash ( ) ;

// Note : s i n c e " dr iv e " i s not in Washable ,

// car2 . d r i v e ( ) i s not va l i d .
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3.4.14 Parametric polymorphism

Parametric polymorphism allows a class to operate on data of arbitrary types, without

signi�cantly losing type safety. In many languages, this is called generics. For example,

a generic array class can provide a single array implementation that will work for any

data type. Although subtype polymorphism (or even untyped pointers) can be used

for this purpose, this may involve undesirable typecasting (note the inability to call

car2.drive() in the previous section). With parametric polymorphism, the compiler

can ensure type safety and remove the need for explicit typecasts.

By default, MORTAL generics employ type erasure (much like Java). This implies

that the class implementation itself does not have direct knowledge of the type used,

and may internally operate on untyped pointers (unless the class restricts the allowable

types, e.g. if it's a specialization). The actual type to use is known only to the user

of the class (although there are ways around this, such as implicit parameters (Section

3.5.5)). Between the class and its users, the compiler will automatically insert typecasts

where necessary, preserving type safety. If the actual type is a value type, such typecasts

may perform conversion into a reference type by allocating memory (�boxing�). Many

third-party data structure libraries (such as GLib) have interfaces based on untyped

pointers, and thus work well with type erasure.

Example:

// T r ep r e s en t s the parametr ic type , here un r e s t r i c t e d .

// This conta ine r s t o r e s a s i n g l e ob j e c t o f type T.

c l a s s Container<T> {

s t a t i c d e l e ga t e Destroy ( data : T) ;

sz : i n t ;

des t roy : Destroy ;

data : T? ;

// Imp l i c i t parameters o f f e r s a way around

// type e ra su r e . Here the con s t ruc to r

// r e c e i v e s the s i z e o f T, as we l l as

// i t s d e a l l o c a t o r as a s t a t i c de l egate ,

// used as a ca l l ba ck in the de s t ru c t o r .

c on s t ruc to r ( imp l i c i t sz : i n t = s i z e o f (T) ,

imp l i c i t des t roy : Destroy = T. d e l e t e ) ;

d e s t ru c t o r ( ) { i f data !== nu l l then des t roy ( data ) ; }
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set_val ( new_data : T) { data = new_data ; }

get_val ( ) : T { data }

get_s i ze ( ) : i n t { sz }

}

. . .

// Create a conta ine r to s t o r e an i n t e g e r .

// Type arguments must always be preceded by a co lon .

i n t s t o r e : Container <: int >() ;

i n t s t o r e . set_val ( 4 2 ) ; // boxes and s t o r e s the i n t e g e r

x = i n t s t o r e . get_val ( ) ; // r e t r i e v e s and unboxes the i n t e g e r

Parameters can have defaults. Example: class Container<T = int>

Polymorphic classes can be partially or fully specialized. To partially specialize, de�ne

a class implementation with stronger restrictions than the more general implementation.

To fully specialize, de�ne a class implementation for a particular type. MORTAL will

choose the most specialized implementation that matches the parameters. (In cases of

ambiguity, a compilation failure may result.) Types can be restricted/specialized in the

following ways:

• The type can be quali�ed using class, struct, or delegate. This restricts the

type to either a reference type, a value type, or delegate type, respectively. Exam-

ple: class Container<class T>

• The type can be restricted to subclasses of a particular superclass or interface.

Example: class Container<T: Base>

• A particular type can be given (full specialization). Example: class Container<:int>

(In this case, there's no named parameter; the implementation would use int in-

stead of T.)

It is also possible for parameters to be values instead of types (for example, to specify

the size of a �xed-size array type). In this case, both the class implementation and the

class user must enclose the parameter in square brackets. Note that type erasure also

a�ects such parameters, and it may thus be necessary to use implicit parameters to gain

access to these values.

Example:

// Here , the " l en " parameter d e f a u l t s to 1 .

c l a s s FixedArray<T, [ l en : i n t = 1]> {
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. . .

}

. . .

v ec to r : FixedArray <: int , [ 3 ] > ( ) ;

In the event that type erasure is undesirable, it's possible to implement parametric

polymorphism by placing the implementation into a transparent class (Section 3.4.19),

and then subclassing it as a non-transparent class for every type to be supported. Each

such subclass may be given the same name, and be de�ned as specializations. This

will result in compiling a separate implementation for each type (like C++, but more

explicit). This is a tradeo�; while this may in some cases result in more e�cient code,

it may also signi�cantly increase the size of the resulting executables.

Example:

// Place implementation in to a t ransparent c l a s s

// to prevent type e ra su r e .

t ransparent c l a s s ContainerImpl<T> {

. . .

}

// Create normal c l a s s e s der ived from i t .

// This implements i t f o r i n t e g e r s and boo leans .

c l a s s Container <: int >: ContainerImpl <: int >;

c l a s s Container <:bool >: ContainerImpl <:bool >;

. . .

// Create a conta ine r to s t o r e an i n t e g e r .

i n t s t o r e : Container <: int >() ;

3.4.15 Metamethods

In MORTAL, metamethods are methods that are implicitly regenerated in subclasses

(unless explicitly overridden), in a way that's useful for metaprogramming. Many class

frameworks require a signi�cant amount of �boilerplate� code to be written for every

class to be used with the framework. With metamethods, such code only needs to be

written once, in some common base class, and then the required code is automatically

generated for every class that derives from this base class. In some cases, metamethods

can also be used to facilitate subtyping-like code reuse without virtual methods (static
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polymorphism), which may result in faster code, at the cost of increasing the size of the

resulting executable.

Metamethods can be compared to metaclasses in dynamic languages (in which case

MORTAL metamethods are slightly less powerful), or to the �curiously recurring tem-

plate pattern� in C++ (in which case MORTAL metamethods are slightly more power-

ful).

Example:

c l a s s Veh ic l e {

// Here , clsname ( ) r e tu rn s the name o f the c l a s s

// as a s t r i n g . Veh ic l e . clsname ( ) r e tu rn s "Veh ic l e " .

pub l i c s t a t i c meta clsname ( ) : CString { @#owner . name }

// turn_on ( ) i s a l s o r egenera ted f o r every subc la s s ,

// so that i t w i l l use the subc la s s ' s i g n i t i o n method .

pub l i c meta turn_on ( ) { i g n i t i o n ( ) ; }

pro tec ted i g n i t i o n ( ) { . . . }

}

c l a s s Automobile : Veh ic l e {

// The clsname ( ) and turn_on ( ) methods are imp l i c i t l y

// regenera ted f o r Automobile . Thus , Automobile . clsname ( )

// w i l l r e turn "Automobile " , and Automobile . turn_on w i l l

// c a l l Automobile . i g n i t i o n ( even though Veh ic l e . i g n i t i o n

// isn ' t v i r t u a l ) . ( I f turn_on had not been regenerated ,

// Veh ic l e . turn_on would be i nh e r i t e d as−i s , i . e . , i t

// would c a l l Veh ic l e . i g n i t i o n , not Automobile . i g n i t i o n . )

pro tec ted i g n i t i o n ( ) { . . . }

}

c l a s s Boat : Veh ic l e {

// Metamethods can be over r idden .

pub l i c turn_on ( ) { . . . }

}

car : Automobile ( ) ;

// Note : s i n c e clsname and turn_on aren ' t v i r t u a l methods ,
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// the r e s u l t depends on the ( s t a t i c ) type o f the

// " car " va r i a b l e i t s e l f , not on the ( dynamic ) type o f

// the ob j e c t i t i s a r e f e r e n c e to .

name = car . clsname ( ) ; // r e tu rn s "Automobile"

car . turn_on ( ) ; // uses Automobile . i g n i t i o n

3.4.16 Runtime Type Information

In object-oriented programming, a Runtime Type Information (RTTI) system allows

any piece of code to identity the runtime (dynamic) type of some (polymorphic) object

that's typically only known to be a subclass of some base class. Typically, a program

will want to downcast the reference to the proper subclass type to gain access to its

functionality, and RTTI makes it possible to identify which objects are instances of a

particular subclass and which are not.

MORTAL is designed to be compatible with third-party class frameworks (such as

Gtk+) that implement their own type information systems. For this reason, MORTAL

does not have a standard RTTI system, but requires class frameworks to provide their

own, if they need one.

To provide RTTI, two operators must be overloaded:

• The typeid operator. This operator should take no arguments, and the return

type may be chosen by the class framework, but the result should be some unique

value representing the object's type. (For Gtk+, for example, it could return a

GType, an integer ID representing a registered type.)

• The is operator. This operator should take a single argument (the result of the

typeid operator), and return a Boolean value, which says whether the class is of,

or is a subclass of, the type identi�ed by the argument.

Both of these operators should be provided as both static and non-static versions. The

static version is used if the operators are used on the class itself, and the non-static

version is used on class instances. Since RTTI is meant to work for polymorphic objets,

the non-static version of these operators should typically either be, or call, a virtual

method, unless the framework has other means of determining an object's dynamic type

(such as storing the type ID in a �eld). Furthermore, in implementations where new

typechecking code needs to be generated for every subclass, the operators may also need

to be metamethods.
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When a class framework implements RTTI, MORTAL will use it whenever appropri-

ate. For example, the as operator (Section 3.6.6) can use it to check whether a typecast is

safe, and multimethod dispatch (Section 3.5.11) can check argument types to determine

which implementation of an overloaded method to use.

Example:

// This s imple RTTI implementation uses the c l a s s name

// as a s t r i n g to i d e n t i f y the type .

// I t does not support mu l t ip l e i nh e r i t an c e .

c l a s s BaseClass {

// The he lpe r methods

pro tec ted meta s t a t i c cls_name ( ) : CString { @#owner . name }

// the non−meta c l s_ i s o v e r r i d e s the meta c l s_ i s

// f o r t h i s c l a s s , but not f o r i t s s ub c l a s s e s

pro tec ted s t a t i c c l s_ i s (n : CString ) : bool { cls_name ( ) == n }

protec ted meta s t a t i c c l s_ i s (n : CString ) : bool {

i f cls_name ( ) == n return true ;

( @super ) . c l s_ i s (n)

}

pro tec ted meta v i r t u a l obj_cls_name ( ) : CString { cls_name ( ) }

pro tec ted meta v i r t u a l obj_is (n : CString ) : bool { c l s_ i s (n) }

// The ope ra to r s

pub l i c meta s t a t i c type id ( ) : CString { cls_name ( ) }

pub l i c meta type id ( ) : CString { obj_cls_name ( ) }

pub l i c meta s t a t i c i s (n : CString ) : bool { c l s_ i s (n) }

pub l i c meta i s (n : CString ) : bool { obj_is (n) }

}

3.4.17 Reference counting

Reference counting is a memory management scheme that allows an object to be strongly

referenced (�owned�) by more than one user. Each object has a counter that tracks the

number of owners. When the last owner of the object goes away, the object can be

deallocated. Reference counting only applies to classes, not to structs.

MORTAL is designed to be compatible with third-party class frameworks (such as

Gtk+) that implement their own memory management schemes. For this reason, MOR-
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TAL does not have a standard reference counting system, but requires class frameworks

to provide their own, if they need one.

To provide reference counting, the class must de�ne the special methods referencer

and unreferencer, neither of which may take an argument or return a value. The

referencer should increase the instance's reference count, and the unreferencer should

decrease it, and deallocate the instance when the count reaches zero. The increases and

decreases should be atomic, and newly created instances should have a reference count

of 1. The compiler will insert calls to these special methods automatically whenever it

sees that an object gains a new strong reference (e.g., through assignment), or an old

strong reference vanishes (e.g., through going out of scope). However, the compiler may

use static analysis to minimize the number of such calls.2

Example:

// This s imple r e f c ount implementation uses the

// r e gu l a r increment /decrement ope ra to r s .

// Thus , i t i s not th r ead sa f e .

c l a s s Counted {

r e f count : i n t = 1 ;

r e f e r e n c e r ( ) { r e f count++; }

un r e f e r en c e r ( ) { i f !−− r e f count d e l e t e t h i s ; }

}

. . .

obj1 : Counted ( ) ; // i n i t i a l r e f count i s 1

{

obj2 : Counted = obj1 ; // r e f count i s now 2

obj1 = nu l l ; // r e f count i s now 1

} // obj2 goes out o f scope

// r e f count i s now 0 , so the ob j e c t i s de l e t ed

Classes may optionally support weak references (references that are not counted, but

still are tracked and automatically set to null if the referenced object is destroyed).

This can be done by de�ning the special methods addweakref and removeweakref,

which each should take a reference to a reference (i.e., the parameter should be of

class type, and should be quali�ed with ref). The object should remember the weak

2Thread-safe refcounting implementations may stall the CPU pipeline every time they touch the
counter, which may have a signi�cant performance impact. This makes minimizing the number of
such operations a worthwhile e�ort.
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references registered using these methods, and set them to null when the object is

destroyed. As with strong references, the compiler will insert calls to these special

methods automatically; the programmer just needs to use the weak quali�er where

appropriate.

Reference counting is optional in MORTAL. If a class does not provide reference

counting, then MORTAL instead enforces the rule that any instance of that class may

only have one owner at any time. Any other reference to the same instance must be

explicitly or implicitly quali�ed as weak or unowned. This is less convenient for the

programmer, but can be more e�cient, and is nearly as safe.

Memory management in MORTAL is described in more detail in Section 2.9.

