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Summary and Conclusions

Otoliths are calcium structures found in the balance organs of all vertebrates. Their shape is de-

pendant both on genetics and environment. For this reason analysis of their contours through

Fourier Contour Analysis has become a well-known technique for separating between different

stocks of fish.

In this thesis the entire process of Fourier Contour Analysis have been investigated for po-

tential sources of bias. It has been found that specifics of how one aquires the contours from an

image, such as colour and image representation, edge-traversal and image formats are largely

irrelevant for the final contour created.

A probability-based approach has been proposed to substitute the stratification-based ap-

proach to resampling previously used when constructing comparable sets. This may increase

the power of the comparison. Various transformations and discriminant analysis approaches

have been tested, but no obvious improvements were found.

It has however been shown that numerically solving the problem of aligning otoliths , in-

stead of aligning by the first harmonic contour, lead to better cross-validated discrimination

rates. Furthermore, using the absolute values of the fourier coefficients also increased cross-

validated discrimination rate. Both of these findings require further testing and work to deter-

mine whether they hold for fourier contour analysis in general or just these sets of data.





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Halibuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Cod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Structure of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 9

2.1 Fishery Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Otolith organs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Otolith Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Image Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Aquiring the contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Theory 18

3.1 Elliptic Fourier Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Creating a path and finding the coefficients . . . . . . . . . . . . . . . . . . . . . . . 20



CONTENTS

3.5 Standardizing size, position, rotation and traversal . . . . . . . . . . . . . . . . . . . 20

3.5.1 Size and position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.2 A model with t0 and φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.3 Standardizing rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Rotational Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Sinusiod Fourier Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.8 Discrimant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8.1 Error rates and Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8.2 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.9 LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Validity of the contour 28

4.1 Comparing paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Conversion to grayscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Image Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Smoothing and correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Validity of class comparison 33

5.1 Broken Otoliths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Distance from mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Correcting for covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 Stratification approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.2 Probability adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.3 Monte Carlo adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Discriminant Analysis 44

6.1 Halibut Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Benchmark for Cod discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.1 Optimal number of Fourier coefficients . . . . . . . . . . . . . . . . . . . . . . 45

6.2.2 Key scores for LDA Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



CONTENTS 0

6.3 On transforming the fourier coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.1 Sinusiods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.2 Key scores for Sinusiod coefficients . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.3 Absolute Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3.4 Key scores for Absolute Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4 On using best fit rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4.1 No standardisation fix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4.2 Key scores for raw fourier coefficients . . . . . . . . . . . . . . . . . . . . . . 50

6.4.3 Best Fit Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4.4 Key scores for raw fourier coefficients . . . . . . . . . . . . . . . . . . . . . . 52

6.5 PLS-DA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.5.1 Key scores for PLS-DA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.6 Decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.6.1 Key scores for decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Summary 58

7.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2 Recommendations for Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A Code 60

A.1 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.2 Normalize Fourier Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.3 Inverse Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.4 Probabilty adjusted sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.5 Find best rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.6 LDA with cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 71



CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

This thesis was chosen because the author finds the complexities and challenges that arise when

different fields of study interact interesting and challenging. Finding the shape approximation

with lowest error rate for fewest variables is interesting enough, but finding the shape approxi-

mation which best picks up on systematic biological differences in a way that makes it possible

to discern using different cross-validated discrimination techniques is just plain fun.

1.1 Objectives

The overall goal of this thesis is to improve on the method of separating stocks of fish using

otolith contours. In order to achieve the following objectives has been set:

1. Investigate potential sources of bias when aquiring the contour

2. Investigate to which degree true separation between the two stocks of Halibuth is possible

and estimate accuracy of predictions

3. Explore different techniques for improving the basic method of Fourier Contour Analysis

and assess their overall effect
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1.2 Data

1.2.1 Halibuth

Our primary dataset consists of two sets of samples from the same species of halibut from two

different breeding grounds. This dataset includes broken and otherwise unusable otoliths, and

includes both left and right otoliths (figure 1.1).

A list of manually verified otoliths, aswell as the sex, weight and length of the Halibuths they

were harvested from was provided by Alf Harbitz.

Dataset Location Broken Valid Total Samples

Ae Eggakanten 343 828 1171

Ag Greenland 78 83 161

A 411 921 1332

Ae (n = 828) Ag (n = 83) A (n = 921)

Attribute mean sd mean sd mean sd

Weight 1365 1161 1257 495 1355 1118

Length 49.9 11.7 50.8 5.26 49.98 11.3

Sex 0.41 0.73 0.44

1.2.2 Cod

The second dataset consists of 1177 cod otoliths (example otolith in figure 1.2). This set con-

tained no broken or otherwise unusable otoliths. Meta-information on catch-location, weight,

length, sex, age aswell as other characteristics were made available by Alf Harbitz. This is the

same dataset used in Stransky et al. (2008) and Henriksen (2013).
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Cod dataset summary

Area Code Number of fish Mean length Mean age

Svalbard SVA 32 33.7 (±3.9) 3.1 (±0.3)

Barents Sea BAR 408 52.6 (±11.6) 4.9(±1.1)

Varanger VAR 108 51.0 (±11.2) 5.4 (±2.1)

Nordkapp NOK 152 46.6 (±7.1) 4.1 (±0.9)

Porsanger POR 49 58.0 (±5.1) 6.8 (±2.2)

Balsfjorden BAL 309 45.5 (±7.7) 5.3 (±1.5)

Vestfjorden, West VEW 48 60.7 (±7.1) 5.0 (±0.9)

Vestfjorden, East VEE 71 57.8 (±3.8) 4.3 (±0.9)

Total 1177 50.5 (±10.3) 4.9 (±1.5)

Density plots of length and weight have been included in figures 1.3 and 1.4. It should

be clear that there are systematic differences between the groups of fish caught from different

locations. This will be discussed further in chapter 6.

1.3 Limitations

The majority of this study has been limited to the dataset of halibut otoliths. However, late

in the thesis the set of cod otoliths was made available. This was primeraly used for objective

3, as sufficient separation was not found in the Halibuth set to be able to compare different

methodologies properly.

Furthermore, the statistic and computer science part of this process has received more at-

tention than the biological basis for this analysis. The datasets and meta-information has been

accepted as they are. Both of these limitations have been necessary to reduce the scope of this

thesis.

1.4 Structure of the Report

Theory and previous work has been split into two chapters. Chapter 2 contains introductions

to needed subjects in biology and computer science, while chapter 3 contains needed theory in
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mathematics and statitics.

Chapter 4 focuses potential biases and problems when extracting a contour from an image.

Chapter 5 focuses on whether the sets are comparable, while chapter 6 focuses on the final

discriminant analysis.

Results and suggestions for further work is discussed in the final chapter.
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Illustrations

Figure 1.1: Pair of halibut otoliths
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Figure 1.2: Left cod otolith
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Figure 1.3: Density plot of length (in cm) of cod in dataset, grouped by location of the catch. It
is clear that these groups have systematically different properties.
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Figure 1.4: Density plot of weight (in kg) of cod in dataset, grouped by location of catch
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Chapter 2

Background

This chapter contains introductions to subjects in biology and computer science relevant for

this thesis. The section Fishery Management gives background on why analysis of fish otoliths

is important. Otolith Organs gives a brief explanation on basic fish biology and otoliths.

The section Otolith Imaging explains the process of aquiring images of the otoliths, while

Image Representation gives background on how colors in images are measured, stored and trans-

formed. The difficulties and ambiguities in this process is why it is important to verify that sys-

tematic biases are not introduced

Lastly, the final section Countor Tracing outlines the algorithm used for tracing the countor

and finding a valid starting point.

2.1 Fishery Management

Globally fish and fishery products intake accounts for an estimated 6.5% of human protein in-

take and 16.7% of human animalistic protein intake (FAO, 2012). Furthermore, for 2012 an

estimated 36.7% of fishery products were traded internationally for an estimated value of 129

billions US$. This puts the overall value of total fish catch above 350 billion US$. The fishing

industry is thus globally important both nutrionally and economically.

However, according to The World Bank and FAO1 (Sun, 2009) in 2004 more than 75% of fish

stocks were underperforming, as in producing lower long term yields than an optimal long term

1Food and Agriculture Organization of the United Nations
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strategy would. The economic loss for this underperformance for 2004 was estimated to 50

billion US$. Given that the value of international fishing trade has increased by roughly 7%

annually a very rough estimate for 2012 puts this value at 85$ billion US$, which entails a lost

25% increase in value of production.

Fishery management is however a very complicated subject. Fish generally, at least before

they are caught, swim freely around the oceans showing little regard for internationally agreed

exclusive economic zone boundaries. Fishery management is thus not only about finding an

overall sustainable fishing policy, but also about how responsibility should be shared among

nations. Implementing a sustainable fishing policy is a tradeoff between individual short term

gain with a larger shared long term gain. Dependable and neutral information on stocks and

migration patterns are thus an important building block when crafting co-operation between

nations.

