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Abstract

In this thesis we first give a survey of linear error-correcting codes, and how
many of their most important properties only depend on the matroids derived
from their parity check matrices. We also introduce the Stanley-Reisner ring
associated to the simplicial complex of the independent sets of a matroid.

We then recall in particular how some important properties of linear
codes, including their generalized weight polynomials, are dependent only on
the Z-graded Betti numbers for the Stanley-Reisner rings of their associated
matroids, and the so-called elongations of these matroids. We will use this
fact to find the generalized weight polynomials of simplex codes and Reed-
Müller codes of the first order.
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4.1.2 Herzog-Kühl equations . . . . . . . . . . . . . . . . . . 54
4.1.3 Betti numbers of Simplex codes . . . . . . . . . . . . . 56
4.1.4 Betti numbers of Reed-Müller codes . . . . . . . . . . . 69

vii



viii CONTENTS

4.2 Another way of finding out the GWP . . . . . . . . . . . . . . 86
4.3 Questions for further work . . . . . . . . . . . . . . . . . . . . 88

Bibliography 89



Introduction

This thesis is about studying linear codes, matroids and simplicial complexes,
and concepts related to them. We are going to see that it is very natural to
study matroids, in connection with codes.

The main contribution in the thesis is the computation of the generalized
weight polynomials for large classes of codes. Concretely in this thesis we
shall consider the simplex codes (duals of Hamming codes), and Reed-Müller
codes of the first order.

In order to do this we will present a series of concepts and objects from
algebra and combinatorics and coding theory. A large part of the thesis in a
natural way will be devoted to the presentation of these objects.

The thesis is structured as follows:

Our aim in Chapter 1 is to define block codes, linear codes and matroids
(via various sets of axioms). The text in Chapter 1 is to a great extent based
on picking relevant material from [14], and the main purpose is to define
concepts and fundamental properties that will be used later.

In Chapter 2 we will explain how one can obtain matroids from codes
and give the definition of minimum distance and weight hierarchy of ma-
troids for the purpose of sketching the deep connection between codes and
matroids. We will end this chapter by giving an example which shows how
some matroids do not come from codes.

Chapter 3 is concerned with viewing the matroids appearing as special
cases of simplicial complexes, being a concept originating from algebraic
topology. Here we will also introduce and describe various algebraic and
homological concepts and notions associated with simplicial complexes, in
particular their Betti numbers over a given field, with different gradings.

Chapter 4 is about half of the thesis and it is dedicated to generalized
weight polynomials. We may find them in two ways, in terms of Betti num-
bers and the other method was given in [9]. In this chapter we will also work

1
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with examples, including the simplex and Reed-Müller codes where we ex-
plicitly can find the Betti numbers of matroids and elongations of matroids.
Therefore we will be able to describe properties of these codes, including
higher weight distributions of the codes. It is important to note that we
shall prove here the theorem, which states that the Reed-Müller code of the
first order has a pure resolution of its associated Stanley-Reisner ideal. We
need it in order to find Betti numbers applying the formula given in [2].



Chapter 1

Basic definitions

1.1 Linear codes

In this section, we will give definitions of linear codes, code parameters,
weight hierarchy and weight distribution. We will also introduce the dual of
a linear code.

Definition 1.1. An alphabet is a finite set of symbols.

Definition 1.2. Let q be an integer. Then a q-ary code is a set of r-tuples
(a1, . . . , ar) (r may vary) where ai ∈ A and A is an alphabet with q elements.
An element (a1, . . . , ar) in this set is called a codeword; r is the length of the
codeword.

If r is fixed, then it is called a q-ary block code.
(a1, . . . , an) ∈ An is just a word. Of course,

{codewords} ⊂ {words}.

The first important parameter of a code is the following:

Definition 1.3. The length n of a block code is equal to the length of any
codeword.

Definition 1.4. Consider the alphabet A and An be the set of all words
of length n. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two words. The
Hamming distance between x and y is

d(x, y) = #{i, xi 6= yi}.

3
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If the alphabet is a field A = Fq, then the weight of the codeword x =
(x1, . . . , xn) is

wt(x) = #{i, xi 6= 0} = d(x, (0, . . . , 0)).

Example 1.1.1. Let

x = (0, 1, 1, 2),

y = (1, 1, 1, 1).

Then the Hamming distance between x and y is 2, and the weight of x is 3.

Proposition 1.1. The Hamming distance is a distance on the code, that is

d(x, y) = 0⇐⇒ x = y,

d(x, y) = d(y, x),

d(x, y) 6 d(x, z) + d(z, y).

Proof. See [14].

Here is another important parameter of a code:

Definition 1.5. The minimum distance of a code C is

d = Min{d(x, y) | x, y ∈ C, x 6= y}.

Any q-ary block code is an (n,M, d)q code. It means that we have a q-ary
block code of length n with M codewords and minimum distance d.

Example 1.1.2. Binary code C of length n = 5 with M = 4 codewords and
minimum distance d = 3 given by its set of codewords

{00000, 01011, 10101, 11110}.

Definition 1.6. A linear code over the finite field Fq is a vector subspace of
the vector space Fnq .

Property. Let V be a vector space over a finite field Fq, of finite dimension
k = dimK(V ). Then

#V = qk.

From the property it follows that instead of writing that a linear code is
a q-ary (n, qk, d) code, we will say that the code is a [n, k, d]q code. Then
a [n, k, d]q code is a linear code over Fq with length n, dimension k (and
therefore cardinality qk) and minimum distance d. We may omit d in the
notation if the minimum distance is not specified.
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Remark 1.1. The all zero vector is always a codeword of any linear code.

Remark 1.2. To describe a linear code, we only need to describe a basis.
Then all the other codewords are linear combinations of this basis (of the
vectors in the basis).

Example 1.1.3. Let C be the [4, 2]3 code, with basis v1 = 1011 and v2 = 0112.
Then the set of codewords are of the form λ1v1 + λ2v2 and given in the
following table:

λ1 λ2 codeword
0 0 0000
0 1 0112
0 2 0221
1 0 1011
1 1 1120
1 2 1202
2 0 2022
2 1 2101
2 2 2210

It is easy to see that all the non-zero codewords have weight 3. This is
therefore a [4, 2, 3]3 code. This code is in fact MDS and constant weight.

Definition 1.7. Any linear code whose minimum distance satisfies

d = n− k + 1,

is called maximum distance separable (MDS).

Definition 1.8. A code where all codewords, except for the zero codeword,
have the same Hamming weight is called constant weight.

Lemma 1.1. Let x, y be two codewords of a code. Then

d(x, y) = wt(x− y).

Proof. See [14].
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Theorem 1.1. Let C be a linear code. Then the minimum distance (also
called the Hamming weight of the code) is

d = Min{wt(x) | x ∈ C − {(0, . . . , 0)}}.

Proof. See [14].

Definition 1.9. The support of a codeword x = (x1, . . . , xn) is

Supp(x) = {i | xi 6= 0}

(wt(x) = #Supp(x)).

If S is a set of codewords, then the support of S is just the union of the
supports of the codewords

Supp(S) =
⋃
x∈S

Supp(x) = {i | ∃x ∈ S, xi 6= 0}.

Property. Let C be a linear code. Then the minimal distance d is

d = Min{#Supp(D) | D is a subcode of dimension 1 of C}.

Proof. See [14].

Definition 1.10. Let C be a [n, k]q linear code. Then the generalized Ham-
ming weights are

di = Min{#Supp(D) | D is a subcode of dimension i of C},

where 1 6 i 6 k. The sequence (d1, . . . , dk) is called the weight hierarchy of
the code.

Remark 1.3. From the previous property, d = d1. The k-th generalized
Hamming weight dk should be n, otherwise the code is degenerate, and can
be replaced by a code with smaller length.

Lemma 1.2. If v1, . . . , vk is a basis of a [n, k] code C, then

Supp(C) =
⋃

16i6k

Supp(vi).

Proof. See [14].
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Remark 1.4. The support of a code is equal to the union of the supports of
a given basis, but usually, d(C) 6= Min{wt(vi), i ∈ {1, . . . , k}}.

Proposition 1.2. The weight hierarchy of a code is a strictly increasing
sequence

d1 < d2 < . . . < dk.

Proof. See [14].

Definition 1.11. Let C be a linear code. C has
1 codeword of weight 0,
m1 codewords of weight 1,
m2 codewords of weight 2,
· · · ,
mn codewords of weight n.
Then {1,m1, . . . ,mn} is called the weight distribution of C.

As we have mentioned earlier, in order to describe a linear code, we just
need to find a basis of the code. This gives rise to the following definition:

Definition 1.12. Let C be a [n, k]q linear code. Then a k × n matrix over
Fq whose rows form a basis of C is called a generator matrix.

Remark 1.5. Generator matrices are not unique.
For example,

G1 =

[
1 0 1 1
0 1 1 2

]
and

G2 =

[
0 1 1 2
1 0 1 1

]
describe the same code, but G1 6= G2.

Example 1.1.4. The constant weight code of Example 1.1.3 has generator
matrix [

1 0 1 1
0 1 1 2

]
Definition 1.13. Let C,D be two [n, k] linear codes over the field Fq. Then
the codes are equivalent if we can obtain D from C by a succession of the
following operations:
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1. permutation of the positions of the code

2. multiplication of the symbols at a fixed position by a non-zero constant.

Proposition 1.3. Two equivalent linear codes have the same parameters:
length, cardinality and minimal distance.

Proof. See [14].

Definition 1.14. A generator matrix of the form

[Ik | A]

where Ik is the k× k identity matrix and A is a k× (n− k) matrix, is called
a generator matrix of standard form.

Remark 1.6. Generator matrices of standard form are not unique for equiv-
alent codes.

We want to define the parity check matrix of a code, but first we need
some definitions.

Definition 1.15. Let u, v ∈ Fnq be two vectors. Write u = (u1, . . . , un) and
v = (v1, . . . , vn). Then the inner product is

u · v =
n∑
i=1

uivi.

The inner product is a bilinear form, that is, it is linear on each component
of the cartesian product (bilinear), and its target is the set of scalars of the
vector space (form).

Definition 1.16. A bilinear form f : V × V −→ K is said to be:

• Symmetric if f(x, y) = f(y, x) for all x, y ∈ E,

• Nondegenerate if f(x, y) = 0 ∀y ∈ V ⇒ x = 0 and f(x, y) = 0 ∀x ∈
V ⇒ y = 0.

Let C be a [n, k]q code with generator matrix G. Let C⊥ be the orthogonal
of the code for the usual inner product

C⊥ = {w ∈ Fnq such that w · c = 0 ∀c ∈ C}.

Since the inner product is a nondegenerate symmetric bilinear form, we know
that C⊥ is a [n, n − k]q code. A generator matrix H of C⊥ is therefore a
(n− k)× n matrix with entries in Fq, and whose rows are a basis of C⊥.
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Definition 1.17. Let C be a [n, k]q linear code. Then the [n, n − k]q linear
code C⊥ is called the dual of the code.

Theorem 1.2 (Wei’s duality). Let C be a [n, k]q linear code, and C⊥ its dual
code. Let d1 < . . . < dk and e1 < . . . < en−k the weight hierarchies of C and
C⊥ respectively. Then

{d1, . . . , dk, n+ 1− e1, . . . , n+ 1− en−k} = {1, . . . , n}
Proof. See [15].

Definition 1.18. A generator matrix of C⊥ is called a parity check matrix
of C.
Proposition 1.4. If G,H are a generator matrix and a parity check matrix
for C respectively, then they are a parity check matrix and a generator matrix
for C⊥ respectively.

Proof. See [14].

Theorem 1.3. Let C be a linear [n, k]q code given by a generator matrix G
under standard form, say

G = [Ik | A].

Then a parity check matrix for C is given by

H = [−At | In−k].
Proof. See [14].

Definition 1.19. A parity check matrix of the form H = [B | In−k] is said
to be in standard form.

Example 1.1.5. Given the [5, 2] linear code C over F3.
Its generator matrix is

G =

[
1 0 2 0 1
0 1 2 2 2

]
=
[
I2 A

]
.

Let us find the matrix −At

−At = −

 2 2
0 2
1 2

 =

 1 1
0 1
2 1

 .
Then we have

H =

 1 1 1 0 0
0 1 0 1 0
2 1 0 0 1

 .
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1.2 Matroids

In this section, we will give definitions of matroids via various set of axioms,
and cardinality and rank of matroids. As in the previous section, we will
introduce the notion of duality of matroids.

1.2.1 Independent sets of a matroid

Matroids have many (equivalent) definitions.

Definition 1.20. A matroid on a finite set E is a set I ⊂ 2E satisfying the
following axioms:

(I1) ∅ ∈ I,

(I2) If I1 ∈ I and I2 ⊂ I1, then I2 ∈ I,

(I3) If I1 and I2 are both elements of I with |I1| < |I2|, then there exists
x ∈ I2 \ I1 such that I1 ∪ {x} ∈ I.

Definition 1.21. Two matroids M1 = (E1, I1) and M2 = (E2, I2) are iso-
morphic if there exists a bijection φ : E1 −→ E2 such that

X ∈ I1 ⇔ φ(X) ∈ I2.

Example 1.2.1. Let V be a vector space over K and v1, . . . , vn be vectors in
V . We consider the set

I = {X ∈ 2{1,...,n}, {vk, k ∈ X} is a linearly independent set}.

Then the M = ({1, . . . , n}, I) is a matroid. A matroid isomorphic to such a
matroid is called a vector matroid.
If the vi are the columns of a matrix A, then the associated vector matroid
is denoted by M [A].

Example 1.2.2. Let E = {1, 2, 3, 4, 5}, and consider

I = {∅, 1, 2, 4, 5, {1, 2}, {2, 4}, {2, 5}, {4, 5}}.

Then M = (E, I) is not a matroid. Let I1 = {1} and I2 = {4, 5}. Neither
{1} ∪ {4} nor {1} ∪ {5} are independent.
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Example 1.2.3. Let E = {1, 2, 3, 4, 5} with

I = {∅, 1, 2, 4, 5, {1, 2}, {1, 5}, {2, 4}, {2, 5}, {4, 5}}.

Then we could verify the axioms and see that M = (E, I) is a matroid in
this case.

Definition 1.22. The elements of I are called the independent sets of M =
(E, I). The maximal independent sets (for inclusion) are called bases of M .
They are denoted by B. The subsets of E that are not independent are called
dependent. The minimal (for inclusion) dependent sets are called circuits and
denoted by C.

Definition 1.23. Let M = (E, I) be a matroid. If {e} ∈ C, then e is called
a loop. If {e1, e2} ∈ C, then e1 and e2 are called parallel elements.

Theorem 1.4. A matroid over the ground set E is entirely defined by its set
of bases, or by its set of circuits. Namely we have:

I = {X ⊂ E, ∃B ∈ B, X ⊂ B}

and
I = {X ⊂ E, ∀σ ∈ C, σ 6⊂ X}.

Proof. See [14].

1.2.2 Bases of a matroid

Proposition 1.5. If B1, B2 ∈ B, then |B1| = |B2|.

Proof. See [14].

Proposition 1.6 (Base change). Let B1, B2 be two distinct bases of a ma-
troid. Let x ∈ B2 \B1. Then there exists y ∈ B1 \B2 such that B2∪{y}\{x}
is a basis of the matroid.

Proof. See [14].

Definition 1.24. Let E be a finite set and B ⊂ 2E. We say that B is a set
of bases if it satisfies the two following axioms

(B1) B 6= ∅,



12 CHAPTER 1. BASIC DEFINITIONS

(B2) ∀B1, B2 ∈ B, ∀x ∈ B2 \B1, ∃y ∈ B1 \B2, B2 ∪ {y} \ {x} ∈ B.

Corollary 1.1. Let M = (E, I) be a matroid. Then its set of bases B is a
set of bases (in the sense of the definition).

Proof. See [14].

Lemma 1.3. Let B be a set of bases on E. Then all the elements in B have
the same cardinality.

Proof. See [14].

And we can now describe a matroid as the set of bases:

Theorem 1.5. Let B be a set of bases on E. Let I = {X ⊂ B,B ∈ B}.
Then M(B) = (E, I) is a matroid, whose set of bases is B.

