uitl

THE ARCTIC Faculty of Science and Technology
OUFN INv; i:l,?\, Department of Mathematics and Statistics
Homological methods applied to theory of codes and
matroids

Anna Karpova
MAT-3900 Master’s thesis in mathematics May 2015

PEER LT FRERTRIRERT R RERER IR LRI X L P F I C LI T A I I IN 1Y
fl!i!l!!/l!////li!i!i!l!//!/fl!i!f/i/f II!IIIIIIIIIIIII!I!IIIIII!IIIIIIIIIIII! 1YY I I IIIIIIIJ
f///f/f/!i!/li/flllf/f///l/!i!f///!fll I///I//!III!ICIIIIIIIIIIIIIIIIIIIIIIIIIIﬁ/IIIIGIIltlﬁlll{ll!l

/ /

[11irireereed 111rereirittld / I TR TANR AR ERNR S EL AR NANREANANARAESNANE A AN TN LB
LILELLieLeiielllleee! 1rritriil! FRELTEAAT 000 i it et i it e i
LELEEEEEEErirtiieiereitetiltliieiiii IIIIIIIIIIIIIIIIIIIIIIIIII !I!l!IIIIIIII!I LTI I I Y !IIIIII

‘ /

FHTETEEE000 i e te i it i iidiediddd RIRIELELERTI I AIEIETRRTNIIdI0IelY IIIIIIIIIIIII!IIIIIIIIIIIII
NN RN NN NNy, IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII (0t ntrtni bttt it
FITETERLERiebiitdirerriiitteieiitl IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII l I I (i1l l l l (renrel lll

UPPVETEEEERE R it e bbbt bbdbeddr F00000LLEL0EERIEIEIMEEEEENY IIIIIIIII 111y Hrtrtririr il
FETETEEEEER i i i b e re i i i iddieddd LIRIRIEIEIRERETLETLILRIRTTNILIAINIY] IIIIIIIIIIIIIIIIIIIIIIIIIII
UPLTETE R QR PRI R B Ei 0 i iidd FREFQRIRIELRAERERL BRI ERinteititeririreitiieey IIIIIII IIIIIII
FRPTERERRRE0 8RR 0000000000000 BARARRRERERIRIRIRIQ PRI ERIR LI LILI0IIerererisised i l rrer
AILPEITRERERRRRRILLbEEeLIrIei e lIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIII
FEPTEEPIIEIeredeerrdiintereee 0 IIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIII!IIIIIIIllllllllllll rnrert
"WERTERER BRI REIRRRETRRE0Iiee 1010801011010 IlIIlIIlIlIIlIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIJ
FEddeteiireniteideeiitriitieeid IIIIIIIIIIIlIIIIIIIIIIIIIIIIIIlIIIIIIIl!IlIlIlllll!l!l!llllllll!llll
UEETTTERRT PR BTGRP ER BT FRRREFPRRRIR QPRI R TR RR BRI RRRRERRRERERIAIRIRAINEIILIINIIIEINETY
FEPTRRRTEE AR R PR R T a0 r RERIRE BT LI P BRI AR PRI RA LR RF PRI AP qeererarerireninererenenend
’IIIIH’IIIIIIIIIIIIIIIIIIII’IIII IIIIIIIIII'II'II'II'II'I'I!IlIII'III’I'I'II’!’IIIIII'III'II'IIIIIIIIIIIIIIIIIIIIIIIIIIH

FRERRFERRTEdIRIIRIeeideieer 242 1107 171 frirerirereiinis 7
"AEBGeLIerrRErRLLILLILILII IIIIIIIIIIIIIIIIIIIIIIIIllllllllllll!llllllll Tergieaaeeranieieirereiii
FRERIRREREERRERTRAIRERERIRET RODRLIRILINILININININY IIIII lll 111 Ill Teriieeerneiaei riririnent
TTRQEERER IR E QR r Ry FRORE2000000000000 000000000000 0000101010 IlllllllllllllIIIIIIIIIIIIIIIIIJ
Feadenesbeaeiinieinieg IIIIIIIIIlllllllllllllllllllllllllllllllllllllllll frerdneieierenininar
111 reenrananenesr FRERERIRRRRR AR RRORRRARIRRSRRRNIRERIRERINEREINY 1rereees I!IIIIIIIIII
feesdisdneeeneie FEQTRARE DR A R D PRGN R RN P RGP QPRI RERAQIREQPGIRLIGIGIGLGreenine

"GRRREGRRR TR R bR Ra ey SRRRRRE2G00000000000004100
FRQRRURERRRRRR R RRRRay RRRRR 000000000000 00000000000000000000000000000000000000000000RRAANNINERTRINRINY
"QRRRARR RN RERRERRREd FRRRRRRR R0 R RR R0 000000000000 0000000000000000000000GRRNENNNARANINIRIRIRINRIY
FRRRRRRRRQIRRRUINRRNENR lIlIllllllIlllllllllllllllllll'lllllllllllllllllllllllllll'llllllllllllllllll
"ERRERRRRRR RN ERR R RN FRRRRRRR R R AR RN R DR R RPN RN DR AR RN QR QIR RRRRRRERARARRRRRARIRARRR AN
FRGURRRARRRRRRROnaey Ra0RRRRA000000000000000000048

]
FRQRRERRaRERabbRaedy 2000004
"RANRANERRRNRRRNNNNY lllllllllll'lllll'lllllllllllll'lllllllll'lllllllllllllllll'lllll'l Jeaeaaaanresd

y
-
oy
Sy
y
b
iy
et
oy
Ed
y
-
=y
-
y
-
ay
-
y
-
y
-
ay
-
B
-
y
-
y
-
y
-
y
-
y
-
ny
el
oy
el
y
&
-y
-
iy
-
y
-
y

l
L L
"lllllllllllll'l'llllll"lﬂ{'llllll'lll

~on

=

-~

—
y
<y
I~
iy
y
oy
o
Sy
S
s
=y
oy
r~
ay
r~
£
oy
By
oy
y
I~
™~
oy
oy
iy
~
r~
ey
oy
iy
I~
oy
oy
oy
I~
oy
oy
Fes

[/

L L L g T g Ty g T T T L L
IEERARGRRRAGRy QNN RNA RN RN RN RN RN RN RA QRN NRR RN QIR ARERRQNQERNRRGRRNGNEY

L T L T T T Tl YTy ad r X T T T T T T L
TQERARERRRREy SRRSO RRRNRRRRRRRRRRRRRARORARARAGNRARARARARARARORGQRRERAGIRIRORORORORORNROR RN NONANII
GRoaRaRRael JODENGRENONGNONNNRNGRRNRQENRN ORI RGRENGRANAR NN RQ NI IR TR IR QOG RGO TORANROTRINRETY
IERRTRERERRy JGRGRGRRRRR R RO NN RN RGN R RGN A GRRAGRR NN AR RAQIR IR O RGN RN ARN ORI AR RN IR NAN|

yaNaNg L/ L] LI LA L T T L LT L L L

& [/ SORRANARNRARNRNQANN 'l l l'l LI L]
VRSRERRY DUOUNGNENGNGNONENENGNGNINENGNGNGRGNGRNGRENARNGNERANANARE. l" LI L L L T T T T L L L
IARRNERY JURRRGQROSARRARRERRRRRERARARARANONNNINNRANNRANARARARY ll'llll'l'l ll"l'll' LI LI L L L]
L l"'"""'lllll'l'l'l"'l'l'l"l'l"l'll'lllllJlll""llllllllllllll'll'llll’ll'll L
IARRNEy JORRUNLRDRNNOSERRRERORINERANORNRIRANENANARORANORARARARAQURORNVNNUGNRAGAQNGNRNGARNGNINSOGNEI
LY ’fll" l"l'"l""l'Wlll"l"ll"'llll'""l"'l'l'l'll'll'l"'ll""l"l""'l"' L

lll'l a8 & l .' ' ' l
VRRr JENQBUNQBONGNARONGNONINONINGNONGNENGNENG l'lI'I'I."W'l'll"l..lll'l'l" LIALL LI L]

rll L LT LT L T 'l.ll'l'lll'l"'.'l'.'l"J'J'l"ll.'ll"l'l'l'.l.'l'.'l'.'ll.'l’ L1 "l‘ <R
Vi SQDRONENERGACACNGICTENORUNONENINONGRONINGNENEINENENENENIRENINENENENININIQIQEQNAFQTGNANG. 4008
] l”.ll"'l'l'l'l'l'll'lllll.'.'..l.'l.l.'l'll.ll'.l.'ll.l.'.'.”l"l'..ll.'.l'llll.".'”ll"'ll'l
L L o L e L L L o o L L L L A L o L L L e o L O L O L L L L L L L L S L R L L LR

B (B B e e {0y i Pty e By ey [ e By e B e By e [ oy e Finy e By By e e oy e By By [y By 5 By e e By By 0 B i i e iy By By 2 i iy e By iy oy e [ e M o e By 3y [ 5 s i e 2y oy 2 B i i 5y e B iy e n iy i R iy By 0 [ o M Moy 2y By By [ e I )






Abstract

In this thesis we first give a survey of linear error-correcting codes, and how
many of their most important properties only depend on the matroids derived
from their parity check matrices. We also introduce the Stanley-Reisner ring
associated to the simplicial complex of the independent sets of a matroid.

We then recall in particular how some important properties of linear
codes, including their generalized weight polynomials, are dependent only on
the Z-graded Betti numbers for the Stanley-Reisner rings of their associated
matroids, and the so-called elongations of these matroids. We will use this
fact to find the generalized weight polynomials of simplex codes and Reed-
Miiller codes of the first order.
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Introduction

This thesis is about studying linear codes, matroids and simplicial complexes,
and concepts related to them. We are going to see that it is very natural to
study matroids, in connection with codes.

The main contribution in the thesis is the computation of the generalized
weight polynomials for large classes of codes. Concretely in this thesis we
shall consider the simplex codes (duals of Hamming codes), and Reed-Miiller
codes of the first order.

In order to do this we will present a series of concepts and objects from
algebra and combinatorics and coding theory. A large part of the thesis in a
natural way will be devoted to the presentation of these objects.

The thesis is structured as follows:

Our aim in Chapter 1 is to define block codes, linear codes and matroids
(via various sets of axioms). The text in Chapter 1 is to a great extent based
on picking relevant material from [14], and the main purpose is to define
concepts and fundamental properties that will be used later.

In Chapter 2 we will explain how one can obtain matroids from codes
and give the definition of minimum distance and weight hierarchy of ma-
troids for the purpose of sketching the deep connection between codes and
matroids. We will end this chapter by giving an example which shows how
some matroids do not come from codes.

Chapter 3 is concerned with viewing the matroids appearing as special
cases of simplicial complexes, being a concept originating from algebraic
topology. Here we will also introduce and describe various algebraic and
homological concepts and notions associated with simplicial complexes, in
particular their Betti numbers over a given field, with different gradings.

Chapter 4 is about half of the thesis and it is dedicated to generalized
weight polynomials. We may find them in two ways, in terms of Betti num-
bers and the other method was given in [9]. In this chapter we will also work

1



2 CONTENTS

with examples, including the simplex and Reed-Miiller codes where we ex-
plicitly can find the Betti numbers of matroids and elongations of matroids.
Therefore we will be able to describe properties of these codes, including
higher weight distributions of the codes. It is important to note that we
shall prove here the theorem, which states that the Reed-Miiller code of the
first order has a pure resolution of its associated Stanley-Reisner ideal. We
need it in order to find Betti numbers applying the formula given in [2].



Chapter 1

Basic definitions

1.1 Linear codes

In this section, we will give definitions of linear codes, code parameters,
weight hierarchy and weight distribution. We will also introduce the dual of
a linear code.

Definition 1.1. An alphabet is a finite set of symbols.

Definition 1.2. Let ¢ be an integer. Then a g-ary code is a set of r-tuples

(a1,...,a,) (r may vary) where a; € A and A is an alphabet with ¢ elements.
An element (ay,...,a,) in this set is called a codeword; r is the length of the
codeword.

If r is fixed, then it is called a g-ary block code.
(a1,...,a,) € A™ is just a word. Of course,

{codewords} C {words}.

The first important parameter of a code is the following:

Definition 1.3. The length n of a block code is equal to the length of any
codeword.

Definition 1.4. Consider the alphabet A and A™ be the set of all words
of length n. Let z = (x1,...,2,) and y = (y1,...,y,) be two words. The
Hamming distance between z and y is

d(z,y) = #{i, zi # yi}.

3



4 CHAPTER 1. BASIC DEFINITIONS

If the alphabet is a field A = F,, then the weight of the codeword z =
(T1,...,2,) 1S
wt(x) = #{i,z; # 0} = d(x,(0,...,0)).
FExample 1.1.1. Let
x=(0,1,1,2),
y=(1,1,1,1).

Then the Hamming distance between z and y is 2, and the weight of x is 3.
Proposition 1.1. The Hamming distance is a distance on the code, that is
d(z,y) =0 <=z =y,

d(x,y) = d(y, x),

d(z,y) < d(z,z) +d(z,y).

Proof. See [14]. O

Here is another important parameter of a code:

Definition 1.5. The minimum distance of a code C is
d=Min{d(z,y) | v,y € C,x # y}.

Any g-ary block code is an (n, M, d), code. It means that we have a g-ary
block code of length n with M codewords and minimum distance d.

Example 1.1.2. Binary code C of length n = 5 with M = 4 codewords and
minimum distance d = 3 given by its set of codewords

{00000, 01011, 10101, 11110}.

Definition 1.6. A linear code over the finite field F, is a vector subspace of
the vector space Fy.

Property. Let V' be a vector space over a finite field Fy, of finite dimension
k = dimg (V). Then
#V = q".

From the property it follows that instead of writing that a linear code is
a g-ary (n,q",d) code, we will say that the code is a [n, k,d], code. Then
a [n,k,d], code is a linear code over F, with length n, dimension & (and
therefore cardinality ¢*) and minimum distance d. We may omit d in the
notation if the minimum distance is not specified.
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Remark 1.1. The all zero vector is always a codeword of any linear code.

Remark 1.2. To describe a linear code, we only need to describe a basis.
Then all the other codewords are linear combinations of this basis (of the
vectors in the basis).

Ezample 1.1.3. Let C be the [4, 2|3 code, with basis v; = 1011 and vy = 0112.
Then the set of codewords are of the form A\jv; + Ayvs and given in the
following table:

A1 | Ao | codeword
010 0000
011 0112
012 0221
110 1011
1] 1 1120
1| 2 1202
210 2022
2 |1 2101
2 |2 2210

It is easy to see that all the non-zero codewords have weight 3. This is
therefore a [4, 2, 3|3 code. This code is in fact MDS and constant weight.

Definition 1.7. Any linear code whose minimum distance satisfies
d=n—k+1,
is called maximum distance separable (MDS).

Definition 1.8. A code where all codewords, except for the zero codeword,
have the same Hamming weight is called constant weight.

Lemma 1.1. Let z, y be two codewords of a code. Then
d(z,y) = wi(r —y).

