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Abstract

Electricity spot markets and other �nancial markets are complex systems, and

it is di�cult to forecast their behaviour, especially uncontrolled and unmanageable

situations, such as power crises and de�ation of �nancial bubbles.

An energy crisis is any price rise in the supply of energy resources to an econ-

omy. It has undesirable consequences, occasionally irreversible. The most known

of these crises is the California Electricity Crisis, when wholesale prices have risen

by over 800%.

The goal of the thesis is to explore sudden transitions in electricity spot markets

and other �nancial markets within the framework of nonlinear dynamical systems.

There are di�erent types of such transitions, which we can trace using observable

signatures.

Using the theory of �critical slowing down�, we demonstrate that there were

clear early warning signatures prior to the California Electricity Crises and other

�nancial crises. The results are promising and show that further research should

be made in this direction.
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Chapter 1

Introduction

Financial markets are very complex systems, where it is hard to predict sud-

den �uctuations. In this thesis we review these systems as nonlinear dynamical

systems.

Bifurcation theory is applied to the mathematical study of dynamical systems.

It allows us to explore structural instability and critical transitions. The goal

is to describe power crises and other �nancial crises as bifurcations in stochastic

dynamical systems.

The main objectives of this thesis are:

• to review the theory of tipping points in stochastic dynamical systems;

• to explore power crises as bifurcations;

• to analyze historical electricity prices in order to look for early warning in-

dicators.

1.1 De�nition of tipping points

A tipping point is the point where a sudden transition between two states

takes place. We can consider tipping points as bifurcations in stochastic dynamical

system. At a tipping point, small changes in a variable can dramatically a�ect the

state of the system at some time in the future.
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2 CHAPTER 1. INTRODUCTION

The term is used in many �elds, for example, ecology, climatology, and medicine.

We can also describe the �nancial system by the general equilibrium theory and

use the term of tipping point to review crises in �nancial markets. We focus on a

set of tipping points related to �nancial markets.

The variance of �uctuations rises and correlation becomes longer when a tip-

ping point is approached. It is called �critical slowing down�. It provides early

warning indicators for possible crises in �nancial markets. The important ques-

tion in �nancial forecasting is how to detect such indicators to avoid disastrous

and unwanted events. We can �nd also the reasons why crises occur, and prevent

similar crises from happening again.

The tipping point is the corresponding critical point of the system, at which the

future state of the system is qualitatively altered. We can de�ne control parameter

p, which has a critical control value pcrit. The perturbation δp > 0 causes a change

F̂ in a crucial feature of the system F [1].

Figure 1.1 shows one of the most known bifurcations, the saddle-node fold.

Figure 1.1: Saddle-node fold.

|∆F | = |F (p ≥ pcrit + δp | T )− F (pcrit | T )| ≥ F̂ > 0.

This inequality displays that a small deviation above the critical value can

cause a large qualitative change.
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The point pcrit is a tipping point, which causes a qualitative change. The change

may occur immediately, or much later.

1.2 Structure of the thesis

We describe the theory of bifurcations in dynamical systems in Chapter 2,

where we give the main de�nitions and properties. We also review the classi�cation

of bifurcation of �xed points. The main sources of this chapter were �Nonlinear

climate dynamics�, H.A. Dijkstra [2] and �Nonlinear dynamics and chaos�, S.H.

Strogatz [3].

In Chapter 3 we explore bifurcations in stochastic dynamical systems, and

de�ne the basic terms in this theory. This chapter is based on lectures for the

course MAT-3213 �Climate Dynamics�, professor Kristo�er Rypdal [4].

In Chapter 4 we review early-warning signals for critical transitions, and con-

sider critical-slowing down as a leading indicator. Chapter 5 gives a description of

power markets, in particular, the Californian market and its major crises.

In chapter 6 we analyze �nancial crises within the framework developed in

this thesis and in Appendices we include computer codes used for the time series

analysis.
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Chapter 2

Bifurcations in dynamical systems

In this chapter we give an introduction to the theory of dynamical systems.

According to the de�nition of a tipping point that is given in Chapter 1, we should

consider bifurcations in these systems. We review bifurcations in one-dimensional

systems, also in higher-dimensional systems using examples.

2.1 Dynamical systems

A dynamical system is a very important concept in mathematics. There are

�xed rules that describe the time dependence of position of point in a geometrical

space.

To de�ne the dynamical system we need to determine a state space S, a set of

times T and a rule R for evolution, R : S × T → S that gives a state s ∈ S. It is
a model describing the temporal evolution of a system.

These systems are used in �nancial and economic forecasting, environmental

modelling, medical diagnosis, and other applications. Examples of dynamical sys-

tems are the model of the growth of a bacteria population and the model of an

undamped pendulum.

We can consider the dynamical system as a system of �rst-order di�erential

equations [2]:

5



6 CHAPTER 2. BIFURCATIONS IN DYNAMICAL SYSTEMS

dtx1(t) = f1(x1, x2, . . . , xN)

dtx2(t) = f2(x1, x2, . . . , xN)

. . .

dtxN(t) = fN(x1, x2, . . . , xN).

We can write this system in the form dtx = f(x), where:

x =


x1

x2

. . .

xN

 , f(x) =


f1

f2

. . .

fN

 .

Here f(x) is a velocity �eld for the state vector x(t).

The system can be non-autonomous, if there is time dependence of velocity

�eld f(x):

dtx = f(x, t).

Bifurcation is a qualitative change of stability of �xed points in the dynamics,

whereas bifurcation point is a parameter value at which it occurs [3].

Bifurcation is the basic concept in the mathematical study of dynamical sys-

tems. They give us models of transitions and instabilities, when one or more

control parameters vary. The slight changes of parameter can cause large e�ect on

the solution.

Bifurcations occur in one-dimensional subspace, it can also be in higher-dimensional

systems.

We start with review of bifurcations of �xed points in one-dimensional systems.

Bifurcations of �xed points (for �rst-order equation) can be di�erent:

• saddle-node (fold) bifurcation;
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• transcritical bifurcation;

• pitchfork bifurcation.

2.2 Saddle-node bifurcation

Saddle node bifurcation (fold bifurcation) is one of the most fundamental bi-

furcation. It is the bifurcation when two �xed points of a dynamical system collide

and destroy each other.

We often use the term of saddle-node bifurcation for continuous dynamical sys-

tems. The same bifurcation is often called fold bifurcation for discrete dynamical

systems. If we change parameter, it will cause changes in the stability of a �xed

point.

The simple example of saddle-node bifurcation is the �rst-order system:

ẋ = r + x2,

where r is a bifurcation parameter, which can have di�erent sign. This can be seen

in Figure 2.1.

Figure 2.1: Example of saddle-node bifurcation.

There are 3 cases: parameter r is negative, positive or equal to 0. For r ≤ 0

the system has �xed points x = ±
√
−r. For r > 0 there are no real �xed points.
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If r < 0 we have the stable �xed point at x = −
√
r and unstable at x = +

√
r.

The parabola moves up when r approaches 0. In this case we have only one

�xed point. Two �xed points unite into the half-stable �xed point at x = 0. This

point is called a saddle-node �xed point.

Figure 2.2: Bifurcation diagram for saddle-node bifurcation.

Figure 2.2 is the bifurcation diagram for saddle-node bifurcation. It shows how

behaviour of the system changes according to the value of a bifurcation parameter

r.

2.3 Transcritical bifurcation

Transcritical bifurcation is bifurcation when two �xed points exchange stability

properties when a bifurcation parameter reaches a critical value.

The example for this type of bifurcation is:

ẋ = rx− x2.

Figure 2.3 shows the velocity �eld for di�erent value of parameter r.

The points x = 0 and x = r are �xed points for all values of r.

In the �rst case, r < 0, we have the unstable �xed point at x = r and the

stable �xed point at x = 0.
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Figure 2.3: Example of transcritical bifurcation.

But for r > 0 the points exchange their stability, the point at x = 0 is unstable

and the point at x = r is stable. Then bifurcation occurs at x = 0.

There is the di�erence between transcritical bifurcation and saddle-node bifur-

cation. In transcritical bifurcation �xed points do not disappear after bifurcation,

they just change their stability.

Figure 2.4 shows the bifurcation diagram for transcritical bifurcation.

Figure 2.4: Bifurcation diagram for transcritical bifurcation.
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2.4 Pitchfork bifurcation

Pitchfork bifurcation has two types: supercritical and subcritical. These bifur-

cations occur with symmetry.

Subcritical bifurcation takes place when an unstable branch splits into one

stable and two unstable branches. Supercritical bifurcation is when one stable

branch splits into one unstable and two stable branches.

2.4.1 Supercritical bifurcation

Supercritical bifurcation is given by the system:

ẋ = rx− x3.

Figure 2.5: Example of Pitchfork bifurcation.

For r < 0 there is only one �xed point x = 0, and it is stable. When r = 0 the

�xed point x = 0 is still stable, but weaker.

For r > 0 we have the �xed point x = 0, which is unstable, and two new stable

�xed points x = ±
√
r. We can see this in the Figure 2.5.

The term �pitchfork� is clearer when we plot the bifurcation diagram. It is

shown in Figure 2.6(a).

The cubic term is stabilizing.
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(a) (b)

Figure 2.6: (a): Supercritical bifurcation diagram. (b): Subcritical bifurcation dia-
gram.

2.4.2 Subcritical bifurcation

Subcritical bifurcation is given by the system:

ẋ = rx+ x3.

Figure 2.6(b) shows the bifurcation diagram of this system.

In this case, for r < 0 two nonzero �xed points x = ±
√
r are unstable, whereas

the �xed point x = 0 is stable.

For r > 0 there is the �xed point x = 0, it is unstable.

2.5 Bifurcations in higher-dimensional systems

Bifurcations in higher-dimensional systems are analogous to bifurcations of

�xed points in one-dimensional subspace. If we add more dimensions in systems,

nothing really new happens. Bifurcation takes place in one dimensional subspace,

and this subspace limits all the action. If we take more dimensions, the �ow is

either simple attraction or repulsion from that space.

The simple example of saddle-node bifurcation in two dimensions is:

ẋ = µ− x2, ẏ = −y.
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A bifurcation behaviour in the x-direction is similar to the behaviour in the

one-dimensional case. The motion is exponentially damped in the y-direction.

This is illustrated in Figure 2.7.

For µ > 0 we have two �xed points, one stable node at (
√
µ, 0) and a saddle at

(−√µ, 0). As µ approaches 0, two �xed points unite and disappear for µ > 0.

Even after two �xed points have eliminated each other, they continue to in�u-

ence on the �ow. They leave �ghost� region that absorbs trajectories and delay

them before allowing passage out the other side.

Figure 2.7: Saddle-node bifurcation in two dimensions.

We can also give the analogue of transcritical and pitchfork bifurcation in two-

dimensional systems. In the x-direction it is like in the one-dimensional case, and

in the y-direction dynamics is exponentially damped.

Examples of these bifurcations are:

ẋ = µx− x2, ẏ = −y (transcritical),

ẋ = µx− x3, ẏ = −y (supercritical pitchfork),

ẋ = µx+ x3, ẏ = −y (subcritical pitchfork).

2.6 Hopf bifurcation

We have reviewed the cases in which a real eigenvalue passes trough λ = 0.

Now we take the case, in which a �xed point of a dynamical system loses stability.
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It occurs when complex conjugate eigenvalues of the linearization around the �xed

point cross the imaginary axis of the complex plane. It is Hopf bifurcation.

The simple example is the next system:

dtr = pr − r3, dtθ = ω.

For p < 0 there is one stable spiral node. It is plotted in Figure 2.8(a).

(a) (b)

Figure 2.8: (a): Example of Hopf bifurcation for p < 0, stable spiral node. (b): Exam-
ple of Hopf bifurcation for p > 0, a limit cycle.

For p > 0 the origin becomes an unstable spiral node, but we also have a

solution with r =
√
p and θ = ωt. It is a limit cycle, and since it attracts orbits

both from inside and outside the circle it is stable. This can be seen in Figure

2.8(b).

Hopf bifurcation is bifurcation, when a stable spiral node becomes an unstable

spiral node and a stable limit cycle.
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Chapter 3

Bifurcations in stochastic dynamical

systems

In this chapter we consider stochastic calculus. We de�ne di�erent types of

stochastic processes, a stochastic integral, Ito's �rst lemma and a stochastic dif-

ferential equation. It is the main terms in this theory. The important concept in

stochastic calculus is de�nition of the Ornstein-Uhlenbeck process. We consider

fast-slow systems. Also we describe stochastic dynamical systems and bifurcations.

The Hurst exponent is the important quantitative measure of the persistence of

time series. We give the algorithm of calculation of the Hurst exponent. This

chapter is based mainly on lectures for the course MAT-3213 �Climate Dynamics�

by professor Kristo�er Rypdal [4].

3.1 Stochastic calculus

Stochastic calculus is a branch of mathematics that studies stochastic processes.

It is used to model systems that behave randomly.

Firstly, we de�ne the basic terms in stochastic calculus.

A stochastic process Xt is a time series of random variables. It can be written

in the form:

15



16CHAPTER 3. BIFURCATIONS IN STOCHASTIC DYNAMICAL SYSTEMS

(Xt, t ∈ T ) = (Xt(ω), t ∈ T, ω ∈ Ω),

where T is a time interval, Ω is a set of elementary events. If t is �xed, Xt(ω)

is just a random variable [2].

A Gaussian white-noise process is a process that has the next properties:

• it is de�ned in T = [0, 1];

• Xt1 , Xt2 , . . . , Xtn are all independent and normal distributed, where 0 ≤ t1 ≤
t2 ≤ ... ≤ tn ≤ 1;

• for any t, s ∈ [0, 1] and if t 6= s we have: the expectation function µX(t) = 0,

variance σ2
X(t) = 1, covariance cX(t, s) = 0.

The most known stochastic process is a Wiener process that is used to model

the Brownian motion.

The Wiener process is a process Wt, where t ∈ [0,∞]:

• Wt has stationary, independent increments;

• W0 = 0;

• Wt has continuous sample paths;

• Wt is normal distributed with µW (t) = 0, σ2
W (t) = t.

This process is widely applied in �nancial mathematics and economics. For

example, it is used to model the evolution in time of stock prices.

A stochastic integral is a mean-square limit of partial sum of stochastic di�er-

entials:

X ≡
∫ T

0

h(t)dW (t) = ms− lim
N→∞

XN ≡ ms− lim
N→∞

N−1∑
j=0

h(τj)(Wtj+1
−Wtj),

where t0 < t1 < ... < tN = T , tj < τj < tj+1.
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The mean-square limit means:

X = ms− lim
N→∞

XN ⇔ lim
N→∞

E[(X −XN)2] = 0.

The result of this integral depends on how we choose τj on the interval tj < τj <

tj+1. If we choose τj = tj, we will get the Ito integral. If we take τj = 1
2
(tj + tj+1),

it will be the Stratonovich integral.

We consider the case τj = tj, where h(t) = Wt.

Write ∆Wj = Wj+1 −Wj, we can get the partial sum:

XN =
1

2
Wt

2 − 1

2

N−1∑
j=0

∆W 2
j .

Then we �nd the Ito integral:

∫ T

0

WtdW (t) = ms− lim
N→∞

XN = ms− lim
N→∞

(
1

2
Wt

2 − 1

2

N−1∑
j=0

∆W 2
j

)
=

1

2
(W 2

t −T ).

Introduce a smooth function f : R → R and de�ne dWx = Wx+dx −Wx. The

Taylor expansion is f(Wx + dWx)− f(Wx) = f ′(Wx)dWx + 1
2
f ′′(Wx)(dWx)

2 + ...

It gives Ito's �rst lemma:

f(Wt)− f(Ws)
ms
=

∫ t

s

f ′(Wx)dWx +
1

2

∫ t

s

f ′′(Wx)dx.

A �rst-order deterministic ordinary di�erential equation has the form:

dx

dt
= f(x, t)⇔ dx = f(x, t)dt.

We integrate this equation:

x(t)− x0 =

∫ t

0

f(s, x(s))ds.

A general stochastic di�erential equation is:

dXt = a(t,Xt)dt+ b(t,Xt)dWt,



18CHAPTER 3. BIFURCATIONS IN STOCHASTIC DYNAMICAL SYSTEMS

where a(t, x) and b(t, x) are smooth functions in t and x. It has the solution:

Xt −X0 =

∫ t

0

a(s,Xs)ds+

∫ t

0

b(s,Xs)dWs.

The example of particular stochastic di�erential equation is:

dXt = [(α +
σ2

2
)Xt − βX3

t ]dt+ σXtdWt,

which solution is:

Xt =
X0e

αt+σWt

(1 + 2X2
0β
∫ t

0
e2αu+2σWudu)1/2

.

The solution depends on the initial condition X0, the time t and the sample

path of the Wiener process Wu for u ∈ [0, t].

The stochastic di�erential equation is linear if we write the functions a(t, x)

and b(t, x) in the form:

a(x, t) = c1(t)x+ c2(t), b(x, t) = σ1(t)x+ σ2(t).

We consider the case c1(t) = −γ, c2(t) = 0, σ2 = σ (all constants). It gives the

Langevin equation:

dXt = −γXt + σdWt.

3.2 The Ornstein-Uhlenbeck process

One of the important concepts in the stochastic calculus is a de�nition of

the Ornstein-Uhlenbeck process (OU). It was o�ered by Uhlenbeck and Ornstein

(1930) as an alternative to Brownian motion. This process is example of the

Gaussian process, that has limited variance.

The Gaussian OU process X = (Xt)t≥0 can be de�ned as the solution to the

stochastic di�erential equation:
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dXt = γ(m−Xt)dt+ σdBt,

where t > 0, γ, m and σ ≥ 0 are real constants, and Bt is standard Brownian

motion. The �rst term of this equation on the right-hand side is the damping

term (or drift term). X0, the initial value of X, is a given random variable, taken

to be independent of B = (Bt)t≥0 [5]. m is the long-run mean, to which the process

tends to revert, γ is the speed of mean reversion, σ measures the process volatility.

The damping term depends on the value of current state of the process. If the

value of current state is more than the long-run mean, the damping term will be

negative.

Variance is given by the formula:

Var(X(t)) =
σ2

2γ
.

The Ornstein-Uhlenbeck process is used in �nance to model prices stochasti-

cally.

The forward Fokker-Planck equation for probability density function p(x, t) for

the OU process is:

∂p

∂t
=
∂(γxp)

∂x
+
σ2

2

∂2p

∂x2 ,

with the boundary conditions p, ∂p
∂x
→ 0 as x→∞.