Proof. See [14].

Example 1.2.4. Consider

B = {{1, 2, 3}, {1, 4, 5}, {2, 3, 6}, {4, 5, 6}}.

Then M with this set of bases is not a matroid. The first axiom is trivial
and it is easy to check that the couple {{2, 3, 6}, {4, 5, 6}} doesn’t satisfy the
axiom (B2). Let B1 = {2, 3, 6} and B2 = {4, 5, 6}. Then x = {4} ∈ B2 \ B1

and ∃y ∈ B1\B2 = {2, 3}, let us take y = {3}, such that {4, 5, 6}∪{3}\{4} =
{3, 5, 6} /∈ B. If we take y = {2}, then {4, 5, 6} ∪ {2} \ {4} = {2, 5, 6} is not
a base either, and therefore we get the conclusion.

Example 1.2.5. Let E be a finite set of cardinality n. Let 0 6 m 6 n, and
let

B = {X ⊂ E, |X| = m}.

Then B is the set of bases of a matroid, called the uniform matroid of rank
m. The axiom (B1) is obvious, while axiom (B2) is also easy: if B1 6= B2

and x ∈ B1 − B2, then any y ∈ B2 − B1 is such that B1 − {x} ∪ {y} has
cardinality m, and is therefore in B. It is denoted by Um,E. We write Um,n if
E = {1, . . . , n}.
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1.2.3 Rank function

Definition 1.25. Let M = (E, I) be a matroid. The rank of the matroid
M is the function

r : 2E −→ N
X 7−→ Max{|I|, I ⊂ X, I ∈ I}.

The nullity function of M is n : 2E −→ N defined by n(X) = |X|− r(X). By
abuse of notation, we shall write r(M) = r(E).

We could have given another definition using bases:

Proposition 1.7. Let X ⊂ E, then

r(X) = Max{|B ∩X|, B ∈ B}.

Proof. See [14].

Proposition 1.8. The rank function of a matroid M = (E, I) satisfies the
following properties:

(R1) r(∅) = 0,

(R2) If X ⊂ E and x ∈ E, then r(X) 6 r(X ∪ {x}) 6 r(X) + 1,

(R3) If X ⊂ E and x, y ∈ E are such that r(X ∪{x}) = r(X ∪{y}) = r(X),
then r(X ∪ {x, y}) = r(X).

Proof. See [14].

These properties are equivalent to the following ones:

Proposition 1.9. Let r : 2E −→ N be a function. Then the 3 following
properties:

(R′1) 0 6 r(X) 6 |X|,

(R′2) If X ⊂ Y ⊂ E, r(X) 6 r(Y ),

(R′3) If X ⊂ Y ⊂ E, r(X ∩ Y ) + r(X ∪ Y ) 6 r(X) + r(Y )

are equivalent to the properties (R1), (R2) and (R3).



14 CHAPTER 1. BASIC DEFINITIONS

Proof. See [14].

We are now able to give a third definition of a matroid:

Theorem 1.6. Let E be a finite set and r : 2E −→ N a function satisfying
(R1), (R2) and (R3) (or alternatively (R′1), (R′2) and (R′3)). Then if

I = {I ∈ 2E, r(I) = |I|},

then (E, I) is a matroid, with set of bases

B = {I ∈ 2E, r(E) = r(I) = |I|},

and rank r.

Proof. See [14].

Example 1.2.6. Let K be a field, and L be a field extension of K. Let E =
{l1, . . . , ls} ∈ L. Then the function

r : 2E −→ N
{li1 , . . . , lis} 7−→ trdeg(K(li1 , . . . , lis) : K)

is the rank function of a matroid. A matroid isomorphic to such a matroid
is called an algebraic matroid.

Remark 1.7. Every vector matroid is algebraic. But the converse is not true.
There are some algebraic matroids that are not vector matroids (over any
field).

Proposition 1.10. Let A be a k × n matrix with k 6 n. Then the rank
function of the matroid M [A] is given by:

rM [A](X) = rank(A[X])

where A[X] is the matrix formed by the columns of A indexed by X.

Proof. See [14].
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1.2.4 Circuits of a matroid

Proposition 1.11. The circuits C of a matroid satisfy the following proper-
ties:

(C1) ∅ /∈ C,

(C2) If C1, C2 ∈ C with C1 ⊂ C2, then C1 = C2,

(C3) If C1, C2 ∈ C are distinct and not disjoint, then for any e ∈ C1 ∩ C2,
there exists C3 ∈ C such that C3 ⊂ (C1 ∪ C2)− {e}.

Proof. See [14].

Remark 1.8. The property (C3) is often called the weak (or global) elimina-
tion axiom for circuits, as opposed to the strong (or local) elimination axiom
for circuits below.

Proposition 1.12. Let E be a finite set and C be a set of subsets of E. Let
(C ′3) be the following property:

(C ′3) : If C1, C2 ∈ C are distinct and not disjoint,
then for any e ∈ C1 ∩ C2 and f ∈ C1 \ C2, there exists C3 ∈ C

such that f ∈ C3 ⊂ (C1 ∪ C2)− {e}.

Then the properties (C1), (C2) and (C3) are equivalent to the properties (C1),
(C2) and (C ′3).

Proof. See [14].

Lemma 1.4. If M = (E, I) is a matroid with rank function r. Then a subset
X ⊂ E is dependent if and only if

r(X) 6 |X| − 1.

In particular, if X is a circuit, then

r(X) = |X| − 1.

Proof. See [14].
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Theorem 1.7. Let E be a finite set, and C ⊂ 2E satisfying the axioms (C1),
(C2) and (C3). Let

I = {X ⊂ E, @C ∈ C, C ⊂ X}.

Then (E, I) is a matroid whose set of circuits is C.

Proof. See [14].

Example 1.2.7. Let G = (V,E) be a graph. Then the set of minimal cycles
of the graph is the set of circuits of a matroid. A matroid isomorphic to such
a matroid is called a graphic matroid.

Remark 1.9. It can be shown that all graphic matroids are vector matroids
(and therefore algebraic matroids). But there are some vector matroids that
are not graphic.

1.2.5 Duality

Lemma 1.5. Let M be a matroid on the ground set E with set of bases B.
Let B1, B2 ∈ B distinct. Let x ∈ B1 − B2. Then there exists y ∈ B2 − B1

such that B2 − {y} ∪ {x} ∈ B.

Proof. See [14].

Theorem 1.8. Let M be a matroid on the ground set E with set of bases B.
Let

B = {E −B,B ∈ B}.

Then M(B) is a matroid over E.

Proof. See [14].

Definition 1.26. Let M be a matroid on the ground set E and set of bases
B. Then the matroid on E and set of bases B is called the dual of M , and
denoted by M∗.

Remark 1.10. We have of course that (M∗)∗ = M .

Example 1.2.8. The dual of the uniform matroid of rank m, Um,n is the
uniform matroid Un−m,n.

Definition 1.27. Let M be a matroid. Then
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• The elements of I(M∗) are the coindependent sets of M

• The elements of B(M∗) are the cobases of M

• The elements of C(M∗) are the cocircuits of M

• The rank function of M∗ is the corank function of M

• A coloop of M is a loop of M∗.

Proposition 1.13. Let M be a matroid of rank r on the ground set E. Then
the rank of M∗ (or the corank of M) is #E − r.

Proof. See [14].

Theorem 1.9. Let M be a matroid of rank function r. Then the rank func-
tion r∗ of M∗ is given by

r∗(X) = |X|+ r(E −X)− r(M),∀X ⊂ E.

Proof. See [14].

Corollary 1.2. Let M be a matroid of nullity function n. Then the nullity
function n∗ of M∗ is given by

n∗(X) = |X|+ n(E −X)− n(E).

Theorem 1.10. Let M,N be two matroids. Then

M ≈ N ⇐⇒M∗ ≈ N∗.

Proof. See [14].

Theorem 1.11. If A is a k × n matrix of the form A = [Ik | A′] then
M [A]∗ = M [B] for B = [−A′t | In−k].

Proof. See [14].

Example 1.2.9. Given the vector matroid M [A], associated to the following
matrix

A =

[
1 0 0 1 1
0 1 0 0 1

]
over F2.
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Then the matroid M [B] = M [A]∗, where

B =

 0 0 1 0 0
1 0 0 1 0
1 1 0 0 1


gives the dual of the matroid M [A].

Theorem 1.12. If M is a vector matroid, then M∗ is also a vector matroid.

Proof. Follows from the previous theorem.

The class of vector matroids is closed under duality.

1.2.6 Elongations and truncations of matroids

Let M be a matroid on E = {1, . . . , n} with rank r(M) = r(E).

Definition 1.28. E(M) is called the elongation of a matroid M if for any
X ⊆ E

rE(M)(X) = Min{rM(X) + 1, |X|}.

This is well-defined, since rE(M) satisfies the axioms for rank function.
We need to check the following:

(R1) rE(M)(∅) = 0,

(R2) If X ⊂ E and x ∈ E, then rE(M)(X) 6 rE(M)(X∪{x}) 6 rE(M)(X)+1,

(R3) IfX ⊂ E and x, y ∈ E are such that rE(M)(X∪{x}) = rE(M)(X∪{y}) =
rE(M)(X), then rE(M)(X ∪ {x, y}) = rE(M)(X).

Proof. (R1) rE(M)(∅) = Min{rM(∅) + 1, |∅|} = Min{0 + 1, 0} = 0.
(R2) By the definition rE(M)(X ∪ {x}) = Min{rM(X ∪ {x}) + 1, |X ∪ {x}|}.

Then we have to verify that

Min{rM(X) + 1, |X|} 6Min{rM(X ∪ {x}) + 1, |X ∪ {x}|} 6

6Min{rM(X) + 1, |X|}+ 1 = Min{rM(X) + 2, |X|+ 1}.

But this is true since:

rM(X) + 1 6 rM(X ∪ {x}) + 1 6 rM(X) + 2,
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since rM satisfies (R2) and

|X| 6 |X ∪ {x}| 6 |X|+ 1.

We will leave the proof for the third axiom.

Definition 1.29. For i = 0, . . . , n− r(M) define a matroid M(i), which is an
i-th elongation

M(i) = E(E(. . . E(M)))︸ ︷︷ ︸
i times

.

Proposition 1.14. The independent sets of the matroid M(i) are

I(M(i)) = {σ ∈ E | n(σ) 6 i}.

Remark 1.11. It is asserted in the article [6].

Example 1.2.10. Consider the matroid in Example 2.1.1 with bases B =
{{1, 2}, {1, 4}, {2, 3}, {3, 4}}. We want to calculate independent sets of M(i),
by using the formula: I(M(i)) = {σ ∈ E | n(σ) 6 i}.

Computations of nullity function for every σ ∈ E are listed in the table
below.

Then for 0 6 i 6 2, we have

I(M(0)) = {σ ∈ E | n(σ) 6 0} = {∅, 1, 2, 3, 4, {1, 2}, {1, 4}, {2, 3}, {3, 4}}.
I(M(1)) = {∅, 1, 2, 3, 4, {1, 2}, {1, 4}, {2, 3}, {3, 4}, {1, 3}, {2, 4}, {1, 2, 3},

{1, 2, 4}, {1, 3, 4}, {2, 3, 4}}.
I(M(2)) = {∅, 1, 2, 3, 4, {1, 2}, {1, 4}, {2, 3}, {3, 4}, {1, 3}, {2, 4}, {1, 2, 3},

{1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.
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σ r(σ) n(σ)
{1, 2, 3, 4} 2 2
{1, 2, 3} 2 1
{1, 2, 4} 2 1
{1, 3, 4} 2 1
{2, 3, 4} 2 1
{1, 2} 2 0
{1, 3} 1 1
{1, 4} 2 0
{2, 3} 2 0
{2, 4} 1 1
{3, 4} 2 0

1 1 0
2 1 0
3 1 0
4 1 0
∅ 0 0

The matroid M(i) is the elongation of M to rank r(M) + i.
The rank function of M(i) for a matroid M with rank function r is denoted

by ri.
In example 1.2.10 we observe

r0(E) = r(E) = 2,

r1(E) = r(E) + 1 = 3,

r2(E) = r(E) + 2 = 4.

For all matroids M we have:

Proposition 1.15. The rank function ri of M(i) satisfies:

ri(X) = Min{rM(X) + i, |X|}.

Proof. Follows immediately from Definition 1.28.

Corollary 1.3. The rank of M(i) is ri(E) = r(E)+i, for all 0 6 i 6 n−r(E).
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Definition 1.30. T (M) is called the truncation of a matroid M if for any
X ⊆ E

rT (M)(X) = Min{rM(X), r(M)− 1}.

This is well-defined, since rT (M) satisfies the axioms for rank function.

Definition 1.31. For i = 0, . . . , r(M) define a matroid M (i), which is an
i-th truncation

M (i) = T (T (. . . T (M)))︸ ︷︷ ︸
i times

.

Proposition 1.16. The independent sets of the matroid M (i) are

I(M (i)) = {σ ∈ I | |σ| 6 r(M)− i}.

Proof. Follows immediately from Definition 1.30.

Definition 1.32. The rank function of M (i) for a matroid M with rank
function r is called ri.

For all matroids M we have:

Proposition 1.17. The rank function ri of M (i) satisfies:

ri(X) = Min{rM(X), r(M)− i}.

Proof. Follows from Definition 1.30.

Corollary 1.4. The rank of M (i) is ri(E) = r − i, for all 0 6 i 6 r(E).

Example 1.2.11 (Continuation of Example 1.2.10). Let us try to find I(M (1)),
having applied the following formula:

I(M (1)) = {σ ∈ E | r1(σ) = |σ|},

where r1(σ) = Min{r(σ), r − 1}. Then in the case of our example

r1(σ) =

{
0, if σ = ∅;

1, if σ 6= ∅

and
I(M (1)) = {∅, 1, 2, 3, 4};
r2(σ) = 0, for all σ

and
I(M (2)) = {∅}.
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Proposition 1.18. (a) rE(M∗)(X) = r[T (M)]∗(X), where X ⊆ E;

(b) r(M∗
(i))(σ) = r([M (i)]∗)(σ), where σ ⊆ E.

Proof. For the part (a): Recall the definition of r∗(X) = |X| + r(E −X)−
r(E). Consider the right part of our equality

r∗T (M)(X) = |X|+ rT (M)(E −X)− rT (M)(E) =

= |X|+Min{r(E −X), r − 1} −Min{r(E), r − 1} =

= |X|+Min{r(E −X), r − 1} − (r − 1).

If r(E −X) = r(E), then we get |X|+ (r − 1)− (r − 1) = |X|.
If r(E −X) < r(E), then we get |X|+ r(E −X)− (r − 1).
Consider the left part

rE(M∗)(X) = Min{r∗(X) + 1, |X|} =

= Min{|X|+ r(E −X)− r(E) + 1, |X|}.
If r(E −X) = r(E), then we get |X|.

If r(E −X) < r(E), then we get |X| + r(E −X) − r(E) + 1. Then we see
that the right part is equal to the left one, which is the required result.

The proof for (b) follows in a similar way.

Example 1.2.12. Let M = Um,n for 1 6 m 6 n− 1.
Then

E(M) = Um+1,n;

T (M) = Um−1,n

Proof. Let us look at rank functions rE(M)(X) and rUm+1,n(X), where X ⊆ E.

rUm+1,n(X) =

{
|X|, if |X| < m+ 1;

m+ 1, if |X| > m+ 1

rE(M)(X) = Min{rM(X) + 1, |X|} =

=

{
Min{|X|+ 1, |X|}, if |X| < m;

Min{m+ 1, |X|}, if |X| > m+ 1
=

=

{
|X|, if |X| < m;

m+ 1, if |X| > m+ 1
= rUm+1,n(X).
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Similarly it can be shown for a truncation.

In general:
M(i) = Um+i,n, for i = 0, 1, . . . , n−m;

M (i) = Um−i,n, for i = 0, 1, . . . ,m.

We will now give an illustration of Proposition 1.18.
Given the matroid M = U2,5, then its dual M∗ = U3,5.