Proof. See [14]. O
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Theorem 1.1. Let C be a linear code. Then the minimum distance (also
called the Hamming weight of the code) is

d = Min{wt(z) |z € C—{(0,...,0)}}.
Proof. See [14]. O

Definition 1.9. The support of a codeword = = (z1,...,x,) is
Supp(x) = {i | z; # 0}

(wi(x) = #Supp(x)).

If S is a set of codewords, then the support of S is just the union of the
supports of the codewords

Supp(S) = U Supp(x) ={i | Jx € S,x; # 0}.

€S

Property. Let C be a linear code. Then the minimal distance d is
d = Min{#Supp(D) | D is a subcode of dimension 1 of C}.

Proof. See [14]. O

Definition 1.10. Let C be a [n, k|, linear code. Then the generalized Ham-
ming weights are

d; = Min{#Supp(D) | D is a subcode of dimension i of C},

where 1 < ¢ < k. The sequence (dy,...,dy) is called the weight hierarchy of
the code.

Remark 1.3. From the previous property, d = d;. The k-th generalized
Hamming weight dj should be n, otherwise the code is degenerate, and can
be replaced by a code with smaller length.

Lemma 1.2. Ifvy,...,v; is a basis of a [n, k] code C, then

Supp(C) = | Supp(vy).

1<i<k

Proof. See [14]. O
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Remark 1.4. The support of a code is equal to the union of the supports of
a given basis, but usually, d(C) # Min{wt(v;),i € {1,...,k}}.

Proposition 1.2. The weight hierarchy of a code is a strictly increasing
sequence
dy < dy <...<dp.

Proof. See [14]. O

Definition 1.11. Let C be a linear code. C has

1 codeword of weight 0,

my codewords of weight 1,

mso codewords of weight 2,

m,, codewords of weight n.

Then {1,my,...,m,} is called the weight distribution of C.

As we have mentioned earlier, in order to describe a linear code, we just
need to find a basis of the code. This gives rise to the following definition:

Definition 1.12. Let C be a [n, k], linear code. Then a k X n matrix over
F, whose rows form a basis of C is called a generator matrix.

Remark 1.5. Generator matrices are not unique.
For example,

(1011

Gl__0112_

and _ -
01 12

G2:1011_

describe the same code, but G; # Gs.
FExample 1.1.4. The constant weight code of Example 1.1.3 has generator

matrix
1 011
01 1 2

Definition 1.13. Let C, D be two [n, k] linear codes over the field F,. Then
the codes are equivalent if we can obtain D from C by a succession of the
following operations:
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1. permutation of the positions of the code

2. multiplication of the symbols at a fixed position by a non-zero constant.

Proposition 1.3. Two equivalent linear codes have the same parameters:
length, cardinality and minimal distance.

Proof. See [14]. O

Definition 1.14. A generator matrix of the form
[ | A

where [} is the k£ x k identity matrix and A is a k x (n — k) matrix, is called
a generator matrix of standard form.

Remark 1.6. Generator matrices of standard form are not unique for equiv-
alent codes.

We want to define the parity check matrix of a code, but first we need
some definitions.

Definition 1.15. Let u,v € F be two vectors. Write u = (uy,...,u,) and
v = (v1,...,v,). Then the inner product is

n
u-v = E U;V; .
i=1

The inner product is a bilinear form, that is, it is linear on each component
of the cartesian product (bilinear), and its target is the set of scalars of the
vector space (form).

Definition 1.16. A bilinear form f: V x V — K is said to be:
e Symmetric if f(z,y) = f(y,z) for all x,y € E,

e Nondegenerate if f(z,y) = 0Vy € V = x =0 and f(z,y) = 0Vz €
V=y=0.

Let C be a [n, k], code with generator matrix G. Let C* be the orthogonal
of the code for the usual inner product

C* = {w € F} such that w-c=0Vc € C}.

Since the inner product is a nondegenerate symmetric bilinear form, we know
that C* is a [n,n — k|, code. A generator matrix H of C* is therefore a
(n — k) X n matrix with entries in FF,, and whose rows are a basis of C*.
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Definition 1.17. Let C be a [n, k|, linear code. Then the [n,n — k], linear
code Ct is called the dual of the code.

Theorem 1.2 (Wei’s duality). Let C be a [n, k], linear code, and C* its dual
code. Letdy < ... <dy and ey < ... < e, the weight hierarchies of C and
C* respectively. Then

{di,...;dp,n+1—e1,....n+1—e, x}={1,...,n}
Proof. See [15]. O

Definition 1.18. A generator matrix of C* is called a parity check matrix
of C.

Proposition 1.4. If G, H are a generator matriz and a parity check matriz
for C respectively, then they are a parity check matriz and a generator matriz
for C*+ respectively.

Proof. See [14]. O

Theorem 1.3. Let C be a linear [n, k], code given by a generator matriz G
under standard form, say

G=I[I | Al
Then a parity check matriz for C is given by
H=[-A" | I,4].
Proof. See [14]. O

Definition 1.19. A parity check matrix of the form H = [B | I,_4] is said
to be in standard form.

Example 1.1.5. Given the [5, 2] linear code C over Fj.
Its generator matrix is

1 0/2 01
G:{o 12 2 2]:“2‘4}'

Let us find the matrix — A?

2 2 11
—Al=—102]|=]01
[ 12 2 1
Then we have
1 111 0 0
H={({01/0 1 0
2 1|0 0 1
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1.2 Matroids

In this section, we will give definitions of matroids via various set of axioms,
and cardinality and rank of matroids. As in the previous section, we will
introduce the notion of duality of matroids.

1.2.1 Independent sets of a matroid

Matroids have many (equivalent) definitions.

Definition 1.20. A matroid on a finite set E is a set Z C 2% satisfying the
following axioms:

(I,) o €I,
(I,) If I, € T and I, C I, then I, € T,

(I3) If I; and Iy are both elements of Z with |I;| < |I2|, then there exists
x € Iy \ I; such that I U{z} € T.

Definition 1.21. Two matroids M; = (Ey,Z;) and My = (FE»,Zy) are iso-
morphic if there exists a bijection ¢: E; — FE5 such that

X el & o(X) e

Ezxample 1.2.1. Let V' be a vector space over K and vy, ...,v, be vectors in
V. We consider the set

Then the M = ({1,...,n},Z) is a matroid. A matroid isomorphic to such a
matroid is called a vector matroid.
If the v; are the columns of a matrix A, then the associated vector matroid

is denoted by M[A].
Ezxample 1.2.2. Let E = {1,2,3,4,5}, and consider

T=1{2,1,2,4,5{1,2},{2,4},{2,5}, {4,5}}.

Then M = (E,7) is not a matroid. Let [; = {1} and I, = {4,5}. Neither
{1} U {4} nor {1} U {5} are independent.
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Ezample 1.2.3. Let £ = {1,2,3,4,5} with

T=1{2,1,2,4,5{1,2},{1,5},{2,4}, {2,5}, {4,5)}.

Then we could verify the axioms and see that M = (E,Z) is a matroid in
this case.

Definition 1.22. The elements of Z are called the independent sets of M =
(E,7). The maximal independent sets (for inclusion) are called bases of M.
They are denoted by B. The subsets of E that are not independent are called
dependent. The minimal (for inclusion) dependent sets are called circuits and

denoted by C.

Definition 1.23. Let M = (E,Z) be a matroid. If {e} € C, then e is called
a loop. If {e1,es} € C, then ey and eq are called parallel elements.

Theorem 1.4. A matroid over the ground set E is entirely defined by its set
of bases, or by its set of circuits. Namely we have:

I={XCE,IBeB, X C B}

and

I={XCE,Voel,o¢ X}.
Proof. See [14]. O

1.2.2 Bases of a matroid
Proposition 1.5. If By, By € B, then |By| = | By|.
Proof. See [14]. O

Proposition 1.6 (Base change). Let By, By be two distinct bases of a ma-
troid. Let v € By\ By. Then there exists y € By \ By such that BoU{y}\ {z}
1s a basis of the matroid.

Proof. See [14]. O

Definition 1.24. Let E be a finite set and B C 2. We say that B is a set
of bases if it satisfies the two following axioms

(Bl) B# Qa
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(BQ) VBl,BQ < B, Vo € BQ \ Bl) E|y € Bl \ BQ, Bg U {y} \ {l’} € B.

Corollary 1.1. Let M = (E,Z) be a matroid. Then its set of bases B is a
set of bases (in the sense of the definition).

Proof. See [14]. O

Lemma 1.3. Let B be a set of bases on E. Then all the elements in B have
the same cardinality.

Proof. See [14]. O
And we can now describe a matroid as the set of bases:

Theorem 1.5. Let B be a set of bases on E. Let T = {X C B,B € B}.
Then M(B) = (E,I) is a matroid, whose set of bases is B.

Proof. See [14]. O
Example 1.2.4. Consider

B={{1,2,3},{1,4,5},{2,3,6},{4,5,6}}.

Then M with this set of bases is not a matroid. The first axiom is trivial
and it is easy to check that the couple {{2,3,6},{4,5,6}} doesn’t satisfy the
axiom (Bsy). Let By = {2,3,6} and By = {4,5,6}. Then 2 = {4} € By \ By
and Jy € B1\ By = {2, 3}, let us take y = {3}, such that {4,5,6}U{3}\{4} =
{3,5,6} ¢ B. If we take y = {2}, then {4,5,6} U {2} \ {4} = {2,5,6} is not

a base either, and therefore we get the conclusion.

FExample 1.2.5. Let E be a finite set of cardinality n. Let 0 < m < n, and
let

B={XcCE, |X|=m).

Then B is the set of bases of a matroid, called the uniform matroid of rank
m. The axiom (Bj) is obvious, while axiom (By) is also easy: if By # Bs
and © € By — By, then any y € By — By is such that By — {z} U {y} has
cardinality m, and is therefore in B. It is denoted by U,, g. We write U, , if
E={1,...,n}.
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1.2.3 Rank function

Definition 1.25. Let M = (F,Z) be a matroid. The rank of the matroid
M is the function

r. 28— N
X +— Mazx{|I]|,I C X,I €T}

The nullity function of M is n: 2 — N defined by n(X) = |X|—r(X). By
abuse of notation, we shall write (M) = r(E).

We could have given another definition using bases:

Proposition 1.7. Let X C F, then
r(X)= Maz{|BN X|,B € B}.
Proof. See [14]. O

Proposition 1.8. The rank function of a matroid M = (E,T) satisfies the
following properties:

(Rl) r(@) = O?
(Re) If X CE andx € E, then r(X) < r(XU{z}) <r(X)+1,

(R3) If X C E and z,y € E are such that r(X U{z}) = r(X U{y}) = r(X),
then r(X U{z,y}) =r(X).

Proof. See [14]. O
These properties are equivalent to the following ones:

Proposition 1.9. Let r: 28 — N be a function. Then the 3 following
properties:

(R1) 0<r(X)<I|X],
(R) If X CY CE, r(X)<r(Y),
(R) IfXCY CE, r(XNY)+r(XUY)<r(X)+r(Y)

are equivalent to the properties (Ry), (R2) and (R3).
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Proof. See [14]. O

We are now able to give a third definition of a matroid:

Theorem 1.6. Let E be a finite set and r: 2 — N a function satisfying
(R1), (Ry) and (Rs) (or alternatively (R)), (R,) and (R})). Then if

I={Ie2"r(I)=1l},
then (E,T) is a matroid, with set of bases
B = {1 €25, 1(E) = r(1) = 1]},
and rank r.
Proof. See [14]. O

FExample 1.2.6. Let K be a field, and L be a field extension of K. Let E =
{li,...,1ls} € L. Then the function

T 28 — N
{li17---7li5} — t?"d@g(K(lil,...,lis) : K)

is the rank function of a matroid. A matroid isomorphic to such a matroid
is called an algebraic matroid.

Remark 1.7. Every vector matroid is algebraic. But the converse is not true.
There are some algebraic matroids that are not vector matroids (over any

field).

Proposition 1.10. Let A be a k X n matriz with k < n. Then the rank
function of the matroid M[A] is given by:

rua)(X) = rank(A[X])
where A[X] is the matriz formed by the columns of A indezxed by X .

Proof. See [14]. O
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1.2.4 Circuits of a matroid

Proposition 1.11. The circuits C of a matroid satisfy the following proper-
ties:

(C1) g¢C,
(CQ) ]fCl,CQ € C with Cl C 02, then C1 = CQ,

(C3) If C1,Cq € C are distinct and not disjoint, then for any e € Cy N Cy,
there exists C3 € C such that C3 C (Cy U Cy) — {e}.

Proof. See [14]. O

Remark 1.8. The property (C3) is often called the weak (or global) elimina-
tion axiom for circuits, as opposed to the strong (or local) elimination axiom
for circuits below.

Proposition 1.12. Let E be a finite set and C be a set of subsets of E. Let
(C%) be the following property:

(CY) - If C1,Cy € C are distinct and not disjoint,
then for any e € C1y N Cy and f € Cy \ Cy, there exists C3 € C
such that f € C3 C (C1 U Cy) — {e}.

Then the properties (Cy), (Cs) and (C3) are equivalent to the properties (C1),
(Cy) and (CY).

Proof. See [14]. O

Lemma 1.4. [f M = (E,Z) is a matroid with rank function r. Then a subset
X C E is dependent if and only if

r(X) <|X| —1.
In particular, if X s a circuit, then
r(X)=|X| -1

Proof. See [14]. O
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Theorem 1.7. Let E be a finite set, and C C 2F satisfying the azioms (C}),
(Cy) and (C3). Let

I={XCE }CecC, CcX}
Then (E,T) is a matroid whose set of circuits is C.

Proof. See [14]. O

Ezxample 1.2.7. Let G = (V, E) be a graph. Then the set of minimal cycles
of the graph is the set of circuits of a matroid. A matroid isomorphic to such
a matroid is called a graphic matroid.

Remark 1.9. It can be shown that all graphic matroids are vector matroids
(and therefore algebraic matroids). But there are some vector matroids that
are not graphic.

1.2.5 Duality

Lemma 1.5. Let M be a matroid on the ground set E with set of bases B.
Let By, By € B distinct. Let v € By — By. Then there exists y € By — By
such that By — {y} U{z} € B.

Proof. See [14]. O

Theorem 1.8. Let M be a matroid on the ground set E with set of bases B.
Let B
B={E - B,B < B}.

Then M(B) is a matroid over E.
Proof. See [14]. O

Definition 1.26. Let M be a matroid on the ground set F and set of bases
B. Then the matroid on E and set of bases B is called the dual of M, and
denoted by M*.

Remark 1.10. We have of course that (M*)" = M.

Ezample 1.2.8. The dual of the uniform matroid of rank m, U,,, is the
uniform matroid U,,_, 5.

Definition 1.27. Let M be a matroid. Then
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The elements of Z(M*) are the coindependent sets of M

The elements of B(M*) are the cobases of M

The elements of C(M*) are the cocircuits of M

The rank function of M* is the corank function of M

e A coloop of M is a loop of M*.