3.4.18 Abstract classes

Abstract classes are simply classes that cannot be instantiated. As this restriction does

not apply to its subclasses, abstract classes are usually used as superclasses for a class

hierarchy where the superclass itself is too generic to be meaningful to use on its own.

Unlike interfaces, they can contain code that can be inherited by subclasses (see Section

3.4.12 for an example).

Another potential use for abstract classes may be to create a class with only static

members, in which case the class does not need to be instantiated. However, the same

functionality could also be achieved using regular functions in a namespace.

Abstract classes may contain abstract methods (methods without implementations).

Since non-abstract classes cannot contain abstract methods, non-abstract classes that

want to inherit from an abstract class must override its abstract methods.

3.4.19 Transparent classes

Transparent classes are among MORTAL's most important metaprogramming features.

Transparent classes work a lot like macros. No code is generated for the class itself;

rather, the relevant parts of the class de�nition is substituted into the code wherever

the class is used. This can be extra useful when combined with MORTAL's other

metaprogramming facilities, allowing the generated code to be altered in various ways.

Transparent classes can be used in many ways. Here are some of them:

• If a transparent struct that does not derive from another struct is used directly,

then each of its �elds will be instantiated independently in the generated code. The

class's methods will be treated as transparent methods (Section 3.5.13), meaning
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they will be inlined. This can, for example, be used to write wrapper classes for

external libraries with zero runtime overhead. This use is only allowed for structs,

not classes.

• If a transparent class/struct that does derive from another class/struct is used

directly, then the generated code will use the base class/struct. Any �elds de�ned

in the transparent class are treated as aliases for the corresponding �elds in the

base class/struct. The class's methods will be treated as transparent methods,

as above. This can, for example, be used to write wrapper classes for externally

de�ned structures with zero runtime overhead. This use is allowed for both classes

and structs.

• If a non-transparent class derives from a transparent class, then the transparent

class's �elds and methods will be generated as part of the derived class, as if they

were metamethods (Section 3.4.15). This can, for example, be used to write mixins

(pieces of behaviour that do not themselves form an independent class, but can

be �mixed into� other classes). Multiple mixins can be inherited, even with class

frameworks that do not otherwise support multiple inheritance.

• Deriving from a generic transparent class can also be used to get parametric poly-

morphism without type erasure (Section 3.4.14).

• With additional metaprogramming glue (to be implemented in future versions of

MORTAL), it would also be possible to use transparent classes to add support for

other OOP-based programming paradigms, such as aspect-oriented programming.

3.4.20 Inner classes

Inner classes are classes that are nested inside another class (the outer class), and whose

instances retain a reference to an instance of the outer class. This allows inner class

instances to refer to all �elds and methods of the outer class as if they were part of the

inner class itself. A typical use of inner classes is to implement iterators.

It is possible to nest classes without making them inner classes, by qualifying the

nested class with static.

Example:

c l a s s Outer {

data : i n t ;
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pub l i c con s t ruc to r ( data : i n t ) ;

pub l i c c l a s s Inner {

// d i r e c t a c c e s s to "data"

get ( ) : i n t { data }

}

pub l i c s t a t i c c l a s s NotInner {

// no d i r e c t a c c e s s to "data"

}

}

. . .

obj : := Outer ( 4 2 ) ;

// Inner c l a s s e s must be cons t ruc ted

// from an in s tance o f the outer c l a s s .

inn : := obj . Inner ( ) ;

x = inn . get ( ) ; // r e tu rn s 42

// S t a t i c c l a s s e s does not have to be .

not inn : := Outer . NotInner ( ) ;

3.4.21 Interfaces

Interfaces are a kind of abstract class that cannot contain code or data, only abstract

virtual methods and operators. All methods and operators de�ned within an interface

de�nition are implicitly abstract and virtual. The primary use of interfaces is in subtype

polymorphism (Section 3.4.13), where the interface represents the (abstract) type and

any classes that inherit from it represent subtypes. Although an ordinary abstract class

could do the same, the advantage of interfaces is that they avoid some of the issues

concerning multiple inheritance (Section 3.4.12).

3.4.22 Member access control

As is common among OOP languages, class/struct members can be public, protected, or

private. The default access level is private; any member that should be visible outside

the class itself must be explicitly quali�ed with public or protected.

• If a member is private, then only members of the class and its nested/inner classes

can access that member directly.
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• If a member is protected, then members of subclasses can also access that member

directly.

• If a member is public, then everyone that can access the class itself can also access

that member.

Access control for the class/struct itself is covered in Section 3.4.24.

3.4.23 Invariants

As part of MORTAL's support for contract programming, classes may de�ne invariants.

Class invariants are, essentially, conditions that all methods are obliged to preserve.

Note that methods only need to conform to an implication relation; the invariants only

need to be true on exit if they were true on entry. The only exception is the alloca-

tor or constructor, who may not assume that the invariants are true on entry. (By

mathematical induction, this would su�ce to prove that the invariants will always be

true after construction.) Furthermore, methods should not need explicit runtime checks

for whether the invariants are true. (Indeed, MORTAL's optimizer might remove such

checks, under the assumption that they are redundant.)

De�ning class invariants helps prevent bugs, by allowing MORTAL to detect and

report methods that may violate them. Unlike many other languages that support

contract programming, MORTAL contracts are meant to be checked at compile time

through static analysis, not at runtime. This may a�ect the way complex contracts

should be written, but it also increases the chances of detecting and understanding

rarely-occurring and hard-to-�nd bugs, and reduces the need for testing to do so.

Example:

c l a s s Storage {

value : i n t ;

b i a s : i n t ;

i nva r i an t {

value >= 0 ;

b i a s >= −5 && bia s <= 5 ;

va lue + b ia s < 10 ;

}

pub l i c set_value_unsafe ( v : i n t ) {

// t h i s should f a i l to compi le s i n c e the
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// argument i s un r e s t r i c t e d and unchecked .

va lue = v ;

}

pub l i c set_value_safe ( v : i n t ) {

// t h i s should compi le s i n c e the

// argument i s checked .

i f v >= 0 && v + bia s < 10 {

value = v ;

}

}

}

For applying conditions to individual methods, see Section 3.5.14.

3.4.24 Class Quali�ers

Structs, classes, and interfaces may have the following quali�ers applied to them.

abstract Abstract class. See Section 3.4.18.

final The class cannot be subclassed. See Sections 3.4.12 and 3.4.13.

public The class is accessible from other modules.

private The class is not accessible from other modules. This is the

default.

sealed The class can only be subclassed from the same module, not

from other modules.

static If used on a nested class, the class is not an inner class. See

Section 3.4.20. Currently no e�ect on top-level classes.

transparent The class is transparent. See Section 3.4.19.

__c_throw_arg If used on an exception base class, functions/methods that may

throw exceptions of this type uses an extra parameter for

returning such exceptions. This mechanism may be used for

compatibility with external class frameworks like Gtk+.

__rtinit If used on a vtable type (see below), the vtable object is to be

allocated and initialized by program code, not by the compiler.

This may be used to customize the vtable initialization, to be

compatible with external class frameworks like Gtk+.
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__vtable If used on a nested class, MORTAL uses it as the enclosing class's

vtable (table of virtual methods) type, instead of generating such

a type itself. This may be used to customize the vtable layout, to

be compatible with external class frameworks like Gtk+.

3.4.25 Field Quali�ers

Data �elds within structs and classes may have the following quali�ers applied to them.

public See Section 3.4.22.

private See Section 3.4.22. This is the default.

protected See Section 3.4.22.

ref The �eld is an indirect reference. May be used with struct types

to store a reference instead of a copy, or with class types to store

a reference to a reference. Should only be used for compatibility

with external libraries, as MORTAL's memory management

system cannot track such references. Where possible, create new

classes instead.

static The �eld is class data, not instance data. See Section 3.4.2.

weak The �eld is a weak reference. May be used if the referenced class

can track weak references. If so, weak references become null

when the referenced object ceases to exist. See Section 3.4.17.

__outer If used in an inner class, MORTAL uses the �eld as the outer

class reference, instead of generating such a �eld itself.

__super If used in a subclass, MORTAL stores the superclass instance

data in the �eld, instead of generating such a �eld itself. This

may be used to customize the instance layout, to be compatible

with external class frameworks like Gtk+.

__vtable If used, MORTAL uses the �eld as the class's vtable (table of

virtual methods) reference, instead of generating such a �eld

itself. This may be used to customize the instance layout, to be

compatible with external class frameworks like Gtk+.
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3.4.26 Method Quali�ers

Methods and operators within structs and classes may have the following quali�ers

applied to them.

abstract Abstract method. May only be used in abstract classes. See

Section 3.4.18.

const The method does not modify the instance it is called on. For

property getters, this is the default. See Section 3.3.3.

extern The method implementation is in an external library. See Section

3.2.14.

final The method cannot be overridden. See Section 3.4.13.

meta Metamethod. See Section 3.4.15.

multimethod Multimethod. See Section 3.5.11.

override The method overrides a superclass method. See Section 3.4.13.

public See Section 3.4.22.

pure The method has no side e�ects.

private See Section 3.4.22. This is the default.

protected See Section 3.4.22.

static The method is a class method. See Section 3.4.8.

transparent The method is transparent. See Section 3.5.13.

virtual The method supports subtype polymorphism. See Section 3.4.13.

3.5 Functions, methods, and operators

Functions, methods, and operators are self-contained pieces of code. All of the program's

code must be inside a function, method, or operator. (Property getters and setters are

considered a special type of method.) The program's entry point should be a public

function (not a method) called main (Section 3.5.15).

The following sections mostly discuss functions. It should be understood that anything

said about functions also applies to methods, operators, and property getters/setters,

unless otherwise speci�ed.
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3.5.1 Parameters

Functions may take parameters. In this text, the word parameter is used to denote the

formal argument, i.e., the named object used in the de�nition of the function. The word

argument is used to denote the actual argument, i.e., the value that a caller passes to the

function. A function call may be considered to bind the arguments to the parameters

(or, more accurately, the initial values of the parameters).

All parameters must have an explicitly declared name and type. Since MORTAL

allows callers to bind arguments to parameters by name (not only by position), pro-

grammers should use meaningful parameter names.

Parameters may have default expressions. If the caller does not bind an argument to

a parameter that has a default expression, then the default expression is evaluated, and

its result bound to the parameter instead. (If there's an unbound parameter without a

default expression, a compilation error results.)

Example:

// The func t i on " d iv id e " has two parameters ,

// named " div idend " and " d i v i s o r " ,

// both o f type " i n t " . The d i v i s o r has a

// d e f au l t expres s ion , which eva lua t e s to one .

// I t s re turn value i s o f type " i n t " .

d i v i d e ( d iv idend : int , d i v i s o r : i n t = 1 ) : i n t

{

re turn div idend / d i v i s o r ;

}

. . .

// bind by po s i t i o n

x = d iv id e (12 , 3 ) ; // 12 / 3 = 4

// us ing d e f au l t exp r e s s i on

x = d iv id e ( 5 ) ; // 5 / 1 = 5

// bind by name

x = d iv id e ( d i v i s o r = 2 ,

d iv idend = 6 ) ; // 6 / 2 = 3
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3.5.2 Return type

Functions may return values. To do so, the return type must be explicitly declared. If

no return type is declared, then the function cannot return a value. If a return type is

declared, then the function must always return a value (unless it throws an exception).

Failure to do so will result in a compilation error.

Example:

// The func t i on " find_answer" has a

// re turn type o f " i n t " .

f ind_answer ( ) : i n t

{

re turn 42 ;

}

// The func t i on "do_nothing" has no

// re turn type .

do_nothing ( )

{

}

3.5.3 Exception speci�cations

MORTAL uses checked exceptions. That is, functions that may throw exceptions must

declare the kind of exceptions they may throw (or a superclass of those exceptions).

Callers that do not plan to catch the exceptions must themselves declare that they can

throw those exceptions, and so on. Failure to do so will result in a compilation error.

(The primary reason is that MORTAL does not have a standard exception class, but

the exception handling system needs to know what type of exception you wish to use in

order to generate the appropriate code. See Section 3.8.1.)

Example:

import " g l i b " ;

// open_f i l e r epo r t s e r r o r s us ing GLib ' s GError system .

open_f i l e (name : CString ) : F i l e throw GLib . Error

{

f : := F i l e (name , " r " ) ;
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i f ! f {

throw GLib . F i l eE r r o r (GLib . Fi leErrorCode .NOENT) ;

}

re turn f ;

}

3.5.4 Abbreviated return syntax

If the last statement in a function is a return statement, then it can be abbreviated

by omitting the return keyword and the �nal semicolon. This can be convenient for

very short functions. (Omitting the semicolon is important. If there is a �nal semicolon,

the expression will not get interpreted as an abbreviated return statement, and so a

compilation error will result because the function does not return a value.)

Example:

// These two func t i on s are equ iva l en t .

find_answer_long ( ) : i n t

{

re turn 42 ;

}

find_answer_short ( ) : i n t { 42 }

3.5.5 Implicit parameters

If a function parameter is quali�ed with implicit, then the caller cannot bind an argu-

ment to it. For the caller, the parameter is e�ectively invisible. An implicit parameter

must have a default expression. This may be used to automatically pass information

available to the caller to the function. This is typically used to work around type erasure

when using parametric polymorphism.

