
Faculty of Science and Technology
Department of Computer Science

Giga-View
A distributed gigapixel image viewer controlled by mobile devices
—
Einar Kristoffersen
INF-3981 Master thesis in Computer Science, June 2015





Abstract
About 10 years ago the Tromsø Display Wall, a wall size tiled display containing
multiple displays and computers, was built. During the last years, a gigapixel
image viewer has been implemented and deployed on this wall. By tiling small
image fragments, the viewer is capable of displaying images with the resolution
of gigapixels.

Now, Tromsø Museum is deploying a new display wall and will be needing a
new gigapixel image viewer. As the current viewer is hard to maintain and
doesn’t meet the desired usages or requirements of the museum, the need of a
new design is growing.

This thesis presents Giga-View, a gigapixel image viewer controllable from mo-
bile devices. It’s design makes interaction available through a web browser
and requires no software installation or high processing power from the device
being used. Fulfilling the goal of high throughput and low latency, Giga-View
is capable of processing an input stream with the frame rate of 60 frames per
second, without any noticeable delay being built up. The amount of data being
processed each second corresponds to 33600 image fragments, translated into
520 mb of data. This result was achieved by the use of various caching tech-
niques, which combined, increase performance and make the application very
efficient.





Acknowledgements
First, I would like to thank my advisor, John Markus Bjørndalen for providing
great guidance, feedback and motivation throughout this project. I would also
like to thank my co-advisor, Otto Anshus for giving me inspiration and useful
insights.

A thank goes to the members of the hpds group, as they have been of great
help with technical issues and providing information about the instructive work
environment.

I would like to thank my fellow students for being helpful in technical dis-
cussions, feedback and support through five years of study at the university.
You will not be easily forgotten and I hope some day we could work as col-
leagues.

I would also like to thank my friends and family for their support through my
whole education, reminding me of the importance of taking a break from time
to time.

Finally, a special thank goes to my girlfriend, Therese Aune, who always gives
me motivation, support and love. She makes me happy and keeps me going,
even in hard and stressful times. For this, I am forever grateful.





Contents
Abstract i

Acknowledgements iii

List of Figures ix

List of Abbreviations xi

1 Introduction 1
1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Giga-View . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Project limitations . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5
2.1 The Tromsø Display Wall . . . . . . . . . . . . . . . . . . . 5
2.2 Concurrency in a Distributed Gigapixel Image Viewer . . . . 6
2.3 Gigapixel image viewers . . . . . . . . . . . . . . . . . . . . 6
2.4 Web map services . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Facebook photo caching . . . . . . . . . . . . . . . . . . . . 8

3 Architecture and Design 11
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Web interface . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 The Coordinator . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 The Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.1 The cache levels . . . . . . . . . . . . . . . . . . . . 18
3.5.2 Replacement algorithms . . . . . . . . . . . . . . . . 19
3.5.3 Prefetching algorithm . . . . . . . . . . . . . . . . . 20

3.6 Communication . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Implementation 23

v



vi CONTENTS

4.1 Web interface . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Coordinator . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 Graphical framework . . . . . . . . . . . . . . . . . 25
4.3.2 Data flow . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.1 The centralized cache . . . . . . . . . . . . . . . . . 27
4.4.2 The local cache . . . . . . . . . . . . . . . . . . . . . 29
4.4.3 The frame cache . . . . . . . . . . . . . . . . . . . . 29

5 Evaluation 31
5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Tromsø Display Wall . . . . . . . . . . . . . . . . . . 31
5.1.2 Data set . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.3 The image viewer . . . . . . . . . . . . . . . . . . . 32

5.2 Iteration zero - baseline experiments without caching . . . . 33
5.2.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Iteration one - fetch time and cache hit . . . . . . . . . . . . 34
5.3.1 Fetch time . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.2 Cache hit . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Iteration two - multiple cache layers and cache server net-
work flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.1 Combining cache levels . . . . . . . . . . . . . . . . 47
5.4.2 Cache server network traffic . . . . . . . . . . . . . . 50

5.5 Iteration three - frame rate . . . . . . . . . . . . . . . . . . 51
5.5.1 Frame rate . . . . . . . . . . . . . . . . . . . . . . . 51

6 Discussion 53
6.1 Optimal cache layer combination . . . . . . . . . . . . . . . 53

6.1.1 Performance . . . . . . . . . . . . . . . . . . . . . . 54
6.1.2 Fault tolerance . . . . . . . . . . . . . . . . . . . . . 56
6.1.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Centralized cache server . . . . . . . . . . . . . . . . . . . . 57
6.2.1 The problem . . . . . . . . . . . . . . . . . . . . . . 58
6.2.2 Alternatives . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Problems, bugs and errors . . . . . . . . . . . . . . . . . . . 60
6.3.1 Memory leak . . . . . . . . . . . . . . . . . . . . . . 60
6.3.2 To fast prefetch rate . . . . . . . . . . . . . . . . . . 61
6.3.3 Shaking zoom . . . . . . . . . . . . . . . . . . . . . 61
6.3.4 Synchronize rate . . . . . . . . . . . . . . . . . . . . 62

7 Conclusion 63
7.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 64



CONTENTS vii

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.1 Prefetching . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.2 Multiple users . . . . . . . . . . . . . . . . . . . . . 65
7.2.3 Extend flexibility . . . . . . . . . . . . . . . . . . . . 65
7.2.4 Web interface - image tiling . . . . . . . . . . . . . . 65

Bibliography 67





List of Figures
3.1 Conceptual architecture . . . . . . . . . . . . . . . . . . . . 13
3.2 Coordinator’s general design . . . . . . . . . . . . . . . . . 15
3.3 Viewer’s general design . . . . . . . . . . . . . . . . . . . . 17
3.4 General design cache layers . . . . . . . . . . . . . . . . . . 19