Proposition 1.13. Let M be a matroid of rank r on the ground set E. Then
the rank of M* (or the corank of M) is #E —r.

Proof. See [14]. O

Theorem 1.9. Let M be a matroid of rank function r. Then the rank func-
tion r* of M™ is given by

r(X)=|X|+r(E—-X)—r(M),VX C E.
Proof. See [14]. =

Corollary 1.2. Let M be a matroid of nullity function n. Then the nullity
function n* of M* s given by

n*(X) =|X|+n(F —-X)—n(E).
Theorem 1.10. Let M, N be two matroids. Then
M~ N <= M"~ N*.
Proof. See [14]. O

Theorem 1.11. If A is a k x n matriz of the form A = [I;, | A'] then
MI[A)* = M[B] for B=[-A" | I,k

Proof. See [14]. O

Example 1.2.9. Given the vector matroid M|[A], associated to the following

matrix
1 0/0 1 1
A—{O 1lo o 1}over]F2.
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Then the matroid M[B] = M[A]*, where

B =

_— O
_ o O
o O =
O = O
_ o O

gives the dual of the matroid M[A].
Theorem 1.12. If M is a vector matroid, then M* is also a vector matroid.
Proof. Follows from the previous theorem. O]

The class of vector matroids is closed under duality.

1.2.6 Elongations and truncations of matroids
Let M be a matroid on E = {1,...,n} with rank r(M) = r(E).

Definition 1.28. E(M) is called the elongation of a matroid M if for any
XCFE

This is well-defined, since rg() satisfies the axioms for rank function.
We need to check the following:

(Rl) TE(M)(Q) = O,
(Ry) If X C Eand z € E, then g (X) < rpoan(XU{z}) < rean(X)+1,

(R3) If X C Fand x,y € E are such that rg,)(XU{z}) = rean(XU{y}) =
reon(X), then rpoan(X U{z,y}) = reon(X).

Proof. (R1) reo)(@) = Min{ry (@) + 1,|9|} = Min{0+ 1,0} = 0.
(R2) By the definition 7 (X U{z}) = Min{ry (X U{z}) + 1, | X U{x}|}.
Then we have to verify that

Min{ry(X) + 1,|X|} < Min{ry (X U{z})+1,| X U{z}|} <

< Min{ry(X) + 1,1 X} + 1 = Min{ry(X) +2,|X| + 1}.

But this is true since:

ru(X)+1<ry(XU{z})+1<ry(X)+2,
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since ), satisfies (Ry) and
(X< [XU{z} <X+ 1
We will leave the proof for the third axiom. ]

Definition 1.29. For i = 0,...,n —7(M) define a matroid M, which is an

i-th elongation
My = E(E(... B(M))).

1 tiYnes
Proposition 1.14. The independent sets of the matroid M) are
I(My) = {o € E | n(0) < i}.

Remark 1.11. It is asserted in the article [6].

Example 1.2.10. Consider the matroid in Example 2.1.1 with bases B =
{{1,2},{1,4},{2,3},{3,4}}. We want to calculate independent sets of My,
by using the formula: Z(M;)) = {0 € E| n(o) < i}.

Computations of nullity function for every ¢ € E are listed in the table

below.
Then for 0 < i < 2, we have

I(M) ={oc€ E|n(o) <0} ={2,1,2,3,4,{1,2},{1,4},{2,3}, {3, 4} }.
I(Muy) =1{2,1,2,3,4,{1,2},{1,4},{2,3},{3,4},{1,3},{2,4}, {1, 2,3},
{1,2,4},{1,3,4},{2,3,4}}.

I(Mo) =1{9,1,2,3,4,{1,2},{1,4},{2,3}, {3, 4}, {1, 3}, {2, 4}, {1, 2,3},
{1,2,4},{1,3,4},{2,3,4},{1,2, 3,4} }.
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o r(o) | n(o)
1,234 | 2 | 2
{1,2,3F | 2 | 1
(1,247 | 2 | 1
1,34y | 2 | 1
2,34y | 2 | 1
L2y [ 2 [0
(1,3} 1| 1
{1,4} 2 0
{2,3} 2 0
2,4} 1| 1
{3,4} 2 0
1 1 0
2 1 0
3 1 0
4 1 0
%) 0 0

The matroid M is the elongation of M to rank (M) +i.

The rank function of M; for a matroid M with rank function r is denoted
by r;.

In example 1.2.10 we observe

rn(E)=r(E)+1=3,
ro(E) =r(E)+2=4.

For all matroids M we have:
Proposition 1.15. The rank function r; of My satisfies:
ri(X) = Min{ry(X) +1,|X|}.
Proof. Follows immediately from Definition 1.28. [

Corollary 1.3. The rank of My is m;(E) = r(E)+i, for all0 < i < n—r(E).
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Definition 1.30. T'(M) is called the truncation of a matroid M if for any
XCFE
rrony(X) = Min{ry(X),r(M) — 1}.

This is well-defined, since 7 satisfies the axioms for rank function.

Definition 1.31. For i = 0,...,r(M) define a matroid M@, which is an
1-th truncation

MY =T(T(...T(M))).

i times
Proposition 1.16. The independent sets of the matroid M are
I(MD)={oeT]|l|o| <r(M)—i}.
Proof. Follows immediately from Definition 1.30. [

Definition 1.32. The rank function of M@ for a matroid M with rank
function r is called 7.

For all matroids M we have:
Proposition 1.17. The rank function r* of MY satisfies:
r'(X) = Min{ry(X),r(M) —i}.
Proof. Follows from Definition 1.30. [
Corollary 1.4. The rank of MW is r'(E) =r — i, for all 0 < i < r(E).

Ezample 1.2.11 (Continuation of Example 1.2.10). Let us try to find Z(M M),
having applied the following formula:

Z(MY) ={o € E|r'(0) = |o]},

where 7' (0) = Min{r(c),r — 1}. Then in the case of our example

0, ifo=g;
Tl(a):{’ L0

1, ifo#9
and
Z(MW) = {2,1,2,3,4};
r*(c) =0, for all &
and

I(M?) = {2}
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Proposition 1.18. (a) rem(X) = rron-(X), where X C E;

(0) r(Mg))(o) = r([MD)*)(a), where o C E.

Proof. For the part (a): Recall the definition of r*(X) = | X|+r(E — X) —
r(E). Consider the right part of our equality

rran(X) = X[+ rran(E - X) = rran(E) =
= | X|+ Min{r(E - X),r—1} = Min{r(E),r — 1} =
= | X|+ Min{r(E—-X),r—1} — (r —1).
If r(E— X)=r(E), then we get | X|+ (r—1)— (r—1) =|X].
If (B —X) <r(FE), then we get | X|+7(E—X)—(r—1).
Consider the left part

remy(X) = Min{r*(X)+1,| X[} =
= Min{|X|+r(F—-X)—r(F)+1,|X|}
If r(E—X)=r(E), then we get | X]|.
If r(E — X) < r(E), then we get | X|+r(F — X) —r(E)+ 1. Then we see
that the right part is equal to the left one, which is the required result.

The proof for (b) follows in a similar way. O
Ezample 1.2.12. Let M = U,,,, for 1 <m <n —1.
Then
E<M) - Um+1,n;
T(M)=Up-1n

Proof. Let us look at rank functions rp)(X) and 7y, ., (X), where X C E.

| X1, if | X|<m+1;
m+1, if | X|>m+1

rUm+1,n (X) = {

reon(X) = Min{ru(X)+1,|X|} =
Min{|X|+1,|X[}, if [ X|]<m;
Min{m+1,|X|}, if|X|=m+1
(X1 i X <m;
m+1, if | X|>m+1

rUm+1,n (X) N
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Similarly it can be shown for a truncation. ]

In general:
M(Z) - Um-H’n’ for ¢ = Oa 1a e, — MG

MO = Un—in, fort =0,1,...,m.

We will now give an illustration of Proposition 1.18.

Given the matroid M = U, then its dual M* = Us 5.
Compute E(M*) = E(Uss) = Uys and T(M)* = Uy 5 = Uy, it follows that
part (a) is fulfilled.
When i = 20 (M*) @ = (Uss)e) = Uss and (M®@)* = (Ups)* = Usg,
therefore part (b) is also fulfilled.
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Chapter 2

Codes and matroids

2.1 From linear codes to matroids

Let C be a [n, k], linear code. G is a generator matrix of C. H is a parity

check matrix of C.

Definition 2.1. The matroid associated to the code is

Mc = M[H].

Remark 2.1. Let C be a [n, k], linear code defined by a parity check matrix

H;. Let H, be another parity check matrix of C. Then
M[H,] = M[H,).

The analogous statement is also true for generator matrices.

We have:
Me = M[H] = M[G]" = (Mc+)"

ifG=[I | Aland H =[-A" | I,—4] are of standard form.

Theorem 2.1. Let C be a [n, k], code. Then M is a matroid on {1,...

of rank n — k and
Mg - Mci.

Proof. One has

,n}
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The first and third equalities are just Definition 2.1.

For the equality M[H] = M[G]*, it follows from Theorem 2.2.8 of [12] if G
can be taken to be of standard form. A more detailed analysis of column
permutations in question gives that this is true also for other G. O

Lemma 2.1. Let M be a matroid with rank function r and let ©+ > 0. Let us
denote

Min{|X|,X C E,|X|—-r(X) > i} = E;,
Then we have e¢; = E;.

Proof. Tt is easy to see that F; < e;. It follows from
A C B= Min(A) > Min(B).
Let X C E such that | X|—r(X) > i and | X| = E; with the property
| X| — r(X) minimal. We claim that |X| —r(X) = 4. If not, then let z € X.
Let’s take Y = X — {«}.
Y|=|X|-1=|Y]|-r) <.

We can also say
Y| —r(Y)<i—1

From (R3), we have the following
r(Y)=r(X—{z}) <r(X)<rY)+ 1L
Then
IX|—r(X)<|X|-r(Y)=Y|4+1—-r¥)<i—1+1=1.
Therefore | X| —7r(X) =i = ¢; = E;. O
Theorem 2.2. Let C be a [n, k|, code and 1 < i < k. Then
d; = Min{|X|, X C{1,...,n} such that | X| —r(X) =i}

where r is the rank function of M.
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Proof. Let X C {1,...,n} such that | X|=¢; and |X|—r(X) = 1.
Consider

C(X) = {c € C such that ¢, =0 as soon as x ¢ X and c- H' = [0]}.
Easy to see that it is a subcode of C and Supp(C(X)) C X. We claim that
C(X) ~ KerH|x]".

This is true, since if
wel(X)cC=w-H =[0]=w - Hlx]' = 0],
w’ being w without zeroes outside X . For the other inclusion
u € KerH[z]',u = [uy, ..., uy,] then w = [uy,...,0,0,0, ..., U],

where zeroes outside X and w - H' = [0].

By the theorem of the dimension
dim(C(X)) = dim KerH|z]' = | X| — dim ImH|[z]' = | X| — r(X) = i.

d; = Min{|Supp D|, D is of dimension i} < |Supp(C(X)) < |X| = e;.

Let D is a subcode of dimension i such that |Supp D| = d;.
Denote X = Supp(D). Consider C(X).

DccCc(X)cc

Supp D C Supp(C(X)) C X
Since Supp(D) = X it follows that Supp(C(X)) = X.

dim(C(X)) > dimD = i.

Recall
E; = Min{|X|,X C{1,...,n},|X|—r(X) =i}
| X|—r(X)>1.
E; <|X| = |Supp(D)| = d;.
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Remark 2.2. By Lemma 2.1 we also have
di = Min{|X|,X CE,|X|—r(X)=1i}=e=FE,.
Now we can define the Hamming weights of a matroid.

Definition 2.2. Let M be a matroid on E = {1,...,n} of rank function r.
Let 1 <i < |E| —r(E). Then the i-th Hamming weight of M is

dy(M) = Min{|X|, X C E,|X| - r(X) = i}.

Example 2.1.1. Given a matroid M with bases B = {{1, 2}, {1,4}, {2, 3}, {3,4}}.
We want to find Hamming weights

d; = Min{|X|,n(X) = i}.

The nullity function n(X) =0 <= r(X) = |X| <= X € 7.
In our case n(X) = 0 for X = @,1,2,3,4,{1,2},{1,4},{2,3},{3,4}. For
other ones give the table:

X n(X)
1,37 [2-1=1
2.4} 1

1,23} [3-2=1
1,2,4) 1
(1,3,4} 1
(2,3,4) 1
(1,234} [4—2=2

Then the Hamming weights of M are
dy = Min{|X|,n(X) =1} = 2,
dy = Min{|X|,n(X) =2} = 4.
Proposition 2.1. Let M be a matroid. Then di < dy < ... < d,_,.
Remark 2.3. This result is proved in [14].

Definition 2.3. Let M be a matroid on E. Let n = |E|. Then the weight
hierarchy of M is d; < ... < d,,_, where r = r(M).
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Theorem 2.3 (Wei's duality). Let M be a matroid on E of rank r and
n=|E|. Let
dy <...<dp_

be the wewght hierarchy of M.
Let M* is a matroid on E of rank n —r. Let

e1<...<e,
be the weight hierarchy of the dual matroid M*. Then
{di,....dpr}U{n+1—e,....n+1—e.}={1,...,n}
and the union is disjoint.

Proof. This theorem was proved in [10]. O

Definition 2.4. Let M be a matroid on E = {1,...,n} of rank function r.
Then the minimum distance of the matroid M

d = d,(M) = Min{|X|,X C E,|X| - r(X) =1}.

Remark 2.4. Note that d;(M[H]) is equal to the minimum distance of C if
H is a parity check matrix for a linear code C.

One may also observe that the minimum distance of the code equals to the
size of the smallest circuit in the matroid represented by the parity check
matrix.

Proposition 2.2. Let C be a [n, k] code with weight hierarchy
di(C),...,d(C)

where k = dim(C).
Let M¢ be a matroid associated to the code C with its weight hierarchy

di(Me), ..., dp(Me).

Then
di1(C) = di(Me),...,dp(C) = dp(Me).

Proof. Look at the Theorem 2.2 and Definition 2.2. We see that the Ham-
ming weights of a code and the Hamming weights of a matroid associated to
the code are expressed in the same way. ]
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FExample 2.1.2. Let us study the code C with generator matrix G over [Fs.

1 010
G:{O 10 1}:[IQA},WhereA:]2.

Then H can be taken to be
H=[-A'|L]|=[L|L]=0G also.

Then by looking at independent columns of the parity check matrix H, the
matroid associated to the code C is

Mce = {12,14,23, 34}.
We compute the Hamming weights of the code
dy = Min{wt(1010,0101,1111)} = Min{2,2,4} = 2,

dy = Min{|Supp(D)|, D is a subcode of dimension 2} = {|Supp(C)|} = 4.
We see that they are the same as in Example 2.1.1.