For ∂p
∂t

= 0 we get the solution:

p(x) =

√
γ

π

1

σ
e−

γ

σ2
x2 .

3.3 Fast-slow systems

Consider fast-slow systems:

dXt = f(Xt, Yt)dt+ σdWt, dYt = εdt,
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where ε� 1, Xt is a fast stochastic process and Yt is a slow one.

Thr Fokker-Planck equation is ∂p
∂t

= −∂(fp)
∂x

+ σ2

2
∂2p
∂x2

.

Variable y in fast-slow systems is a bifurcation parameter, it increases slowly

with time.

We consider saddle-node bifurcation, choose f(x, y) = −y − x2.

We plot variance Var[Xt](y) using Mathematica. Variance of the stochastic

process Xt increases, when y approaches the bifurcation point at y = 0. It is

shown in Figure 3.1. The distance from the maximum variance to the bifurcation

point decreases with decreasing noise level σ.

Figure 3.1: Variance for fast-slow system.

The increase of variance as y approaches bifurcation can be also found in other

types bifurcations. It is an important signal of a critical transition.

The autocorrelation function is:

r(t) = e−γt,

where the autocorrelation time also grows as the system approaches bifurcation.

3.4 Stochastic dynamical systems

A stochastic dynamical system is a solution of the set of �rst-order stochastic

di�erential equations. It is a practical de�nition.
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We can de�ne stochastic dynamical systems mathematically. It is a mapping

giving the state at the time t:

(t, ω, x)→ φ(t, ω)[x],

where x is a state at t = 0, ω is a sample path of some continuous process

satisfying ω(0) = 0.

These systems are generally dynamical systems linearized around �xed points

with additive white noise stochastic forcing.

They have normal form:

dx(t) = f(x)dt+ σdB(t),

where dB(t) is a n-dimensional white-noise process. f(x) determines the de-

terministic part of the system, while σdB(t) determines the stochastic part.

We return to the given example of particular stochastic di�erential equation.

The deterministic version of this equation is:

dXt = (αXt − βX3
t )dt.

It is the equation for pitchfork bifurcation. There is one stable �xed point

x = 0 for α < 0. If α > 0 this point is unstable and there are new stable �xed

points x = ±
√
α.

We consider the stochastic case of this example. The �xed points are changed

on the pullback attractors. This is illustrated in Figure 3.2. These �gures show

numerical solutions of the equation for di�erent initial conditions and cases of

di�erent values α. A new sample path Wt is generated in every run.

The covariance of two random variables X and Y is:

Cov[XY ] = E[(X − µX)(Y − µY )],

and the cross-correlation coe�cient is:
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(a) (b)

Figure 3.2: (a): Stochastic bifurcations for equation with case α < 0. (b): Stochastic
bifurcations for equation with case α > 0

RXY =
Cov[XY ]√

Var[X] Var[Y ]
.

The autocorrelation function (ACF) for the stochastic processXt, t ∈ (−∞,+∞),

is:

r(t; τ) =
Cov[XtXt+τ ]√

Var[Xt] Var[Xt+τ ]
,

which for a stationary time-series reduces to:

r(τ) =
Cov[XtXt+τ ]

Var[Xt]
.

3.5 Hurst analysis

Let us consider a stationary stochastic process X0, X1, ... with stationary in-

crements Xt = Yt+1 − Yt. Yt is a non-stationary process with Y0 = 0. A q′th order

structure function Sq(τ) is the q′th statistical moment:

Sq(τ) ≡ E[Y q
τ ].
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If the motion Yt is self-similar, the structure functions are power laws:

Sq(τ) ∝ τ ζ(q),

where ζ(q) = Hq, H is the self-similarity exponent for the fractional motion Y (t)

and the Hurst exponent for the increment fractional noise process Xt.

We calculate the Hurst exponent even if a process is neither Gaussian nor self-

similar. The process can be investigated by Hurst R/S analysis [6]. The Hurst

exponent (H) shows a quantitative measure of the persistence of time series. It

was introduced by the British hydrologist Harold Edwin Hurst. He worked on

the Nile River Dam Project in the 20th century and explored the water level and

over�ows.

The rescaled range (R/S) method is used to calculate the Hurst exponent. First

step of this method is the division of time series with length N into n subseries

x = X1, X2, ..., Xn with length d. Then we calculate R/S statistics using the next

algorithm for each subseries, x = X1, X2, ..., Xn:

1) �nd the mean Em value, where m = 1, ..., n;

2) calculate standard deviation Sm:

Sm =

√√√√1

d

d∑
i=1

(Xi,m − Em)2;

3) normalize the data (Xi,m) by subtracting the sample mean for i = 1, d:

Zi,m = Xi,m − Em;

4) create a cumulative time series for i = 1, d:

Yi,m =
i∑

j=1

Zj,m;
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5) calculate the range:

Rm = max(Y1,m, ..Yd,m)−min(Y1,m, ..Yd,m);

6) rescale the range Rm/Sm;

7) �nally, �nd the mean value of the rescaled range for subseries of length d:

(R/S)d =

√√√√ 1

n

n∑
m=1

Rm/Sm.

After the analysis we plot a linear regression log(R/S)d with respect to log(d).

The slope coe�cient of this regression is a value of the Hurst exponent. For the

white noise process the Hurst exponent equal to 1/2. If H > 1/2 the process is

persistent, if H < 1/2 the process is anti-persistent.



Chapter 4

Early-warning signals for critical

transitions

In this chapter we consider the early-warning signals for prediction of critical

transitions in future. The prediction of tipping points in dynamical systems is

extremely di�cult problem. The system may have insigni�cant changes before the

critical threshold is approached. But any system has similar signals and generic

properties of behaviour near a tipping point despite di�erences in the details of

each system. We can distinguish these certain symptoms of the tipping points and

�nd early-warning indicators, which may predict the sudden shifts of the system

from one state to another [7].

The stochastic dynamical systems are used to �nd the early-warning signals.

We linearise systems around �xed point and add noise forcing.

The most important signal of the early warning is known as �critical slowing

down�. It is an indicator that the system loses resilience, thus, it may be tipped

more easily into another state.

Figure 4.1 shows the model of critical slowing down. The ball represents the

present state of the system and the potential well represents stable attractors. We

approach the bifurcation point, the right potential well becomes smaller. At the

bifurcation point it vanishes. The ball rolls into the left potential well and the

recovery rate of the ball is slowing down. We also expect larger deviations as

25
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Figure 4.1: Model of critical slowing down.

bifurcation is approached. If we can detect the sign of slowing down, it would be

possible to forecast the potential tipping point [8].

The system will take longer to recover from perturbations when it is close to

a critical threshold [9]. We can use the recovery rate from small perturbations as

an indicator of how close a system is to a bifurcation point. The critical slowing

down leads to other possible early-warning signals: an increase in the variance of

the �uctuations and an increase in the autocorrelation [10].

The memory of the system increases and the state at a present point is more

similar to its previous state when it is near to a critical transition. We use the

autocorrelation function to analyse the slowness of recovery. It de�nes that the

data is more correlated with itself and the autocorrelation increases when the

critical slowing down takes place [1].

The amplitude deviations may grow as the system approaches the critical tran-

sition and we can observe increasing skewness. We can use standard deviation to

measure it:



27

St.Dev. =
1

n− 1

N∑
t=1

(zt − µ)2,

where µ is the mean, zt is the variable in time series in time t.
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Chapter 5

Crises in �nancial markets

We consider description of power market in this chapter. Also we discuss the

most known examples of �nancial crises.

5.1 Description of power market

The power (or electricity) is the main element that supports our modern life.

We can not imagine our existence without it.

The electricity industry is relatively young. The earliest introduction of power

market concepts and privatization to energy systems was in Chile in the early

1980s. The Chilean model had success in rationality of the power pricing, but had

structural problems.

The prices of electricity depend on the balance between supply and demand.

But other factors can in�uence the prices, for example the weather and the ca-

pacities of power plants, their current technical conditions. This balance between

consumption and generation must exist constantly, 24 hours a day.

The power market di�ers from other commodity markets. The electricity can-

not be stored, the prices of electricity are extremely unstable.

People originally used water power and coal for the production of electricity,

but eventually sources were changed. Today nuclear power, natural gas, oil, coal,

hydroelectric, wind generators, solar energy, geothermal steam and alternative

29
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resources such as cogeneration are mainly used for generation of power.

The economics varies considerably around the world, as a result the prices of

electricity for the people of the various countries di�er signi�cantly. For all elec-

tricity markets demand is di�cult to forecast and is almost completely insensitive

to price �uctuations.

5.2 California power crisis and other �nancial crises

We can characterize power crises as sudden, lasting and large increases of prices.

The most known example of power crisis was in California, which also known as

the Western U.S. Energy Crisis. It took place in the beginning of the last decade

(2000-2001 years). There was a shortage of electricity supply that was caused by

market manipulations. It caused an 800% increase in wholesale prices on electricity

spot markets.

It started in 1994 when California began to modify controls on its energy

market and legislation was partially deregulate. The most important reason for

deregulation was high prices for consumers. Electricity rates in California were on

average 40 percent higher than the rest of the U.S in 1993 year. The restructuring

plan was passed as California Assembly Bill in September 1996 year [11].

There were three large investor-owned utilities for serving the most of state's

electricity users: Paci�c Gas and Electric, Southern California Edison, San Diego

Gas and Electric. The new changes included sale of a signi�cant part of their

electricity capacity and creation nonpro�t corporations to control new markets,

the California Independent System Operator (CAISO) and the California Power

Exchange (PX). All sales and purchases of utilities had to go through the CAISO

and the PX, all retail prices were controlled. It isolated economically a consumer

from a producer of energy. Utilities were required to sell remains of their power

generating capacity. This created dangerous situation for the investor-owned util-

ities [12].

A drought in the northwest states in the summer of 2001 year decreased the

amount of hydroelectric power available in California. The weather conditions
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have caused an increase of demand and reduced the availability of electricity im-

ports to California from neighbouring states. These states decreased their imports

to California by an average 2,000 megawatts from 1999 to 2000. Demand for elec-

tricity rose faster than the generating capacity available to supply the markets.

As a result, electricity supply was reduced.

There was increase of electricity prices in 2000. Prices for megawatt hour rose

from 30 dollars in April to more than 100 dollars by June. By November, prices

had increased to between 250 dollars and 450 dollars. The regulated utilities had

to buy electricity in the wholesale markets and sell at much lower regulated prices

in the retail markets.

As a result, the state's largest companies, Paci�c Gas and Electric and Southern

California Edison, declared bankruptcy in 2001.

Governor Davis declared a state of emergency in January 2001.

By June 2001, the seven-month California electricity crisis was over: wholesale

prices fell to less than 50 dollars/MWh, demand dropped, new generating plants

were coming on line.

A stock market crash is a sudden and often unexpected drop in stock prices

with a signi�cant loss of paper wealth. The most famous stock market crashes

are the Black Monday, the Dot.com Bubble and 2008 Financial Crisis, which were

explored by Cees Diks, Cars Hommes, Juanxi Wang (2012). The causes of them

may be di�erent, but they all share one common characteristic: all these events

are in the state of �nancial bubble at �rst and jump to a long run depression state

afterwards [8].

The Black Monday was the large stock market crash around the world that

happened on 19 October 1987. The Dow Jones stock market index (Dow Jones

Industrial Average) lost about 22% of its value. The crash of stock markets started

in Hong Kong, spread western to Europe, then hit the United States. By the end

of October, most of the major markets fell more than 20%. It was the largest

one-day stock market decline in �nancial history.

The 2000 Dot.com Bubble (Information Technology Bubble) was a stock mar-

ket bubble, which was caused by the rise of Internet sites and the tech industry in
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general. During the dotcom bubble of the late 1990s, the value of equity markets

grew exponentially, with the technology-dominated NASDAQ index rising from

under 1000 to 5000 between 1995 and 2000.



Chapter 6

Tipping points in �nancial markets

The main goal of our analysis is to review crisis in �nancial markets as a

tipping point. For example, we explore California Power Crisis, the Black Monday,

the �Dot.com bubble� and 2008 Financial Crisis. We need to analyze historical

electricity prices to �nd early warning indicators. We also explore oil prices to �nd

tipping points. We focus on sudden transitions in the market. One more objective

is to research the possibility of detecting early warning signs. If it is possible,

we will predict future sudden transitions in electricity markets that may cause a

crisis. For our calculations and analysis we use a computational software program

�Wolfram Mathematica 9.0�. It is the most complete system for modern technical

computing in the world.

6.1 Example of the stochastic dynamical system

Before starting our analysis of power crises we consider the next example of

the stochastic dynamical system:

y′ = r − y |1− y|+ σw.

We can write this system: y′ = U ′(y) + σw, where U ′(y) = r − y |1− y| .
Then �nd the function U(y) = ry + sgn[y − 1](y

2

2
− y3

3
) + θ(1− y)/3.

33



34 CHAPTER 6. TIPPING POINTS IN FINANCIAL MARKETS

Consider the system:

y′ = r − y |1− y| .

To analyze this system we need to �nd the �xed points:

r − y |1− y| = 0.

We have two cases for values of variable y.

First case: 1− y > 0⇒ y < 1.

r − y(1− y) = 0,

y2 − y + r = 0,

y1,2 =
1±
√

1− 4r

2
.

We take the value of r < 0.25, because
√

1− 4r > 0. We get one stable and

one unstable �xed points.

If r = 0.25 two �xed points unite into a half-stable �xed point at y = 0.5.

Second case: 1− y < 0⇒ y > 1.

r + y(1− y) = 0,

y2 − y − r = 0,

y1,2 =
1±
√

1 + 4r

2
,

√
1 + 4r > 1.

We have stable �xed point 1+
√

1+4r
2

.

The �xed points of our system are illustrated in Figure 6.1(a).

We explore stability of the �xed points. We get a stable �xed point 1−
√

1−4r
2

,

an unstable �xed point 1+
√

1−4r
2

and a stable �xed point 1+
√

1+4r
2

.

We plot a normal (Gaussian) distribution with mean µ=0 and standard devi-

ation σ. We test the value of σ=0.15, which is responsible for size of noise. This
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(a) (b)

Figure 6.1: (a): Fixed points of model y′ = r− x|1− x|+ σw. Red curves show stable
�xed points, black curves � unstable �xed points. (b): Normal (Gaussian)
distribution with standard deviation σ=0.15.

is shown in Figure 6.1(b).

We consider y′ = F (y) + w, where w is white noise, y0 is a �xed point.

In Figure 6.1(b) we can see the jump approximately at the point t = 530.

F (y) = F (y0) + F ′(y0)(y − y0) + ....,

where F (y0) → 0, because y0 is a �xed point, F ′(y0)(y − y0) is negative because

y0 is stable.

We get linearized equation:

y′ = −a(y − y0) + noise .

It is the Ornstein-Uhlenbeck (OU) process. The standard OU process are

de�ned via stochastic di�erential equations of the form:

dY (t) = −a(y − y0)dt+ σdB(t),

where B(t) is a standard Brownian motion. The �rst term of equation is the

damping term, and for a > 0 this causes anti-correlations since it prevents y to

di�use far from its value y0 [13]. The �xed point becomes unstable ⇒ a→ 0.
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Var(Y (t)) =
σ2

2a
→ +∞.

We �nd variance and plot it in Figure 6.2(a). The rise of variance is a leading

indicator of a tipping point. We can see in Figure 6.2(a) the signi�cant increase

approximately at the point t = 530. It displays an in�uence of the jump of our

process at this point.

(a) (b)

Figure 6.2: (a): Variance of y′ = r − y |1− y| + σw. (b): Correlation function of
y′ = r − y |1− y|+ σw.

The correlation is illustrated in Figure 6.2(b). We can also observe the jump

approximately at the point t = 530.

The early warning of structural changes in any dynamical system driven through

a bifurcation can only be obtained if increases in both variance and autocorrelation

are observed before a tipping point [14] [15].

We should limit our variance and correlation functions before the time where

the jump occurs. This is illustrated in Figures 6.3. We take the time period

t = [150, 530]. There are increases in both variance and correlation functions at

the point t = 370. We get early warning signals.

We can conclude that the tipping point in our example is approached approx-

imately at t = 530.

In this example we take Gaussian normal distribution with white noise and the

Hurst exponent H = 0.5. We explore the example of fractional Brownian motion
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(a) (b)

Figure 6.3: (a): Variance of y′ = r − y |1− y| + σw before the tipping point. (b):
Correlation function of y′ = r − y |1− y|+ σw before the tipping point.

process with the Hurst exponent that is not equal to 0.5. We �nd value of H in

further analysis of California Power Crises. And in this example we also take, for

example, H = 0.368698. A realization of this fractional Brownian motion is plotted

in Figure 6.4. We take the same range. The standard deviation is σ = 0.005. In

Figure 6.4 we can see the jump at the point approximately t = 540.

Figure 6.4: Fractional Brownian motion process with the Hurst exponent H =
0.368698.

We plot variance and correlation functions to �nd early-warning signs. This
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can be seen in Figures 6.5.

(a) (b)

Figure 6.5: (a): Variance of Fractional Brownian motion process with the Hurst ex-
ponent H = 0.368698. (b): Correlation of Fractional Brownian motion
process with the Hurst exponent H = 0.368698.

There is signi�cant increase both in variance and correlation functions approx-

imately at the point t = 540. It shows our jump of process at this point.

(a) (b)

Figure 6.6: (a): Variance of Fractional Brownian motion process with the Hurst expo-
nent H = 0.368698 before the tipping point. (b): Correlation of Fractional
Brownian motion process with the Hurst exponent H = 0.368698 before
the tipping point.

We consider our variance and correlation functions before the time where the

jump occurs. This is illustrated in Figures 6.6. We take the time period t =
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[250, 540] before the tipping point. There are increases in variance and correlation

functions that start at the point t = 300. It is early warning signals.

In this example we use the fractional Brownian motion process and we get the

tipping point at t = 540.

6.2 Estimation parameters systematically

Since we can not �nd the correct model from any physical and economic prin-

ciples, then we can use an any model in our analysis. We take the next model:

x′ = r − x |1− x| .

Let us consider the example and estimate parameters for this model:

dx = Fr(x)dt+ σdB(t)

with

Fr(x) =
1

a

[
x2
cr − x |2xc − x|

]
.

We �nd the �xed points of our model:

x∗ = xc − |xc|
√

1− r.

We take r < 1, because
√

1− r > 0. We get a stable �xed point. Bifurcation

is for r = 1 at x = xc. We can make the conclusion that the tipping point appears

when x→ xc.

If we take data where the tipping point is, for example California Power Crises,

we can choose xc as the highest value of the signal prior to the tipping point.