Compute E(M∗) = E(U3,5) = U4,5 and T (M)∗ = U∗1,5 = U4,5, it follows that
part (a) is fulfilled.
When i = 2: (M∗)(2) = (U3,5)(2) = U5,5 and (M (2))∗ = (U0,5)∗ = U5,5,
therefore part (b) is also fulfilled.
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Chapter 2

Codes and matroids

2.1 From linear codes to matroids

Let C be a [n, k]q linear code. G is a generator matrix of C. H is a parity
check matrix of C.

Definition 2.1. The matroid associated to the code is

MC = M [H].

Remark 2.1. Let C be a [n, k]q linear code defined by a parity check matrix
H1. Let H2 be another parity check matrix of C. Then

M [H1] = M [H2].

The analogous statement is also true for generator matrices.

We have:

MC = M [H] = M [G]∗ = (MC⊥)∗

if G = [Ik | A] and H = [−At | In−k] are of standard form.

Theorem 2.1. Let C be a [n, k]q code. Then MC is a matroid on {1, . . . , n}
of rank n− k and

M∗
C = MC⊥ .

Proof. One has

MC = M [H] = M [G]∗ = (MC⊥)∗.

25
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The first and third equalities are just Definition 2.1.
For the equality M [H] = M [G]∗, it follows from Theorem 2.2.8 of [12] if G
can be taken to be of standard form. A more detailed analysis of column
permutations in question gives that this is true also for other G.

Lemma 2.1. Let M be a matroid with rank function r and let i > 0. Let us
denote

Min{|X|, X ⊂ E, |X| − r(X) = i} = ei,

Min{|X|, X ⊂ E, |X| − r(X) > i} = Ei,

Then we have ei = Ei.

Proof. It is easy to see that Ei 6 ei. It follows from

A ⊂ B ⇒Min(A) >Min(B).

Let X ⊂ E such that |X| − r(X) > i and |X| = Ei with the property
|X| − r(X) minimal. We claim that |X| − r(X) = i. If not, then let x ∈ X.
Let’s take Y = X − {x}.

|Y | = |X| − 1⇒ |Y | − r(Y ) < i.

We can also say

|Y | − r(Y ) 6 i− 1.

From (R2), we have the following

r(Y ) = r(X − {x}) 6 r(X) 6 r(Y ) + 1.

Then

|X| − r(X) 6 |X| − r(Y ) = |Y |+ 1− r(Y ) 6 i− 1 + 1 = i.

Therefore |X| − r(X) = i⇒ ei = Ei.

Theorem 2.2. Let C be a [n, k]q code and 1 6 i 6 k. Then

di = Min{|X|, X ⊂ {1, . . . , n} such that |X| − r(X) = i}

where r is the rank function of MC.
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Proof. Let X ⊂ {1, . . . , n} such that |X| = ei and |X| − r(X) = i.
Consider

C(X) = {c ∈ C such that cx = 0 as soon as x /∈ X and c ·H t = [0]}.

Easy to see that it is a subcode of C and Supp(C(X)) ⊂ X. We claim that

C(X) ≈ KerH[x]t.

This is true, since if

w ∈ C(X) ⊂ C ⇒ w ·H t = [0]⇒ w′ ·H[x]t = [0],

w′ being w without zeroes outside X. For the other inclusion

u ∈ KerH[x]t, u = [u1, . . . , um] then w = [u1, ..., 0, 0, 0, ..., um],

where zeroes outside X and w ·H t = [0].

By the theorem of the dimension

dim(C(X)) = dimKerH[x]t = |X| − dim ImH[x]t = |X| − r(X) = i.

di = Min{|SuppD|,D is of dimension i} 6 |Supp(C(X)) 6 |X| = ei.

Let D is a subcode of dimension i such that |SuppD| = di.
Denote X = Supp(D). Consider C(X).

D ⊂ C(X) ⊂ C

SuppD ⊂ Supp(C(X)) ⊂ X

Since Supp(D) = X it follows that Supp(C(X)) = X.

dim(C(X)) > dimD = i.

Recall
Ei = Min{|X|, X ⊂ {1, . . . , n}, |X| − r(X) > i}

|X| − r(X) > i.

Ei 6 |X| = |Supp(D)| = di.
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Remark 2.2. By Lemma 2.1 we also have

di = Min{|X|, X ⊂ E, |X| − r(X) = i} = ei = Ei.

Now we can define the Hamming weights of a matroid.

Definition 2.2. Let M be a matroid on E = {1, . . . , n} of rank function r.
Let 1 6 i 6 |E| − r(E). Then the i-th Hamming weight of M is

di(M) = Min{|X|, X ⊂ E, |X| − r(X) = i}.

Example 2.1.1. Given a matroidM with bases B = {{1, 2}, {1, 4}, {2, 3}, {3, 4}}.
We want to find Hamming weights

di = Min{|X|, n(X) = i}.

The nullity function n(X) = 0⇐⇒ r(X) = |X| ⇐⇒ X ∈ I.
In our case n(X) = 0 for X = ∅, 1, 2, 3, 4, {1, 2}, {1, 4}, {2, 3}, {3, 4}. For
other ones give the table:

X n(X)
{1, 3} 2− 1 = 1
{2, 4} 1
{1, 2, 3} 3− 2 = 1
{1, 2, 4} 1
{1, 3, 4} 1
{2, 3, 4} 1
{1, 2, 3, 4} 4− 2 = 2

Then the Hamming weights of M are

d1 = Min{|X|, n(X) = 1} = 2,

d2 = Min{|X|, n(X) = 2} = 4.

Proposition 2.1. Let M be a matroid. Then d1 < d2 < . . . < dn−r.

Remark 2.3. This result is proved in [14].

Definition 2.3. Let M be a matroid on E. Let n = |E|. Then the weight
hierarchy of M is d1 < . . . < dn−r where r = r(M).
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Theorem 2.3 (Wei’s duality). Let M be a matroid on E of rank r and
n = |E|. Let

d1 < . . . < dn−r

be the weight hierarchy of M .
Let M∗ is a matroid on E of rank n− r. Let

e1 < . . . < er

be the weight hierarchy of the dual matroid M∗. Then

{d1, . . . , dn−r} ∪ {n+ 1− e1, . . . , n+ 1− er} = {1, . . . , n}

and the union is disjoint.

Proof. This theorem was proved in [10].

Definition 2.4. Let M be a matroid on E = {1, . . . , n} of rank function r.
Then the minimum distance of the matroid M

d = d1(M) = Min{|X|, X ⊂ E, |X| − r(X) = 1}.

Remark 2.4. Note that d1(M [H]) is equal to the minimum distance of C if
H is a parity check matrix for a linear code C.
One may also observe that the minimum distance of the code equals to the
size of the smallest circuit in the matroid represented by the parity check
matrix.

Proposition 2.2. Let C be a [n, k] code with weight hierarchy

d1(C), . . . , dk(C)

where k = dim(C).
Let MC be a matroid associated to the code C with its weight hierarchy

d1(MC), . . . , dk(MC).

Then
d1(C) = d1(MC), . . . , dk(C) = dk(MC).

Proof. Look at the Theorem 2.2 and Definition 2.2. We see that the Ham-
ming weights of a code and the Hamming weights of a matroid associated to
the code are expressed in the same way.
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Example 2.1.2. Let us study the code C with generator matrix G over F2.

G =

[
1 0 1 0
0 1 0 1

]
=
[
I2 A

]
, where A = I2.

Then H can be taken to be

H =
[
−At I2

]
=
[
I2 I2

]
= G also.

Then by looking at independent columns of the parity check matrix H, the
matroid associated to the code C is

MC = {12, 14, 23, 34}.

We compute the Hamming weights of the code

d1 = Min{wt(1010, 0101, 1111)} = Min{2, 2, 4} = 2,

d2 = Min{|Supp(D)|,D is a subcode of dimension 2} = {|Supp(C)|} = 4.

We see that they are the same as in Example 2.1.1.

The next example shows how non-representable matroids do not come
from codes. First we mention the following definition:

Definition 2.5. Let M1,M2 be matroids on E1 and E2 respectively and
E1 ∩ E2 = ∅.
Let

I = {I1 ∪ I2 | I1 ∈ IM1 , I2 ∈ IM2}.
The sum of two matroids M1 and M2 is the matroid

M1 ⊕M2 = (E1 ∪ E2, I).

Example 2.1.3. Let E = {1, . . . , 7}. Then for the bases of the Fano matroid
F7 (See Figure 2.1) we have

BF7 = {subsets of cardinality 3 except

{2, 4, 6}, {4, 5, 7}, {5, 6, 7}, {1, 4, 5}, {3, 5, 6}, {1, 2, 5}, {2, 3, 5}}.
Let us define another matroid with the exception that the circle in the below
diagram is missing. It is called the anti-Fano matroid F−7 (See Figure 2.2)
and for the bases of F−7 we have

BF−7 = {subsets of cardinality 3 except
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{11, 12, 14}, {12, 13, 14}, {8, 11, 12}, {10, 12, 13}, {8, 9, 12}, {9, 10, 12}}.

F7 is representable over a field K if and only if char(K) = 2,
F−7 is representable over a field K if and only if char(K) 6= 2. But the

direct sum of a Fano matroid and an anti-Fano matroid is an example for a
matroid which is not representable over any field.

M = F7 ⊕ F−7

is not a matroid of the form MC for any linear code C over any Fq, since
M = M [H] would force M to be representable over Fq.

The set of bases of M on {1, 2, . . . , 14} is

B = {B1 ∪B2},

where B1 could be any subset of cardinality 3 of {1, 2, . . . , 7} among
those drawn on Figure 2.1, and B2 could be any subset of cardinality 3 of
{8, 9, . . . , 14} among those drawn on Figure 2.2. The rank of M is 6 and we
know that n = 14. Then we could compute

d1, d2, . . . , d14−6 = d8.

Figure 2.1: Fano matroid Figure 2.2: Anti-Fano matroid
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We are going to calculate only d1 and d2.
Take X = {9, 11}. We see that |X| = 2 and r(X) = 1. Therefore

d1(M) = Min{|X|, X ⊂ E, |X| − r(X) = 1} = 2.

d2 = 3 since |X| − r(X) = 3− 1 = 2 if X = {9, 11, 13} (and d2 > d1).

Remark 2.5. In this case d1 has no interpretation as a minimum distance of
a code.



Chapter 3

Stanley-Reisner rings and Betti
numbers

3.1 Simplicial complexes

Let E be a finite set, for simplicity we may take E = {1, 2, ..., n}.

Definition 3.1. A simplicial complex on E is a ∆ ⊂ 2E such that if σ1 ∈ ∆
and σ2 ⊂ σ1, then σ2 ∈ ∆.

Definition 3.2. A simplex is a subset of E (or an element of 2E).

Definition 3.3. A face of ∆ is σ ∈ ∆.
A facet of ∆ is a maximal face (for inclusion).
N (∆) is the set of minimal non-faces (for inclusion).

Remark 3.1. A simplicial complex is entirely given by its set of facets.

Let K be a field. Denote S = K[x1, . . . , xn] be the polynomial ring in n
variables over K. Let I ⊂ S is an ideal.

Definition 3.4. A monomial is a polynomial of the form

xa =
n∏
i=1

xaii ,

where ai ≥ 0.
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Remark 3.2. The product of two such monomials is a monomial

xa · xb = xa+b.

Definition 3.5. A monomial ideal I of S is an ideal generated by monomials.

Definition 3.6. A monomial xa = xa11 x
a2
2 . . . xann is squarefree if each ai is 0

or 1.

Definition 3.7. A monomial ideal is squarefree if it is generated by square
free monomials.

Definition 3.8. If σ = {i1, i2, ..., ir} ⊂ E, then

xσ =
∏

xi1xi2 ...xir .

Clearly xσ is squarefree, and any squarefree monomial can be written as xσ,
for some σ ⊂ E.

Definition 3.9. Let ∆ be a simplicial complex on E. The Stanley-Reisner
ideal of ∆ is the squarefree monomial ideal

I∆ =< xσ, σ ∈ N (∆) >=< xσ, σ /∈ ∆ > .

Definition 3.10. The Stanley-Reisner ring of a simplicial complex is

R∆ = S/I∆.

Proposition 3.1. Let M be a matroid, and I(M)={independent sets of M}.
Then I(M) ⊂ 2E is a simplicial complex.

Proof. Let M be a matroid on a finite set E with I(M) ⊂ 2E. Then it
satisfies the properties (I1), (I2), (I3). From this we can get the following:

if I1 ∈ I(M) and I2 ⊂ I1, then I2 ∈ I(M),

that are exactly the property for simplicial complexes.

Proposition 3.2. The Stanley-Reisner ring/ideal of a matroid M will be the
Stanley-Reisner ring/ideal of the simplicial complex ∆ = I(M).
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3.2 Gradings

Definition 3.11. A ring R is a Z-graded ring if it can be written

R =
⊕
i∈Z

Ri,

and Ri ·Rj ⊂ Ri+j for all i, j ∈ Z.

Definition 3.12. A homogeneous polynomial is a polynomial whose nonzero
monomials all have the same degree.

In particular, S = K[x1, . . . , xn] has a Z-grading in the following way

Si = 0 if i < 0,

S0 = K ⊂ S,

Si = {homogeneous polynomials of degree i} for i > 0.

Definition 3.13. A finitely generated module M over S is called Z-graded
if

M =
⊕
i∈Z

Mi,

and Si ·Mj ⊂Mi+j for all i, j ∈ Z.

Definition 3.14. An S-module M is called Zn-graded if

M =
⊕
a∈Zn

Ma,

and Sa ·Mb ⊂Ma+b for all a, b ∈ Zn.

Moreover, S has a Zn-grading

S =
⊕
a∈Zn+

Sa,

where

Sa =

{
0, if a /∈ Zn+,

Kxa, if a ∈ Zn+.
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Observation. Let I ⊂ S be an ideal. Then

(i) I is a Z-graded submodule of S if and only if I can be generated by
homogeneous polynomials. In this case S/I is also Z-graded.

(ii) I is a Zn-graded submodule of S if and only if I can be generated by
monomials. In this case S/I is also Zn-graded.

Proof. For (i), see p. 6 in [4]. Part (ii) follows in a similar way.

3.3 Graded free resolutions

Let M and N be finitely generated Z-graded S-modules.

Definition 3.15. A Z-graded S-module homomorphism from M to N is an
S-module homomorphism φ : M → N , where φ(Mi) ⊂ Ni for all i ∈ Z.
Likewise a Zn-graded S-module homomorphism of two Zn-graded S-modules
M and N is an S-module homomorphism φ : M → N , such that φ(Ma) ⊂ Na

for all a ∈ Zn.

Let R be a ring.

Definition 3.16. An exact sequence of R-modules is a sequence of R-
modules and R-module homomorphisms

· · · −→Mi+1
φi−→Mi

φi−1−→Mi−1 −→ · · · ,

where Ker(φi−1) = Im(φi) for all i.

Remark 3.3. An exact sequence of Z-graded S-modules is an exact sequence
of S-modules where each homomorphism φi is Z-graded.

Definition 3.17. The Z-graded S-module S(d) is defined as

S(d)r = Sd+r,

for all d, r ∈ Z. It is called a shift of S by d.

Definition 3.18. A long exact sequence

F : · · · −→ F2 −→ F1 −→ F0 −→M −→ 0

of Z-graded S-modules with Fi =
⊕

j S(−j)βij is called a Z-graded free S-
resolution of M .
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Let M be a finitely generated Z-graded S-module.

Definition 3.19. A Z-graded free S-resolution F of M is called minimal if for
all i, the image of Fi+1 −→ Fi is contained in mFi, where m =< x1, . . . , xn >
is a graded maximal ideal.

Proposition 3.3. Let M be a finitely generated Z-graded S-module and

F : · · · −→ F2 −→ F1 −→ F0 −→M −→ 0

a minimal Z-graded free S-resolution of M with Fi =
⊕

j S(−j)βij for all i.
Then

βij = dimK Tor
S
i (K,M)j

for all i and j.

Remark 3.4. The proof can be found in [4], and the definition of the functor
TorSi (K,M)j in [1, p.159-160].

Definition 3.20. The numbers βij are called the Z-graded Betti numbers of
M .

Remark 3.5. As one sees from this formula, two different minimal Z-graded
free S-resolutions of M will give the same Betti numbers.