Example:

// Due to type erasure , s i z e o f (T) i s meaning less i n s i d e

// t h i s funct ion , but i s meaningful to the c a l l e r .

// Thus , i t can be eva luated as an imp l i c i t parameter .

get_size_of<T>( imp l i c i t sz : i n t = s i z e o f (T) , count : i n t ) : i n t

{

re turn sz ∗ count ;
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}

. . .

x = get_size_of <: int >(5) ; // x = s i z e o f ( i n t ) ∗ 5

3.5.6 �this� reference

Non-static methods have a special invisible parameter called this, which is a reference

to the class instance the method was called on. The this reference is automatically used

when referring to other non-static class members, so using it explicitly isn't normally

needed, unless it's necessary to refer to the instance itself.

3.5.7 Variadic functions

Variadic functions are functions that can accept an unlimited number of arguments.

For this purpose, it's possible to add special parameters to collect extra arguments

(arguments that cannot be bound to any of the other parameters). These parameters

should be of some container type that can store the extra arguments.

Arguments provided by position and arguments provided by name are stored in dif-

ferent containers. The container for by-position parameters should be a sequential data

structure, such as a list or an array, and the container for the by-name parameters should

be a key-value data structure, such as a hash table.

The parameter that should hold the by-position arguments must be pre�xed by one

asterisk, and the parameter that should hold the by-name arguments must be pre�xed

by two asterisks. If either is not provided, then extra arguments of that type is not

accepted.

Example:

import " g l i b " ; // use L i s t and HashTable from GLib .

// Here , a l l ext ra arguments are o f " i n t " type .

extra_args ( arg : int ,

∗pos_args : GLib . L i s t <: int >,

∗∗key_args : GLib . HashTable<:CString , : int >)

{

. . .

}
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. . .

// " arg " i s s e t to 24 , and "pos_args"

// ge t s the two e n t r i e s 25 and 26 .

// "key_args" ge t s an entry with

// key " extra " and value 42 .

extra_args (24 , 25 , 26 , ext ra =42);

3.5.8 C-style varargs

The C varargs mechanism can be used by importing the stdarg module. With this

module, a function can support either by-position or by-name arguments (but not both).

The container type to use is va_args. Functions must have at least one non-varargs

parameter before the va_args parameter (but that parameter may be implicit).

If va_args is used for by-position arguments, then the argument values are passed

unchanged. The argument list is not automatically terminated (though it's possible to

use implicit arguments to do so; see below).

If va_args is used for by-name arguments, then each argument will be passed as a

pair of values (the argument name in the form of a C string, followed by the argument

value). The argument list is automatically terminated with a null pointer.

Using C-style varargs is inherently unsafe, since the compiler has no general way of

checking whether the input is of the correct type or has the correct number of arguments.

MORTAL only supports C-style varargs for compatibility reasons. However, there are

two ways of mitigating the risks.

• If the function takes a list that's to be terminated with a special value, then that

special value can be added as an implicit parameter after the va_args parameter.

This way, callers do not need to remember to terminate the list themselves. (Note

that parameters listed after the va_args parameter can only be used for this

purpose. Attempting to access such parameters directly will not work.)

• If the function takes a C format string, then the format string argument can be

quali�ed with __c_printf. In this case, MORTAL may be able to check that

the extra arguments conform to the format string (provided the format string is a

constant).

Example:
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import " s t d i o " , " s tdarg " ;

// Pr in t s e r r o r message to standard e r r o r

pr in t_er ro r (__c_printf msg : CString , ∗ args : va_args )

{

s t d e r r . p r i n t f ("ERROR: " ) ;

s t d e r r . v p r i n t f (msg , args . i t e r a t o r ( ) ) ;

s t d e r r . p r i n t f ("\n " ) ;

}

3.5.9 Output parameters

If a parameter is quali�ed with ref or out, it becomes an output parameter. This means

it can be used to return values to the caller (in addition to the return value). If, as is

the case in many libraries, the return value is used to indicate success or failure, it may

even be necessary to use output parameters to return results.

An output parameter is always passed by reference, never by value (even for struct

types). Thus, if the caller has bound the parameter to a variable or �eld, then writing

to the parameter will also change that variable or �eld for the caller. If the parameter

type is already a reference type, then a reference to the reference is passed; this means

that the function may change not only the object being referenced, but the reference

itself (e.g., to make it refer to a di�erent object).

The ref and out quali�ers may be followed by a question mark (making them ref?

and out?, respectively). This makes the argument reference nullable, allowing the pa-

rameter to not be bound to anything. (This is di�erent from having a default expression;

if a default expression is used, the result of the default expression is bound to the pa-

rameter, and then, in the case of output parameters, passed by reference.) To check

whether an argument reference is null, the ref operator can be used, e.g. ref arg1

== null. For struct types, the === operator will also work for this purpose.

A parameter quali�ed with ref is an input-output parameter. It can be used for

passing information both into and out of the function. The function may access the

original value of the argument before changing it, or decide not to change it.

A parameter quali�ed with out is an output-only parameter. It can only be used for

passing information out of the function, not into it. MORTAL automatically initializes

output-only parameters the same way variables without explicit initializers are initialized
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(see Section 3.2.6). The function can not access the original value of the argument; any

original value will be lost.3

Output-only parameters may not have any obvious functional bene�ts over input-

output parameters, but there are still several reasons for supporting them:

• They can have documentation bene�ts, making it clearer how certain parameters

should be used.

• They can be used for compatibility with external libraries that expect a pointer

to an uninitialized structure to be passed in as an argument.

• When a function may be called remotely using RPC (remote procedure call) mech-

anisms, declaring a parameter output-only may help reduce the amount of data

that needs to be sent to make the call.

3.5.10 Ad hoc polymorphism

Ad hoc polymorphism, or overloading, allows multiple function de�nitions to share the

same name, and a de�nition to be automatically chosen depending on the arguments.

Each de�nition must have di�erent parameter lists. To minimize ambiguities when

binding arguments by position, MORTAL requires that each parameter list must either

di�er in at least one parameter position without a default expression, ignoring names

and most quali�ers. Alternatively, in case of methods, the method de�nitions may di�er

in staticness.

When an overloaded function is called, the compiler will choose one of the available

de�nitions, depending on the arguments of the call. The overload resolution proceeds

as follows:

• All de�nitions that do not �t the arguments are rejected. Non-static methods are

rejected if there's no class instance.

• The remaining de�nitions are given either �Exact Match� rank or �Conversion�

rank. If at least one argument requires a type conversion other than an upcast to

a superclass, the rank is �Conversion�, otherwise it is �Exact Match�.

• If de�nitions with �Exact Match� rank exist, then all de�nitions with �Conver-

sion� rank are rejected.

3In other words, the function assumes that arguments bound to output-only parameters are uninitial-
ized, and that it must initialize them itself.
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• De�nitions that are strictly more general are rejected, leaving only the most speci�c

de�nitions that match. A de�nition is strictly more general than another if all

positional parameter types of the other method match (can be upcast to) the

types of the more general method, but not vice versa.

• In case of methods, if both static and non-static de�nitions remain, the static

de�nitions are rejected.

• If only one de�nition remains, it is chosen. Otherwise, the call is ambiguous or

invalid, and a compilation error results.

Example:

d e s c r i b e ( v : Veh ic l e ) { . . . }

d e s c r i b e ( v : LandVehicle ) { . . . }

. . .

car : Automobile ( ) ;

// Automobile i s a subc l a s s o f LandVehicle ,

// which i s a subc l a s s o f Veh ic l e .

// Thus , whi l e both has " exact match" rank ,

// LandVehicle i s more s p e c i f i c than Veh ic l e .

d e s c r i b e ( car ) ; // c a l l s d e s c r i b e ( v : LandVehicle )

3.5.11 Multimethods

By default, overload resolution (Section 3.5.10) is done at compile time, using the static

types of the arguments. Multimethods extend this by also allowing overload resolution

to be done at runtime, using the dynamic (actual) types of the arguments. Note that

this is only possible for parameter types that implement RTTI (Section 3.4.16).

To enable runtime overload resolution for a function, function de�nitions should be

quali�ed with multimethod. Runtime overload resolution proceeds as follows:

• Compile-time overload resolution yields the most speci�c de�nition that matches

the static types of the arguments.

• If the function chosen at compile time is not quali�ed with multimethod, no run-

time overload resolution is performed.
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• Currently, only de�nitions that are strictly more speci�c than the function chosen

at compile time, and accessible from the scope this function is de�ned in, are

considered at runtime.

• Parameter types that implement RTTI, and that are di�erent from the parameters

of the function chosen at compile time, are checked one by one. Function de�nitions

are rejected if an argument's dynamic type does not match (is not a subclass of)

the corresponding parameter.

• The most speci�c remaining de�nition is chosen. If no other de�nition matches,

the function chosen at compile time is used.

3.5.12 Parametric polymorphism

Functions support the same kind of parametric polymorphism that classes do (see Section

3.4.14), and with the same caveats (such as type erasure being the default). However,

in the case of functions, type parameters do not always need to be explicitly given, but

can sometimes be inferred from the arguments.

Example:

f ind_in_l i s t<T>( l i s t : L i s t <:T>, obj : T) : i n t

{

idx : i n t ;

f o r x in l i s t { i f x == obj re turn idx ; idx++; }

re turn −1;

}

. . .

l i s t : L i s t <:Automobile >;

car : Automobile ( ) ;

l i s t . append ( car ) ;

// Here , T i s Automobile , which can be i n f e r r e d from

// List <:Automobile> or from the type o f car .

x = f ind_in_l i s t ( l i s t , car ) ;

Type erasure can be avoided using transparent functions (Section 3.5.13). For small

functions that can be inlined, simply making the polymorphic function transparent may

be enough. For large functions that should not be inlined, the transparent function

can be wrapped by a non-transparent function for every type to be supported. These
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functions may then be overloaded (Section 3.5.10). This will result in compiling a

separate implementation for each type (like C++, but more explicit). This is a tradeo�;

while this may in some cases result in more e�cient code, it may also signi�cantly

increase the size of the resulting executables.

Example:

// This implementation o f the "max" func t i on

// would be incompat ib l e with type erasure ,

// as the comparison operator >= needs the

// type o f the operands to be known .

// Thus , i t should be t ransparent .

t ransparent tmax<T>(a : T, b : T) : T

{

a >= b ? a : b

}

// Although the above implementation i s smal l

// enough to be u s e f u l as−i s , we may choose

// to wrap i t i n to a bunch o f over loaded

// non−t ransparent funct i ons , one f o r each

// type we want to support .

max( a : int , b : i n t ) : i n t { tmax(a , b) }

max( a : double , b : double ) : double { tmax(a , b ) }

3.5.13 Transparent functions

Transparent functions work a lot like macros. No code is generated for the function

itself; rather, the function body is substituted into the code wherever the function is

called. This can be extra useful when combined with MORTAL's other metaprogram-

ming facilities, allowing the generated code to be altered in various ways.

Transparent functions can be used in several ways. Here are some of them:

• A transparent function can simply be a function that's always inlined. If a library

consists entirely of transparent functions, then everything needed will be inlined

into the executable, with no runtime dependency on the library. (However, not

all functions can be made transparent. Virtual methods or functions to be used
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as delegates, for example, cannot be transparent. Typically, neither can recursive

functions.)

• Transparent functions can also be used to write wrapper functions for external

libraries with zero runtime overhead.

• Generic transparent functions can also be used to get parametric polymorphism

without type erasure (Section 3.5.12).

3.5.14 Contracts

As part of MORTAL's support for contract programming, functions may de�ne precon-

ditions and postconditions. Preconditions are conditions that must be true before calling

the method (must be ensured by the caller), and postconditions are conditions that must

be true when the method returns (must be ensured by the callee). Note that functions

only need to conform to an implication relation; the postconditions only need to be true

if the preconditions are true. Furthermore, functions should not need explicit runtime

checks for whether the preconditions are true. (Indeed, MORTAL's optimizer might

remove such checks, under the assumption that they are redundant. Where runtime

checks are needed, preconditions should not be used.)

Preconditions and postconditions are considered part of a function's public interface.

In case of methods, if a subclass overrides a virtual method with conditions, then the

subclass implementation of the method is also required to obey the original implication

relation (i.e., any new conditions may only relax the preconditions and strengthen the

postconditions).

De�ning preconditions and postconditions helps prevent bugs, by allowing MORTAL

to detect and report method calls and method implementations that may violate them.

Unlike many other languages that support contract programming, MORTAL contracts

are meant to be checked at compile time through static analysis, not at runtime. This

may a�ect the way complex conditions should be written, but it also increases the chances

of detecting and understanding rarely-occurring and hard-to-�nd bugs, and reduces the

need for testing to do so.

In some cases, preconditions can also help MORTAL's optimizer. For example, if two

parameters have the same type, and it is a reference type, then it would be possible

for the corresponding arguments to alias (refer to the same object), and this possibility

would limit the freedom of the optimizer when both parameters are accessed frequently.
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If a precondition says that the two arguments may not alias, then the optimizer can use

this information to perform more aggressive optimizations.

