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Abstract
With the advent of computer networks, the ability for sharing and accessing
files across the network between multiple workstations and remote servers
was sought after. In the nineteen eighties, prominent networked file systems
were developed and reached widespread adoption among enterprise businesses
and institutions. A few of these, notably Networked File System (nfs) and
Server Message Block (smb), survived the transition into the Internet era and
the successors of these protocols remain the default network file systems on
contemporary operating systems today.

Clouds are comprised of thousands of computers, hosted in centralized data cen-
ter facilities. These computers run modified versions of contemporary operating
systems, with a monolithic, micro or hybrid kernel. Contemporary operating
systems lack fine-grained control over resource allocation. The Omni-kernel
architecture is a novel operating system architecture designed for pervasive
monitoring and scheduling of system resources. Vortex is an experimental
implementation of the Omni-kernel architecture. The Vortex operating system
lack utilities to expose its native file system over the network.

This thesis describes the introduction of a minimal Server Message Block
version 2 (smb2) server to the Vortex operating system. We achieve interop-
erability with contemporary client(s) and document acceptable throughput
performance.
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1
Introduction
Over the last decade, cloud computing and storage services have revolutionized
small-scale web businesses and how society interacts with the Internet. A cloud
provider offers distributed, geo-replicated infrastructure with low-cost entry,
where customers only pay for the resources they consume. Expensive start-up
and upgrade costs are a thing of the past.

Clouds are served from thousands of computers, or nodes, hosted in central-
ized data center facilities. These nodes run modified versions of contemporary
operating systems, with a monolithic, micro, or hybrid kernel. Contemporary
operating systems lack fine-grained control over resource allocation, typically
resulting in the cloud provider over-provisioning tenant computing resources
so as to reduce the risk of service-level agreements (slas) or service-level ob-
jectives (slos) [1] violation. The omni-kernel architecture is a novel operating
system (os) architecture designed for pervasive monitoring and scheduling
of system resources [2] [3]. The control over resource allocation permitted by
the omni-kernel may eliminate much of the over-provisioning required when
employing other kernel architectures.

Vortex is an experimental implementation of the omni-kernel architecture pro-
viding a novel light-weight approach to virtualization [2] [3] [4] [5] [6] [7].
Paravirtualization technology in conventional virtualmachinemonitors (vmms)
offers virtualized device interfaces to guest virtual machines (vms) [8], while
Vortex is capable of offering high-level commodity os abstractions. It aims to
offload common os functionality from its vm oss, reducing both the resource
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2 CHAPTER 1 INTRODUCT ION

footprint of a single vm and the duplication of functionality across all guest
oss. Because of this approach to paravirtualization, Vortex does not provide a
complete virtualization environment for ports of commodity oss; but rather,
a light-weight emulation approach supporting the application binary inter-
face (abi) and system call interface of the selected os. A vm os capable of
running Linux applications such as Apache¹, MySQL² and Hadoop3 exists for
Vortex [5] [6].

Cloud environments offer storage as a service infrastructure, facilitating dis-
tributed and replicated data in different failure domains. The storage infras-
tructure is implemented through specialized file systems, such as Google FS [9],
Microsoft Azure [10], Lustre⁴ and Hadoop Distributed File System (hdfs).³
These do not offer a conventional file system view, but rather a blob storage in
separated namespaces. Given a partitioned set of nodes with specialized or ad-
ministrative responsibilities, they may require local file systems to be exposed
over the network, if only within the data center itself. Conventional networked
file systems deployed in contemporary operating systems accomplish this, with
out-of-the-box interoperability from a remote work station.

Many of the prominent proposals and implementations of distributed and
networked file systems arose in the nineteen eighties. Andrew File System
(afs) developed by Carnegie Mellon University as part of an ambitious research
project. AT&T’s Remote File Sharing (rfs), Networked File System (nfs)
version 2 by Sun Microsystems, Novell’s NetWare Core Protocol (ncp), and
Server Message Block (smb) by several organizations, among others. Decades
later, successors of the nfs and smb protocols are still the default network
file systems on contemporary operating systems.

The Vortex operating system lack utilities to expose its native file system over
the network. nfs relies on a set of Remote Procedure Call (rpc) mechanisms,
requiring a complete rpc framework to complete. smb on the other hand,
exchanges a set of protocol data units (pdus) on top of a reliable network
transport, such as Transmission Control Protocol (tcp). In that same regard,
smb has been the default network file system in Microsoft operating systems
going all the way back to the early nineties. Vortex needs a networked file
system to become feature complete, and smb is an obvious choice to fulfill
this requirement.

1. http://httpd.apache.org
2. http://www.mysql.com
3. http://hadoop.apache.org
4. http://www.lustre.org

http://httpd.apache.org
http://www.mysql.com
http://hadoop.apache.org
http://www.lustre.org


1.1 THES IS STATEMENT 3

1.1 Thesis statement
We will enhance Vortex with a native application implementing an Server
Message Block version 2 (smb2) dialect 2.002 server, exposing its native file
system.

This thesis shall cover design, implementation, deployment and eval-
uation a versatile, minimalistic smb2 server for the Vortex operating
system. This should allow Vortex to expose the native file system
and be compatible with a commodity smb client.

The thesis will not concern itself with exposing the services offered through
interprocess communication (ipc) mechanisms. The implementation need not
support every permutation of exotic and rarely used commands defined by the
protocol, but should still offer the basic operations expected from browsing
a file system from a client on a conventional desktop through its native file
browser.

1.2 Methodology
This thesis follows a system development methodology. We seek to construct a
system for solving a given problem. The requirements and restrictions of the
problem is laid forth prior to developing a prototype. The system is continuously
tested during development to determine whether or not it solves the problem
at hand. If the prototype fulfills the requirements, the system is subject to
performance measurements and final evaluation in line with the problem
statement.

1.3 Outline
The remainder of this thesis is structured as follows:

Chapter 2 introduces the history of a legacy transport mechanism, netbios,
employed for Server Message Block version 1 (smb1) which still affects
the recent versions. The Executable and Linkable Format (elf) file
format is explained, and its role made clear in Chapter 4. Finally, the
authentication mechanisms used to establish a secure session in smb2 is
described.
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Chapter 3 covers the technical details of the smb2 protocol format. It clarifies
inconsistencies in the technical document [11] and attempts to describe
the details behind key mechanisms.

Chapter 4 describes the server architecture, presenting its versatile design
and benefits thereof. Key implementation difficulties are highlighted and
their solutions laid forth.

Chapter 5 evaluates our implementation This is done with experiments that
exercise key smb features and through comparisons to other implemen-
tations running on commodity oss.

Chapter 6 discusses future work and areas of improvement, and concludes.



2
Background
smb is a client-server protocol, capable of providing all the functionality of-
fered by a local file system. The server exposes a portion of its file system to
authenticated clients, who issue network commands that map to operations
against the servers local file system. This enables a desktop computer, an smb
client, to access remote files and directories through its own file system view,
as if they were stored locally.

This chapter describes the history, functionality, and concepts relevant to the
background of smb and this thesis. Section 2.1 explains the history of the
netbios transport protocol, essential for complete understanding of legacy
constraints accompanying smb today. Section 2.2 introduces the elf file for-
mat, required to explain implementation difficulties when adapting external
libraries written for Unix to an emulated environment in Vortex. Section 2.3
describes a generic authentication mechanism employed in smb.

2.1 NetBIOS
netbios is a network transport used for the original versions of smb. It still
has some relevance to the latest versions, as highlighted in this section.

In the mid eighties IBM announced its first Local Area Network (lan) sys-
tem, complete with both networking hardware and software abstractions to

5



6 CHAPTER 2 BACKGROUND

communicate among the connected devices, called IBM PC Network [12]. The
lan infrastructure operated in two different modes: broadband or baseband.
Both modes were bus-attached lan that could accommodate up to 72 and 80
connected devices, respectively.

A new software application programming interface (api),namedNetworkBasic
Input/Output System (netbios), supported their new lan environment. Over
PC Network, the supplied implementation of netbios relied on proprietary
networking protocols to communicate over the wire. The initial intent behind
netbios was to be an interface between an application and the networking
adapter, abstracting the hardware specific code away from the application
source code.

The services available through the netbios api are as follows:

Name Service to associate each application with an unique 16 octet netbios
name. This service is essential to start operating the other services pro-
vided, since they reference each endpoint using the netbios name.

Datagram Service to distribute connectionless packets, either single targeted
or broadcasted. The application is responsible for error detection and
recovery, and delivery is not guaranteed.

Session Service provides a connection oriented environment where messages
can span multiple packets. Error detection and recovery of lost packets
is the responsibility of the session service.

netbios belongs in the session layer of theosi ReferenceModel [13]. Figure 2.1
shows an illustration of theosi ReferenceModel. It is a protocol solely designed
for the PC Network, with its maximum capacity of 80 connected devices. For
instance, the original protocol resolved netbios names through a distributed
broadcast, expecting the node with the requested name to respond. If the
node issuing the name query do not receive a response within a reasonable
time frame — in the multiple seconds scale — the netbios name queried is
considered available and not in use by any other node on the network. Since the
resolution method involved a broadcast to each connected node, the amount
of traffic on the network and packets processed by each node scales linearly
with the interconnected node size. Thus, the effectiveness of the network as
whole decreases equally.

In 1985, IBM launched its Token-Ring lan scheme to replace the PC Network,
increasing their node capacity to roughly 270 connected devices. Since the
original proprietary netbios implementation only suited the PC Network in-
frastructure, IBM required a new implementation to support their Token-Ring
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Figure 2.1: An illustration of the osi Reference Model. Modern interpretation and
protocol suites compress the session and presentation layer into the applica-
tion layer. The lower three layers, Network, Link and Physical represented
with deep contrasted rectangles, are packets navigating through the net-
work, processed by individual routers and switches along the way. The
upper four layers, represented by dimly colored boxes, are only processed
by the sending and receiving computers on the network.
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Figure 2.2: An illustration of how nbf positions itself in the osi Reference Model.

lan network. This new implementation was called nbf and was developed
in conjunction with an extension to the netbios api, namely NetBIOS Ex-
tended User Interface (netbeui) [14]. The nbf protocol is often confused
with netbeui due to Microsoft erroneously labelling its nbf protocol imple-
mentation netbeui. nbf is simply a protocol implementing the api specified
by netbeui. For the sake of backwards compatibility with netbios aware
applications designed for PC Network, a netbeui emulator enabled these
applications to continue functioning on the Token-Ring lan. The services pro-
vided by Token-Ring implements Logical Link Control (llc), standardized in
ieee 802.2 [15],which is the upper portion of the link layer in theosi Reference
Model. Token-Ring is a standard protocol specified in ieee 802.5 [16].

The nbf protocol resides in the network layer, relying on the ieee 802.2
llc for data transmission. This implies that nbf may function equally well,
without modification, on a different link layer and is not tied to Token-Ring,
even though their development coincided. nbf thus runs on Ethernet as well.
Figure 2.2 illustrates the position of nbf and Token-Ring in relation to other
networking interfaces on the osi Reference Model.

There exists no standard or formal specification for any of the protocol(s)
used with netbios; in practice only the technical reference documents from
IBM serve this purpose [14]. Several implementations of the netbios pro-
tocols were reverse-engineered from the original, containing small discrep-
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Figure 2.3: an illustration of how nbt positions itself in the osi Reference Model in
relation to tcp/Internet Protocol (ip) and the physical/link layer.

ancies making them generally incompatible with each other. This lack of
standardization makes understanding the underlying networking primitives
difficult [17].

The invention of the Internet required a change of protocols in netbios to
enable its applications to inter-operate on the modern tcp/ip network. This
change brought the standardization of NetBIOS over tcp/ip (nbt) [18][19],
with better network scaling properties. The name resolution broadcast of nbf
was replaced with a centralized server in charge of name resolution. Each ma-
chine/application requires a configured server it can contact to perform both
registration, deletion, and resolution. Only machines with the same dedicated
naming server can inter-operate in nbt. The centralized server effectively
reduced the processing time of the name resolution service, since the com-
munication happens directly with one single entity and not a broadcast to
every participating node on the network. Figure 2.3 illustrates the relationship
between nbt, osi Reference Model, and the Internet protocol suite.
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2.2 ELF - Object format
The elf object format is relevant for our implementation of the gss-api
authentication subsystem, described in Section 4.3. elf is the de facto file
format on Unix-like systems, used for both object files, shared libraries, and
executables. It was designed by AT&T Unix System Laboratories and first
specified in the System V release 4 abi [20]. Tools Interface Standards, a
separate organization, later extracted the definition of elf, embedded in the
System V abi specification, and published it as a separate standard [21].

elf is a versatile file formate that is extensible by design, and does not assume
any particular processor or architecture. It’s structured with a single well-
defined elf header, identified by the first four bytes containing the sequence
\x7F followed by ’ELF’ in ascii encoding. The remainder of the file is data,
formatted in one of three ways:

Section header table consists of fixed-size entries each describing a continu-
ous range of non-overlapping bytes, called a section. There may only be
one Section header table in an elf formated file, whose offset, length
and entry size information is specified in the elf header. Each entry
describing a section contains information relating to its type, memory
requirements, alignment constraints, linkage, flags, and additional type-
dependent info.

Sections are a non-unique, named continuous ranges of arbitrary data. The
name of a section defines its purpose. Sections hold the bulk of object
file information for the linking view, such as instruction, symbol table,
relocation information, and initialized data.

Program header table describes how the system should create a process
image. It consists of fixed-sized entries describing a segment, spanning
one or more sections. Each segment describes how its range of sectors
should be represented in memory.