In the sequence of Proposition 3.3 we may also forget about the grading,
and just look at it as an exact sequence of S-modules.
Since S(−j) ' S for all j as S-modules, we may view Fi as⊕

j

Sβij ∼= S
∑
j βij .

We set
βi =

∑
j

βij.

Then the minimal free resolution becomes

F : · · · −→ Sβ2 −→ Sβ1 −→ Sβ0 −→M −→ 0

The βi are called the ungraded Betti numbers. These numbers are also
consequently the same for all minimal free resolutions.
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Definition 3.21. A minimal free resolution

0 −→ Fl −→ · · · −→ F1 −→ F0 −→M −→ 0,

with Zn-graded modules

Fi =
⊕
a∈Zn

S(−a)βi,a

is called a minimal Zn-graded free S-resolution of M .

Proposition 3.4. The βi,a are independent on the minimal free resolution
of M .

Remark 3.6. By [4], p.126, βi,a = dimK Tor
S
i (K,M)a, for all such minimal

Zn-graded resolutions.

Definition 3.22. The βi,a are called the Zn-graded Betti numbers of M over
the field K.

3.4 Betti numbers of Stanley-Reisner rings

In the next chapter we will look in particular at resolutions of S-modules of
the type

R∆ = S/I∆,

in other words Stanley-Reisner rings.
Let ∆ be a simplicial complex as in Section 3.1.

Definition 3.23. The ungraded, Z-graded, Zn-graded Betti numbers of ∆
will be the ungraded, Z-graded, Zn-graded Betti numbers of the module
M = R∆.

Remark 3.7. Whenever we have a matroid M , we may therefore study the Z-
graded resolution of the simplicial complex ∆, where faces are sets in I(M).
In particular if we have a linear code C, we can obtain the matroid associated
to this code and also study the Z-graded resolution of the simplicial complex.

Example 3.4.1. Start with the binary code C with parity check matrix

H =

[
1 0 1 1
0 1 1 0

]
.
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Hence C⊥ has generator matrix H and therefore following parity check matrix[
−At I2

]
=

[
1 1 1 0
1 0 0 1

]
over F2.

Then this is a generator matrix G for C and we have

C = {0000, 1110, 1001, 0111}.

The minimum distance of the code C

d(C) = Min{wt(x), x 6= (0 . . . 0)} = Min{3, 2, 3} = 2.

The bases of

MC = M [H] = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}}.

The circuits are {{1, 4}, {1, 2, 3}, {2, 3, 4}}. The Stanley-Reisner ideal is

I∆ =< x1x4, x1x2x3, x2x3x4 > .

A resolution of R∆ = S/I∆ ”ends” like this:

· · · −→ S3 = S ⊕ S ⊕ S φ2−→ S
φ1−→ R∆(= S/I∆) −→ 0 (3.1)

In order to get Im(φ2) = Ker(φ1) = I∆, we use

φ2 : (s1, s2, s3)→ (s1x1x4 + s2x1x2x3 + s3x2x3x4).

This works well for ungraded resolutions, but for Z-graded modules we get
φ2((S3)i) * Si.
Describe (S3)i = (S(1) ⊕ S(2) ⊕ S(3))i. For all i we have

(S3)i = S
(1)
i ⊕ S

(2)
i ⊕ S

(3)
i .

But: If we think of e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) as members
of S(−2), S(−3), S(−3) respectively, then they are graded of degrees 2, 3, 3
respectively, and we see that φ2(e1) has degree 2, φ2(e2) has degree 3, φ2(e3)
has degree 3. This implies that φ2(h) has degree dh for any homogeneous
element h of S(−2)⊕ S(−3)⊕ S(−3) of degree dh.
Hence the resolution ”ends” with

· · · −→ S(−2)⊕ S(−3)⊕ S(−3)
φ2−→ S

φ1−→ R∆ −→ 0 (3.2)
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as a Z-graded resolution. Hence β1,2 = 1, β1,3 = 2 and β1,j = 0, for all
j 6= 2, 3.
In a similar way as a Zn-graded resolution it is

· · · −→ S(−(1, 0, 0, 1))⊕S(−(1, 1, 1, 0))⊕S(−(0, 1, 1, 1))
φ2−→ S

φ1−→ R∆ −→ 0
(3.3)

Hence β1,(−1,0,0,−1) = β1,(−1,−1,−1,0) = β1,(0,−1,−1,−1) = 1 and β1,a = 0, for all
other a.

Let us study how we can find d(C) from the resolutions 3.2 and/or 3.3.
First: By Theorem 8.4 in [5] d(C) is a ”size” of the smallest relation

between two columns of H.
Then it is also the smallest cardinality of the circuits of MC = M [H].
Then it is also the smallest absolute value of any shift in F1.
Then it is Min{j | β1,j 6= 0}. Since β1,2 = 1, β1,3 = 2 and β1,j = 0, for all

other j, we conclude that Min{j | β1,j 6= 0} is 2.
It turns out that the resolution in 3.1 can be completed

0 −→ S2 φ3−→ S3 φ2−→ S
φ1−→ R∆ −→ 0

(N1, N2) = N1(1, 0) +N2(0, 1) −→ (x2x3N1,−x4N1, 0) + (x2x3N2, 0,−x1N2).

φ3(N1, N2) = φ3(N1(1, 0) +N2(0, 1)) = N1φ3(1, 0) +N2φ3(0, 1) =

= (x2x3(N1 +N2),−x4N1,−x1N2).

This becomes a Z-graded S-module homomorphism if we write it

0 −→ S(−4)2 φ3−→ S(−2)⊕ S(−3)2 φ2−→ S
φ1−→ R∆ −→ 0

To show that this is an exact sequence, one must verify that: φ2 ◦φ3 = 0,
which is the same as Im(φ3) ⊆ Ker(φ2), and in addition that Ker(φ2) ⊆
Im(φ3), and also φ3 is injective.
First we prove: φ2 ◦ φ3 = 0.

(1, 0)
φ3−→ (x2x3,−x4, 0)

(0, 1)
φ3−→ (x2x3, 0,−x1)

Remember that

(s1, s2, s3)
φ2−→ (s1x1x4 + s2x1x2x3 + s3x2x3x4).
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We then see the following

φ2(φ3(1, 0)) = φ2(x2x3,−x4, 0) = x1x4x2x3 + (−x4)x1x2x3 + 0 = 0,

φ2(φ3(0, 1)) = φ2(x2x3, 0,−x1) = x1x4x2x3 + 0 + (−x1)x2x3x4 = 0.

Hence φ2 ◦ φ3 = 0, so Im(φ3) ⊆ Ker(φ2). It is easy to check that φ3 is
injective. To show Ker(φ2) ⊆ Im(φ3) (so that Ker(φ2) = Im(φ3)) is more
difficult, and we omit the proof here.

A Zn-graded resolution becomes

0 −→ S(−(1, 1, 1, 1))2 φ3−→ S(−(1, 0, 0, 1))⊕S(−(1, 1, 1, 0))⊕S(−(0, 1, 1, 1))
φ2−→ S

φ1−→ R∆ −→ 0

In the last example βi,a = 0, unless a has coordinates 0 and 1. This turns
out to be a general fact for all Stanley-Reisner rings of simplicial complexes.

Proposition 3.5. For all i the Zn-graded Betti numbers of a Stanley-Reisner
ring satisfy

βi,a = 0,

unless a is of the type (a1, a2, . . . , an), where ar = 0 or 1, for all r.

Definition 3.24. Let a = (a1, a2, . . . , an), where ar = 0 or 1, for all r. Then
we let σa be the simplex {i1, i2, . . . , is}, where we let the it be precisely the
r such that ar = 1.

Example 3.4.2. a = (−1, 0, 0,−1). Then σa = {1, 4}.

Definition 3.25. For all Stanley-Reisner rings R∆, we denote βi,a by βi,σ,
if σ = σa.

Theorem 3.1. Let M be a matroid, and R∆ be the Stanley-Reisner ring of
a simplicial complex. Then

d1(M) = Min{j | β1,j 6= 0}.

Remark 3.8. This result is a special case of Theorem 3.2 below, and follows
from that. But it also possible to obtain this result by generalizing from the
observations done in the work with Example 3.4.1.
We recall:

d(C) is a ”size” of the smallest relation between two columns of H.
Then it is also the smallest cardinality of the circuits of MC = M [H].
Then it is also the smallest absolute value of any shift in F1.
Then it is Min{j | β1,j 6= 0}.
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In fact it is possible to generalize this:

Theorem 3.2. For all i = 1, . . . , n− r we have

di(M) = Min{j | βi,j 6= 0}.

Remark 3.9. The proof of this theorem can be found in the article [7], where
this result is Theorem 2 in that article.
In order for this result to have meaning there have to exist non-zero βi,j for
i = 1, 2, . . . , n− r. Hence there have to exist non-zero Fi for i = 1, . . . , n− r.
This leads to the following:

Definition 3.26. The length of the resolution

0 −→ Fl −→ · · · −→ F2 −→ F1 −→ F0 −→M −→ 0

is l if F0, F1, F2, . . . , Fl all are non-zero.

Theorem 3.3 (Hilbert Syzygy Theorem). The length of a free resolution for
simplicial complexes is at most n.

Remark 3.10. See [11], p.11.

Proposition 3.6. A matroid has a resolution with length n− r.

Remark 3.11. This result is given as Corollary 3(b) in [7]. We observe that
this length is precisely long enough to be able to apply the formula in The-
orem 3.2.

There are two ways to prove these results. One way is to utilize the
so called Auslander-Buchsbaum formula and the fact that R∆ = S/I∆ is
a Cohen-Macaulay ring, where ∆ is the simplicial complex derived from a
matroid.
Another way to prove it is to use the following result, given in [7]:

Proposition 3.7. βi,σ 6= 0⇐⇒ σ is minimal in n−1(i), where n : 2E −→ Z+

is the nullity function #E − r.

Remark 3.12. Since the image of the nullity function is {0, 1, . . . , n − r} we
get non-zero βi,j for 0, 1, . . . , n− r.



Chapter 4

Generalized weight polynomials

4.1 Weight polynomials in terms of

Betti numbers

Let C be a [n, k]q-code (over Fq). Let Fq ⊆ FQ. That is only possible if
Q = qm, for some m.

Example 4.1.1. F9 ⊆ F93 = F729.

Let

G =


r1

r2
...
rk


be a generator matrix of C (with entries in Fq).
What is C ⊗Fq FQ?

C ⊆ (Fq)n; C = row space of G in (Fq)n .

C ⊆ (Fq)n ⊆ (FQ)n.

All the ri are also vectors in (FQ)n.
C ⊗Fq FQ is the row space of G, span (r1, . . . , rk) inside (FQ)n.

We observe: |C| = qk, |C ⊗Fq FQ| = Qk = (qm)k = qmk.
Let H be a parity check matrix for C. H is an (n− k)× n matrix.

H will also be a parity check matrix for C ⊗Fq FQ.

43



44 CHAPTER 4. GENERALIZED WEIGHT POLYNOMIALS

Let us denote C ⊗Fq FQ as CQ.
Then we have

CQ = ( Row space of H in FnQ )⊥

and
C⊥Q = ( Row space of H in FnQ ).

For any fixed (linear) code C ⊆ Fnq we can look at n+ 1 numbers

aC,0, aC,1, . . . , aC,n,

where aC,j = the number of codewords of weight j.
For any m > 1, and 0 6 j 6 n, let

a
(m)
C,j = number of codewords of weight j in CQ, for Q = qm.

Proposition 4.1. There exists a polynomial PM,j(Z) ∈ Z[Z] with

degPM,j 6 k such that a
(m)
C,j = PM,j(q

m) ∀m.

Proof. See [9].

These polynomials can be found from the properties of the matroid
MC = M [H]. They are given in [6] as Proposition 3.1.

The formula is:

PM,j(Z) = (−1)j
∑
|σ|=j

∑
γ⊆σ

(−1)|γ|ZnM (γ) for 1 6 j 6 n.

Example 4.1.2. Look at the example 3.4.1.
Given the binary code C = {0000, 1110, 1001, 0111} with parity check matrix

H =

[
1 0 1 1
0 1 1 0

]
and generator matrix

G =

[
1 1 1 0
1 0 0 1

]
.

From our code C we can obtain the matroid MC = M [H] on the ground
set E = {1, 2, 3, 4}.
Compute the nullity function for every γ ∈ E. Results are represented in
table:
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γ |γ| r(γ) n(γ)
∅ 0 0 0
1 1 1 0
2 1 1 0
3 1 1 0
4 1 1 0
{1, 2} 2 2 0
{1, 3} 2 2 0
{1, 4} 2 1 1
{2, 3} 2 2 0
{2, 4} 2 2 0
{3, 4} 2 2 0
{1, 2, 3} 3 2 1
{1, 2, 4} 3 2 1
{1, 3, 4} 3 2 1
{2, 3, 4} 3 2 1
{1, 2, 3, 4} 4 2 2

Using the following formula

Pj(Z) = (−1)j
∑
|σ|=j

∑
γ⊆σ

(−1)|γ|ZnM (γ) for 0 6 j 6 n,

find polynomials Pj(Z) for 0 6 j 6 4.

P0(Z) = (−1)0
∑
|σ|=0

∑
γ⊆σ

(−1)|γ|ZnM (γ).

σ = ∅ gives γ = ∅. Then

P0(Z) = (−1)0 · (−1)0 · Z0 = 1.

Thus there is only one codeword of weight 0 in CQ.

P1(Z) = (−1)
∑
|σ|=1

∑
γ⊆σ

(−1)|γ|ZnM (γ).

σ = {1} gives γ = ∅, γ = {1};
σ = {2} gives γ = ∅, γ = {2};
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σ = {3} gives γ = ∅, γ = {3};
σ = {4} gives γ = ∅, γ = {4}.

P1(Z) = (−1)
[
4 · ((−1)0Z0 + (−1)1Z0)

]
= 0,

hence in CQ there are no codewords of weight 1.

P2(Z) = (−1)2
∑
|σ|=2

∑
γ⊆σ

(−1)|γ|ZnM (γ).

σ = {1, 2} gives γ = ∅, γ = {1}, γ = {2}, γ = {1, 2};
σ = {1, 3} gives γ = ∅, γ = {1}, γ = {3}, γ = {1, 3};
...
σ = {3, 4} gives γ = ∅, γ = {3}, γ = {4}, γ = {3, 4}.

P2(Z) = 5 ·
(
(−1)0Z0 + 2 · (−1)Z0 + (−1)2Z0

)
+

+((−1)0Z0 + 2 · (−1)Z0 + (−1)2Z1)) = Z − 1.

We observe, for example: in C = C2 we have P2(Q) = P2(2) = 2 − 1 = 1
codeword of weight 2.
In C4 = C22 we have P2(Q) = P2(4) = 4− 1 = 3 codewords of weight 2.

P3(Z) = (−1)3
∑
|σ|=3

∑
γ⊆σ

(−1)|γ|ZnM (γ)

σ = {1, 2, 3} gives γ = ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3};
σ = {1, 2, 4} gives γ = ∅, {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4};
σ = {1, 3, 4} gives γ = ∅, {1}, {3}, {4}, {1, 3}, {1, 4}, {3, 4}, {1, 3, 4};
σ = {2, 3, 4} gives γ = ∅, {2}, {3}, {4}, {2, 3}, {2, 4}, {3, 4}, {2, 3, 4}.

P3(Z) = −
(

2 · [(−1)0Z0 + 3 · (−1)1Z0 + 3 · (−1)2Z0 + (−1)3Z1]+

+2 · [(−1)0Z0 + 3 · (−1)1Z0 + 2 · (−1)2Z0 + (−1)2Z1 + (−1)3Z1]
)

=

= −(2− 2Z) = 2Z − 2.

As above, we observe that in C2 we have P3(Q) = P3(2) = 2 · 2 − 2 = 2
codewords of weight 3.
In C4 = C22 we have P3(Q) = P3(4) = 2 · 4 − 2 = 6 codewords of weight 3,
and so on.

P4(Z) = (−1)4
∑
|σ|=4

∑
γ⊆σ

(−1)|γ|ZnM (γ)
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σ = {1, 2, 3, 4} gives γ = ∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}.