The �xed point x∗ changes with time, if the parameter r changes with time.

We use a running average to estimate x∗(t):

x∗(t) ≈ 〈x〉t,∆t =
1

∆t

∫ ∆/2

−∆/2

x(s)ds,
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and from this and the �xed point we get an estimate of the control parameter:

r̂(t) = 1−
(〈x〉t,∆t

xc
− 1

)2

.

We linearise Fr(x) around the �xed point and get:

Fr(x) = −θ(x− x∗) +O(x− x∗)2,

with

θ = −F ′r(x∗) = −2 |xc|
a

√
1− r.

Then we write x∗ = xc + aθ
2
.

The linear equation dx(t) = −θ(x− x∗)dt+ σdB(t) is the Ornstein-Uhlenbeck

(OU) process with auto-correlation function e−θt.

θ = − log ρ.

It is the relation between the parameter θ and the one-step correlation ρ in the

time series. We take the correlation ρ on windows of length ∆t around t.

θ̂t,∆t = − log ρ̂t,∆t.

This gives the approximate equations:

〈x〉t,∆t = xc +
aθ̂t,∆t

2
.

The parameter σ can be chosen from formula:

σ =
√

2θ̄ sdev [x(t)− y(t)] ,

where sdev [x(t)− y(t)] is the standard deviation of the di�erence between real

data x(t) and curve y(t), which is the solution of our equation without noise. θ̄ is

the average of all the estimated θ̂t,∆t values.
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6.3 California power crisis

The California Electricity Crisis is well known example of power crisis in the

world. How could this happen if deregulation was supposed to increase e�ciency

and reduce electricity prices? To answer the question we need to analyze power

market and electricity prices in California.

We explore the time period from 1 April 1998, when California opened up a

market for wholesale electricity.

We take prices for every hour since 1 April 1998, 0:00 until 31 January 2001,

24:00. This is illustrated in Figure 6.7(a). The data are received from The Uni-

versity of California Energy Institute (UCEI) [17]. We can see price spike in the

end of January, 2001, when a state of emergency was declared in California.

We analyze an one-day period in Figure 6.7(b). We see from the �gure that

the spot price is higher in the evenings than in the mornings.

(a) (b)

Figure 6.7: (a): Energy prices in California per every hour since 1 April 1998, 0:00
until 31 January 2001, 24:00. (b): One-day period of prices in electricity
market in California.

Variance and correlation functions are plotted in Figure 6.8(a) and Figure

6.8(b). There are jumps in variance and correlation functions at the point that

corresponds to the end of January, 2001.

We model a system usually as a random walk-type process. The events in

the system are independent and identically distributed (iid). But there are proofs
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(a) (b)

Figure 6.8: (a): Variance for the values of energy prices. (b): Correlation function for
the values of energy prices.

(a) (b)

Figure 6.9: (a): Average daily prices in California by taking the logarithm and sub-
tracting a linear trend. The red curve is the moving average with ∆t = 1.
(b): Hurst R/S analysis of 1036 logarithmic returns of average daily prices.

that electricity price processes are not random walks [16]. It rather belongs to

anti-persistent (mean-reverting) processes. We can prove it using means of the

Hurst exponent (H) [6]. It shows a quantitative measure of the persistence of time

series.

Our analyzing period of electricity prices includes 24 888 data points, 1037

days×24 hours.

We calculate average daily prices for this period and plot it by taking the

logarithm and subtracting a linear trend. This can be seen in Figure 6.9(a). The
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red curve in Figure 6.9(a) illustrates the moving average with �xed time step

∆t = 1 that removes the noise from price �uctuations.

We have the 1037 day-long sequence of average daily prices. We �nd divisors

and divide the sample into subsamples of the equal length. We should take sub-

series of length n ≥ 10 because rescaled range statistics for small value of n gives

large estimation errors. Since the number 1037 has only two divisors greater than

10 we analyze a sample of length 1036, which has 7 divisors greater than 10: 14,

28, 37, 74, 148, 259, 518.

We selected the �rst 1036 and estimated using subseries of length n=14, 28,

37, 74, 148, 259, 518. After division we have n subseries of length d, where d �

one of divisors.

We calculate all rescaled range statistics for every divisors using the algorithm

of R/S statistics. We plot the (R/S)d against the subseries length d on a double-

logarithmic paper in Figure 6.9(b).

We use a linear regression log(R/S)d with respect to log(d). The slope coe�-

cient of this regression is a value of the Hurst exponent. We get H = 0.368698. It

means the process is anti-persistent [6].

6.4 Norwegian electricity spot market

Let us compare California's electricity prices and energy prices in Norway. We

take time period of prices since 4 May 1992 until 27 August 2011. The data is

received from the Data Administrator at Nord Pool Spot [18]. Prices are given

hourly.

We analyze 20 years, it includes 7070 days×24 hours. All features of prices in

Norway are shown in Figure 6.10(a). Prices have increased signi�cantly since 1992

year. We can see the jump at the beginning of 2010 year.

We get 169680 data points that mean prices are given hourly. We consider

an one-day period. We take average price for every hour during one day. This is

illustrated in Figure 6.10(b). The highest price of day is approximately at 10 a.m.

Also the price increases at 6 p.m.
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(a) (b)

Figure 6.10: (a): Electricity prices in Norway for 1992-2011 years. (b): One-day period
of prices in Norway.

In Figure 6.11(a) and Figure 6.11(b) we show variance and correlation functions

for Norwegian electricity prices. There are 3 jumps in variance, but we do not have

any increases in correlation function.

(a) (b)

Figure 6.11: (a): Variance for the values of Norwegian electricity prices. (b): Correla-
tion function for the values of Norwegian electricity prices.

We use the rescaled range (R/S) method to estimate the Hurst exponent.

We plot average daily prices in Norway for this period by taking the logarithm

and subtracting a linear trend in Figure 6.12(a).

We have 7069 day-long sequence of average daily prices. We divide the sample
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(a) (b)

Figure 6.12: (a): Average daily prices in Norway by taking the logarithm and subtract-
ing a linear trend. (b): Hurst R/S analysis of 7068 logarithmic returns of
average daily prices.

into subsamples of equal length. Since the number 7069 does not have divisors we

analyze a sample of length 7068, which has 18 divisors greater than 10 : 12, 19,

31, 38, 57, 62, 76, 93, 114, 124, 186, 228, 372, 589, 1178, 1767, 2356, 3534.

The algorithm of R/S statistics is analogous to that we took on the California

market. We calculate all rescaled range statistics for every divisors and plot the

(R/S)d against the subseries length d on a double-logarithmic paper. It is shown

in Figure 6.12(b).

We get the Hurst exponent H = 0.458081. It means the process is anti-

persistent.

There are not any tipping points and crises in Norwegian electricity prices.

6.5 Early warning signals for California power cri-

sis

We simulate a random walk process X(t) with normal Gaussian distribution,

mean µ = 0, standard deviation σ = 1 and length n = 1000. It is shown in Figure

6.13(a).

We estimate parameters of the Ornstein-Uhlenbeck process from our random
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(a) (b)

Figure 6.13: (a): Random walk process with normal Gaussian distribution. The red
curve is the moving average. (b): Residual of this random walk process.

(a) (b)

Figure 6.14: (a): Estimated θ on the smoothing scale. (b): Random walk process with
the moving average (the red curve), where time step ∆t = 200.

walk process X(t), where µ means long-term mean, θ is a mean reversion speed,

σ is a measure of the process volatility. If we estimate the θ in the OU process,

then we get something close to zero, because θ = 0 for a Brownian motion.

We get the next results: µ = −8.69676, σ = 10.2675, θ = 0.00454413.

Then de�ne time step ∆t = 50 and plot the moving average. It produces a list

of averages over a window of length ∆t. If we take a smaller value of ∆t, then the

curve of the moving average will be more similar to the curve of our process. It is

illustrated in Figure 6.13(a), the red curve shows the moving average that makes
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a smoother time-series.

Financial data is more like a random walk process, but we need to take the

Ornstein-Uhlenbeck process to �nd tipping points. So we take the residual of our

process, it satis�es the OU process better.

If we make a smoothing of the signal S(t) (the red curve), then the residual

R(t) = X(t)−S(t). It is well described by the Ornstein-Uhlenbeck process with θ

corresponding to the time scale in the smoothing. The residual R(t) is plotted in

Figure 6.13(b).

Let us estimate parameters of the residual. We get µ = −0.0393581, σ =

2.27934, θ = 0.103088.

We look at this relationship. We take the statistical mean of the elements θ

from the Ornstein-Uhlenbeck process on smoothing scale t = [20, 300] using step

∆t = 20. This can be seen in Figure 6.14(a).

Now we look at an example of random walk process with normal distribution,

where the time step ∆t = 200. It is plotted with the moving average in Figure

6.14(b).

We can write our data like smooth+ equation, where equation is:

y′ = a(r − y |1− y|) + noise .

This equation has the �xed point y∗ = a
√

1− 4r.

The linear system

dx = a
√

1− 4rdt+ σdB(t),

where θ = a
√

1− 4r.

We estimate the θ from the residual of the process, choose r = 0.14 because it

is less than 0.25 and from estimation of θ we get value of a = 0.0378933.

We construct function r = r(t) from the moving average of our process. It is

illustrated in Figure 6.15(a). Figure 6.15(b) shows model y′ = a(r − y |1− y|) +

noise with this r = r(t). It is the dark blue curve. This �gure also images our

process (the light blue curve) and the moving average (the red curve).

Now we can construct a �nancial crash by going to the tipping point. We
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continue the curve r = r(t) using the line r(t) = 0.0002×t, where t = [800, 1600]. It

is illustrated in Figure 6.16(a) and we plot a new model using the new function r =

r(t) in Figure 6.16(b). It shows predictions of future behaviour for our example.

We choose standard deviation σ = 0.05.

(a) (b)

Figure 6.15: (a): Function r = r(t) constructed from the moving average. (b): Model
y′ = a(r − y |1− y|) + noise constructed with the function r = r(t) (the
dark blue curve). Our random walk process and moving average are illus-
trated by the light blue curve and the red curve.

(a) (b)

Figure 6.16: (a): New function r = r(t) using the line r(t) = 0.0002 × t for t =
[800, 1600]. (b): Model of our example constructed with the new function
r = r(t) with predictions of future (the dark blue curve).

Now we come back and look at our power data in California. The average daily

prices of electricity in California are shown in Figure 6.17(a). We are interested
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in looking for an early warning signal before the crisis. We take only data around

power crisis, calculating the logarithm. The sample size of our received data

is equal to 800 elements. We also plot the moving average with the time step

∆t = 200. As in example, we make a smoothing of the signal and get the residual

before the crisis in Figure 6.17(b).

(a) (b)

Figure 6.17: (a): Average daily prices of electricity in California. The red curve is the
moving average with time step ∆t = 200. (b): Residual of the average
daily prices of electricity in California.

(a) (b)

Figure 6.18: (a): Function r = r(t) constructed from the moving average. (b): New
model with predictions with the function r = r(t) constructed from the
moving average (the dark blue curve). The initial real data of average
daily prices is shown by the light blue curve.
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We estimate the θ from the residual of the Ornstein-Uhlenbeck process and

from equation θ = a
√

1− 4r get a = 0.0378933.

We plot the function r = r(t) of the moving average. It is illustrated in

Figure 6.18(a). We continue this curve using the line r(t) = 0.0007 × t, where

t = [800, 1400]. The red line shows it.

Now we can construct a �nancial crash by going to the tipping point. The plot

of a new model with the function r = r(t) constructed from the moving average

is shown in Figure 6.18(b) by dark blue curve. We choose standard deviation

σ = 0.03. Figure 6.18(b) also shows initial real data of average daily prices. We

stop the curves before the tipping point.

Figure 6.19 shows the logarithm of data of average daily prices with the sta-

tistical mean of the elements. The shaded area has the lower bound of value of

mean with 25%, and the higher bound of value of mean with 75%. We estimate

the value r. Since r < 0.25 this is before the tipping point. We get the value

θ = 0.0251356.

Figure 6.19: Logarithm of data of average daily prices with statistical mean of elements
of our constructed model.

We plot the local standard deviation σ and the local correlation scale θ in

Figure 6.20(a) and 6.20(b). The black curves are illustrated σ and θ for real data,

blue curves � for new constructed model. We can observe signi�cant increases of

variance and correlations function for real data at the point t ≈ 700.

Figures 6.21(a) and 6.21(b) show Monte Carlo method for the local standard
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(a) (b)

Figure 6.20: (a): Local standard deviation. (b): Local correlation scale. The black
curves are illustrated σ and θ for real data, blue curves � for our con-
structed model.

(a) (b)

Figure 6.21: (a): Monte Carlo simulations for the local standard deviation σ. (b):
Monte Carlo simulations for the local correlation scale θ. The black curve
is illustrated real data, the dashed curve is the statistical mean of σ and
θ for constructed model.

deviation σ and the local correlation scale θ for real data. Monte Carlo method is

a technique that involves using random variables to approximate the probability of

certain outcomes. It builds the models of possible results by substituting a range

of values (a probability distribution) and lets us see all the possible variants of

future.

We plot the mean of σ and θ. The shaded area has the lower bound of value of
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(a) (b)

Figure 6.22: (a): Local Hurst exponent. (b): Monte Carlo simulations for the local
Hurst exponent. The black curves are illustrated real data, the dashed
curves are the statistical mean of H for constructed model.

mean with 25%, and the higher bound of value of mean with 75%. The curve of

local standard deviation σ is almost completely included within the shaded area.

There is an increase of possible values of σ for our constructed model. It is the

early warning signal. The curve of local correlation θ does not coincide with shaded

area. These possible values of the local correlation are plotted for the white noise

process with the Hurst exponent H = 1/2. We have an anti-persistent process

with H < 1/2.

We calculate the local Hurst exponent, using a function for de-trended �uctua-

tion analysis. It is shown in Figure 6.22(a). Figure 6.22(b) illustrates Monte Carlo

method for the local Hurst exponent. The curve of the local Hurst exponent does

not coincide with shaded area.

Now we change the white noise process with the value of Hurst exponent H =

1/2 to Fractional Brownian Motion Process with the Hurst exponent H = 0.45.

Let us construct a �nancial crash by going to the tipping point. We plot the

new model with the function r = r(t) constructed from the moving average in

Figure 6.23(a). This �gure also shows real data of average daily prices. We choose

standard deviation σ = 0.07. We stop the curves before the tipping point.

Figure 6.23(b) shows the logarithm of data of average daily prices with the

statistical mean of the elements. The shaded area has the lower bound of value of
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(a) (b)

Figure 6.23: (a): New model with the function r = r(t) constructed from the moving
average (the blue curve). The real data of average daily prices (the black
curve). (b): Logarithm of data of average daily prices with the statistical
mean of the elements of our constructed model.

(a) (b)

Figure 6.24: (a): Monte Carlo simulations for the local standard deviation σ. (b):
Monte Carlo simulations for the local correlation scale θ. The black curve
is illustrated real data, the dashed curve is the statistical mean of σ and
θ for constructed model.

mean with 25%, and the higher bound of value of mean with 75%. We plot Monte

Carlo method for the local standard deviation σ and the local correlation scale θ

for real data in Figure 6.24(a) and 6.24(b). There are signi�cant increases both in

local standard deviation σ and the local correlation function θ for real data and

for possible values of our constructed model at the point t ≈ 700. It is the early
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warning signal for California electricity prices.

We calculate the local Hurst exponent using Monte Carlo method. This is

illustrated in Figure 6.25. There is increase in the local Hurst exponent function.

It is also at the point t ≈ 700. The real data of the local Hurst exponent coincides

with the shaded area.

Figure 6.25: Monte Carlo simulations for the local Hurst exponent of fractional Brow-
nian motion process.The black curve is illustrated real data, the dashed
curve is the statistical mean of H for constructed model.

6.6 Oil prices

The crude oil is the world's most actively traded commodity.

Let us analyze oil prices of 1986-2014 years that are given per day. The time

period, which we take, is 7323 days. There are something like 260 trading days in

a year. The analyzed data are received from US. Energy Information Administra-

tion [19]. The average oil prices per day by taking the logarithm are illustrated in

Figure 6.26(a). There is big oil crisis, a sharp increase approximately at the point

t = 4800 that corresponds July of 2008. We also plot the moving average with

the time step ∆t = 1200. The residual of oil prices is received by subtracting the

moving average from our data. This is illustrated in Figure 6.26(b).

We construct a crisis by going to the tipping point. Figure 6.27(a) shows our

new model of oil prices with the function r = r(t) constructed from the moving
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(a) (b)

Figure 6.26: (a): Average daily oil prices with the moving average (the red curve) by
taking the logarithm for 1986-2014 years. (b): Residual of average oil
prices per day before crisis.

average. We use Fractional Brownian Motion Process with the Hurst exponent

H = 0.3. The standard deviation σ = 0.02. Next Figure 6.27(b) illustrates the

logarithm of data of average prices with the statistical mean of the elements of our

model. The shaded area has the lower bound of value of mean with 25% and the

higher bound of value of mean with 75%.

(a) (b)

Figure 6.27: (a): The blue curve is the new model of oil prices constructed with the
function r = r(t). The black curve is the initial real data of daily oil
prices. (b): Logarithm of average daily oil prices with statistical mean of
our model.

We plot the local standard deviation σ and the local correlation scale θ for real
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(a) (b)

Figure 6.28: (a): Monte Carlo simulations for the local standard deviation σ. (b):
Monte Carlo simulations for the local correlation scale θ.

data in Figure 6.28(a) and 6.28(b). It is the black curve. We used Monte Carlo

method. We plot the mean of σ and θ for our constructed model. It is the dashed

curves. And the shaded area has the lower bound of value of mean with 25%, and

the higher bound of mean with 75%. We get increases of local standard deviation

and local correlation functions for real data. The curves have jumps at the point

t ≈ 4000. We compare it with our constructed model. There are also jumps in

both functions σ and θ at the point t ≈ 3200. We get the early-warning signal for

crisis.

6.7 Stock market crashes. Standard&Poor 500 in-

dex

We consider three well-known stock market crashes, the Black Monday 1987,

the 2000 Dot.com Bubble, 2008 Financial crisis.

We use the Standard&Poor 500 (S&P 500) index to �nd early-warning signals

prior to these crises. This is shown in Figure 6.29. The S&P 500 index is famous

stock market index that includes 500 American companies with large market cap-

italizations. It represents the U.S. stock market. In Figure 6.29 the index rises at

points that correspond to three crises.
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Figure 6.29: Standard&Poor 500 index for 1950-2015 years.