Furthermore, the elf header identifies architecture bit length, endianness,
target operating system abi, targeted instruction set architecture (isa), and
the description of both section and program table header.

An elf file may hold any set of arbitrary data; however, two use cases stem
from its conception. Object files require the section table header, with multiple
different section types, not just the data and instruction ones used for exe-
cutables. Segments are not defined for an object file, since segment layout in
memory requires relocation and linking dependencies to be determined. The
Program header table is thus only meaningful to executables and shared object
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Section name Description
.bss Holds uninitialized data contributing to the program’s

memory image. This section occupies no file space;
rather, it is zero-initialized when the file is unpacked
for execution by the operating system.

.data

.data1
Initialized data that is a part of the program’s memory
image.

.rodata

.rodata1
Section contains read-only data part of a non-writable
segment in the process image.

.dynamic Contains dynamic linking information.

.debug Implementation-defined debugging information.

.shstrtab Holds ascii encoded string names for all sections.

.strtab Section contains strings, referenced within the elf file
itself. Most commonly it holds name references from
the .symtab.

.symtab Holds a well-formated Symbol Table describing symbols
referencedwithin the object file. These entries will have
offset and length variables referencing their name from
the .strtab section.

.text Contains the executable instruction data of a program.

Table 2.1: Table of special elf sections and descriptions of their uses.

files; which in turn do not rely on the section header table, which may be safely
stripped from these file types.

Table 2.1 lists and describes the most common reserved section types. The only
required sections for an executable, described by one or multiple segments, are
the data and text sections. The .debug section, and derivatives of this, present
debugging information from any high-level language to debuggers, supporting
arbitrary platforms and abis.

The elf file format is important to the implementation and facilitation of
the Generic Security Service - Application Programming Interface (gss-api)
authentication system, described in Subsection 4.3.2

2.3 GSS-API
The gss-api is an interface to provide authentication services between a client
and server. It is the only method used to establish a secure session in smb2.
Without this mechanism in place, one cannot create a compliant smb2 server
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nor client.

In 1991 the Internet Engineering Task Force (ietf) assembled a working group
named Common Authentication Technology (cat). Its goal was to provide
standardized distributed security services in a manner which insulated the ap-
plications utilizing the services from the underlying security mechanisms [22].
This relieved application developers from embedding and handling security-
specific implementation tasks in their protocols, and rather facilitated a trans-
port of opaque tokens passed to and from the generic security service. This
also leaved the implementation of critical security infrastructure to an expert
group, instead of each protocol implementing or adapting their own.

cat submitted the first version of their work two years later, naming their
product Generic Security Service - Application Programming Interface (gss-
api) [23]. It defined a standard interface and accompanying bindings for the
C programing language [24][25]. The latest released version of gss-api is
version 2, update 1 standardized at the turn of the millennium [26][27].

The gss-api defines 45 procedure calls to offer its services, which facili-
tates:

Authentication to confirm the identity of both communicating parties.

Integrity of the exchanged protocol data, avoiding tampering by a man-in-
the-middle attack.

Confidentiality such that only the two parties are able to view the contents
of their communication.

Authorization is the ability to determine access rights to a set of resources.
gss-api only provides authorization services through implementation-defined
mechanisms. One caveat of Generic Security Service (gss) is that it assumes
a client-server architecture. Listed in Code Snippet 2.1 are the most prominent
methods to handle authentication. Code Snippet 2.2 depicts pseudo-code of
how the server uses the authentication api.

The gss-api library, which applications interface against, does not implement
any of the security services; rather, it facilitates third-party libraries to imple-
ment the gss-api interface as a mechanism. These will in turn perform the
required services in an implementation-defined manner. Applications thus link
against the facilitating gss-api library, not directly against the implementing
interface. This is illustrated in Figure 2.4.

All mechanisms are identified by a well-known object identifier (oid), which is
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Code Snippet 2.1 : C Prototype definitions of the most significant gss-api functions
who provide authentication services

// Conver t username/hostname in t o a form tha t i d e n t i f i e s a s e c u r i t y e n t i t y
OM_uint32 gss_import_name ( OM_uint32 *minor_status ,

const g s s _bu f f e r _ t input_name_buffer ,
cons t gss_OID input_name_type ,
gss_name_t *output_name

) ;

// Obtain i d e n t i t y
OM_uint32 gss_acqu i re_c red ( OM_uint32 *minor_status ,

const gss_name_t desired_name ,
OM_uint32 time_req ,
const gss_OID_set desired_mechs ,
gss_cred_usage_t cred_usage ,
g s s_ c red_ id_ t output_cred_handle ,
gss_OID_set *actual_mechs ,
OM_uint32 * t ime_rec

) ;

// C l i e n t g en e r a t e s token to s e r v e r .
OM_uint32 g s s _ i n i t _ s e c _ c on t e x t ( OM_uint32 *minor_status ,

const g s s_ c r ed_ id_ t i n i t i a t o r _ c r ed_hand l e ,
g s s _ c t x _ i d _ t * context_handle ,
const gss_name_t target_name ,
const gss_OID , mech_type ,
OM_uint32 req_ f l ag s ,
OM_uint32 time_req ,
const gs s_channe l_b ind ings_ t input_chan_bindings ,
const g s s _bu f f e r _ t input_token ,
gss_OID *actual_mech_type
g s s _bu f f e r _ t output_token ,
OM_uint32 * r e t _ f l a g s ,
OM_uint32 * t ime_rec

) ;

// P r o c e s s e s token ( gene ra t ed from g s s _ i n i t _ s e c _ c o n t e x t ) from c l i e n t .
// Produces a r e s pon s e token to r e tu rn .
OM_uint32 gs s_accep t_ sec_con tex t ( OM_uint32 *minor_status ,

g s s _ c t x _ i d _ t * context_handle ,
const g s s_ c r ed_ id_ t acceptor_cred_handle ,
const g s s _bu f f e r _ t input_ token_buf fer ,
cons t gs s_channe l_b ind ings_ t input_chan_bindings ,
gss_name_t *src_name ,
gss_OID *mech_type ,
g s s _bu f f e r _ t output_token ,
OM_uint32 * r e t _ f l a g s ,
OM_uint32 * t ime_rec
g s s_ c red_ id_ t * delegated_cred_handle

) ;
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Application

GSS-API

Mechanism Mechanism

Figure 2.4: This figure illustrates how the gss-api is architecturally situated between
the application and the underlying set of mechanisms that implement the
security services.

a hierarchically-assigned namespace where each node is managed by separate
authorities. The client initiates communication with its preferred mechanism,
either explicitly specified in the application or resolved in a system-dependent
fashion in the gss-api implementation. The oid of the client-selected mecha-
nism is encoded in the token. When the server processes this token, it performs
a lookup in its set of mechanisms to identify a match. If the server cannot find
a match, it returns an error code and leaves the responsibility to handle the
failed security context establishment to the application protocol.

This static fashion of selecting a mechanism would possibly require a recompi-
lation of the application if a "switch of mechanism" was needed. There is no
method of negotiating supported mechanisms by both parties in gss itself;
however, cat addressed this with the development of a pseudo-mechanism
dubbed Simple and Protected Generic Security Service Negotiation Mechanism
(spnego) [28][29]. When used as the selected mechanism, it exchanges the
set of supported mechanisms between the client and server. The first intersect-
ing mechanism of the two exchanged sets is selected and spnego henceforth
directs all gss procedure calls to the negotiated mechanism. Figure 2.5 depicts
this relationship.

smb2 requires use of spnego in conjunction with authentication over gss-
api.
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Code Snippet 2.2 : An example usage of the authentication procedures of the
gss-api to establish a security context between a newly accepted client.
client_authenticate is invoked on a separate thread and will block on
client_receive_* until an opaque token sent through the application protocol
is received from the client. The token is sent through the gss-api and produces
a response token returned back to the client through the application protocol.
Repeat until the security context is established.

void s e r v e r _ a cqu i r e _ c r eden t i a l s ( g s s_ c r ed_ id_ t * s e r v e r _ c r e d en t i a l s )
{

// Acqu i r e the s e r v e r s c r e d e n t i a l s .
// Parameters may be pas s ed as ’ no s p e c i f i e d ’ , such tha t sys tem d e f a u l t s are used .
// May acqu i r e c r e d e n t i a l s f o r a l l mechanisms a v a i l a b l e on the sys tem .
major_gs s_s ta tus = gss_acqu i re_c red (

.

.

.

&se r v e r _ c r eden t i a l s ,
.
.
.

) ;
i f ( ma jo r_gs s_s ta tus != GSS_S_COMPLETE)
// e r r o r

re turn ;
}
// Func t ion i s invoked when a new c l i e n t i s a c c e p t e d on the conne c t i on .
void c l i e n t _ au t h en t i c a t e ( g s s _ c t x _ i d _ t * c l i en t _ con t ex t , g s s_ c red_ id_ t * c l i e n t _ c r e d e n t i a l s )
{

OM_uint32 ma jor_gs s_s ta tus ;
g s s_bu f f e r_desc inpu t_bu f f e r ;
g s s_bu f f e r_desc output_buf fe r ;
g s s _ c red_ id_ t s e r v e r _ c r e d en t i a l s ;

s e r v e r _ a cqu i r e _ c r eden t i a l s (& s e r v e r _ c r e d en t i a l s ) ;

while (1)
{

// Get new opaque token from the c l i e n t t r a n s f e r r e d through the a p p l i c a t i o n p r o t o c o l .
// B lo ck ing ope ra t i on u n t i l the another packe t i s r e c e i v e d from the c l i e n t and
// the token i s e x t r a c t e d from the p r o t o c o l .
// Input b u f f e r i s popu la ted with t h i s opaque token .
c l i en t _ r e c e i v e _g s s _ t oken (& c l i en t _ con t ex t , &inpu t_bu f f e r ) ;

// Send the token down f o r p r o c e s s i n g . I f we do not implement the r e c e i v e d mech ,
// ma j o r _g s s _ s t a tu s w i l l be GSS_S_BAD_MECH .
major_gs s_s ta tus = gss_accep t_ sec_con tex t ( . . .

c l i en t _ con t ex t ,
s e r v e r _ c r eden t i a l s ,
&input_buf fe r ,
.
.
.

&output_buf fer ,
. . .
c l i e n t _ c r e d e n t i a l s
) ;

i f ( ma jo r_gs s_s ta tus != GSS_S_COMPLETE && major_gs s_ s ta tus != GSS_S_CONTINUE_NEEDED)
// Error − cannot e s t a b l i s h s e c u r i t y c on t e x t

// Send the opaque token r e s pon s e back to c l i e n t though the a p p l i c a t i o n p r o t o c o l .
c l i en t_ send_gs s_ token (&output_buf fe r ) ;

i f ( ma jo r_gs s_s ta tus == GSS_S_COMPLETE)
{

// f i n i s h e d − S e c u r i t y c on t e x t e s t a b l i s h e d .
break ;

}

// More p r o c e s s i n g r e qu i r e d − Go another round to g e t new token from c l i e n t .
}
re turn ;

}
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GSS-API

SPNEGO

Mechanism Mechanism

Application

Figure 2.5: Illustration of how spnego is used in gss to provide negotiating facilities
for available mechanisms in a system.

2.3.1 Protocol details

The gss-api contains two methods to establish an authenticated context
between two communicating parties. The initiator, usually the client, uses
the gss_init_sec_context() function to both generate and further establish
the session. The server uses the output supplied by the initiator as input
into the server side gss_accept_sec_context(), and replies with its output
token which in turn is processed by the client. The initiator requires a specific
mechanism supplied to themethod,whilst the acceptor determines if it supports
the clients mechanism through its credential handle. Both may specify to use
system defaults. The details of transferring the selected mechanism, as well as
the encoded data is the topic of this subsection.

The gss protocol defines two crucial constructs used to communicate and
relay the encapsulated data to the underlying mechanism. These are encoded
in ASN.1 syntax, so that endianess and data type sizes are serialized between
communicating parties.

The first construct is MechType, which is a self-describing variable number of
octets encoding an oid. The first byte is an ASN.1 tag for oid, with the value
0x06. Following this, a variable number of octets are used to encode the total
length of both the self-describing value field and the subsequent oid field. The
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length is encoded in one of two ways: (1) if the value is less than 128 bytes, a
single octet is used with the high order bit set to zero, and the 7 low order bits
encode the value, or (2) if the value is 128 bytes or larger, with the first octet
having its high order bit set to one, and the remaining 7 low order bits encode
the number of subsequent octets, 8 bits per octet, carrying the value with the
most significant digit first.

The second construct is an InitialContextToken, which encapsulates both the
MechType and the subsequent mechanism-specific blob. An illustration is avail-
able in Figure 2.6. It is constructed with the first byte being a well-defined ASN.1
tag for application-defined encoding, indicated by the value 0x60. It is followed
by a variable number of octets describing the total length of the remaining
blob, including the octets used to encode the length. This self-describing value
is encoded across multiple octets in the same way as described above. The
next expected sequence is the MechType construct, encoding the oid of the
selected mechanism. The remaining data, known as the innerContextToken
is mechanism-specific and may be encoded in any way. It derives its length
from the value encoded in the token length field following the application tag.
Another common name for this innerContextToken is mechToken.

All initial calls to gss_accept_sec_context() on a given mechanism must
— according to the rfcs — contain an InitialContextToken with the oid of
the selected mechanism to establish a new context. This is required such that
the acceptor may deduce which mechanism the client is communicating on.
Subsequent invocations with an established context expect only mechanism-
specific data, and has no restriction on encoding.