However, one does not only need knowledge of general population dynamics and migration

patterns of fish stocks. There are also very specific challenges. A well known Norwegian example

is the difference between the North East Arctic and Norwegian Coastal Cod in northern Norway

(Kålås et al., 2006). The arctic cod has its nursery and feeding area in the Barents sea, and mi-

grates each year to the coast of Norway for spawning. The coastal cod however stays along the

coast of Norway all year. The latter fish stock is on IUCN (International Union for Conservation

of Nature) red list as near-threatened, while the former is bountifull. Since they overlap during

spawning season one would effectively need to stop all catch of arctic cod in order to protect the

coastal cod. However this would have a huge impact on the economics of Norwegian fisheries,

so fishery management have come up with other local regulations to reduce the pressure on

the coastal cod stock. In order to asses the effectiveness of these measures dependable and not

prohibitly expensive means of identification are necessary.

A vast array of methods and tools exist for collecting information on the health of fish stocks,

however this thesis will consider only variations of otolith contour analysis.
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2.2 Otolith organs

The saccule and utricle make up the otolith organ, which is present in all vertebrates (fish, am-

phibians, reptiles, mammals and birds). The otolith organ provides gravity, balance, movement

and directional indicators in all vertebrates, and have a secondary function in sound detection

in higher aquatic and terrestrial vertebrates (Popper et al., 2003). The statoconia is a combina-

tion of gelatinous matrix and calcium carbonate structures, located within either the saccule or

the utricle (seen fig 2.2). The term otolith is used interchangingly with stataconia, but is often

used to reference the calcified structure itself.

The number of statoconium vary between species, however osteichthyes species (bony fish)

have three pairs of statoconium, of which the largest and the one which is used in this thesis is

the sagitta. The calcium carbonate, which the otoliths is composed of, is derived primarily from

water (Oth, 2011) and is thus dependant on both the rate of growth and water conditions. The

study of otoliths can thus give information on which bodies of water a specimen has previously

occupied. The most studied trace signal used is the amount of strontium (Farrell and Campana,

1996), however many other techniques can be used.

Furthermore, the growth and shape of these otoliths are dependant on both genetic and

environmental influences (A.H. Weatherley, 1987). Analyzing the countor of the otolith to dis-

criminate between different stocks and interspecies has been used successfully on a multitude

of different bony fish (Parisi-Baradad et al., 2010). While using the contour for identification

most likely will never be as accurate as more expensive methods, it is cheap, easy and does

not require very advanced laboratory equipment making it a much more applicable method of

identification.

2.3 Otolith Imaging

The sagitta is removed manually with a very sharp knife, first cutting of the skull top to reveal

the dorsal part of the brain. After removing the medulla oblongata the sagitta will be exposed in

the depressions in the ventrolateral sides of the braincase Oth (2011).

Furthermore, the sagitta must be sliced cross-section using a low-speed precision saw (Morales-

Nin). An image is aquired using an appriopriate photographic microscope. Otoliths are however
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small and somewhat brittle, so they may break if one is not carefull. A skilled operator may thus

produce sets of otolith systematically different from an unskilled one.

This procedure is usually completed in controlled lab-environments, however there are no

set procedures on exactly which imaging-equipment and how backlights should be set up. There

may thus be significant differences between images from different laboratories.

2.4 Image Representation

The biggest challenge to accurate image representation is that colour is not an actual property

of a surface. A surface has a reflection profile, which determines the proportion of different

wavelengths of light which is reflected. The wavelength profile of reflected light is dependant

on the original light source, which is never completely the same, except under exceptionally

controlled environments.

The colour representation systems in computer science are however designed to maximize

performance relative to our eyes Omer and Werman (2004). Human perception of light is 3-

dimensional, with intensities measured using the 3 different wavelength profiles as shown in fig

2.4. Using one degree of freedom for colour intensity, this leaves two degrees of freedom for the

colour space we can perceive out of a wide multispectral profile. Camera setups usually measure

3 distinct wavelengths and approximates these into different colorformats. The consequence of

this is that different cameras will register subtly different colors as they will rely on different

transformations from multispectral wavelengths to 3-dimensional color.

In practice color information in images is fairly consistant and generally trustworthy, how-

ever it is important to note that even following best practices this a field where one will still only

get a best effort result. It is therefore worthwhile to investigate to which degree any analytic

method is dependant on the colours reported.

2.5 Aquiring the contour

Finding the shape of the otolith was done by first converting the image to grayscale. Secondly a

threshold was used on the intensity values to separate between otolith and background as in 2.1.
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Figure 2.1: ]
Thresholding illustration

The two-pass algorithm (Stockman and Shapiro, 2001, pp. 69–73.) was used to find the number

of pieces of significant size. Their centers of mass were also found by averaging their pixel-

coordinates. Images with anything other than two significant pieces were marked as invalid.

Tracing the contour of these shapes was done using the Moore Neighborhood algorithm

with a modified exit criteria (Toussaint). The essence of this algorithm is to trace the contour

through a series of moves. After each movement, current direction is changed -90°, and then

again +45°until a valid pixel to move to is found. Given a valid starting point and direction this

algorithm is guaranteed to converge. However, since a pixel may be visited several times using

this technique, it is not a unique identifier for a position along the path. An edge can however

only be visited once, and can be used to identify whether the contour is complete.

Potential starting positions from which to start tracing the contour were found by starting

at the center of mass for each piece, and marking any edges found between center of mass and

nearest edge of image. This is needed because holes in the otolith or image artifacts may create

starting points that do not lead to a path around the otolith (illustrated in fig 2.5)). Creating

contours from all possible starting points and keeping the longest solves this problem.

In the rest of this thesis contour will refer to the outline of the shape in (xn , yn)-space. Path

will refer to xn and yn respectively.
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Illustrations for chapter2

Figure 2.2: Overview of fish brain and otolith organs from Oth (2011)
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Figure 2.3: Example images of fish fish and their respective otoliths. From top to bottom, right
to left (A) Cod, (B) Halibuth, (C) Herring (D) Whiting
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Figure 2.4: Normalized responsivity spectra of human cone cells; S, M, and L types on different
wavelengths of light. Photographic equipment generally measure 3 distinct wavelengths of light
to approximate the results these curves would give.
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Figure 2.5: Blow-up of edge of a Halibut Otolith, for illustrating edge-traversal and starting
points. The island of black and lake of white both provide false starting points for tracing the
contour.
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Chapter 3

Theory

This chapter contains the needed theory in mathematics and statistics.

3.1 Elliptic Fourier Descriptors

Elliptic Fourier Descriptors (EFD) is a well known method for approximating the contour of

otoliths (Kuhl and Giardina, 1982). The approach itself is pretty straightforward. Given a set of

co-ordinates (xn , yn) following the contour of a otolith, separate these into separate xn and yn-

paths. Compute tn using euclidic distance and approximate (xn , tn) and (yn , tn) pairs using the

discrete fourier transform (DFT).

In addition to this, Kuhl and Giardina (1982) outlines a method to normalize the coefficients.

This is needed because of the ambiguities introduced from using two 1D fourier-series to repre-

sent a closed 2D-contour, and because rotation and size must be considered arbitrary.

3.2 Discrete Fourier Transform

The discrete fourier transform approximates any function using a set of linearly weighted sines

and cosines with increasing frequencies. In Fourier Contour Analysis this is used to approximate
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two sets of paths (xn , tn) and (yn , tn). The model with (2+4N ) parameters will then be:

Fx(t ) = a0 +
N∑

n=0
an cos(nt )+bn sin(nt ) 0 < t < 2π (3.1)

Fy (t ) = c0 +
N∑

n=0
cn cos(nt )+dn sin(nt ) (3.2)

Before transformation we have a contour described by (xn , tn), (yn , tn) with n = {1,2,3...K },

where K, the number of pixels in the countor, typically ranges between 1000 and 4000. After

transformation we will have a model defined by:

{a0,c0, an ,bn ,cn ,dn} n = {1,2,3....N } (3.3)

with N being the number of harmonics. Typically with N at least 10 the error is visually very

small, however higher N may still contain usefull information.

3.3 Fast Fourier Transform

Fast Fourier Transform (FFT) is a specific algorithm for computing some cases of the discrete

fourier transform (DFT) easily. Normal DFT scales at the order of O(n2), while FFT is both gen-

erally fast and scales better at O(n logn). However, normal DFT with 1000-2000 datapoints runs

in much less than a second on a normal computer, so the total time saved is not significant when

using DFT on otolith contours.

FFT requires the length of the path to be on 2n with n ∈ N, and assumes equal length be-

tween datapoints. In order to use FFT on the contours, interpolation or a similar technique

would be needed to transform the paths into accepted lengths. This introduces a very small,

but uneccessary error. FFT has therefore not been used in this thesis.
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3.4 Creating a path and finding the coefficients

According to the methodology presented by Kuhl and Giardina (1982), if given a path xn and yn

with n = {1,2, , ,K } then:

∆xn = xn −xn−1 ∆x1 = x1 −xN (3.4)

∆yn = yn −xy−1 ∆y1 = y1 − yN (3.5)

∆tn =
√

(∆xn)2 + (∆yn)2 (3.6)

T =
N∑

n=1
∆tn (3.7)

(3.8)

The paths to be approximated are then points xn and yn placed at time tn .

an = T

2n2π2

N∑
p=1

∆xp

δtp
(cos

2nπtp

T
−cos

2nπtp−1

T
) (3.9)

bn = T

2n2π2

N∑
p=1

∆xp

δtp
(sin

2nπtp

T
− sin

2nπtp−1

T
) (3.10)

cn = T

2n2π2

N∑
p=1

∆yp

δtp
(cos

2nπtp

T
−cos

2nπtp−1

T
) (3.11)

dn = T

2n2π2

N∑
p=1

∆yp

δtp
(sin

2nπtp

T
− sin

2nπtp−1

T
) (3.12)

with the approximated contour given by:

ẋ(t ) = a0 +
N∑

n=1
an cos

2nπt

T
+bn sin

2nπt

T
(3.13)

ẏ(t ) = c0 +
N∑

n=1
cn cos

2nπt

T
+dn sin

2nπt

T
(3.14)

3.5 Standardizing size, position, rotation and traversal

In this section the same approach as presented in Kuhl and Giardina (1982) is used, however

the terms σ and t0 are included explicitly in the mathematical model, rather than as a separate
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adjustment performed later.