Figure 6.30(a) shows the daily Standard&Poor 500 index by taking the log-

arithm and subtracting linear trend. There are increases approximately at the

points t = 7000, t = 9500. It corresponds to the Black Monday and the Dot.com

Bubble. We use only the data before 2008 Financial Crisis to �nd the early-warning

signals before the crash. The red curve in Figure 6.30(a) is the moving average

with ∆t = 4000.

We subtract the moving average from our �nancial data and get the residual

of time series before crisis. This curve is plotted in Figure 6.30(b).

(a) (b)

Figure 6.30: (a): Daily Standard&Poor 500 index by taking the logarithm and sub-
tracting linear trend. The red curve is the moving average with ∆t = 4000.
(b): Residual of time series before crisis.
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(a) (b)

Figure 6.31: (a): The blue curve is the new model of crisis constructed with function
r = r(t) from the moving average. The black curve is the initial real data
of S&P 500 index. (b): Logarithm of �nancial data with statistical mean
of elements of our constructed model.

(a) (b)

Figure 6.32: (a): Monte Carlo simulations for the local standard deviation σ. (b):
Monte Carlo simulations for the local correlation scale θ. Black curves are
for real data. The mean of σ and θ for our constructed model is dashed
curves. And the violet area has the lower bound of value of mean with
25%, and the higher bound of mean with 75%.

Figure 6.31(a) shows the new model of crisis constructed with the function

r = r(t) from the moving average. This is illustrated by the blue curve. We use a

model of white noise process with standard deviation σ = 0.025. The black curve

shows the initial real data of S&P 500 index.

We plot the logarithm of �nancial data with statistical mean of elements. This
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can be seen in Figure 6.31(b). We use the Monte-Carlo method with the lower

bound of value of mean with 25% and the higher bound of value of mean with

75%.

Monte Carlo simulations for the local standard deviation σ and for the local

correlation scale θ are illustrated in Figures 6.32. There are insigni�cant increases

both in standard deviation function and the correlation function at the point

t = 13000 before the tipping point. It is the early warning signal of the imminent

crash.
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Chapter 7

Conclusion

The main point of this thesis was to review crises in �nancial markets within

the framework of a tipping point. We have de�ned that the tipping point is a

point in a system where a sudden transition between two states occurs, and we

have described power crises and other �nancial crises as bifurcations in stochastic

dynamical systems.

We have applied stochastic models for electricity spot prices, oil prices and

stock market prices. We also estimated parameters for these models.

Our results show that the local variance and the local autocorrelation may

grow as the system approaches the critical transition, the so-called early-warning

signals. Our analysis con�rm that these indicators can be seen before critical

threshold is reached. We use the standard deviation and the correlation scale as

our main indicators.

We explore Norwegian electricity prices for the years 1992-2011 and we can

conclude that there are no evidence of any tipping points nor power crises in

these data. The Hurst R/S analysis shows that this process is anti-persistent, i.e.

H < 0.5.

We compare California energy prices and �nd early-warning signals. Our anal-

ysis also reveals that this process is anti-persistent. We model a random walk

process with normal Gaussian distributions, consistent with a fractional Brownian

motion process with the Hurst exponent H = 0.45. We compare two models. This

61
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is illustrated in Figures 7.1, and we got almost identical results. We can use both

models for our analysis.

(a) (b)

Figure 7.1: (a): Model of random walk process with normal Gaussian distribution. (b):
Model of fractional Brownian motion with H = 0.45.

We found the signi�cant increases of the standard deviation and the correlation

function before California energy crisis in both models. It shows critical slowing

down prior to the tipping point.

The model for oil prices of 1986-2014 years also has early-warning signals. Here

we used fractional Brownian motion process with the Hurst exponent H = 0.3.

There are increases in the standard deviation and the correlation function for our

constructed model and for real data. It corresponds to crisis in 2008.

We also analysed the Standard&Poor 500 index, which displays stock market

prices. We modelled log returns as a white noise process with the Hurst exponent

H = 0.5. Monte-Carlo method for the standard deviation and the correlation

function shows early-warning signals for �nancial crisis of 2008 year.

We can remark these models are suitable for forecasting spot prices. This

analysis can be performed on other �nancial data. It would be interesting to

continue research in this direction and predict crises in future.
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Appendix A

Source code of example of tipping

point

This appendix includes the source code of example of stochastic dynamical

system. It is used to �nd the tipping points of this system. We take a random

walk process with the Hurst exponent H = 0.5, then fractional Brownian motion

process with H = 0.368698.
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We consider the dynamical system y ’ = r - y 1 - y +Σ w. This can be written as y ’ = U ’ HyL + Σ w, 

where UHyL = r y + sgnHyL Iy2 �2 - y
3 �3M + ΘH1 - yL �3.

rand = RandomReal@NormalDistribution@0, 0.1D, 5 * 31D;

rand = Thread@8ð1, ð2< &@Range@5 * 31D � 5., randDD;

ifun = Interpolation@randD;

Σ = 0.15;

i@r_D := r y + Sign@y - 1D Hy^2 � 2 - y^3 � 3L + UnitStep@1 - yD � 3;

f1@r_D :=
1

2

J1 - 1 - 4 r N;

f2@r_D :=
1

2

J1 + 1 - 4 r N;

f3@r_D :=
1

2

J1 - 1 + 4 r N;

f4@r_D :=
1

2

J1 + 1 + 4 r N;

PL1 = Plot@f1@rD, 8r, 0, 2<, PlotRange ® All, PlotStyle ® RedD;

PL2 = Plot@f2@rD, 8r, 0, 2<, PlotRange ® All, PlotStyle ® BlackD;

PL3 = Plot@f3@rD, 8r, 0, 2<, PlotRange ® All, PlotStyle ® BlackD;

PL4 = Plot@f4@rD, 8r, 0, 2<, PlotRange ® All, PlotStyle ® RedD;

line = Graphics@8 Red, Arrow@880.25, 0.5<, 80.25, f4@0.25D<<D<D;

Show@8PL1, PL2, PL3, PL4, line<,

AxesLabel ® 8"r", "fixed points y"<, AxesStyle ® Directive@14DD

0.5 1.0 1.5 2.0
r

-1.0

-0.5

0.5

1.0

1.5

2.0

fixed points y
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r = 0.2;

tab = 80.25<;

rliste = 8r<;

pliste = 8<;

Monitor@
Do@

rand = RandomReal@NormalDistribution@0, ΣD, 5 * 31D;

rand = Thread@8ð1, ð2< &@Range@5 * 31D � 5., randDD;

ifun = Interpolation@randD;

H* xxxxxxxx *L
r = r + 0.001;

rliste = Append@rliste, rD;

y0 = Last@tabD;

s = NDSolve@
8y’@xD � r - Sqrt@H1 - y@xDL^2D * y@xD + ifun@x + 1D, y@0D � y0<, y, 8x, 0, 30<D;

mid = Flatten@Evaluate@y@xD �. sD �. x ® Range@30DD;

tab = Join@tab, midD;

p1 = ListPlot@tab, PlotRange ® 880, 3000<, 80, 2<<,

Background ® None, AxesStyle ® Black, PlotStyle ® Black,

Joined ® True, AxesLabel ® 8"t", "xHtL"<D;

PL1 = Plot@-i@rD, 8y, 0, 1.8<, Background ® None, Axes ® False,

Frame ® True, FrameStyle ® Black, PlotStyle ® BlackD;

L = 8PL1<;

point1 = 8f4@rD, -i@rD �. y ® f4@rD<;

point2 = 8f2@rD, -i@rD �. y ® f2@rD<;

point3 = 8f1@rD, -i@rD �. y ® f1@rD<;

If@Element@point1, RealsD,

L = Append@L, Graphics@8Red, Disk@point1, 0.03D<DD;

D;

If@Element@point2, RealsD,

L = Append@L, Graphics@8Blue, Disk@point2, 0.03D<DD;

D;

If@Element@point3, RealsD,

L = Append@L, Graphics@8Green, Disk@point3, 0.03D<DD;

D;

p2 = Show@L, PlotRange ® 8-0.6, -0.2<, FrameLabel ® 8"x", "UHxL"<D;

p = GraphicsGrid@88p1, p2<<, ImageSize ® 600, Background ® NoneD;

pliste = Append@pliste, pD;

, 8t, 1, 100<D;

, tD

2     tippingpoint example.nb
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ListAnimate@plisteD
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ListPlot@tab, Joined ® TrueD
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Dt = 250;

V@t_D := Variance@tab@@t - Dt ;; tDDD
variancelist = Table@8t, V@tD<, 8t, 251, 3000<D
varPlot1 = ListPlot@variancelist, PlotRange ® AllD

500 1000 1500 2000 2500 3000

0.05

0.10

0.15

n = 12;

corlist =

Table@8t, Correlation@Drop@tab@@t - Dt ;; tDD, nD, Drop@tab@@t - Dt ;; tDD, -nDD<,

8t, 251, 3000<D;

ListPlot@corlist, Joined -> True, PlotRange ® AllD

500 1000 1500 2000 2500 3000

-0.2

0.2

0.4

0.6

0.8

4     tippingpoint example.nb
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We consider the dynamical system y ’ = r - y 1 - y +Σ w. This can be written as y ’ = U ’ HyL + Σ w, 

where UHyL = r y + sgnHyL Iy2 �2 - y
3 �3M + ΘH1 - yL �3.

data = RandomFunction@FractionalBrownianMotionProcess@.368698D, 80, 5 * 31, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

Σ = 0.15;

i@r_D := r y + Sign@y - 1D Hy^2 � 2 - y^3 � 3L + UnitStep@1 - yD � 3;

f1@r_D :=
1

2

J1 - 1 - 4 r N;

f2@r_D :=
1

2

J1 + 1 - 4 r N;

f3@r_D :=
1

2

J1 - 1 + 4 r N;

f4@r_D :=
1

2

J1 + 1 + 4 r N;

PL1 = Plot@f1@rD, 8r, 0, 2<, PlotRange ® All, PlotStyle ® RedD;

PL2 = Plot@f2@rD, 8r, 0, 2<, PlotRange ® All, PlotStyle ® BlackD;

PL3 = Plot@f3@rD, 8r, 0, 2<, PlotRange ® All, PlotStyle ® BlackD;

PL4 = Plot@f4@rD, 8r, 0, 2<, PlotRange ® All, PlotStyle ® RedD;

line = Graphics@8 Red, Arrow@880.25, 0.5<, 80.25, f4@0.25D<<D<D;

Show@8PL1, PL2, PL3, PL4, line<,

AxesLabel ® 8"r", "fixed points y"<, AxesStyle ® Directive@14DD
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r
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r = 0.2;

Σ = 0.005;

tab = 80.25<;

rliste = 8r<;

pliste = 8<;

Monitor@
Do@

data =

RandomFunction@FractionalBrownianMotionProcess@.368698D, 80, 5 * 31, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r + 0.001;

rliste = Append@rliste, rD;

y0 = Last@tabD;

s = NDSolve@8y’@xD � r - Sqrt@H1 - y@xDL^2D * y@xD + Σ * ifun@x + 1D, y@0D � y0<,

y, 8x, 0, 30<D;

mid = Flatten@Evaluate@y@xD �. sD �. x ® Range@30DD;

tab = Join@tab, midD;

p1 = ListPlot@tab, PlotRange ® 880, 3000<, 80, 2<<,

Background ® None, AxesStyle ® Black, PlotStyle ® Black,

Joined ® True, AxesLabel ® 8"t", "xHtL"<D;

PL1 = Plot@-i@rD, 8y, 0, 1.8<, Background ® None, Axes ® False,

Frame ® True, FrameStyle ® Black, PlotStyle ® BlackD;

L = 8PL1<;

point1 = 8f4@rD, -i@rD �. y ® f4@rD<;

point2 = 8f2@rD, -i@rD �. y ® f2@rD<;

point3 = 8f1@rD, -i@rD �. y ® f1@rD<;

If@Element@point1, RealsD,

L = Append@L, Graphics@8Red, Disk@point1, 0.03D<DD;

D;

If@Element@point2, RealsD,

L = Append@L, Graphics@8Blue, Disk@point2, 0.03D<DD;

D;

If@Element@point3, RealsD,

L = Append@L, Graphics@8Green, Disk@point3, 0.03D<DD;

D;

p2 = Show@L, PlotRange ® 8-0.6, -0.2<, FrameLabel ® 8"x", "UHxL"<D;

p = GraphicsGrid@88p1, p2<<, ImageSize ® 600, Background ® NoneD;

pliste = Append@pliste, pD;

, 8t, 1, 100<D;

, tD

2     new example Brownian motion.nb
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ListAnimate@plisteD
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ListPlot@tab, Joined ® TrueD
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ListPlot@tab@@500 ;; 1000DDD
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Dt = 250;

V@t_D := Variance@tab@@t - Dt ;; tDDD;

variancelist = Table@8t, V@tD<, 8t, 251, 3000<D;

varPlot1 = ListPlot@variancelist, PlotRange ® AllD

500 1000 1500 2000 2500 3000

0.05
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n = 12;

corlist =

Table@8t, Correlation@Drop@tab@@t - Dt ;; tDD, nD, Drop@tab@@t - Dt ;; tDD, -nDD<,

8t, 251, 3000<D;

ListPlot@corlist, Joined -> True, PlotRange ® AllD

500 1000 1500 2000 2500 3000

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

4     new example Brownian motion.nb
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Appendix B

Source code of California power

crisis

This part includes analysis of California electricity prices. The code plots

average prices per day and per hour in California for 1998-2001, variance and

correlation function. Also we use the algorithm of R/S statistics and �nd the

Hurst exponent.
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x = ToExpression@StringSplit@
ReadList@"C:�Users�ì�Desktop�California electricity crisis�calpxnew.txt",

StringDD@@All, 3DDD
pricehourly = Flatten@xD;

ListPlot@pricehourly, Joined ® True, PlotRange ® All, LabelStyle ® 816<,

PlotLabel ® Style@"Energy Prices in California", 20, BlackDD
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DateListPlot@pricehourly, 81998, 4, 1, 1<, Joined ® True, PlotRange ® All,

FrameLabel -> 8"Date", "Energy prices $�MWh"<, LabelStyle ® 816<,

PlotLabel ® Style@"Energy Prices in California", 20, BlackD,

DateTicksFormat -> 8"Day", "�", "MonthShort", "�", "YearShort"<D
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Length@pricehourlyD
24 888

day = Map@Mean@ðD &, Transpose@Partition@pricehourly, 24DDD;
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ListPlot@day, Joined ® True,

FrameLabel -> 8"Hour", "Average energy prices $�MWh"<, LabelStyle ® 816<D

5 10 15 20

50
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v = Flatten@Table@day, 81037<DD;

ListPlot@v, Joined ® True, PlotRange ® AllD;

X = pricehourly - v + Mean@vD;

ListPlot@X, Joined ® True, PlotRange ® AllD
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t = 50;

Variance@X@@t - 12 ;; tDDD
114.956

2     California crisis.nb
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variancelist = Table@8t, Variance@X@@t - 24 ;; tDDD<, 8t, 25, 24 888<D;

ListPlot@variancelist, Joined -> True, PlotRange ® AllD
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200 000
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n = 12;

corlist = Table@
8t, Correlation@Drop@X@@t - 30 * 24 ;; tDD, nD, Drop@X@@t - 30 * 24 ;; tDD, -nDD<,

8t, 25 * 30, 24 888<D;

ListPlot@corlist, Joined -> True, PlotRange ® AllD

5000 10 000 15 000 20 000 25 000

-0.5

0.5

pars = FindProcessParameters@Log@YD, FractionalBrownianMotionProcess@hDD
Y = Map@Mean@ðD &, Partition@pricehourly, 24DD;

California crisis.nb    3
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ListPlot@Log@YD, Joined -> TrueD
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DY = Drop@Log@YD, 1D - Drop@Log@YD, -1D;

Z = FoldList@Plus, 0, DY - Mean@DYDD;

ListPlot@Z, Joined -> TrueD
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Length@ZD
1037

We have 1037 day - long sequence of average daily prices. We divide the sample into subsamples 

of equal lenght. Since the number 1037 has only two divisors greater 10 we analyze a sample of 

length 1036, which has 7 divisors greater 10: 14, 28, 37, 74, 148, 259, 518.