5.1 Fetch time baseline . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Fetch time frame cache . . . . . . . . . . . . . . . . . . . . 39
5.3 Frame cache hit . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Fetch time local cache . . . . . . . . . . . . . . . . . . . . . 42
5.5 Local cache hit . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6 Fetch time central cache . . . . . . . . . . . . . . . . . . . . 45
5.7 Centralized cache hit . . . . . . . . . . . . . . . . . . . . . 46
5.8 Combined cache hit . . . . . . . . . . . . . . . . . . . . . . 49
5.9 Network flow . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.10 Frame rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ix





List of Abbreviations
api Application Programming Interface

cpu Central Processing Unit

gb gigabyte

gpu Graphics Processing Unit

hpds High Performance Distributed Systems

http Hypertext Transfer Protocol

ide Integrated Development Environment

kb kilobyte

lru Least Recently Used

mb megabyte

nfs Network File System

opengl Open Graphics Library

pb petabyte

sdl Simple DirectMedia Layer

tcp Transmission Control Protocol

uit University of Tromsø

vsync Vertical Synchronization

xi





1
Introduction
In the later years, the hpds group at the University of Tromsø has developed
a distributed gigapixel image viewer, running on the Tromsø display wall. The
image viewer is a software component distributed over the display tiles in the
display wall, where each of the tiles puts together image fragments to form a
larger image. Together, the fragments form an image with the resolution of
gigapixels.

During 2015 a new display wall will be installed at the Tromsø Museum. The
current image viewer works in the Tromsø Display Wall, but is not flexible
enough for future use in the display wall at Tromsø Museum. It does not sup-
port on the fly reconfiguring or on the fly switching of images. Also, it does
not work with the Display Cloud[2] infrastructure intended to be used at the
museum.

As the current implementation of the image viewer is hard to maintain and
does not meet the desired needs of the museum, the need for a new design is
growing.

To integrate better with Display Cloud and provide a more flexible solution,
such as on the fly reconfiguration and switching of images, we expect that a
new implementation based on a concurrent design will work better.

As the museum will not have a functional gesture system in the beginning, it’s
desirable that the image viewer should be controlled by mobile devices. For

1



2 CHAPTER 1 INTRODUCT ION

certain uses of the Museum wall, it would be interesting to control applications
on the wall using mobile devices instead of using a gesture system. To support
this,we need to allowmultiple devices andmultiple types of interaction systems
control the viewer.

This thesis presents Giga-View, a distributed gigapixel image viewer controlled
by mobile devices. It builds upon the capstone project “Concurrency in a Gi-
gapixel Image Viewer” conducted autumn 2014 by the same author. This tech-
nical report describes the architecture, design and implementation of Giga-
View.

1.1 Problem Definition
The problem definition for this thesis is as follows:

Develop an architecture and protocols that let mobile devices, such
as phones and tablets, control the gigapixel image viewer. The sys-
tem should be flexible enough that other interaction systems could
be plugged in, such as gesture interfaces, in the future. During the
project, concurrent design patterns for a distributed gigapixel image
viewer should be investigated and evaluated. The student shall imple-
ment a working prototype based on a chosen design pattern, which
will be evaluated through experiments on the Tromsø Display Wall.

The interpretation of the problem definition leads to the task of creating an
architecture and design of an gigapixel image viewer based on the principles of
concurrency. As the users of image viewer most likely will use different mobile
devices, a desired need is to create a control interface, such as a web interface,
that do not require any software installation on the users’ devices.

A problem with the image viewer developed in the capstone project was that it
created a certain delay in time from when the user interacted with the system
to the image was displayed on the wall. As the users of this image viewer will
be using mobile devices connected through a wireless network, the importance
of achieving low latency grows in order to improve user experience. Also, the
greatest bottleneck from the last prototype was the time used on fetching
images. Therefore, during this project, various caching techniques will be used
in order to improve the fetch time.

The experiments conducted on the image viewer should determine howwell the
system performs and whether or not there still are any bottlenecks remaining
or caused by the new design.



1.2 GIGA-V IEW 3

1.2 Giga-View
By developing Giga-View, we aim to create a image viewer that fulfils the needs
of Tromsø Museum and being more efficient than the one from the capstone
project. Giga-View should be more flexible and applicable as is can be controlled
by mobile devices as well as stationary computers. The web interface could in
theory be accessed by any device with a web browser, but not all devices or
web browsers will be supported in this first prototype.

As we want the Giga-View to be used at the Tromsø display wall as well as
the one at the museum, the users of this application might have the need of
changing the frame rate to a value that fits their current run. Therefore, it is
desirable to develop an image viewer capable of delivering a frame rate up to
60 frames per second. A frame rate this high creates a very high throughput,
which makes it even more important to keep a low latency, as a delay could be
build up quickly when processing great amounts of data.

Creating a design for accessing images fast and on-demand where data is
written once and read often is of high prior in this project. Therefore, various
caching techniques will be applied to the system in order to achieve this goal.
The caching techniques claiming our main focus will be prefetching and cache
abstractions based of the idea of object storage, where raw pixel data will be
stored as objects.

Giga-View will be distributed over the display tiles in the display wall it runs
on. The architecture of the display wall, whether it is the Tromsø display wall
or the one at the Tromsø Museum, is already build. The image viewer will be
developed with regards to fault tolerance based on the underlying architecture
in the display wall.

1.3 Contributions
The contributions produced in this project are:

• A concurrent design pattern for a gigapixel image viewer

• Implemented and working prototype based on the chosen design pattern

• A web interface making it possible to control the image viewer from
mobile devices like phones and tablets

• Evaluation of the image viewer via documented experiments and mea-



4 CHAPTER 1 INTRODUCT ION

surements

• Experiences gained from the project

1.4 Project limitations
Before starting this project we were facing a set of factors limiting our project
and implementation. As the time frame for this project was limited, there was
no focus on the security aspect of the system. Any potential security threats
has not been treated or evaluated, nor has the implemented prototype been
improved to handle security risks that might exist.