The next example shows how non-representable matroids do not come
from codes. First we mention the following definition:

Definition 2.5. Let M, My be matroids on E; and E, respectively and
EiNE,=.
Let

7= {Il Ul ’ I, € IMl,[Q € IM2}

The sum of two matroids M; and M, is the matroid
My ® My = (E1 U Ey, 7).

Ezample 2.1.3. Let E ={1,...,7}. Then for the bases of the Fano matroid
F7 (See Figure 2.1) we have

Br, = {subsets of cardinality 3 except
{2,4,6},{4,5,7},{5,6,7},{1,4,5},{3,5,6},{1,2,5},{2,3,5}}.
Let us define another matroid with the exception that the circle in the below

diagram is missing. It is called the anti-Fano matroid F, (See Figure 2.2)
and for the bases of F,” we have

B F = {subsets of cardinality 3 except
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{11,12,14},{12,13, 14}, {8, 11, 12}, {10, 12,13}, {8,9, 12}, {9, 10, 12} }.

F; is representable over a field K if and only if char(K) = 2,

F> is representable over a field K if and only if char(K) # 2. But the
direct sum of a Fano matroid and an anti-Fano matroid is an example for a
matroid which is not representable over any field.

M=F&F;

is not a matroid of the form M¢ for any linear code C over any [F,, since
M = M[H] would force M to be representable over F,.
The set of bases of M on {1,2,...,14} is

B — {Bl U BQ},

where B; could be any subset of cardinality 3 of {1,2,...,7} among

those drawn on Figure 2.1, and B, could be any subset of cardinality 3 of
{8,9,...,14} among those drawn on Figure 2.2. The rank of M is 6 and we
know that n = 14. Then we could compute

d17d27 s 7d14—6 = d8~

13

®
1 2 3 8 -

Figure 2.1: Fano matroid Figure 2.2: Anti-Fano matroid

10
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We are going to calculate only d; and ds.
Take X = {9,11}. We see that |X| =2 and r(X) = 1. Therefore

(M) = Min{|X|,X C B,|X| - r(X) =1} = 2.

dy =3 since | X| —r(X)=3—-1=21if X ={9,11,13} (and dy > d4).

Remark 2.5. In this case d; has no interpretation as a minimum distance of
a code.



Chapter 3

Stanley-Reisner rings and Betti
numbers

3.1 Simplicial complexes
Let E be a finite set, for simplicity we may take F = {1,2,...,n}.

Definition 3.1. A simplicial complex on E is a A C 2¥ such that if o; € A
and oy C 01, then o9 € A.

Definition 3.2. A simplex is a subset of E (or an element of 2F).

Definition 3.3. A face of Ais 0 € A.
A facet of A is a maximal face (for inclusion).
N (A) is the set of minimal non-faces (for inclusion).

Remark 3.1. A simplicial complex is entirely given by its set of facets.

Let K be a field. Denote S = K]z, ...,x,] be the polynomial ring in n
variables over K. Let [ C S is an ideal.

Definition 3.4. A monomial is a polynomial of the form

where a; > 0.

33
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Remark 3.2. The product of two such monomials is a monomial

a . ..b anrb.

Definition 3.5. A monomial ideal I of S is an ideal generated by monomials.

Definition 3.6. A monomial 2% = z{'2z5*...x

or 1.

an

on is squarefree if each a; is 0

Definition 3.7. A monomial ideal is squarefree if it is generated by square
free monomials.

Definition 3.8. If o = {iy,is,...,4,} C F, then

o
xr = Hxil'xir“xir'

Clearly x7 is squarefree, and any squarefree monomial can be written as 27,
for some o C E.

Definition 3.9. Let A be a simplicial complex on E. The Stanley-Reisner
ideal of A is the squarefree monomial ideal

In=<20 e N(A) >=< 2,0 ¢ A>.
Definition 3.10. The Stanley-Reisner ring of a simplicial complex is
RA - S/[A

Proposition 3.1. Let M be a matroid, and Z(M )={independent sets of M }.
Then Z(M) C 2F is a simplicial complez.

Proof. Let M be a matroid on a finite set E with Z(M) C 2¥. Then it
satisfies the properties (1), (I2), (I3). From this we can get the following:

if [, € Z(M) and I, C I, then I, € Z(M),
that are exactly the property for simplicial complexes. O]

Proposition 3.2. The Stanley-Reisner ring/ideal of a matroid M will be the
Stanley-Reisner ring/ideal of the simplicial complex A = T (M).
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3.2 Gradings

Definition 3.11. A ring R is a Z-graded ring if it can be written

R=ER.

i€Z
and R; - R; C R,y for all ¢,5 € Z.

Definition 3.12. A homogeneous polynomial is a polynomial whose nonzero
monomials all have the same degree.

In particular, S = K|z, ..., z,]| has a Z-grading in the following way
S, =0ifi<0,
So =K C S,
S; = {homogeneous polynomials of degree ¢} for i > 0.
Definition 3.13. A finitely generated module M over S is called Z-graded

if
M= M,

€L

and S; - M; C M,y for all 4,5 € Z.

Definition 3.14. An S-module M is called Z"-graded if

M= M,

acZm
and S, - My C M,y for all a,b € Z".

Moreover, S has a Z"-grading

S=@P S.,

a€Z

where

g _ 0, ifa¢Z,
“ Kz¢, ifa € Z%.
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Observation. Let I C S be an ideal. Then

(i) 1 is a Z-graded submodule of S if and only if I can be generated by
homogeneous polynomials. In this case S/I is also Z-graded.

(11) I is a Z"-graded submodule of S if and only if I can be generated by
monomials. In this case S/I is also Z"-graded.

Proof. For (i), see p. 6 in [4]. Part (i) follows in a similar way. O

3.3 Graded free resolutions

Let M and N be finitely generated Z-graded S-modules.

Definition 3.15. A Z-graded S-module homomorphism from M to N is an
S-module homomorphism ¢: M — N, where ¢(M;) C N; for all i € Z.
Likewise a Z"-graded S-module homomorphism of two Z"-graded S-modules
M and N is an S-module homomorphism ¢: M — N, such that ¢(M,) C N,
for all a € Z".

Let R be a ring.

Definition 3.16. An exact sequence of R-modules is a sequence of R-
modules and R-module homomorphisms

s My 2 M P M, s

where Ker(¢;,_1) = Im(¢;) for all i.

Remark 3.3. An exact sequence of Z-graded S-modules is an exact sequence
of S-modules where each homomorphism ¢; is Z-graded.

Definition 3.17. The Z-graded S-module S(d) is defined as
S(d), = Supr.
for all d,r € Z. 1t is called a shift of S by d.
Definition 3.18. A long exact sequence
F:wo—F—FK—F—M-—70

of Z-graded S-modules with F; = @, S(— 4)Pi is called a Z-graded free S-
resolution of M.
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Let M be a finitely generated Z-graded S-module.

Definition 3.19. A Z-graded free S-resolution F of M is called minimal if for
all 7, the image of F;,; — F; is contained in mF;, where m =< x1,..., 1, >
is a graded maximal ideal.

Proposition 3.3. Let M be a finitely generated Z-graded S-module and
F:...—FK—F —F—M—70

a minimal Z-graded free S-resolution of M with F; = P, S(=7)Pi for alli.
Then
Bij = dimg Tor? (K, M);

for all i and j.

Remark 3.4. The proof can be found in [4], and the definition of the functor
Tor? (K, M); in [1, p.159-160].

Definition 3.20. The numbers 3;; are called the Z-graded Betti numbers of
M.

Remark 3.5. As one sees from this formula, two different minimal Z-graded
free S-resolutions of M will give the same Betti numbers.

In the sequence of Proposition 3.3 we may also forget about the grading,
and just look at it as an exact sequence of S-modules.
Since S(—j) =~ S for all j as S-modules, we may view F; as

@Sﬁij ~ G2 Bij

J

We set

Bi=Y B
J
Then the minimal free resolution becomes

F:ooo—s 8% 380 s G8f s M — 0

The S; are called the ungraded Betti numbers. These numbers are also
consequently the same for all minimal free resolutions.
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Definition 3.21. A minimal free resolution
0 —F — - —F — Fp— M —0,

with Z"-graded modules

is called a minimal Z"-graded free S-resolution of M.

Proposition 3.4. The 3;, are independent on the minimal free resolution
of M.

Remark 3.6. By [4], p.126, 8;, = dimg Tor{ (K, M),, for all such minimal
Z™-graded resolutions.

Definition 3.22. The 3; , are called the Z"-graded Betti numbers of M over
the field K.

3.4 Betti numbers of Stanley-Reisner rings

In the next chapter we will look in particular at resolutions of S-modules of
the type
RA = S/1a,

in other words Stanley-Reisner rings.
Let A be a simplicial complex as in Section 3.1.

Definition 3.23. The ungraded, Z-graded, Z"-graded Betti numbers of A
will be the ungraded, Z-graded, Z"-graded Betti numbers of the module
M = Ra.

Remark 3.7. Whenever we have a matroid M, we may therefore study the Z-
graded resolution of the simplicial complex A, where faces are sets in Z(M).
In particular if we have a linear code C, we can obtain the matroid associated
to this code and also study the Z-graded resolution of the simplicial complex.

Example 3.4.1. Start with the binary code C with parity check matrix

1011
H‘{o11o]'
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Hence C* has generator matrix H and therefore following parity check matrix

[—Atlg}_|:1 (1) (1) (1)] over Fy.

Then this is a generator matrix G for C and we have
¢ = {0000, 1110, 1001, 0111}
The minimum distance of the code C
d(C) = Min{wt(x),x # (0...0)} = Min{3,2,3} = 2.
The bases of
Me = MH] = {{1,2},{1,3},{2,3},{2,4}, {3,4}}.
The circuits are {{1,4},{1,2,3},{2,3,4}}. The Stanley-Reisner ideal is
In =< 2124, X122X3, ToX3Ty > .

A resolution of Ry = S/Ix "ends” like this:

s B =S SBS -2 82 Ra(=S/Ix) — 0 (3.1)
In order to get Im(py) = Ker(¢r) = Ia, we use
QZ522 (81, Sa, 83) — (51x1x4 + Sox1Tox3 + 831'21’3]34).

This works well for ungraded resolutions, but for Z-graded modules we get

$2((5%):) £ Si.
Describe (5%); = (SU @ S@ @ S®),. For all i we have

(5% =5 &5 @57,

But: If we think of e; = (1,0,0),e2 = (0,1,0),e3 = (0,0,1) as members
of S(—=2),5(—3),S(—3) respectively, then they are graded of degrees 2, 3,3
respectively, and we see that ¢o(e1) has degree 2, ¢o(ez) has degree 3, ¢o(e3)
has degree 3. This implies that ¢5(h) has degree d;, for any homogeneous
element h of S(—2) & S(—3) & S(—3) of degree dp,.

Hence the resolution "ends” with

s S(-2) @ S(-3) e S(-3) B S Ry — 0 (32)
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as a Z-graded resolution. Hence 12 = 1,813 = 2 and $;; = 0, for all

Jj#2,3.
In a similar way as a Z"-graded resolution it is

 — 8(—(1,0,0,1))®S(—(1,1,1,0)®S(—(0,1,1,1)) -2 S 25 Ry — 0
(3.3)
Hence 81, (-1,00,-1) = B1,(-1,-1,-1,00 = B1,00,-1,-1,-1) = 1 and By, = 0, for all
other a.
Let us study how we can find d(C) from the resolutions 3.2 and/or 3.3.
First: By Theorem 8.4 in [5] d(C) is a ”size” of the smallest relation
between two columns of H.
Then it is also the smallest cardinality of the circuits of My = M[H].
Then it is also the smallest absolute value of any shift in Fj.
Then it is Min{j | 51, # 0}. Since f12 = 1,013 =2 and f;; = 0, for all
other j, we conclude that Min{j | f1; # 0} is 2.
It turns out that the resolution in 3.1 can be completed

052 %88 2,9 % p 40
(N1, No) = N1(1,0) + N2(0,1) — (2223N1, —24N1,0) + (2223N2, 0, —21 N>).
¢3(N1, No) = ¢3(N1(1,0) + N2(0,1)) = N1¢3(1,0) + Nag3(0,1) =
= ($25E3(N1 + Ng), —1’4N1, —Qleg).

This becomes a Z-graded S-module homomorphism if we write it
0 — S(—4)> 2 S(=2) & 5(=3)> 2 S % Ry — 0

To show that this is an exact sequence, one must verify that: ¢o0¢3 =0,
which is the same as Im(¢3) C Ker(¢), and in addition that Ker(¢s) C
Im(¢s3), and also ¢3 is injective.

First we prove: ¢q o ¢35 = 0.

(1,0) 25 (2023, —24,0)

(0,1) BN (x9ms3,0, —27)

Remember that

¢
(51,82,83) — ($17174 + S9T1T2T3 + S3TaT3T4).
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We then see the following
P2(#3(1,0)) = po(wom3, —4,0) = 2124293 + (—4)T 10273 + 0 = 0,

G2(¢3(0,1)) = ¢o(w273,0, —21) = 21247273 + 0 + (—21) 227374 = 0.
Hence ¢ 0 ¢p3 = 0, so Im(¢ps3) C Ker(ps). It is easy to check that ¢s is
injective. To show Ker(¢y) C Im(¢s3) (so that Ker(¢y) = Im(¢s)) is more
difficult, and we omit the proof here.

A Z"-graded resolution becomes

0 — S(—(1,1,1,1))% 2 S(—(1,0,0,1))@S(—(1,1,1,0)®S(—(0,1,1,1)) = § 2 Ry —> 0

In the last example ; , = 0, unless a has coordinates 0 and 1. This turns
out to be a general fact for all Stanley-Reisner rings of simplicial complexes.

Proposition 3.5. For alli the Z"-graded Betti numbers of a Stanley-Reisner
ring satisfy
Bi,g = 07

unless a 1is of the type (a1, aq, ..., a,), where a, =0 or 1, for all r.

Definition 3.24. Let a = (ay, as, ..., a,), where a,, = 0 or 1, for all ». Then
we let 0, be the simplex {iy, s, ...,is}, where we let the i; be precisely the
r such that a, = 1.

Example 3.4.2. a = (—1,0,0,—1). Then o, = {1,4}.

Definition 3.25. For all Stanley-Reisner rings Ra, we denote f3; , by 3.,
if o = o,.

Theorem 3.1. Let M be a matroid, and Ra be the Stanley-Reisner ring of
a simplicial complex. Then

dy(M) = Min{j | pr; # 0}.

Remark 3.8. This result is a special case of Theorem 3.2 below, and follows
from that. But it also possible to obtain this result by generalizing from the
observations done in the work with Example 3.4.1.
We recall:
d(C) is a "size” of the smallest relation between two columns of H.
Then it is also the smallest cardinality of the circuits of My = M[H].
Then it is also the smallest absolute value of any shift in Fj.
Then it is Min{j | p1; # 0}.
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In fact it is possible to generalize this:

Theorem 3.2. For alli=1,...,n —r we have

Remark 3.9. The proof of this theorem can be found in the article [7], where
this result is Theorem 2 in that article.