SPNEGO

spnego uses the innerContextToken to encode an exchange of supported
mechanisms, and it allows the client to supply an opportunistic mechTo-
ken of its preferred mechanism encapsulated within spnego innerContext-
Token. If the initiators preferred mechanism is chosen and it supplied an
opportunistic mechToken for this mechanism, this must in turn be relayed to
gss_accept_sec_context() with an empty context.

This is a point of confusion since the acceptor function is invoked a second
time with a different mechanism, and by extension a new, empty context. This
implies that the opportunistic mechToken must in turn be formated as an
InitialContextToken, containing its preferred mechanism oid in the MechType
field as well as an innerContextToken.
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InitialContextToken

Application Tag – 1 Byte (0x60)

ANS.1 DER Octets: Remaining Token Length (including self)

Object Identifier Tag – 1 Byte (0x06)

ANS.1 DER Octets: Object Identifier Length (including self)

ANS.1 BER Octets: Object Identifier

innerContextToken

Figure 2.6: Illustration of the components making up the InitialContextToken of gss-
api which is the expected format when establishing new contexts through
amechanism ofgss. The application tag byte is a required ASN.1 encoding
by signifying that all following bytes are application specific. Whereupon
the total length of the remaining blob is encoded, which includes the
octets used to encode the length. Another ASN.1 Tag is present indicating
that an oid is encoded following this byte. The length of this oid is
encoded before the oid itself follows. The remaining bytes, deduced from
value of the Remaining Token Length field, are mechanism-specific and is
referenced in the specification as innerContextToken.
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2.3.2 Unix implementation

There exists several implementations of the gss-api and associated mecha-
nisms. The Kerberos version 5 adaption to gss was co-produced alongside the
specification itself by cat. The Massachusetts Institute of Technology (MIT)
developed an implementation of both gss-api and its Kerberos mechanism. It
was unfortunately regulated by US export restrictions since it was classified as
auxiliary military technology, due to its use of the Data Encryption Standard
(des) encryption algorithm. This prompted a non-US entity, the Royal Institute
of Technology in Sweden, to develop an open source alternative, which they
named Heimdal. The initiative encompassed implementations of pure Kerberos
5, NTLM, gss-api, spnego, and authentication mechanisms using Kerberos
and NTLMSSP. The remainder of this subsection looks into the internals of the
Heimdal suite of protocols.

The gss-api implementation detects the mechanisms available on the sys-
tem through a well-defined configuration file, statically named and residing
in /etc/gss/mech. In other implementations, this could be configured via
environment variables. An example file entry is located in Code Snippet 2.3. It
consists of newline separated mechanism entries. Each entry is divided into
four whitespace-separated components; the first column contains the plain-text
name of the back-end security mechanism implementing gss-api, the second
holds the oid, and the third column names the shared library of the mech-
anism. The fourth column is an optional component referencing the kernel
module implementing the service, if any.

Code Snippet 2.3 : An example of the contents of a /etc/gss/mech file.

# Name OID Shared L ib ra ry Kernel module
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

spnego 1 . 3 . 6 . 1 . 5 . 5 . 2 l i bg s sap i_ spnego . so .10 −
ntlm 1 . 3 . 6 . 1 . 4 . 1 . 311 . 2 . 2 . 10 l i bg s s ap i _n t lm . so .10 −
kerberosv5 1.2 .840.113554.1 .2 .2 l i bg s s ap i _k rb5 . so .10 kssap i_krb5

Each entry is parsed and represented in a custom structure. The shared li-
brary specified in the third column of each mechanism entry is opened in local
scope through dlopen(). The symbol _gss_name_prefix is resolved with
dlsym(), which when invoked returns a string constant specific to the mecha-
nism library. The gss-api library will use this string constant as a prefix to all
other well-known methods, resolving their symbols with dlsym(). This allows
the facilitating gss-api library to redirect function calls into the designated
mechanism.





3
Protocol
smb, regardless of version, provides a networked protocol between a server
and client. It offers three services:

• Access to files and directories of an exposed directory root on the server.
It supports locking, encryption, notification alerts etc.

• Issue Remote Procedure Call (rpc) operations to services residing on
the server machine.

• Operate network attached printers administrated by the server.

This chapter serves as a guide through the depths of the smb2 protocol and
attempts to introduce some order to the vague and partly inconsistent nature
of the technical document defining smb2 [11]. Any reference to smb or the
’protocol’ refer only to the technical document defining smb2 [11], unless it is
explicitly stated to be valid or part-of the smb1 standard [30].

3.1 History
The initial draft of the smb1 protocol originated from IBM with the goal of
turning local file access into a networked file system. Microsoft adopted the
most commonly used version and heavily modified it, turning it into their own

21
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proprietary protocol with no official documentation of its semantics. Reverse
engineering efforts of available implementations from corporations like DEC
and Microsoft started early. Most notable is the Samba open source project for
Unix. Throughout the nineties, the major development and use of smb was
driven byMicrosoft and their family of operating systems. Without any technical
reference or standard available, Microsoft dictated the evolution of smb for
multiple years in the mid-nineties. At one milestone in 1996, they launched an
initiative to re-brand smb to Common Internet File System (cifs) [31]. They
submitted a ietf working draft of cifs, which yielded valuable insight for the
open source project, but has since expired [32].

The initial smb protocol ran over netbios, most notably nbf introduced in
Section 2.1. This is evident from multiple structure fields in smb1 commands
referencing netbios components. smb was later adapted to run on transports
such as NetBIOS over IPX/SPX (nbx) and nbt, before being effectively depre-
cated with the announcement of cifs with the ability to run on a "raw" tcp
connection. One issue arose with this switch of transports; netbios sessions
contained the total packet length whilst tcp is a continuous stream deprived
of this functionality. Therefore, each packet sent over a raw tcp connection
require a four byte header, known as the netbios Session Service Header.
Three out of the four bytes present in the netbios Session Service Header
encode the total packet length, leaving the last byte to represent the netbios
command code which must be zero. The byte encoding of this header is in
Big-Endian (network order), whilst the remainder of smb uses Little-Endian
byte ordering.

Even though Microsoft was the main driving force behind smb, multiple other
corporations ran the protocol. For partial or complete interoperability with
regards to version and capabilities, a specific dialect was always negotiated as
part of establishing a session. In negotiation of smb1, an array of ascii encoded
strings represents supported dialects of the client. The server responds with an
index into this dialect array to pick its preferred protocol version, or terminate
the connection if no common dialect is found. Clients can advertise their support
of smb2 by including the string "SMB 2.002", whereupon the server responds
with a smb2_negotiate command to indicate its capability to continue
protocol negotiation over smb2. An example packet trace of an smb1 negotiate
request can be found in Packet Trace 3.1. The smb versions are differentiated
by the initial four bytes of the header, which contain a magic identifier. For
smb1, the contents of these bytes are "\xFFSMB", whilst smb2 use "\xFESMB".
The client detects the version upgrade by these magic identifier bytes. Because
of this capability to negotiate a switch from smb1 to smb2 over the same raw
tcp connection, smb2 is required to keep the netbios Session Service Header
instead of other alternatives of representing total packet length.
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Packet Trace 3.1 : An example smb1 negotiate request. The structure of every smb1
request is divided into three fields; header, word array and byte array. As exem-
plified by this negotiation request, the byte array contains null-separated ascii
strings for each supported dialect by the client. The presence of both "SMB 2.002"
and "SMB 2.???" indicates that the client support smb2, and multiple dialects
thereof.

SMB Header
Magic I d e n t i f i e r : " \xFFSMB"
SMB Command: Negot ia te Pro toco l (0x72)
NT Sta tus : STATUS_SUCCESS (0x0)
F lags : 0x18
Flags2 : 0xC835
Process ID High : 0
Signature : 0000000000000000
Reserved : 0000
Tree ID : 0
Process ID : 65279
User ID : 0
Mul t ip lex ID : 0

Negotiate Protocol Request
Word Count : 0
Byte Count : 120

BufferFormat : 0x02 ( D i a l e c t )
D i a l e c t : PC NETWORK PROGRAM 1.0
D i a l e c t : LANMAN1.0
D i a l e c t : Windows fo r Workgroups 3.1 a
D i a l e c t : LM1.2X002
D i a l e c t : LANMAN2.1
D i a l e c t : NT LM 0.12
D i a l e c t : SMB 2.002
D i a l e c t : SMB 2.???
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Service Header

SMB2 Request

SMB2 Packet
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. . .

. . .

. . .

Total packet length

SMB2 Request

SMB2 Request

Figure 3.1: Layout of an smb2 Packet.

There were many caveats with the original smb protocol, much in regard to its
“chattiness” and it being devoid of latency concerns in its design. Menial tasks
require a series of synchronous network round trips to complete. It was not
designed for Wide Area Networks (wans) or for high latency networks, which
limited the use of compounding multiple commands into a single network
packet. It evolved and mutated through dialects to retrofit functionality it
was never envisioned to support, such as unicode, and it was self-constrained
with regard to number of open files, shares or active users, since it used 16 bit
identifiers for such tasks. With the large number of commands and arbitrary
(small) constraints on key features, the protocol was inherently difficult to
extend, maintain, and secure [33].

3.1.1 Introducing SMB2

smb2 was first introduced byMicrosoft in Windows Vista [34]. Even though this
new version of smb carries the same name as its predecessor, it bears little to
no resemblance to the original. The command set was reduced from well over
a hundred to just nineteen [35]. The only resemblance is the netbios Session
Service Header and the magic identifier of the header structure, to remain
compatible over the same transport. smb2 is designed with 64 bit architectures
in mind, and all structures are properly aligned such that no compiler-specific
padding should occur between them.
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SMB2 Header
(64 bytes)

SMB2 Command Structure
(Fixed byte length)

Variable Buffer
Optional per SMB2 Command

SMB2 Request

SMB magic signature

Next request

. . .

. . .

Command

. . .

Figure 3.2: Layout of an smb2 Request.

An smb2 request can be split into three natural parts; header, command
structure, and a variable-sized buffer. This is illustrated in Figure 3.2. Common
for all requests is the 64 byte fixed size header. It comes in two varieties;
synchronous and asynchronous. Figure 3.3 depicts their layout, whose only
difference is the 8 bytes occupying the byte-range from 32 to 40. The headers
are differentiated by a bit in the Flags field named ASYNC_COMMAND, that
when set indicates that the requestmay be processed asynchronously. The 2-byte
Command field of the header identifies which operation this request concerns.
Each command is of fixed size, varying dependent upon which type it is. Some
of these commands contain a variable-sized buffer with additional information,
whose length and offset is specified in the command structure.

There are two noninterchangeable ways to compound multiple requests into a
single packet. Figure 3.1 shows the composition of a packet, with the netbios
session service header followed by one or more requests. The Next Command
field of the header specifies an 8-byte aligned offset from the beginning of the
current request to the start of the next one. The remaining bytes between the
end of the current request to the next one are padded with zeros until the
8-byte boundary. If the series of requests are related and require serialization,
a bit known as RELATED_OPERATIONS in the Flags header field must be
set. This flag must only be set for request number two and out in the chain,
and may not be omitted. This requires a synchronous request. If one of the
commands in the chain results in a fault, the remaining requests generate a
similar fault and are not properly processed. An example of such a compound
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32 bits

1 byte

Protocol ID (Magic Identifier)

Structure Size Credit Charge

(Channel Sequence / Reserved) / Status

Command Credit Request / Credit Response

Flags

Next Command

Message ID

. . .

(Async: Async ID) / (Sync: Reserved)

(Async: Async ID Continued) / (Sync: Tree ID)

Session ID

. . .

. . .

. . .

Signature

. . .

Figure 3.3: Layout of the smb2 header.
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chain of related operations is to open a file, read from it, and close it. If the
RELATED_OPERATIONS flag is not set from the second request and onwards,
the requests are totally unrelated and may be processed independent and
asynchronously. These two methods of specifying compound requests must not
be used interchangeably. The server is required to handle compound requests
from the client, but may chose to reply to each request individually.

It is worth noting that the text encoding used in smb2 for string-based fields are
exclusively Unicode, specifically in UTF-16 encoding. Support for this encoding
is required to run the protocol. None of the fields are null-terminated, unless
explicitly stated otherwise.

The transports available to smb2 are not limited to raw tcp/ip on port 445,
whichwas introducedwithcifs forsmb1, but also include transports such as Re-
mote Direct Memory Access (rdma) [36]. The implementations of rdma sup-
ported include RDMA over Converged Ethernet (roce) [37], iWARP [38][39]
and InfiniBand Reliable Connected mode [40]. The interaction of rdma with
smb2 is detailed in the technical document from Microsoft named "SMB2
Remote Direct Memory Access (RDMA) Transport Protocol" [36].Due to back-
wards compatibility constraints, the legacy netbios transport is still officially
supported by the protocol; however, it is not required for interoperability with
clients in the wild, since these usually start off attempting to establish a raw
tcp connection.

At the time of writing, smb2 has four dialects. smb2 2.002 is the original
dialect, released with the introduction of smb2 in Microsoft Vista. Dialect 2.1
was introduced in Windows 7, yielding minor performance enhancements with
an opportunistic locking mechanism. smb 3.0, inexplicably bumped to a new
major version without actually defining a new protocol, facilitates the rdma
transport explained above. It also introduced a channel abstraction, allowing
multiple connections per session. smb 3.02 is the latest released dialect, adding
only minor improvements.

3.1.2 Commands

smb2 supports 19 commands, down from over a hundred in smb1. They each
come with a unique protocol frame that occupy the command structure part
of Figure 3.2, ranging in size from just 4 bytes in smb2_echo to 89 bytes
in the response structure of smb2_create. All 19 commands are listed in
Table 3.1. The first column lists the command names in plain English, whilst
the second column prints the textual reference used to uniquely identify and
refer to the smb2 commands throughout this thesis. The last column shows
the 16-bit value each command is identified by, which is the Command field
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of the smb2 header illustrated in Figure 3.3.