3.5.1 Size and position

Position is centered on origo by setting a0 and c0 from 3.3:

a0 = 0 c0 = 0 (3.15)

since for any real n, an and bn

∫ 2π

t=0
an cos(nt )+bn sin(nt )dt = 0 (3.16)

This is necessary because position within the original image is arbitrary. a0 and c0 will thus be

disregarded from now.

Kuhl and Giardina (1982) recommends standardizing size by transforming the length the

of the major axis to 1. Standardizing volume of first harmonic to 1 instead may provide more

aesthetically pleasing results.

3.5.2 A model with t0 and φ

The final contour produced by combining the two paths is the only thing of interest when mod-

elling otoliths. There are however many sets of xn and yn paths that result in the exact same

contour. Since these will be treated differently in a discriminant analysis, these ambiguites must

be corrected for.

The ambiguties introduced from splitting up a contour into x and y-paths are twofold. First,

the direction of traversal is not of interest. Secondly, any point on the contour can be used as

a starting point. Because of this, in the fourier model t may range between from any t0 to any

±(t0 +2π) and the resultant contour will be exactly the same.
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Incorporating arbitrary starting point to the fourier contour model leads to the following

Fx(t ) =
N∑

n=1
(an cosnt +bn sinnt ) 0 <±(t + t0) < 2π (3.17)

Fy (t ) =
N∑

n=1
(cn cosnt +dn sinnt ) (3.18)

Furthermore, the orientation of the otoliths is merely how they were placed during imaging.

It is therefor necessary to standardize the orientation by some measure. For that reason, a rota-

tional factor φ will be included in the model. To achieve this we use a rotational matrix on the

form:

 cosφ sinφ

−sinφ cosφ

X

Y

=
X ∗

Y ∗

 (3.19)

Applying this rotational matrix yields:

F∗
x (t ) =

N∑
n=1

(an cosφ+ cn sinφ)cosnt + (bn cosφ+dn sinφ)sinnt ) 0 <±(t + t0) < 2π (3.20)

F∗
y (t ) =

N∑
n=1

(cn cosφ−an sinφ)cosnt + (dn cosφ−bn sinφ)sinnt ) (3.21)

which yields the following formulaes

F∗
x (t ) =

N∑
n=1

a∗
n cos(nt )+b∗

n sin(nt ) 0 <±t < 2π (3.22)

F∗
y (t ) =

N∑
n=1

c∗n cos(nt )+d∗
n sin(nt ) (3.23)

a∗
n = (an cosφ+ cn sinφ)cosnt0 + (bn cosφ+dn sinφ)sinnt0 (3.24)

b∗
n =−(an cosφ+ cn sinφ)sinnt0 + (bn cosφ+dn sinφ)cosnt0 (3.25)

c∗n = (cn cosφ−an sinφ)cosnt0 + (dn cosφ−bn sinφ)sinnt0 (3.26)

d∗
n =−(cn cosφ−an sinφ)sinnt0 + (dn cosφ−bn sinφ)cosnt0 (3.27)
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The formulaes 3.22 through 3.27 can thus be used to rotate any contour by φ and shift start-

ing point by t0 at will.

3.5.3 Standardizing rotation

Going back to Kuhl and Giardina (1982), the proposed way to standardizr rotation is by stan-

dardizing the outline of the first harmonic where N = 1. In 5.2 a proposed method to numeri-

cally find best fit is outlined, and in 6.4.1 it is investigated if this improves discrimination. Since

it is considered standard, Kuhl and Giardina (1982) will however be used for now.

A standard ellipse, with starting point set at a major axis, has the following represenation:

Gx(t ) = c1 cos t 0 < t < 2π (3.28)

Gy (t ) = c2 sin t c1 > c2 (3.29)

In order to transform eq. 3.2 to 3.29, one must thus find the t0 and φ in eq. 3.22 through 3.27

that yield b1 = 0, c1 = 0 and a1 > d1. This yields:

0 =−(a1 cosφ+ c1 sinφ)sin t0 + (b1cosφ+d1si nφ)cost0 (3.30)

0 = (d1 cosφ−b1 sinφ)sin t0 + (c1cosφ−a1si nφ)cost0 (3.31)

which results in

t0 = tan−1 b1 cosφ+d1 sinφ

a1 cosφ+ c1 sinφ
(3.32)

and φ can be found by solving this quadratic equation

(b1d1 +a1c1)+ (d 2
1 −b2

1 + c2
1 −a2

1) tanφ+−(b1d1 +a1c1) tan2φ= 0 (3.33)

Furthermore, since the direction of traversal is also irrelevant it should also be standardized.

After rotation and size has been normalized, direction of traversal can easily be switched by

substituting t = −t∗. Thus if si g n(a1) 6= si g n(d1), we substitute t = −t∗. This is equivalent to

setting b∗
n =−bn and d∗

n =−dn .
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3.6 Rotational Ambiguity

Using the normalization procedure outlined by Kuhl and Giardina (1982) there are two separate

orientations that fulfill the conditions set out for normalization: rotation φ and φ+π. This is

referred to as the rotational ambiguity.

For sets which are generally aligned well from imaging choosing the alternative that is clos-

est to the original rotation will work well. Using the vector from center of mass to the (a0,c0)-

coefficients as a basis for a metric to choose between φ and φ+π was found to work well. This

ensures that smoothest part of the contour always points the same way. If used on both left

and right otoliths correct orientation was found on all cases in this set. However, the proposed

solution for numerically finding best fit rotation, found in 5.2, eliminates this ambiguity.

3.7 Sinusiod Fourier Form

It should be noted that the standarized coefficients can be rewritten as a sinusiods:

Fx(t ) =
N∑

n=1
(an cos(nt )+bn sin(nt ) =

N∑
n=1

(αn sin(nt +βn)) 0 < t < 2π (3.34)

with

an =αn · sin(β) α2 = a2
n +b2

n (3.35)

bn =αn ·cos(β) β= sin(
bn

αn
)−1 (3.36)

In 6.3.1 it is investigated whether this reparameterization leads to better results in the dis-

criminant analysis.
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3.8 Discrimant Analysis

Discrimination and classification are techniques concerned with separating distinct set of ob-

jects, aswell as creates rules for allocating new objects to previously defined groups. Unlike

other more exploratory fields of analysis this field has a very specific purpose; finding good clas-

sification rules. This also means that discriminant analysis is a field where one can measure

performance of an algorithm quite easily.

Typically, if one has N sets of X samples with p measured variables each, with each Xn be-

longing to class k of sets πk , then the purpose of discriminant analysis is to generate a classifi-

cation rule C which assign new samples of X to one of πk . Often the number of sets to allocate

to is restricted to two sets, π1 and π2.

3.8.1 Error rates and Cross-Validation

A model is judged on how well it classifies samples. Apparent error rate (APER) is the proportion

of samples from the training set which are misclassified by a model. The training set is the set

of samples which is used to build the model. If one has enough samples, some samples can be

set aside as a validation set which is purely used to test the performance of the model. APER is a

typically a very optimistic error estimate, as any random effects it picks up on will increase APER,

but generally decrease actual model performance. In fact, if one adds a iid gaussian distributed

noise variable APER will always increase with provably no added predictive effect.

At the heart of discriminant analysis is the concept of cross-validition 1. The most common

forms of cross-validition is Leave-one-out (LoO) and Leave-p-out (LpO). This involves classifing

p-samples at the time, by building a classification model with everything but those samples.

Since the model then is independant of the samples it classifies, it is gives a true estimate of the

reduced models performance on that set of data. An unbiased estimate is referred to as AER

(actual error rate). Actual model performance will be slightly higher, as more data generally

means better models.

Whether that model performs as well on real data is however still a matter of to which degree

the sets of data one has accessible is represenative of the populations they were drawn from.

1The terminology ’cross validition’ seem to be more common in applied statistics than pure statistics. Lachen-
bruchs holdout procedure is exactly the same as LoO-cross validation
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It is also important to introduce the concept of model selection bias. Cross validitions pro-

duces a probability that one sample is correctly classified. Even though cross validition pro-

duces unbiased results, there is still a random component. This means that if one select which

model to use based on cross-validated results, that cross-validated result should no longer be

considered unbiased in that context.

3.8.2 Confusion Matrix

After a classification rule has been found, a confusion matrix is commonly used to summa-

rize the classification results. A shortened version of the confusion matrix at 6.2 showing pre-

dicted vs actual location of catch of cod otoliths is shown below. The results were found using

LpO(p=10) cross-validation.