P4(Z) = (−1)0Z0 + 4 · (−1)1Z0 + 5 · (−1)2Z0 + (−1)2Z1+

+4 · (−1)3Z1 + (−1)4Z2 = Z2 − 3Z + 2.

Observe in C2 we have P4(Q) = P4(2) = 22−3 ·2+2 = 0 codewords of weight
4.
In C4 = C22 we have P4(Q) = P4(4) = 42 − 3 · 4 + 2 = 6 codewords of
weight 4.

Remark 4.1. In general we see that in CQ there are: 1 codeword of weight 0,
and 0 codewords of weight 1, and Q− 1 codewords of weight 2, and 2Q− 2
codewords of weight 3, and Q2 − 3Q+ 2 codewords of weight 4. The sum is
Q2, which is the number of all codewords in CQ, which has dimension 2 over
FQ.

As an extra check we list the codewords of weights 0, 1, 2, 3, 4 for C4.
Let F4 = {0, 1, α, β}. The codewords are:
{0, 0, 0, 0} of weight 0;
{1, 0, 0, 1}, {α, 0, 0, α} and {β, 0, 0, β} of weight 2;
{1, 1, 1, 0}, {α, α, α, 0}, {β, β, β, 0}, {0, 1, 1, 1}, {0, α, α, α}, {0, β, β, β} of
weight 3;
{β, 1, 1, α}, {α, 1, 1, β}, {β, α, α, 1}, {1, α, α, β}, {α, β, β, 1}, {1, β, β, α} of
weight 4.

4.1.1 Weight polynomials in terms of Betti numbers

It is also possible to find the Pj(Z) in a different way. In [6] one finds the
following result:

Theorem 4.1. The coefficient of Z l in Pj is equal to

n∑
i=0

(−1)i
(
βi,j(IM(l−1)

)− βi,j(IM(l)
)
)

for each 1 6 j 6 n.

Let us exemplify the last theorem, but we should first give the following
lemma:
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Lemma 4.1. βi,j(R∆) = βi−1,j(I∆) for any Stanley-Reisner ring R∆ and
corresponding Stanley-Reisner ideal I∆.

Proof. If this is a minimal free resolution of R∆ = S/I∆

· · · −→ F2 −→ F1
ψ−→ S

φ−→ R∆ −→ 0

Ker(φ) = I∆ = Im(ψ) then

· · · −→ F2 −→ F1 −→ I∆ −→ 0

is a minimal free resolution of I∆.
It stands to reason that βi,j(R∆) = βi−1,j(I∆).

Example 4.1.3. Again look at the example 3.4.1.
We have already found β0,2(IM(0)

) = 1, β0,3(IM(0)
) = 2, β1,4(IM(0)

) = 2 and all
other βi,j(IM(0)

) = 0.
We need to know the Betti numbers of IM(1)

and IM(2)
. Begin with finding

the elongations M(1) and M(2). The independent sets of M(i) are

I(M(i)) = {σ ∈ E | n(σ) 6 i}.

Then we have

I(M(1)) = {σ ∈ E | n(σ) 6 1} = {all subsets of E except E},

I(M(2)) = {σ ∈ E | n(σ) 6 2} = 2E (all subsets of E)

and
r0(M) = r0(M(0)) = 2,

r1(M(1)) = 3,

r2(M(2)) = 4.

We also know that any matroid M has a resolution with length n − r(M).
For M(1) we get:

0 −→ S(−4) −→ S −→ R∆ −→ 0,

and it follows that β0,4(IM(1)
) = 1.

For M(2) we get:
0 −→ S −→ S −→ 0,
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this implies β0,0(IM(2)
) = 1 and all other βi,j(IM(2)

) = 0.
Substitute all our Betti numbers into the formula in Theorem 4.1. Let us

assume βi,j(IM(l)
) = 0 whenever l /∈ [0, n− r(M)].

For the case j = 1 the coefficient of Z l is equal to

4∑
i=0

(−1)i
(
βi,1(IM(l−1)

)− βi,1(IM(l)
)
)
.

For l = 0:

4∑
i=0

(−1)i
(
βi,1(IM(−1)

)− βi,1(IM(0)
)
)

= (−1)0(0− 0) + . . . = 0.

For l = 1:
4∑
i=0

(−1)i
(
βi,1(IM(0)

)− βi,1(IM(1)
)
)

= 0.

For l = 2:
4∑
i=0

(−1)i
(
βi,1(IM(1)

)− βi,1(IM(2)
)
)

= 0.

When j = 2 the coefficient of Z l is equal to

4∑
i=0

(−1)i
(
βi,2(IM(l−1)

)− βi,2(IM(l)
)
)
.

For l = 0:

4∑
i=0

(−1)i
(
βi,2(IM(−1)

)− βi,2(IM(0)
)
)

= (−1)0(0− 1) = −1.

For l = 1:

4∑
i=0

(−1)i
(
βi,2(IM(0)

)− βi,2(IM(1)
)
)

= (−1)0(1− 0) = 1.

For l = 2:
4∑
i=0

(−1)i
(
βi,2(IM(1)

)− βi,2(IM(2)
)
)

= 0.
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For the case j = 3 the coefficient of Z l is equal to

4∑
i=0

(−1)i
(
βi,3(IM(l−1)

)− βi,3(IM(l)
)
)
.

For l = 0:

4∑
i=0

(−1)i
(
βi,3(IM(−1)

)− βi,3(IM(0)
)
)

= (−1)0(0− 2) = −2.

For l = 1:

4∑
i=0

(−1)i
(
βi,3(IM(0)

)− βi,3(IM(1)
)
)

= (−1)0(2− 0) = 2.

For l = 2:
4∑
i=0

(−1)i
(
βi,3(IM(1)

)− βi,3(IM(2)
)
)

= 0.

When j = 4 the coefficient of Z l is equal to

4∑
i=0

(−1)i
(
βi,4(IM(l−1)

)− βi,4(IM(l)
)
)
.

For l = 0:

4∑
i=0

(−1)i
(
βi,4(IM(−1)

)− βi,4(IM(0)
)
)

= (−1)0(0− 0) + (−1)1(0− 2) = 2.

For l = 1:

4∑
i=0

(−1)i
(
βi,4(IM(0)

)− βi,4(IM(1)
)
)

= (−1)0(0− 1) + (−1)1(2− 0) = −3.

For l = 2:

4∑
i=0

(−1)i
(
βi,4(IM(1)

)− βi,4(IM(2)
)
)

= (−1)0(1− 0) = 1.
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We list all results in table:

Z l Z0 Z1 Z2

j = 1 0 0 0
j = 2 −1 1 0
j = 3 −2 2 0
j = 4 2 −3 1

We will now look at relations between Hamming weights and generalized
weight polynomials of matroids. The following result is given without proof
in [6]:

Proposition 4.2.

di(M) = min{j | degPM,j = i}.

Proof. We know
di = min{|X| | n(X) = i}.

Also we know
degPj = max{n(X) | |X| = j}.

We then have the following

min{j | degPj = i} = min{j | max{n(X) | |X| = j} = i} =

= min{|X| | n(X) = i} = di.

Example 4.1.4. Look at the Example 4.1.2 and compute di(M) by using the
formula from the last proposition. Then formally d0 = 0,

d1 = min{j | degPM,j = 1} = 2,

d2 = min{j | degPM,j = 2} = 4.

As an extra result we will give the following

Proposition 4.3. For all j, with j > di, we have:

degPM,j = max{i | di 6 j}.
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Proof.

degPM,j = max{i | n(σ) > i, for some σ with |σ| = j} =

= max{i | di 6 j}.

Example 4.1.5. In the Example 4.1.2 we have found the polynomials:

P0 = 1,

P1 = 0,

P2 = Z − 1,

P3 = 2Z − 2,

P4 = Z2 − 3Z + 2.

Let us find degrees of these polynomials degPj, 0 6 j 6 4, having applied
the formula above. Then we have

degP0 = max{i | di 6 0} = 0,

degP1 = max{i | di 6 1} = 0,

degP2 = max{i | di 6 2} = 1,

degP3 = max{i | di 6 3} = 1,

degP4 = max{i | di 6 4} = 2.

Remark 4.2. In [3] one defines for linear codes:
kj(C) = maximum dimension of any subcode C ′ with |Supp C ′| 6 j and

mj(C) = min{|SuppD| | D is a subcode of C, dimD = j}.

This is what we call dj(C) in our thesis.
Moreover one shows:

dj(C) = min{i | ki > j},

kj(C) = max{i | di 6 j}.

Comparing these formulas to our Proposition 4.2 and Proposition 4.3, it is
clear that the degPM,j are the same as the so-called dimension/length profiles
kj described by Forney, when M is the matroid MC of a linear code.
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The observations above also enable us to achieve results about elongations
of matroids, given the weight polynomials of the original matroid.

Proposition 4.4. Let k > 1. If

PM(k−1),j(Z) = anZ
n + an−1Z

n−1 + . . .+ a1Z + a0,

then
PM(k),j(Z) = anZ

n−1 + an−1Z
n−2 + . . .+ a2Z + (a1 + a0).

Proof. Recall the formula for PM,j(Z):

PM,j(Z) = (−1)j
∑
|σ|=j

∑
γ⊆σ

(−1)|γ|ZnM (γ) for 1 6 j 6 n.

Then we have

PM(1),j(Z) = (−1)j
∑
|σ|=j

∑
γ⊆σ

(−1)|γ|Zn(1)(γ) for 1 6 j 6 n

and we know the following formula:

r(1)(γ) = min{r(γ) + 1, |γ|}.

Thus we can find the nullity function

n(1)(γ) = max{|γ| − r(γ)− 1, |γ| − |γ|} =

= max{n(γ)− 1, 0}.

For each Zn(γ) −→ Zn(1)(γ)

PM(1),j(Z) = Zmax{n(γ)−1,0} =

{
Zn(γ)−1, if n(γ)− 1 > 1;

Z0 = 1, if n(γ) = 0.

Corollary 4.1.

di(M(1)) = di+1(M), for i = 1, 2, . . .

Proof. By previous result

di+1(M) = min{j | degPM,j = i+ 1}

and
di(M(1)) = min{j | degPM(1),j = i}.

But these numbers are equal by Proposition 4.4.
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4.1.2 Herzog-Kühl equations

Definition 4.1. Let R be a ring. The Krull dimension dimR of R is the
supremum of the length of chains of prime ideals

P0 ⊂ P1 ⊂ . . . ⊂ Pn.

Let M be a finitely generated graded R-module.

Definition 4.2. The Hilbert function is

H(M, i) : Z −→ Z
i 7−→ dimKMi.

The Hilbert series is the Laurent series

HM(t) =
∑
i∈Z

(dimKMi)t
i ∈ Z[t, t−1].

Let R = S/I be a standard K-graded algebra of Krull dimension d, S =
K[x1, . . . , xn] is the standard graded polynomial ring and I is a graded ideal
of S. There exists a Laurent polynomial QR ∈ Z[t, t−1] such that QR(1) > 0
and

HR(t) =
QR(t)

(1− t)d

where d = dimR.

Remark 4.3. The order of the pole of HR(t) at t = 1 is the Krull dimension
of R.

Let a minimal free S-resolution of R be

0 −→ Fp −→ Fp−1 −→ · · · −→ F0 −→ R −→ 0

with
Fi =

⊕
j∈Z

S(−j)βi,j .

It is known that
HFi(t) =

∑
j∈Z

βi,jHS(−j)(t)

and

HS(−j)(t) = tjHS(t) =
tj

(1− t)n
.
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Then the Hilbert series of R may be computed as the alternating sum of the
Hilbert series of each of the terms in our resolution:

HR(t) =

p∑
i=0

(−1)i
∑
j∈Z

βi,j
tj

(1− t)n
.

We can write HR(t) as

HR(t) =
QR(t)

(1− t)d
× (1− t)n−d

(1− t)n−d
=

(1− t)n−d QR(t)

(1− t)n
.

Then we have

(1− t)n−d QR(t) =

p∑
i=0

(−1)i
∑
j∈Z

βi,jt
j.

Let 0 6 k 6 n − d. We differentiate k times. Then the left part of the
equality is

∂k

∂tk
(1− t)n−d QR(t) =

k∑
l=0

(
k

l

)
∂l

∂tl
[(1− t)n−d] · ∂

k−l

∂tk−l
QR(t) =

=
k∑
l=0

(
k

l

)
(n−d)(n−d−1) . . . (n−d−(l−1))(−1)l(1− t)n−d−l · ∂

k−l

∂tk−l
QR(t).

We apply that at t = 1. When k < n− d, then n− d− l > 1 and
∂k

∂tk
(1− t)n−d QR(t)|t=1 = 0.

When k = n− d:

∂k

∂tk
(1− t)n−d QR(t)|t=1 = (n− d)(n− d− 1) . . . (n− d− (n− d− 1))(−1)n−d QR(1) =

= (n− d)!(−1)n−d QR(1).

The right part of the equality is

∂k

∂tk

[ p∑
i=0

(−1)i
∑
j∈Z

βi,jt
j
]∣∣∣
t=1

=

p∑
i=0

(−1)i
∑
j∈Z

βi,j j(j − 1) . . . (j − k + 1) · tj−k|t=1 =

=

p∑
i=0

(−1)i
∑
j∈Z

βi,j j(j − 1) . . . (j − k + 1).
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When 0 6 k < n− d:

p∑
i=0

(−1)i
∑
j∈Z

j(j − 1) . . . (j − k + 1)βi,j = 0.

k = 0:

p∑
i=0

(−1)i
∑
j∈Z

βi,j = 0,

k = 1:

p∑
i=0

(−1)i
∑
j∈Z

j βi,j = 0,

k = 2:

p∑
i=0

(−1)i
∑
j∈Z

j(j − 1)βi,j =

p∑
i=0

(−1)i
∑
j∈Z

j2βi,j = 0,

. . .

For 0 6 k < n− d, we have
∑p

i=0(−1)i
∑

j∈Z j
kβi,j = 0. These equations are

called the Herzog-Kühl equations.

4.1.3 Betti numbers of Simplex codes

Let G be a generator matrix of a linear code C, with column vectors ci. The
ci can be viewed as points of P = Pk−1

q . Then

d1(C) = n−max number of ci in H1,

where the maximum is taken over all hyperplanes

H1 : a1X1 + . . .+ akXk = 0 in P.

Moreover
dr(C) = n−max number of ci in Hr,

where the maximum is taken over all codim r-linear spaces Hr in P. These
Hr are intersections of r independent planes

a11X1 + . . .+ a1kXk = 0

...

ar1X1 + . . .+ arkXk = 0
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Remark 4.4. This result was found in the article [13].

Definition 4.3. The simplex code Sq(k) is the dual of the Hamming code
Ham(r, q) over Fq. Just like the Hamming codes they are only defined up to
linear code equivalence.

Remark 4.5. The code Ham(r, q) is a [ q
r−1
q−1

, q
r−1
q−1
− r, 3]q code.

A generator matrix G for Sq(k) is

G =
[
c1 c2 . . . cNk

]
,

where the ci represent all points of Pk−1
Fq .

Remark 4.6. The number of columns in G is

qk−1 + qk−2 + . . .+ q + 1 =
qk − 1

q − 1
= Nk.

For all hyperplanes in P we observe: All of its points are among the ci, so

d1 = n−# (points in any fixed hyperplane) = n−# (points in Pk−2).

Thus:
d1 = # (points in Pk−1)−# (points in Pk−2) = qk−1.

Let us choose to write

G =


r1

r2
...
rk

 .
A codeword of C is a linear combination w = a1r1 + . . .+ akrk.
The number of zeroes in w is equal to the number of columns ci that satisfy
a1X1 + . . .+ akXk = 0 ∈ Hw = points in ci contained in Hw =
= just the number of points in Pk−2.

wt(w) = n−# (points in Pk−2) = qk−1 again.

Hence any codeword in C, except 0, has weight qk−1. Thus we have proved:

Proposition 4.5. The simplex code Sq(k) has minimum distance qk−1 and
is a constant weight code.
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For constant weight linear codes we can also determine the entire weight
hierarchy.