All commands have an unqiue structure for both the client request and a server
response, which need not be equal. As per old Microsoft style of protocol
creation, each structure begins with a 16-bit StructureSize field to hold the
total size of the structure. Whenever this field diverges from expected value,
the processing of the request halts and the entire operation is returned with
an invalid parameter status code. If the structure size is an odd value, the
command is succeeded by a variable length buffer whose content and size
must be individually interpreted by members of said structure. If the length
indicator specifies zero bytes in this buffer, a zero valued byte must still be
present.

Communication is client-driven; it initiates a request and expects a response
from the server. The only exception is smb2_oplock_break, where the
server may break a previously established lock held by the client. This request is
issued by the server with a notification, whereupon the client acknowledges the
operation and finally the server responds to the client acknowledgment.

The following subsections exemplify some of the most vital operations and
their relation to each other.

Command: Negotiate

smb2_negotiate is the first command exchange on a new transport. Any
other Command identifier in the smb2 header for when Message_id is zero,
which is the first request, is considered invalid and the connection is terminated.
The command request structure is depicted in Figure 3.4. The primary use of
smb2_negotiate is to exchange initial security mode settings and arrive on
a common supported dialect between client and server. An example extract of
this request is found in Packet Trace 3.2. Note that the length of the variable
buffer is not specified in the command structure, but rather calculated from the
Dialect Count field. Each Dialect is 16-bits, such that the total variable buffer
length is Dialect Count multiplied by two.

After processing a smb2_negotiate request, the server issues a similar re-
sponse structure, depicted in Figure 3.5. The server picks a dialect from those
listed in the Dialects variable field of the request, and echoes this in the Dialect
Revision of the response. Various security options and capabilities are relayed
back alongside simple meta-data about the server itself.

Perhaps the most interesting part of this command exchange is the contents of
the variable sized Security Buffer, which is described by the fields Security
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Command Text reference Value
Negotiate smb2_negotiate 0x0000
Session Setup smb2_session_setup 0x0001
Logoff smb2_logoff 0x0002
Tree Connect smb2_tree_connect 0x0003
Tree Disconnect smb2_tree_disconnect 0x0004
Create smb2_create 0x0005
Close smb2_close 0x0006
Flush smb2_flush 0x0007
Read smb2_read 0x0008
Write smb2_write 0x0009
Lock smb2_lock 0x000A
IOCtl smb2_ioctl 0x000B
Cancel smb2_cancel 0x000C
Echo smb2_echo 0x000D
Query Directory smb2_query_directory 0x000E
Change Notify smb2_change_notify 0x000F
Query Info smb2_query_info 0x0010
Set Info smb2_set_info 0x0011
OPLock Break smb2_oplock_break 0x0012

Table 3.1: Table of all smb2 commands and their corresponding identifier value.
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32 bits

1 byte

Structure Size Dialect Count

Capabilities

Client GUID

. . .

. . .

. . .

Client Start Time

. . .

Dialects (variable) . . .

Security Mode Reserved

Figure 3.4: Layout illustration of the smb2_negotiate request command structure.
The length of the variable field is a two byte multiplier of the Dialect
Count field, since each dialect identifier is 16-bits long.
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Packet Trace 3.2 : An example packet trace for a smb2_negotiate request. This trace
is extracted from a Windows 8.1 smb2 client.

SMB2 Header
Magic I d e n t i f i e r : " \xFESMB"
S t ruc tu re S ize : 0x0040
Cred i t Charge : 0
NT Sta tus : STATUS_SUCCESS (0x000000)
Command: Negot ia te (0x00)
Cred i t s Granted : 1
F lags : None , (0x00000000)
Chain O f f s e t : 0x00000000
Message ID : 0
Reserved : 0
Tree ID : 0x00000000
Sess ion ID : 0x0000000000000000
Signature :

0x00000000000000000000000000000000
Negotiate Protocol Request

S t ruc tu re S ize : 0x0024
D i a l e c t Count : 4
Secu r i t y Mode: 0x01

Enabled 1: True
Required 0: Fa l se

C a p a b i l i t i e s : 0x0000007F
DFS 1 , Host supports DFS
Leas ing 1 , Host suppor ts LEASING
Large MTU 1 , Host support s LARGE MTU
Mult i Channel 1 , Host supports MULTI

CHANNEL
P e r s i s t e n t Handles 1 , Host support s PERSISTENT

HANDLES
Di re c to ry Leas ing 1 , Host suppor ts DIRECTORY

LEASING
Encrypt ion 1 , Host suppor ts ENCRYPTION

C l i en t GUID :
7EDA47E5−D5C8−11E4−8285−3417EB9AE8EA

Boot Time : Unspec i f i ed (0x00000000)
D i a l e c t s :

D i a l e c t 0x0202
D i a l e c t 0x0210
D i a l e c t 0x0300
D i a l e c t 0x0302



32 CHAPTER 3 PROTOCOL

Buffer Offset and Security Buffer Length. The technical documents use the
RFC-2119 definitions of MUST, SHOULD, MAY and their variants [41], which in-
fers that the Security Buffer SHOULD contain a preemptive gss token to use
server-initiated spnego authentication (described in Section 2.3). However,
it also states that if the Security Buffer Length is zero, the variable buffer is
empty and client-initiated authentication with a protocol of the clients choice
will be used instead. By the definition of SHOULD, there may exist valid reasons
to ignore a particular item, and this certainly seems to qualify to such an ex-
ception since the protocol describes an alternative approach. A server may not
neglect to return an opportunistic token and let the authentication initiative
be client-driven if it hopes to remain compatible with the real world. Existing
clients, such as Samba and Windows, outright terminate the connection if no
opportunistic token is received. This is a clear testimony to the discrepancies
between the intended mechanism of the protocol and how the real world han-
dles the situation. A complete description of the protocol security mechanism
is available in Section 3.3.

3.2 Central structures
The technical document, section 3.2 and 3.3, contains two exhaustive subsec-
tions detailing the internal composition of both server and client components,
alongside explanations for processing a myriad of situations that may occur.
Both the central structures, their member components and naming, are merely
advisory for the technical document, but serve equally well as a baseline for
anyone wishing to implement one or both sides of the protocol.

This section explains the central server structures, with their members and
functionality in lightweight terms. The structure listings with associated mem-
bers are incomplete, but serve as a guide for component responsibilities as
explained in the accompanying member comments.

The structures introduced are respectively; Server, Connection, Packet,
Request, Session, Share, Tree_connect, and Open. They all relate
to each other and the structures either encapsulate or build upon each other,
but some cross-references may occur prior to the expanding explanation.

3.2.1 Structure: Server

The Server structure is the root state hub for the server endpoint. It is
instantiated upon creation and it is a unique construct with only one instance.
A representation of this server construct is found in Structure 3.1.
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Max Write Size

32 bits

1 byte

Structure Size Security Mode

Server GUID

. . .

. . .

. . .

Capabilities

Max Transaction Size

Max Read Size

Dialect Revision Reserved

System time

. . .

Server Start Time

. . .

Reserved

Security Buffer Offset Security Buffer Length

Security Buffer (variable) . . .

Figure 3.5: Layout of the smb2_negotiate response command structure.
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The construct can maintain several open listen sockets corresponding to differ-
ent Network Interface Cards (nics) available to the server, whilst representing
them as an array of resource identifiers in Server→listen_sockets. The
underlying mechanics to handle Input / Output (i/o) between accepted clients
and the server is handled through an asynchronous i/o engine, represented by
the Server→engine member of Structure 3.1.

The most prominent tasks of the Server is to keep global state over resources,
provide registration services, guarantee unique file access, and the like. For
instance, each client, session, and open are queriable by identifiers through
a globally available hashmap. The reminder of the members serve the idle
task of holding state variables, capabilities, and journal statistics about the
performance on the server.

Some of the data types defined are Abstract Data Types (adts) specific to a
given implementation, but the associated comment should clarify the intent of
its member. For instance, the wauth_server_context_t adt is present to
illustrate the presence of a server-side authentication component.

3.2.2 Structure: Connection

The Connection structure is responsible of representing a single connected
client over a given transport. A representation, adapted to raw tcp only, is
found in Structure 3.2.

Server→engine handles all communication for both read and write op-
erations. The resource identifiers and vxl_saiopipe_t abstraction interface
with the engine to provide these services. All structure members prefixed with
client_, relating to security mode, capabilities, and identifier, are retrieved
through the smb2_negotiate commands exchanged when the connection
was established.

Connection→credits regulate the number of outstanding requests the
client is allowed to have simultaneously on the transport. The credit quota is
mirrored in the available Message_id accepted by the server, which is mapped
to a sequence of unused identifiers in an implementation defined adt, Con-
nection→message_sequence_number.

If the client reaches zero credits or provides a Message_id that is not present
in Connection→message_sequence_number, the request will not
be processed, and the connection is brought to a halt.

Finally, Connection→session_table holds a map of all established ses-
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Structure 3.1 : Example of structure members useful for an smb2 Server component.

s t r u c t Server
{

// ! Array o f l i s t e n s o c k e t s a v a i l a b l e to the S e r v e r .
vx_ r id_ t l i s t e n _ s o c k e t s [MAXIMUM_AVAILABLE_NETWORK_OBJECTS] ;
// ! AIOEngine a s s o c i a t e d with the S e r v e r . A l l I /O op e ra t i on s are per formed through t h i s .
vx l_a ioeng ine_ t * engine ;
// ! Au th en t i c a t i on ADT − s t o r e e v e r y t h i n g r e l e v a n t f o r the au t h en t i c a t i o n
// ! mechanisms o f the S e r v e r through t h i s wauth handler
wauth_server_context_ t *auth ;

// ! Whether or not the Se r v e r w i l l be a c c e p t i n g incoming c onn e c t i on s or r e q u e s t s .
vx_bool_t enabled ;
// ! S t r u c t u r e r e g i s t e r i n g s t a t i s t i c s about the S e r v e r ( s e e MS−SRVS s e c t i o n 2 .2 .4 .39 )
s t a t i s t i c s _ t s t a t i s t i c s ;

// ! G loba l unique i d e n t i f i e r f o r t h i s S e r v e r g ene ra t ed upon Se r v e r c r e a t i o n .
vx_u in t8_t guid [SMB2_CLIENT_GUID_LENGTH] ;
// ! S t a r t t ime o f the SMB2 Se r v e r in FILETIME format .
f i l e t im e _ t s t a r t _ t ime ;

// ! I f s e t , i n d i c a t e s tha t the S e r v e r suppo r t s D i s t r i b u t e d F i l e System .
vx_bool_t i s _d f s _ capab l e ;
// ! I n d i c a t e s whether the Se r v e r r e q u i r e s messages to be en c r yp t ed a f t e r s e s s i o n e s t a b l i s hmen t
vx_bool_t encrypt_data ;
// ! I n d i c a t e s whether the Se r v e r w i l l r e j e c t any unencrypted messages .
// ! Only a p p l i c a b l e i f Server−>encryp t_da ta or Share−>encryp t_da ta i s s e t .
vx_bool_t r e j e c t_unenc ryp ted_acce s s ;
// ! I n d i c a t e s whether the Se r v e r REQUIRE messages to be s i gn ed i f the
// ! Connec t ion i s n e i t h e r anonymous nor gue s t .
vx_bool_t requi re_message_s ign ing ;

// ! L i s t o f a l l a v a i l a b l e sha r e s r e g i s t e r e d f o r t h i s S e r v e r .
share_ t * s h a r e _ l i s t ;
// ! L i s t o f a l l a c t i v e S e s s i o n s e s t a b l i s h e d to t h i s Server , indexed by Se s s i on−>s e s s i o n _ i d
vxl_hashmap_t * g l oba l _ s e s s i on_ t ab l e ;
// ! Table o f a l l Opens by remote C l i e n t s on the s e r v e r indexed by Open−>du r a b l e _ f i l e _ i d
vxl_hashmap_t * g loba l_open_tab le ;
// ! Table o f a l l Connec t i ons to the s e r v e r indexed by Connect ion−>conne c t i on_ i d
vxl_hashmap_t * connec t ion_ tab le ;

// ! Maximum number o f chunks the S e r v e r w i l l a c c e p t in a s e r v e r−s i d e copy ope ra t i on .
vx_uint64_t copy_max_number_of_chunks ;
// ! Maximum number o f b y t e s the S e r v e r w i l l a c c e p t in a s i n g l e chunk
// ! f o r a s e r v e r−s i d e copy ope ra t i on .
vx_uint64_t copy_max_chunk_size ;
// ! Maximum number o f b y t e s the S e r v e r w i l l a c c e p t f o r a s e r v e r−s i d e copy ope ra t i on .
vx_uint64_t copy_max_data_size ;

// ! Counter f o r e v e r i n c r e a s i n g Connect ion−>connec t i on_ id , to keep them unique .
vx_uint64_t a l l o ca t ed_connec t i on_ id s ;
// ! Counter f o r e v e r i n c r e a s i n g Se s s i on−>se s s i o n _ i d , to keep them unique .
vx_uint64_t a l l o c a t ed _ s e s s i on _ i d s ;
// ! Counter to a l l o c a t e d unqiue Open−>durab l e f i l e _ i d f o r the S e r v e r .
vx_uint64_t a l l o c a t e d _du r a b l e _ f i l e _ i d s ;

} s e r v e r _ t ;
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sions on the transport, indexed by Session_id supplied in the header of each
request (except for smb2_negotiate and smb2_session_setup).