Predicted

BAL BAR LOE LOW
∑

a

Actual BAL 209 17 16 7 249

BAR 54 248 30 35 367

LOE 16 6 23 18 63

LOW 5 8 16 10 39∑
p 284 279 85 70 718

From this confusion matrix it is easy to compute several key statistics.

AER = 1−
∑

(di ag )

N
(3.37)

Probabilities of samples being classified as x belonging to class x:

di ag (M)∑
p

(3.38)

Probabilities of samples beloing to class x being classified as class x:

di ag (M)∑
a

(3.39)
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3.9 LDA

Linear Discriminant Analysis (LDA) is a discriminant analysis method which uses continuous

independant variables to explain a categorical class-variable. Assume that f1(x) and f2(x) are

multivariate normal densities. Letµ1 be the first mean vector,µ2 the second andΣ the common

covariance matrix.

Now suppose that join densities of X′ = [X1, X2...Xp ] for populations π1 and π2 are given by:

fi (x) = 1

(2π)
p
2 |Σ| 1

2

e− 1
2 (x−µ1)′Σ−1(x−µ1) (3.40)

Then after cancellation of common terms, the minimum ECM (expected cost of misclassifi-

cation), or in other words; which density function the sample was most likely to be drawn from,

becomes:

R1 =−1

2
(x −µ1)′Σ−1(x −µ1)+ 1

2
(x −µ3)′Σ−1(x −µ2) ≥ (

c(1|2)

c(2|1)

P2

P1
) (3.41)

where c(2|1) and c(1|2) are cost of misclassification and P1 and P2 are the prior probabilities of

X belonging to π1 and π2. If there are no specific reasons to not, it is common to select equal

costs of misclassification. If a sample is not classified as π1, it is obviously classified as pi2.

Since µ1, µ2 and Σ is commonly not known, it is common to use the sample mean vectors

x̄1, x̄2 and Spooled as estimates instead.

In general, LDA works well for fuzzy data were trends and probabilities are among the more

defining characteristics. It is less good at picking up attributes that are not easily picked up in a

covariance matrix, such as strong specific dependencies within a subpopulation.
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Chapter 4

Validity of the contour

This chapter investigates the procedures outlined in 2.5, and attempts to investigate to which

degree the contour created is dependant on these procedues. The issues raised mostly concern

the realms of computer science, and it is investigated whether this affects the validity of the final

discriminant analysis.

4.1 Comparing paths

In order to compare paths easily a simple metric has been used. In essence, instead of compar-

ing contours, the x and y-paths have been compared separatly. The steps have been as follow-

ing:

1. For each contour (xn ,yn):

(a) Change lenght of (xn ,yn) to 1000 using linear interpolation

(b) Combine xn and yn to one list of 2000 elements

2. Use correlation to measure equalness between different contours

Please refer to ?? in the appendix for further details.
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4.2 Conversion to grayscale

There are many ways to convert a colour image to grayscale (Cadík, 2008). Neither are con-

sidered de-facto standard, and none more correct than the others. As outlined in 2.4, color

information is not necessarily trustworthy, so to which degree the resultant path is dependant

on color-choices should be investigated.

For 10 randomly selected images several methods were used for colour conversion and con-

tours were created for each. For each contour paths were created, and the procedure outlined in

4.1 was used on each. Matlabs rgb2gray, which uses the luminance related to the NTSC-signal

based on the BT.601 standard, was used as reference for computing correlation against.

Colour convertisions and correlation

Method Details Correlation

HSL - 601 0.2989R +0.5870G +0.1140B Reference

CIE 1931 y 0.2126R +0.7152G +0.0722B 1.000

Band with highest range R or G or B 1.000

Average of RGB R·G·B
3 1.000

Different colour conversions are thus ruled out as a potential source for bias in this case.

Furthermore, the effects measured seem small enough for this assertion be likely to hold in all

but the most extreme cases.

4.3 Thresholding

Selecting a intensity threshold for separating background and otolith is something one would

assume is easily solved. However due to images like fig 4.1, with backdrops in similar intensity

to outer edge in other images, detecting the otolith is not trivial. No easily implented solutions

for finding a usable thresholding automatically has been found, neither by trial nor literature

search.

For the halibut dataset using the average of mean pixel intensity and mode pixel intensity

worked well. Otsu’s method, which is commonly used relies on the assumption of common
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variance in the two groups and does not work well with our data.

However, for both the cod and the halibut sets the range of thresholds which performed well

was very large. With noisy images this may however not be the case, so thresholding is probably

best considered a manual step where manual verification of the contour created is necessary.

This also means that computationally estimating errors in this step becomes impossible.

4.4 Image Resolution

To investigate whether images of different resolutions can be safely compared an image was

rescaled using to several different resolutions using GIMP’s implementation of cubic interpola-

tion. Countors were created and compared for each as in 4.1.

Resolutions investigated

name x y

Orignal 3840 3072

r1920 1920 1536

r960 960 768

r480 480 384

c240 240 192

Matrix of correlations

Original r1920 r960 r480 r240

Original 1.0000000 0.9998851 0.9998612 0.9996346 0.9964146

r1920 0.9998851 1.0000000 0.9999901 0.9993930 0.9955669

r960 0.9998612 0.9999901 1.0000000 0.9993863 0.9955146

r480 0.9996346 0.9993930 0.9993863 1.0000000 0.9979696

r240 0.9964146 0.9955669 0.9955146 0.9979696 1.0000000

Changing the resolution does create small differences. This may be a minor cause for con-

cern when comparing contours created from different images.
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4.5 Smoothing and correlation

Smoothing can be very effective to combat distortions created by noise (Haines and Cramp-

ton, 2000). Noise is especially problematic in Fourier Contour Analysis since it not only affects

the values of the contour, but the extra pixels introduced will affect the length of the contour.

However, in clear and well-taken images smoothing will be less relevant.

To get a measure of the distortion introduced by smoothing, several levels of smoothing was

applied to 10 known good randomly selected contours. A correlation was again computed as

in 4.1. The smoothing was done as in Haines and Crampton (2000), by applying a [0.25,5,0.25]

filter on each pixel [5,10,20,80]-times. The results were as following:

Matrix of correlations

Original sm5 sm10 sm20 sm80

Original 1.0000000 0.9994376 0.9991326 0.9986733 0.9975575

sm5 0.9994376 1.0000000 0.9999626 0.9998198 0.9992706

sm10 0.9991326 0.9999626 1.0000000 0.9999447 0.9995471

sm20 0.9986733 0.9998198 0.9999447 1.0000000 0.9997957

sm80 0.9975575 0.9992706 0.9995471 0.9997957 1.0000000

Very high levels of smoothing may introduce a very slight bias, however the benefits seems

to outweigh the problems. Smoothing should probably be considered a standard feature when

applying the fourier contour transform.
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Illustrations for chapter4

Figure 4.1: Cod otolith placed on circular backdrop.
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Chapter 5

Validity of class comparison

This chapter investigates to which degree comparison of two classes of otoliths produced valid

results.

5.1 Broken Otoliths

Manual inspection of the Otoliths was performed by Alf Harbiz. Out of a total of 1332 otoliths

421 were classified as not fit for inclusion in analysis. If this breakage is random this should not

affect the resulting sampling distribution. As long as the sample size is still adequate random

loss of samples is not a case for concern. However the process of slicing otoliths is dependant

on the skill of the person cutting (Oth, 2011), and this is thus a potiental source for systematic

bias.

Without knowing which otoliths were processed by which operator a detailed investigation

into the potential batch-effects introduced by different operaters is not feasible. It is however

possible to easily investigate whether there are systematic differences between the two halibut

sets. If breakage is random, then sets of constisting of {All whole left otoliths which have whole

right twin} and {All whole left otoliths which have broken right twin} should have similar char-

acterics.
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Characteristics of left otoliths

State of right otolith n mean otolith area mean otolith edge

1250 1.035 ·106 5166

Whole 1184 1.034 ·106 5182

Broken 66 1.047 ·106 4884

The probability of a sample A∗ of size 66 having length shorter than 4844 is 0.076. Likewise,

the probability of a sample A∗ of size 66 having area less than 1.047 · 106 is 0.606. Neither of

these results should be very concerning. However, length of edge and size of area are positivly

correlated. Accept/Reject sampling of A∗ with size 66 again gives

P (A∗
ed g e < 4884|A∗

ar ea > 1.047 ·106) = 0.00003 (5.1)

This is significant, and there are thus systematic bias in which otoliths get broken. Bigger

otoliths with less convuleted edges apparently tend to break more often. This is worthy of note,

since intuitively it is easy to assume that smaller otoliths with strange shapes would be more

likely to break.

However, while this effect is statistically significant it may not be strong enough to be biologi-

cally or analytically significant. Comparing area and length of edges of otoliths with and without

broken twins graphically (5.1 and 5.2) show distributions with very comparable behaviour.