During the project, the prototype has been developed on the Tromsø Display
Wall, as we did not have access to the displaywall at TromsøMuseum. Therefore,
the design and implementation has been limited by the architecture of this
display wall.

The prototype is developed in such a way that mobile devices can control it,
but so far the prototype has only been tested with phones and laptops. It does
not support tablets, as such a device was not available under the project. Still,
the design and implementation makes it fairly easy to add this kind of support
later.

The implementation is currently not integrated with Display Cloud. Neither
are on the fly reconfiguration or on the fly switching of images supported, but
the design of the image viewer has been made in such a way that it is possible
to integrate with these features later.

1.5 Outline
The outline for the rest of this thesis is as follows. Chapter 2 gives an insight
in work related to this project. The chosen architecture and design pattern is
outlined in chapter 3. Chapter 4 describes the implementation of the chosen
design. Giga-View is evaluated in chapter 5 with a series of experiments and
measurements, followed by a discussion in chapter 6. The conclusion, conclud-
ing remarks and future work are given in chapter 7.



2
Related Work
In this chapter we will go through some related work having great influence
on this thesis. The work presented in this chapter is either related to or has
some similarities to this project.

2.1 The Tromsø Display Wall
In 2004-2005, a group of people at University of Tromsø (uit) started working
on the Tromsø Display Wall, a wall-sized tiled display consisting of multiple
smaller displays and computers[1].

The display wall is running on a cluster of 28 computers using NFS, where each
computer is used to drive its own projector. The projectors are organized in a
7x4 grid forming a 22-megapixel display.

The size of this wall gives a high resolution, allowing the users to see the data
in its entirety from a distance and gives the users closer to the display a more
detailed view.

The wall also consists of a set of cameras making interaction possible by move-
ments. The system determines a 3D location of an object by recognizing hands
and fingers. No markers is required to do this and the system enables touch-free
interactions with the wall. It also supports interaction by the use of a mouse,

5



6 CHAPTER 2 RELATED WORK

keyboard and devices, like tablets.

2.2 Concurrency in a Distributed Gigapixel ImageViewer
This capstone project was conducted autumn 2014 by the same author, with the
goal of investigate and evaluate a concurrent design pattern for a distributed
gigapixel image viewer. During the project, a working prototype was imple-
mented based on the chosen design and it was evaluated through experiments
on the Tromsø Display Wall.

The contributions from the project were a concurrent design pattern for a dis-
tributed gigapixel image viewer, a working prototype, documented experiments
and measurements, experiences gained and lessons learned.

The results from this project did not fulfil the expectations gained in advance.
The cache was not properly implemented and as a result, the cache hit ratio
didn’t reach more than 60-80% depending on the different datasets and cache
sizes. The prototype was constructed to kill fetch requests using too much time
and with a 15% kill ratio, not all image fragments meant to be rendered did
come to the rendering process. The measurements indicated that fetching the
image fragments was the main bottleneck in the whole pipeline. The fetch time
was highly affected by the hit percentage in the cache and thereby, every miss
were contributing to increase the kill percentage.

This project was wrapped up by mentioning a few further work suggestions,
such as changing the graphical framework, change design of the cache and im-
plement other caching techniques like prefetching. On the fly reconfiguring of
the image viewer was also a suggestion of improvement, making the client able
to switch between images to view without restarting the image viewer.

2.3 Gigapixel image viewers
For the moment, there exists a number of applications and frameworks for
viewing and processing gigapixel images[7, 8, 9, 10, 11]. A lot of these systems
are using a common strategy of image processing in order to display them, by
putting together smaller image tiles to form an image of very high resolution.
Panning and zooming is often based on the image viewer to exchange image
tiles inside a bounding box as the image is moved or zoomed into. Interaction



2.4 WEB MAP SERV ICES 7

with the various applications differs, as their overall design and run environ-
ment is not the same, but interaction by gestures, touch surfaces, mouse and
keyboard are the most usual to find.

The usage area of such systems depends on their underlying architecture. By
running a gigapixel image viewer on a massively tiled display wall, the system
can be used for research, e.g. microbiology, where an image from a microscope
can be displayed over a great surface. This could make it easier for scientists to
work together, as they all can look at the same image from a distance instead
of looking down in each their microscope.

Giga-View is strongly related to these projects, as the architecture of the gi-
gapixel images has great similarities andmakes the applications to use the same
tiling strategy when displaying an image. However, the use area is not the same.
Some of these projects are created with the purpose of displaying gigapixel
images on massively large displays, beyond the size of the Tromsø Display Wall.
These viewers are used for researching huge data sets[14], whereas Giga-View
is developed to be a part of the Tromsø Museum’s exhibits in accordance with
their desired needs.

2.4 Web map services
Google Maps is a web map service that lets you display map images from all
over the world in your web browser. You can watch the earth from a distance
and zoom in on desired locations. When using Google Maps in your browser,
the service will give you a set of image tiles where the amount of tiles will vary
as the browser window and screen size will form a bounding box. There are
different kinds of tiles, like satellite, map and overlay tiles and Google Maps are
made of dozens of thousands of these[3]. E.g. a map tile gives you an image of
a specific location and an overlay tile (partly transparent) gives you the name
of the country, city or street name. Google Maps uses three coordinates to
determine a specified location. This is a x, y and z value and the Google Maps
Application Programming Interface (api) performs an HTTP request using a
combination of these to load images into the client’s bounding box[4].

This work is very similar to the tiling of image fragments in Giga-View. The
web interface also uses the device’s screen size to form a bounding box for
the image being viewed. Image fragments from the same, requested zoom
level are tiled by Giga-View into a greater image, which can be moved. As the
image is dragged around, new image fragments are tiled inside the bounding
box.



8 CHAPTER 2 RELATED WORK

There has been some other work on improving the performance and interactiv-
ity of geographic map servers by building a caching and tiling map server[5].
As the Google Map api gives the browser a bounding box for the tiles, the
tile server will fill it with cached tiles on a request from the api. The cache
server requests the map tiles at all zoom levels from the Map servers by the
use of adapters. There are different adapters for each type of map server. This
work was done with a small amount of map tiles and in order for the system
to efficiently support more map coverage, the developers must investigate the
performance options of the naming scheme.