3.2.3 Structure: Packet

The Packet structure encapsulates the processing of an entire packet, possibly
compounded intomultiple requests, and the responses of the processed requests.
The server may chose to send a response packet for each of the compounded
requests, or compound the responses as well. vxl_cbuffer_t is the os buffer
abstraction for both incoming and outgoing packets. It hides the underlying
connection transport from the request handling. Retrieving and inputting data
through this interface aid the development process with multiple safeguards.
For instance, it detects buffer-overflows and reads past boundaries. Writing
to Packet→outgoing_buffer centralizes the computation of the total
packet length part of the netbios Session Service Header.

The series of Packet→compound_ members, which hold File_id, Ses-
sion_id, and Tree_id, are essential to this structure and may not reside else-
where. They act as an up-to-date storage of identifiers that may be valid
across multiple requests, and not provided by each request individually. smb2
supports multiple related requests compounded into a single packet, each de-
pendent upon the successful processing of the prior request in the chain. For
instance, given a packet of three compound related requests, smb2_create,
smb2_read, smb2_close in that order, the last two requests depend upon
the File_id assigned in the first processed smb2_create operation. Both
command structures contain a field to supply this File_id, but cannot pos-
sibly know the identifier assigned to the Open by the smb2_create op-
eration. Thus, each operation that results in the creation or opening of an
identifier by a previous request must refresh the content of their respective
Packet→compound_ identifier. This allows the last two requests to access
the File_id to perform their respective operations, all compounded into a single
packet.

3.2.4 Structure: Request

The Request structure contains all information necessary to receive, pro-
cess, and respond to a client request. A reference representation is found in
Structure 3.4. This contains the smb2 header, command, and variable buffer
structures for both the incoming client request and the outgoing server re-
sponse.

Request→response_status_code is populated with an appropriate
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Structure 3.2 : Example content of a structure used to keep state of a client Connection.

s t r u c t Connection
{

// ! Re source i d e n t i f i e r s f o r the a c c e p t e d s o c k e t Connec t ion .
vx_ r id_ t read_r id ;
vx_ r id_ t wr i t e _ r i d ;

// ! Ded i ca t ed input / output p i p e s to the s o c k e t a s s o c i a t e d with r ead_ r i d / w r i t e _ r i d .
vx l _ s a i op i p e_ t * read_pipe ;
v x l _ s a i op i p e_ t *wr i te_p ipe ;

// ! Packe t c u r r e n t l y be ing p r o c e s s e d by the Connec t ion .
packet_ t * packet ;
// ! Backwards r e f e r e n c e to the running Se r v e r s t r u c t u r e .
s e r v e r _ t * se rve r ;

// ! Unique ly i d e n t i f i e s a Connec t ion on the Se r v e r .
vx_ in t64_t connect ion_ id ;

// ! Null−t e rminated unicode IP−addr e s s or NetBIOS hos t name o f the C l i e n t machine .
vx_ut f8_ t c l ient_name [SMB2_CONNECTION_CLIENT_NAME_LENGTH] ;
// ! Timestamp f o r when the Connec t ion was e s t a b l i s h e d in FILETIME format .
f i l e t im e _ t c l i e n t _ e s t a b l i s h ed_ t ime ;
// ! C a p a b i l i t i e s o f the C l i e n t on t h i s Connec t ion . See s e c t i o n 2 .2 .3 f o r the syntax .
smb2_capab i l i t i e s _ t c l i e n t _ c a p a b i l i t i e s ;
// ! An i d e n t i f i e r f o r the C l i e n t machine .
vx_ut f8_ t c l i e n t _ gu i d [SMB2_CLIENT_GUID_LENGTH] ;

// ! A v a i l a b l e c r e d i t s f o r t h i s c l i e n t .
vx_uint64_t c r e d i t s ;
// ! ADT member to handle v a l i d s equence numbers to r e c e i v e from t h i s Connec t ion .
message_sequence_number_t *message_sequence_number ;

// ! Map o f a l l r e q u e s t s be ing p r o c e s s e d synchronous l y by the s e r v e r over t h i s Connec t ion .
// ! Indexed by Request−>message_ id
vxl_hashmap_t * r e q u e s t _ l i s t ;
// ! Map o f a l l a synchronous l y p r o c e s s i n g r e q u e s t s on t h i s Connec t ion .
// ! Indexed by Request−>async_ id
vxl_hashmap_t *async_command_list ;
// ! Map o f au th en t i c a t e d s e s s i o n s f o r t h i s c onne c t i on .
// ! Indexed by Se s s i on−>s e s s i o n _ i d .
vxl_hashmap_t * s e s s i on_ t ab l e ;

// ! I n d i c a t e s tha t a l l s e s s i o n s on t h i s c onne c t i on must have s i g n i n g enab led .
// ! Anonymous and Gues t s s e s s i o n s are exempt from t h i s r equ i rement .
vx_bool_t should_s ign ;
// ! I n d i c a t i n g whether the conne c t i on suppo r t s mult i−c r e d i t o p e r a t i on s .
vx_bool_t suppo r t s _mu l t i _ c r ed i t ;

// ! Current s t a t e o f the d i a l e c t n e g o t i a t i o n between Se r v e r and C l i e n t .
vx_uint32_t n ego t i a t e _d i a l e c t ;
// ! The SMB2 nego t i a t e d d i a l e c t o f which to communicate with the C l i e n t .
vx_uint32_t d i a l e c t ;
// ! I n d i c a t e s whether or not the au t h en t i c a t i o n o f a
// ! non−anonymous p r i n i c i p a l has not y e t been e s t a b l i s h e d .
vx_bool_t cons t ra ined_connec t ion ;

// ! Maximum bu f f e r s i z e in b y t e s the S e r v e r a l l ows on the t r an s p o r t f o r the f o l l ow i n g op e r a t i on s
// ! QUERY_INFO , QUERY_DIRECTORY , SET_INFO and CHANGE_NOTIFY .
vx_uint64_t max_t ransac t ion_s ize ;
// ! Maximum bu f f e r s i z e in b y t e s the S e r v e r a l l ows to be wr i t t e n on
// ! the conne c t i on dur ing an SMB2_WRITE r e qu e s t .
vx_uint64_t max_wri te_s ize ;
// ! Maximum bu f f e r s i z e in b y t e s the S e r v e r a l l ows to be read on
// ! the conne c t i on dur ing an SMB2_READ r e qu e s t .
vx_uint64_t max_read_size ;

// ! The Se r v e r c a p a b i l i t i e s e s t a b l i s h e d in the SMB2_NEGOTIATE_RESPONSE .
smb2_capab i l i t i e s _ t s e r v e r _ c a p a b i l i t i e s ;
// ! The C l i e n t s e c u r i t y mode s en t in SMB2_NEGOTIATE_REQUEST .
smb2_security_mode_t c l i en t_ secur i t y_mode ;
// ! The Se r v e r s e c u r i t y mode o f s en t to the C l i e n t in SMB2_NEGOTIATE_RESPONSE .
smb2_security_mode_t server_secur i ty_mode ;

} connect ion_t ;
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Structure 3.3 : A sample structure containing members to keep track of a single packet
arriving on a Connection transport.

s t r u c t Packet
{

// ! Bu f f e r c on ta in ing the incoming packe t data from a Connec t ion .
v x l _ c bu f f e r _ t * incoming_buf fer ;
// ! Bu f f e r to wr i t e a r e s pon s e packe t .
v x l _ c bu f f e r _ t * outgo ing_buf fe r ;

// ! Pre−a l l o c a t e d r e q u e s t _ t s t r u c t u r e s to handle 5 compound r e q u e s t s
// ! wi thout dynamica l l y a l l o c a t i n g memory upon each compound r e qu e s t packe t r e c e i v e d .
r eque s t _ t r eques t s [5 ] ;
// ! Backup s t o r a g e c a pa c i t y i f the r e q u e s t s array i s f i l l e d
// ! and we have add i t i o na l compound r e q u e s t s in packe t .
r eque s t _ t * add i t i ona l _ r eque s t s ;

// ! Number o f r e q u e s t s s en t in t h i s packe t .
vx_uint16_t num_compound_requests ;
// ! Number o f r e q u e s t s f i n i s h e d a l l p r o c e s s i n g and r e p l y i s b u f f e r e d .
vx_uint16_t proces sed_reques t s ;

// ! To ta l packe t l eng th − Ex t r a c t e d from the f i r s t 4 b y t e s in the packe t
// ! from the NetBIOS s e s s i o n s e r v i c e header .
vx_uint32_t incoming_packet_length ;
// ! To ta l l e ng th o f a l l ou tgo ing r e q u e s t s − does not i n c l u d e the NetBIOS S e s s i on S e r i v c e l eng th .
vx_uint32_t outgoing_packet_ length ;
// ! To ta l number o f b y t e s read from the incoming packe t b u f f e r dur ing r e qu e s t p r o c e s s i n g
vx_uint32_t bytes_read_from_packet ;

// ! I f the r e qu e s t i s par t o f a compound opera t ion , the f i l e _ i d f o r
// ! the e n t i r e s e r i e s o f r e q u e s t s w i l l be s t o r e d up−to−date here .
smb2_ f i l e_ id_ t compound_fi le_id ;
// ! I f the r e qu e s t i s par t o f a compound opera t ion , the s e s s i o n _ i d f o r
// ! the e n t i r e s e r i e s o f r e q u e s t s w i l l be s t o r e d up−to−date here .
vx_ in t64_t compound_session_id ;
// ! I f the r e qu e s t i s par t o f a compound opera t ion , the t r e e _ i d f o r
// ! the e n t i r e s e r i e s o f r e q u e s t s w i l l be s t o r e d up−to−date here .
vx_uint32_t compound_tree_id ;

// ! Backwards r e f e r e n c e to the conne c t i on handl ing t h i s packe t
connec t ion_t * connect ion ;

} packe t_ t ;
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status code during processing, which is propagated to the final response dis-
patch. The NTSTATUS error codes are defined in MS-ERREF [42].

Structure members such as Command,Message_id, and Compound_request,
are present as an optimization and could be retrieved from their respective
position in Request→request_header.

Structure 3.4 : A sample structure containing all members necessary to process a single
request/command.

s t r u c t Request
{

// ! Union type to keep v a r i a b l e s r e qu i r e d a c r o s s mu l t i p l e p r o c e s s i n g l a y e r s
// ! wi th in the s i n g l e command pars ing , v e r i f i c a t i o n and e x e cu t i on .
smb2_command_processing_variables_t command_variables ;

// ! Copy o f the incoming r e qu e s t SMB2 header r e t r i e v e d from Packet−>incoming_bu f f e r
smb2_header_t request_header ;
// ! Union type ho ld ing a l l the a s s o c i a t e d r e qu e s t command s t r u c t u r e s .
smb2_request_command_t request_command ;
// ! The v a r i a b l e l eng th b u f f e r c on t en t o f each command MAY be parsed i n t o t h i s union l o c a t i o n .
// ! Command dependent .
smb2_command_request_variable_buffer_content_t r eque s t _va r i ab l e _bu f f e r _ con t en t ;
// ! Number o f b y t e s read from packe t a s s o c i a t e d with t h i s r e qu e s t .
vx_uint32_t request_bytes_read_from_packet ;

// ! Popu la ted r e s pon s e header , c op i ed i n t o the r e p l y b u f f e r upon wr i t e .
smb2_header_t response_header ;
// ! Er ror r e s pon s e s t r u c t u r e − Returned upon a Request−>re s p on s e _ s t a t u s _ c od e d i f f e r e n t than

STATUS_SUCCESS .
smb2_error_response_t re sponse_er ror ;
// ! Union type ho ld ing a l l the a s s o c i a t e d r e s pon s e command s t r u c t u r e s .
smb2_response_command_t response_command ;
// ! The v a r i a b l e l eng th b u f f e r ho ld ing data to be s upp l i e d in the v a r i a b l e _ b u f f e r command

r e spon s e .
smb2_command_response_variable_buffer_content_t r e sponse_va r i ab l e_bu f f e r_ con ten t ;
// ! Length in b y t e s o f the r e s pon s e wr i t t e n i n t o the outgo ing b u f f e r .
vx_uint32_t response_ length ;
// ! S ta tu s code r e tu rned in Request−>respons e_heade r
NTSTATUS response_s ta tus_code ;

// ! The command i d e n t i f i e r o f t h i s Reques t from the Request−>reque s t _heade r
vx_uint16_t command;
// ! Message id from the Request−>reque s t _heade r .
vx_uint64_t message_id ;
// ! Generated async id i f the Reques t i s to be p r o c e s s e d asynchronous l y
vx_uint64_t async_id ;

// ! Boolean s e t i f t h i s r e qu e s t i s par t o f handl ing a compound Request ,
// ! and i s not the f i r s t Reques t in the compound chain .
vx_bool_t compound_request ;

// ! R e f e r e n c e to a S e s s i on t h i s r e qu e s t MAY be a s s o c i a t e d with .
// ! NULL i f no such a s s o c i a t i o n e x i s t s .
s e s s i on_ t * s e s s i on ;
// ! R e f e r e n c e to the TreeConnec t t h i s Reques t MAY be a s s o c i a t e d with .
// ! NULL i f no such a s s o c i a t i o n e x i s t s .
t r ee_connec t_ t * t ree_connec t ;
// ! R e f e r e n c e to an Open t h i s r e qu e s t MAY be a s s o c i a t e d with .
// ! NULL i f no such a s s o c i a t i o n e x i s t s .
open_t *open ;

// ! R e f e r e n c e to the Connec t ion t h i s r e qu e s t i s t r a n s f e r e d on .
connect ion_t * connect ion ;
// ! Backwards r e f e r e n c e to Packe t handl ing s t r u c t u r e from which t h i s Reques t o r i g i n a t e d .
packet_ t * packet ;

// ! A b i l i t y to chain ou t s tand ing Reque s t s ;
r eque s t _ t *next , * prev ;

} r eque s t _ t ;
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3.2.5 Structure: Session

The Session encapsulates an established session between a client Connec-
tion and the server. Most smb2 commands are only valid as part of an authen-
ticated session,which is established through a series of smb2_session_setup
command exchanges. Structure 3.5 represents a server-side definition.