5.1.1 Distance from mean

As an addional measure, the paths of otoliths with and without broken twins were compared

against an averaged path. Given K paths of pki = [xk1, xk2..xkN , yk1, yk2...ykN ] using the method-

ology in 4.1, and using

p̄i =
K∑

k=1

pki

K
(5.2)

Mk =
N∑

i=1
|pki − p̄i | (5.3)

with Mk as a metric for equalness, the plot in 5.3 was created. No interesting patterns were

found using this metric.
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5.2 Rotation

Landmarks, that is distinct reoccuring features or patterns, are a common way of fixing orien-

tation when comparing shapes. Otoliths however lack easily identifiable landmarks. This is

problematic because the fourier coefficients are dependant on both starting point and orien-

tation. Standardazing orientation and starting point in a way that best facilitates discriminant

analysis is thus imperative.

Standardazing size and aligning the major axis of the first harmonic together, as done by

Kuhl and Giardina (1982), is an efficient and mathematically sound method for ensuring a fairly

good fit. With modern computeres it is however feasible to numerically search for orientations

with better fits.

The approach outlined here first finds a good-of-fit function to compare two countors against

eachother. Secondly it finds the average otolith shape to align against. Lastly it outlines how

to numerically search through different rotations and starting point shifts to best align each

otolith.

First a statistic for goodness of fit between two contours P1 = (xn , yn) and P2 = (x∗
n , y∗

n ), with

n = [1,2,3..N ] is proposed

T (P1,P2) =
N∑

n=1

√
(xn −x∗

n)2 + (yn − y∗
n )2 (5.4)

T is thus the sum of euclidic distance between points (xn , yn) and (x∗
n , y∗

n ), in other words a

distance function. This is a good measure for difference between otolith contours as long as the

two path have well-aligned starting points, however this statistic increases sharply with badly

aligned starting points.

A good contour to align against is the mean contour from the previously normalized con-

tours. Let Ck , k = [1,2,3..K ] be K sets of fourier coefficients with N harmonics with C = [a0,c0, a1,b1..dN ].

Using the inverse fourier transform, Fi nv , the paths Pk can be recreated from the normalized co-

efficients. A mean contour P̄ can thus be found as in 5.1.1. By choice we recreate the paths with

1000 points.

Fi nv (Ck ) = Pk = (xn , yn), n = [1,2,3, ...1000] (5.5)
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P̄ = (
K∑

k=1

xkn

I
,

K∑
k=1

ykn

K
) (5.6)

Remembering that equations 3.22 through 3.27 can be used to shift rotation and starting

point by ρ and t0. If we define R(C , t0,ρ) as the function that rotates contour C by ρ and shifts

starting point by t0 then finding the best orientation is just a matter of minimizing on t0 and ρ:

T (P̄ ,Fi nv (R(Ck , t0,ρ))) k = [1,2,3,4..K ] (5.7)

Since there are many local maxima, this was done numerically by testing every pair of 180

different possible rotation and 100 different shifts for all 2771 otoliths. For each otolith the pair

of (t0,ρ) which gave the smallest value for T was then used. This was run overnight on a standard

desktop computer.

5.3 Correcting for covariates

In the halibut set there is a strong dependence between the fourier coefficients and the

sex/weight/length (from now on SWL) profiles of the halibuts. Since the two sets of halibut

have fairly different SWL profiles, there is big risk that any discrimination results, even cross-

validated, will pick up on these differences rather than those stemming from growth conditions,

water temperatures and other systematic differences between the two populations of halibut.

Since the SWL profiles of these two catches most likely are not representative of the overall pop-

ulations we are trying to discriminate between, we will up with a model with very little real value

if that dependency is allowed to exist.

The approach used to solve this used by Are Murberg Henriksen and Alf Harbitz in Henrik-

sen (2013) was a stratification-based resampling. The cods were placed into groups with similar

characteristics, and two comparable sets were made by drawing equal numbers from each cat-

egory into each set. This is a straightforward and reasonable approach.

It is proposed here that a better approach is to keep the smallest set of otoliths as is and

only resample the largest set. When doing this resampling, a set of probabilities which gives the

resulting distribution the same weight/length/sex characteristics as the smallest one should be

used. A method , based on the accept/reject algorithm with an addional monte-carlo adjust-
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ment, is proposed for finding these probabilities.

The results were as following:

Population characteristics

Sex Weight Length

Population Ae Ag Ae Ag Ae Ag

Initial 0.41 0.73 1365 1257 49.9 50.8

Stratified 0.5 0.5 1350 1316 51.19 51.37

Prob-based 0.735 0.733 1257 1258 50.81 50.81

Linear Regression

Using a regression [Class ∼ Weight+Sex+Length+Fourier Coefficents] the following proportions

of explained variance was found:

Residuals Sex+Weight+length Fourier Coefficients

Initial 0.293 0.159 0.548

Stratified 0.264 0.007 0.728

P-adjusted 0.258 0.000 0.742

As seen, the stratification approach performed very well, but not perfectly. Whether the

trade-off between added complexity and minor improvement is worth it is an interesting ques-

tion.

5.3.1 Stratification approach

The stratification approach on this dataset was based on dividing the sets based on over/under

average on weight, length and sex. This resulted in the following classes
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Egga Grenland

Weight

Low High

Le
n

gt
h L (224,72) (38,57))

H (0,0) (226,211)

Length

Low High

H
ei

gh
t L (14,12) (5,16))

H (0,0) (3,33)

These tables show number of males/females on characterics categorized on above or under

respective means. Equal numbers were resampled from each class to form two new datasets.

Category above average length and below average weight was ignored.

5.3.2 Probability adjustment

The overall goal of this algorithm is to find a set of probabilities p(a), which when used when

resampling set A will cause A to have the same expected value for the covariates weight, sex and

length (hereby referred to as WSL) as set B .

First the WSL attributes of A and B is modeled using a kernel density function. The pro-

portion between these two estimates is used as a measure on how the samples in A needs to

be weighted up or down when sampling. Additionally, a Monto Carlo adjustment was used to

get exact results. This is because when using the inverse kernel density function the expected

WSL-values changes slightly.

1. Let D be any kernel density function which accepts a bandwidht bw and set of samples.

Any kernel density function can be used, as long as it’s additive

D(bw, A+B) = D(bw, A)+D(bw,B) (5.8)

and symmetric so

Ewl s(B) = Ewl s(D(bw,B)) (5.9)

.

In this thesis a multidimensioal gaussian density (Hayfield and Racine, 2008)1 with band-

width found by using the normal reference rule-of-thumb implented in the r-package np. The

1np: Nonparametric kernel smoothing methods for mixed data types
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same fixed bandwidth should be used for both densities. This is used to estimate probability

density functions for each set:

P A(w, l , s) = D(bw, A) (5.10)

PB (w, l , s) = D(bw,B) (5.11)

2. Now find the set of ratios between the probability density functions, and divide by the total

to construct a new probability density function. This is equivalent to using accept/reject

sampling.

Wwl s =
PB (wl s)

P A(wl s)
(5.12)

Pwl s =
Wwl s∑

Wwl s
(5.13)

At this point, it should be noted that:

Ewl s(B) = Ewl s(D(bw,B)) (5.14)

Ewl s(A) = Ewl s(D(bw, A)) (5.15)

It should also be noted that sampling from Pa and accepting samples with probabilty Pwl s

results in exactly the same distribion of WSL as sampling from Pb .

3. Now use the inverse of the density function to find a proposed weight for each sample in

A. For a sample a belonging to set A this would be

P (a) =
∫

D(bw, a)

D(bw, A)
·Pwl s (5.16)

Sampling using this set of probabilities will result in WSL-covariates very similar to B ,however

the WSL-attributes will be slightly off. This is due to P no longer being symmetrical, so this tran-

sition from continuous to discrete changes the estimates for WLS.
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5.3.3 Monte Carlo adjustment

Since the inverted density function introduced a very slight error, a MC-algorithm was used to

adjust the weight Pa,b,c to minimize Ea,b,c (A ·Pa,b,c )−Ea,b,c (B). The pseudo-code for the algo-

rithm used was as following:

misses = 0

while(misses < 1000){

a,b = 'draw two random samples'

adj = random()/0.05 * p(a)

if(letting p(b)=p(b)+adj and p(a)=p(a)-adj gives a better solution then:

p(b)=p(b)+adj

p(a)=p(a)-adj

misses = 0

if not:

misses += 1

}

The score metric used assess the current model was sum of difference between estimate of

standardized {a,b,c} of dataset B and weight-adjusted A.

This MC-algorithm was stable and the adjustment needed was very small. It does however

complicate the algorithm and the gain in accuracy was very small. More work on testing in

different scenarios of the probability based approach is necessary, both for quantification of the

effects and to find best practice for bandwidth and density functions.
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Illustrations

Figure 5.1: Comparison of length of contour of left halibut otoliths with whole and broken right
twin
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Figure 5.2: Comparison of area in pixels of left halibut otoliths with whole and broken right twin
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Figure 5.3: Comparison of valid and invalid otoliths using sum of distance from an averaged
otolith
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Chapter 6

Discriminant Analysis

6.1 Halibut Set

It was not possible to discriminate between the two sets of Halibut. The prediction rates using

LDA on normalized coeffiecents with resampling as in 5.3.2 is shown in plot 6.1. It should be

noted that resampling was done for each set of fourier components included. The mean overall

prediction accuracy for this model was 0.502. The results were aquired using LpO (p = 10)-

cross-validation.