In order for this result to have meaning there have to exist non-zero 3; ; for
t=1,2,...,n—r. Hence there have to exist non-zero F; fori =1,...,n—r.
This leads to the following:

Definition 3.26. The length of the resolution
0O —F— - —F—F——M-—70
is [ if Fy, F1, Fy, ..., Fy all are non-zero.

Theorem 3.3 (Hilbert Syzygy Theorem). The length of a free resolution for
simplicial complexes is at most n.

Remark 3.10. See [11], p.11.
Proposition 3.6. A matroid has a resolution with length n — r.

Remark 3.11. This result is given as Corollary 3(b) in [7]. We observe that
this length is precisely long enough to be able to apply the formula in The-
orem 3.2.

There are two ways to prove these results. One way is to utilize the
so called Auslander-Buchsbaum formula and the fact that Rn = S/Ia is
a Cohen-Macaulay ring, where A is the simplicial complex derived from a
matroid.

Another way to prove it is to use the following result, given in [7]:

Proposition 3.7. 3, # 0 <= o is minimal in n='(i), where n: 28 — 7,
is the nullity function #E — r.

Remark 3.12. Since the image of the nullity function is {0,1,...,n —r} we
get non-zero f3; ; for 0,1,....,n — 1.



Chapter 4

Generalized weight polynomials

4.1 Weight polynomials in terms of
Betti numbers
Let C be a [n, k],~code (over F,). Let F, C Fg. That is only possible if
@ = q™, for some m.
Example 4.1.1. Fg C Fgs = Fro9.
Let

be a generator matrix of C (with entries in Fy).
What is C ®p, Fg?

C C (F,)";C = row space of G in (F,)" .

C C (F,)" C (Fg)".

All the r; are also vectors in (Fg)™.
C ®F, Fq is the row space of G, span (ry,...,r;) inside (Fg)".

We observe: |C| = ¢, |C @r, Fg| = Q" = (¢™)" = ¢™*.

Let H be a parity check matrix for C. H is an (n — k) X n matrix.
H will also be a parity check matrix for C ®p, Fq.

43
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Let us denote C ®r, Fg as Cq.
Then we have
Cq = ( Row space of H in [Fp, )+

and
C5 = ( Row space of H in Fg ).

For any fixed (linear) code C C 7 we can look at n + 1 numbers

ac.0,0c1,y---,0Cn,

where ac j = the number of codewords of weight j.
For any m > 1, and 0 < 7 < n, let

agz) = number of codewords of weight j in Cg, for Q = ¢".

Proposition 4.1. There ezists a polynomial Py ;(Z) € Z|Z) with
deg PM,j < k such that agz) = PM’J. (qm) .

Proof. See [9]. O

These polynomials can be found from the properties of the matroid
M = M[H]. They are given in [6] as Proposition 3.1.
The formula is:

Pyj(2) = (=1 > (=)Mzm 0 for 1 < j < n.

lo|=3 vCo

Example 4.1.2. Look at the example 3.4.1.
Given the binary code C = {0000, 1110, 1001,0111} with parity check matrix

1011
H:[0110}

and generator matrix

1110
G:[1001]'

From our code C we can obtain the matroid My = M[H]| on the ground
set £ ={1,2,3,4}.
Compute the nullity function for every v € E. Results are represented in
table:
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AW W W W NN NN RO

~—

v
%]
1
2
3

W~

{1,2}
{1,3}
{1,4}
{2,3}
{2,4}
{3,4}
{1,2,3}
{1,2,4}
{1,3,4}
(2,34}
{1,2,3,4}

=
DO N[ DO | B B[ DO | DO | = DO | D[ = | =] = = O

N~—
N e e e o|o|lo| o o|o|o|o|o|oL

Using the following formula
Pi(Z) = (1) > (=1)Mzm O for 0 < j < n,
lo|=j vCo
find polynomials P;(Z) for 0 < j < 4.

Po(Z) = (=1)° Y > (~1)hizmee),

lo|=0vCo
o=@ gives 7 = . Then
Py(Z)=(-1)°-(-1)°-Z2°=1.
Thus there is only one codeword of weight 0 in Cg.

P(Z) = (1) Z Z(_l)\v\zw(v)_

|o|=1~vC0o

o={1} gives y =@, v = {1};
o = {2} gives y =2, v = {2};
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o = {3} gives v = @, v = {3}

o = {4} gives vy =@, v = {4}.
P(Z)=(-1)[4-(-)°Z2° + (-1)'Z")] =0,

hence in Cg there are no codewords of weight 1.

—1)? Z Z(_1)|’Y|Z"M(“/)

lo|=2vCo

g = {172} giVGS V=4,7= {1}’ Y= {2}7 Y= {172};
o={13}givesy =2, v={1}, v = {3}, v = {1,3}

o = (3.4} gives v = &, v = {3}, v = {4}, 7 = {3.4}.

Py(Z) =5-((-1)°2"+2-(-1)2° () ") +
+H(-1)"2°+2- (-1)2°+ (-1)*Z") =Z - 1.
We observe, for example: in C = Cy we have P(Q) = P»(2) = =1

codeword of weight 2.
In Cy = Cyp2 we have P»(Q) = Py(4) =4 — 1 = 3 codewords of weight 2.

Z Z |"/|ZTLM(’Y

lo]=31Co

o = {1,2,3} gives v = @, {1}, {2}, {3}, {1,2}, {1,3}, {2, 3}, {1,2,3};
o ={1,2,4} gives v = @, {1}, {2}, {4}, {1, 2}, {1,4}, {2,4}, {1,2,4};
o ={1,3,4} gives v = @, {1}, {3}, {4}, {1, 3}, {1,4}, {3,4}, {1,3,4};
o = {2,3,4} gives v = @, {2}, {3}, {4}, {2, 3}, {2, 4}, {3,4}, {2, 3,4}

PyZ) = — (2 (=1)°Z° 43 (=1)'2° + 3+ (—1)22° + (13 Z']+
+2-K—1WZ0+3.(—1y20+2~(—1VZO+(—1le+(—1PZw):
—(2-27)=27 2.

As above, we observe that in Cy we have P3(Q) = P3(2) =2-2—-2 = 2
codewords of weight 3.
In Cy = Coy2 we have P3(Q) = P3(4) = 2 -4 — 2 = 6 codewords of weight 3,

and so on.
Z Z |"/|Z"M(’Y

lo|=4Co
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o ={1,2,3,4} gives v = @, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1,4}, {2, 3},
12,4}, (3,4}, {1,2,3},{1,2,4},{1,3,4}, {2,3,4}, {1,2,3,4)}.

P(Z)=(—1)°Z2° +4-(-1)'Z2° +5- (—=1)22° + (—1)* 2"+
+4- (=132 4 (-2 =22 - 3Z + 2.

Observe in Cy we have Py(Q) = P4(2) = 22—3-2+2 = 0 codewords of weight
4.
In Cy = Cy2 we have Py(Q) = Py(4) = 4> — 3 -4 + 2 = 6 codewords of
weight 4.
Remark 4.1. In general we see that in Cg there are: 1 codeword of weight 0,
and 0 codewords of weight 1, and ) — 1 codewords of weight 2, and 2Q) — 2
codewords of weight 3, and Q? — 3Q + 2 codewords of weight 4. The sum is
@?, which is the number of all codewords in Cg, which has dimension 2 over
Fg.

As an extra check we list the codewords of weights 0, 1,2, 3,4 for Cy.
Let Fy = {0,1,, B}. The codewords are:
{0,0,0,0} of weight 0;
{1,0,0,1}, {a,0,0,a} and {f,0,0, 5} of weight 2;

{1,1,1,0}, {o,,,0}, {B,5,5,0}, {0,1,1,1}, {0,,, ¢}, {0, 5, 5,5} of
weight 3;

{/87]‘7]‘7&}7 {a717]‘7/8}7 {67&7a71}7 {1,@,@,5}, {a767/871}? {17/67ﬁ7a} Of
weight 4.

4.1.1 Weight polynomials in terms of Betti numbers

It is also possible to find the P;(Z) in a different way. In [6] one finds the
following result:

Theorem 4.1. The coefficient of Z' in P; is equal to

n

> (-1) (ﬁi,j(fMu_l)) - 5i,j(IM(,>))

i=0
for each 1 <7 < n.

Let us exemplify the last theorem, but we should first give the following
lemma:
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Lemma 4.1. (3;;(Ra) = Bi—1,(Ia) for any Stanley-Reisner ring Ra and
corresponding Stanley-Reisner ideal Ix.

Proof. 1f this is a minimal free resolution of Ry = S/1Ia

i By F -5 8 %y Ry — 0
Ker(¢) = In = Im(v) then
oo — Fy — Fy — In — 0

is a minimal free resolution of Ia.
It stands to reason that 53;;(Ra) = Bi—1,;(Ia)- O

FExample 4.1.3. Again look at the example 3.4.1.

We have already found So2(In,) = 1, Bos(In,) = 2, B1.4(Im,,) = 2 and all
other Bi,j(IM(())) =0.

We need to know the Betti numbers of Iy, and Iy, . Begin with finding
the elongations M,y and M. The independent sets of M; are

I(My) = {0 € E| n(o) < i}
Then we have
I(Muy) = {0 € E | n(o) < 1} = {all subsets of E except E},

I(M) = {o € E | n(c) < 2} = 2" (all subsets of E)

and
TO(M) = To(M(O)) = 2,

n(Mu) =3,

ra(Mz)) = 4.
We also know that any matroid M has a resolution with length n — r(M).
For M) we get:

0— S(—4) — S — Ra — 0,

and it follows that So4(In,,) = 1.
For M,y we get:
0—95—5—0,
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this implies ﬂO,O(IM@)) =1 and all other ﬁi,j(IM(Q)) =0.

Substitute all our Betti numbers into the formula in Theorem 4.1. Let us
assume f3; ;(In,,) = 0 whenever [ ¢ [0,n — r(M)].
For the case j = 1 the coefficient of Z! is equal to

4

S0 (B (g ) = Bia(lary)).

For [ = 0:
4
> (=1 (BT ) = Bia () )= (=1°(0 = 0) 4+ ... = 0.
1=0
For | = 1: )
> (=1 (Biaary) = BialTag,)) )= 0.
=0
For | = 2: )
> (=1 (Bia D) = Biaag)) )= 0.
i=0
When j = 2 the coefficient of Z! is equal to
4 .
> (0 (Biallar, ) = Biallagy)).
1=0
For [ = 0:
4
S (=1 (Biallun ) = Biallang) )= (=100 = 1) = 1.
1=0
For [ =1:
4
S0 (Biallang) = Biallan,) )= (~1)°(1 = 0) = 1.
=0
For [ = 2:
4

Z(_l)i (@',2(]1\4(1)) — 5@2(]]\4(2))): 0.

=0
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For the case j = 3 the coefficient of Z' is equal to

4

2;<—1>i(5i,3<zM<ll>> ~ BialTuny)).
For | = 0: )
é(—l)’(ﬁas(%_m) - 61,3([M(0))>: (—=1)°(0 — 2) = —2.
For [ = 1:2_
24:(—1)1'(5@3(1%) - Bi,B(IM(U)): (-1)°(2 - 0) = 2.
For | = 2: B
i(_l)i(ﬁi,S([M(l)) - ﬁi,g(IM@))): 0.
When j = 4 the co;f:I;)cient of Z! is equal to
24;(—1)1'(/6’2-,4(1%“)) - ﬁi,4(fM(l))).
For | = 0: )
é<—1)i(5i,4<fMu>> - 5i,4(IM<0))>: (=1)°(0 = 0) + (~1)}(0 — 2) = 2.
f;(—l)i <5i,4(1M<0)) - ﬁz‘A(IM(l))): (-1)°0- 1)+ (-1)'(2-0) = =3.
S

4

>0 (BT = Biallan) )= (~1°(1 = 0) = 1.

1=0
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We list all results in table:

720 (20 2V [ 22
j=1] 0 0
j=2[—-1] 10
j=3] -2 0
j=4] 2 [=3]1

We will now look at relations between Hamming weights and generalized
weight polynomials of matroids. The following result is given without proof
in [6]:

Proposition 4.2.
d;(M) = min{j | deg Py ; = i}.

Proof. We know
d; = min{|X| | n(X) = i}.

Also we know
deg P; = max{n(X) | | X| = j}.

We then have the following
min{j | deg P, =i} = min{j | max{n(X) | |X| = j} = i} =
= min{|X| | n(X) =i} =d,.
O

Ezample 4.1.4. Look at the Example 4.1.2 and compute d;(M) by using the
formula from the last proposition. Then formally dy = 0,

d1 = mln{j | deg PMJ' = 1} = 2,

dy = min{j | deg Py ; = 2} = 4.
As an extra result we will give the following

Proposition 4.3. For all j, with 7 > d;, we have:

deg Pyj = max{i | d; < j}.
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Proof.

deg Py; = max{i|n(c) > 1, for some o with |o| =j} =
= max{i | d; < j}.

FExample 4.1.5. In the Example 4.1.2 we have found the polynomials:

P0:17

Py=27 -2,
P, =27*-37+2.

Let us find degrees of these polynomials deg P;, 0 < j < 4, having applied
the formula above. Then we have

deg Py = max{i | d; <0} =0,

deg P, = max{i | d; < 1

deg P, = max{i | d; < 2} =1,
deg Py = max{i | d; < 3} =1,
deg Py = max{i | d; < 4} = 2.

Remark 4.2. In [3] one defines for linear codes:
k;j(C) = maximum dimension of any subcode C’ with [Supp C'| < j and

m;(C) = min{|Supp D| | D is a subcode of C, dimD = j}.

This is what we call d;(C) in our thesis.
Moreover one shows:
d;(C) = min{i | k; > j},
kj(C) = max{i | d; < j}.

Comparing these formulas to our Proposition 4.2 and Proposition 4.3, it is
clear that the deg P ; are the same as the so-called dimension/length profiles
k; described by Forney, when M is the matroid M of a linear code.
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The observations above also enable us to achieve results about elongations
of matroids, given the weight polynomials of the original matroid.

Proposition 4.4. Let k > 1. If
PM(k—l),j(Z) = anzn + an—lznil +...+ alZ + Qao,
then
PM(k);j(Z) = anZn_l + an—lzn_2 4+ ... 4 axZ + (a1 + ao).

Proof. Recall the formula for Py ;(Z):

Pug(Z) = (1) 3 3 (= 1)hlZme@) for 1 < j < .

lo|=3 vCo

Then we have

PM(I)J-(Z) = (_1)j Z Z(_Dh\zn(l)(v) for 1<j<n

lo|=j vCo

and we know the following formula:

ray(y) = min{r(y) + 1, |7]}.