Divisors@1037D
81, 17, 61, 1037<

d = Divisors@1036D
81, 2, 4, 7, 14, 28, 37, 74, 148, 259, 518, 1036<

d1 = d@@5 ;; 11DD
814, 28, 37, 74, 148, 259, 518<

Z1 = DY@@1 ;; 1036DD;

4     California crisis.nb
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Function of Rescaled range analysis

RS@subsample_D := ModuleB8list = subsample, E, Z, Y, R, S, i, j<,

E = Mean@listD;

Z = 8<;

For @i = 1, i £ Length@listD, i++,

AppendTo@Z, list@@iDD - ED;

D;

S =
1

Length@listD â
i=1

Length@listD
Z@@iDD2 ;

Y = 8<;

Y = 8Z@@1DD<;

For@j = 1, j < Length@listD, j++,

AppendTo@Y, Y@@jDD + Z@@j + 1DDD;

D;

R = Max@YD - Min@YD;

R � S

F
NumberOfSubsample = Length@d1D;

RSList = 8<;

For@i = 1, i £ NumberOfSubsample, i++,

L = d1@@iDD;

n = Length@Z1D � L;

RSsum = 0;

For@t = 0, t < n, t++,

subsample = Take@Z1, 8t * L + 1, Ht + 1L * L<D;

RSsum = RSsum + RS@subsampleD � n;

D;

AppendTo@RSList, RSsumD;

D
RSList

83.47527, 4.81863, 5.502, 7.20715, 8.87012, 11.061, 13.3347<

ListLogLogPlot@RSList, Joined ® TrueD
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d1 = 814, 28, 37, 74, 148, 259, 518<
814, 28, 37, 74, 148, 259, 518<

data = 88Log10@d1@@1DDD, Log10@RSList@@1DDD<,

8Log10@d1@@2DDD, Log10@RSList@@2DDD<, 8Log10@d1@@3DDD, Log10@RSList@@3DDD<,

8Log10@d1@@4DDD, Log10@RSList@@4DDD<, 8Log10@d1@@5DDD, Log10@RSList@@5DDD<,

8Log10@d1@@6DDD, Log10@RSList@@6DDD<, 8Log10@d1@@7DDD, Log10@RSList@@7DDD<<
::

Log@14D
Log@10D

, 0.540989>, :
Log@28D
Log@10D

, 0.682923>,

:
Log@37D
Log@10D

, 0.740521>, :
Log@74D
Log@10D

, 0.857764>,

:
Log@148D
Log@10D

, 0.947929>, :
Log@259D
Log@10D

, 1.04379>, :
Log@518D
Log@10D

, 1.12498>>

data = :: Log@14D
Log@10D , 0.6740222492934599‘>,

: Log@28D
Log@10D , 0.9520011802633079‘>, : Log@37D

Log@10D , 1.0504263897577875‘>,

: Log@74D
Log@10D , 1.342149186858243‘>, : Log@148D

Log@10D , 1.660319355241928‘>,

: Log@259D
Log@10D , 1.865268684264848‘>, : Log@518D

Log@10D , 2.2338089556196263‘>>;

Clear@dataD
ListPlot@dataD
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Fit@data, 8z, 1<, zD
0.146381 + 0.368698 z
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ListPlot@data, Joined ® True, FrameLabel -> 8"LogHdL", "Log HR�SL"<D
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ListPlot@Z@@800 ;; 1036DD, Joined -> TrueD
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We have the moving average, Z is the time series with fixed time step Dt = 1.

av = Drop@MovingAverage@ArrayPad@Z, 5 * 12 � 2, "Fixed"D, 5 * 12D, 1D;

California crisis.nb    7
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PL2 = ListPlot@av, PlotStyle ® Red, Joined ® TrueD
PL1 = ListPlot@Z, Joined ® TrueD;

Show@PL1, PL2D
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Appendix C

Source code of Norwegian energy

prices

This appendix contains analysis of Norwegian electricity spot market. The

code plots average electricity prices per day and per hour in Norway for 1992-2011

years, variance and correlation function. Also we �nd the Hurst exponent.
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x =

ToExpression@StringSplit@ReadList@"C:�Users�ì�Desktop�California electricity

crisis�Norwegainprices_1992-2011.txt", StringDD@@AllDDD
pricehourly = Flatten@xD;

ListPlot@pricehourly, Joined ® True, PlotRange ® All, LabelStyle ® 816<,

PlotLabel ® Style@"Norwegian electricity prices", 20, BlackDD
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DateListPlot@pricehourly, 81992, 1, 1, 1<, Joined ® True, PlotRange ® All,

FrameLabel -> 8"Date", "Energy prices NOK�MWh"<, LabelStyle ® 816<,

DateTicksFormat -> 8"Day", "�", "MonthShort", "�", "YearShort"<D
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Length@xD
169 680

day = Map@Mean@ðD &, Transpose@Partition@pricehourly, 24DDD
8209.127, 203.003, 198.906, 195.935, 196.86, 203.57, 213.963, 227.343,

237.719, 237.675, 237.356, 235.699, 232.053, 229.29, 227.241, 226.316,

228.227, 233.424, 232.773, 228.859, 225.076, 223.553, 220.593, 212.301<
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ListPlot@day, Joined ® True,

FrameLabel -> 8"Hour", "Average energy prices NOK�MWh"<, LabelStyle ® 816<D
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v = Flatten@Table@day, 87070<DD;

X = pricehourly - v + Mean@vD;

ListPlot@X, Joined ® True, PlotRange ® AllD
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t = 50;

variancelist = Table@8t, Variance@X@@t - 24 ;; tDDD<, 8t, 25, 169 680<D;

ListPlot@variancelist, Joined -> True, PlotRange ® AllD
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n = 12;

corlist = Table@
8t, Correlation@Drop@X@@t - 30 * 24 ;; tDD, nD, Drop@X@@t - 30 * 24 ;; tDD, -nDD<,

8t, 25 * 30, 169 680<D;

ListPlot@corlist, Joined -> True, PlotRange ® AllD
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Y = Map@Mean@ðD &, Partition@pricehourly, 24DD;

ListPlot@Log@YD, Joined -> True, PlotRange ® AllD
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DY = Drop@Log@YD, 1D - Drop@Log@YD, -1D;

Z = FoldList@Plus, 0, DY - Mean@DYDD;

ListPlot@Z, Joined -> TrueD
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Length@DYD
7069

We have 7069 day - long sequence of average daily prices. We divide the sample into subsamples 

of equal lenght. Since the number 7069 doesn�t have divisors we analyze a sample of length 7068, 

which has 18 divisors greater 10 : 12, 19, 31, 38, 57, 62, 76, 93, 114, 124, 186, 228, 372, 589, 

1178, 1767, 2356, 3534.

Divisors@7069D
81, 7069<

d = Divisors@7068D

81, 2, 3, 4, 6, 12, 19, 31, 38, 57, 62, 76, 93,

114, 124, 186, 228, 372, 589, 1178, 1767, 2356, 3534, 7068<

d1 = d@@6 ;; 23DD
812, 19, 31, 38, 57, 62, 76, 93, 114, 124, 186, 228, 372, 589, 1178, 1767, 2356, 3534<

Z1 = DY@@1 ;; 7068DD;

Function of Rescaled range analysis

RS@subsample_D := ModuleB8list = subsample, E, Z, Y, R, S, i, j<,

E = Mean@listD;

Z = 8<;

For @i = 1, i £ Length@listD, i++,

AppendTo@Z, list@@iDD - ED;

D;

S =
1

Length@listD â
i=1

Length@listD
Z@@iDD2 ;

Y = 8<;

Y = 8Z@@1DD<;

For@j = 1, j < Length@listD, j++,

AppendTo@Y, Y@@jDD + Z@@j + 1DDD;

D;

R = Max@YD - Min@YD;

R � S

F

4     Norwegian prices.nb
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NumberOfSubsample = Length@d1D;

RSList = 8<;

For@i = 1, i £ NumberOfSubsample, i++,

L = d1@@iDD;

n = Length@Z1D � L;

RSsum = 0;

For@t = 0, t < n, t++,

subsample = Take@Z1, 8t * L + 1, Ht + 1L * L<D;

RSsum = RSsum + RS@subsampleD � n;

D;

AppendTo@RSList, RSsumD;

D

RSList

83.24166, 4.05905, 5.23513, 5.72585, 6.74822, 7.24215, 7.93451, 8.78215, 9.35453,

10.0393, 12.3561, 12.8698, 17.5801, 19.9984, 28.8975, 31.9677, 35.655, 45.0119<

ListLogLogPlot@RSList, Joined ® TrueD
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data = 88Log10@d1@@1DDD, Log10@RSList@@1DDD<,

8Log10@d1@@2DDD, Log10@RSList@@2DDD<, 8Log10@d1@@3DDD, Log10@RSList@@3DDD<,

8Log10@d1@@4DDD, Log10@RSList@@4DDD<, 8Log10@d1@@5DDD, Log10@RSList@@5DDD<,

8Log10@d1@@6DDD, Log10@RSList@@6DDD<, 8Log10@d1@@7DDD, Log10@RSList@@7DDD<,

8Log10@d1@@8DDD, Log10@RSList@@8DDD<, 8Log10@d1@@9DDD, Log10@RSList@@9DDD<,

8Log10@d1@@10DDD, Log10@RSList@@10DDD<, 8Log10@d1@@11DDD,

Log10@RSList@@11DDD<, 8Log10@d1@@12DDD, Log10@RSList@@12DDD<,

8Log10@d1@@13DDD, Log10@RSList@@13DDD<, 8Log10@d1@@14DDD,

Log10@RSList@@14DDD<, 8Log10@d1@@15DDD, Log10@RSList@@15DDD<,

8Log10@d1@@16DDD, Log10@RSList@@16DDD<, 8Log10@d1@@17DDD,

Log10@RSList@@17DDD<, 8Log10@d1@@18DDD, Log10@RSList@@18DDD<<
::

Log@12D
Log@10D

, 0.510768>, :
Log@19D
Log@10D

, 0.608425>, :
Log@31D
Log@10D

, 0.718927>,

:
Log@38D
Log@10D

, 0.75784>, :
Log@57D
Log@10D

, 0.829189>, :
Log@62D
Log@10D

, 0.859868>,

:
Log@76D
Log@10D

, 0.89952>, :
Log@93D
Log@10D

, 0.943601>, :
Log@114D
Log@10D

, 0.971022>,

:
Log@124D
Log@10D

, 1.0017>, :
Log@186D
Log@10D

, 1.09188>, :
Log@228D
Log@10D

, 1.10957>,

:
Log@372D
Log@10D

, 1.24502>, :
Log@589D
Log@10D

, 1.30099>, :
Log@1178D

Log@10D
, 1.46086>,

:
Log@1767D

Log@10D
, 1.50471>, :

Log@2356D
Log@10D

, 1.55212>, :
Log@3534D

Log@10D
, 1.65333>>

ListPlot@dataD
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Fit@data, 8z, 1<, zD
0.0339938 + 0.458081 z
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ListPlot@data, Joined ® True, FrameLabel -> 8"LogHdL", "Log HR�SL"<D
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Hurst exponent is equal to 0.458081
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Appendix D

Source code of California early

warning analysis

This part includes analysis of early warning signals for California Power Crisis.

In the beginning we use the model of random walk process, then the model of

fractional Brownian motion process.
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Consider a random walk process:

n = 1000;

X = FoldList@Plus, 0, RandomReal@NormalDistribution @0, 1D, nDD;

PL1 = ListPlot@X, Joined ® True, Frame ® True,

FrameStyle ® Directive@16D, FrameLabel ® 8"time t", "XHtL"< D
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If we estimate the Θ in an OU process, then we get something close to zero, because Θ=0 for a 

Brownian motion.

EstimatedProcess@X, OrnsteinUhlenbeckProcess@Μ, Σ, ΘDD
OrnsteinUhlenbeckProcess@-8.69676, 10.2675, 0.00454413D

win = 50;

L = MovingAverage@X, winD;

PL1 = ListPlot@Drop@X, win � 2D, Joined ® True, Frame ® True,

FrameStyle ® Directive@16D, FrameLabel ® 8"time t", "XHtL"< D;

PL2 = ListPlot@L, PlotStyle ® RedD;

residual = Drop@Drop@X, win � 2 - 1D, -win � 2D - L;

Show@PL1, PL2D
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If we make a smoothing of the signal S(t) (the red curve), then the residual R(t)=X(t)-S(t) is well 

described by an OU process with Θ corresponding to the time scale in the smoothing. 
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PL1 = ListPlot@residual, Joined ® True, Frame ® True,

FrameStyle ® Directive@16D, FrameLabel ® 8"time t", "RHtL"< D
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Clear@Μ, ΣD
EstimatedProcess@residual, OrnsteinUhlenbeckProcess@Μ, Σ, ΘDD
OrnsteinUhlenbeckProcess@-0.0393581, 2.27934, 0.103088D

Let us look at this relationship:

Monitor@
est2 = 8<;

Do@
est1 = 8<;

Do@
win = 2 * w;

X = FoldList@Plus, 0, RandomReal@NormalDistribution @0, 1D, nDD;

L = MovingAverage@X, winD;

residual = Drop@Drop@X, win � 2 - 1D, -win � 2D - L;

est1 = Append@est1,

EstimatedProcess@residual, OrnsteinUhlenbeckProcess@Μ, Σ, ΘDD@@3DDD;

, 8i, 1, 40<D;

est2 = Append@est2, 8win, Mean@est1D<D;

, 8w, 10, 150, 10<D;

, winD
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ListPlot@est2, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"smoothing scale", "estimated Θ"< , PlotRange ® AllD
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Let us look at an example:

X = FoldList@Plus, 0, RandomReal@NormalDistribution @0, 1D, nDD;

win = 200;

L = MovingAverage@X, winD;

PL1 = ListPlot@Drop@Drop@X, win � 2D, -win � 2D, Joined ® True, Frame ® True,

FrameStyle ® Directive@16D, FrameLabel ® 8"time t", "XHtL"< D;

PL2 = ListPlot@L, PlotStyle ® RedD;

residual = Drop@Drop@X, win � 2 - 1D, -win � 2D - L;

PL0 = Show@PL1, PL2D
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Θ = EstimatedProcess@residual, OrnsteinUhlenbeckProcess@Μ, Σ, ΘDD@@3DD;

Clear@aD
sol = Solve@a Sqrt@1 - 4 * 0.14D � Θ, aD;

a = sol@@1DD@@1DD@@2DD
0.0378933
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L0 = First@LD;

Lrange = Last@LD - First@LD;

Lrange = Lrange � 0.15;

driver = HL - L0L � Lrange;

r0 = 0.0;

v = 1;

ListPlot@r0 + v * driverD
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r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

rand = RandomReal@NormalDistribution@0, ΣD, 5 * 31D;

rand = Thread@8ð1, ð2< &@Range@5 * 31D � 5., randDD;

ifun = Interpolation@randD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 26<D;

, tD
icemodel = tab;
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Q2 = ListPlot@L0 + Lrange * icemodel,

Joined ® True, PlotRange ® All, PlotStyle ® BlueD;

Show@8PL0, Q2<, PlotRange ® AllD
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Now we can construct a financial crash by going to the tipping point: 

L0 = First@LD;

Lrange = Last@LD - First@LD;

Lrange = Lrange � 0.20;

driver = HL - L0L � Lrange;

driver = Join@driver, Last@driverD + 0.0002 * Range@800DD;

ListPlot@r0 + v * driverD
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Σ = 0.05;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

rand = RandomReal@NormalDistribution@0, ΣD, 5 * 31D;

rand = Thread@8ð1, ð2< &@Range@5 * 31D � 5., randDD;

ifun = Interpolation@randD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 53<D;

, tD
icemodel = tab;

Q2 = ListPlot@L0 + Lrange * icemodel,

Joined ® True, PlotRange ® All, PlotStyle ® BlueD;

Show@8PL0, Q2<, PlotRange ® AllD
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Now we look at the Power data :
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Now we look at the Power data :

X = ReadList@"Dropbox�Master Theses�Calpx.txt"D;

X = Map@Mean@ðD &, Partition@X, 24DD;

X = Log@XD;

win = 200;

L = MovingAverage@X, winD;

PL1 = ListPlot@Drop@Drop@X, win � 2D, -win � 2D, Joined ® True, Frame ® True,

FrameStyle ® Directive@16D, FrameLabel ® 8"time t", "XHtL"< D;

PL2 = ListPlot@L, PlotStyle ® RedD;

residual = Drop@Drop@X, win � 2 - 1D, -win � 2D - L;

PL0 = Show@PL1, PL2D
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Residual before the crisis:

ListPlot@Drop@residual, -200D, Joined ® True,

Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t", "residual"<, PlotRange ® All D
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Θ = EstimatedProcess@Drop@residual, -200D,

OrnsteinUhlenbeckProcess@Μ, Σ, ΘDD@@3DD;

Clear@aD
sol = Solve@a Sqrt@1 - 4 * 0.14D � Θ, aD;

a = sol@@1DD@@1DD@@2DD
0.0378933

early warning.nb    7

102APPENDIX D. SOURCE CODEOF CALIFORNIA EARLYWARNING ANALYSIS



L0 = First@LD;

Lrange = Last@LD - First@LD;

Lrange = Lrange � 0.22;

driver = HL - L0L � Lrange;

r0 = 0.0;

v = 1;

PL0 = ListPlot@r0 + v * driver, PlotStyle ® BlueD;

driver = Join@driver, Last@driverD + 0.0007 * Range@600DD;

PL1 = ListPlot@r0 + v * driver, PlotStyle ® RedD;

Show@PL1, PL0D
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Σ = 0.03;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

rand = RandomReal@NormalDistribution@0, ΣD, 5 * 31D;

rand = Thread@8ð1, ð2< &@Range@5 * 31D � 5., randDD;

ifun = Interpolation@randD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 47<D;

, tD
icemodel = tab;
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PL1 = ListPlot@Drop@Drop@X, win � 2D, 0D,

Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t HdaysL", "log price XHtL"< D;

Q2 = ListPlot@L0 + Lrange * icemodel, Joined ® True,

PlotRange ® All, PlotStyle ® BlueD;

Show@8PL1, Q2<, PlotRange ® 880, 1000<, 82, 15<<D
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Z = Drop@Drop@X, win � 2D, 0D;
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Σ = 0.03;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

rand = RandomReal@NormalDistribution@0, ΣD, 5 * 31D;

rand = Thread@8ð1, ð2< &@Range@5 * 31D � 5., randDD;

ifun = Interpolation@randD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 31<D;

, tD
model = L0 + Lrange * tab;

PL1 = ListPlot@Z, Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t HdaysL", "log price XHtL"< D;

Q2 = ListPlot@model, Joined ® True, PlotRange ® All, PlotStyle ® BlueD;

Show@8PL1, Q2<, PlotRange ® 880, 1000<, 82, 8<<D
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mlist = 8<;

Monitor@
Do@

Σ = 0.03;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

rand = RandomReal@NormalDistribution@0, ΣD, 5 * 31D;

rand = Thread@8ð1, ð2< &@Range@5 * 31D � 5., randDD;

ifun = Interpolation@randD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 31<D;

, tD;

model = L0 + Lrange * tab;

mlist = Append@mlist, modelD;

, 8j, 1, 100<D;

, jD;

mean = Map@Mean@ðD &, Transpose@mlistDD;

low = Map@Quantile@ð, 0.025D &, Transpose@mlistDD;

high = Map@Quantile@ð, 1 - 0.025D &, Transpose@mlistDD;

PL1 = ListPlot@Z, Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t HdaysL", "log price XHtL"< D;

Q3 = ListPlot@mean, Joined ® True, PlotRange ® All, PlotStyle ® BlueD;

Q4 = ListPlot@8low, high<, Joined ® True,

PlotRange ® All, PlotStyle ® 8Pink<, Filling ® 81 ® 82<<D;

Show@8PL1, Q3, Q4<, PlotRange ® 880, 1000<, 82, 8<<D
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Early warning

Σ = 0.03;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

rand = RandomReal@NormalDistribution@0, ΣD, 5 * 31D;

rand = Thread@8ð1, ð2< &@Range@5 * 31D � 5., randDD;

ifun = Interpolation@randD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 31<D;

, tD;

model = L0 + Lrange * tab;

r

0.2844

Since r<0.25 this is before the tipping point

Θ = EstimatedProcess@model, OrnsteinUhlenbeckProcess@Μ, Σ, ΘDD@@3DD
0.0251356
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win = 200;

Σlist = 8<;

Τlist = 8<;

Monitor@
Do@

qqq = model@@t - win ;; tDD;

Σloc = StandardDeviation@qqqD; H*local standard deviation*L
Τloc = Correlation@Drop@qqq, 1D, Drop@qqq, -1DD;

H*local correlation scale*L
Σlist = Append@Σlist, 8t, Σloc<D;

Τlist = Append@Τlist, 8t, Τloc<D;