Example:

c l a s s Storage {

value : i n t ;

// The c a l l e r i s r equ i r ed to ensure v i s non−negat ive
// ( us ing runtime checks i f nece s sa ry ) . The c a l l e r

// i s assured that the " value " f i e l d w i l l be updated ,

// and that the method w i l l r e turn i t s argument .

pub l i c set_value (v : i n t ) : i n t

r e qu i r e s v >= 0

ensure s va lue == v

ensure s @resu l t == v

{

value = v ; // S a t i s f y f i r s t po s t cond i t i on

re turn v ; // S a t i s f y second pos t cond i t i on

}

}

For applying conditions to entire classes, see Section 3.4.23.

3.5.15 The main function

If a public function (not a method) is called main, it is treated as the program's entry

point. It maps directly to the C-language main function, and should have a compatible

signature. The return type should be int. If it accepts arguments (it does not need

to), the �rst parameter should be an int, and the second a C array of C strings. The

�rst parameter represents the length of this C array. The �rst entry of the array is the

�le path of the program's executable (not necessarily an absolute path), the rest are the

command-line arguments, if any.

Example:

// Bas ic s i gna tu r e

pub l i c main ( argc : int , argv : __c_array<:CString , [ argc ] >): i n t

{

// argc = number o f arguments + 1
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// argv [ 0 ] = executab l e o f cur r ent program

// argv [ 1 . . . argc −1] = arguments

re turn 0 ;

}

// Class frameworks may s imp l i f y th ing s by

// c r e a t i n g a more convenient s t r u c tu r e .

pub l i c t ransparent s t r u c t MainArgs {

argc : i n t ;

argv : __c_array<:CString , [ argc ] >;

// Can de f i n e methods and ope ra to r s here

// to make MainArgs look l i k e any other

// conta ine r type , with indexers ,

// i t e r a t o r s , e t c .

// The f o l l ow i ng makes the " s i z e " property

// and the indexer sk ip argv [ 0 ] , but a l l ows

// us ing the " exe " property to get at argv [ 0 ] .

pub l i c s i z e : u int { get { argc − 1 } }

pub l i c [ idx : i n t ] : CString { argv [ idx + 1 ] }

pub l i c exe : CString { get { argv [ 0 ] } }

}

// Then the main func t i on can look l i k e t h i s .

pub l i c main ( args : MainArgs ) : i n t

{

// use args as a conta ine r type

re turn 0 ;

}

3.5.16 Function Quali�ers

Functions outside structs and classes may have the following quali�ers applied to them.

extern The function implementation is in an external library. See

Section 3.2.14.

multimethod Multimethod. See Section 3.5.11.
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public The function is accessible from other modules.

pure The function has no side e�ects.

private The function is not accessible from other modules. This is the

default.

transparent The method is transparent. See Section 3.5.13.

For methods and operators inside structs and classes, refer to Section 3.4.26.

3.5.17 Parameter Quali�ers

Function parameters may have the following quali�ers applied to them.

implicit The parameter cannot be explicitly bound. See Section 3.5.5.

out The parameter is output-only. See Section 3.5.9.

out? The parameter is output-only and optional. See Section 3.5.9.

ref The parameter is input-output. See Section 3.5.9.

ref? The parameter is input-output and optional. See Section 3.5.9.

__c_printf The parameter is a C format string. Any extra arguments should

be checked against the format string bound to this parameter.

See Section 3.5.8.

* The parameter is used to collect extra by-position arguments.

See Section 3.5.7.

** The parameter is used to collect extra by-name arguments. See

Section 3.5.7.

3.6 Expressions

Expressions allow memory accesses and computations to be expressed in a reasonably

natural way. MORTAL's large number of overloadable operators and Unicode support

allow a wide range of scienti�c computations to be expressed in a comprehensive fashion.
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3.6.1 Numbers

In MORTAL code, number literals may be written in any of the following ways:

Type Base Example

Decimal integer 10 42

Hexadecimal integer 16 0x2a

Octal integer 8 0o52

Binary integer 2 0b101010

Decimal �oating-point 10 4.2E+1

Hexadecimal �oating-point 16 0x1.5P+5

For type inference purposes, integers currently default to type int, and �oating-point

numbers currently default to type double. However, the conversion to a binary number

is delayed, in case of a cast to a di�erent numeric type. Once the target type has been

decided, the number literal is then converted directly to that type.

3.6.2 Strings

String literals must be enclosed in either single or double quotes (' or "). As in C, single

quotes are used to denote the value of a single character, while double quotes are used

to denote an addressable string of any length. (However, this use of single quotes may

change in the future.)

String literals may contain escape sequences, which start with a backslash. MORTAL

uses many of the same escape sequences as C. Escape sequences include:
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Name Sequence Character

Alarm \a ASCII code 7 (BEL)

Backspace \b ASCII code 8 (BS)

Formfeed \f ASCII code 12 (FF)

Newline \n ASCII code 10 (LF)

Return \r ASCII code 13 (CR)

Tab \t ASCII code 9 (HT)

Vertical Tab \v ASCII code 11 (VT)

Single quote \' '

Double quote \" "

Backslash \\ \

8-bit code \xhh Hex code hh

16-bit code \uhhhh Hex code hhhh

32-bit code \Uhhhhhhhh Hex code hhhhhhhh

For type inference purposes, single-quoted literals currently default to type int (with

UTF-32 encoding), and double-quoted literals currently default to type CString (with

UTF-8 encoding). However, the conversion is delayed, in case of a cast to a di�erent

string type. Once the target type has been decided, the string literal is then converted

directly to that type.

3.6.3 Operators

MORTAL allows both ASCII and Unicode operators to be used. The following ASCII

operators are currently de�ned.

Prec. Assoc. Operator Overloadable Description

1 Left

. See note 3 Member reference

?. See note 3 Null-safe member reference

??. See note 3 Auto-allocating member reference

(...) Yes Call

[...] See note 4 Index

++ Yes Post-increment

-- Yes Post-decrement

2 Right
@ No Metaexpression

* No Expansion
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Prec. Assoc. Operator Overloadable Description

3 Left <...> No Parametric type argument

4 Right

(:...) No Static typecast

ref No Make reference

sizeof No (Static) Size of

typeid Yes (Dynamic) Type ID of

5 Left as No Dynamic typecast

6 Left ^ Yes Power

7 Right

+ Yes Copy

- Yes Negation

~ Yes Bitwise NOT

++ Yes Pre-increment

-- Yes Pre-decrement

8 Left

* Yes Multiplication (inner product, matrix product)

** Yes Multiplication (cross product)

<> Yes Multiplication (outer product)

/ Yes Right division

\ Yes Left division

% Yes Remainder

*. Yes Elementwise multiplication

/. Yes Elementwise right division

\. Yes Elementwise left division

div Yes Floored division

mod Yes Modulo

9 Left
+ Yes Addition

- Yes Subtraction

10 Left
<�< Yes Bit shift left

>�> Yes Bit shift right

11 Left & Yes Bitwise AND

12 Left >< Yes Bitwise XOR

13 Left | Yes Bitwise OR

14 Left ?? No Null coalescing

15 None
:: No Slice

.. No Range

16 None

== Yes Equal to
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Prec. Assoc. Operator Overloadable Description

!= Yes Not equal to

=== No Alias of

!== No Not alias of

< Yes Less than

> Yes Greater than

<= Yes Less than or equal to

>= Yes Greater than or equal to

<=> Yes Combined comparison

~ Yes Pattern match

in Yes Contained in

not in Yes Not contained in

is See note 5 (Dynamic) Derived type of

is not See note 5 (Dynamic) Not derived type of

17 Right !, not Yes Logical NOT

18 Left &&, and Yes Logical AND

19 Left ||, or Yes Logical OR

20 Right ?...:... No Conditional

21 Right -> No Anonymous function

22 Right := Yes Inline assignment

23 None throw No Throw exception

Notes:

1. �Prec.� is precedence. Lower numbers mean higher precedence. Operators with

higher precedence are evaluated �rst. For example, 2 + 3 * 4 equals 14, because

* is evaluated before + since * has a higher precedence.

2. �Assoc.� is associativity. Associativity determines order of evaluation among oper-

ators of equal precedence. For example, 3 * 4 % 8 equals 4, because * is evaluated

before % since these operators are left-associative. Also, 2 < 3 < 4 is not allowed

because < has no associativity. (Such constructs may be allowed in the future.)

3. The member reference operator itself cannot be overloaded, but references to cer-

tain member names can be converted to method calls by de�ning the members as

properties (Section 3.4.9).
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4. References to indexes can be converted to method calls by de�ning indexers (Sec-

tion 3.4.10). Indexers can be overloaded.

5. While the is operator can be overloaded, is null and is not null is exempt

from any overloading, and can thus be used to check if a reference is null.

For Unicode operators, only Unicode characters classi�ed as �Symbol, Math� will ordi-

narily be allowed as operators. Precedence for them may be de�ned in the future.

Many of the operators listed above work the same in MORTAL as in other languages.

Furthermore, some of them are not yet implemented, or exist solely for the purpose

of being overloaded by libraries (e.g., the matrix operators are only meaningful when

overloaded by some library that implements matrices). Thus, only a few of the operators

will be described here.

3.6.4 Members and dereferences

The period, ., is used to refer to named members of objects, classes, namespaces, etc.

For example, if universe is a reference to an object with a �eld called answer, then you

can say

un ive r s e . answer = 42 ;

Following a reference in order to access the actual object is usually called dereferencing.

Referencing and dereferencing is automatic, but depends on the types used. Thus,

typecasts may a�ect the way this is done.

However, if an object reference is null (doesn't refer to anything), and the member is

not static, then doing the above unconditionally would probably cause problems (most

likely crash). This kind of bug is common in other languages and may cause both

stability and security issues. Thus, if you're dealing with nullable references, then you'll

have to check for null (and MORTAL's static analysis will enforce this). To make the

job easier, MORTAL provides a number of operators for handling nulls.

• To explicitly check for null, the recommended way is to use either is null or ===

null, since these constructs cannot be overloaded.

• The null coalescing operator ?? allows you to substitute another object when the

one you want is null. In the expression a ?? b, a is used if it's non-null, otherwise

b is used.
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• The null-safe member reference operator ?. only follows the reference if it is not

null. If it is null, then the expression (data access or method call) evaluates to the

default value for the inferred expression type, usually null or zero. In the expression

car?.drive(), the drive method is only called if car isn't a null reference.

• As a special case, if the null-safe member reference operator is used on an allocator,

then it is invoked if the reference is null. In the expression car?.new(), a new car

object is allocated and assigned to car if it was null before this.

• The auto-allocating member reference operator ??. will, if the reference is null,

allocate a new object of the required type and assign it to the reference. Then

it follows the reference as normal. In the expression car??.drive(), a new car

object is allocated (using the default allocator) and assigned to car if it was null,

and then the drive method is called, regardless of whether car was previously

null or not.

3.6.5 Calls

Calling a function, method, or delegate is done by providing an argument list (which

may be empty) in parentheses. A future version of MORTAL might lift the need for

parentheses in some cases, but for now, the parentheses are required, even for empty

argument lists. Arguments can be bound by position, by name, or both.

Example:

d r i v e ( ) ; // no arguments

d r i v e (50 , 1 0 ) ; // arguments bound by po s i t i o n

dr iv e ( speed=50, km=10); // bound by name

car . wash ( ) ; // method c a l l , no arguments

Functions that aren't methods can still be called using method call syntax. In this

case, the object stand-in is bound as the �rst by-position argument. (In the D language

(Section 6.1.2.6), this is called Uniform Function Call Syntax. Elsewhere, it's typically

called Uni�ed Call Syntax, and is a proposed C++ improvement.)

Example:

50 . d r i v e ( 1 0 ) ; // same as dr i v e (50 , 10)
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3.6.6 Typecasts

MORTAL has two typecast operators. The least safe, but most versatile, is the static

typecast operator. For example, to downcast a Vehicle to an Automobile, you can say

car = ( : Automobile ) v e h i c l e ;

This is unsafe if vehicle is not actually a reference to an Automobile or a subclass

of it, and should be done with care. However, if Vehicle implements RTTI (Section

3.4.16), then the dynamic typecast operator as can be used instead, which is safer. The

above then becomes

car = v eh i c l e as Automobile ;

If vehicle is not actually a reference to an Automobile, then this will yield a null

reference (which can be handled using the operators in Section 3.6.4).

Typecasting between value types and owned reference types may result in �boxing�

and �unboxing�, where memory is automatically allocated (and freed) by the compiler,

and the value stored there, in order to create a persistent reference to it. This will

usually happen as a result of type erasure (when attempting to store a value type in a

container that internally operates on untyped pointers), but can also be done explicitly.

Typecasting between value types and unowned reference types, on the other hand, results

in referencing and dereferencing without allocating new memory. (Memory management

in MORTAL is described in Section 2.9.)

By default, either operator only allows upcasts, downcasts, type conversions, const-

ness/ownedness changes, boxing/unboxing, and other well-behaved typecasts (equiva-

lent to C++'s static_cast, dynamic_cast, and const_cast). If a typecast more like

C++'s reinterpret_cast is called for, it's usually necessary to do a static cast to a C

untyped pointer and back. For example

f l o a t v a r = ( : f l o a t ) ( : __c_ptr . void ) i n tva r ;

This could even be wrapped in a transparent polymorphic function. However, using

such techniques is discouraged, as static analysis may not be able to verify the correctness

of such operations.

3.6.7 Metaexpressions

Metaexpressions are evaluated at compile time, and can refer to information available to

the compiler that wouldn't normally be available at runtime. A simple example is the
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source code �lename (similar to the __FILE__ macro in C/C++). Metaexpressions are

useful when used in metamethods or transparent methods, or in implicit parameters to

ordinary methods.