This work has inspired the authorwith the idea of using cache servers to retrieve
image fragments to the viewers.

2.5 Facebook photo caching
In 2010 Facebook’s users had uploaded over 65 billion photos, making it the
world’s biggest photo sharing website[16]. For each uploaded photo, Facebook
creates four images in different sizes, storing around 260 billion images trans-
lated to more than 20 petabyte (pb) of data. As users upload more than 1
billion photos a week, the amount of stored data grows quickly. Still, the site
is capable of serving one million photos per second at peak.

Haystack is an object storage system optimized for Facebook’s Photos applica-
tion and is “protected” against millions of photo requests by the above cache lay-
ers consisting of a browser cache, the Edge Cache and the Origin Cache[17].

The client’s browser is Facebook’s first cache layer, using an in-memory hash
table to test existence in the cache, storing objects on disk. It uses the Least
Recently Used (lru) eviction algorithm and serves 65.5% of all the photo
requests.

The edge has an in-memory hash table holding metadata about stored photos.
It also contain large amounts of flash memory to store the actual photos. If a
cache request hits, the photo is retrieved from the flash and returned to the
client browser. On a miss, the photo is fetched from the Origin cache and
inserted into the edge cache.

Hashmapping routes requests from the edge cache to the origin cache based on
the unique id of the requested photo. The origin cache also has an in-memory
hash table holding metadata about photos stored and large amount of flash
memory for storing the actual photos.



2.5 FACEBOOK PHOTO CACHING 9

Facebook’s backend, Haystack, store photos at store machines. A store machine
represents a physical volume as a large file consisting of a superblock followed
by a sequence of needles, where each needle represents a photo.

From the description of this paper, it is made clear that Facebook’s photos is
accessed in the following way. It is written once, read often, never modified and
rarely deleted. Data is organized on the store machines and cache layers based
on access type, e.g. write request goes to the store machines and read requests
are handled in the upper cache layers. As read requests occurs often the data is
placed close to user. Write requests must be addressed to store machines that
is not full yet.

The author of this thesis was inspired by this paper to create cache levels based
on different needs regarding the movement of the image.





3
Architecture and Design
The architecture and design created during this project is based on the design
of the image viewer prototype developed through the related capstone project
described in section 2.2. The contributions from the capstone project was used
to create a design more efficient and user friendly by the development of a
web interface to control the image viewer and implementation of the project’s
future work suggestions.

The gigapixel images compatible with this image viewer are build up by a
hierarchy of directories where a root directory contains one subdirectory for
each zoom level. A zoom level directory contains a set of image fragments,
which put together form the whole image or the global image at this particular
zoom level. When the zoom level increases by one, the global image size is
doubled and the number of image fragments are increased respectively. The
gigapixel image can therefore contain a number of image fragments per zoom
level, from one image fragment at the first level to hundreds of thousands at
the last.

Before creating the design, there were some issues we had to think about.
As a gigapixel image can contain a huge amount of image fragments, each
display node might not have enough memory to cache the whole image and
if they did, it might probably take a while before all nodes finish loading the
whole gigapixel image. Therefore, a different design pattern had to be made
where each display node had to limit the number of image fragments held in
its cache.

11



12 CHAPTER 3 ARCHITECTURE AND DES IGN

3.1 Architecture
The image viewer and its web interface is designed using the following com-
ponents: A web server for hosting the interface, a coordinator, a set of viewers
and a cache.

The involved components pass data to each other in a way that reminds of the
the pipelined architecture used in the earlier capstone project. If we look away
from the web interface, one important difference between the systems is that
we have moved away from the idea of one way communication and towards the
concept of two way communication between the coordinator and the viewers.
The data is transferred from one component to the next starting with the client
interacting with the system through the web interface and ends when the image
is displayed by a display tile. We will now give a brief overview to explain each
of the involved components that together makes the web interface and the
improved image viewer.

First, a web server is hosting the interface accessible through a web browser on
mobile devices as well as stationary computers. For the client, this interface is
mainly about having the opportunity to interact with the image viewer, but for
the rest of the system, it’s about passing data further to the next component,
the coordinator. The data is passed in the form of states, where a state is the
position in pixels to the image being viewed.

The coordinator’s task is to listen for states sent through the interface and
then forward them to the participating viewers. It also has the responsibility
for synchronizing the viewers and detecting the need of prefetching image
fragments into the cache.

The viewers are computer nodes corresponding to a chosen number of display
tiles in the cluster. Image fragments located on the shared disk space Network
File System (nfs) are fetched by the viewers into the cache and drawn onto
their display, hence the name viewer. An image fragment is located by the use
of a x, y and z coordinate, which put together corresponds to the file name of
the fragment. The x and y values are the image coordinate in a 2 dimensional
space when the fragments are organized in a grid where coordinate (0, 0)
starts in the upper left corner. The z variable corresponds to the zoom level.
We will talk more about the cache, including cache layers in section 3.5 and
4.4.

The design is build upon the idea of a master-slave architecture, where the
coordinator is the master and each viewer is a slave. We would like to point
out that without synchronizing the viewers, the frames will be displayed at
random times at each viewer. The viewers might or might not view frames at



3.2 WEB INTERFACE 13

Web Interface

Backend Server

Coordinator

Cache Server

ViewersMobile Devices

1.

2.

3.

4.

5.

6.

7.

9.10.
8.