, 8t, win + 1, Length@modelD, 30<D;

, tD;

QQ3 = ListPlot@Σlist, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® BlueD;

QQ4 = ListPlot@Τlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local correlation Θ"<, PlotStyle ® BlueD;

Show@QQ3, PlotRange ® AllD
Show@QQ4, PlotRange ® AllD
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real data:

win = 200;

Σlist = 8<;

Τlist = 8<;

Monitor@
Do@

qqq = Z@@t - win ;; tDD;

Σloc = StandardDeviation@qqqD; H*local standard deviation*L
Τloc = Correlation@Drop@qqq, 1D, Drop@qqq, -1DD;

H*local correlation scale*L
Σlist = Append@Σlist, 8t, Σloc<D;

Τlist = Append@Τlist, 8t, Τloc<D;

, 8t, win + 1, Length@ZD, 30<D;

, tD;

QQ5 = ListPlot@Σlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® 8Thick, Black<D;

QQ6 = ListPlot@Τlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local correlation Θ"<, PlotStyle ® 8Thick, Black<D;

Show@8QQ3, QQ5<, PlotRange ® AllD
Show@8QQ4, QQ6<, PlotRange ® AllD
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monte carlo

Τlistlist = 8<;

Σlistlist = 8<;

Monitor@
Do@

Σ = 0.03;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

rand = RandomReal@NormalDistribution@0, ΣD, 5 * 31D;

rand = Thread@8ð1, ð2< &@Range@5 * 31D � 5., randDD;

ifun = Interpolation@randD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 31<D;

, tD;

model = L0 + Lrange * tab;

win = 200;

Σlist = 8<;

Τlist = 8<;

Monitor@
Do@

qqq = model@@t - win ;; tDD;

Σloc = StandardDeviation@qqqD; H*local standard deviation*L
Τloc = Correlation@Drop@qqq, 1D, Drop@qqq, -1DD;

H*local correlation scale*L
Σlist = Append@Σlist, 8t, Σloc<D;

Τlist = Append@Τlist, 8t, Τloc<D;

, 8t, win + 1, Length@modelD, 30<D;

, tD;

Τlistlist = Append@Τlistlist, ΤlistD;

Σlistlist = Append@Σlistlist, ΣlistD;

, 8u, 1, 100<D;

, uD;
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times = Σlistlist@@1DD@@All, 1DD;

Σmean = Map@Mean@ðD &, Transpose@Map@ð@@All, 2DD &, ΣlistlistDDD;

Σlow = Map@Quantile@ð, 0.025D &, Transpose@Map@ð@@All, 2DD &, ΣlistlistDDD;

Σhigh = Map@Quantile@ð, 1 - 0.025D &, Transpose@Map@ð@@All, 2DD &, ΣlistlistDDD;

Σmean = Thread@8ð1, ð2< &@times, ΣmeanDD;

Σlow = Thread@8ð1, ð2< &@times, ΣlowDD;

Σhigh = Thread@8ð1, ð2< &@times, ΣhighDD;

Τmean = Map@Mean@ðD &, Transpose@Map@ð@@All, 2DD &, ΤlistlistDDD;

Τlow = Map@Quantile@ð, 0.025D &, Transpose@Map@ð@@All, 2DD &, ΤlistlistDDD;

Τhigh = Map@Quantile@ð, 1 - 0.025D &, Transpose@Map@ð@@All, 2DD &, ΤlistlistDDD;

Τmean = Thread@8ð1, ð2< &@times, ΤmeanDD;

Τlow = Thread@8ð1, ð2< &@times, ΤlowDD;

Τhigh = Thread@8ð1, ð2< &@times, ΤhighDD;
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QQQ1 = ListPlot@8Σlow, Σhigh<,

Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® Red, Filling ® 81 ® 82<<D;

QQQ2 = ListPlot@Σmean, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® 8Red, Dotted<D;

QQQ3 = ListPlot@8Τlow, Τhigh<, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local Σ"<,

PlotStyle ® Red, Filling ® 81 ® 82<<D;

QQQ4 = ListPlot@Τmean, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® 8Red, Dotted<D;

Show@8QQ5, QQQ1, QQQ2<, PlotRange ® AllD
Show@8QQ6, QQQ3, QQQ4<, PlotRange ® AllD
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Local Hurst exponent

A function for de-trended fluctuation analysis:

fit@z_, o_D := Fit@z, zz^Range@0, oD, zzD �. zz ® Range@Length@zDD;

DFA@x_, o_, imin_, imax_D := HModule@8L, i, X, Z, var, detrends<, var = 8<;

Do@L = 2^i;

X = FoldList@Plus, 0, x - Mean@xDD;

Z = Partition@X, LD;

detrends = Map@ð - fit@ð, oD &, ZD;

var = Append@var, 8L, Sqrt@Mean@Flatten@detrendsD^2DD<D;,

8i, imin, imax<D;

Return@varD;D;L

Dmodel = Drop@model, 1D - Drop@model, -1D;

Fit@Log@DFA@Dmodel, 1, 2, 9DD, 8zz, 1<, zzD
-3.25749 + 0.413678 zz

∆t = 200;

t = ∆t + 1;

Dmodel = Drop@model, 1D - Drop@model, -1D;

H = Fit@Log@DFA@Dmodel@@t - ∆t ;; tDD, 1, 2, 7DD, 8zz, 1<, zzD@@2DD � zz;

win = 200;

∆t = win;

Hlist = 8<;

Monitor@
Do@

DZ = Drop@Z, 1D - Drop@Z, -1D;

qqq = DZ@@t - ∆t ;; tDD;

H = Fit@Log@DFA@qqq, 0, 2, 6DD, 8zz, 1<, zzD@@2DD � zz;

Hlist = Append@Hlist, 8t, H<D;

, 8t, win + 1, Length@ZD, 30<D;

, tD;

QQ3 = ListPlot@Hlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local H"<, PlotStyle ® 8Black, Thick<D;

Show@QQ3, PlotRange ® AllD
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Monte Carlo for local Hurst exponent

Hlistlist = 8<;

Monitor@
Do@

Σ = 0.03;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

rand = RandomReal@NormalDistribution@0, ΣD, 5 * 31D;

rand = Thread@8ð1, ð2< &@Range@5 * 31D � 5., randDD;

ifun = Interpolation@randD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 31<D;

, tD;

model = L0 + Lrange * tab;

Dmodel = Drop@model, 1D - Drop@model, -1D;

win = 200;

∆t = win;

Hlist = 8<;

Monitor@
Do@

qqq = Dmodel@@t - ∆t ;; tDD;

H = Fit@Log@DFA@qqq, 0, 2, 6DD, 8zz, 1<, zzD@@2DD � zz;

Hlist = Append@Hlist, 8t, H<D;

, 8t, win + 1, Length@DmodelD, 30<D;

, tD;

Hlistlist = Append@Hlistlist, HlistD;

, 8u, 1, 100<D;

, uD;

times = Hlistlist@@1DD@@All, 1DD;

Hmean = Map@Mean@ðD &, Transpose@Map@ð@@All, 2DD &, HlistlistDDD;

Hlow = Map@Quantile@ð, 0.025D &, Transpose@Map@ð@@All, 2DD &, HlistlistDDD;

Hhigh = Map@Quantile@ð, 1 - 0.025D &, Transpose@Map@ð@@All, 2DD &, HlistlistDDD;

Hmean = Thread@8ð1, ð2< &@times, HmeanDD;

Hlow = Thread@8ð1, ð2< &@times, HlowDD;

Hhigh = Thread@8ð1, ð2< &@times, HhighDD;
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QQ5 = ListPlot@8Hlow, Hhigh<, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local \!\H\*

StyleBox@\"H\",\nFontSlant->\"Italic\"D\L"<,

PlotStyle ® Red, Filling ® 81 ® 82<<D;

QQ7 = ListPlot@Hmean, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local \!\H\*

StyleBox@\"H\",\nFontSlant->\"Italic\"D\L"<, PlotStyle ® 8Red, Dotted<D;

Show@8QQ3, QQ5, QQ7<, PlotRange ® AllD
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We change the white noise process to fractional Brownian motion process

X = ReadList@"Dropbox�Master Theses�Calpx.txt"D;

X = Map@Mean@ðD &, Partition@X, 24DD;

X = Log@XD;

win = 200;

L = MovingAverage@X, winD;

PL1 = ListPlot@Drop@Drop@X, win � 2D, -win � 2D, Joined ® True, Frame ® True,

FrameStyle ® Directive@16D, FrameLabel ® 8"time t", "XHtL"< D;

PL2 = ListPlot@L, PlotStyle ® RedD;

residual = Drop@Drop@X, win � 2 - 1D, -win � 2D - L;

PL0 = Show@PL1, PL2D
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Residual before the crisis:

ListPlot@Drop@residual, -200D, Joined ® True,

Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t", "residual"<, PlotRange ® All D
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Θ = EstimatedProcess@Drop@residual, -200D,

OrnsteinUhlenbeckProcess@Μ, Σ, ΘDD@@3DD;

Clear@aD
sol = Solve@a Sqrt@1 - 4 * 0.14D � Θ, aD;

a = sol@@1DD@@1DD@@2DD
0.304658
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L0 = First@LD;

Lrange = Last@LD - First@LD;

Lrange = Lrange � 0.15;

driver = HL - L0L � Lrange;

r0 = 0.0;

v = 1;

PL0 = ListPlot@r0 + v * driver, PlotStyle ® BlueD;

driver = Join@driver, Last@driverD + 0.0006 * Range@600DD;

PL1 = ListPlot@r0 + v * driver, PlotStyle ® RedD;

Show@PL1, PL0D

200 400 600 800 1000 1200 1400

0.1

0.2

0.3

0.4

0.5

Length@driverD � 30.

47.9333

Σ = 0.07;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data =

RandomFunction@FractionalBrownianMotionProcess@.368698D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 47<D;

, tD
pricemodel = tab;
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PL1 = ListPlot@Drop@Drop@X, win � 2D, 0D,

Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t HdaysL", "log price XHtL"<, PlotStyle ® Black D;

Q2 = ListPlot@L0 + Lrange * pricemodel, Joined ® True,

PlotRange ® All, PlotStyle ® BlueD;

Show@8PL1, Q2<, PlotRange ® AllD
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Σ = 0.07;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data =

RandomFunction@FractionalBrownianMotionProcess@0.45D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 47<D;

, tD
pricemodel = tab;
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PL1 = ListPlot@Drop@Drop@X, win � 2D, 0D,

Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t HdaysL", "log price XHtL"<, PlotStyle ® Black D;

Q2 = ListPlot@L0 + Lrange * pricemodel, Joined ® True,

PlotRange ® All, PlotStyle ® BlueD;

Show@8PL1, Q2<, PlotRange ® AllD
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Z = Drop@Drop@X, win � 2D, 0D;
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Σ = 0.07;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data =

RandomFunction@FractionalBrownianMotionProcess@.368698D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 31<D;

, tD
model = L0 + Lrange * tab;

PL1 = ListPlot@Z, Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t HdaysL", "log price XHtL"<, PlotStyle ® Black D;

Q2 = ListPlot@model, Joined ® True, PlotRange ® All, PlotStyle ® BlueD;

Show@8PL1, Q2<, PlotRange ® AllD
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Σ = 0.07;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data =

RandomFunction@FractionalBrownianMotionProcess@0.45D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 31<D;

, tD
model = L0 + Lrange * tab;

PL1 = ListPlot@Z, Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t HdaysL", "log price XHtL"<, PlotStyle ® Black D;

Q2 = ListPlot@model, Joined ® True, PlotRange ® All, PlotStyle ® BlueD;

Show@8PL1, Q2<, PlotRange ® AllD
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mlist = 8<;

Monitor@
Do@

Σ = 0.07;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data = RandomFunction@
FractionalBrownianMotionProcess@.368698D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 31<D;

, tD;

model = L0 + Lrange * tab;

mlist = Append@mlist, modelD;

, 8j, 1, 100<D;

, jD;

mean = Map@Mean@ðD &, Transpose@mlistDD;

low = Map@Quantile@ð, 0.025D &, Transpose@mlistDD;

high = Map@Quantile@ð, 1 - 0.025D &, Transpose@mlistDD;

PL1 = ListPlot@Z, Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t HdaysL", "log price XHtL"< , PlotStyle ® BlackD;

Q3 = ListPlot@mean, Joined ® True, PlotRange ® All, PlotStyle ® BlueD;

Q4 = ListPlot@8low, high<, Joined ® True,

PlotRange ® All, PlotStyle ® 8Pink<, Filling ® 81 ® 82<<D;

Show@8PL1, Q3, Q4<, PlotRange ® AllD
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mlist = 8<;

Monitor@
Do@

Σ = 0.07;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data = RandomFunction@
FractionalBrownianMotionProcess@0.45D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 31<D;

, tD;

model = L0 + Lrange * tab;

mlist = Append@mlist, modelD;

, 8j, 1, 100<D;

, jD;

mean = Map@Mean@ðD &, Transpose@mlistDD;

low = Map@Quantile@ð, 0.025D &, Transpose@mlistDD;

high = Map@Quantile@ð, 1 - 0.025D &, Transpose@mlistDD;

PL1 = ListPlot@Z, Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t HdaysL", "log price XHtL"<, PlotStyle ® Black D;

Q3 = ListPlot@mean, Joined ® True, PlotRange ® All, PlotStyle ® BlueD;

Q4 = ListPlot@8low, high<, Joined ® True,

PlotRange ® All, PlotStyle ® 8Pink<, Filling ® 81 ® 82<<D;

Show@8PL1, Q3, Q4<, PlotRange ® AllD
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Early warning

Σ = 0.07;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data = RandomFunction@
FractionalBrownianMotionProcess@.368698D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 31<D;

, tD;

model = L0 + Lrange * tab;

r

0.2052

Since r<0.25 this is before the tipping point

Θ = EstimatedProcess@model, OrnsteinUhlenbeckProcess@Μ, Σ, ΘDD@@3DD
0.202087
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win = 200;

Σlist = 8<;

Τlist = 8<;

Monitor@
Do@

qqq = model@@t - win ;; tDD;

Σloc = StandardDeviation@qqqD; H*local standard deviation*L
Τloc = Correlation@Drop@qqq, 1D, Drop@qqq, -1DD;

H*local correlation scale*L
Σlist = Append@Σlist, 8t, Σloc<D;

Τlist = Append@Τlist, 8t, Τloc<D;

, 8t, win + 1, Length@modelD, 30<D;

, tD;

QQ3 = ListPlot@Σlist, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® BlueD;

QQ4 = ListPlot@Τlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local correlation Θ"<, PlotStyle ® BlueD;

Show@QQ3, PlotRange ® AllD
Show@QQ4, PlotRange ® AllD
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real data:

win = 200;

Σlist = 8<;

Τlist = 8<;

Monitor@
Do@

qqq = Z@@t - win ;; tDD;

Σloc = StandardDeviation@qqqD; H*local standard deviation*L
Τloc = Correlation@Drop@qqq, 1D, Drop@qqq, -1DD;

H*local correlation scale*L
Σlist = Append@Σlist, 8t, Σloc<D;

Τlist = Append@Τlist, 8t, Τloc<D;

, 8t, win + 1, Length@ZD, 30<D;

, tD;

QQ5 = ListPlot@Σlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® 8Thick, Black<D;

QQ6 = ListPlot@Τlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local correlation Θ"<, PlotStyle ® 8Thick, Black<D;

Show@8QQ3, QQ5<, PlotRange ® AllD
Show@8QQ4, QQ6<, PlotRange ® AllD
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Σ = 0.07;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data =

RandomFunction@FractionalBrownianMotionProcess@0.45D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 31<D;

, tD;

model = L0 + Lrange * tab;

r

0.2052

Θ = EstimatedProcess@model, OrnsteinUhlenbeckProcess@Μ, Σ, ΘDD@@3DD
0.202087
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win = 200;

Σlist = 8<;

Τlist = 8<;

Monitor@
Do@

qqq = model@@t - win ;; tDD;

Σloc = StandardDeviation@qqqD; H*local standard deviation*L
Τloc = Correlation@Drop@qqq, 1D, Drop@qqq, -1DD;

H*local correlation scale*L
Σlist = Append@Σlist, 8t, Σloc<D;

Τlist = Append@Τlist, 8t, Τloc<D;

, 8t, win + 1, Length@modelD, 30<D;

, tD;

QQ3 = ListPlot@Σlist, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® BlueD;

QQ4 = ListPlot@Τlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local correlation Θ"<, PlotStyle ® BlueD;

Show@QQ3, PlotRange ® AllD
Show@QQ4, PlotRange ® AllD
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real data

win = 200;

Σlist = 8<;

Τlist = 8<;

Monitor@
Do@

qqq = Z@@t - win ;; tDD;

Σloc = StandardDeviation@qqqD; H*local standard deviation*L
Τloc = Correlation@Drop@qqq, 1D, Drop@qqq, -1DD;

H*local correlation scale*L
Σlist = Append@Σlist, 8t, Σloc<D;

Τlist = Append@Τlist, 8t, Τloc<D;

, 8t, win + 1, Length@ZD, 30<D;

, tD;

QQ5 = ListPlot@Σlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® 8Thick, Black<D;

QQ6 = ListPlot@Τlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local correlation Θ"<, PlotStyle ® 8Thick, Black<D;

Show@8QQ3, QQ5<, PlotRange ® AllD
Show@8QQ4, QQ6<, PlotRange ® AllD
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monte carlo

Τlistlist = 8<;

Σlistlist = 8<;

Monitor@
Do@

Σ = 0.07;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data = RandomFunction@
FractionalBrownianMotionProcess@.368698D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 31<D;

, tD;

model = L0 + Lrange * tab;

win = 200;

Σlist = 8<;

Τlist = 8<;

Monitor@
Do@

qqq = model@@t - win ;; tDD;

Σloc = StandardDeviation@qqqD; H*local standard deviation*L
Τloc = Correlation@Drop@qqq, 1D, Drop@qqq, -1DD;

H*local correlation scale*L
Σlist = Append@Σlist, 8t, Σloc<D;

Τlist = Append@Τlist, 8t, Τloc<D;

, 8t, win + 1, Length@modelD, 30<D;

, tD;

Τlistlist = Append@Τlistlist, ΤlistD;

Σlistlist = Append@Σlistlist, ΣlistD;

, 8u, 1, 100<D;

, uD;
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times = Σlistlist@@1DD@@All, 1DD;

Σmean = Map@Mean@ðD &, Transpose@Map@ð@@All, 2DD &, ΣlistlistDDD;

Σlow = Map@Quantile@ð, 0.025D &, Transpose@Map@ð@@All, 2DD &, ΣlistlistDDD;