The form @expression results in either a numeric value, an object reference, or an

identi�er. If the expression creates a string, then it is converted to an identi�er (Section

3.2.2), and treated as such.

The form @#expression results in a string. If the expression refers to an object, then

the name of that object is converted to a string.

To manipulate an object's name as a string inside the metaexpression itself, refer

to the object's name property, e.g., owner.name. This is useful for constructing new

identi�ers, e.g., @(owner.name + "Child").

Special information that can be used in metaexpressions include:

Name Type Description

function Function object Enclosing function or method

owner Class object Enclosing class or struct

super Class object Base class or struct

module String Module name

file String Source �le name

line Integer Source line number

The metaexpression facility is likely to be expanded in future versions of MORTAL,

including making it possible to call pure functions from metaexpressions, in order to

evaluate them at compile time.

3.6.8 Expansions

The expansion operator * is intended for use in transparent variadic functions (Section

3.5.7). When extra arguments are collected into a special parameter, this operator can

expand that parameter back into an argument list for the purpose of calling another

function. This operator is not available in non-transparent functions.

3.6.9 Slices and ranges

Ranges may be speci�ed using the slice operator (::) or range operator (..). The

di�erence between them is that a range includes the endpoint, while a slice does not.

For example, 1::3 means the numbers 1 and 2, while 1..3 means the numbers 1, 2,

and 3.
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Currently, slices and ranges are not independent objects, and the slice and range

operators can thus only be used in very speci�c circumstances. They can be used in

for loops, or as indices for containers (provided the container de�nes an indexer which

accepts slices and ranges).

Example of a for loop:

f o r x in 1 . . 5 {

// t h i s loop w i l l run 5 t imes

}

Example of an index:

import " g l i b " ;

s t r : GLib . S t r ing = " abcdef " ;

subs t r : := s t r [ 2 : : 4 ] ; // y i e l d s "cd"

In the future, it will also be possible to specify non-default step sizes. For example,

1::2::5 will mean the numbers 1 and 3, and 1::2..5 will mean the numbers 1, 3, and

5.

3.6.10 Anonymous functions

Anonymous functions are functions that are de�ned inline inside a function, and that

can be assigned to delegates (Section 3.2.13). Argument and return types do not need

to be speci�ed explicitly, as they can be inferred from the delegates they're assigned to.

It is planned that anonymous functions should eventually be able to access the local

variables of the function they're de�ned in, i.e., they will have the functionality of lexical

closures. Note that only non-static delegates will be able to store closures.

Example:

d e l e ga t e MathOp(x : int , y : i n t ) : i n t ;

. . .

op : MathOp ;

op = (x , y ) −> { x + y } ;

3.7 Statements

In the imperative paradigm, every function is made up of statements. Most statements

involve expressions. (In fact, an expression is by itself a valid MORTAL statement,
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see Section 3.7.4.) In general, statements must be terminated with a semicolon, except

for those which terminate with a closing curly brace instead, or those which use the

abbreviated return syntax (Section 3.5.4).

3.7.1 Variables

A variable de�nition (Section 3.2.6) is a valid statement. Variables may be declared

anywhere within a function body, and type inference may be used. The scope and

lifetime of a local variable is the remainder of the scope it is de�ned in.4

If a local variable is quali�ed with static, then the variable's lifetime is extended to

the module it's de�ned in. Like a global variable, a static variable only has one instance,

and its value is preserved across function calls.

3.7.2 Assignments

Assigning to a variable copies the value or reference to it. Any expression can be assigned

to the variable; the value of the expression is computed, and then copied to the variable.

num = 10 ;

Note that an assignment is a statement, not an operator. This use of the equals sign

is not allowed inside expressions. 5 (Inside expressions, the inline assignment operator

:= can be used instead.)

Since the value of the expression is always computed before the assignment is done,

it is possible to use the old value of a variable to compute a new value for the same

variable.

num = num + 1 ;

This would increment the value of num by 1. This type of assignment also has a

shorthand form:

num += 1 ;

Conditions can be added to assignment statements.

num = 10 i f num < 10 ;

4However, the compiler is free to destroy the variable after its last use, instead of waiting until the
scope ends.

5This stops inexperienced programmers from doing assignments when they mean to use the equality
operator ==, and also allows the symbol to be used for other things, such as binding arguments by
name in function calls.
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This will only assign 10 to num if it was smaller than 10 before the assignment.

3.7.3 Delete statements

delete statements can be used to destroy objects of class type. It takes a reference and,

if it's non-null, calls the referenced object's deallocator.

d e l e t e obj ; // Equivalent to obj ? . d e l e t e ( ) ;

3.7.4 Expressions

A bare expression can be a statement. This is mainly useful if the expression has side

e�ects, such as if it's a call.

p r i n t f (" He l lo World\n " ) ;

Just as with assignments, conditions can be added to expression statements.

3.7.5 Compound statements

Any place where a single statement is accepted, it's possible to use multiple statements

if they are enclosed in curly brackets. This also creates a new scope, which can hold its

own local variables.

{

num: i n t = 10 ;

p r i n t f (" He l lo \n " ) ;

}

3.7.6 If statements

The if statement allows statements of any kind to be executed conditionally. There are

several ways to write if statements. The standard way is to use compound statements.

i f num < 10 {

num = 10 ;

}

An if statement may have an else clause, which is executed if the condition was

false.
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i f check_status ( ) {

p r i n t f (" Al l OK\n " ) ;

} e l s e {

p r i n t f (" Fa i l ed \n " ) ;

}

if statements can be chained (though, in many cases, it may be better to use a switch

statement (Section 3.7.7) instead).

i f num == 5 {

p r i n t f ("Found a 5\n " ) ;

} e l s e i f num == 6 {

p r i n t f ("Found a 6\n " ) ;

} e l s e {

p r i n t f ("Found ne i t h e r \n " ) ;

}

Compound statements are not mandatory. Most statements that start with a keyword

are recognized.

i f num < 10 return num;

Otherwise, you can use the then keyword.

i f num < 10 then num = 10 ;

In such cases, however, you can usually add conditions to statements instead.

num = 10 i f num < 10 ;

3.7.7 Switch statements

switch statements allow statements to be executed depending on the value of a variable

or expression. While an if statement can only check one value at a time, a switch

statement can check many. Thus, though switch statements could be emulated using

if chains, switch statements are usually both more e�cient and more readable.

switch num {

case 5 :

p r i n t f ("Found a 5\n " ) ;

case 6 :

p r i n t f ("Found a 6\n " ) ;
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case 10 , 20 :

p r i n t f ("Found a 10 or 20\n " ) ;

d e f au l t :

p r i n t f ("Found ne i t h e r \n " ) ;

}

A switch statement can be exited with a break statement. However, there's no

implicit fallthrough (i.e., execution will exit the switch rather than continuing into

another case), so this is usually not needed. For situations where it's necessary to

continue execution in another case, the goto statement (Section 3.7.13) can be used.

Each case is its own scope. There's no need for extra curly brackets if you need to

de�ne local variables inside a particular case.

3.7.8 While loops

The while loop allows statements to be executed repeatedly as long as a condition is

true. The condition is tested before every loop iteration (but not during them). The

standard way to write while loops is to use compound statements.

whi l e num < 10 {

num = num + 1 ;

}

As with the if statement, compound statements are not mandatory. Some statements

that start with a keyword are recognized (but not as many as for the if statement).

Otherwise, you can use the do keyword.

whi l e num < 10 do num = num + 1 ;

3.7.9 Do-while loops

do while loops are like while loops, except that the condition is �rst tested after the �rst

loop iteration, instead of before. This means that the statements are always executed

at least once.

do {

num = num + 1 ;

} whi l e num < 10 ;

Or, without compound statements:
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do num = num + 1 whi le num < 10 ;

3.7.10 For loops

for loops come in two variants. The simple one iterates over all elements in a container

or range.

f o r x in th e_ l i s t {

do_something (x ) ;

}

In this case, the_list is a variable referring to a container object holding a list of

objects. The statements are executed once for each such object, with the local variable

x referring to that object. The scope of the variable is only the for loop itself.

The other variant is the C-style for loop.

f o r (num=0; num<10; num+=1) {

do_something (num) ;

}

Here, the parentheses are required. They contain three statement parts separated by

semicolons. Each part is optional, but the semicolons are mandatory. The �rst part is a

comma-separated initializer list, which can contain de�nitions of new variables and/or

assignments to already existing variables. If a new variable is de�ned here, its scope is

only the for loop itself. The second part is a condition. As in a while loop, it is tested

before the �rst iteration. The third part is a comma-separated list of assignments to

perform or expressions to evaluate after every iteration, just before testing the condition

again.

3.7.11 Control �ow statements

The break statement breaks out of a loop or switch statement. Example:

do {

i f need_to_abort ( ) {

break ;

}

num = num + 1 ;

} whi l e num < 10 ;
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The continue statement breaks out of the current iteration of a loop, but not the loop

itself. The next iteration is prepared as normal (including any for-loop assignments,

and testing of any loop condition). Example:

do {

i f need_to_try_again ( ) {

cont inue ;

}

num = num + 1 ;

} whi l e num < 10 ;

The return statement ends execution of a function and returns the provided value, if

any. Example:

r e turn num;

As with assignments, conditions can be added to control �ow statements.

3.7.12 Try statements

try statements are used to recover from exceptions (Section 3.8). Exceptions are usually

thrown when some error occurs. When exceptions are thrown, normal execution aborts.

If the exception was thrown in scope of a try statement which has an exception handler

that matches the exception, then execution jumps to that handler. Example:

t ry {

r i sky_operat ion ( ) ;

f i n i sh_ope ra t i on ( ) ;

} catch e r r : IOError {

handle_io_error ( e r r ) ;

}

The above will catch any IOError exceptions thrown by risky_operation or finish_operation,

and recover from them by calling handle_io_error. (If the exception was thrown by

risky_operation, then finish_operation is not executed.) Other types of exceptions

are not caught.

t ry {

r i sky_operat ion ( ) ;

f i n i sh_ope ra t i on ( ) ;

} catch {
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handle_any_error ( ) ;

}

The above will catch any exception, no matter what type. However, there's no way

to determine the type of exception, so this should only be used as a last-resort handler.

For example:

t ry {

r i sky_operat ion ( ) ;

f i n i sh_ope ra t i on ( ) ;

} catch e r r : IOError {

handle_io_error ( e r r ) ;

} catch {

handle_any_error ( ) ;

}

The above handles IOError by calling handle_io_error, and also handles all other

types of exceptions by calling handle_any_error.

If the try statement has a finally clause, then that clause is executed regardless of

whether an exception was thrown. Example:

t ry {

r i sky_operat ion ( ) ;

} f i n a l l y {

f i n i sh_ope ra t i on ( ) ;

}

The above forces finish_operation to be called even if an exception is thrown by

risky_operation. However, it does not actually handle the exception. If this try

statement is executing within another try statement, then the exception is passed to

the outer try statement after calling finish_operation.

It's possible to have both exception handlers and a finally clause. In this case, the

finally clause executes last. Example:

t ry {

r i sky_operat ion ( ) ;

} f i n a l l y {

f i n i sh_ope ra t i on ( ) ;

} catch e r r : IOError {

handle_io_error ( e r r ) ;

90



3.8 Exceptions

} catch {

handle_any_error ( ) ;

}

If an exception is thrown from risky_operation, then finish_operation is called

anyway, after the appropriate exception handler. (However, exceptions thrown by

finish_operation will not be handled by this try statement.)

3.7.13 Goto statements

goto statements can be used to cause execution to jump directly to some given point

inside a function. They are subject to several restrictions. For example, you are, in

general, not allowed to jump directly into a scope you're not already in. Most of the

time, goto statements should be avoided in favour of other language features (like control

�ow statements, or exceptions and try statements), but sometimes they are useful.

goto statements come in two variants. The regular one requires that you explicitly

declare jump targets using label:

l a b e l my_label ;

num = num + 1 ;

goto my_label ;

The other variant can be used inside switch statements:

switch num {

case 5 :

p r i n t f ("Handle 5\n " ) ;

goto case 6 ;

case 6 :

p r i n t f ("Handle 5 or 6\n " ) ;

}

3.8 Exceptions

Exceptions are used for runtime error handling. Exceptions have proven useful because

the point at which an error is detected may not be the point at which the error should

be handled. Thus, exceptions o�er a structured and safe way of propagating an error

up the call chain to a point where it can be handled.
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Exceptions are not intended for handling programming errors such as invalid argu-

ments. To detect such errors, contracts (Section 3.5.14) should be used instead.

3.8.1 Checked exceptions

Checked exceptions are exceptions that, if left unhandled, results in a compilation error.

Exceptions may be handled either with try/catch statements (Section 3.7.12), or by

allowing the function to propagate (rethrow) the exceptions, by listing them in the func-

tion's exception speci�cation (Section 3.5.3). In MORTAL, all exceptions are checked by

default, but unlike other languages that enforce them, their primary purpose in MOR-

TAL is not to discipline the programmer, but to make MORTAL's exception handling

compatible with external libraries and class frameworks (which may not be written in a

language that supports exceptions).

In languages that use checked exceptions to discipline the programmer, programmers

are typically expected to be speci�c about the exceptions they may want to throw.