DB

Figure 3.1: This figure shows the conceptual architecture of the system. 1. the client
interacts with the system through the web interface on a mobile device. 2.
the interface sends an initial request to the backend server, which starts
the cache server (3), the requested viewers (4) and the coordinator (5).
6. the web interface produces a stream of image states to to coordinator.
7. The coordinator sends a prefetch request to the cache server. 8. The
coordinator forwards the received states to the viewers. 9. the viewers
requests image fragments from the centralized cache server and 10. the
image data is sent in return.

the same time, but such an important detail should not be left up to chance. By
synchronizing the viewers, the chance of displaying the frames at approximately
the same time is highly increased. Amaster-save architecture seems appropriate
to such an approach, as the coordinator is capable of synchronizing the viewers
and control the data flow to them.

3.2 Web interface
The web interface makes it possible to interact with the image viewer bymoving
it around and zooming in and out on it. The interface is accessed via the device’s
web browser and is hosted by the rocks cluster at the Tromsø DisplayWall. It lets
the client select which image to display and what tiles in the display wall to use.



14 CHAPTER 3 ARCHITECTURE AND DES IGN

As the client might want to use the same image and display tiles later or often
switch images and display tiles, the chosen image and display tiles are saved in a
configuration. In this way, a client can easily switch between run configurations
to use different images and/or display tiles. All data about images and run
configurations is stored in a database located at the web server.

The selected image is displayed at the client as well as the display wall to make
navigation of the image more practical for the client. Each time the client moves
the image or zooms in or out on it, the image position containing the x, y and
z coordinates is updated. This position is periodically packed into a state and
sent to the coordinator.

3.3 The Coordinator
The coordinator is designed to do three main tasks:

1. Forward states to the participating viewers.

2. Send prefetch requests to the cache.

3. Synchronize the viewers in order to keep them from displaying parts of
the same frame at different times.

The coordinator is constantly listening for states sent from the client and when
it receives any, it will forward them to all participating viewers by the use of
a broadcast. The states are received and broadcast concurrently to speed up
the process. Somewhere between receiving a state and broadcasting it, the
coordinator will determine the need for prefetching the images requested by
this state into the cache. If it is necessary to prefetch the any image fragments
caused by the change of state, a prefetch request is sent to the cache where it
will be fetched from disk.

The coordinator is also responsible for synchronizing the viewers. This have to
be done because the viewers will not necessarily use the same amount of time
to execute each request. Synchronizing in this context means to let the viewers
finishing their work early wait for the others before continuing. The coordinator
can control this by sending out synchronize requests to all participating viewers
and wait until all of them has responded before sending the next state. Each
viewer will not respond before it has finished the work it has already started.
It is wise to synchronize the viewers as the consequence by not doing it is
that the viewers will show fragments from the same frame at different times.
Something as simple as the image moving smoothly across the screen would



3.4 THE V IEWER 15

not be possible as some parts of the image would move faster than others and
if the image actually did do such a thing without synchronizing, it would be a
pure coincidence.

1. Receive 2. Prefetch 3. Synchronize and broadcast

Concurrent events in coordinator

Figure 3.2: This figure shows the coordinator’s design and concurrent events. Each
box illustrates a concurrent event. 1. the coordinator receives a state from
the web interface. 2. the coordinator sends a prefetch request to the cache
server with additional fetch data. 3. the coordinator synchronizes the view-
ers before the state is broadcast to them.

3.4 The Viewer
The viewer is designed to do three main tasks:

1. Use received states to determine which image fragments to use.

2. Fetch these images from the cache.

3. Draw them onto the screen on their calculated positions.

When the coordinator broadcasts a state, it doesn’t know which of the viewers
that actually needs it, as all viewers might not view a part of the global image
from this particular state. Each of the viewers are left with the task of deter-



16 CHAPTER 3 ARCHITECTURE AND DES IGN

mining whether or not to display any image fragments at all by using the state
provided by the coordinator. As mentioned earlier, a state is the position of the
global image in x, y and z coordinates and by adding the image size for the
current zoom level, we now know the area spanned by the image. By comparing
this area with the area spanned by the display tile in its position in the tile grid,
we can determine if any image fragments are intersecting. Intersecting image
fragments will be fetched and drawn, which brings us to the next step.

When we have determined whether or not to fetch images, the selected images
are fetched from the cache. We will go further into details about the cache in
the next section, but for now we will concentrate on the viewer.

In the process of determining which images to draw we did already calculate
the image fragments’ file name on disk and it’s position to be drawn. This makes
it fairly easy to request these images from the cache, as the key to each cache
entry is the file name to the corresponding image data. A huge difference from
the design in the capstone project is that we don’t request an image from the
cache before we know we will use it. In this way, the cache will only contain
valid images, in contrast with the old design where the cache could be filled
with invalid file names containing nothing.

After the viewer has retrieved the image fragments from the cache, they are
all drawn onto the screen using their calculated position. One of the lessons
learned from the capstone project was that using the CPU to do graphics ren-
dering is inefficient and a poor use of available computing resources. Therefore,
the design was changed to enable the Graphics Processing Unit (gpu) to do
the graphic rendering and releasing the Central Processing Unit (cpu) form
this task. We will go further into how this is done in the implementation chap-
ter.



3.5 CACHE 17

CPU GPU

Viewer

Threads

Calculate and fetch

GL render calls

Main memory

Frame cache

Local cache

GPU memory

Texture memory

Cores

Figure 3.3: This figure illustrates some of the components in the viewer. The two main
threads is one responsible for calculating the image positions and fetching
them. The second is responsible for making all calls to Open Graphics
Library (opengl). In main memory we find the frame cache and the local
cache. The frame cache holds references to textures and the textures holds
image data located in the gpu’s texture memory.

3.5 Cache
Until now we have been talking about the cache as one single component. This
is not exactly true. The cache consists of three cache levels:

1. Frame cache

2. Local cache

3. Centralized cache

The two first cache levels are found once at each viewer and the third is a
centralized cache server, a single node reachable for all the viewers. The cache
levels have different sizes and usages.



18 CHAPTER 3 ARCHITECTURE AND DES IGN

3.5.1 The cache levels
The frame cache only contains references to image fragments located in gpu
memory from the current frame being displayed. If the image is not moving
too fast, a lot of these image fragments should be reused when receiving the
next state. We will took into the results of this in chapter 5, after running the
experiments. The frame cache is designed to cover most of the requests and
still be very small.