Σhigh = Map@Quantile@ð, 1 - 0.025D &, Transpose@Map@ð@@All, 2DD &, ΣlistlistDDD;

Σmean = Thread@8ð1, ð2< &@times, ΣmeanDD;

Σlow = Thread@8ð1, ð2< &@times, ΣlowDD;

Σhigh = Thread@8ð1, ð2< &@times, ΣhighDD;

Τmean = Map@Mean@ðD &, Transpose@Map@ð@@All, 2DD &, ΤlistlistDDD;

Τlow = Map@Quantile@ð, 0.025D &, Transpose@Map@ð@@All, 2DD &, ΤlistlistDDD;

Τhigh = Map@Quantile@ð, 1 - 0.025D &, Transpose@Map@ð@@All, 2DD &, ΤlistlistDDD;

Τmean = Thread@8ð1, ð2< &@times, ΤmeanDD;

Τlow = Thread@8ð1, ð2< &@times, ΤlowDD;

Τhigh = Thread@8ð1, ð2< &@times, ΤhighDD;
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QQQ1 = ListPlot@8Σlow, Σhigh<,

Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® Red, Filling ® 81 ® 82<<D;

QQQ2 = ListPlot@Σmean, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® 8Red, Dotted<D;

QQQ3 = ListPlot@8Τlow, Τhigh<, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local Σ"<,

PlotStyle ® Red, Filling ® 81 ® 82<<D;

QQQ4 = ListPlot@Τmean, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® 8Red, Dotted<D;

Show@8QQ5, QQQ1, QQQ2<, PlotRange ® AllD
Show@8QQ6, QQQ3, QQQ4<, PlotRange ® AllD
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Τlistlist = 8<;

Σlistlist = 8<;

Monitor@
Do@

Σ = 0.07;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data = RandomFunction@
FractionalBrownianMotionProcess@0.45D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 31<D;

, tD;

model = L0 + Lrange * tab;

win = 200;

Σlist = 8<;

Τlist = 8<;

Monitor@
Do@

qqq = model@@t - win ;; tDD;

Σloc = StandardDeviation@qqqD; H*local standard deviation*L
Τloc = Correlation@Drop@qqq, 1D, Drop@qqq, -1DD;

H*local correlation scale*L
Σlist = Append@Σlist, 8t, Σloc<D;

Τlist = Append@Τlist, 8t, Τloc<D;

, 8t, win + 1, Length@modelD, 30<D;

, tD;

Τlistlist = Append@Τlistlist, ΤlistD;

Σlistlist = Append@Σlistlist, ΣlistD;

, 8u, 1, 1000<D;

, uD;
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times = Σlistlist@@1DD@@All, 1DD;

Σmean = Map@Mean@ðD &, Transpose@Map@ð@@All, 2DD &, ΣlistlistDDD;

Σlow = Map@Quantile@ð, 0.025D &, Transpose@Map@ð@@All, 2DD &, ΣlistlistDDD;

Σhigh = Map@Quantile@ð, 1 - 0.025D &, Transpose@Map@ð@@All, 2DD &, ΣlistlistDDD;

Σmean = Thread@8ð1, ð2< &@times, ΣmeanDD;

Σlow = Thread@8ð1, ð2< &@times, ΣlowDD;

Σhigh = Thread@8ð1, ð2< &@times, ΣhighDD;

Τmean = Map@Mean@ðD &, Transpose@Map@ð@@All, 2DD &, ΤlistlistDDD;

Τlow = Map@Quantile@ð, 0.025D &, Transpose@Map@ð@@All, 2DD &, ΤlistlistDDD;

Τhigh = Map@Quantile@ð, 1 - 0.025D &, Transpose@Map@ð@@All, 2DD &, ΤlistlistDDD;

Τmean = Thread@8ð1, ð2< &@times, ΤmeanDD;

Τlow = Thread@8ð1, ð2< &@times, ΤlowDD;

Τhigh = Thread@8ð1, ð2< &@times, ΤhighDD;
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QQQ1 = ListPlot@8Σlow, Σhigh<,

Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® Red, Filling ® 81 ® 82<<D;

QQQ2 = ListPlot@Σmean, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® 8Red, Dotted<D;

QQQ3 = ListPlot@8Τlow, Τhigh<, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local Σ"<,

PlotStyle ® Red, Filling ® 81 ® 82<<D;

QQQ4 = ListPlot@Τmean, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® 8Red, Dotted<D;

Show@8QQ5, QQQ1, QQQ2<, PlotRange ® AllD
Show@8QQ6, QQQ3, QQQ4<, PlotRange ® AllD
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Local Hurst exponent

A function for de-trended fluctuation analysis:

fit@z_, o_D := Fit@z, zz^Range@0, oD, zzD �. zz ® Range@Length@zDD;

DFA@x_, o_, imin_, imax_D := HModule@8L, i, X, Z, var, detrends<, var = 8<;

Do@L = 2^i;

X = FoldList@Plus, 0, x - Mean@xDD;

Z = Partition@X, LD;

detrends = Map@ð - fit@ð, oD &, ZD;

var = Append@var, 8L, Sqrt@Mean@Flatten@detrendsD^2DD<D;,

8i, imin, imax<D;

Return@varD;D;L

Dmodel = Drop@model, 1D - Drop@model, -1D;

Fit@Log@DFA@Dmodel, 1, 2, 9DD, 8zz, 1<, zzD
-1.7131 + 0.185799 zz

∆t = 200;

t = ∆t + 1;

Dmodel = Drop@model, 1D - Drop@model, -1D;

H = Fit@Log@DFA@Dmodel@@t - ∆t ;; tDD, 1, 2, 7DD, 8zz, 1<, zzD@@2DD � zz;

win = 200;

∆t = win;

Hlist = 8<;

Monitor@
Do@

DZ = Drop@Z, 1D - Drop@Z, -1D;

qqq = DZ@@t - ∆t ;; tDD;

H = Fit@Log@DFA@qqq, 0, 2, 6DD, 8zz, 1<, zzD@@2DD � zz;

Hlist = Append@Hlist, 8t, H<D;

, 8t, win + 1, Length@ZD, 30<D;

, tD;

QQ3 = ListPlot@Hlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local H"<, PlotStyle ® 8Black, Thick<D;

Show@QQ3, PlotRange ® AllD
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Monte Carlo for local Hurst exponent

Hlistlist = 8<;

Monitor@
Do@

Σ = 0.07;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data = RandomFunction@
FractionalBrownianMotionProcess@.368698D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 31<D;

, tD;

model = L0 + Lrange * tab;

Dmodel = Drop@model, 1D - Drop@model, -1D;

win = 200;

∆t = win;

Hlist = 8<;

Monitor@
Do@

qqq = Dmodel@@t - ∆t ;; tDD;

H = Fit@Log@DFA@qqq, 0, 2, 6DD, 8zz, 1<, zzD@@2DD � zz;

Hlist = Append@Hlist, 8t, H<D;

, 8t, win + 1, Length@DmodelD, 30<D;

, tD;

Hlistlist = Append@Hlistlist, HlistD;

, 8u, 1, 100<D;

, uD;
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times = Hlistlist@@1DD@@All, 1DD;

Hmean = Map@Mean@ðD &, Transpose@Map@ð@@All, 2DD &, HlistlistDDD;

Hlow = Map@Quantile@ð, 0.025D &, Transpose@Map@ð@@All, 2DD &, HlistlistDDD;

Hhigh = Map@Quantile@ð, 1 - 0.025D &, Transpose@Map@ð@@All, 2DD &, HlistlistDDD;

Hmean = Thread@8ð1, ð2< &@times, HmeanDD;

Hlow = Thread@8ð1, ð2< &@times, HlowDD;

Hhigh = Thread@8ð1, ð2< &@times, HhighDD;

QQ5 = ListPlot@8Hlow, Hhigh<, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local \!\H\*

StyleBox@\"H\",\nFontSlant->\"Italic\"D\L"<,

PlotStyle ® Red, Filling ® 81 ® 82<<D;

QQ7 = ListPlot@Hmean, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local \!\H\*

StyleBox@\"H\",\nFontSlant->\"Italic\"D\L"<, PlotStyle ® 8Red, Dotted<D;

Show@8QQ3, QQ5, QQ7<, PlotRange ® AllD
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Hlistlist = 8<;

Monitor@
Do@

Σ = 0.07;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data = RandomFunction@
FractionalBrownianMotionProcess@0.45D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 31<D;

, tD;

model = L0 + Lrange * tab;

Dmodel = Drop@model, 1D - Drop@model, -1D;

win = 200;

∆t = win;

Hlist = 8<;

Monitor@
Do@

qqq = Dmodel@@t - ∆t ;; tDD;

H = Fit@Log@DFA@qqq, 0, 2, 6DD, 8zz, 1<, zzD@@2DD � zz;

Hlist = Append@Hlist, 8t, H<D;

, 8t, win + 1, Length@DmodelD, 30<D;

, tD;

Hlistlist = Append@Hlistlist, HlistD;

, 8u, 1, 100<D;

, uD;

times = Hlistlist@@1DD@@All, 1DD;

Hmean = Map@Mean@ðD &, Transpose@Map@ð@@All, 2DD &, HlistlistDDD;

Hlow = Map@Quantile@ð, 0.025D &, Transpose@Map@ð@@All, 2DD &, HlistlistDDD;

Hhigh = Map@Quantile@ð, 1 - 0.025D &, Transpose@Map@ð@@All, 2DD &, HlistlistDDD;

Hmean = Thread@8ð1, ð2< &@times, HmeanDD;

Hlow = Thread@8ð1, ð2< &@times, HlowDD;

Hhigh = Thread@8ð1, ð2< &@times, HhighDD;

early warning Brownian motion.nb    25

140APPENDIX D. SOURCE CODEOF CALIFORNIA EARLYWARNING ANALYSIS



QQ5 = ListPlot@8Hlow, Hhigh<, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local \!\H\*

StyleBox@\"H\",\nFontSlant->\"Italic\"D\L"<,

PlotStyle ® Red, Filling ® 81 ® 82<<D;

QQ7 = ListPlot@Hmean, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local \!\H\*

StyleBox@\"H\",\nFontSlant->\"Italic\"D\L"<, PlotStyle ® 8Red, Dotted<D;

Show@8QQ3, QQ5, QQ7<, PlotRange ® AllD
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Appendix E

Source code of oil prices analysis

This appendix contains analysis of oil prices. The code plots average daily

oil prices of 1986-2014 years. We use fractional Brownian motion process with

H = 0.3. Then �nd the early-warning signals to predict the crisis.
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X = ReadList@"C:\\California electricity crisis�oilprice.txt"D@@All, 2DD;

ListPlot@X, Joined ® TrueD
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X = Flatten@XD;

Length@XD
7323

We have 7323 days

win = 1200;

X = Log@XD;

L = MovingAverage@X, winD;

PL1 = ListPlot@Drop@Drop@X, win � 2D, -win � 2D, Joined ® True, Frame ® True,

FrameStyle ® Directive@16D, FrameLabel ® 8"time t", "XHtL"< D;

PL2 = ListPlot@L, PlotStyle ® RedD;

residual = Drop@Drop@X, win � 2 - 1D, -win � 2D - L;

PL0 = Show@PL1, PL2D
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Residual before the crisis:

ListPlot@Drop@residual, -1200D,

Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t", "residual"<, PlotRange ® All D
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Θ = EstimatedProcess@Drop@residual, -1000D,

OrnsteinUhlenbeckProcess@Μ, Σ, ΘDD@@3DD;

Clear@aD
sol = Solve@a Sqrt@1 - 4 * 0.14D � Θ, aD;

a = sol@@1DD@@1DD@@2DD
0.0106574

L0 = First@LD;

Lrange = Last@LD - First@LD;

Lrange = Lrange � 0.2;

driver = HL - L0L � Lrange;

r0 = 0.0;

v = 1;

PL0 = ListPlot@r0 + v * driver, PlotStyle ® BlueD;

driver = Join@driver, Last@driverD + 0.00003 * Range@4000DD;

PL1 = ListPlot@r0 + v * driver, PlotStyle ® RedD;

Show@PL1, PL0D
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Length@driverD � 30.

337.467

Σ = 0.02;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data =

RandomFunction@FractionalBrownianMotionProcess@0.3D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 337<D;

, tD
pricemodel = tab;

PL1 = ListPlot@Drop@Drop@X, win � 2D, 0D,

Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t HdaysL", "log price XHtL"< , PlotStyle ® BlackD;

Q2 = ListPlot@L0 + Lrange * pricemodel, Joined ® True,

PlotRange ® All, PlotStyle ® BlueD;

Show@8PL1, Q2<, PlotRange ® AllD
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Z = Drop@Drop@X, win � 2D, 0D;
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Length@ZD � 30.

224.1

Σ = 0.02;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data =

RandomFunction@FractionalBrownianMotionProcess@0.3D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 224<D;

, tD
model = L0 + Lrange * tab;

PL1 = ListPlot@Z, Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t HdaysL", "log price XHtL"<, PlotStyle ® Black D;

Q2 = ListPlot@model, Joined ® True, PlotRange ® All, PlotStyle ® BlueD;

Show@8PL1, Q2<, PlotRange ® AllD
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mlist = 8<;

Monitor@
Do@

Σ = 0.02;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data =

RandomFunction@FractionalBrownianMotionProcess@0.3D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 224<D;

, tD;

model = L0 + Lrange * tab;

mlist = Append@mlist, modelD;

, 8j, 1, 100<D;

, jD;
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mean = Map@Mean@ðD &, Transpose@mlistDD;

low = Map@Quantile@ð, 0.025D &, Transpose@mlistDD;

high = Map@Quantile@ð, 1 - 0.025D &, Transpose@mlistDD;

PL1 = ListPlot@Z, Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t HdaysL", "log price XHtL"< D;

Q3 = ListPlot@mean, Joined ® True, PlotRange ® All, PlotStyle ® BlueD;

Q4 = ListPlot@8low, high<, Joined ® True,

PlotRange ® All, PlotStyle ® 8Pink<, Filling ® 81 ® 82<<D;

Show@8PL1, Q3, Q4<, PlotRange ® AllD
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Early warning

Σ = 0.02;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data =

RandomFunction@FractionalBrownianMotionProcess@0.3D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 224<D;

, tD;

model = L0 + Lrange * tab;

r

0.21788
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Θ = EstimatedProcess@model, OrnsteinUhlenbeckProcess@Μ, Σ, ΘDD@@3DD
0.00706933

win = 1200;

Σlist = 8<;

Τlist = 8<;

Monitor@
Do@

qqq = model@@t - win ;; tDD;

Σloc = StandardDeviation@qqqD; H*local standard deviation*L
Τloc = Correlation@Drop@qqq, 1D, Drop@qqq, -1DD;

H*local correlation scale*L
Σlist = Append@Σlist, 8t, Σloc<D;

Τlist = Append@Τlist, 8t, Τloc<D;

, 8t, win + 1, Length@modelD, 30<D;

, tD;

QQ3 = ListPlot@Σlist, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® BlueD;

QQ4 = ListPlot@Τlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local correlation Θ"<, PlotStyle ® BlueD;

Show@QQ3, PlotRange ® AllD
Show@QQ4, PlotRange ® AllD
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real data

win = 1200;

Σlist = 8<;

Τlist = 8<;

Monitor@
Do@

qqq = Z@@t - win ;; tDD;

Σloc = StandardDeviation@qqqD; H*local standard deviation*L
Τloc = Correlation@Drop@qqq, 1D, Drop@qqq, -1DD;

H*local correlation scale*L
Σlist = Append@Σlist, 8t, Σloc<D;

Τlist = Append@Τlist, 8t, Τloc<D;

, 8t, win + 1, Length@ZD, 30<D;

, tD;

QQ5 = ListPlot@Σlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® 8Thick, Black<D;

QQ6 = ListPlot@Τlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local correlation Θ"<, PlotStyle ® 8Thick, Black<D;

Show@8QQ3, QQ5<, PlotRange ® AllD
Show@8QQ4, QQ6<, PlotRange ® AllD
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Monte Carlo

Τlistlist = 8<;

Σlistlist = 8<;

Monitor@
Do@

Σ = 0.02;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data =

RandomFunction@FractionalBrownianMotionProcess@.3D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 224<D;

, tD;

model = L0 + Lrange * tab;

win = 1200;

Σlist = 8<;

Τlist = 8<;

Monitor@
Do@

qqq = model@@t - win ;; tDD;

Σloc = StandardDeviation@qqqD; H*local standard deviation*L
Τloc = Correlation@Drop@qqq, 1D, Drop@qqq, -1DD;

H*local correlation scale*L
Σlist = Append@Σlist, 8t, Σloc<D;

Τlist = Append@Τlist, 8t, Τloc<D;

, 8t, win + 1, Length@modelD, 30<D;

, tD;

Τlistlist = Append@Τlistlist, ΤlistD;

Σlistlist = Append@Σlistlist, ΣlistD;

, 8u, 1, 100<D;

, uD;
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times = Σlistlist@@1DD@@All, 1DD;

Σmean = Map@Mean@ðD &, Transpose@Map@ð@@All, 2DD &, ΣlistlistDDD;

Σlow = Map@Quantile@ð, 0.025D &, Transpose@Map@ð@@All, 2DD &, ΣlistlistDDD;

Σhigh = Map@Quantile@ð, 1 - 0.025D &, Transpose@Map@ð@@All, 2DD &, ΣlistlistDDD;

Σmean = Thread@8ð1, ð2< &@times, ΣmeanDD;

Σlow = Thread@8ð1, ð2< &@times, ΣlowDD;

Σhigh = Thread@8ð1, ð2< &@times, ΣhighDD;

Τmean = Map@Mean@ðD &, Transpose@Map@ð@@All, 2DD &, ΤlistlistDDD;

Τlow = Map@Quantile@ð, 0.025D &, Transpose@Map@ð@@All, 2DD &, ΤlistlistDDD;

Τhigh = Map@Quantile@ð, 1 - 0.025D &, Transpose@Map@ð@@All, 2DD &, ΤlistlistDDD;

Τmean = Thread@8ð1, ð2< &@times, ΤmeanDD;

Τlow = Thread@8ð1, ð2< &@times, ΤlowDD;

Τhigh = Thread@8ð1, ð2< &@times, ΤhighDD;
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QQQ1 = ListPlot@8Σlow, Σhigh<,

Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® Red, Filling ® 81 ® 82<<D;

QQQ2 = ListPlot@Σmean, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® 8Red, Dotted<D;

QQQ3 = ListPlot@8Τlow, Τhigh<, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local Σ"<,