It was also attempted to use the normalized coefficients as is, without any adjustments to

make the sets comparable. The plot for this is shown in 6.2. It should be noted that a prior

probabilty of (0.5,0.5) was used for this model. The mean prediction accuray for this model was

0.510.

The methodology used was the exact same as when achieving the same level of prediction

accuracy when attempting to discriminate between 8 classes in the cod dataset.

6.2 Benchmark for Cod discrimination

Since it was not possible to discriminate between the two sets of Halibut, a cod set was made

available for method testing. This is the same set used in Henriksen (2013) and Stransky et al.

(2008).
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In order to assess the effect of different approaches to discriminant analysis a straightfor-

ward LDA has been used as benchmark. No resampling, preprocessing or any deviations from

the standard approach proposed by Kuhl and Giardina (1982) were used. All otoliths from all 8

classes were included. The class proportions were used prior probability in the LDA.

6.2.1 Optimal number of Fourier coefficients

First and foremost the number of coefficients from the Fourier Mode to use must be decided.

Somewhat similar to the principal components from a PCA, latter coefficients explain less vari-

ance and adds less accuracy than the first ones (unlike PCA this is however not guaranteed with

Fourier Components). As with PCA, cross-validation must be used to assess whether this added

accuracy reflects noise or information, and to which degree including it leads to overfitting.

Correctly classified cod vs number of fourier components (n=1177)

1-10 - 391 508 502 527 545 564 555 569 570

11-20 577 576 591 607 616 617 614 618 623 616

21-30 608 592 591 615 608 600 589 586 600 604

31-40 603 591 592 598 599 594 609 603 604 597

41-50 592 590 599 597 593 593 593 603 596 598

Leave-p-Out with p = 10 cross-validation was used here, with each batch of 10 samples be-

ing drawn randomly from a pool without replacement. We observe that the results generally im-

prove with an increased number of coefficients. We also observe that after a maximum around

15-22 the performance of the model is very stable.

Since cross-validation has a random component, the general rule is to pick the first result

that has no later results which are significantly better. In this case, 19 is the number of compo-

nents with the highest cross-validated discriminant efficiency. 15 is however still chosen as the

optimal model, since the difference is not significant. Simpler models generally perform better

and are generally less prone to random effects.

Unless otherwise noted, all tests in this chapter uses the same cross-validition, same LDA-

call and same normalized fourier coefficients. Also, unless otherwise noted, any transforms are
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applied to the normalized fourier coefficients.

6.2.2 Key scores for LDA Benchmark

LDA Confusion matrix for 15 fourier components

Predicted Class

BAL BAR VEE VEW NOK POR SVA VAR

A
ct

u
al

C
la

ss

BAL 209 17 16 7 0 60 0 0

BAR 54 248 30 35 1 39 0 1

VEE 16 6 23 18 0 7 0 1

VEW 5 8 16 10 0 9 0 0

NOK 6 16 7 6 59 10 47 1

POR 20 4 2 4 0 18 0 1

SVA 0 0 0 0 13 1 18 0

VAR 14 7 6 4 16 16 7 38

Probability that otolith of class X is classified as class X

BAL BAR VEE VEW NOK POR SVA VAR

P 0.676 0.608 0.324 0.208 0.388 0.367 0.563 0.352

Probability that otolith classified as class X belongs to class X

BAL BAR VEE VEW NOK POR SVA VAR

P 0.645 0.81 0.23 0.119 0.663 0.113 0.25 0.905

Error Rate

Overall error rate for this model is then E = 0.471.
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The model performs very well on the two major groups of cod, however it is competely un-

able to distinguish between eastern and western vestfjorden (VEE and VEW). Also of note is that

a rather large amount of cod is misclassified as POR.

6.3 On transforming the fourier coefficients

6.3.1 Sinusiods

As shown in 3.7:

Fx(t ) =
N∑

n=1
(an cos(nt )+bn sin(nt ) =

N∑
n=1

(αn sin(nt +βn)) 0 < t < 2π (6.1)

Described with words, the sum of a cosine and sine can be rewritten to a timeshifted sine.

For harmonics with higher frequencies the timeshift should almost only be dependant on ran-

domness, and it is therefore hoped that transforming An and Bn to amplitude and timeshift will

separate noise from signal, and thus lead to better discrimination results.

Cross-validation however shows markedly worse results when using the transformed co-

efficients. The notion that separating these variables separates noise from signal thus seem

incorrect.
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6.3.2 Key scores for Sinusiod coefficients

Confusion matrix for Sinusiod coefficients

Predicted Class

BAL BAR VEE VEW NOK POR SVA VAR

A
ct

u
al

C
la

ss

BAL 174 13 20 15 0 87 0 0

BAR 70 155 66 71 0 41 1 4

VEE 19 14 16 13 0 9 0 0

VEW 7 10 10 11 0 9 0 1

NOK 12 10 6 2 55 15 49 3

POR 25 3 4 0 0 17 0 0

SVA 1 0 0 0 17 1 13 0

VAR 21 3 1 5 18 19 9 32

Probability that otolith of class X is classified as class X

BAL BAR VEE VEW NOK POR SVA VAR

P 0.5631 0.380 0.225 0.229 0.362 0.347 0.406 0.296

Probability that otolith classified as class X belongs to class X

BAL BAR VEE VEW NOK POR SVA VAR

P 0.529 0.745 0.130 0.0940 0.611 0.0859 0.181 0.800

Error Rate

Overall error rate for this model is then E = 0.598.

Performance has decreased markedly for the entire model. It does not seem like this trans-

formation has any benefits.
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6.3.3 Absolute Value

On a hunch it was tested whether taking the absolute value of the coefficients would improve

discrimination. This was done due to a very simple concept. Numerically the positive x and

the negative −x are farther away from each other than from 0 (for x 6= 0). However looking at

the contour from a biological perspective x sin(t ) is more similar to −x sin(t ) than either is to

0sin(x).

Interestingly enough, it turns out that this actually improves discrimination rather markedly.

6.3.4 Key scores for Absolute Value

Confusion matrix for using absolute value on fourier coefficients

Predicted Class
BAL BAR VEE VEW NOK POR SVA VAR

A
ct

u
al

C
la

ss

BAL 226 27 4 15 0 35 0 2
BAR 41 280 22 25 2 36 0 2
VEE 7 5 24 21 0 12 0 2
VEW 8 2 18 14 0 5 0 1
NOK 1 21 10 4 71 9 34 2
POR 16 10 8 4 0 11 0 0
SVA 0 0 0 0 15 1 16 0
VAR 9 7 9 12 15 9 7 40

Probability that otolith of class X is classified as class X

BAL BAR VEE VEW NOK POR SVA VAR

P 0.731 0.686 0.338 0.292 0.467 0.224 0.5 0.37

Probability that otolith classified as class X belongs to class X

BAL BAR VEE VEW NOK POR SVA VAR

P 0.734 0.795 0.253 0.147 0.689 0.093 0.281 0.816
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Error Rate

Overall error rate for this model is then E = 0.420.

Model performance was increased markedly in both the two major sets BAL and BAR, and

slightly on the minor NOK,POR,SVA and VAR. There is still no classification between VEE and

VEW. It thus seems highly likely that this should have been considered one population.

6.4 On using best fit rotation

6.4.1 No standardisation fix

Primarily to investigate what would happen LDA was run on raw pre-normalization fourier co-

efficients. This set has starting point selected somewhat arbitrarily by position in original the

image, no orientation nor any size-standardization. These results should be regarded as highly

suspicous.

6.4.2 Key scores for raw fourier coefficients

Confusion matrix for using absolute value on fourier coefficients

Predicted Class

BAL BAR VEE VEW NOK POR SVA VAR

A
ct

u
al

C
la

ss

BAL 224 25 7 6 0 46 0 1

BAR 63 266 32 32 0 13 1 1

VEE 4 7 29 24 0 7 0 0

VEW 2 6 17 17 0 6 0 0

NOK 4 24 4 4 93 7 14 2

POR 20 5 2 2 0 19 0 1

SVA 0 0 1 0 19 0 10 2

VAR 16 7 0 6 20 19 6 34
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Probability that otolith of class X is classified as class X

BAL BAR VEE VEW NOK POR SVA VAR

P 0.673 0.782 0.315 0.187 0.705 0.162 0.323 0.829

Probability that otolith classified as class X belongs to class X

BAL BAR VEE VEW NOK POR SVA VAR

P 0.725 0.652 0.408 0.354 0.612 0.388 0.313 0.315

Error Rate

Overall error rate for this model is then E = 0.412, the best so far.

In this set the algorithm is allowed to pick up on systematic differences in otolith size and

orientation. It was expected that this would improve results, however it is still somewhat sur-

prising that the discrimination results are this good. It is probably not a cause for concern, as

the relationship between otolith size, fish size/weight and catch location are quite strong.