However, as this is tedious and also not very future-proof, it is often simpler and safer for

programmers to simply specify the base exception class in every exception speci�cation.

Thus, in MORTAL, the latter is considered a perfectly acceptable way of specifying that

something may throw an exception.

There are three reasons MORTAL requires specifying which exception class to use

(even if only the base exception class):

• It declares whether something can throw an exception at all. For the programmer,

there's no need to put try blocks around code that is known to not throw excep-

tions. For the compiler, not having to handle exceptions usually results in smaller

and faster code.

• It avoids compatibility issues with external libraries that may have limited or no

awareness of exceptions. For example, an external library function might take a

delegate that cannot throw exceptions. Then attempting to use a reference to a

function that can throw exceptions as the delegate would result in an error.

• MORTAL does not de�ne a standard base exception class, but rather tries to

support using multiple exception handling mechanisms (which may be de�ned by

class frameworks). Each base exception class belong to a particular exception

handling mechanism, and specifying which base exception class to use tells the
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compiler which mechanism to use (and thus, what kind of exception handling code

to generate).

It also remains an option to use checked exceptions the traditional way (being speci�c

about the exceptions a piece of code may throw).

In the future, MORTAL may allow de�ning a default exception class, so that func-

tions, methods, and operators that do not have an explicit exception speci�cation will

be considered able to throw exceptions of that type. By setting an appropriate base

exception class as the default, programmers would be able to use MORTAL as if it had

unchecked exceptions.

3.8.2 Argument-based exceptions

To be compatible with C libraries like GLib, MORTAL supports argument-based ex-

ceptions. The base class of such exceptions (GError, for example) should be quali�ed

with __c_throw_arg (and should also support RTTI). If a function is declared to throw

exceptions derived from this base class, then an extra implicit parameter is added to the

function. This parameter is an output parameter (Section 3.5.9) that returns a reference

to the exception class. If no exception is thrown, then the returned reference is null,

otherwise it signi�es that an exception was thrown (in which case the function's regular

return value may not be meaningful).

In the future, MORTAL may also support a form of exception handling based on the

standard C library's errno variable.
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This chapter describes what has been implemented so far.

4.1 Language features

Procedural and object-oriented programming works. The type system works, though

some features like const types, non-nullable types, and implicit type conversions are not

fully implemented.

All statements are implemented, except goto statements. Exceptions are partially

implemented.

Roughly half of the operators are implemented. The operators that are implemented

are: all kinds of member references, call, index, pre/post-increment/decrement, metaex-

pression, parametric arguments, all typecasts, sizeof, typeid, negation, ordinary multipli-

cation, right division, remainder, addition and subtraction, bit shifts, bitwise and/or/not,

null coalescing, slice/range (partially), all comparison operators (except pattern match),

logical and/or/not, conditional, and inline assignment.

Function calls are mostly implemented, including binding arguments by position or

name, implicit arguments, and the Uni�ed Call Syntax, but variadic functions are only

partially implemented (they only work for C-style varargs). The expansion operator is

not implemented. Transparent functions are partially implemented (nontrivial control

�ow is not supported yet).

Object-oriented programming with structs and classes is mostly implemented, includ-

ing operator overloading, properties/indexers, inheritance, virtual methods, metameth-

ods, multimethods, RTTI, and all kinds of polymorphism. Not implemented are type

conversions, slice/range support, some inheritance features (e.g., con�ict resolution),

some transparent class/struct features (e.g., mixins), some construction features (e.g.,

implicit copying), member access control, and special handling of interfaces.
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4.2 Library features

MORTAL's standard library current implements transparent wrappers for parts of the

C library (standard I/O and number formatting), and many GLib data types (including

dynamic arrays, linked lists, strings, queues, hash tables, and I/O channels). These

wrappers provide an object-oriented interface, and are easy to use from MORTAL.

4.3 Compiler features

The MORTAL compiler is self-hosting (apart from the lexer and parser), and able to

generate C code from MORTAL code. Memory management is partially implemented.

Transformation to SSA (Static Single Assignment) form is not yet implemented. Most

forms of static analysis (including contract programming) is not implemented.

4.4 Source code

The MORTAL compiler is open source and released under the MIT license. It is hosted

on SourceForge. The main project URL is https://sourceforge.net/projects/mortal/.

The current build system is based on autoconf/automake. Thus, after retrieving or un-

packing the sources, it is probably necessary to run autoreconf, then ./configure, and

�nally make, to build the MORTAL compiler. This should result in a mtlc executable.

The main directory contains the sources of the compiler itself, both as source .mtl

�les, and as generated .c and .h �les (which are needed to compile the compiler for the

�rst time).

The lib subdirectory contains MORTAL's equivalent of a standard library. When

compiling MORTAL programs, the path to the lib directory should always be given to

mtlc using the -I option, e.g., mtlc -I/path/to/lib program.mtl.

The tests subdirectory contains the unit tests. They use GLib's unit test framework,

and can be run with make check.

4.5 Syntax highlighting

For syntax highlighting, experimental language description �les are available for GtkSourceView-

based editors/IDEs (such as gedit and Anjuta), and for the Kate editor. In the �les

accompanying this thesis, they are called mortal.lang and mortal.xml, respectively.
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The implementation of the MORTAL language is far from complete, and thus not yet

as expressive or as safe as it needs to be. However, the current implementation can still

be evaluated with respect to correctness, usability, and performance.

5.1 Correctness

The MORTAL compiler's source code includes a suite of unit tests designed to test

various features for correctness (see Section 4.4). The tests use GLib's unit test frame-

work. Running make check from the compiler source directory will run the test suite.

There are currently 25 test groups, organized in 6 source �les. All features currently

implemented pass the current unit tests.

However, the currently biggest test for correctness is whether the MORTAL compiler

is able to compile itself correctly. This is checked by running make verify from the

compiler source directory. This e�ectively compiles the compiler thrice (�rst a reference

compiler is built from the C sources in version control, then that reference compiler is

used to build a test compiler, and then the test compiler is told to build itself), and at

the end, the resulting compiler must pass the unit tests. However, if there's a problem

in the compiler, the test compiler will usually fail to compile itself before it gets to the

unit tests.

The compiler is able to compile itself, so the compiler appears to work correctly.

5.2 Usability

No signi�cant program has yet been written in MORTAL, but we may judge the lan-

guage's usability by whether it can be used to build a compiler. Since the MORTAL

compiler is written in MORTAL, this is evidently possible.

MORTAL's RTTI system and its multimethods, for instance, have proven quite useful

in the construction of the compiler. Multimethods have allowed AST (Abstract Syntax
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Version Measurements [s] Fastest [s] Average [s]

Optimized C 3.348 3.192 3.192 3.195 3.193 3.193 3.192 3.219
Simple MORTAL 4.534 4.464 4.362 4.346 4.402 4.455 4.346 4.427

Optimized MORTAL 3.347 3.188 3.189 3.192 3.189 3.187 3.187 3.215

Table 5.1: Performance of �fasta� benchmark, with n = 10000000

Tree) manipulation to be done with an ease comparable to that of functional languages.

5.3 Performance

MORTAL aims to provide performance comparable to C/C++. To test this, a bench-

mark was selected from the �Computer Languages Benchmark Game�1, and imple-

mented in MORTAL. The benchmark used is �fasta�, which generates three genome

sequences in FASTA format (one repeating sequence, and two random sequences that

need to follow particular probability distributions). The MORTAL implementation was

compared to �fasta.gcc�, a reasonably well-optimized C implementation. (There is a

faster C implementation, but it uses Unix �le descriptors and its own bu�ering, instead

of standard I/O. This may also be possible to do in MORTAL, but for the purpose of

this evaluation it was decided to use standard I/O.)

Two MORTAL implementations were written: one without I/O optimizations, and

one with a level of I/O optimization comparable to the C version. (Note that the

optimizations done in the latter version should ordinarily not be done in a MORTAL

program, as they use MORTAL's C compatibility features to do direct pointer manipula-

tion, which may be di�cult to verify with static analysis. However, pointer manipulation

was mainly necessary because MORTAL does not yet fully implement slices, which could

have provided a safer and easier alternative.)

The measurements were done on a laptop with an AMD A10-5757M quad-core CPU

running at 2.5GHz, and 8 GB of RAM, running Debian jessie (gcc version 4.9.2).2 The

results (Table 5.1) show that a MORTAL program can achieve the performance of C.

The di�erence between MORTAL and C is mostly because of minor implementation

di�erences between the C and MORTAL programs, in part due to MORTAL's standard

library using di�erent C library functions, so that the loops had to be structured slightly

1http://benchmarksgame.alioth.debian.org
2To rerun the benchmark using the �les accompanying this thesis, enter the benchmarksgame/bencher
directory, edit makefiles/my.linux.ini to adjust the MORTAL compiler path, then run python

bin/bencher.py fasta
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di�erently. Since MORTAL's compiler currently generates C code itself, it would other-

wise not be possible for MORTAL to outperform well-written C code. It might become

possible once the LLVM backend is implemented.
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6.1 Programming languages

Thousands of programming languages already exist, several of which try to solve some

of the same problems that MORTAL does. Describing all of them individually would be

a huge undertaking, but this chapter provides a survey of the most important ones, the

ways in which MORTAL has been inspired by them, and the ways in which MORTAL

is di�erent.

6.1.1 Procedural languages

Procedural languages are imperative, structured languages that allow code to be grouped

into procedures and functions. The grandfather of all such languages was ALGOL (not

described here since it's no longer popular).

6.1.1.1 Fortran

[12] The Fortran language is more than 60 years old. Although the �rst version would

not be considered structured, the language has been revised several times over the years,

introducing many of the features of modern languages. It is primarily designed for

scienti�c computation, and is heavily used in many research institutions, in part because

it has a higher performance and more �exible math operations than the otherwise more

popular C language.

6.1.1.2 C

[13] One of the most in�uential programming languages ever, C is more than 40 years old

and still in widespread use worldwide, especially in systems programming, and has been

an inspiration for numerous other languages. It is a fairly low-level language, limited to

the procedural paradigm, and is considered by some as a �portable assembler�. This is
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also how MORTAL uses it; MORTAL code can be compiled to C code, which can then

be compiled by a C compiler to native machine code.

MORTAL's syntax has much in common with C syntax, and contains many constructs

intended for C compatibility, but MORTAL aims to be a more high-level language than

C is. See also Section 6.1.2.3.

6.1.1.3 Pascal

[14] Pascal predates C by about two years. It has a more verbose and high-level syntax

than C, but was originally designed for teaching, and did not have support for modules

and other features useful to large projects. Many Pascal dialects with such features have

been created over the years, including Borland's Turbo Pascal (which later evolved into

Delphi, Section 6.1.2.10) and Free Pascal. However, the various dialects are generally

not compatible, and this lack of portability has limited Pascal's success.

MORTAL has borrowed some elements from Pascal syntax. MORTAL's inline assign-

ment operator looks like Pascal's assignment operator, MORTAL's div and mod oper-

ators are also similar to Pascal's, and MORTAL's parameter and variable declarations

have a similar style to Pascal's (name, colon, type).

6.1.2 Object-oriented languages

Object-oriented languages improve on procedural languages by allowing code and data to

be grouped together into objects. Pure object-oriented languages require doing this. The

grandfather of all such languages was Simula (developed in the 1960s at the Norwegian

Computer Center in Oslo, Norway).

6.1.2.1 Smalltalk

[15] Smalltalk was developed in the 1970s. The last version, Smalltalk-80, is a dynamic

language where everything is an object, and pretty much everything (even control �ow)

is done by passing messages (calling methods). It introduced the concept of metaclasses,

which allowed classes themselves to be objects that could be manipulated. Smalltalk

has been a major in�uence on later OOP languages.

6.1.2.2 Ei�el

[16] Ei�el was developed in the 1980s. It is an object-oriented language which intro-

duced a number of innovations regarding code safety, including modern contract-based
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programming (�Design by Contract� [4]) and null pointer safety (�void safety�). Ei�el's

strong safety features has been a major in�uence on later languages.

6.1.2.3 C++

[17] C++ is an evolution of the C language, introducing an object-oriented paradigm,

powerful metaprogramming (in the form of very versatile templates), operator over-

loading, a powerful standard library, and many other improvements. However, despite

C++'s expressive power, its C roots continue to limit its intuitiveness, usability, safety,

and programmer productivity to this day, making many programmers shy away from it.

Those that do use it exhibit a great deal of self-discipline, often in the form of numerous

coding style guidelines.

MORTAL's syntax has much in common with C++ syntax, but also several important

di�erences. Some of the ways MORTAL di�ers from C++ are:

• MORTAL has a more regular (less ambiguous) syntax.

• MORTAL does not have forward declarations, header �les, or a preprocessor.

• MORTAL does not need the programmer to know about pointers.

• MORTAL can pass function arguments by name instead of by position.

• MORTAL has broader support for operator overloading, with many operators use-

ful to scientists and engineers, and even allows user-de�ned RTTI (Run-Time Type

Information).

• MORTAL's resource management is similar in capability to C++ smart pointers,

but MORTAL makes such mechanisms easier and more e�cient by making them

part of the language itself, while keeping them user-de�nable.

• MORTAL generics allow type erasure by default, resulting in less code bloat than

C++ templates.

• MORTAL supports contract-based programming.