Thus we can find the nullity function

nay(y) = max{|y| —r(y) =1,y = 1|} =
= max{n(y) —1,0}.
For each Z"(") — Z7m(®)
Zm071 it n(y) -
Z% =1, ifn(y)

max{n(y)— 1 2 ].,
Puy, j(2) =z et =100 = { N

Corollary 4.1.

di(May) = dig1 (M), fori=1,2,...
Proof. By previous result

dip1(M) =min{j | deg Pyj =i + 1}

and
dz(M(l)) = mln{] | deg PM(I)J = Z}

But these numbers are equal by Proposition 4.4. O
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4.1.2 Herzog-Kiihl equations

Definition 4.1. Let R be a ring. The Krull dimension dim R of R is the
supremum of the length of chains of prime ideals

PoCPiC...CP,.
Let M be a finitely generated graded R-module.

Definition 4.2. The Hilbert function is

H(M,i): Z — Z

The Hilbert series is the Laurent series
Hy(t) = (dimg M)t € Z[t,t 7).
i€z

Let R = S/I be a standard K-graded algebra of Krull dimension d, S =
K[z1,...,x,] is the standard graded polynomial ring and [ is a graded ideal
of S. There exists a Laurent polynomial Qg € Z[t,t~!] such that Qr(1) > 0

n Ql)
R
Hg(t) = a—1)
where d = dim R.

Remark 4.3. The order of the pole of Hg(t) at t = 1 is the Krull dimension
of R.

Let a minimal free S-resolution of R be
0O —F, —F, 1 — - —F—R—70

with
Fi— @S-
JEZ
It is known that
Hp,(t) = BijHs(—j(t)

jET

and

Hs(p(t) = #Hs(t) = -
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Then the Hilbert series of R may be computed as the alternating sum of the
Hilbert series of each of the terms in our resolution:

HR Z Zﬁlﬂ n'
=0 JEZ

We can write Hg(t) as

_Qp(t) (A=t (1-t)""Qg(t)
el =g —ga X @ = —om

Then we have

(1—6)""Qg(t) = A (-1)' Zﬂi,jtj-

Let 0 < k < n —d. We differentiate k£ times. Then the left part of the
equality is

k k ! k1
(1= 0 Qe =3 (§) Gl = 0 i Qlt) =

~ (* P L
- 2 (l)(n—d)(n—d—l)...(n—d—(l—l))(—l)l(l—t) d l'(?tk—l Qnr(t).

Weapplythatattzl. When k£ <n—d,thenn—d—1>1 and

2 (1= 1) Qult) 11 = 0.
When £ =n —d:

ak

FriCe )" Qrt)lim1 = (n—d)(n—d-1)...(n—d~(n—d—1))(-1)"""Qr(1) =

= (n— (1" Qu(V).

The right part of the equality is

gtk [Z Zﬁwﬂ] = Z Zﬁum—l k)R =

JEZ =0 JEZ

= Z Zﬂz]j]_l (]_k+1)
=0

JEZ
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When 0 < k< n—d:

DD GG -1 (G- k+ 1B, =0.
=0 JET
E=0 p ( 1)i2/6i7j:07
=0 JEZ
k=1 (_1)i2j62]_07
i=0 JEZ
p p
k=2 (1) G =Dy =D (-1 Y 8 =0,
i=0 JEZ i=0 JEZ

For 0 <k <n—d, we have 327 ((=1)" 32, 7*Bi; = 0. These equations are
called the Herzog-Kiihl equations.

4.1.3 Betti numbers of Simplex codes

Let G be a generator matrix of a linear code C, with column vectors ¢;. The
¢; can be viewed as points of P = Pf~'. Then

di(C) = n — max number of ¢; in Hj,
where the maximum is taken over all hyperplanes
H a1 Xi+...4+a, X, =0inP.

Moreover
d,(C) = n — max number of ¢, in H,,

where the maximum is taken over all codim r-linear spaces H, in P. These
H, are intersections of r independent planes

a11X1+...+a1ka =0

arle ++arka =0
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Remark 4.4. This result was found in the article [13].

Definition 4.3. The simplex code S,(k) is the dual of the Hamming code
Ham(r,q) over F,. Just like the Hamming codes they are only defined up to
linear code equivalence.

Remark 4.5. The code Ham(r,q) is a [%, ’1(;_—_11 —r,3], code.

A generator matrix G for S, (k) is
where the ¢; represent all points of Pﬁq‘l.

Remark 4.6. The number of columns in G is

G+ g+ 1= = N.

For all hyperplanes in P we observe: All of its points are among the ¢;, so
dy = n — # (points in any fixed hyperplane) = n — # (points in P*~2).
Thus:
d, = # (points in P*~1) — # (points in P¥~2) = ¢* 1.

Let us choose to write

Ty

G=|"

ry

Ty

A codeword of C is a linear combination w = a1r; + ... + axgry.

The number of zeroes in w is equal to the number of columns ¢, that satisfy
a X1+ ...+ a, X, =0¢€ H, = points in ¢; contained in H,, =

= just the number of points in P¥~2,

wt(w) = n — # (points in P¥=2) = ¢*~! again.
Hence any codeword in C, except 0, has weight ¢*~'. Thus we have proved:

Proposition 4.5. The simplex code S,(k) has minimum distance ¢*~* and
1s a constant weight code.
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For constant weight linear codes we can also determine the entire weight
hierarchy.
Proposition 4.6. For the simplex code S,(k) we have

¢ —1
¢ '(g—1)

Remark 4.7. This formula is given in [8].

di=d forio=1,... k.

Definition 4.4. The resolution f; — -+ — Fy, — F} — F} is pure if
it has the form

S(=d)Pt — - — S(—dy) P — S(—dy)oo,
From [8] we also have:

Proposition 4.7. The simplex code S,(k) has a pure resolution, and the
Betti numbers of its non-zero terms are

where

{ k } _ f(k,q)
i q f(iaQ)fo_i’Q)
and f(n,q) =1 (¢" = 1).

Theorem 4.2. If the Stanley-Reisner ring of a matroid has a pure resolution,
then its elongations also have pure resolutions.

Proof. To prove this theorem one needs:

Theorem 1 in [7]: f;, # 0 <= ¢ is minimal in N; (N; = {0 | n(0) = i})

and the formula that we obtained in the proof of Proposition 4.4
nay(o) = max{0,n(c) — 1}.

Then we have the following

{J | /Bi,a(]M<1)) # O} = {U | BH—LU(]M) # O} fori > 1,

which completes the proof of theorem. n
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Ezample 4.1.6. Let us find the Betti numbers of the simplex code S,(3) which
is the dual of the Hamming code Ham(3,2) over Fy. The number of columns
in generator matrix G is

F—1 o 28-1
Nk:q p— :7.
q—1 2—-1
The generator matrix
G:[gl Co ... g7],

where the ¢; represent all points of P§ . The minimum distance of S5(3) is
d=dy =¢" 1 =221 =4,

It follows that S»(3) is a [7, 3,4]2 code.
Having used the formula in Proposition 4.6 we find

dy=¢"?(q+1)=2-(2+1) =6,
3 3
q —1 2°—1
ds =d =4
¢ 2(2-1)
The weight hierarchy is (dy, ds, ds) = (4,6,7).
We can now calculate the Betti numbers applying the formula

k i(i—1)
Bid;, = [ . ] q 2
q

=1.

]

where

{ k } _ [fkaq)
i f,q) f(k—1i,q)
and f(n,q) = []\_,(¢" — 1). Then we get

3
ﬁLdl:[l} 20:77
2

3] o1
/82,d2_ |:2:|22 _147

_ 3 3 _
ﬁ?),dg* |i3:|22 *87
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and the resolution of the Stanley-Reisner ring of M
0 — S(—=7)* — S(—6)"* — S(—4)" — S — S/T — 0.

When M has dy, ..., d; where k = n—r(M) its first elongation M) has rank
r+1=(7—3)+1=05. The number of d;isn—(r+1)=(n—r)—1=k—1.
Then we can obtain only dy, dy for M) in this case. The following formula
is given in [6] as Corollary 5.2.:

di(M41)) = dip1(My).

Then
di(My)) = dy(M) = 6,

do(M)) = d3(M) =T7.

The second elongation M) has rank r +2 = 4 + 2 = 6. The number of d; is
n—(r+2)=(n—r)—2=k—2. Then we obtain only d; for M.

di(Mg)) = d2(M@)) = 7.

It turns out that M), M) are the uniform matroids U(5,7) and U(6,7)
respectively. The resolutions look like:

Mgay: 0 — S(=7)* — S(—6)" — S — S/I — 0,

Mgy: 0 — S(=7)°— S — S/I — 0.

We can calculate a by using the formula from the Example 3 in the article [7]:

([ n—1 ny\ (6 7T\ 6
“= r n) \b 7 ) 7
We have the equality a +1 =0, so b = 7. It is clear that ¢ = 1 in the case of
M3). We get the following minimal free resolutions
May: 0 — S(=7)° — S(=6)" — S — S/I — 0,
Mg): 0 — S(=7)' — § — S/1 — 0.

Thus we found the Betti numbers of M and its elongations:

ﬁOA(IM) = 7761,6([M) = 147 ﬁZ,?(IM) = 87
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50,6([M(1)) =1, 51,7(IM<1)) =6,
Bor(In,,) = 1.

Use these Betti numbers to find the generalized weight polynomials. Recall
the formula in Theorem 4.1:

n

S0 (Bl ) = Bis ()

=0

for each 1 < j < n. Let us assume §; j(In,,) = 0 whenever [ ¢ [0,n —r(M))].
For the cases j = 1,2,3 the coefficient of Z! is equal to 0 for all [ € [0, 3].
When j = 4 the coefficient of Z! is equal to

7

Z(—l)i (51‘,4(]1\4(,,1)) — BiaIny, )) :

i=0
For | = 0:

7

> (=1 (Buallan ) = Ballang)) )= (=100 = 7) = 7.

1=0

For [ = 1:

7
> (=1 (BualTang) = Biallar) )= (<17 = 0) = 7.

=0

For [ = 2 and [ = 3 the coefficients are equal to 0.
For the case j = 5 the coefficient of Z! is equal to 0 for all [ € [0, 3].
When j = 6 the coefficient of Z' is equal to

7

Z(_l)i (51',6([]\4(1_1)) - ﬁi»ﬁ(IM(z))>'
=0
For [ = 0:

7

Z<_1)i<5i,6<IM(_1)) - ﬁz‘,a(IM(O))): (=110 —14) = 14.

1=0
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For [ =1:
Z?;(—”i (BT = Bis(Tas)) )= (=1)°(0 = 7) + (~1)' (14 = 0) = —21.
o=
27}—1)2'(&,6(1%1)) - Bz-,a(IM@))): (—1)°(7—0)=T1.
For [ = 3: -
27;—1)@'(@,6(%) ~ Biollni) )= 0.

When j = 7 the coefficient of Z! is equal to

7

Zg‘<—1>f(ﬂi,7<fMu_U> — Birllng))
For [ = 0: )
i(—l)i(@;um) — Biallg))= (~1)*(0—8) = 8.
For | = 1:1_
i(—l)i(@;(%) ~ Birllig,)) = (<110 = 6) + (~1)*(8 = 0) = 14,
i(—l)’(ﬁm([m)) ~ Birlli) )= (=1)°(0 = 1) + (=1)}(6 = 0) = 7.
for 1

Z(_l)i(ﬁm(—]M@)) - Bi,?(IM(3>>): (-1’1 —0) =1.

1=0

We list all results in table:
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2V (2] 2V [ 22 | 73
j=0[ 1] 0 |0]o0
j=1] 0] 0 |00
j=2] 0] 0 |00
i=3] 0] 0 [0]0
j=4| -7 7 [0]0
i=5] 0] 0 |0]0
j=6|14 |21 7] 0
J=7]-8] 14 | -7]1

Ezample 4.1.7. Let us find the Betti numbers of the simplex code S(4) which
is the dual of the Hamming code Ham(4, 2) over Fy. The number of columns
in generator matrix G is

1 201
N=T "> = 15.
qg—1 2—-1
The minimum distance of Sy(4) is
d=dy =¢" 1 =21 =38

It follows that Sy(4) is a [15,4, 8]2 code.
Having used the formula in Proposition 4.6 we find

dy =q"2(q+1)=2*(2+1) =12,

3 3
q° — 1 22 —1
TP g ) 2(2-1) ’
4 4
g —1 2* —1
dy =d =8 = 15.
(g 2(2-1)

The weight hierarchy is (dy, ds, ds, dy) = (8,12, 14, 15).
We can now calculate the Betti numbers applying the formula

k i(i=1)
Bid, = [ . } q ?
q

]

{ l; L - f(@gyg}ﬁ i,q)

where




64 CHAPTER 4. GENERALIZED WEIGHT POLYNOMIALS

and f(n,q) =[]\ (¢" — 1). Then we get

51(11:[4} 20 = 15,
5 1 )

62d2:|:4:| 21:70,
) 2 )

Brdy = { . } 2 =120,
3 2

— 4 6 _
/84,d4_ |:4]22 _647

and the resolution of the ideal I of M
0 — S(—15)% — §(—14)"*° — §(-12)"" — S(-8)® — I}y — 0.

When M has dy, ..., d, where k = n—r(M) its first elongation My has rank
r+1=(15—4)4+1=12. The number of d; isn—(r+1) = (n—r)—1=k—1.
Then we can obtain dy, dz, and d3 for M,y in this case. The following formula
is given in [6] as Corollary 5.2.:

dz‘(M(l+1)) = dz’+1(M(l))-

Then
do(M(1)> — O,
d1(M(1)) = dr(M) = 12,
d2(M(1)) = d3(M) = 14,

The second elongation M) has rank r +2 = 11 + 2 = 13. The number of d;
isn—(r+2)=(n—r)—2=k—2. Then we obtain only d;, d; for M.

dl(M(z)) = dz(M(l)) = 14,

dy(M2)) = d3(My)) = 15.

The third elongation M) has rank r + 3 = 11 + 3 = 14. The number of d;
isn—(r+3)=(n—r)—3=Fk—3. Then we obtain only d; for M.

di(Ms)) = do(M(z)) = 15.
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The resolutions look like:
My: 0 — S(=15)" — S(—14)" — S(=12)" — Iy, — 0,

M): 0 — S(=15)* — S(—14)" — Ipy, — 0,
Mz): 0 — S(=15)" — Ipg, — 0.

It turns out that Mgy, M3y are the uniform matroids U(13,15) and U (14, 15)
respectively. We can calculate a by using the formula from the Example 3 in
the article [7]:

n—1 n 14 14
= () )= (i) -
We have the equality a +1 = b, so b = 15. It is clear that ¢ = 1 in the case
of M(g)
In order to find the f3; 4, of M(;) we will use the following formula given
in [2]:

4 1
ﬁi,di - (_1>Z -t H m where t € Q
koti k 7

Then we have

—t t
1
Y -7
Bra, = kl;[l dy, — d1 (0—-12)(14 —12)(15—12) 72’
t t
2
- 98
B2,d, = gz d — d2 (0—14)(12 - 14)(15 — 14) 28’
—t t
3
- T
Bs.d; = IQ di — d3 (0—15)(12 — 15)(14 — 15) 45
We have the equality
t t t
1 - R
T ntn

whence it follows that ¢t = 2520 and (314, = 35, B24, = 90, B34, = 56. Now
the minimal free resolutions are

Mgy: 0 — S(=15)° — 5(=14)" — S(=12)* — Iy, — 0,

My: 0 — S(=15)" — S(—14)"° — Iy, — 0,
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Mig): 0 — S(=15)" — Ipy, — 0.