6.4.3 Best Fit Rotation

Applying the best fit rotation algorithm outlined in 5.2 to the otoliths before applying LDA yields

the following results:
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6.4.4 Key scores for raw fourier coefficients

Confusion matrix for using absolute value on fourier coefficients

Predicted Class

BAL BAR VEE VEW NOK POR SVA VAR

A
ct

u
al

C
la

ss

BAL 219 31 8 4 0 46 0 1

BAR 62 271 27 36 1 11 0 0

VEE 3 7 34 19 0 8 0 0

VEW 3 6 20 13 0 6 0 0

NOK 4 24 2 7 93 6 14 2

POR 18 4 2 3 0 22 0 0

SVA 0 0 0 0 19 1 10 2

VAR 22 3 2 5 20 16 5 35

Probability that otolith of class X is classified as class X

BAL BAR VEE VEW NOK POR SVA VAR

P 0.662 0.783 0.358 0.150 0.699 0.190 0.344 0.87

Probability that otolith classified as class X belongs to class X

BAL BAR VEE VEW NOK POR SVA VAR

P 0.709 0.664 0.479 0.271 0.612 0.449 0.313 0.324

Error Rate

Overall error rate for this model is then E = 0.408, which is slighty better than previous best.

Improvements are pretty even across the board, and no new phenoma were discovered. The

model is still unable to discriminate between VEE and VEW.
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6.5 PLS-DA

To investigate whether other discriminant functions would perform better, several methods

were tested. From the PLS-family of functions, Partial Least Squares Regression - Discriminant

Analysis, which performs PLS against categorical data was chosen. The implentation used was

R’s PLSDA (from Jed Wing et al., 2014).

6.5.1 Key scores for PLS-DA

Confusion matrix

Predicted Class

BAL BAR VEE VEW NOK POR SVA VAR

A
ct

u
al

C
la

ss

BAL 201 19 11 9 0 69 0 0

BAR 52 239 32 44 1 39 0 1

VEE 14 7 23 17 0 9 0 1

VEW 4 5 16 12 0 11 0 0

NOK 7 18 3 6 59 11 47 1

POR 21 4 1 3 0 20 0 0

SVA 0 0 1 0 13 0 18 0

VAR 18 5 7 2 16 16 8 36

Probability that otolith of class X is classified as class X

BAL BAR VEE VEW NOK POR SVA VAR

P 0.650 0.586 0.324 0.250 0.388 0.408 0.562 0.333

Probability that otolith classified as class X belongs to class X

BAL BAR VEE VEW NOK POR SVA VAR

P 0.634 0.805 0.246 0.129 0.663 0.114 0.247 0.923
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Error Rate

Overall error rate for this model is then E = 0.483, which is comparable to initial result aquired

when using LDA. PLS-DA shows very comparable behaviour to LDA on this dataset. It was

hoped that PLS-DA would perform better, or atleast differently than LDA, but this seems not

to be the case.

6.6 Decision trees

Decision trees are based on a making a series of discrete decision in order to classify a sample.

These are represented as a tree, where one starts at the top and proceeds to an endnode. De-

cision trees are often visualized using dendrograms. The implentation used here was R’s rpart

(Therneau et al., 2012).

Since they are based on hard rules, they often perform better on data with strong clustering

or stratification than more fuzzy distribution-based approaches do. It is expected that decision

trees will perform poorly on these data, however it is hoped they will be able to pick up on some

minor interesting dependencies.

6.6.1 Key scores for decision trees

Confusion matrix

Predicted Class

BAL BAR VEE VEW NOK POR SVA VAR

A
ct

u
al

C
la

ss

BAL 184 15 12 13 0 85 0 0

BAR 40 215 32 48 1 71 0 1

VEE 20 5 15 22 0 9 0 0

VEW 8 5 13 15 0 7 0 0

NOK 6 19 5 6 60 9 47 0

POR 18 4 2 2 0 23 0 0

SVA 0 0 0 1 12 0 19 0

VAR 11 4 2 5 19 27 7 33
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Probability that otolith of class X is classified as class X

BAL BAR VEE VEW NOK POR SVA VAR

P 0.595 0.527 0.211 0.313 0.395 0.469 0.594 0.306

Probability that otolith classified as class X belongs to class X

BAL BAR VEE VEW NOK POR SVA VAR

P 0.641 0.805 0.185 0.134 0.652 0.100 0.260 0.970

Error Rate

Overall error rate for this model is then E = 0.520, which was not surprising.

The model was not able to pick up on any differences in VEE/VEW. Performance was similar

to LDA and PLS-DA, just worse.
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Illustrations

Figure 6.1: Ratio of correctly predicted Halibut from Eggakanten and Grenland, run on normal-
ized sets of fourier coefficients using resampling to ensure comparable sets. Results pr compo-
nent are independant as resampling has been run each time.
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Figure 6.2: Ratio of correctly predicted Halibut from Eggakanten and Grenland, run on normal-
ized sets of fourier coefficients. No resampling or adjustment done. Prior probability set to
(0.5,0.5)
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Chapter 7

Summary and Recommendations for

Further Work

7.1 Summary and Conclusions

The entire chain of aquiring contours with a scanner to final discriminant analysis has been

investigated for potential sources of bias. The following has been found:

• The process of finding the contour from an image is robust and stable. Details of image

formats and size, color represenation are largely irrelevant. Furthermore, during testing it

was found that using wrong thresholds or other mistakes generally caused the process to

outright fail, rather than introduce subtle biases.

• It has been found that there might be bias in which samples get invalidated through break-

age. This may be a cause for subtle bias and may cause difficulty in reproducing results

between sets and studies.

• A probability based resampling technique has been proposed instead using stratification.

The algorithm works quite well, however it is not clear whether the added complexity is

worth the fairly minor improvement.

• Different discrimination methods have been tested. Neither showed improvements over

straight Linear Discriminant Analysis nor did any show any interesting characteristics. It
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should also be noted that it was attempted to use Wavelets and Fourier resampling on the

otoliths. These attemps gave no interesting results, but were not thourough enough to

disprove their potential use. These findings were thus not included in this thesis.

• Different transformations on the fourier coefficients were tested. It was found that using

the absolute value of the coefficients gave improved discrimination results. It was also

found that numerically finding the best fit orientation of the otoliths after normalization

further improved discrimination.

7.2 Recommendations for Further Work

It is recommended that other researchers test the findings on absolute value and numerically

best orientation fit. It will be interesting to see if they hold for fourier contour analysis in general

or just this set of data.



Appendix A

Code

A few selected algorithms and code-snippets have been included here. The entire codebase is

available to anyone who wants, just email me at <reidar.hagen@gmail.com>. I honestly believe

code is best read on a screen with proper a editor and proper formatting.

On that note, the images of the otoliths are not mine to give away. Permission to use them

was given to me by Alf Harbitz.

A.1 Fourier Transform

fourier_transform = function(x,y,comps){

results = matrix(0,1,4+4*comps)

colnames(results) = c("SAMPLE","OTOLITH","A1","C1",1:(comps*4))

N = length(x)

dx = x - c(x[N],x[-N])

dy = y - c(y[N],y[-N])

dt = rep(1,N)

# (t.to , t.from) is programming speak for t_n and t_(n-1)

# so we need to adjust to is defined by t.from to t.to has value x[n]

t.to = cumsum(dt)

60
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t.from = c(0,head(t.to,-1))

# Tk equals T from Kuhl, since T is reserved for transpose in R

Tk = t.to[N]

x.previous = c(0,x[1:(N-1)])

y.previous = c(0,y[1:(N-1)])

# a0 and c0

results[1,3] = 1/Tk * sum(dx/(2*dt)*(t.to^2-t.from^2)+(t.to-t.from)*(x.previous-dx/dt*t.from))

results[1,4] = 1/Tk * sum(dy/(2*dt)*(t.to^2-t.from^2)+(t.to-t.from)*(y.previous-dy/dt*t.from))

fx.comp = results[1,3]

fy.comp = results[1,4]

for(n in 1:comps){

a = Tk/(2*n^2*pi^2)*sum(dx/dt*(cos(2*pi*n*t.to/Tk)-cos(2*pi*n*t.from/Tk)))

b = Tk/(2*n^2*pi^2)*sum(dx/dt*(sin(2*pi*n*t.to/Tk)-sin(2*pi*n*t.from/Tk)))

c = Tk/(2*n^2*pi^2)*sum(dy/dt*(cos(2*pi*n*t.to/Tk)-cos(2*pi*n*t.from/Tk)))

d = Tk/(2*n^2*pi^2)*sum(dy/dt*(sin(2*pi*n*t.to/Tk)-sin(2*pi*n*t.from/Tk)))

results[1,(n*4+1):(n*4+4)] = c(a,b,c,d)

}

return(results)

}

A.2 Normalize Fourier Coefficients

normfourier = function(coefficients){

f = coefficients
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comps = (length(f)-2)/4

x.a0 = f[1]

y.a0 = f[2]

df1 = data.frame(a = f[4*(1:comps)-1], b = f[4*(1:comps)],c = f[4*(1:comps)+1],d = f[4*(1:comps)+2])