The local cache is capable of storing several frames and stores only the image
fragments just displayed, creating a map over the viewer’s recent whereabouts
during the last moments. This cache level is great to have when the global
image is moving a lot over the same area. It can be seen as a bit redundant to
have both a frame cache containing only one frame and a local cache containing
only a few more, but even if the same fragment is stored in both cache levels,
the data is not exactly the same. We will give more details about the data
contained in the cache levels in the implementation chapter.

The centralized cache is capable of holding a number of image fragments equiv-
alent to 2-3 times the combined viewport of the participating viewers. The big
advantage of this cache level is that once it has fetched an image fragment
requested by a viewer, all other requests to it by other viewers will result in a
cache hit, as long as it is not replaced.

The frame cache is the one closest to the viewer and therefore the one receiving
the request directly from it. On a miss, the request will be forwarded to the
local cache and if it is missing there too, the request is sent out to the cache
server.



3.5 CACHE 19

Frame cache

Local cache

Centralized cache server

Viewer

Frame cache

Local cache

Viewer

Frame cache

Local cache

Viewer

Figure 3.4: This figure illustrates the different cache layers and the relation between
them. There are one frame and local cache in each viewer process and
one centralized cache server common for all viewers.

3.5.2 Replacement algorithms
As the cache levels are meant to be used in different ways, they are not using
the same caching algorithms.

The frame cache is using a very simple algorithm to replace data. As it only
holds one frame at a time, it will compare the new frame to the one it holds
and discard all image fragments not intersecting to make room for the new
frame. Because of the small size of the cache, this method for replacing frames
goes fast. It might not give the same performance if we increase the size of the
cache, though, as it has to go through all cached fragments in order to delete
the old ones. This happens once for each frame and would always give a best
case scenario equal the worst case, O(n). For large cache sizes this algorithm
will might be too time consuming, affecting the performance of the image
viewer.

The content of the local cache forms what we call the “tile-tail”, meaning the
image fragments already displayed by the viewer it belongs to. As the cache
fills up, the tail grows longer and to deal with the issue of replacing the content,
a lru algorithm fits good with the need of this cache level. This cache level is
designed to have cache hits if the image’s move direction changes to an area
where it has already been just moments ago.



20 CHAPTER 3 ARCHITECTURE AND DES IGN

The centralized cache uses a totally different replacement algorithm. This cache
level is the only one using prefetching to load images before they are requested
and therefore we must be careful not to replace these images in the cache.
One of the better ways to avoid this is to adopt a replacement policy that only
removes image fragments from the cache that is outside the viewport and in
the opposite of the current move direction. In this way, we will neither replace
any of the images in the viewport, currently used by the viewers, or any of the
prefetched image fragment soon to be used.

3.5.3 Prefetching algorithm
Two components are involved when prefetching states. That is the coordinator
and the cache server. The method for prefetching image fragments is therefore
divided into two parts. First, determine whether or not to prefetch images
based on the current state and second, fetch the new image fragments into the
centralized cache.

As mentioned earlier, the coordinator is the one detecting when to prefetch.
This is done by keeping track of the first image fragment in the upper left corner
and the last one in the button right of the viewport. By doing this it can detect if
these fragments changes from state to state. When they do, depending on the
move speed, the next fragments in these positions might not be the neighbours
of the previous ones. Therefore, we have to find the number of fragments
between the new and old image fragment and send it, as well as the current
state and move direction, along to the cache server.

When the cache server receives a prefetch request, it calculates the n*m first
image fragments to fetch in the opposite of the move direction, n being the
received amount and m being the number of image fragments that fits in the
viewport’s opposite 2D axis of the move direction. E.g. If the global image moves
to the right making 2 new images to appear in the x plane and the number
of image fragments in the viewport height is 4, then the cache server should
prefetch the 8 image fragments most left in the new viewport caused by the
given state.

3.6 Communication
Considering the given architecture, there are a number of ways to let the compo-
nents communicate between each other. From the capstone project we learned
that one of the better approaches was to let the coordinator broadcast the states
to the viewers. By using this method of communication, the viewers becomes



3.6 COMMUNICAT ION 21

loosely coupled, which is a benefit in a design like this where many units of
the same component are involved.

This approach is based on the principles of a linear broadcast,where the viewers
has to react to a scheduled program, i. e., the stream of states provided by the
coordinator during the usage of the image viewer. From here we can go several
ways to achieve the broadcast.

One way is to transfer the states by using a hierarchy of nodes, where the
coordinator is the root node and the viewers form the rest. The benefit of this
approach is that the coordinator only have to forward the states to a small
number of viewers, saving time and cpu expenses at the coordinator. Thereby,
the viewers can forward the states to the ones further down in the hierarchy
concurrently. Using a huge number of viewers, this approach might be time
efficient, but it comes with a cost. The viewers are no longer loosely coupled
and if one node goes down, some of the others might not get the states being
forwarded.

Another way is to let the coordinator broadcast the states to all viewers. This
method was used in the capstone project and in theory, it might use more
time on broadcasting each state to all viewers. As the number of participating
viewers was a maximum of 28 at the Tromsø Display Wall and this method of
communication seemed to work fine, we kept it in the new design.

By using a linear broadcast, it would seem like the requests are received more
or less at the same time at all viewers. Still, the viewers might use a different
amount of time to receive and process a request. The greatest reason for this,
due to the approach of communication, could be caused by the network traffic
and routing to each viewer.





4
Implementation
During this project, a prototype was implemented using the design pattern
described in chapter four. Keeping the principles of concurrency from the last
prototype has been in focus throughout the implementation of the image viewer.
That involves the coordinator, the viewer and the cache server.

The go programming language[18, 19, 20] was chosen to implement the im-
age viewer. This programming language fits good as it has built-in features
for achieving concurrency relatively easy. This was used in a combination with
opengl[21, 26, 27] bindings as graphical framework to render image frag-
ments.