Thus we found the Betti numbers of M and its elongations:
Bos(In) = 15, Braa(Iar) = 70, Ba1a(Inr) = 120, Bs15(1nr) = 64,

50,12(11\4(1)) = 35, 51,14(-7M(1)) = 90, B2.15(Inm,,,) = 56,
50,14(IM<2>) =15, 51,15(IM(2>) = 14,
Bos(Iary) = 1.

Use these Betti numbers to find the generalized weight polynomials. Recall
the formula in Theorem 4.1:

n

Z(—l)i@i,j(IM(l_l)) - @'JUM(”))

1=0

for each 1 < j < n. Let us assume §; ;(1ar,,) = 0 whenever [ ¢ [0,n —r(M)]
For the cases j = 1,2,...,7 the coefficient of Z! is equal to 0 for all [ € [0, 4]
When j = 8 the coefficient of Z! is equal to

15
>0 (Bushs) = Busary) ).
1=0

For [ = 0:

15

Z(_l)i <ﬁi,8(IM(71)) — ﬂi,S(IM(()))): (_1)0<O —15) = —15.
For [ = 1:

15

Z(_l)i<5¢,s(fM<o>) - 51',8(11\4(1))): (—1)°(15 — 0) = 15.

1=0

For | =2, 1 =3 and [ = 4 the coefficients are equal to 0.
For the cases j = 9,10, 11 the coefficient of Z! is equal to 0 for all [ € [0, 4].
When j = 12 the coefficient of Z! is equal to

15

S (=1 (Biraag ) = BialIn,) ).

1=0
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For [ = 0:
15 .
S (Bunslh 1) = Bins(l) )= (=1)}(0 = 70) = 70.
=0

For [ = 1:

15
> (=1 (Bira(Iig) = Bisa(I,) ) = (=1)°(0 = 35) + (~1)* (70— 0) = —105.
i=0
For [ = 2:
15
S (=1 (B, = BuralTary) )= (~1)°(35 — 0) = 35.
=0
For [ = 3 and | = 4 the coefficients are equal to 0.
For the case j = 13 the coefficient of Z! is equal to 0 for all [ € [0, 4].
When j = 14 the coefficient of Z! is equal to

15
Z(—l)i (ﬁi,M(IM(FU) — 5@14(1]\4@))).
i=0
For I =0:
15 A
Z(_1)2<Bi,14(IM(,1)) - 5i,14([M<0))>= (—1)%(0 — 120) = —120.
i=0
Forl=1:

15

> (=1 (BuaalIg) = Biaallar,) )= (= 1)}(0 = 90) + (~1)2(120 - 0) = 210.

=0

For [ = 2:
15
> (=1 (@-,14(1114(1)) - ﬁi,14<[M(2))> = (—=1)°(0—=15) + (—=1)*(90 — 0) = —105.
=0
For [ = 3:
15

Z(_l)i(ﬁi,M(IM(Q)) - ﬁz‘,14(]M(3))>= (=1)°(15 — 0) = 15.

1=0
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For | = 4:
15

Z(—l)i <5z‘,14(]M(3)) — B¢,14(IM(4))>: 0.

=0

When j = 15 the coefficient of Z! is equal to

15
Z(—l)i (51,15(IM<1_1>) - @,15(-’]\4(,)))'
=0
For [ = 0:
15 |
S0 (Buasag ) = Buas(Tay) )= (—1)%(0 — 64) = 64
=0
For [ =1:

15

S0 (Bursng) = BussTgy)) ) = (10— 56) + (~1)*(64 — 0) = —120.

=0

For | = 2:
ij;Fl)i (52-,15(11\4(1)) - 5i,15(1M<2)))= (—1)1(0 — 14) + (~1)*(56 — 0) = 70.
For [ = 3:
i;(—l)i (ﬁi,m(fM@)) - 5i,15([M(3))>: (=1)°(0 — 1) 4+ (=1)}(14 — 0) = —15.
For | = 4:

g(—l)i <Bi,15(IM(3)) - 6i,15(IM(4))>= (-1)°(1 —0) = 1.

We list all results in table:
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A 720 1 2V | 722 | 7% | Z°
j= 1 0 0 0 |0
j= 0 0 0 0 |0
j= 0 0 0 0 |0
j= 0 0 0 0 |0
j= 0 0 0 0 |0
j= 0 0 0 0 |0
i=6] 0 0 0 0 |0
j= 0 0 0 0 |0
i=8 | —15 | 15 0 0 |0
j= 0 0 0 0 |0
j=10] 0 0 0 0 |0
j=11] o0 0 0 0 |0
j=12] 70 | —105] 35 | 0 | O
i=13] o0 0 0 0 |0
j=14| 120 210 | —105] 15 | O
j=15| 64 |—120| 70 | —15] 1

4.1.4 Betti numbers of Reed-Miiller codes

Definition 4.5. Reed-Miiller code RM, (1, k—1) (for example, RMs(1,3))
is a linear [¢*~!, k] code over F,. It is also defined by a generator matrix

where we don’t pick all the points in P*~!, but just some of them.

Here in P! containing ¢*~' + ¢*~2 4 ... + 1 points we only pick those
that are in an affine piece A*~1 C PF—1,
In the example k =3+ 1 =4 and n = ¢* ! =241 = 8. Then

T [1 1111111
o 00110011
T2, |01 010101
23 |01 101001

and the affine piece we choose is xy = 1.

d; = n — max number of points in a hyperplane H,
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where points are taken from the affine piece Ay = P*~! — H,.
In other words
di =n —max|H N Ayl

We have two possibilities for hyperplanes H:
(1) H= Ho. Then HﬂAO = .
(2) H # Hy. Then: |HN Ayl = |H\ (H N Hy)| = |H|\ |HNHy| =
(@243 + .. ) = ("3 + g1 +..) = ¢ 2

Then RM,(1,k—1) is a two weight code over [F,. It has two weights: n and
n— g"2
For the next Hamming weight we have:

dy = n — max | Ly N Ag|, for some codim 2-space Ly = H; N Hy C PE-L,
We rewrite:
LyonAg= Ly — (LaNHy) = Ly — ((Hy N Hy) N Hy).
Again we have two possibilities:
(1) Hy 2 Hy N Hy. Then |Ly N Hy| = |Ly| = |P*73|, and Ly N Ay = @.
(2) Hy 2 Hy N Hy. Then |Ly N Hy| = [(Hy N Hy) N Hy| = [PF4].

One of the support weights is n — |&| = n.

For (2): |LoNAg| = |PF=3] —|P*4| = ¢*~3, so we get another weight n—¢*~3.
As a consequence, proceeding in an analogous manner, for ds,dy, ... we

obtain

dy :n_qk_Qa
dy =n—q"?,
dg =n — ",
dy=n—q">,

dp1=n—q¢ =n—1,

dk:n.

Moreover, for each ¢ = 1,2,...,k — 1, we see that for subcodes of C of
dimension 4, there are only two possible support weights, n and n — ¢~
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Theorem 4.3. The Reed-Miiller code C = RM,(1,k —1) has a pure resolu-
tion of its associated Stanley-Reisner ideal.

Proof. Let us clarify why the resolution of the ideal I, is pure.
We must prove that for every h (8, # 0 only for o, with |o| = dj.

Bh,j = Z ﬁh,O“

lo|=j

But we also have
Bho # 0 <= o is minimal in Nj,.

So we must prove that all minimal sets in N}, have the same cardinality
(which is dp,).
We have Reed-Miiller code C (linear code in general) with generator ma-
trix
G:[Q Co - Qn]7
n points in P = PF1,
Let ¢; ,...,¢;. be the points contained in a (codim h)-plane Ly in P. Lj is

Ciys -
given by independent equations

d11X1 —+ ... +d1an = 0

dh1X1+...+dhan = 0

For the coefficient matrix D we have D - X' = 0.
Choose to write
r
Ty

= L.

Then the subcode K of C given by
dllfl—’— e —‘l_ dlnFn
Span :
AT+ ...+ dpni
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has zeroes in positions i1, ..., 1, and

Supp (K) = E\ {i1, ..., is},

SO
W(K) = |Supp (K)| =n—s=mn—|AoN Ly|.

In this case, let ¢; ,...,¢;, be the remaining columns. Hence ¢ = n — s.
Then o; = {ji1,...,J:} = Supp (K). This implies n(o;) > h.
Let a parity check matrix for C be

H:[Ql as ... Qn}.
Every word in K is a linear relation between the q;, for i € Supp (K). Since
there are h linearly independent codewords in K we have h linearly indepen-
dent relations between the a;, for i € Supp (K). Hence n(oy) > h.
We claim that for Reed-Miiller codes, and h = 1,2,...,k — 1 we have:
n(o;) = h for all the K with t = n —s = n — ¢® !, and that these o,
are inclusion minimal among the X C F, with n(X) = h, and that these

o, are the only X C FE that are inclusion minimal among the X C F with
n(X) = h.

o If n(oy) =h+p,p>1theng,,...,c, would be contained in a codim

) =18
(h + p)-space. But the maximum number in such a space is ¢"~"=P~1,

But s = ¢" "~ > ¢""P~1 impossible.

e If strict subset S C oy with n(S) = h, then E \ S would be contained
in codim plane L. Impossible since |E \ S| > ¢"""1. Hence the o,
are inclusion minimal for all the K with support weight n — ¢*=~1.

Let us write H as
H=[a ay ... g @y, .. a,].
Then X = {1,2,...,t}, Y ={t+1,...,n}. We assume that:

n(X) =h,
Niw={c C E|n(o) = h},
X is minimal in V.
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Since n(X) = h, there exist h independent relations between a, ..., a,. This
gives a subcode K, C C, with Supp (Kp,) C X.

In fact: Supp (Kp) = X. If Supp (K,) = X' € X then you would have
the same h independent relations between the columns corresponding to X',
then n(X’) = h also. But then X is not minimal in A},. But from what we
have already seen there are only two possibilities for Supp (K},) (identifying
E = Ap):

(1) Supp (Kn) = E(= Ag) = X.
(2) Supp (Kp) = Ao \ (Ao N Ly) = X for some (codim h)-plane.

In case (1) n(X) =n(E)=|X|—-r(X)=n—(n—k) =k.

In case (2) n(X) = h. So case (2) is the only possible if h < k, since we know
n(X) = h.

For h = k we see that a (codim h)-plane in A is @. Case (1) Ay = E = X.
Case (2) Ag\ @ = Ay = X.

This argument works well for h = 1,...,k—1. For h = k there is no difference
between (1) and (2), and X = E(= A,). O

Example 4.1.8. Let us find the Betti numbers of the Reed-Miiller code

RM,(1,3) which is a [¢*,4] code over F,.
The Hamming weights of RM,(1, 3) are

di=n—q¢"?=¢-¢,

dy=n—¢"7"=¢—q,

ds=n—q""=¢ -1,
d4:n:q3.

In order to find the 3} 4, we will apply the formula that we already used
before:

1
=(=1)".¢. — where t .
B, = (—1) ]g(dk_dh>were €Q
Then we have

1
— (—1)'.¢t. =
B = (=11 (0—¢*+¢*)(—q+a*)(-1+¢*)¢
t

g —1)%(¢* = 1)
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2.t ! =
BQ,dz = (_1) t (O_q3+q)<—q2—|—q)(—1+Q)q

t
g —1)2(¢> - 1)’

/@3@3 — (—1)3-t- —

e = ) @ - @ 1)

Due to Herzog-Kiihl equations we have the equality
t Lt t . t
Ple—=1P =1 ¢ Pla-1-1) (-D(F-1(¢-1)

whence it follows that ¢ = ¢°(¢® —1)(¢* = 1)(¢ — 1) and B4, = ¢(¢* +q+1),

Bog, = ¢*(¢* +q+1), Bsa, = ¢° and Bua, = (¢* — 1)(¢* —1)(¢ — 1). The
resolution of the ideal I of M is

1+

0 — S(—dy)P i — S(—d3)4s — S(—dy) 242 — S(—d;) 14 — Iy — 0.

When M has rank r = n — k = ¢° — 4 its first elongation M(;) has rank
r+1=(¢#-4)+1=¢*—3. Thenumber of d; isn—(r+1)=(n—r)—1=
k —1 = 3. Thus we have to find d;,ds, and d3 for M. We already know
the following formula:

di(M11)) = diga(Mg)).

Then
dO = Oa

dl(M(l)) = d2(M) = q3 - 49,
d2(M(1)) = ds(M) = q3 -1,
d3(My)) = dis(M) = ¢°.



4.1. WEIGHT POLYNOMIALS IN TERMS OF BETTI NUMBERS 75

The second elongation M) has rank 7 + 2 = ¢* — 2. The number of d; is
n—(r+2)=(n—-r)—2=k—2=2. Then we have to find only d;, ds for
My).

dl(M(2)) = d2(M(1)) = q3 -1,

dQ(M(Q)) = dg(M(l)) = q3.

The third elongation M) has rank r + 3 = ¢> — 1. The number of d; is
n—(r+3)=(n-r)—3=Fk—3=1. Then we have to find only d; for M.

di(Mis)) = dy(Mi)) = ¢’
The resolutions look like:
May: 0 — S(—=¢*)* — S(—(¢* = 1)) — S(=(¢* — q))° — Irgyy — 0,
M(Q)I 0— S(—qS)d — S(_(qs - 1))6 — [M(Q) — Oa
M(g)t 0— S(—q3)f:1 — IM(3) — 0.

In the case when g = 2 the first elongation M) is the uniform matroid
U(q® — 3,¢°), otherwise it is not uniform. Then the Betti numbers can be
found as usual:

= (1) -t ! _ t ,
(—+q)(=1+q)qg ¢(g—1)*q+1)
b= (1)1 : -
(= +1)(—¢+1)-1 (¢—-1)(¢—1)

0= (—1)%¢. ! .