When the client establishes a new session, the server will allocate a new
Session structure and generate an unqiue identifier assigned to the session.
This is stored in Session→session_id. The authentication context through
gss-api is represented by an adt, Session→auth. After is successful estab-
lishment, the context is queried for session keys, user names, and authentication
modes which are safely stored in the Session.

The Session keeps track of all connected shares and open operations per-
formed on the session through hashmaps, which are indexed by their respective
Open→file_id and Tree_connect→tree_id. To keep these identi-
fiers unique, the Session is required to keep track of previously allocated
identifiers.

3.2.6 Structure: Share

Share represents either of the three supported share types in smb2, pipe,
printer, or disk tree. smb1 was originally developed to expose a local file system
over the network. The Share, represented in Structure 3.6, must be registered
with an unique name to the server prior to clients attempting to establish a
smb2_tree_connect to it.

If the Share represents a disk tree share type, Share→local_path is
populated with the local path of the exported directory root. The remainder
of its members simply reflect configurable options and state of the Share
creation.

3.2.7 Structure: TreeConnect

Tree_connect is the structure identifying a successful binding between a
client Session and a registered server Share resource, which is established
through a smb2_tree_connect command. Its representation is found in
Structure 3.7.

Tree_connect→tree_id is a unique identifier allocated by the session
and indexes into the Session→tree_connect_table, such that the ap-
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Structure 3.5 : Sample structure to keep track of a single session established on a
transport Connection.

s t r u c t Sess ion
{

// ! Index i n t o the Server−>g l o b a l _ s e s s i o n _ t a b l e . Unique i d e n t i f i e r f o r t h i s S e s s i on .
vx_ in t64_t s e s s i on_ i d ;
// ! Current a c t i v i t y s t a t e o f t h i s S e s s i on .
SMB2_SESSION_STATE_T s t a t e ;

// ! Au th en t i c a t i on c on t e x t f o r t h i s S e s s i on .
wauth_connect ion_context_t *auth ;

// ! F i r s t 16−b y t e s o f the c r y p t o g r aph i c key f o r t h i s au th en t i c a t e d c on t e x t .
// ! I f the key i s l e s s than 16 by t e s , i t s r i g h t padded with ze ro
vx_u in t8_t ses s ion_key [SMB2_SESSION_KEY_LENGTH] ;
// ! Name o f the u s e r who e s t a b l i s h e d the S e s s i on .
vx_ut f8_ t user_name [SMB2_SESSION_USER_NAME_LENGTH] ;

// ! I n d i c a t i n g whether or not the S e s s i on i s f o r an anonymous us e r .
vx_bool_t is_anonymous ;
// ! I n d i c a t i n g whether or not the S e s s i on i s f o r an gue s t u s e r .
vx_bool_t i s _ gue s t ;
// ! I n d i c a t i n g whether or not tha t a l l messages f o r t h i s S e s s i on MUST be s i gn ed .
// ! Th i s i s the d e f a c t o au tho r i t y whether a r e s pon s e w i l l be s i gn ed .
// ! Wi l l be c a l c u l a t e d in accordance to the va l u e s o f
// ! Se s s i on−>is_anonymous , Se s s i on−>i s _ gu e s t , share and s e r v e r s t a t e .
vx_bool_t s i gn ing_ requ i r ed ;

// ! The t ime the S e s s i on was e s t a b l i s h e d .
vx_uint64_t c rea t ion_ t ime ;
// ! A va lue tha t s p e c i f i e s the t ime a f t e r which the C l i e n t must re−au t h en t i c a t e with the S e r v e r .
vx_uint64_t exp i ra t i on_ t ime ;
// ! The t ime the S e s s i on p r o c e s s e d i t s most r e c e n t Reques t .
vx_uint64_t id l e_ t ime ;

// ! A t a b l e o f Open tha t have been opened by t h i s au t h en t i c a t e d S e s s i on .
// ! Indexed by Open−>f i l e _ i d
vxl_hashmap_t * open_table ;
// ! A t a b l e o f T r e e _ c onne c t s tha t have been e s t a b l i s h e d by t h i s au t h en t i c a t e d S e s s i on .
// ! indexed by Tree_connec t−>t r e e _ i d
vxl_hashmap_t * t r ee_connec t_ tab l e ;

// ! Backwards r e f e r e n c e to the Connec t ion on which t h i s S e s s i on was e s t a b l i s h e d .
connect ion_t * connect ion ;

// ! Counter o f a l l o c a t e d Tree_connec t−>t r e e _ i d f o r t h i s S e s s i on − S t a r t s at 1
vx_uint32_t a l l o ca t ed_ t r e e_ connec t _ i d s ;
// ! Counter f o r a l l o c a t e d Open−>f i l e _ i d on t h i s S e s s i on − S t a r t s at 1
vx_uint64_t a l l o c a t e d _ f i l e _ i d s ;

} s e s s i on_ t ;
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Structure 3.6 : Structure with members needed to represent an smb2 share available
on the Server.

s t r u c t Share
{

// ! Type o f share , as per SMB2 s p e c i f i c a t i o n .
share_ type_ t type ;

// ! Name o f the shared r e s ou r c e on t h i s s e r v e r
vx_ut f8_ t name[SMB2_SHARE_NAME_LENGTH] ;
// ! NetBIOS or t e x t u a l IPv4 addr e s s
vx_ut f8_ t server_name [SMB2_SHARE_SERVER_NAME_LENGTH] ;
// ! Path tha t d e s c r i b e s the l o c a l r e s ou r c e be ing shared
vx_ut f8_ t l o ca l _pa th [SMB2_SHARE_LOCAL_PATH_LENGTH] ;

// ! De f ined cach ing p o l i c y f o r t h i s share
SMB2_CACHING_POLICY_T cach ing_po l i cy ;
// ! I n d i c a t e s whether or not t h i s Share i s c on f i g u r e d f o r DFS .
vx_bool_t i s _ d f s ;

// ! I n d i c a t e s whether or not the r e s u l t o f d i r e c t o r y enumeration
// ! on t h i s Share MUST be trimmed to i n c l u d e only
// ! f i l e s and d i r e c t o r i e s the c a l l i n g us e r has r i g h t to a c c e s s .
vx_bool_t do_access_based_directory_enumerat ion ;
// ! I n d i c a t e s whether the C l i e n t s are a l lowed to cache d i r e c t o r y enumeration r e s u l t s .
vx_bool_t a l low_cl ient_namespace_caching ;
// ! I n d i c a t e s whether a l l opens on t h i s share MUST i n c l u d e FILE_SHARE_DELETE in the shar ing

a c c e s s .
vx_bool_t fo r ce_ sha red_de le te ;
// ! I n d i c a t e s whether u s e r s who r e qu e s t read−only a c c e s s
// ! to a f i l e are not a l lowed to deny o the r r eads .
vx_bool_t r e s t r i c t _ e x c l u s i v e _ op en s ;
// ! I n d i c a t i n g tha t the S e r v e r does not i s s u e e x c l u s i v e cach ing r i g h t s on t h i s share .
vx_bool_t f o r ce_ l eve l2_op lock ;
// ! I n d i c a t i n g whether the Share suppo r t s hash g ene ra t i on o f branch cache r e t r i e v a l o f data .
vx_bool_t hash_enabled ;

// ! A va lue i n d i c a t i n g the maximum number o f c on cu r r en t c onn e c t i on s to the Share .
vx_uint16_t max_concurrent_connect ions ;
// ! A va lue i n d i c a t i n g number o f a c t i v e con cu r r en t c onn e c t i on s
vx_uint16_t cur rent_concur ren t_connec t ions ;

// ! L inked l i s t o rgan i zed − I n s e r t e d in the Server−>s h a r e _ l i s t
share_ t *next , * prev ;

} share_ t ;
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propriate Tree_connect can be retrieved from the supplied Tree_id in the
smb2 header.

Structure 3.7 : Members of a TreeConnect structure

s t r u c t TreeConnect
{

// ! Numeric va lue to un ique l y i d e n t i f y a TreeConnec t wi th in the s cope o f the S e s s i on over which
i t was

e s t ab l i s h ed .
vx_uint32_t t r e e_ i d ;

// ! A numeric va lue i n d i c a t i n g the number o f Opens tha t are c u r r e n t l y a c t i v e f o r t h i s
TreeConnec t .

vx_uint32_t open_count ;

// ! The t ime t h i s TreeConnec t was e s t a b l i s h e d .
vx_uint64_t c rea t ion_ t ime ;

// ! Maximal a c c e s s f o r the S e s s i on to t h i s TreeConnec t .
f i l e _ a c c e s s _ t maximal_access ;

// ! Backwards r e f e r e n c e to the S e s s i on tha t e s t a b l i s h e d t h i s TreeConnec t .
s e s s i on_ t * s e s s i on ;
// ! Backwards r e f e r e n c e to the share tha t t h i s TreeConnec t was e s t a b l i s h e d to .
share_ t * share ;

} t ree_connec t_ t ;

3.2.8 Structure: Open

Open represents an successful smb2_create command to open a resource on
an established Tree_connect. Its definition is found in Structure 3.8.

Open is a vast structure that encapsulates a multitude of primitives to imple-
ment the features of smb2. It contains identifiers for the local resource, the
Session→session_id, and local file information relating to access rights
and file type. The Open may be opened durable, so it may be re-acquired
by the same client after a short network outage. Various levels of locking is
supported.

Multiple of the fields hold state information, for instance to query the contents
of a directory across multiple requests or the extended attribute list which both
could be of arbitrary size.

3.3 Authentication
All services available in smb2 require the client to establish an authenticated
session. There are two commands that facilitate this: smb2_negotiate and
smb2_session_setup. The latter is the primary method.
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Structure 3.8 : Members of the Open structure

s t r u c t Open
{

// ! Re source i d e n t i f i e r f o r the r e s ou r c e opened
vx_ r id_ t open_rid ;

// ! I d e n t i f i e r o f the C l i e n t op e ra t i ng on t h i s Open .
vx_ut f8_ t c l i e n t _ gu i d [SMB2_CLIENT_GUID_LENGTH] ;

// ! Numeric va lue un ique l y i d e n t i f i e s the Open handle wi th in the s cope o f a S e s s i on .
// ! Th i s i s the v o l a t i l e handle o f a smb2_ f i l e _ i d _ t
vx_uint64_t f i l e _ i d ;
// ! Numeric va lue tha t un ique l y i d e n t i f i e s the Open handle wi th in the s cope o f a l l
// ! Opens granted by the S e r v e r .
// ! Th i s i s the p e r s i s t e n t handle o f a smb2_ f i l e _ i d _ t
vx_uint64_t du r ab l e _ f i l e _ i d ;

// ! A c c e s s granted on t h i s Open .
f i l e _ a c c e s s _ t granted_access ;

// ! Current op lo ck l e v e l f o r t h i s Open . Must be one o f SMB2_OPLOCK_LEVEL_* enumerators .
SMB2_OPLOCK_LEVEL_T op lock_ l eve l ;
// ! Current op lo ck s t a t e f o r t h i s Open . Must be one o f the SMB2_OPLOCK_STATE_* enumerators .
SMB2_OPLOCK_STATE_T op lock_ s t a t e ;

// ! I n d i c a t e s whether or not t h i s Open was r e qu e s t e d durab l e .
vx_bool_t i s _durab l e ;
// ! I n d i c a t e s i f t h i s Open i s over a d i r e c t o r y .
vx_bool_t i s _ d i r e c t o r y ;
// ! Time va lue i n d i c a t i n g when t h i s durab l e handle w i l l be c l o s e d i f the C l i e n t does not r e c l a im

i t .
vx_uint64_t durable_open_timeout ;
// ! A s e c u r i t y d e s c r i p t o r tha t ho ld s the o r i g i n a l opener o f the Open .
// ! A l lows s e r v e r to de te rmine i f a c a l l e r i s t r y i n g to r e e s t a b l i s h a durab l e open and i s

a l lowed to do so .
vx_uint64_t durable_owner ;

// ! I n d i c a t e s the cu r r en t l o c a t i o n in a d i r e c t o r y enumeration , a l l ows f o r con t inu ing o f an
// ! enumeration a c r o s s mu l t i p l e r e q u e s t s .
vx_uint64_t d i rec to ry_enumera t ion_ loca t ion ;
// ! I n d i c a t e s the s ea r ch pa t t e rn tha t i s u s ed in d i r e c t o r y enumeration , a l l ows f o r con t inu ing
// ! o f an enumeration a c r o s s mu l t i p l e r e q u e s t s .
vx_ut f8_ t d i rec tory_enumera t ion_search_pat te rn [VX_PATH_NVCHAR_MAXNUM] ;

// ! I n d i c a t e s the index in the ex t ended a t t r i b u t e in fo rmat ion l i s t ,
// ! a l l ows enumeration a c r o s s mu l t i p l e r e q u e s t s .
vx_uint64_t current_ea_ index ;
// ! I n d i c a t e s the index in the quota in fo rmat ion l i s t , a l l ows enumeration a c r o s s mu l t i p l e

r e q u e s t s .
vx_uint64_t current_quota_ index ;