Proposition 4.6. For the simplex code Sq(k) we have

di = d
qi − 1

qi−1(q − 1)
for i = 1, . . . , k.

Remark 4.7. This formula is given in [8].

Definition 4.4. The resolution Fl −→ · · · −→ F2 −→ F1 −→ F0 is pure if
it has the form

S(−dl)βl,dl −→ · · · −→ S(−d1)β1,d1 −→ S(−d0)β0,d0 .

From [8] we also have:

Proposition 4.7. The simplex code Sq(k) has a pure resolution, and the
Betti numbers of its non-zero terms are

βi,di =

[
k
i

]
q

q
i(i−1)

2

where [
k
i

]
q

=
f(k, q)

f(i, q)f(k − i, q)

and f(n, q) =
∏n

i=1(qi − 1).

Theorem 4.2. If the Stanley-Reisner ring of a matroid has a pure resolution,
then its elongations also have pure resolutions.

Proof. To prove this theorem one needs:
Theorem 1 in [7]: βi,σ 6= 0⇐⇒ σ is minimal in Ni (Ni = {σ | n(σ) = i})
and the formula that we obtained in the proof of Proposition 4.4

n(1)(σ) = max{0, n(σ)− 1}.

Then we have the following

{σ | βi,σ(IM(1)
) 6= 0} = {σ | βi+1,σ(IM) 6= 0} for i > 1,

which completes the proof of theorem.
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Example 4.1.6. Let us find the Betti numbers of the simplex code S2(3) which
is the dual of the Hamming code Ham(3, 2) over F2. The number of columns
in generator matrix G is

Nk =
qk − 1

q − 1
=

23 − 1

2− 1
= 7.

The generator matrix

G =
[
c1 c2 . . . c7

]
,

where the ci represent all points of P2
F2

. The minimum distance of S2(3) is

d = d1 = qk−1 = 23−1 = 4.

It follows that S2(3) is a [7, 3, 4]2 code.
Having used the formula in Proposition 4.6 we find

d2 = qk−2(q + 1) = 2 · (2 + 1) = 6,

d3 = d
q3 − 1

q3−1(q − 1)
= 4 · 23 − 1

22(2− 1)
= 7.

The weight hierarchy is (d1, d2, d3) = (4, 6, 7).
We can now calculate the Betti numbers applying the formula

βi,di =

[
k
i

]
q

q
i(i−1)

2

where [
k
i

]
q

=
f(k, q)

f(i, q)f(k − i, q)

and f(n, q) =
∏n

i=1(qi − 1). Then we get

β1,d1 =

[
3
1

]
2

20 = 7,

β2,d2 =

[
3
2

]
2

21 = 14,

β3,d3 =

[
3
3

]
2

23 = 8,
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and the resolution of the Stanley-Reisner ring of M

0 −→ S(−7)8 −→ S(−6)14 −→ S(−4)7 −→ S −→ S/I −→ 0.

When M has d1, . . . , dk where k = n−r(M) its first elongation M(1) has rank
r+ 1 = (7−3) + 1 = 5. The number of di is n− (r+ 1) = (n− r)−1 = k−1.
Then we can obtain only d1, d2 for M(1) in this case. The following formula
is given in [6] as Corollary 5.2.:

di(M(l+1)) = di+1(M(l)).

Then
d1(M(1)) = d2(M) = 6,

d2(M(1)) = d3(M) = 7.

The second elongation M(2) has rank r+ 2 = 4 + 2 = 6. The number of di is
n− (r + 2) = (n− r)− 2 = k − 2. Then we obtain only d1 for M(2).

d1(M(2)) = d2(M(1)) = 7.

It turns out that M(1), M(2) are the uniform matroids U(5, 7) and U(6, 7)
respectively. The resolutions look like:

M(1) : 0 −→ S(−7)a −→ S(−6)b −→ S −→ S/I −→ 0,

M(2) : 0 −→ S(−7)c −→ S −→ S/I −→ 0.

We can calculate a by using the formula from the Example 3 in the article [7]:

a =

(
n− 1
r

)(
n
n

)
=

(
6
5

)(
7
7

)
= 6.

We have the equality a+ 1 = b, so b = 7. It is clear that c = 1 in the case of
M(2). We get the following minimal free resolutions

M(1) : 0 −→ S(−7)6 −→ S(−6)7 −→ S −→ S/I −→ 0,

M(2) : 0 −→ S(−7)1 −→ S −→ S/I −→ 0.

Thus we found the Betti numbers of M and its elongations:

β0,4(IM) = 7, β1,6(IM) = 14, β2,7(IM) = 8,
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β0,6(IM(1)
) = 7, β1,7(IM(1)

) = 6,

β0,7(IM(2)
) = 1.

Use these Betti numbers to find the generalized weight polynomials. Recall
the formula in Theorem 4.1:

n∑
i=0

(−1)i
(
βi,j(IM(l−1)

)− βi,j(IM(l)
)
)

for each 1 6 j 6 n. Let us assume βi,j(IM(l)
) = 0 whenever l /∈ [0, n− r(M)].

For the cases j = 1, 2, 3 the coefficient of Z l is equal to 0 for all l ∈ [0, 3].
When j = 4 the coefficient of Z l is equal to

7∑
i=0

(−1)i
(
βi,4(IM(l−1)

)− βi,4(IM(l)
)
)
.

For l = 0:

7∑
i=0

(−1)i
(
βi,4(IM(−1)

)− βi,4(IM(0)
)
)

= (−1)0(0− 7) = −7.

For l = 1:

7∑
i=0

(−1)i
(
βi,4(IM(0)

)− βi,4(IM(1)
)
)

= (−1)0(7− 0) = 7.

For l = 2 and l = 3 the coefficients are equal to 0.
For the case j = 5 the coefficient of Z l is equal to 0 for all l ∈ [0, 3].
When j = 6 the coefficient of Z l is equal to

7∑
i=0

(−1)i
(
βi,6(IM(l−1)

)− βi,6(IM(l)
)
)
.

For l = 0:

7∑
i=0

(−1)i
(
βi,6(IM(−1)

)− βi,6(IM(0)
)
)

= (−1)1(0− 14) = 14.
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For l = 1:

7∑
i=0

(−1)i
(
βi,6(IM(0)

)− βi,6(IM(1)
)
)

= (−1)0(0− 7) + (−1)1(14− 0) = −21.

For l = 2:

7∑
i=0

(−1)i
(
βi,6(IM(1)

)− βi,6(IM(2)
)
)

= (−1)0(7− 0) = 7.

For l = 3:
7∑
i=0

(−1)i
(
βi,6(IM(2)

)− βi,6(IM(3)
)
)

= 0.

When j = 7 the coefficient of Z l is equal to

7∑
i=0

(−1)i
(
βi,7(IM(l−1)

)− βi,7(IM(l)
)
)
.

For l = 0:

7∑
i=0

(−1)i
(
βi,7(IM(−1)

)− βi,7(IM(0)
)
)

= (−1)2(0− 8) = −8.

For l = 1:

7∑
i=0

(−1)i
(
βi,7(IM(0)

)− βi,7(IM(1)
)
)

= (−1)1(0− 6) + (−1)2(8− 0) = 14.

For l = 2:

7∑
i=0

(−1)i
(
βi,7(IM(1)

)− βi,7(IM(2)
)
)

= (−1)0(0− 1) + (−1)1(6− 0) = −7.

For l = 3:

7∑
i=0

(−1)i
(
βi,7(IM(2)

)− βi,7(IM(3)
)
)

= (−1)0(1− 0) = 1.

We list all results in table:
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Z l Z0 Z1 Z2 Z3

j = 0 1 0 0 0
j = 1 0 0 0 0
j = 2 0 0 0 0
j = 3 0 0 0 0
j = 4 −7 7 0 0
j = 5 0 0 0 0
j = 6 14 −21 7 0
j = 7 −8 14 −7 1

Example 4.1.7. Let us find the Betti numbers of the simplex code S2(4) which
is the dual of the Hamming code Ham(4, 2) over F2. The number of columns
in generator matrix G is

Nk =
qk − 1

q − 1
=

24 − 1

2− 1
= 15.

The minimum distance of S2(4) is

d = d1 = qk−1 = 24−1 = 8.

It follows that S2(4) is a [15, 4, 8]2 code.
Having used the formula in Proposition 4.6 we find

d2 = qk−2(q + 1) = 22(2 + 1) = 12,

d3 = d
q3 − 1

q3−1(q − 1)
= 8 · 23 − 1

22(2− 1)
= 14,

d4 = d
q4 − 1

q4−1(q − 1)
= 8 · 24 − 1

23(2− 1)
= 15.

The weight hierarchy is (d1, d2, d3, d4) = (8, 12, 14, 15).
We can now calculate the Betti numbers applying the formula

βi,di =

[
k
i

]
q

q
i(i−1)

2

where [
k
i

]
q

=
f(k, q)

f(i, q)f(k − i, q)
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and f(n, q) =
∏n

i=1(qi − 1). Then we get

β1,d1 =

[
4
1

]
2

20 = 15,

β2,d2 =

[
4
2

]
2

21 = 70,

β3,d3 =

[
4
3

]
2

23 = 120,

β4,d4 =

[
4
4

]
2

26 = 64,

and the resolution of the ideal I of M

0 −→ S(−15)64 −→ S(−14)120 −→ S(−12)70 −→ S(−8)15 −→ IM −→ 0.

When M has d1, . . . , dk where k = n−r(M) its first elongation M(1) has rank
r+1 = (15−4)+1 = 12. The number of di is n−(r+1) = (n−r)−1 = k−1.
Then we can obtain d1, d2, and d3 for M(1) in this case. The following formula
is given in [6] as Corollary 5.2.:

di(M(l+1)) = di+1(M(l)).

Then
d0(M(1)) = 0,

d1(M(1)) = d2(M) = 12,

d2(M(1)) = d3(M) = 14,

d3(M(1)) = d4(M) = 15.

The second elongation M(2) has rank r+ 2 = 11 + 2 = 13. The number of di
is n− (r + 2) = (n− r)− 2 = k − 2. Then we obtain only d1, d2 for M(2).

d1(M(2)) = d2(M(1)) = 14,

d2(M(2)) = d3(M(1)) = 15.

The third elongation M(3) has rank r + 3 = 11 + 3 = 14. The number of di
is n− (r + 3) = (n− r)− 3 = k − 3. Then we obtain only d1 for M(3).

d1(M(3)) = d2(M(2)) = 15.
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The resolutions look like:

M(1) : 0 −→ S(−15)? −→ S(−14)? −→ S(−12)? −→ IM(1)
−→ 0,

M(2) : 0 −→ S(−15)a −→ S(−14)b −→ IM(2)
−→ 0,

M(3) : 0 −→ S(−15)c −→ IM(3)
−→ 0.

It turns out that M(2), M(3) are the uniform matroids U(13, 15) and U(14, 15)
respectively. We can calculate a by using the formula from the Example 3 in
the article [7]:

a =

(
n− 1
r

)(
n
n

)
=

(
14
13

)(
14
14

)
= 14.

We have the equality a + 1 = b, so b = 15. It is clear that c = 1 in the case
of M(3).

In order to find the βi,di of M(1) we will use the following formula given
in [2]:

βi,di = (−1)i · t ·
∏
k 6=i

1

(dk − di)
where t ∈ Q.

Then we have

β1,d1 = (−1)1 · t ·
∏
k 6=1

1

(dk − d1)
=

−t
(0− 12)(14− 12)(15− 12)

=
t

72
,

β2,d2 = (−1)2 · t ·
∏
k 6=2

1

(dk − d2)
=

t

(0− 14)(12− 14)(15− 14)
=

t

28
,

β3,d3 = (−1)3 · t ·
∏
k 6=3

1

(dk − d3)
=

−t
(0− 15)(12− 15)(14− 15)

=
t

45
.

We have the equality

1 +
t

28
=

t

72
+

t

45
,

whence it follows that t = 2520 and β1,d1 = 35, β2,d2 = 90, β3,d3 = 56. Now
the minimal free resolutions are

M(1) : 0 −→ S(−15)56 −→ S(−14)90 −→ S(−12)35 −→ IM(1)
−→ 0,

M(2) : 0 −→ S(−15)14 −→ S(−14)15 −→ IM(2)
−→ 0,
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M(3) : 0 −→ S(−15)1 −→ IM(3)
−→ 0.

Thus we found the Betti numbers of M and its elongations:

β0,8(IM) = 15, β1,12(IM) = 70, β2,14(IM) = 120, β3,15(IM) = 64,

β0,12(IM(1)
) = 35, β1,14(IM(1)

) = 90, β2,15(IM(1)
) = 56,

β0,14(IM(2)
) = 15, β1,15(IM(2)

) = 14,

β0,15(IM(3)
) = 1.

Use these Betti numbers to find the generalized weight polynomials. Recall
the formula in Theorem 4.1:

n∑
i=0

(−1)i
(
βi,j(IM(l−1)

)− βi,j(IM(l)
)
)

for each 1 6 j 6 n. Let us assume βi,j(IM(l)
) = 0 whenever l /∈ [0, n− r(M)].

For the cases j = 1, 2, . . . , 7 the coefficient of Z l is equal to 0 for all l ∈ [0, 4].
When j = 8 the coefficient of Z l is equal to

15∑
i=0

(−1)i
(
βi,8(IM(l−1)

)− βi,8(IM(l)
)
)
.

For l = 0:

15∑
i=0

(−1)i
(
βi,8(IM(−1)

)− βi,8(IM(0)
)
)

= (−1)0(0− 15) = −15.

For l = 1:

15∑
i=0

(−1)i
(
βi,8(IM(0)

)− βi,8(IM(1)
)
)

= (−1)0(15− 0) = 15.

For l = 2, l = 3 and l = 4 the coefficients are equal to 0.
For the cases j = 9, 10, 11 the coefficient of Z l is equal to 0 for all l ∈ [0, 4].
When j = 12 the coefficient of Z l is equal to

15∑
i=0

(−1)i
(
βi,12(IM(l−1)

)− βi,12(IM(l)
)
)
.
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For l = 0:

15∑
i=0

(−1)i
(
βi,12(IM(−1)

)− βi,12(IM(0)
)
)

= (−1)1(0− 70) = 70.

For l = 1:

15∑
i=0

(−1)i
(
βi,12(IM(0)

)−βi,12(IM(1)
)
)

= (−1)0(0− 35) + (−1)1(70− 0) = −105.

For l = 2:

15∑
i=0

(−1)i
(
βi,12(IM(1)

)− βi,12(IM(2)
)
)

= (−1)0(35− 0) = 35.

For l = 3 and l = 4 the coefficients are equal to 0.
For the case j = 13 the coefficient of Z l is equal to 0 for all l ∈ [0, 4].
When j = 14 the coefficient of Z l is equal to

15∑
i=0

(−1)i
(
βi,14(IM(l−1)

)− βi,14(IM(l)
)
)
.

For l = 0:

15∑
i=0

(−1)i
(
βi,14(IM(−1)

)− βi,14(IM(0)
)
)

= (−1)2(0− 120) = −120.

For l = 1:

15∑
i=0

(−1)i
(
βi,14(IM(0)

)− βi,14(IM(1)
)
)

= (−1)1(0− 90) + (−1)2(120− 0) = 210.

For l = 2:

15∑
i=0

(−1)i
(
βi,14(IM(1)

)−βi,14(IM(2)
)
)

= (−1)0(0− 15) + (−1)1(90− 0) = −105.

For l = 3:

15∑
i=0

(−1)i
(
βi,14(IM(2)

)− βi,14(IM(3)
)
)

= (−1)0(15− 0) = 15.
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For l = 4:
15∑
i=0

(−1)i
(
βi,14(IM(3)

)− βi,14(IM(4)
)
)

= 0.

When j = 15 the coefficient of Z l is equal to

15∑
i=0

(−1)i
(
βi,15(IM(l−1)

)− βi,15(IM(l)
)
)
.

For l = 0:

15∑
i=0

(−1)i
(
βi,15(IM(−1)

)− βi,15(IM(0)
)
)

= (−1)3(0− 64) = 64.

For l = 1:

15∑
i=0

(−1)i
(
βi,15(IM(0)

)−βi,15(IM(1)
)
)

= (−1)2(0− 56) + (−1)3(64− 0) = −120.