• MORTAL aims to support declarative programming.
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6.1.2.4 Objective-C

[18] Objective-C is an independent evolution of the C language, introducing a style of

object-oriented programming much closer to Smalltalk (Section 6.1.2.1) than to C++.

It provides dynamic typing and re�ection, but no templates or operator overloading.

Objective-C is the preferred programming language for Apple operating systems (OS

X, iOS). Newer versions of Objective-C supports ARC (Automatic Reference Counting)

for memory management. MORTAL's memory management is conceptually similar to

ARC.

6.1.2.5 C#

[19] C# is a pure object-oriented evolution of the C language. Its OOP feature set is

comparable to C++'s, with a few extensions, but is a very di�erent language, neither

compatible with C nor C++. C# compiles to Microsoft .NET bytecode, instead of

directly to native machine code. The use of the .NET framework gives the language

a number of advantages over C++, such as automatic garbage collection, ability to

support things like aspect-oriented programming and code contracts, and a generally

safer programming environment. A disadvantage is that the .NET framework is fairly

heavyweight, and only runs on Windows platforms. There's a free .NET clone, Mono,

which runs on other platforms and supports most of .NET, but not all.

MORTAL's syntax has much in common with C#. For example, MORTAL supports

C#-like properties and indexers, and makes the same struct/class distinction that C#

does. A few keywords, like sealed, has C#-like semantics.

Some of the ways MORTAL di�ers from C# are:

• MORTAL is portable, compiles to native machine code, and does not require a

runtime.

• MORTAL aims to be compatible with ordinary C, C++, and Fortran code. (This

includes a lot of scienti�c software.)

• MORTAL does not force programmers into the OOP paradigm.

• MORTAL supports multiple inheritance.

• MORTAL aims to support declarative programming.
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6.1.2.6 D

[20, 21] D is a complete redesign of the C++ language. It �xes many of the problems

of C++, has a less ambiguous syntax, more powerful metaprogramming, and automatic

memory management, using a tracing garbage collector (though the programmer can

also manage individual memory blocks explicitly). It also supports contracts, functional

programming, and concurrent programming, and it compiles to native machine code.

MORTAL shares many of D's goals, and supports things like D's �Uniform Function

Call Syntax�, but in general, has a quite di�erent syntax from D.

Some of the ways MORTAL di�ers from D are:

• MORTAL supports automatic memory management using reference counting, and

does not require a tracing garbage collector. (Tracing garbage collectors has cer-

tain disadvantages, such as potentially much larger working sets, and momentary

freezes during garbage collection. Although you can disable D's garbage collector,

you would then have to manage memory manually.)

• MORTAL does not require a particular standard library.

• MORTAL's contracts are checked at compile-time, rather than runtime, thus po-

tentially catching more bugs.

• MORTAL can pass function arguments by name instead of by position.

• MORTAL aims to be compatible with C++ code.

• MORTAL aims to support declarative programming.

6.1.2.7 Java

[22] Java is a pure object-oriented language with capabilities comparable to C++ and

C#. Java compiles to JVM (Java Virtual Machine) bytecode, instead of directly to

native machine code. The use of a portable virtual machine gives the language a number

of advantages over C++, such as automatic garbage collection, the ability to run a

Java program on a wide range of platforms without recompiling them, and a generally

safer programming environment. Java is often used for web applications (Java applets),

where it allows programs embedded in web pages to run on the user's computer with

good performance. The use of a virtual machine adds a degree of security when running

untrusted Java applets this way.
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The JVM has also become popular in its own right, with several third-party implemen-

tations. Several other languages, including Clojure (Section 6.1.4.1), Groovy (Section

6.1.2.8), and Scala (Section 6.1.9.2), compile to JVM bytecode.

MORTAL's syntax has much in common with Java syntax. For example, MORTAL

classes look and behave a lot like Java classes, including support for inner classes. Also,

by default, MORTAL generics use type erasure the same way Java generics do. Exception

handling is also similar.

Some of the ways MORTAL di�ers from Java are:

• MORTAL is portable, compiles to native machine code, and does not require a

runtime.

• MORTAL aims to be compatible with ordinary C, C++, and Fortran code.

• MORTAL does not force programmers into the OOP paradigm.

• MORTAL can pass function arguments by name instead of by position.

• MORTAL supports operator overloading.

• MORTAL supports multiple inheritance.

• MORTAL aims to support declarative programming.

6.1.2.8 Groovy

[23] Groovy is an o�shoot of the Java language. It adds numerous features, includ-

ing operator overloading and functional programming features, while still compiling to

JVM bytecode and thus being compatible with ordinary Java code. Its metaprogram-

ming capabilities and �exible syntax gives it a certain ability to build domain-speci�c

languages.

MORTAL has borrowed some elements from Groovy syntax. The null-safe member

operator ?. is inspired by Groovy. Other similar operators are the �Elvis� operator ?:

and the �spaceship� operator <=>.

6.1.2.9 Vala

[24] Vala is an object-oriented programming language with C#-like syntax, but speci�-

cally designed for the GLib/GObject class framework (Section 6.3.1). The Vala compiler

generates plain C code, which can then be compiled to native machine code.
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Vala provides automatic memory management on top of GObject's native reference

counting, without the need for a garbage collector [25]. MORTAL memory management

is strongly in�uenced by Vala memory management.

6.1.2.10 Delphi

[26] Delphi is a proprietary evolution of Borland Pascal with object-oriented features,

and a visual component library that allows both user interfaces to be created and func-

tionality to be added through dragging, dropping, and linking components. Delphi is

considered a Rapid Application Development (RAD) tool.

MORTAL aims to support declarative programming in a way that allows components

to be linked with the same ease as in Delphi.

6.1.3 Array languages

Array languages are dynamic languages that specialize in computations on multidimen-

sional data sets, by providing a selection of prede�ned functions and operators for this

purpose. Each operation can typically transform the entire data set all at once, and

builtin operations are typically also implemented as native machine code. This can re-

sult in quite good performance, but only to the extent the provided operations are a

good match to the problem.

6.1.3.1 Matlab

[27] Matlab is a proprietary procedural and object-oriented language. It is built around

vector and matrix operations. It has numerous libraries (toolboxes) for visualization,

analysis, and simulation. It can also work alongside the data�ow-based Simulink (Section

6.1.6.5).

MORTAL's collection of overloadable mathematical operators is somewhat inspired

by Matlab's operators.

There is an open source language, Octave, that's mostly compatible with Matlab [28].

6.1.3.2 R

[29, 30] R provides procedural, object-oriented, and functional programming. It has

numerous libraries for visualization and statistical analysis, many of which are quite

sophisticated. Unfortunately, the size of the data sets R can work with are usually

limited to how much can be loaded into memory.
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Due to the popularity of R among scientists, MORTAL aims to be easy to learn for R

programmers, and to have similar productivity-enhancing features. For example, like R,

MORTAL allows arguments to be bound to parameters by name. (Many of R's functions

have numerous optional parameters, making this a quite useful feature.)

6.1.4 Functional languages

Functional languages are fundamentally based on lambda calculus (possibly allowing

other programming paradigms to be layered on top). They strive to express computa-

tions not by specifying (imperative) actions, but by describing transformations. (Thus,

in pure functional languages, variables are immutable, and can only be transformed into

new variables or return values.) Such languages are very expressive, as well as very safe,

but lambda calculus does not map directly to how real hardware works, which makes it

di�cult for functional languages to achieve the same runtime performance that impera-

tive languages do. The various functional languages in existence tend to make di�erent

tradeo�s between purity, expressivity, and performance, and most of them use tracing

garbage collectors.

6.1.4.1 Lisp

[31, 32] The original Lisp was developed in the 1950s, and has since spawned a whole

family of functional languages based on the Lisp (S-expression) syntax. The Lisp family

includes languages such as Common Lisp, Scheme, and Clojure. Some of them, includ-

ing Common Lisp, also supports object-oriented programming. Lisp's homoiconicity

(representational equivalence between code and data) gives it very powerful metapro-

gramming capabilities, with code being able to transform and rewrite itself in arbitrary

ways, including the ability to build domain-speci�c languages.

6.1.4.2 Standard ML

[33] Standard ML is an impure functional language. It is statically typed, and supports

algebraic data types. In general, types are inferred and do not need to be speci�ed

explicitly. Standard ML and its derivatives are used in programming language research.

6.1.4.3 OCaml

[34] OCaml is an impure functional language that supports both functional and object-

oriented programming. Like Standard ML, OCaml is statically typed and uses type
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infererence. OCaml is compiled to native machine code, resulting in decent performance.

6.1.4.4 Haskell

[35] Haskell is a pure functional language with elements from object-oriented languages,

including operator overloading. It is statically typed, uses type inference, and supports

algebraic data types. Despite being a pure functional language, it allows a certain

degree of imperative programming through the use of monads (which are essentially

representations of state in a way that does not violate the principles of lambda calculus,

along with syntactic sugar that makes them easy to use in an imperative style). It uses

lazy evaluation extensively, allowing even in�nite sequences to exist and be computed

on-demand.

6.1.5 Declarative languages

Unlike imperative and functional languages, declarative languages allow the program-

mer to focus on the �what� instead of the �how�. Programmers need only describe

the exact problem to be solved in a formal, machine-readable way, and can then let

some automatic inference engine or solver search for a solution. Declarative languages

are typically restricted to particular domains, and are not necessarily Turing complete.

However, declarative programming is fairly intuitive and easy to learn for people that

aren't computer scientists.

6.1.5.1 AMPL

[36] AMPL is a proprietary language for solving various mathematical problems, espe-

cially constrained optimization problems. It provides both declarative and imperative

programming. It supports numerous solvers, each able to solve a certain class of prob-

lems.

6.1.5.2 Prolog

[37] Prolog is a logic programming language. Prolog programs mainly consist of state-

ments expressing Horn clauses. (Horn clauses are a subset of �rst-order logic.) Execution

of a Prolog program consists of the user providing some query, which Prolog's inference

engine (which uses SLD resolution) will then try to satisfy. Prolog programs need not be

purely declarative, as clauses may have side e�ects when the inference engine evaluates

them, or cuts, which force the engine to skip parts of the search space.
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6.1.5.3 Datalog

[38] Datalog is a fully declarative subset of Prolog. While it is logically complete, it is not

Turing complete, and is thus mostly used as an embedded language in larger systems. It

is possible for compilers and static analyzers to use Datalog to check various properties

of a program [39].

6.1.6 Concurrent languages

Concurrent languages are languages explicitly designed to support multiple threads of

execution, and allow them to communicate in safe ways.

6.1.6.1 Ada

[40] Ada is an early procedural language with support for concurrency as well as very

strong safety features. It has a strict static type system, and supports both exception

handling and a form of contract-based programming. Modern versions of the language

also support object-oriented programming.

6.1.6.2 Erlang

[41, 42] Erlang is a functional language with support for Actor-based concurrency. It

is a dynamic language with garbage collection, and quite robust and fault-tolerant. To

help avoid service interruption, it even supports code hotswapping. Although it is based

on a virtual machine concept, it is also possible to compile it to native machine code for

good performance.

6.1.6.3 Go

[43] Go is an object-oriented language built around the Communicating Sequential Pro-

cesses (CSP) [44] model of concurrency. It is a statically typed, garbage collected lan-

guage that compiles to native machine code. Go provides a form of structural typing,

where the compiler can automatically infer which interfaces are implemented by a struc-

ture. Go has a minimalistic philosophy, avoiding many features that exist in other

object-oriented languages, such as inheritance, exceptions, and generics.
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6.1.6.4 LabVIEW

[45] LabVIEW is a proprietary data�ow language, designed for interfacing with hardware

devices such as laboratory instruments and sensors. It allows programs to be constructed

graphically by dragging, dropping, and linking �virtual instruments�. Data (possibly

originating from hardware sensors) will then �ow through the resulting data�ow graph,

transformed or visualized as appropriate by the virtual instruments.

6.1.6.5 Simulink

[46] Simulink is a proprietary data�ow language, designed for analyzing and simulating

dynamic systems. It integrates with Matlab (Section 6.1.3.1). It allows systems to be

modeled by building graphical block diagrams. In addition to simulating the resulting

systems within Simulink, it is possible to generate C, VHDL, and Verilog code from the

models.

6.1.7 Dynamic languages

Dynamic languages are languages that are generally not compiled to native machine

code, but rely on an interpreter (or JIT) and take advantage of the �exibility this

gives them. They typically have dynamic type systems with duck typing, automatic

memory management, seamless introspection, the ability for code to modify itself, and

other powerful metaprogramming features. They can usually also be used as embedded

languages in larger systems.

6.1.7.1 JavaScript

[47] JavaScript is an object-oriented language with functional features. It does not use

classes, and objects instead inherit from other objects (prototypes). JavaScript is usually

used as an embedded language, particularly on web pages.

6.1.7.2 Python

[48] Python is an object-oriented language that also provides procedural and functional

programming. It does not use the traditional curly brace style, but uses indentation

to delimit blocks. Python emphasizes readability, and imperative statements can not

be used inside expressions. In Python, assignment is a statement (i.e., there's no in-

line assignment). Python provides automatic memory management based on reference
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counting. Python's expressivity and ease of use has made it popular also among scien-

tists.

MORTAL has borrowed some elements from Python syntax. For example, in MOR-

TAL, assignment using the equal sign = is a statement, not an operator, similar to

Python. Also, arguments can be bound to parameter by name, as in Python. The

in and is operators (and their negations) are inspired by Python. And, like Python,

MORTAL is based on reference counting.