// ! Numeric va lue o f the number o f l o c k s c u r r e n t l y he ld by t h i s Open .
vx_uint32_t lock_count ;

// ! Var iab l e−l e ng th uni code s t r i n g c on ta i n s the l o c a l path name on the Se r v e r tha t the Open i s
per formed on .

vx_ut f8_ t path_name[SMB2_OPEN_PATH_NAME_LENGTH] ;
// ! Key tha t i d e n t i f i e s a s ou r c e f i l e in a s e r v e r−s i d e data copy ope ra t i on .
vx_ut f8_ t resume_key [SMB2_OPEN_RESUME_KEY_LENGTH] ;

// ! I n d i c a t e s whether t h i s Open has r e qu e s t e d a r e s i l i e n t op e ra t i on .
vx_bool_t i s _ r e s i l i e n t ;

// ! R e f e r e n c e to the S e s s i on on which t h i s Open was per formed .
s e s s i on_ t * s e s s i on ;
// ! R e f e r e n c e to the TreeConnec t under which t h i s Open was per formed .
t r ee_connec t_ t * t ree_connec t ;
// ! R e f e r e n c e to the Connec t ion under which t h i s Open was per formed .
connec t ion_t * connect ion ;

} open_t ;
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smb2 relies on thegss-api,withspnego as its chosenmechanism, to establish
a secure context between the client and the server. The sub-protocol performing
the authentication is determined by the negotiating spnegomechanism. Chief
among them are Kerberos 5 and NTLMSSP. Which authenticating protocol is
selected remains invisible to both client and server; it is handled as part of the
spnego mechanic and gss-api protocol.

smb2_negotiate response command structure and smb2_session_setup
uses its variable length field to transport the binary blob between the respec-
tive gss-api endpoints. As all operations within smb, authentication is also
client-driven. However, the variable length field of smb2_negotiate response
suggest the server SHOULD supply an opportunistic spnego token. Providing
this does not incur any gss context the server is required to store, since it
only serves advisory for the client side who still initiates the context estab-
lishment through smb2_session_setup. Failure to supply an opportunistic
token to both Samba and Windows clients will result in a termination of the
connection.

The authentication process may require numerous round-trips to achieve an
authenticated context. During its establishment, the server will respond with
a status code indicating that more processing is required alongside the binary
blob outputted by gss_accept_sec_context(). When it is finalized, the server
is required to determine the type of session established: anonymous, guest or
authenticated user.

The session type is retrieved by querying the gss-api using the client context.
To check for an anonymous user, the GSS_C_ANON_FLAG is set in the return
flags parameter to gss_accept_sec_context(). Retrieving the name of a
user may be performed by issuing a call to gss_display_name(), which in
turn may be matched against an implementation-defined guest user name.
If these match, the session may be marked as of type guest. The returned
flags in smb2_session_setup response, namely SESSION_IS_GUEST and
SESSION_IS_NULL, reflect the established session type.

3.3.1 Windows compatibility

There are numerous caveats when facilitating authentication across platforms,
even though the specification merely mentions spnego as the only interface
to regard. In reality, legacy implementations of the authentication subsystem
for Windows require a bit more consideration. Most of these situations arise
with NTLMSSP as the chosen gss authentication mechanic.

Recall from subsubsection 2.3.1, that a client may supply an opportunistic
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mechToken sent alongside the list of supported mechanisms in the innerCon-
textToken of spnego. When the supported mechanism is NTLMSSP and
an opportunistic mechToken is sent, Windows clients MAY choose to format
the token as raw NTLMSSP meant directly for the gss implementation of
NTLMSSP, and not enclosed in an InitialContextToken, which is strictly defined
to be required by the gss-api. This behavior is for the sake of backwards
compatibility.

When the server supplies an opportunistic list of supported mechanisms in
the variable buffer portion of the smb2_negotiate response, and this list
includes NTLMSSP,aWindows clientmay choose to ignore spnego all together
and directly send a raw NTLMSSP in the following smb2_session_setup,
ignoring the mechanism negotiation process. This is also done for the sake of
backwards compatibility.

These features, included in the name of backwards compatibility, is known as
Universal Receiver in the Windows authentication subsystem by the Microsoft
documentation [43]. If one wishes to remain inter-operable with clients in the
wild, these are issues that needs to be handled.

3.4 Signing messages
smb facilitates authenticity and integrity guarantees for each exchanged mes-
sage in an authenticated session. A valid signature lends undeniable evidence
that the message was crafted by a known sender, and that it was not altered in
transit. The smb2 header contains a 16 byte field designated to hold a message
signature. The generation of this signature differ depending on the negotiated
dialect. For versions 2.001 and 2.1 of smb, the hash based HMACSHA256 is used.
For smb version 3 and later, AES_CMAC-128 is used instead. The signature is
generated by inputting the entire request starting at the smb2 header until the
last padding byte sent, including the zero bytes included if part of a compound
chain, into the hash function with the session key queried from the authenti-
cated gss context. This key is retrieved with a single call to gss_get_mic()
after the session is established. Multiple calls to this function could generate
different keys; only the first one is needed. This detail is poorly documented,
and you must read the gss-api rfcs to have the knowledge of its internals to
properly grasp this relationship.

The protocol defines a Security Mode of operations between the two parties,
negotiated through both smb2_negotiate and smb2_session_setup. For
all dialects of smb2 this entails three capabilities for signing messages; disabled,
enabled or required. If neither server nor client requires signing of messages,
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the protocol states they may still sign the message. If either part require signing
whilst the other has it disabled, they are incapable of communicating and the
connection is terminated.

As discussed in section 3.3, the protocol supports three methods by which a
user may establish a session; anonymously, guest, or authenticated user. If the
established session is either anonymous or guest, the signing of messages is
disabled regardless of the above negotiated security mode or if the server has
set the Server→require_message_signing field. This is a point in the
technical document which is left as an exercise to the reader.





4
Design and
Implementation
The following chapter explains the architectural principle of our versatile smb2
server. It highlights the flexibility in expressing implementations of smb2
commands on a per Share basis. Furthermore, it presents some interesting
challenges and solutions for the authentication subsystem.

4.1 Design
We have produced a minimal smb2 server for the Vortex operating system. It
supports a functional subset of the features for dialect 2.002. The architectural
schema is found in Figure 4.1. The server is layered into separated components,
each with its own abstraction and responsibility.

The lower packet handling is concerned with receiving a single message on
the transport, as well as shipping a complete response packet. This handling
is hidden from the remaining code base, such that any change in transport
mechanism does not incur significant changes to the other components. A
packet may contain several compounded requests; however, each request is
handled individually in its designated handler. Handling compound requests
and replying with a compound chain is handled through the packet layer,

49
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alleviating such concerns from the individual request handler.

Each request process the smb2 header, validating fields and flags to be within
protocol specification. After this generic processing, it is shipped to the com-
mand handler corresponding to the command identifier. These will in turn
perform validation checks universal to the protocol, regardless of the targeted
resource. At this point, no actual processing of the requested operation is
performed on the server.

The final and most important architectural component is the customizable set
of share handlers. Each registered Share on the server is supplied with a
set of functions corresponding to individual commands that may be issued
on a given Tree_connect. After the generic command processing is fin-
ished, the responsibility to complete the operation is yielded to the corre-
sponding command function in the share handler. This is located through
Tree_connect→share, identified by the supplied Tree_ID in the smb2
header. Commands that do not require a valid Tree_connect, such as
smb2_echo, do not have entries in the share handler.

smb exports three different types of shares; disk, ipc, and printer devices. A
share handler specify which smb share type it is, but need not mirror this in
the implementation. For instance, a share handler represented as a disk may
have nothing to do with the file system. The modularization of commands
resembles UNIX virtual file system (vfs), which offers a uniform interface
to access the file system regardless of the underlying implementation. The
Linux kernel module file system in userspace (fuse) enables export of the vfs
interface to user mode, allowing for alternate behavior through a file system
api ¹. Much like vfs and fuse, the share handlers may implement alternate
behavior through the same interface and type.

4.2 Exported shares
We present two share handlers, implemented as smb disk share types.

The first share handler, vortex_disk, interfaces with the file system interface of
Vortex. Each file or directory path is directly mirrored relative to the mount
point in the Vortex namespace. Due to a limited feature set corresponding
to file and file system operations, some issues arise with this adaption. For
instance, Vortex has no support for extended attributes, nor file attributes for

1. Like browsing the front page of the Internet, reddit, through fuse https://github.
com/redditvfs/redditvfs

https://github.com/redditvfs/redditvfs
https://github.com/redditvfs/redditvfs
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Share Handler

Command Dispatcher

Request Handler

Packet / Transport

Tree Connect independent Tree Connect 
dependent

Default command handler

Figure 4.1: The architecture of our smb2 server. At the bottom layer, retrieving packets
from the transport and sending response packets is handled separately
from everything else. The packet layer also dispatches each request within
the packet to the next layer, the request handler. At this point, generic
processing is performed on the request as a whole. Integrity checks, iden-
tifier validation and protocol errors are handled before being dispatched
to a command specific multiplexer. The command dispatcher identifies
which command the current request revolves around, identified by the
Command in the smb2 header, and invokes the appropriate command
handlers. If the command is related to a Tree_connect, identified by
the TreeID in the smb2 header, the execution of the requested command
is left to the share handler.
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that matter. Nor does it support access control or rights. There is limited notion
of file system attributes; querying its capabilities is not exported to userspace.
Therefore, populating smb2_query_info commands with sensible data is
challenging.

A nontrivial subset of smb2_query_info and smb2_set_info types are
supported by the disk share handler, achieving interoperability with existing
clients. Create, read, write, close, and flush are fully supported, enabling file
browsing and editing on a mounted disk share. smb2_change_notify is the
only command totally lacking support, since Vortex offers no monitoring ser-
vices. Supporting this command would require a substantial polling framework
in our server, with nontrivial requirements.

The second implemented share handler, called vortex_config, exposes the com-
partment and resource hierarchy in Vortex. It aims to offer configuration and
resource monitoring services through a file system interface. It is designed
to revolve around a specific compartment, since all operations in Vortex are
always performed in the context of one. The root directory reflects the root
compartment. Each compartment in turn exports a directory entry for each
sub-compartment it contains, named with a subcompartment_ prefix. Each
view of a compartment exports the same set of content.

Additionally, each compartment contains a folder named processes. This
directory lists a set of files representing running processes for the compartment.
Access is restricted so that no read nor write operations may be performed on
these files. However, the client has delete access. If a the file is deleted, the
corresponding process will be killed on the server.

Similarly, a folder called start_bin is exported in each compartment. Within
this folder, all access is granted to create and erase files and directories. These
files are backed by the in-memory file system exposed by Vortex. There is one
reserved filename, start. If a smb2_create request is issued with this name,
it is simply denied with an appropriate status code. If a rename operation
targets this reserved file name, it will be diverted to a different handler instead
of reflecting the rename on the file. The contents of the file is read, expecting a
specific configuration format referencing a binary in the file system alongside
arguments and environment variables. If the format matches, the referenced
binary will be executed in the context of the current compartment.

This configuration share handler implements functionality that is merely toy
examples, and may be rather dangerous to export. They are meant to illustrate
the versatility of our system, being able to export raw file system operations
and complex os behavior through the same interface.
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4.3 Authentication subsystem
In theory, smb2 supports any authenticating interface that implements gss-
api. However, in practice only two are used. Kerberos 5 authentication provides
a mechanism for mutual authentication between a client and server in an open
network. It accomplishes this by using symmetric keys to encrypt communi-
cation, exchanged through a third-party service known as a key distribution
center (kdc). gss-api bindings are available. NTLMSSP is an authentication
protocol used between a client and server deriving a cryptographic key based
on a shared secret, typically a password. It is a binary messaging protocol
used through Microsoft’s security support provider interface facilitating NTLM
challenge-response authentication. gss-api bindings are available.

Given the constrains of working on an experimental operating system, it doesn’t
have the libraries necessary to smb2. We are therefore required to introduce
this support to Vortex. To reduce the scope of work that is outside of smb
itself, NTLMSSP was the targeted gss-api mechanism for our authentication
stack. Otherwise, communication and facilitation with the third party kdc
using Kerberos 5 authentication protocol would be required instead.

As Section 2.3 shows, smb2 require a total of four libraries to complete the
authentication process. Without this support, smb2 is not able to operate. First
of all, the gss-api library itself, facilitating different mechanisms, is needed.
Second, the spnego mechanism is required. It only enables negotiation of
mechanisms between the client-server without embedding the specific mecha-
nism within the application. Recall that spnego is the required mechanism
for smb2. Third, a gss-api mechanism binding with the implementing au-
thentication protocol, NTLMSSP. Forth and last, an actual implementation of
NTLM authentication.

4.3.1 Ported libraries

Instead of developing in-house alternatives to the necessary libraries for the
authentication subsystem, effort were spent porting existing implementations.
Vortex supports a substantial subset of the C standard library, with emulation of
many UNIX system calls to achieve binary compatibility with existing executa-
bles and object files. The Heimdal suite of authentication libraries is the stan-
dard implementation in use on many UNIX distributions, making it an excellent
choice. The following libraries are necessary: libgssapi, libgssapi_ntlm,
libgssapi_spnego, and libheimntlm.