For l = 2:

15∑
i=0

(−1)i
(
βi,15(IM(1)

)− βi,15(IM(2)
)
)

= (−1)1(0− 14) + (−1)2(56− 0) = 70.

For l = 3:

15∑
i=0

(−1)i
(
βi,15(IM(2)

)− βi,15(IM(3)
)
)

= (−1)0(0− 1) + (−1)1(14− 0) = −15.

For l = 4:

15∑
i=0

(−1)i
(
βi,15(IM(3)

)− βi,15(IM(4)
)
)

= (−1)0(1− 0) = 1.

We list all results in table:
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Z l Z0 Z1 Z2 Z3 Z4

j = 0 1 0 0 0 0
j = 1 0 0 0 0 0
j = 2 0 0 0 0 0
j = 3 0 0 0 0 0
j = 4 0 0 0 0 0
j = 5 0 0 0 0 0
j = 6 0 0 0 0 0
j = 7 0 0 0 0 0
j = 8 −15 15 0 0 0
j = 9 0 0 0 0 0
j = 10 0 0 0 0 0
j = 11 0 0 0 0 0
j = 12 70 −105 35 0 0
j = 13 0 0 0 0 0
j = 14 −120 210 −105 15 0
j = 15 64 −120 70 −15 1

4.1.4 Betti numbers of Reed-Müller codes

Definition 4.5. Reed-Müller code RMq(1, k−1) (for example, RM2(1, 3))
is a linear [qk−1, k] code over Fq. It is also defined by a generator matrix

G =
[
c1 c2 . . .

]
,

where we don’t pick all the points in Pk−1, but just some of them.

Here in Pk−1 containing qk−1 + qk−2 + . . . + 1 points we only pick those
that are in an affine piece Ak−1 ⊆ Pk−1.

In the example k = 3 + 1 = 4 and n = qk−1 = 24−1 = 8. Then

G =

x0

x1

x2

x3


1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1


and the affine piece we choose is x0 = 1.

d1 = n−max number of points in a hyperplane H,
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where points are taken from the affine piece A0 = Pk−1 −H0.
In other words

d1 = n−max |H ∩ A0|.
We have two possibilities for hyperplanes H:

(1) H = H0. Then H ∩ A0 = ∅.

(2) H 6= H0. Then: |H ∩ A0| = |H \ (H ∩ H0)| = |H| \ |H ∩ H0| =
(qk−2 + qk−3 + . . .)− (qk−3 + qk−4 + . . .) = qk−2.

Then RMq(1, k− 1) is a two weight code over Fq. It has two weights: n and
n− qk−2.

For the next Hamming weight we have:

d2 = n−max |L2 ∩ A0|, for some codim 2-space L2 = H1 ∩H2 ⊆ Pk−1.

We rewrite:

L2 ∩ A0 = L2 − (L2 ∩H0) = L2 − ((H1 ∩H2) ∩H0).

Again we have two possibilities:

(1) H0 ⊇ H1 ∩H2. Then |L2 ∩H0| = |L2| = |Pk−3|, and L2 ∩ A0 = ∅.

(2) H0 6⊇ H1 ∩H2. Then |L2 ∩H0| = |(H1 ∩H2) ∩H0| = |Pk−4|.

One of the support weights is n− |∅| = n.
For (2): |L2∩A0| = |Pk−3|−|Pk−4| = qk−3, so we get another weight n−qk−3.

As a consequence, proceeding in an analogous manner, for d3, d4, . . . we
obtain

d1 = n− qk−2,

d2 = n− qk−3,

d3 = n− qk−4,

d4 = n− qk−5,

. . . ,

dk−1 = n− q0 = n− 1,

dk = n.

Moreover, for each i = 1, 2, . . . , k − 1, we see that for subcodes of C of
dimension i, there are only two possible support weights, n and n− qk−i−1.
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Theorem 4.3. The Reed-Müller code C = RMq(1, k− 1) has a pure resolu-
tion of its associated Stanley-Reisner ideal.

Proof. Let us clarify why the resolution of the ideal IM is pure.
We must prove that for every h βh,σ 6= 0 only for σ, with |σ| = dh.

βh,j =
∑
|σ|=j

βh,σ.

But we also have

βh,σ 6= 0⇐⇒ σ is minimal in Nh.

So we must prove that all minimal sets in Nh have the same cardinality
(which is dh).

We have Reed-Müller code C (linear code in general) with generator ma-
trix

G =
[
c1 c2 . . . cn

]
,

n points in P = Pk−1.
Let ci1 , . . . , cis be the points contained in a (codim h)-plane Lh in P. Lh is
given by independent equations

d11X1 + . . .+ d1nXn = 0

...

dh1X1 + . . .+ dhnXn = 0

For the coefficient matrix D we have D ·XT
= 0.

Choose to write

G =


r1

r2
...
rn

 .
Then the subcode K of C given by

Span


d11~r1+ . . .+ d1n~rn

...

dh1~r1+ . . .+ dhn~rn
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has zeroes in positions i1, . . . , is, and

Supp (K) = E \ {i1, . . . , is},

so

W (K) = |Supp (K)| = n− s = n− |A0 ∩ Lh|.

In this case, let cj1 , . . . , cjt be the remaining columns. Hence t = n− s.
Then σt = {j1, . . . , jt} = Supp (K). This implies n(σt) > h.
Let a parity check matrix for C be

H =
[
a1 a2 . . . an

]
.

Every word in K is a linear relation between the ai, for i ∈ Supp (K). Since
there are h linearly independent codewords in K we have h linearly indepen-
dent relations between the ai, for i ∈ Supp (K). Hence n(σt) > h.
We claim that for Reed-Müller codes, and h = 1, 2, . . . , k − 1 we have:
n(σt) = h for all the K with t = n − s = n − qk−i−1, and that these σt
are inclusion minimal among the X ⊆ E, with n(X) = h, and that these
σt are the only X ⊆ E that are inclusion minimal among the X ⊆ E with
n(X) = h.

• If n(σt) = h+ p, p > 1 then ci1, . . . , cis would be contained in a codim
(h + p)-space. But the maximum number in such a space is qn−h−p−1.
But s = qn−h−1 > qn−h−p−1 impossible.

• If strict subset S ( σt with n(S) = h, then E \ S would be contained
in codim plane Lh. Impossible since |E \ S| > qn−h−1. Hence the σt
are inclusion minimal for all the K with support weight n− qk−i−1.

Let us write H as

H =
[
a1 a2 . . . at at+1 . . . an

]
.

Then X = {1, 2, . . . , t}, Y = {t+ 1, . . . , n}. We assume that:

n(X) = h,

Nh = {σ ⊆ E | n(σ) = h},
X is minimal in Nh.
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Since n(X) = h, there exist h independent relations between a1, . . . , at. This
gives a subcode Kh ⊆ C, with Supp (Kh) ⊆ X.
In fact: Supp (Kh) = X. If Supp (Kh) = X ′ ( X then you would have
the same h independent relations between the columns corresponding to X ′,
then n(X ′) = h also. But then X is not minimal in Nh. But from what we
have already seen there are only two possibilities for Supp (Kh) (identifying
E = A0):

(1) Supp (Kh) = E(= A0) = X.

(2) Supp (Kh) = A0 \ (A0 ∩ Lh) = X for some (codim h)-plane.

In case (1) n(X) = n(E) = |X| − r(X) = n− (n− k) = k.
In case (2) n(X) = h. So case (2) is the only possible if h < k, since we know
n(X) = h.
For h = k we see that a (codim h)-plane in A0 is ∅. Case (1) A0 = E = X.
Case (2) A0 \∅ = A0 = X.
This argument works well for h = 1, . . . , k−1. For h = k there is no difference
between (1) and (2), and X = E(= A0).

Example 4.1.8. Let us find the Betti numbers of the Reed-Müller code
RMq(1, 3) which is a [q3, 4] code over Fq.

The Hamming weights of RMq(1, 3) are

d0 = 0,

d1 = n− qk−2 = q3 − q2,

d2 = n− qk−3 = q3 − q,
d3 = n− qk−4 = q3 − 1,

d4 = n = q3.

In order to find the βh,dh we will apply the formula that we already used
before:

βh,dh = (−1)h · t ·
∏
k 6=h

1

(dk − dh)
where t ∈ Q.

Then we have

β1,d1 = (−1)1 · t · 1

(0− q3 + q2)(−q + q2)(−1 + q2)q2
=

=
t

q5(q − 1)2(q2 − 1)
,
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β2,d2 = (−1)2 · t · 1

(0− q3 + q)(−q2 + q)(−1 + q)q
=

=
t

q3(q − 1)2(q2 − 1)
,

β3,d3 = (−1)3 · t · 1

(0− q3 + 1)(−q2 + 1)(−q + 1)
=

=
t

(q3 − 1)(q2 − 1)(q − 1)
,

β4,d4 = (−1)4 · t · 1

(0− q3)(q3 − q2 − q3)(q3 − q − q3)(q3 − 1− q3)
=

t

q6
.

Due to Herzog-Kühl equations we have the equality

1 +
t

q3(q − 1)2(q2 − 1)
+

t

q6
=

t

q5(q − 1)2(q2 − 1)
+

t

(q3 − 1)(q2 − 1)(q − 1)
,

whence it follows that t = q6(q3− 1)(q2− 1)(q− 1) and β1,d1 = q(q2 + q+ 1),
β2,d2 = q3(q2 + q + 1), β3,d3 = q6 and β4,d4 = (q3 − 1)(q2 − 1)(q − 1). The
resolution of the ideal I of M is

0 −→ S(−d4)β4,d4 −→ S(−d3)β3,d3 −→ S(−d2)β2,d2 −→ S(−d1)β1,d1 −→ IM −→ 0.

When M has rank r = n − k = q3 − 4 its first elongation M(1) has rank
r+ 1 = (q3− 4) + 1 = q3− 3. The number of di is n− (r+ 1) = (n− r)− 1 =
k − 1 = 3. Thus we have to find d1, d2, and d3 for M(1). We already know
the following formula:

di(M(l+1)) = di+1(M(l)).

Then

d0 = 0,

d1(M(1)) = d2(M) = q3 − q,

d2(M(1)) = d3(M) = q3 − 1,

d3(M(1)) = d4(M) = q3.
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The second elongation M(2) has rank r + 2 = q3 − 2. The number of di is
n− (r + 2) = (n− r)− 2 = k − 2 = 2. Then we have to find only d1, d2 for
M(2).

d1(M(2)) = d2(M(1)) = q3 − 1,

d2(M(2)) = d3(M(1)) = q3.

The third elongation M(3) has rank r + 3 = q3 − 1. The number of di is
n− (r+ 3) = (n− r)− 3 = k− 3 = 1. Then we have to find only d1 for M(3).

d1(M(3)) = d2(M(2)) = q3.

The resolutions look like:

M(1) : 0 −→ S(−q3)a −→ S(−(q3 − 1))b −→ S(−(q3 − q))c −→ IM(1)
−→ 0,

M(2) : 0 −→ S(−q3)d −→ S(−(q3 − 1))e −→ IM(2)
−→ 0,

M(3) : 0 −→ S(−q3)f=1 −→ IM(3)
−→ 0.

In the case when q = 2 the first elongation M(1) is the uniform matroid
U(q3 − 3, q3), otherwise it is not uniform. Then the Betti numbers can be
found as usual:

c = (−1)1 · t · 1

(−q3 + q)(−1 + q)q
=

t

q2(q − 1)2(q + 1)
,

b = (−1)2 · t · 1

(−q3 + 1)(−q + 1) · 1
=

t

(q3 − 1)(q − 1)
,

a = (−1)3 · t · 1

(−q3)(−q)(−1)
=

t

q4
.

Due to Herzog-Kühl equations we have the equality

1 +
t

(q3 − 1)(q − 1)
=

t

q2(q − 1)2(q + 1)
+

t

q4
,

whence it follows that t = q4(q3 − 1)(q2 − 1) and c = β1,d1 = q2(q2 + q + 1),
b = β2,d2 = q4(q + 1) and a = β3,d3 = (q3 − 1)(q2 − 1).

It remains to find the Betti numbers of M(2) and M(3). They are the
uniform matroids U(q3 − 2, q3) and U(q3 − 1, q3) respectively.
We can calculate d by using the formula for MDS-codes:

d =

(
n− 1
r

)(
n
n

)
=

(
q3 − 1
q3 − 2

)(
q3

q3

)
= q3 − 1.
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We have the equality d+ 1 = e, so e = q3.
As can be seen from the above we have found the following:

β0,q3−q2(IM) = q(q2 + q + 1),

β1,q3−q(IM) = q3(q2 + q + 1),

β2,q3−1(IM) = q6,

β3,q3(IM) = (q3 − 1)(q2 − 1)(q − 1),

β0,q3−q(IM(1)
) = q2(q2 + q + 1),

β1,q3−1(IM(1)
) = q4(q + 1),

β2,q3(IM(1)
) = (q3 − 1)(q2 − 1),

β0,q3−1(IM(2)
) = q3,

β1,q3(IM(2)
) = q3 − 1,

β0,q3(IM(3)
) = 1.

Use these Betti numbers to find the generalized weight polynomials by the
formula:

n∑
i=0

(−1)i
(
βi,j(IM(l−1)

)− βi,j(IM(l)
)
)

for each 1 6 j 6 n. Assuming βi,j(IM(l)
) = 0 whenever l /∈ [0, 4], we get the

following coefficients of Z l and present them in table:
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Z l Z0 Z1 Z2 Z3 Z4

j = 0 1 0 0 0 0
j = 1 0 0 0 0 0
...

...
...

...
...

...
j = q3 − q2 − 1 0 0 0 0 0
j = q3 − q2 −q(q2 + q + 1) q(q2 + q + 1) 0 0 0
j = q3 − q2 + 1 0 0 0 0 0
...

...
...

...
...

...
j = q3 − q − 1 0 0 0 0 0
j = q3 − q, q > 1 q3(q2 + q + 1) −q2(q+1)(q2+q+1) q2(q2 + q + 1) 0 0
j = q3−q+1, q > 2 0 0 0 0 0
...

...
...

...
...

...
j = q3 − 2, q > 2 0 0 0 0 0
j = q3 − 1 −q6 q4(q2 + q + 1) −q3(q2+q+1) q3 0
j = q3 (q3−1)(q2−1)(q−1) −q(q3 − 1)(q2 − 1) q2(q3 − 1) −q3 1

Now we consider some particular case of the previous example:

Example 4.1.9. Let us find the GWP of the Reed-Müller code RM2(1, 3)
which is a [8, 4] code over F2.

The weight hierarchy of this code is (d1, d2, d3, d4) = (4, 6, 7, 8).
The Betti numbers of M and its elongations are:

β0,4(IM) = 14, β1,6(IM) = 56, β2,7(IM) = 64, β3,8(IM) = 21,

β0,6(IM(1)
) = 28, β1,7(IM(1)

) = 48, β2,8(IM(1)
) = 21,

β0,7(IM(2)
) = 8, β1,8(IM(2)

) = 7,

β0,8(IM(3)
) = 1.

The generalized weight polynomials are presented in table:
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Z l Z0 Z1 Z2 Z3 Z4

j = 0 1 0 0 0 0
j = 1 0 0 0 0 0
j = 2 0 0 0 0 0
j = 3 0 0 0 0 0
j = 4 −14 14 0 0 0
j = 5 0 0 0 0 0
j = 6 56 −84 28 0 0
j = 7 −64 112 −56 8 0
j = 8 21 −42 28 −8 1

For the matroid M corresponding to RMq(1, 3) we have calculated β1,d1 ,
β2,d2 , β3,d3 , and β4,d4 .

Remark 4.8. For each h, we have:

βh,dh =
∑

σ minimal in Nh
βh,σ = βh,σ · |{minimal elements in Nh}|

if the βh,σ are equal for all σ minimal in Nh.
For h = 1, it is clear, since M |σ ∼= Sd1−2, and the βh,σ are computable

from the reduced homology of M |σ, using Hochster’s formula given in [4]:

βh,σ(S/IM) = βh−1,σ(IM) = Torsh−1(IM ,K)σ = h̃dh−h−1(M |σ).