# find new orientation

a = df1$a[1]; b=df1$b[1]; c=df1$c[1]; d=df1$d[1];

aa = -(b*d+a*c); bb=(d^2-b^2+c^2-a^2); cc=(b*d+a*c);

phi = atan((-bb+sqrt(bb^2-4*aa*cc))/(2*aa))

delta = atan( (b * cos(phi) + d * sin(phi)) / ((a * cos(phi) + c * sin(phi))))

rotate = function(df1,phi,delta){

ns = 1:comps

a = ( (df1$a * cos(phi) + df1$c * sin(phi)) * cos(ns * delta) + (df1$b * cos(phi) + df1$d * sin(phi)) * sin(ns * delta));

b = ( (df1$a * cos(phi) + df1$c * sin(phi)) * -sin(ns * delta) + (df1$b * cos(phi) + df1$d * sin(phi)) * cos(ns * delta));

c = ( (df1$c * cos(phi) - df1$a * sin(phi)) * cos(ns * delta) + (df1$d * cos(phi) - df1$b * sin(phi)) * sin(ns * delta));

d = ( (df1$c * cos(phi) - df1$a * sin(phi)) * -sin(ns * delta) + (df1$d * cos(phi) - df1$b * sin(phi)) * cos(ns * delta));

df1$a = a; df1$b = b; df1$c = c; df1$d = d;

return(df1);

}

totalrotation = phi

df1 = rotate(df1,phi,delta)

# find correct direction of traversal

if(sign(df1$a[1]) != sign(df1$d[1])){

df1$b = -df1$b;

df1$d = -df1$d;
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}

# find *a* major axis

if(abs(df1$a[1]) < abs(df1$d[1])){

df1 = rotate(df1,pi/2,pi/2);

totalrotation = totalrotation + pi/2

}

# if a less than zero, change starting point to opposite side

if(df1$a[1] < 0){

df1 = rotate(df1,0,pi);

}

# normalize x-axis

df1 = df1 / df1$a[1]

# save result

n = 1:comps

f[1:2] = 0

f[n*4-1] = df1$a[n]

f[n*4] = df1$b[n]

f[n*4+1] = df1$c[n]

f[n*4+2] = df1$d[n]

return(list(f,totalrotation))

}

A.3 Inverse Fourier transform

itransform = function(coefficients){
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a0 = coefficients[1]

c0 = coefficients[2]

cc = coefficients[3:length(coefficients)]

comps = length(cc)/4

x = rep(0,2000) #a0

y = rep(0,2000) #c0

tt = 0:1999

TT = 2000

for(n in 0:(comps-1)){

x = x + cc[[1+n*4]] * cos(2*pi*(n+1)*tt/TT) + cc[[2+n*4]] * sin(2*pi*(n+1)*tt/TT)

y = y + cc[[3+n*4]] * cos(2*pi*(n+1)*tt/TT) + cc[[4+n*4]] * sin(2*pi*(n+1)*tt/TT)

}

return(cbind(x,y))

}

A.4 Probabilty adjusted sampling

setwd("C:/Users/reidar/Desktop/FINAL");

library(np)

paths = read.table("DATA/paths.csv",header=TRUE,stringsAsFactors=FALSE)

centers = read.table("DATA/centers.csv",header=TRUE,stringsAsFactors=FALSE)

master = read.table("DATA/master.csv",header=TRUE,stringsAsFactors=FALSE)

wl = read.table("DATA/wl.csv",header=TRUE,stringsAsFactors=FALSE)

group = master$GROUP[wl$SAMPLE]

g1 = (group==1)

g2 = (group==2)



APPENDIX A. CODE 65

t1 = data.frame(w=wl$WEIGHT[g1],l=wl$LENGTH[g1],s=wl$SEX[g1])

t2 = data.frame(w=wl$WEIGHT[g2],l=wl$LENGTH[g2],s=wl$SEX[g2])

bw1 = npudensbw(t1,bwmethod="normal-reference")

bw2 = npudensbw(t2,bwmethod="normal-reference")

# it makes more sense to use same bandwidth

p21 = fitted(npudens(bw2,t1))

p11 = fitted(npudens(bw1,t1))

acceptratio = (p21/p11)/max(p21/p11)

w = acceptratio / sum(acceptratio)

# MC-adjustment of weights to remove bias

p = w

d = as.matrix(scale(t1))

target = c(mean(wl$WEIGHT[g2]),mean(wl$LENGTH[g2]),mean(wl$SEX[g2]))

t = (target - attr(d,"scaled:center"))/attr(d,"scaled:scale")

error = colSums(diag(p) %*% d)-t

ntries = 0

N = length(p)

nums = 1:N

while(ntries < 1000){

ntries = ntries + 1

s = sample(nums,2)

dp = runif(1,0,0.05) * p[s[1]]

if(sum(abs(dp*d[s[2],]+-dp*d[s[1],]+error))<sum(abs(error))){
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p[s[1]] = p[s[1]]-dp

p[s[2]] = p[s[2]]+dp

error = colSums(diag(p) %*% d)-t

ntries = 1

}

}

write.table(p,"DATA/samplingdistr.csv",row.names=FALSE)

A.5 Find best rotation

setwd("C:/Users/reidar/Desktop/FINAL")

centers = read.table("DATA/centers.csv",header=TRUE,stringsAsFactors=FALSE)

master = read.table("DATA/master.csv",header=TRUE,stringsAsFactors=FALSE)

paths = as.matrix(read.table("DATA/approx_paths.csv",header=TRUE,stringsAsFactors=FALSE))

fourier_nrm = as.matrix(read.table("DATA/coefficients/fourier_nrm.csv",header=TRUE))

source("LIBRARY/fourierfunctions.R")

nrm_paths = matrix(0,2707,2000)

for(i in 1:210){

nrm_paths[i,] = itransform_1000(fourier_nrm[i,3:244])

}

rot_paths = matrix(0,2707,2000)

shift = function(p,n){

if(n==0){return(p)}

return(cbind(c(tail(p[,1],-n),head(p[,1],n)),c(tail(p[,2],-n),head(p[,2],n))))
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}

# sum((shift(t,s)-p)^2)

score_most_shifts = function(p,t){

score = function(s){sum(sqrt(rowSums((shift(t,s)-p)^2)))}

return(min(sapply((0:99)*10,score))) # check every 10 shifts

}

get_best_shift = function(p,t){

score = function(s){sum(sqrt(rowSums((shift(t,s)-p)^2)))}

return(which.min(sapply(0:999,score))) # check every possible

}

rotate = function(t,rot){

return(cbind(cos(rot)*t[,1]-sin(rot)*t[,2],sin(rot)*t[,1]+cos(rot)*t[,2]))

}

find_best_rotation = function(p,t){

score = function(i){score_most_shifts(p,rotate(t,i))}

return((which.min(sapply((0:179)/180*2*pi,score))-1)/180*2*pi)

}

for(i in 2:2707){

t = cbind(paths[i,1:1000],paths[i,1001:2000])

paths[i,]= c(shift(t,get_best_shift(p,t)))

}

p = colMeans(nrm_paths)

for(i in 1:10){
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print(i)

t = cbind(nrm_paths[i,1:1000],nrm_paths[i,1001:2000])

rot = find_best_rotation(p,t)

t = rotate(t,rot)

t = shift(t,get_best_shift(p,t))

rot_paths[i,] = c(t)

}

plot(rot_paths[1,1:1000],rot_paths[1,1001:2000],type="l")

for(i in 2:10){lines(rot_paths[i,1:1000],rot_paths[i,1001:2000])}

write.table(rot_paths,"DATA/approx_paths_rotated.csv",row.names=FALSE)

A.6 LDA with cross-validation

setwd("C:/Users/reidar/Desktop/FINAL - Torsk/")

library(MASS)

library(R.matlab)

group = as.factor(readMat("IMAGES/data/dat1177.mat")$dat1177[,7])

fourier.nrm = read.table("DATA/fourier_nrm.csv",header=TRUE)

N = dim(fourier.nrm)[1]

random_draw = list()

available = 1:N

ngroups = (N/10)

for(i in 1:ngroups){
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random_draw[[i]] = sample(available,N/ngroups)

available = setdiff(available,random_draw[[i]])

}

if(available){

random_draw[[ngroups+1]] = available

ngroups = ngroups + 1

}

comp_score = rep(0,50)

for(comps in 2:50){

scores.nrm = matrix(0,8,8)

for(i in 1:ngroups){

s = random_draw[[i]]

lda_set = cbind(group[-s],fourier.nrm[,1:(2+comps*4)][-s,-c(1:5)])

colnames(lda_set)[1] = "GROUP"

res = lda(GROUP ~ . , lda_set ,prior=(rep(1,8)/8))

g1 = as.numeric(group[s])

p1 = as.numeric(predict(res,fourier.nrm[s,-c(1:5)])$class)

for(j in 1:length(p1)){

scores.nrm[g1[j],p1[j]] = scores.nrm[g1[j],p1[j]] + 1

}

}

comp_score[comps] = sum(diag(scores.nrm))

}

print(comp_score)

comps = which.max(comp_score)

scores.nrm = matrix(0,8,8)

for(i in 1:ngroups){

s = random_draw[[i]]
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lda_set = cbind(group[-s],fourier.nrm[,1:(2+comps*4)][-s,-c(1:5)])

colnames(lda_set)[1] = "GROUP"

res = lda(GROUP ~ . , lda_set ,prior=(rep(1,8)/8))

g1 = as.numeric(group[s])

p1 = as.numeric(predict(res,fourier.nrm[s,-c(1:5)])$class)

for(j in 1:length(p1)){

scores.nrm[g1[j],p1[j]] = scores.nrm[g1[j],p1[j]] + 1

}

}

print(scores.nrm)
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