PlotStyle ® Red, Filling ® 81 ® 82<<D;

QQQ4 = ListPlot@Τmean, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® 8Red, Dotted<D;

Show@8QQ5, QQQ1, QQQ2<, PlotRange ® AllD
Show@8QQ6, QQQ3, QQQ4<, PlotRange ® AllD
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Local Hurst exponent

fit@z_, o_D := Fit@z, zz^Range@0, oD, zzD �. zz ® Range@Length@zDD;

DFA@x_, o_, imin_, imax_D := HModule@8L, i, X, Z, var, detrends<, var = 8<;

Do@L = 2^i;

X = FoldList@Plus, 0, x - Mean@xDD;

Z = Partition@X, LD;

detrends = Map@ð - fit@ð, oD &, ZD;

var = Append@var, 8L, Sqrt@Mean@Flatten@detrendsD^2DD<D;,

8i, imin, imax<D;

Return@varD;D;L

Dmodel = Drop@model, 1D - Drop@model, -1D;

Fit@Log@DFA@Dmodel, 1, 2, 9DD, 8zz, 1<, zzD
-4.16536 + 0.359366 zz

∆t = 1200;

t = ∆t + 1;

Dmodel = Drop@model, 1D - Drop@model, -1D;

H = Fit@Log@DFA@Dmodel@@t - ∆t ;; tDD, 1, 2, 7DD, 8zz, 1<, zzD@@2DD � zz;

win = 1200;

∆t = win;

Hlist = 8<;

Monitor@
Do@

DZ = Drop@Z, 1D - Drop@Z, -1D;

qqq = DZ@@t - ∆t ;; tDD;

H = Fit@Log@DFA@qqq, 0, 2, 6DD, 8zz, 1<, zzD@@2DD � zz;

Hlist = Append@Hlist, 8t, H<D;

, 8t, win + 1, Length@ZD, 30<D;

, tD;

QQ3 = ListPlot@Hlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local H"<, PlotStyle ® 8Black, Thick<D;

Show@QQ3, PlotRange ® AllD
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Monte Carlo for local Hurst exponent

Hlistlist = 8<;

Monitor@
Do@

Σ = 0.02;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

data =

RandomFunction@FractionalBrownianMotionProcess@0.3D, 80, 5 * 31 + 1, 1<D;

data = Drop@data@"Path"D@@All, 2DD, 1D;

data = Σ HDrop@data, 1D - Drop@data, -1DL;

data = Thread@8ð1, ð2< &@Range@5 * 31D � 5., dataDD;

ifun = Interpolation@dataD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 224<D;

, tD;

model = L0 + Lrange * tab;

Dmodel = Drop@model, 1D - Drop@model, -1D;

win = 1200;

∆t = win;

Hlist = 8<;

Monitor@
Do@

qqq = Dmodel@@t - ∆t ;; tDD;

H = Fit@Log@DFA@qqq, 0, 2, 6DD, 8zz, 1<, zzD@@2DD � zz;

Hlist = Append@Hlist, 8t, H<D;

, 8t, win + 1, Length@DmodelD, 30<D;

, tD;

Hlistlist = Append@Hlistlist, HlistD;

, 8u, 1, 100<D;

, uD;
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times = Hlistlist@@1DD@@All, 1DD;

Hmean = Map@Mean@ðD &, Transpose@Map@ð@@All, 2DD &, HlistlistDDD;

Hlow = Map@Quantile@ð, 0.025D &, Transpose@Map@ð@@All, 2DD &, HlistlistDDD;

Hhigh = Map@Quantile@ð, 1 - 0.025D &, Transpose@Map@ð@@All, 2DD &, HlistlistDDD;

Hmean = Thread@8ð1, ð2< &@times, HmeanDD;

Hlow = Thread@8ð1, ð2< &@times, HlowDD;

Hhigh = Thread@8ð1, ð2< &@times, HhighDD;

QQ5 = ListPlot@8Hlow, Hhigh<, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local \!\H\*

StyleBox@\"H\",\nFontSlant->\"Italic\"D\L"<,

PlotStyle ® Red, Filling ® 81 ® 82<<D;

QQ7 = ListPlot@Hmean, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local \!\H\*

StyleBox@\"H\",\nFontSlant->\"Italic\"D\L"<, PlotStyle ® 8Red, Dotted<D;

Show@8QQ3, QQ5, QQ7<, PlotRange ® AllD
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Appendix F

Source code of S&P 500 index

analysis

This appendix includes analysis of stock market prices for 1950-2015. We use

random walk process and �nd the early warning signals.
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DateListPlot@FinancialData@"SP500", AllDD
x = FinancialData@"SP500", All, "Value"D;
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y = Log@xD;

Μ = Mean@Drop@y, 1D - Drop@y, -1DD;

y = y - Μ * Range@Length@yDD;

ListPlot@y, Joined ® TrueD
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win = 4000;

L = MovingAverage@y, winD;

PL1 = ListPlot@Drop@Drop@y, win � 2D, -win � 2D, Joined ® True, Frame ® True,

FrameStyle ® Directive@16D, FrameLabel ® 8"time t", "XHtL"< D;

PL2 = ListPlot@L, PlotStyle ® RedD;

residual = Drop@Drop@y, win � 2 - 1D, -win � 2D - L;

PL0 = Show@PL1, PL2D
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ListPlot@Drop@residual, -4000D,

Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t", "residual"<, PlotRange ® All D
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Θ = EstimatedProcess@Drop@residual, -4000D,

OrnsteinUhlenbeckProcess@Μ, Σ, ΘDD@@3DD;

Clear@aD
sol = Solve@a Sqrt@1 - 4 * 0.14D � Θ, aD;

a = sol@@1DD@@1DD@@2DD
0.00370784
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L0 = First@LD;

Lrange = Last@LD - First@LD;

Lrange = Lrange � 0.15;

driver = HL - L0L � Lrange;

r0 = 0.0;

v = 1;

PL0 = ListPlot@r0 + v * driver, PlotStyle ® BlueD;

driver = Join@driver, Last@driverD + 0.00007 * Range@6000DD;

PL1 = ListPlot@r0 + v * driver, PlotStyle ® RedD;

Show@PL1, PL0D
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Σ = 0.025;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

rand = RandomReal@NormalDistribution@0, ΣD, 5 * 31D;

rand = Thread@8ð1, ð2< &@Range@5 * 31D � 5., randDD;

ifun = Interpolation@randD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 614<D;

, tD
pricemodel = tab;
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PL1 = ListPlot@Drop@Drop@y, win � 2D, 0D,

Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t HdaysL", "log price XHtL"< , PlotStyle ® BlackD;

Q2 = ListPlot@L0 + Lrange * pricemodel, Joined ® True,

PlotRange ® All, PlotStyle ® BlueD;

Show@8PL1, Q2<, PlotRange ® AllD
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Z = Drop@Drop@y, win � 2D, 0D;

Length@ZD � 30.

481.167

Σ = 0.025;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

rand = RandomReal@NormalDistribution@0, ΣD, 5 * 31D;

rand = Thread@8ð1, ð2< &@Range@5 * 31D � 5., randDD;

ifun = Interpolation@randD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 481<D;

, tD
model = L0 + Lrange * tab;
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PL1 = ListPlot@Z, Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t HdaysL", "log price XHtL"<, PlotStyle ® Black D;

Q2 = ListPlot@model, Joined ® True, PlotRange ® All, PlotStyle ® BlueD;

Show@8PL1, Q2<, PlotRange ® 880, 15 000<, 80, 5<<D
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mlist = 8<;

Monitor@
Do@

Σ = 0.025;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

rand = RandomReal@NormalDistribution@0, ΣD, 5 * 31D;

rand = Thread@8ð1, ð2< &@Range@5 * 31D � 5., randDD;

ifun = Interpolation@randD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 481<D;

, tD;

model = L0 + Lrange * tab;

mlist = Append@mlist, modelD;

, 8j, 1, 100<D;

, jD;
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mean = Map@Mean@ðD &, Transpose@mlistDD;

low = Map@Quantile@ð, 0.025D &, Transpose@mlistDD;

high = Map@Quantile@ð, 1 - 0.025D &, Transpose@mlistDD;

PL1 = ListPlot@Z, Joined ® True, Frame ® True, FrameStyle ® Directive@16D,

FrameLabel ® 8"time t HdaysL", "log price XHtL"< , PlotStyle ® BlackD;

Q3 = ListPlot@mean, Joined ® True, PlotRange ® All, PlotStyle ® BlueD;

Q4 = ListPlot@8low, high<, Joined ® True,

PlotRange ® All, PlotStyle ® 8Pink<, Filling ® 81 ® 82<<D;

Show@8PL1, Q3, Q4<, PlotRange ® AllD
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Σ = 0.025;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

rand = RandomReal@NormalDistribution@0, ΣD, 5 * 31D;

rand = Thread@8ð1, ð2< &@Range@5 * 31D � 5., randDD;

ifun = Interpolation@randD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 481<D;

, tD;

model = L0 + Lrange * tab;

r

0.28951

Θ = EstimatedProcess@model, OrnsteinUhlenbeckProcess@Μ, Σ, ΘDD@@3DD
0.0024595

6     S&P500.nb

165



win = 4000;

Σlist = 8<;

Τlist = 8<;

Monitor@
Do@

qqq = model@@t - win ;; tDD;

Σloc = StandardDeviation@qqqD; H*local standard deviation*L
Τloc = Correlation@Drop@qqq, 1D, Drop@qqq, -1DD;

H*local correlation scale*L
Σlist = Append@Σlist, 8t, Σloc<D;

Τlist = Append@Τlist, 8t, Τloc<D;

, 8t, win + 1, Length@modelD, 30<D;

, tD;

QQ3 = ListPlot@Σlist, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® BlueD;

QQ4 = ListPlot@Τlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local correlation Θ"<, PlotStyle ® BlueD;

Show@QQ3, PlotRange ® AllD
Show@QQ4, PlotRange ® AllD
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real data:

win = 4000;

Σlist = 8<;

Τlist = 8<;

Monitor@
Do@

qqq = Z@@t - win ;; tDD;

Σloc = StandardDeviation@qqqD; H*local standard deviation*L
Τloc = Correlation@Drop@qqq, 1D, Drop@qqq, -1DD;

H*local correlation scale*L
Σlist = Append@Σlist, 8t, Σloc<D;

Τlist = Append@Τlist, 8t, Τloc<D;

, 8t, win + 1, Length@ZD, 30<D;

, tD;

QQ5 = ListPlot@Σlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® 8Thick, Black<D;

QQ6 = ListPlot@Τlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local correlation Θ"<, PlotStyle ® 8Thick, Black<D;

Show@8QQ3, QQ5<, PlotRange ® AllD
Show@8QQ4, QQ6<, PlotRange ® AllD

4000 6000 8000 10 000 12 000 14 000

0.2

0.3

0.4

0.5

0.6

0.7

time t

lo
c
a
l

Σ

4000 6000 8000 10 000 12 000 14 000

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

time t

lo
c
a
l

c
o
rr

e
la

ti
o
n

Θ

monte carlo

8     S&P500.nb

167



monte carlo

Τlistlist = 8<;

Σlistlist = 8<;

Monitor@
Do@

Σ = 0.025;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

rand = RandomReal@NormalDistribution@0, ΣD, 5 * 31D;

rand = Thread@8ð1, ð2< &@Range@5 * 31D � 5., randDD;

ifun = Interpolation@randD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 481<D;

, tD;

model = L0 + Lrange * tab;

win = 4000;

Σlist = 8<;

Τlist = 8<;

Monitor@
Do@

qqq = model@@t - win ;; tDD;

Σloc = StandardDeviation@qqqD; H*local standard deviation*L
Τloc = Correlation@Drop@qqq, 1D, Drop@qqq, -1DD;

H*local correlation scale*L
Σlist = Append@Σlist, 8t, Σloc<D;

Τlist = Append@Τlist, 8t, Τloc<D;

, 8t, win + 1, Length@modelD, 30<D;

, tD;

Τlistlist = Append@Τlistlist, ΤlistD;

Σlistlist = Append@Σlistlist, ΣlistD;

, 8u, 1, 100<D;

, uD;
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times = Σlistlist@@1DD@@All, 1DD;

Σmean = Map@Mean@ðD &, Transpose@Map@ð@@All, 2DD &, ΣlistlistDDD;

Σlow = Map@Quantile@ð, 0.025D &, Transpose@Map@ð@@All, 2DD &, ΣlistlistDDD;

Σhigh = Map@Quantile@ð, 1 - 0.025D &, Transpose@Map@ð@@All, 2DD &, ΣlistlistDDD;

Σmean = Thread@8ð1, ð2< &@times, ΣmeanDD;

Σlow = Thread@8ð1, ð2< &@times, ΣlowDD;

Σhigh = Thread@8ð1, ð2< &@times, ΣhighDD;

Τmean = Map@Mean@ðD &, Transpose@Map@ð@@All, 2DD &, ΤlistlistDDD;

Τlow = Map@Quantile@ð, 0.025D &, Transpose@Map@ð@@All, 2DD &, ΤlistlistDDD;

Τhigh = Map@Quantile@ð, 1 - 0.025D &, Transpose@Map@ð@@All, 2DD &, ΤlistlistDDD;

Τmean = Thread@8ð1, ð2< &@times, ΤmeanDD;

Τlow = Thread@8ð1, ð2< &@times, ΤlowDD;

Τhigh = Thread@8ð1, ð2< &@times, ΤhighDD;

QQQ1 = ListPlot@8Σlow, Σhigh<,

Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® Red, Filling ® 81 ® 82<<D;

QQQ2 = ListPlot@Σmean, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® 8Red, Dotted<D;

QQQ3 = ListPlot@8Τlow, Τhigh<, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local Σ"<,

PlotStyle ® Red, Filling ® 81 ® 82<<D;

QQQ4 = ListPlot@Τmean, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local Σ"<, PlotStyle ® 8Red, Dotted<D;

Show@8QQ5, QQQ1, QQQ2<, PlotRange ® AllD
Show@8QQ6, QQQ3, QQQ4<, PlotRange ® AllD
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Local Hurst exponent

fit@z_, o_D := Fit@z, zz^Range@0, oD, zzD �. zz ® Range@Length@zDD;

DFA@x_, o_, imin_, imax_D := HModule@8L, i, X, Z, var, detrends<, var = 8<;

Do@L = 2^i;

X = FoldList@Plus, 0, x - Mean@xDD;

Z = Partition@X, LD;

detrends = Map@ð - fit@ð, oD &, ZD;

var = Append@var, 8L, Sqrt@Mean@Flatten@detrendsD^2DD<D;,

8i, imin, imax<D;

Return@varD;D;L

Dmodel = Drop@model, 1D - Drop@model, -1D;

Fit@Log@DFA@Dmodel, 1, 2, 9DD, 8zz, 1<, zzD
-5.29805 + 0.52037 zz

∆t = 4000;

t = ∆t + 1;

Dmodel = Drop@model, 1D - Drop@model, -1D;

H = Fit@Log@DFA@Dmodel@@t - ∆t ;; tDD, 1, 2, 7DD, 8zz, 1<, zzD@@2DD � zz;

win = 4000;

∆t = win;

Hlist = 8<;

Monitor@
Do@

DZ = Drop@Z, 1D - Drop@Z, -1D;

qqq = DZ@@t - ∆t ;; tDD;

H = Fit@Log@DFA@qqq, 0, 2, 6DD, 8zz, 1<, zzD@@2DD � zz;

Hlist = Append@Hlist, 8t, H<D;

, 8t, win + 1, Length@ZD, 30<D;

, tD;

QQ3 = ListPlot@Hlist, Frame ® True, FrameStyle ® Directive@16D, Joined ® True,

FrameLabel ® 8"time t", "local H"<, PlotStyle ® 8Black, Thick<D;

Show@QQ3, PlotRange ® AllD
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Hlistlist = 8<;

Monitor@
Do@

Σ = 0.025;

r = r0;

tab = 80<;

rliste = 8r<;

Monitor@
Do@

rand = RandomReal@NormalDistribution@0, ΣD, 5 * 31D;

rand = Thread@8ð1, ð2< &@Range@5 * 31D � 5., randDD;

ifun = Interpolation@randD;

H* xxxxxxxx *L
r = r0 + v * driver@@30 * tDD;

rliste = Append@rliste, rD;

Q0 = Last@tabD;

s = NDSolve@8Q’@ttD � a * Hr - Sqrt@H1 - Q@ttDL^2D * Q@ttDL + ifun@tt + 1D,

Q@0D � Q0<, Q, 8tt, 0, 30<D;

mid = Flatten@Evaluate@Q@ttD �. sD �. tt ® Range@30DD;

tab = Join@tab, midD;

, 8t, 1, 481<D;

, tD;

model = L0 + Lrange * tab;

Dmodel = Drop@model, 1D - Drop@model, -1D;

win = 4000;

∆t = win;

Hlist = 8<;

Monitor@
Do@

qqq = Dmodel@@t - ∆t ;; tDD;

H = Fit@Log@DFA@qqq, 0, 2, 6DD, 8zz, 1<, zzD@@2DD � zz;

Hlist = Append@Hlist, 8t, H<D;

, 8t, win + 1, Length@DmodelD, 30<D;

, tD;

Hlistlist = Append@Hlistlist, HlistD;

, 8u, 1, 100<D;

, uD;

times = Hlistlist@@1DD@@All, 1DD;

Hmean = Map@Mean@ðD &, Transpose@Map@ð@@All, 2DD &, HlistlistDDD;

Hlow = Map@Quantile@ð, 0.025D &, Transpose@Map@ð@@All, 2DD &, HlistlistDDD;

Hhigh = Map@Quantile@ð, 1 - 0.025D &, Transpose@Map@ð@@All, 2DD &, HlistlistDDD;

Hmean = Thread@8ð1, ð2< &@times, HmeanDD;

Hlow = Thread@8ð1, ð2< &@times, HlowDD;

Hhigh = Thread@8ð1, ð2< &@times, HhighDD;
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QQ5 = ListPlot@8Hlow, Hhigh<, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local \!\H\*

StyleBox@\"H\",\nFontSlant->\"Italic\"D\L"<,

PlotStyle ® Red, Filling ® 81 ® 82<<D;

QQ7 = ListPlot@Hmean, Frame ® True, FrameStyle ® Directive@16D,

Joined ® True, FrameLabel ® 8"time t", "local \!\H\*

StyleBox@\"H\",\nFontSlant->\"Italic\"D\L"<, PlotStyle ® 8Red, Dotted<D;

Show@8QQ3, QQ5, QQ7<, PlotRange ® AllD
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