Lemma 4.2. Let E = Ak−1
q , σ1, σ2 ⊂ E and assume there exists an isomor-

phism φ : E → E with φ(σ1) = σ2 and such that φ(M∗|σ1) = M∗|σ2. Then

M |σ1 ∼= M |σ2 .

Proof. The assumption of the lemma says precisely that: rM∗|σ2 (φ(τ)) =
rM∗|σ1 (τ), for all τ ⊂ σ1 ⇔ φ(τ) ⊂ σ2.

rM(φ(τ)) = |φ(τ)|+ rM∗(φ(τ))− rM∗(E)

rM(φ(τ)) = rM |σ2 (φ(τ)) =

= |τ |+ rM∗|σ2 (φ(τ))− rM∗(E) =

= |τ |+ rM∗|σ1 (τ)− rM∗(E) =

= |τ |+ rM∗(τ)− rM∗(E) =

= rM(τ) = rM |σ1 (τ).
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Then it follows that M |σ2 ∼= M |σ1 , which is what we set out to prove.

Recall that the σ are the complements of (codim h)-planes Lh in Ak−1.
Let M |σ is determined by a matrix H, then (M∗)|σ = (M |σ)∗ is determined
by a matrix G.
For σ1 the complement of one (codim h)-plane is H1.
For σ2 the complement of another (codim h)-plane is H2.

Given independent equations (σ is the complement of a hyperplane H,
which could be H1 or H2)

b11X1 + . . .+ b1,k−1Xk−1 = 0

b21X1 + . . .+ b2,k−1Xk−1 = 0

...

bh1X1 + . . .+ bh,k−1Xk−1 = 0

σ0 is the complement of hyperplane H0 defined by

X1 = 0

X2 = 0

...

Xh = 0

Let the generator matrix G, whose corresponding matroid is M∗, be

G =

X0

X1
...
Xh


1 1 1 . . . 1 1
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
...

...
...

...
...


We will show that all other (codim h)-planes

L1( ~X) = 0

L2( ~X) = 0

...

Lh( ~X) = 0
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give the same matroid. We have b11 . . . b1,k−1
...

. . .
...

bh1 . . . bh,k−1


 X1

...
Xk−1

 =

 0
...
0

 .
We can find k − 1− h additional rows (choose arbitrary) bh+1,1 . . . bh+1,k−1

...
. . .

...
bk−1,1 . . . bk−1,k−1

 .
such that B = [bij] is a square matrix and det(B) 6= 0.

Let B be the map Ak−1 −→ Ak−1, where ~V −→ B~V .
Let ~V1, ~V2, . . . , ~Vs be vectors in Ak−1. Then these are linearly independent if
and only if B ~V1, B ~V2, . . . , B ~Vs are linearly independent. Hence we have

B ~X =

 L1( ~X)
...

Lk−1( ~X)

 .
We want to know what happens to

[
1
~V

]
.[

1

B~V

]
= B′

[
1
~V

]
for B′ =

[
1 0
0 B

]
.

Then:

B′
[

1
~V

]
=

[
1 0
0 B

] [
1
~V

]
=

[
1

B~V

]
.

The argument with B and B′ shows that there exists an isomorphism
φ : E −→ E such that φ(M∗|σ1) = M∗|σ2 , where φ is[

1
~V

]
−→ B′

[
1
~V

]
and B′ : σ1 −→ σ0.

This induces M∗|σ1
φ1−→M∗|σ0 .

We have the following maps

σ1 σ0

σ2

-
φ1

@
@@Rφ �

���
φ2



4.1. WEIGHT POLYNOMIALS IN TERMS OF BETTI NUMBERS 81

If φ1(M∗|σ1) = M∗|σ0 , and φ2(M∗|σ2) = M∗|σ0 , it follows that
M∗|σ2 = φ−1

2 (M∗|σ0) = φ−1
2 (φ1(M∗|σ1)) = (φ−1

2 ◦ φ1)(M∗|σ1) = φ(M∗|σ1).
Thus we can use the previous lemma.

Corollary 4.2.

h̃dh−h−1(M |σ) = βh,σ(M) =
βh,dh

|{minimal elements in Nh}|
=

βh,dh

qh ·
[
k − 1
h

]
q

.

Remark 4.9. The second equality follows from [9].

Example 4.1.10. Let us illustrate the corollary using the example 4.1.8.

First we find the Gaussian binomials qh ·
[

3
h

]
q

.

h = 1: q ·
[

3
1

]
q

= q q
3−1
q−1

;

h = 2: q2 ·
[

3
2

]
q

= q2 q3−1
q−1

;

h = 3: q3 ·
[

3
3

]
q

= q3.

When h = 4 the Gaussian binomial is equal to 1.

Then we have

β1,σ(M) =
β1,d1

q(q3−1)
q−1

=
q(q − 1)(q2 + q + 1)

q(q3 − 1)
= 1,

β2,σ(M) =
β2,d2

q2(q3−1)
q−1

=
q3(q − 1)(q2 + q + 1)

q2(q3 − 1)
= q,

β3,σ(M) =
β3,d3

q3
=
q6

q3
= q3,

β4,σ(M) = β4,d4 = (q3 − 1)(q2 − 1)(q − 1).
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β1,σ(M(1)) =
β1,d1

q2(q3−1)
q−1

=
q2(q − 1)(q2 + q + 1)

q2(q3 − 1)
= 1,

β2,σ(M(1)) =
β2,d2

q3
= q(q + 1),

β3,σ(M(1)) = β3,d3 = (q3 − 1)(q2 − 1).

β1,σ(M(2)) =
β1,d1

q3
= 1,

β2,σ(M(2)) = β2,d2 = q3 − 1.

β1,σ(M(3)) = β1,d1 = 1.

The final result of this subsection gives us the formulas in order to find
the Betti numbers of the Reed-Müller code of the first order.

Example 4.1.11. We are going to find the Betti numbers in general for the
Reed-Müller code RMq(1, k − 1), and all its elongations.

Recall that the Hamming weights of RMq(1, k − 1) are

dh =


0, if h = 0;

qk−h−1(qh − 1), if h = 1, . . . , k − 1;

qk−1, if h = k.

In order to get the βh,dh we will again apply the formula:

βh,dh = (−1)h · t ·
∏
k 6=h

1

(dk − dh)
where t ∈ Q.

Look at the following expression when 1 6 h 6 k − 1

1

di − dh
=


1
−dh

= −1
qk−h−1(qh−1)

, if i = 0;
1

qk−i−1(qi−1)−qk−h−1(qh−1)
= 1

qk−1(q−h−q−i) , if i = 1, . . . , k − 1 and i 6= h;
1

qk−1−qk−h−1(qh−1)
= 1

qk−h−1 , if i = k.

If h = 0, then β0,d0 = (−1)0 · t ·
∏

i 6=0
1

(di−d0)
= 1 and it follows that
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t =
k∏

h=1

dh =
k−1∏
h=1

qk−h−1(qh − 1) · qk−1 =

=
k−1∏
h=1

(qh − 1)
[
qk−1+

∑k−1
h=1 k−h−1

]
= q

k(k−1)
2

k−1∏
h=1

(qh − 1).

βh,dh = (−1)h · t ·
k∏
i=0
i 6=h

1

(di − dh)
=

= (−1)h · q
k(k−1)

2

k−1∏
i=1

(qi − 1) · (−1)

qk−h−1(qh − 1)
·

h−1∏
i=1

1

qk−1(q−h − q−i)

k−1∏
i=h+1

1

qk−1(q−h − q−i)
· 1

qk−h−1
.

Let us deal with two last products separately:

h−1∏
i=1

1

qk−1(q−h − q−i)
=

h−1∏
i=1

1

qk−h−1(1− qh−i)
=

=
1

q(h−1)(k−h−1)

h−1∏
s=1

1

1− qs
=

(−1)h−1

q(h−1)(k−h−1)

h−1∏
s=1

1

qs − 1
.

k−1∏
i=h+1

1

qk−1(q−h − q−i)
=

k−1∏
i=h+1

1

qk−i−1(qi−h − 1)
=

=
k−h−1∏
t=1

1

qk−t−h−1(qt − 1)
=

1

q(k−h−1)2
·

∏k−h−1
t=1 qt∏k−h−1

t=1 (qt − 1)
=

=
q

(k−h−1)(k−h)
2

q(k−h−1)2
· 1∏k−h−1

t=1 (qt − 1)
=

q
(k−h−1)(−k+h+2)

2∏k−h−1
t=1 (qt − 1)

.
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Then

βh,dh = (−1)h · q
k(k−1)

2

k−1∏
i=1

(qi − 1) · (−1)

qk−h−1(qh − 1)
·

(−1)h−1

q(h−1)(k−h−1)
· 1∏h−1

s=1 (qs − 1)
· q

(k−h−1)(−k+h+2)
2∏k−h−1

t=1 (qt − 1)
· 1

qk−h−1
=

=

∏k−1
i=1 (qi − 1)∏h

i=1(qi − 1) ·
∏k−h−1

i=1 (qi − 1)
· q

h2+h
2 = q

h2+h
2 ·

[
k − 1
h

]
q

.

We consider the case when h = k:

βk,dk = (−1)k · t ·
k−1∏
i=0

1

(di − dk)
=

= (−1)k · q
k(k−1)

2

k−1∏
i=1

(qi − 1) · (−1)

qk−1
·
k−1∏
i=1

(−1)

qk−i−1
=

=
q
k(k−1)

2

∏k−1
i=1 (qi − 1)

q(k−1)2
∏k−1

i=1 q
−i · qk−1

=

∏k−1
i=1 (qi − 1) · qk(k−1)

q(k−1)2 · qk−1
=

=
k−1∏
i=1

(qi − 1).

We may also get formulas for the j-th elongation M(j).

t =

k−j∏
s=1

ds(M) =
k−1∏
s=j+1

qk−s−1(qs − 1) · qk−1 =

= q
k2+j2−2kj+3j−k

2

k−1∏
s=j+1

(qs − 1).

Look at the following expression when 0 < l < k − j

1

di − dl
=


−1

qk−1−qk−j−1−l , if i = 0;
1

qk−j−1−l−qk−j−1−i , if i = 1, . . . , k − j − 1 and i 6= l;
1

qk−j−1−l , if i = k − j.
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Then

βl,dl = (−1)l · t · (−1)

qk−1 − qk−j−1−l

l−1∏
i=1

1

qk−j−1−l − qk−j−1−i

k−j−1∏
i=l+1

1

qk−j−1−l − qk−j−1−i

· 1

qk−j−1−l = (−1)l · t · (−1)

qk−j−1−l(ql+j − 1)

l−1∏
i=1

1

qk−j−1−l(1− ql−i)
k−j−1∏
i=l+1

1

qk−j−1−i(qi−l − 1)
· 1

qk−j−1−l =

= t · 1

qk−j−1−l(ql+j − 1)
· 1

q(k−j−1−l)(l−1)

l−1∏
s=1

1

(qs − 1)

k−j−1−l∏
p=1

1

qp

k−j−1−l∏
s=1

1

(qs − 1)
.

We gather the powers of q:

q
k2+j2−2kj+3j−k

2 · 1

q(k−j−1−l)l ·
1∏k−j−1−l

p=1 qp
=

= q
k2+j2−2kj+3j−k

2 · 1

qkl−jl−l−l
2+

(k−j−1−l)(k−j−l)
2

=

= q
k2+j2−2kj+3j−k

2 · 1

q
k2+j2−l2−2kj−k+j−l

2

= q
l2+l+2j

2 .

So we have

βl,dl = q
l2+l+2j

2 ·
∏k−1

s=j+1(qs − 1)

(ql+j − 1)
∏l−1

s=1(qs − 1)
∏k−j−1−l

s=1 (qs − 1)
=

= q
l2+l+2j

2 · q
k−1 − 1

ql+j − 1

[
k − 2− j
l − 1

]
q

[
k − 2
j

]
q

.

It remains to look at the case when l = k − j.

1

di − dk−j
=

{
−1
dk−j

= −1
qk−1 , if i = 0;

−1
qk−j−1−i , if i 6= k − j.
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Then

βk−j,dk−j = (−1)k−j · t ·
k−j−1∏
i=1

(−1)

qk−j−1−i ·
(−1)

qk−1
=

= (−1)k−j · t · (−1)k−j+1 ·
k−j−2∏
m=1

1

qm
· (−1)

qk−1
=

= q
k2+j2−2kj+3j−k

2

k−1∏
s=j+1

(qs − 1) · 1

qk−1
· 1

q
(k−j−1)(k−j−2)

2

=

=
k−1∏
s=j+1

(qs − 1).

4.2 Another way of finding out the GWP

Definition 4.6. The generalized weight enumerator is given by

W
(r)
C (X, Y ) =

n∑
j=0

A
(r)
j Xn−jY j,

where A
(r)
j = |{D ⊆ C | dimD = r, wt(D) = j}|.

The following results are given in [9]:

Proposition 4.8. Let C be a [n, k] code over Fq. Then the generalized weight
polynomial is equal to

Pj(q
m) =

m∑
r=0

A
(r)
j

r−1∏
i=0

(qm − qi).

Theorem 4.4. The generalized weight enumerators of the Reed-Müller code
RMq(1, k − 1) are given by

W
(r)
RMq(1,k−1)(X, Y ) =

[
k − 1
r − 1

]
q

Y n + qr
[
k − 1
r

]
q

Xqk−1−r
Y qk−1−qk−1−r

for 0 < r < k.
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Example 4.2.1. Look at the Reed-Müller code RM2(1, 3) from the exam-
ple 4.1.9.
The generalized weight enumerators of this code for 0 < r < 4 are

W
(r)
RM2(1,3)(X, Y ) =

[
3

r − 1

]
2

Y 8 + 2r
[

3
r

]
2

X23−rY 23−q3−r .

W
(1)
RM2(1,3)(X, Y ) =

[
3
0

]
2

Y 8 + 2

[
3
1

]
2

X4Y 4,

W
(2)
RM2(1,3)(X, Y ) =

[
3
1

]
2

Y 8 + 4

[
3
2

]
2

X2Y 6,

W
(3)
RM2(1,3)(X, Y ) =

[
3
2

]
2

Y 8 + 8

[
3
3

]
2

XY 7.

Then we have

A
(0)
0 = 1, A

(1)
8 =

[
3
0

]
2

= 1, A
(2)
8 =

[
3
1

]
2

= 7, A
(3)
8 =

[
3
2

]
2

= 7,

A
(1)
4 = 2

[
3
1

]
2

= 14, A
(2)
6 = 4

[
3
2

]
2

= 28, A
(3)
7 = 8

[
3
3

]
2

= 8, A
(4)
8 = 1.

The generalized weight polynomials are

P0(Q) =
m∑
r=0

A
(r)
0

r−1∏
i=0

(qm − qi) = 1;

P1(Q) = P2(Q) = P3(Q) = 0;

P4(Q) =
m∑
r=0

A
(r)
4

r−1∏
i=0

(qm − qi) = 14(Q− 1);

P5(Q) = 0;

P6(Q) =
m∑
r=0

A
(r)
6

r−1∏
i=0

(qm − qi) = 28(Q− 1)(Q− 2);

P7(Q) =
m∑
r=0

A
(r)
7

r−1∏
i=0

(qm − qi) = 8(Q− 1)(Q− 2)(Q− 4);
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P8(Q) =
m∑
r=0

A
(r)
8

r−1∏
i=0

(qm − qi) = (Q− 1) + 7(Q− 1)(Q− 2) +

+ 7(Q− 1)(Q− 2)(Q− 4) + (Q− 1)(Q− 2)(Q− 4)(Q− 8) =

= (Q− 1)(Q3 − 7Q2 + 21Q− 21).

4.3 Questions for further work

1. Will the resolutions of the Stanley-Reisner rings derived from Reed-
Müller code of the second order (higher order) be pure?

2. Does our method of finding the GWP of codes, by using Betti numbers
of associated matroids and elongations, work better than the method
briefly described in Section 4.2, following [9]? There one transforms
data about generalized weight enumerators over the code over the
fixed alphabet Fq, to data of the usual weights of codes over infinitely
many extensions of Fq (the GWP). Is there any case when this method
from [9] does not work, but where our method works?
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