The web server hosting the interface was implemented using flask[23] and hosts
the web interface build by a combination of html, javascript, jquery[24] and
ajax. The interface gives the client the ability to set up the run configuration to
be used by the image viewer. The configuration is written to several json files
and opened by the image viewer components at startup.

All communication between the components, except between the client and the
web server is carried out using web sockets over Transmission Control Protocol
(tcp). The client-web server communication is based on Hypertext Transfer
Protocol (http) requests, both synchronous and asynchronous.

23



24 CHAPTER 4 IMPLEMENTAT ION

4.1 Web interface
The web interface is divided into two parts, the client side and the server side
of the application.

The client side of the application sends requests to the server side to provide the
necessary data to initialize the image viewer. The image viewer is started by the
server on the client’s command using python’s subprocesses to create separate
os processes for the coordinator, the cache server and each of the chosen viewers.
After the image viewer is started, the client communicates directly with the
coordinator without using the flask server as a middleman.

To make sure that the coordinator and the viewers are up and running be-
fore the client starts interacting with them, a poker script is deployed. This
script pokes each of the components by sending them poke requests until it
get responses from all of them. The web server waits until the poker script
has finished poking all the components before giving the client the ability to
interact with the image viewer.

Local storage[25] is used to store data at the client, such as the image position,
size of the selected display area, the selected input flags and run configuration.
This, to remember the client’s settings when navigating between the web pages
at the site.

The interface uses some default settings making it easier for the client to use the
system without having to provide much data. For the more experienced users,
a drop down dashboard is available to change the default settings. The settings
available is a set of input flags for selecting which cache levels to use, whether
or not to use prefetching, synchronizing and logging. By default, the image
viewer runs at 60 frames per second, but this value can also be changed.

The request flow from the client to the coordinator is limited by the same rate
value as the fps at the viewers. This means that by using the default setting of
60 frames per second, the image position will be packed into a state and sent
to the coordinator periodically 60 times a second.

4.2 Coordinator
The coordinator has gone through some huge changes since the capstone
project. In the capstone project, the coordinator was located at the client’s
computer using an Simple DirectMedia Layer (sdl) window to gain input and
interact with the viewers. This has all been changed in the current implemen-



4.3 V IEWER 25

tation. The coordinator is now found at the display wall cluster and is started
as a separate os process by the flask server at the frontend. It now works as
a server, receiving states directly from the client. Depending on the settings
chosen by the client, the coordinator will prefetch and synchronize the viewers
in addition to broadcast the state to them.

If prefetching is enabled, the coordinator will use each state to determine
whether or not new image fragments will appear in the image viewer’s viewport
during the next frame. This is done by keeping track of the first image fragment
in the upper left corner and the last one in the bottom right. If one or both of
these images changes, the coordinator will send a prefetch request to the cache
server as well as the current move direction and the amount of images between
the last image fragment and the one replacing it. This number tells the cache
server how many images to prefetch in the the move direction axis.

After the coordinator has determined whether or not to prefetch image frag-
ments at this particular frame, it will broadcast the state to all participating
viewers by concurrently looping through the establishedwebsocket connections
to each of them, forwarding the state. After the state has been broadcast to all
viewers, the coordinator will send a synchronize request to them if synchro-
nization is enabled.

The above statement of synchronizing is not completely accurate on how often
synchronize requests are sent to the viewers. The client has the opportunity to
set the number of states sent between each synchronize request, making the
coordinator wait n states between each time it synchronizes the viewers.

4.3 Viewer
As the coordinator, the viewer has also gone through some changes from the
implementation in the capstone project. There are two changes making a graph-
ical difference from the client’s perspective. That is the change of graphics li-
brary to render image fragments and the applied caching techniques to fetch
images. Both changes affect the behaviour of the viewer and the rest of its
implementation. We will now talk a bit more about the graphics library and
come back to the cache in section 4.4.

4.3.1 Graphical framework
In the last prototype, image fragments were blit onto a surface by using sdl.
This gave a bad performance and few opportunities when it came to graphical



26 CHAPTER 4 IMPLEMENTAT ION

rendering.

Now, the sdl library is used only to load an image fragment from disk into the
cache and opengl is used as the graphics library doing the rendering. This
change gave a better performance, but also some unseen consequences.

As it turned out, opengl was not thread safe and made the viewer crash at
random times. As mentioned, the viewer was implemented by the use of concur-
rency and in order for it to be able to use opengl to do rendering, a separate
thread was created for making GL calls only.

The opengl context can only be bound to one thread at a time, making this is
one of few proper ways to do graphics rendering when operating with multiple
threads or in our case, goroutines[28, 29, 30]. Using go’s channels, a draw
request can be sent from other goroutines to this single graphics routine and
make the GL calls from here.

In this context, using opengl instead of the sdl library, means to use the gpu
to do graphics rendering instead of the cpu. Not only did this increase the
number of frames rendered per second, but it also released the cpu from doing
all the rendering and lets the gpu do what it was meant to.

By using this graphics library, we gain a visual benefit when zooming. Instead of
jumping directly to the next zoom level, opengl gives us the ability to stretch
the image fragments enough to make a stable resizing effect of the global image
from one zoom level to another. As the image fragments is already loaded into
textures, they will be reused and the only changes have to be made are the
size of each fragment and its position in the viewer’s viewport. All fragments
at a given zoomlevel are stretched until the size of the global image equals the
one at the next zoom level.

4.3.2 Data flow
Each viewer has one goroutine constantly listening for incoming states from
a websocket. When a state is received, it is sent to another goroutine over a
channel where it is used to determine whether or not to render image fragments
at all. Sometimes a viewer is not supposed to render any image fragments in
a frame because the global image has moved outside this particular viewer’s
viewport. If that is the case, the state is dropped and the viewer is waiting for
another state to receive.