6.1.7.3 Ruby

[49] Ruby is an object-oriented language that also provides procedural and functional

programming. Its functional programming support is more extensive than Python's.

Ruby has a syntax that encourages (but does not require) a functional programming

style, with everything being an expression, and blocks of code being �rst-class objects.

6.1.8 Non-CPU languages

While the compilers for these languages may run on the CPU, the programs themselves

are intended to run on other hardware.

6.1.8.1 OpenCL

[50] OpenCL is a procedural language that lets certain types of heavy computations be

o�oaded to the computer's GPU (Graphics Processing Unit), which normally drives the

computer's display. Modern computers have quite powerful GPUs designed for advanced

3D graphics, and their �oating-point computational capacity can be orders of magnitude

better than the main CPU's. Through languages like OpenCL, this power can be used

for things other than 3D graphics.

MORTAL aims to eventually provide the ability to generate OpenCL code from MOR-

TAL source code.

6.1.8.2 VHDL

[51] VHDL is a data�ow language (with some imperative features for state machine

design) for designing and simulating digital circuits. VHDL programs can be compiled

and downloaded to FPGAs (Field Programmable Gate Arrays). Since such programs

are implemented in hardware, they can be orders of magnitude faster than software

programs, depending on the task.
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MORTAL aims to eventually provide the ability to generate VHDL code from MOR-

TAL source code.

6.1.9 Multiparadigm languages

Though many of the languages in the other sections also combine elements from multiple

paradigms, this section is dedicated to languages whose core design is fundamentally

multiparadigm, resulting in very high expressivity.

6.1.9.1 Oz

[52] The Oz language implements pretty near every programming paradigm there is

(including concurrent programming), resulting in an extremely expressive language. Its

primary drawback is that its design makes it di�cult to achieve performance comparable

to other compiled languages, so it is mainly used for programming language research.

MORTAL attempts to avoid this performance trap by, as much as possible, limiting

its own expressive power to things amenable to static analysis, thus allowing e�cient

machine code to be generated.

6.1.9.2 Scala

[53] The Scala language provides object-oriented, functional, and concurrent program-

ming. It is compatible with Java (Section 6.1.2.7), and runs on the Java virtual machine

(though work is also ongoing for using LLVM (Section 6.3.2) to generate native machine

code). With its robustness, expressive power, and good performance, it is becoming a

popular language for web services and high-performance distributed computing applica-

tions.

MORTAL has many similarities to Scala, but for performance reasons, often does

things in di�erent ways. For example, to add extension methods to classes, MORTAL

prefers the D language's (Section 6.1.2.6) �Uniform Function Call Syntax� over the

implicit type conversions of Scala's �enrich my library�.

Some of the other ways MORTAL di�ers from Scala are:

• MORTAL compiles to native machine code, and does not require a runtime.

(Scala's upcoming LLVM backend would also compile to native machine code,

but probably still require a runtime.)

113



6 Related work

• MORTAL requires full type annotation on functions/methods, which reduces com-

pile time.

• MORTAL supports contract-based programming.

• MORTAL can pass function arguments by name instead of by position.

• MORTAL aims to support declarative programming.

6.1.9.3 Rust

[54] The Rust language is a language that's still under development, but already usable.

It implements procedural, object-oriented, functional, and concurrent programming, and

is designed for distributed computing applications. Its self-hosting compiler uses LLVM

(Section 6.3.2) to create native machine code, and provides very good performance.

Its expressive power approaches (and may eventually even surpass) Scala's, except for

not being compatible with Java. And its type system, static analysis, and resource

ownership rules makes the language safer to use than many other natively-compiled

languages, making it easy to avoid invalid pointers and race conditions.

MORTAL has many of the same goals and features as Rust, but with a di�erent

philosophy and syntax. MORTAL has a similar concept of resource ownership, but uses

a less restrictive and more explicit model, primarily inspired by Vala (Section 6.1.2.9).

For example, MORTAL allows multiple mutable references to an object to exist at any

time, even for non-reference-counted objects.

Some of the other ways MORTAL di�ers from Rust are:

• MORTAL supports C++/Java-style object-oriented programming (including con-

structors, destructors, implicit conversions, class inheritance, and method and op-

erator overloading).

• MORTAL supports exception handling (try/catch statements).

• MORTAL aims to ensure safety through type annotations and contract-based pro-

gramming, not through forcing particular design patterns.

• MORTAL aims to support declarative programming.
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6.1.9.4 Nim

[55] The Nim language (formerly known as Nimrod) is still under development, but

has been usable for a while. It implements procedural, object-oriented, functional, and

concurrent programming, as well as some level of declarative programming through AST-

based term rewriting. Its self-hosting compiler generates C, C++, or Objective-C code,

which can be compiled to native machine code with very good performance. Its power-

ful term-rewriting metaprogramming system can be used both for high-level code opti-

mization and for creating domain-speci�c languages, resulting in a very expressive pro-

gramming language. And its type system, static analysis, per-thread garbage-collected

memory pools, and message queue system makes the language safer to use than many

other native-compiled languages. Nim's garbage collector is based on deferred reference

counting, making it faster than tracing garbage collectors.

MORTAL has many of the same goals and features as Nim, but with a di�erent

philosophy and syntax. Nim uses an indentation-based syntax (like Python), unlike

MORTAL's curly brace style. MORTAL's transparent classes and functions may be used

to achieve e�ects similar to Nim's templates and macros, and MORTAL metaexpressions

may be used to achieve compile-time evaluation.

Some of the other ways MORTAL di�ers from Nim are:

• MORTAL supports automatic memory management using reference counting, with-

out the use of a garbage collector. (MORTAL also reduces typical reference count-

ing overhead in several ways, such as through variable liveness analysis and un-

owned references.) MORTAL also explicitly supports weak references.

• MORTAL does not need the programmer to know about pointers.

• MORTAL's metaprogramming system follows a more object-oriented style than

Nim's.

• MORTAL uses a nominal type type system, while Nim mainly uses a structural

type system (though there's a quali�er that allows types to be nominally distinct).

MORTAL also has a more customizable Runtime Type Information system.

• MORTAL supports contract-based programming.

• MORTAL aims to support declarative programming in other ways than AST-based

term rewriting.
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6.1.9.5 Wolfram

[56] The Wolfram language (the language behind Wolfram Research's �Mathematica�

and the �Wolfram Alpha� website) is a mature, proprietary multiparadigm language

for scienti�c computing. It implements procedural and functional programming, as

well as symbolic computation based on term rewriting (including things like symbolic

integration and di�erentiation). It has a very large library of mathematical and scienti�c

functions and visualizations, some of which are able to fetch and operate on various

information published on the Internet.

Since Wolfram is a dynamic, non-compiled language, it is di�cult for compiled lan-

guages like MORTAL to compete on expressiveness. That said, MORTAL aims to even-

tually support declarative programming with a symbolic computation system that may

use similar principles as Wolfram. The intention is to allow MORTAL to rewrite math-

ematical equations into forms that solves the declared problem and can be e�ciently

computed by a compiled program, with as little programming e�ort as possible.

Some of the other ways MORTAL di�ers from Wolfram are:

• MORTAL is intended to be a general-purpose language.

• MORTAL supports C++/Java-style object-oriented programming.

• MORTAL supports contract-based programming.

6.2 Other languages

6.2.1 XML

[57] XML (Extensible Markup Language) is a markup language, typically used for repre-

senting information in a structured, machine-readable fashion, while still being readable

to humans. XML allows the information and its schema (if any) to be stored and main-

tained separately.

MORTAL aims to make working with such languages straightforward.

6.2.2 OWL

[58] OWL (Web Ontology Language) is an ontology language based on Description Logics

(DL), a family of subsets of �rst-order logic. OWL allows information and knowledge to
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be represented in a machine-readable form, and in a distributed fashion. OWL ontologies

are typically encoded using XML, but does not need to be.

MORTAL aims to be compatible with such languages in its support for declarative

programming.

6.2.3 OBO

[59] OBO (Open Biomedical Ontologies) is an ontology language often used in bioinfor-

matics. It is used to represent knowledge about things like biological functions and their

relationships. It is derived from OWL, with a few extensions.

MORTAL aims to be compatible with such languages in its support for declarative

programming.

6.2.4 SQL

[60] SQL (Structured Query Language) is a domain-speci�c language for database queries.

It is used to retrieve data from, or write data into, relational databases.

MORTAL aims to make it easy to issue SQL queries, and process their results.

6.3 Libraries and frameworks

6.3.1 GLib

[61] GLib is an open source library that provides a number of portable functions and high-

level data structures. It also provides a portable, language-agnostic, and full-featured

object-oriented class framework, GObject. The Gtk+ widget library is built on top of

GObject. Both GLib and GObject uses reference counting for their memory manage-

ment.

MORTAL is designed to be compatible with GLib and GObject, and MORTAL's

compiler uses GLib extensively.

6.3.2 LLVM

[62] LLVM is a collection of libraries and tools for creating compilers (both ordinary

and JIT). A number of fully functional compilers based on LLVM exists for various

languages, including �Clang�, a C compiler.
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MORTAL intends to use LLVM for compiling directly to native machine code (Section

2.8), and for generating code at runtime.

6.3.3 Spark

[63] Spark is a high-performance distributed computing framework implemented in Scala

(Section 6.1.9.2). In addition to its native Scala API, it provides APIs for Java and

Python. It achieves good performance by pipelining several transformations together

into a single work unit, and then recovering from any loss of cluster nodes by recomputing

the lost parts from the beginning. This allows Spark to minimize disk access, which can

be a signi�cant factor in a distributed system [64]. Spark can also be used to build

distributed database systems [65].

MORTAL aims to be able to interface with frameworks such as this, and then im-

plement declarative paradigms on top to make it easy to express complex scienti�c

computations.
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7 Conclusion

This thesis introduces and describes MORTAL, a new metaprogrammable program-

ming language for high-performance applications, and its compiler. MORTAL's multi-

paradigm approach is intended to bridge the gap between software engineers and scien-

tists, its �exibility and metaprogramming is intended to make it suitable for a wide range

of applications, and its static analysis features (such as its statically checked contract

programming constructs) is intended to help make MORTAL programs bug-free.

The language currently has procedural and object-oriented programming, and provides

many important features such as RTTI, function and operator overloading, subtype

and parametric polymorphism, multimethods, and exceptions. The language design

satis�es most of its original goals, but declarative paradigms still need to be designed

and integrated in order to satisfy them all.

The compiler is self-hosting and able to compile itself, showing that the language and

its compiler, though not fully implemented yet, is already usable. The performance of

MORTAL programs is also able to match the performance of C programs.

MORTAL is open source, released under the MIT license, and available from https://sourceforge.net/projects/mortal/.

We believe that as MORTAL and its compiler matures, it will become a useful language

for solving many of the demanding computational tasks of modern science.
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Although the language is already usable, much work remains. Some of the most impor-

tant remaining tasks are:

• Finish the memory management implementation. (To compute the optimal refer-

ence counting strategy in all cases, it may be bene�cial to implement transforma-

tion into SSA form �rst.)

• Finish exception handling. The various control �ow contingencies must be handled.

• Coroutines/generators (resumable functions). MORTAL could implement these

by placing their �local� variables in a heap structure instead of on the stack, and

let the caller hold a reference to the structure. The heap structure might also hold

state such as which resume point to use.

• Anonymous functions and closures. Anonymous functions without closures could

simply be transformed into regular functions with an automatically generated

name. Closures may be best implemented by transforming the anonymous func-

tion into a coroutine (see above). If the anonymous function is saved to a delegate,

the delegate can hold the reference to the coroutine's heap structure.

• Fully support the GObject class framework. Because of the complexities of GOb-

ject construction, MORTAL's metaprogramming facilities must �rst be signi�-

cantly improved. It may also be an advantage to implement metaclasses in MOR-

TAL, to be able to accurately express the relationships between the various GOb-

ject data types.

• More metaprogramming, including compile-time function evaluation. An embed-

ded interpreter may have to be written to safely compute arbitrary expressions at

compile time.

• Declarative programming (e.g., logic and constraint programming), and integration

of external inference engines to solve declarative problems. MORTAL wrappers for
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such inference engines would need advanced metaprogramming facilities to be able

to rewrite declarative functions into imperative functions that call the inference

engine (if it can't �nd a compile-time solution).

• Full static analysis. Static analysis could take advantage of the same inference

engines that would be used logic programming, by transforming a function's code

and its contracts into logical statements, and asking the inference engine to look

for contradictions.

• More backends, such as C++, OpenCL, and the LLVM code generator.

• Runtime code generation. For runtime algorithm specialization, MORTAL byte-

code representing the algorithm implementation could be embedded into the com-

piled executable. Assuming the executable is linked to the MORTAL compiler

as well as LLVM, the compiler could then optimize the MORTAL bytecode as

appropriate, then use LLVM to generate machine code that can be executed.

• Investigate making MORTAL syntax more permissive. It might be nice not to

have use parentheses when calling functions in unambiguous ways, and also not to

have to use semicolons after every imperative statement.

• Evaluate MORTAL's expressivity and safety. MORTAL programs should be shorter

and easier to write than programs written in other languages, is this the case? Does

MORTAL reliably detect common programming errors?

• Tutorials and sample programs, to help people learn the language.
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