(=) (=a)(=1) ¢
Due to Herzog-Kiihl equations we have the equality

t t t
H @-0a-1) -0+ ¢
whence it follows that ¢t = ¢*(¢®> — 1)(¢> — 1) and ¢ = B4, = *(¢* + ¢+ 1),
b= Paa, =q'(g+1) and a = B34, = (¢ — 1)(¢*> — 1).
It remains to find the Betti numbers of M) and M. They are the
uniform matroids U(¢® — 2,¢%) and U(¢® — 1, ¢*) respectively.
We can calculate d by using the formula for MDS-codes:

(7)) () ()
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We have the equality d + 1 = e, so e = ¢°.
As can be seen from the above we have found the following:

Bogi—q(Inr) = a(¢ + q + 1),
Brg—aIn) = (¢ + g + 1),
Bogs—1(Inr) = ¢°,
Bags(In) = (¢° = 1)(¢* = D)(g - 1),

507q3—q([M(1)) = q2(q2 + q + 1)7
@1,q3—1(1M<1>) =q'(g+1),
B27q3<IM(1)> = <q3 - 1)((]2 - 1)7

ﬂo,q371 ([M(g)) = q37

51,q3<]M(2)) = q3 - 17

507(13 (]M(3) ) - 1

Use these Betti numbers to find the generalized weight polynomials by the

formula:
n

> (-1 (51',3'([1\4(1,1)) - ﬁz',j(IMm))

=0
for each 1 < j < n. Assuming 3; ;(In,,) = 0 whenever [ ¢ [0,4], we get the
following coefficients of Z! and present them in table:
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Zl ZO Zl Z2 Z3 Z4
i=0 1 0 0 0 |0
i=1 0 0 0 0 |0
i=¢ —q —q(¢*+q+1) (@ +q+1) 0 0 |0
J=¢—-¢+1 0 0 0 0 [0
i=¢F—q—1 0 0 0 0 |0
i=¢—-q¢q>1 | PP +q+1) —¢*(q+1)(P+q+1) | *(¢*+q+1) |0 |0
j=¢—q+1,¢>210 0 0 0 |0
j=q —2,q>2 0 0 0 0
j=q¢ —1 —q° (¢ +q+1) —¢*(¢*+q+1) | ¢* |0
i=q¢ (-1 (¢*—1)(q—1) | —q(¢® —1)(¢* = 1) | ¢*(¢° — 1) —¢*| 1

Now we consider some particular case of the previous example:

FEzample 4.1.9. Let us find the GWP of the Reed-Miiller code RM5(1, 3)

which is a [8, 4] code over F.

The weight hierarchy of this code is (dy, do, ds, dy) = (4,6,7,8).

The Betti numbers of M and its elongations are:

Bo,a(Inr) = 14, B16(Inr) = 56, Bo7(Inr) = 64, B3 5(Inr) = 21,
/BO,G(IM(D) = 287 51,7<[M(1)) = 487 BQ,S(IM(D) = 217
ﬁ0,7([M(2)) = 87 51,8(11\/1(2)) = 77
Bos(In,) = 1.

The generalized weight polynomials are presented in table:
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ZU T 20 [ 2V [ 22 [ 23 | Z°
j=0] 1 | 0 [ 00O
j=1] 0] 0 [ 0 0]oO
j=2[ 0] 00070
i=3[ 0] 00 0]o0O
j=4|—-14] 14 [ 0 [ 0] 0
j=5] 0 ] 0 | 0 |00
=6| 56 | —84| 28 | 0 | O
j=7]—-64] 112 =56 8 | 0
j=8| 21 |—42] 28 [ =8 1

For the matroid M corresponding to RM,(1, 3) we have calculated 5 4,
Ba,dy, B3,d5, and Pag,.
Remark 4.8. For each h, we have:

Bh.a, = Z Bho = Bho - |{minimal elements in N} }|
o minimal in N,

if the /3, are equal for all 0 minimal in Nj,.

For h = 1, it is clear, since M|, = S%“~2 and the 3, are computable
from the reduced homology of M]|,, using Hochster’s formula given in [4]:

Bh,a(S/IM) = ﬁhq,a([M) = TOTZ_l(IM,K)a = ;ldhfhfl(M‘a)-
Lemma 4.2. Let F = A’;_l, 01,00 C E and assume there exists an isomor-
phism ¢: E — E with ¢(01) = o9 and such that ¢(M*|,,) = M*|,,. Then

M|y, = M|y,
Proof. The assumption of the lemma says precisely that: 7y, (¢(7)) =

Ty, (1), for all 7 C oy & ¢(7) C 0o

ru(P(7)) = [O(T)] + 7o+ (&(7)) — 70+ (E)

ru(O(7)) = T, (6(7)) =
= |7+ rue,, (0(7) — rar(E) =
= |71+ "M, (1) —ry=(E) =
|| 4+ rap(7) — rg(E) =

T'M(T) = T’M|Ul(7').
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Then it follows that M|,, = M]|,,, which is what we set out to prove. O

Recall that the o are the complements of (codim h)-planes L; in A1,
Let M|, is determined by a matrix H, then (M*)|, = (M|,)* is determined
by a matrix G.

For oy the complement of one (codim h)-plane is H;.
For o4 the complement of another (codim h)-plane is Hs.

Given independent equations (o is the complement of a hyperplane H,
which could be Hy or Hs)

b11X1 —f- ce . + b17]§_1X/§_1 == 0
blel + ...+ bQ’k_le_l == 0

b X1+ ...+ bh,k—le—l =0

09 is the complement of hyperplane Hy defined by

X1 =0
X2:0
Xp=0

Let the generator matrix G, whose corresponding matroid is M*, be

X, [1 11 .01 17
X, 000 ...00
o .
X, | 000 00
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give the same matroid. We have

bii ... big— X 0
bni ... bpr— Xk—1 0
We can find k£ — 1 — h additional rows (choose arbitrary)
bht11 o bagig—
bp—11 o br—1k—1

such that B = [b;;] is a square matrix and det(B) # 0.
Let B be the map A¥! —s A*! where V — BV.

Let ‘71, ‘72, e ,j/ﬁ; bg vectors in AF=1 Then these are linearly independent if
and only if BVy, BV,, ..., BV, are linearly independent. Hence we have
Ly(X)
BX = :
Li1(X)

1
We want to know what happens to [ v } :

1 1 , 10
{BV}_B{V]ICMB_{O B}.

(418 8141

The argument with B and B’ shows that there exists an isomorphism
¢: E — FE such that ¢(M*|,,) = M*|,,, where ¢ is

1 1
|:‘7:| —>B/|:‘7:| aHdB/ial—)O'o.
This induces M*|,, SN M*| 5,

We have the following maps

o1
0oy —— 0Oy

N
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If p1(M*|,,) = M*|s,, and ¢o(M*|,,) = M*|,,, it follows that
Moy = 65 (M*|oy) = &3 (01(M*|0))) = (63" 0 1) (M*]5,) = (M*|5,).

Thus we can use the previous lemma.

Corollary 4.2.

7 Bh.d Bh.d
h —h— M o) — o M = — Ah - — s&h .
dn-h—1(M|s) = Bno (M) [{minimal elements in Ny }| o [ kE—1 }

q

h

Remark 4.9. The second equality follows from [9].

Example 4.1.10. Let us illustrate the corollary using the example 4.1.8.
First we find the Gaussian binomials ¢" - [ 2 } .

q

3
1
|3
2
h=3: (f*[i} = ¢,
q

When h = 4 the Gaussian binomial is equal to 1.
Then we have

_ Pra _ala=D(@+q+1)

ﬁl O-(M) — — 1
; (3-1) 3 _ ’

B Pla-D(FHag+1)
ﬁQ,U(M) - q2(qu1_1) - q2(q3 _ 1) =4

B34 q°
B30 (M) = 33 =35 = 7,
q
3

54,0(M) = Baa, = (q
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2(q _ 2
By (M) = Dt _ 4= D@ +a+ 1)

e N o
- /62,d2 o
ﬂQ,U(M(l)) - q3 - Q(q _'_ 1)7

Ba.o (M) = Baay = (¢* = 1)(¢° = 1).

ﬁl,dl
Bl,U(M@)) = ? =1,

ﬁz,a(M@)) = B2,d2 = q3 -1

Bro(M)) = Bra, = 1.

The final result of this subsection gives us the formulas in order to find
the Betti numbers of the Reed-Miiller code of the first order.

Fxample 4.1.11. We are going to find the Betti numbers in general for the
Reed-Miiller code RM,(1,k — 1), and all its elongations.
Recall that the Hamming weights of RM,(1,k — 1) are

0, it h =0;
dy = ¢ = 1), ifh=1,... k—1;
g1, if h =k.

In order to get the 3, 4, we will again apply the formula:
1
= (="t || ———— where t € Q.
Bha, = (—1) kl;[h (e —dp) where Q
Look at the following expression when 1 < h < k —1

1 —1 L)
“dn, T~ FhI(gho1) if i =0;

d d = qkfifl(qi_l)_lqk—h—l(qh_l) = qkfl(qflh_q—i)v if i = 17 BRI k—1and1 7é h;
i — Wh

1 1 . .
= if i =k.
qk—l_qk—h—l(qh_l) qk—h—17

If h =0, then By4, = (—=1)° -t [];4 m =1 and it follows that
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k k—1
t = Hdh _ qu—h—l(qh _ 1) . qk—l _
h=1 h=1

k—1 k-1
_ k=1 5 k(k—1)
= H(qh—l)[qk L hh 1} =q = [ -1).
h=1 h=1
i 1
— J— h . . - =
ﬁh,dh - ( ]‘) t H (dz _ dh)
=0
i#h
k—1
k(k—1) ) (—1)
= (=1)'.q > -1
(-1)"-q H(q ) T )
h—1 k-1

1 1 1
g i 11 (g —q=) g1

i=h+1
Let us deal with two last products separately:

h—1 h—1
1

1
E g —q) 11 ¢ (1 g
(—)h1 A
- hlkzhl)H hl)(khl)Hq_l
s=1
k-1 ] k-1 ]
H k—1(—h — =i\ H k—i—1(i—h _ 1)
i=nt1 4 (g q) i1 4 (¢ 1)
k—h—1 k—h—1 4

-1 ! SR S § S
paley qk—t—h—l(qt_l) q(k—h—l)2 f;lhfl<qt_1)

(k—h—1)(k—h) (k—h—1)(—k+h+2)
2 2

1
“h—1)2  Trk—h-1 = Tqk—h—1 :
gk=h=1) Ht:l (¢" = 1) t=1 (¢" = 1)
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Then
k—1
k(k—1) . (—1)
Bha, = —1)"q q¢—1)- :
h ( ) E( ) qk_h_l(qh _ 1)
(_1)h—1 1 q(k—h—l)(Q—k+h+2) 1
(" DEI T g - ) T e -
I (¢ = 1) Ran a2 [k:—1]
= ) o1, “q =dq : .
H?=1(q2 —-1)- Hf:lh l(ql - 1) h q
We consider the case when h = k:
k—1 1
= (=Dt ] —— =
o = Ve Tl gy
k—1 k—1
w1 ()
= (-D)*-q 2 1_[<qZ -1 g1 ' H g1 -
i=1 i=1
k(k—1) _ i — i _
_ [Toi(d =1 T (@ = 1) -¢* %
g(k—1)? Hfz—ll gt gh! gk=1)? . gk—1
k—1
= 1@ -D.
i=1
We may also get formulas for the j-th elongation M.
k—j k—1
t = ds(M) _ H qkfsfl<qs - 1) . qkfl _
s=1 s=j+1
k2+j2_2kj+3j—k ’i—[l ( s 1)
e q 2 q — .
s=j+1
Look at the following expression when 0 <[ < k — j
1 W’i” o=y | |
- =\ FITT g ifi=1,....k—j—1and i #I;
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Then
-1 k—j—1
oy (=1) 1 1
Bra, = ( 1) -t gh1 — gb—i-1-1 }_[1 gF—i—1-1 — gh—j—1-i iHl grk—i—1-1 — gk—j—1-i

-1
1 ! (—1) 1
gk—i—1-1 - (_1) - qk7j7171(qz+j _ 1) H qkfij(l _ qH)

i=1
k—i—
ﬁl 1 1
k—j—1—i(id _ 1\ k—j1-1
i 4 (¢'=1) ¢
-1 k—j—1—1 | k—j—1-1
1 1 1
p— t . - - . - —
qk—j—l—l(ql—H — ]_) q(k_]_l_l)(l_l) g q — ]_ []);[ qP 1
We gather the powers of ¢:
k2452 —2kj+3j—k 1 1
2 . . _
q I e
p:
k2452 —2kj+3i—k 1
= 4 : ' El—il—]—24 (k=i=1-D(k=j=1) =
grtIte e r 2
k2452 —2kj+3j—k 1 2it2j
= 49 2 ) k245212 —2kj—k+j—1 =q
2
So we have
k—1
LEEEEY [[—j(¢"—1) B

B, = q ; 1= =
l (g = DI (e — DI e = 1)
B ql2+12+2j qk_l—l{k—Q—j} {k—2}
gty —1 [—1 7 .

It remains to look at the case when [ = £k — 7.

1 fa = ii=0;
di — d—; el ifi #k—j.
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Then
k—j—1
-~ ki (-1 (=1
/3k—$dk—j = Ut ]jl gk—i—1-i ’ g1
k—j—2
4 - L)
— _1 k—j A t . _1)k‘-]+1 . _ —
(=1t ( Il
k-1
k2452 —2kj+3j—k s 1 1
= 4 : H (¢ =1 == e =
s=j+1 q q 2
k-1
= ] «-0.
s=j+1

4.2 Another way of finding out the GWP

Definition 4.6. The generalized weight enumerator is given by
WOXY) =y ATX Y,
=0
where Ay) ={D CC|dimD = r,wt(D) = j}|.
The following results are given in [9]:

Proposition 4.8. Let C be a [n, k] code overF,. Then the generalized weight
polynomial is equal to

m r—1
Pi(q™) =Y AV T - o).
r=0 1=0

Theorem 4.4. The generalized weight enumerators of the Reed-Miiller code
RM,(1,k —1) are given by

r k—1
W7(3/)\/lq(1,k—1)(X7 Y) = {

} Yn+qr[k:—1] [
r—1 . r .

for0<r<k.
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Example 4.2.1. Look at the Reed-Miiller code RMj5(1,3) from the exam-
ple 4.1.9.
The generalized weight enumerators of this code for 0 < r < 4 are

(r)
WRMz(l 3) r—1

(X Y) |: 3 :| Y8 + 2T |: 3 :| X237TY23_q37r‘
2

wo o xy)=| 3 YS +2 X4Y4
RM2(1,3) ’ y

we o (xy)=| 3 Y8 44| X2Y6
RM2(1,3) ’ 5

3 3
W7(23A)42(173)(X7 Y) = [ } V¥ 48 [ } XYT.

Then we have

AP =1 4Y {g] :1,Ag2>:{3] :7,Aé3):{3} =7,
2 2 2

Aff):z[f] :14,Ag3>:4{;’} :28,A$3):8{3} =84 =1.
2 2 2

The generalized weight polynomials are
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> AVl -d)=@-1+7Q-1n@-2)+

D@Q—-2)(Q—-4)+(Q-1)(Q —2)(Q—4)(Q—8) =
(Q — 1)(Q° — 7TQ* +21Q — 21).

4.3 Questions for further work

1. Will the resolutions of the Stanley-Reisner rings derived from Reed-
Miiller code of the second order (higher order) be pure?

2. Does our method of finding the GWP of codes, by using Betti numbers
of associated matroids and elongations, work better than the method
briefly described in Section 4.2, following [9]7 There one transforms
data about generalized weight enumerators over the code over the
fixed alphabet F,, to data of the usual weights of codes over infinitely
many extensions of F, (the GWP). Is there any case when this method
from [9] does not work, but where our method works?
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