Unfortunately, two of the four libraries rely on UNIX functionality that either
had too many levels of nested library dependencies and/or dependencies on
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UNIX system calls that are not supported by our emulation. Both of the NTLM
libraries were thus ported by removing asmany library dependencies as possible.
The few pieces of external UNIX libraries they relied on were stripped and
ported. In particular, the cryptography primitives were entirely replaced.

The two other gss-api libraries were compatible out of the box, but came
with numerous compiler flags, or lack thereof, that were undesirable for our
system. The FreeBSD compile system, from which was the platform the source
code was extracted from, makes compiling the required libraries difficult due
to hierarchical makefiles and dependencies. Extracting the source into our
own repository and build system centralizes dependencies and gives us more
control over the build process.

4.3.2 Dynamic loading

Recall from Subsection 2.3.2 that the Heimdal gss-api facilitation relied on
dynamic loading of selected mechanisms, resolved through a configuration file
which directs to the location of the shared object file. Unfortunately, a dynamic
linker is not natively supported by Vortex. Because of this, the dynamic loader is
unavailable, which means that the dlopen(), dlclose(), and dlsym() family
of functions will not resolve at linking.

Since the gss-api library implementation requires the dynamic loader func-
tionality, two options remain: (1) implement a dynamic linker and loader
natively in Vortex or (2) provide all the functionality of the dynamic loader
without necessarily performing the loading dynamically.

For convenience we chose option (2); the server application was statically linked
with all required libraries. Recall from Section 2.2 that the elf format organizes
all symbols and functions, which we can make use of at runtime. The .strtab
and .symtab sections expose all the information we require, allowing us to
lookup a symbol name and locate the function’s memory address. Therefore,
upon server initialization we load our own binary and parse the content of the
elf header and associated sections. The necessary string and symbol sections
are optional for an executable and may be removed at linking or a separate
strip operation. Since we require them, the application will terminate with an
error condition if no such sections are found, indicating that the server has
been erroneously compiled.

Each gss-api mechanism is expected to implement _gss_name_prefix(),
which should return a string constant representing the prefix of all gss
functions for the mechanism. This prefix is concatenated with a well-known
gss function name, for example gss_accept_sec_context(), and fed into
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dlsym() to resolve the symbol. The semantics of the operation depend on the
mode the shared object file was opened with through dlopen(). The symbol
resolution would only be matched within the targeted object file, and would
not incur a naming clash. In static linking, two equally named symbols super-
sede each other depending on the linking order. Our solution is thus at odds
with the requirements, since the two gss-api mechanics we wish to employ,
spnego and NTLM, both define this prefix resolution symbol but only one
is present. This would result in incorrect symbol resolution for one of our
mechanics, depending on the order of linking.

Recall the format of the gss mechanics configuration file listed in Code Snip-
pet 2.3. The shared library column, naming the shared object file which imple-
ments the mechanic entry, is the string passed to dlopen(). The value of this
field is of no significance to us, since we demand all libraries to be statically
linked. However, we can leverage this field to supply our own string con-
stant. We implement the C library functions of the dynamic loader, dlopen(),
dlsym(), dlerr(), and dlclose(). When the dynamic loader is invoked on
the string found in the gss mechanism configuration file, we do not perform
any open operation. We merely store this supplied string in the context allo-
cated per dlopen(). In a dlsym() call, the symbol is first attempted resolved
by locating the input name in the associated elf sections. If no match is found,
the name supplied to dlopen(), stored in the context, is prepended to the input
string and another resolution call attempted. This strategy may accidentally
resolve ill-named symbols if there were to exist another symbol equal to the
concatenated name, but that is not the case for our libraries. This allows us
to list a prefix name in the shared library column, which is dutifully inputted
back into dlopen() and into our control.

A UNIX utility called objcopy is capable of modifying any elf file. It enables
us to redefine symbol names, so that we may prefix the _gss_name_prefix()
function for both spnego and NTLM gss-api libraries. Both of these are then
prefixed with a string equal to that in the shared library column of the gss
mechanics configuration file. The resolution of _gss_name_prefix() is then
performed in the context of the library opened upon it, be it NTLM or spnego,
yielding the same semantics of a true dynamic loader.





5
Experiments and
Evaluation
In this chapter we evaluate the Vortex smb2 server. First and foremost, we
demonstrate its applicability and flexibility. We perform throughput testing
and comparison against a contemporary server for the Ubuntu operating sys-
tem.

5.1 Mounted shares
We have successfully developed two share handlers and exposed them as shares
on our server.

The first implements a disk share type, exposing the full file system of Vortex.
A screenshot of an Ubuntu client browsing the mounted file system share is
shown in Figure 5.1. It supports a sufficient subset of commands to interact with
the file system as you would if it resided locally. Streaming of video, document
editing, file renames, deletion, etc., all work as expected.

The second share handle illustrates the versatile design of our server, exposing
the administrative interface with the resources described in Section 4.2. Fig-
ure 5.2 shows two screendumps of navigation within the configuration share
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Figure 5.1: Screenshot of an Ubuntu desktop, accessing a disk share on the Vortex file
system through its native file browser.

opened in a file browser on an Ubuntu desktop. The top screenshot is of the
root compartment hierarchy, exposing a set of sub-compartments, a directory
containing all running processes in the current compartment, and a special-
ized directory containing text files that can be used to start new binaries. The
processes directory contains a set of files, shown in the bottom file browser, rep-
resenting running processes which are named after the their process binary and
process id. Deleting a file maps to killing the corresponding process. Reading
and writing to these files is prohibited through access restrictions.

5.2 Throughput performance comparison
We run our experiments on Hewlet Packard ProLiant BL460c G1 blade servers.
These are equipped with twin Intel Xeon 5355 processors running at a peak
frequency of 2.66 GHz, with 16GB of pc2-5300 DDR2 RAM. The server blades
are connected to a 1 Gb/s Ethernet network. We perform our experiments
from an Ubuntu 14.04 desktop which acts as the smb2 client. Throughput is
measured by the amount of load on the eth0 interface during the experiment,
and retrieved through the ifstat Linux utility.

We performed copying of large files from the local file system to a mounted par-
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Figure 5.2: Two screenshots of an Ubuntu file browser with two different working
directories. The top view displays the root configuration share, exposing
four directories. The two directories prefixed with SUBCOMPARTMENT_
represents child compartments of the root. The contents of the processes
directory is shown in the bottom file browser. It enumerates all the running
processes in the root compartment.



60 CHAPTER 5 EXPER IMENTS AND EVALUAT ION

tition. Its worth noting that several utilities are available to perform this copying
operation in Linux; cat, cp, mv, scp, or rsync. We perform our experiments
with rsync.

Figure 5.3 plots the maximum throughput achieved with both reading and
writing to and from Vortex over a tcp stream. The content transferred is
discarded so that we eliminate any processing time on the content. As evident
from the graph, the throughput per second for both read and especially write
requests are highly varied. This spiking in performance is hard to pinpoint, but
scheduler interference, memory access patterns, or interrupt handlers taking
up varied cpu time are valid assumptions. The possible issues related to raw
tcp throughput in Vortex is however not within the scope of our work. We
concern ourselves with the performance of our smb2 server over a tcp stream,
measuring and comparing relative to our baseline measurements.

smb2 enables congestion control in the form of outstanding credits, as described
in Subsection 3.2.2. If the client is granted multiple outstanding credits, it may
dispatch several operations concurrently. Neither requests nor responses are
required to be sent or received in-order of theirMessage_id, only that they are
within bounds of the outstanding credit score. This opens up the possibility to
handle incoming requests and dispatching a response in separate threads.

Throughput performance may vary greatly depending upon the copying util-
ity. For instance, the block size used in the copying operation may not satu-
rate the byte transfer capacity of the smb2 operation. The maximum pdu
size of each operation in smb2 are constrained by negotiating Connec-
tion→max_read_size, Connection→max_write_size, and Con-
nection→max_transaction_size. For smb2 dialect 2.002, the maxi-
mum value to these fields are 216 bytes. If the block size of the copying utility
issues operations larger than this negotiated maximum, either the operating
system or the smb2 client must split and buffer the block into several smb
operations.

We measure the read throughput by retrieving a 3 gigabyte file from the
server over a disk file system share. Figure 5.4 shows a comparison between
our Vortex server and a contemporary Ubuntu server. We achieve an average
throughput of roughly 45 MB/s, while Samba achieves an average of 61 MB/s
on Ubuntu.

We measure the write throughout by transferring a 3 gigabyte file to the server
over a disk file system share. Figure 5.5 plots the throughout achieved by our
Vortex server and the Samba server running on Ubuntu. We achieve an average
throughout of 54 MB/s, while Samba averages 63 MB/s on Ubuntu.
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Figure 5.3: A maximum throughput test to and from Vortex. A simple server on Vortex
accepted clients, reading and writing fixed size null data that was simply
ignored. A similar client application was used from an Ubuntu workstation,
over a 1 Gb/s Ethernet network link.
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Figure 5.4: A throughput comparison of reading a 3GB file from a remote disk share
to an Ubuntu client over a 1 Gb/s Ethernet network. The Vortex server is
on average 15 MB/s slower than its Ubuntu counterpart.
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Figure 5.5: A throughput comparison of writing a 3 GB file from an Ubuntu client to
a remote share over a 1 Gb/s Ethernet network. The Vortex server is on
average 10 MB/s slower than its Ubuntu counterpart.
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We do not achieve the same average transfer speed as our Ubuntu counterpart.
Whenwe compare the throughput achieved byUbuntu to ourmaximum transfer
speed over tcp, there is no room left for processing time. Therefore, to achieve
the same or greater throughput as Samba on Ubuntu, it would require revisiting
the implementation of the entire network and i/o stack in Vortex.

Our current implementation is single-threaded.¹ That is, only one thread is
active in processing packets from any client. Inspecting the packets sent on
the wire during a rsync file copying operation revealed that four smb2_read
or smb2_write requests were batched at any time, with the maximum trans-
action size possible by the current dialect. Efforts to parallelize request and
response handling on the same object led to severe throughput reduction. We
attribute this to lock contention and/or reduced cache efficiency on the i/o
aggregate for the same file object between multiple competing threads. A key
aspect of getting greater performance may be to efficiently parallelize request
handling, which is left to future work.

We have produced an smb2 serverwith a single-thread architecture. We achieve
acceptable throughput performance, albeit not as high as Samba running on
Ubuntu 14.04.

1. The Samba implementation is also single-thread. It will fork() after a new connection is
accepted.



6
Concluding Remarks
In this chapter, we elaborate areas of future work to improve both performance
and interoperability of our smb2 server. We then conclude the thesis.

6.1 Future work
Although we achieve full interactive access to the file system with existing
clients, many niche features are left unimplemented. Commands such as
smb2_query_info and smb2_ioctl presents a myriad of sub-operations,
many of which simply return a not supported status code.

The Vortex file and file system abstractions are minimal, completely lacking
common attributes exchanged by the protocol. At present, responses to com-
mands operating upon such fields return a default emulation of the requested
operation. However, the core Vortex abstractions should be extended to provide
more fine grained control of file resources. An example of an operation which
cannot be easily supported without modification to the native file interface is
the smb2_set_info end_of_file operation. The command references a given
file, giving it a new size regardless of the old. If this new size is greater than
the current file size, the file is simply zero-extended. However, Vortex only
supports truncating a file down to zero bytes. This renders us unable to fulfill
the semantics of the requested operation natively. To achieve this, complete
file copies must be performed to emulate the behavior.
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Finally, implementing more feature rich dialects for smb2 would enable greater
performance and bring encryption of entire packets allowing confidentiality
between communicating parties.

6.1.1 Pipe share type

At present, there is no support for the pipe share type. There exists a default
pipe share named $IPC which as the name implies, performs inter-process
communication. The data transfered through smb2_read and smb2_write
operations are designed for a service, named by the smb2_create command,
which communicates through the Distributed Computing Environment / Re-
mote Procedure Calls (dce/rpc) protocol. This system is needlessly complex,
designed by a committee on commission from the Open Software Founda-
tion. The dce/rpc framework makes no assumptions about the underlying
transport, embedding features such as packet fragmenting and reconstruction,
signing, and checksumming into its protocol. Many of these features are su-
perfluous over an established smb session, since its transport takes care of
these concerns. The only fathomable reason to use dce/rpc to target these
services, is that they should be reachable through direct means which requires
the features otherwise provided by the smb transport and session.

Providing support for the dce/rpc subsystem would allow the creation of
a $IPC share to handle the requested rpc services. Windows smb clients
insists on connecting to the $IPC share and opening several services across
it. Regardless of the status code returned, they will simply retry the opera-
tion. This has the undesirable side-effect of making all other operations with
Windows clients impossible, effectively rendering our server unable to func-
tion properly with these. Facilitating the dce/rpc subsystem would enable
interoperability.

6.1.2 Context-sensitive share handlers

We have successfully demonstrated a versatile architecture, enabling us to
construct context-sensitive share handlers for command operations. There
exists great potential in the resource management capabilities exposed as part
of our configuration share. For example: adjusting resources, constructing new,
or deleting old compartments.

Another area that could make use of the context-sensitive share handlers is
exposing a read-only interface to server statistics. Currently, this information
is only available through a specialized format read over a raw tcp connection.
Exposing this information in a well-defined file system hierarchy enables an
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external application to easier interface and utilize this data.

6.2 Concluding remarks
We have successfully deployed a minimal smb2, dialect 2.002 server to Vortex.
It follows a versatile design and implementation, allowing us to build context-
sensitive handling of commands on a per share basis. Users of the Vortex
operating system are now able to browse, edit, copy and retrieve file objects
residing on a remote node, from the comforts of their own desktops through
contemporary clients. Its extensibility enables remote resource management
through the conventional file system interface.
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