If the global image is inside the viewer’s viewport, then the viewer will use the
state and its position in the tile grid to determine what images to render and



4.4 CACHE 27

where to render them in the viewport. When this is done, it’s time to fetch the
image fragments from the cache. We will go further into details on how the
cache works in the next section.

When all image fragments has returned from the cache, they are sent over a
channel to the GL rendering goroutine. Here they are put into a texture and
rendered at their belonging positions.

A consequence of using opengl is that we cannot use concurrency to render
images as before, but this might not be a loss, as we expect rendering image frag-
ments sequentially with opengl to go faster than blitting them concurrently
with sdl.

4.4 Cache
All three cache levels are implemented using maps with the file name of an
image fragment as a key to store the image data behind. The file name of an
image fragment is a string corresponding to it’s position in the global image
when the image fragments are all tiled in a 2D plane using an x, y and z
coordinate in a particular zoom level z. We will now give a more detailed
description of each cache level’s implementation, starting with the one furthest
from the viewer.

4.4.1 The centralized cache
The centralized cache is implemented as a cache server mainly handling 2 types
of requests. That is prefetch requests from the coordinator and fetch requests
from the above cache level at the viewers. Of course, the cache server will only
receive prefetch requests if prefetching is enabled by the client. If it isn’t, the
cache server will load image fragments from disk when receiving fetch requests
from the the viewers.

Prefetch requests
A prefetch request contains the request type, the state of the global image
in which to prefetch, the current move direction and the number of image
fragments to fetch in the opposite of the move direction.

var pre fe tchReques t s t r i n g = " requestType / s t a t e / d i r e c t i o n /amount "
var pre fe tchReques t s t r i n g = " p re f e t ch /0|0|10/ l e f t /1 "



28 CHAPTER 4 IMPLEMENTAT ION

When such a request is received, the cache server will determine the exact
image fragments to load into its map. By using the provided move direction,
the cache determines what fragments to fetch in opposite direction, where the
new fragments appear. The given amount, n, tells how many fragments to load
in this direction and the number of image fragment in the opposite xy-axis, m,
gives a total of n*m image fragments to load on a single prefetch request. The
boundary for the image fragments contained in the cache is an extension of the
viewport by one image fragment in each direction. If a fragment is positioned
outside this bounds, it will not be loaded.

On the first prefetch request the cache server has to load all image fragments
inside the bounds into the cache. The fragments are loaded concurrently, mean-
ing that the number of fragments to load should not have too much affect on
the total time used on loading them.

Fetch requests
A fetch request consists of two parts, a string telling what kind of request this
is and the generated file name of the image fragment being requested. The
file name does not contain the file extension, but it will be added later when
loading the image fragment.

When receiving a fetch request, the cache server simply looks up the requested
fragment in it’s map by using the provided file name as a key. On a hit, the data
behind the key, as well as additional data about the fetch operation, is used to
create a cache data object. This data object is marshalled by a json codec from
the websocket package before sent back to the viewer requesting it. On a miss,
the image fragment is loaded from disk and put into the cache in addition to
the procedure just mentioned. The two last arguments in the marshalled data
object is added in order to count cache hits and misses as well as measuring
fetch- and load time at the viewer.

var fe tchReques t s t r i n g = " f e t ch /0−0−0 "
var response = CacheData{

s r f c su r f a ce . Mini ,
"0−0−0" s t r i ng ,
h i t bool ,
loadt ime time . Duration

}
websocket . JSON . Send( response )

The cache server is using the sdl library’s built-in load function to load the
missing image fragments. This gives us a sdl-surface containing a lot of data,
some that we won’t even use. As we are going to send this back to the viewer



4.4 CACHE 29

and the number of cache requests can can be really large at times, the surface
is trimmed to only contain the data absolute necessary for it to be rendered.
Everything except the image width, height and the raw pixel data is removed,
leaving us with much less data to pass to the viewers. For the ease of under-
standing, we will refer to this data as a minisurface.

4.4.2 The local cache
The local cache only receives cache requests if the required data is not available
in the frame cache. Each cache entry in this cache consists of a minisurface and
a timestamp, which is accessed by the same file name key as in the centralized
cache. By storing a timestamp with each minisurface, we can easily find the
least recently used image fragment by using golang’s time package.

On a hit, the minisurface is simply returned to the frame cache and on a miss,
the viewer will either send a fetch request to the centralized cache server or
load the image fragment itself, depending on the cache server is enabled by the
client or not. If the viewer has to send a fetch request to the cache server, it will
get a json string in return, which will be unmarshalled into a minisurface and
stored in the local cache. If the viewer has to load the image fragment itself, it
will be loaded into the local cache in the same way as the cache server does,
by stripping the surface into a minisurface. In this way, we don’t have to store
data in the cache that is not going to be used and the cache will have more
room for more important data.

4.4.3 The frame cache
The reason for using this cache level came with the idea of using opengl. The
main difference between this cache level and the other two is that we go from
storing a minisurface to loading it into a texture and then store the texture.
The texture’s image is contained in the gpu memory and when the frame
cache has to replace its content, it simply reuses textures from the previous
frame. This is why the frame cache is so important, because a hit saves a lot
of time loading the minisurface into a texture. The only change on a hit is
the position to render the texture and some times the texture size in pixels.
It also saves time on reusing textures instead of creating new ones for each
minisurface.

The number of image fragments contained in a frame displayed by a single
viewer can vary from each frame. To separate textures ready to be used and the
ones that is going to be reused, we always select free textures from a texture
pool. At startup, the texture pool is filled with a number of textures according



30 CHAPTER 4 IMPLEMENTAT ION

to the maximum number of image fragments that fits into a viewer’s viewport
at once. Every time we load a minisurface into a texture, the texture is fetched
from this pool and before we start loading the minisurfaces belonging to the
next frame, all textures from the previous frame that is not going to be used in
the next, are removed from the cache and put back into the texture pool, free
to be used again.



5
Evaluation
The gigapixel image viewerwill be evaluated through several iterations of exper-
iments and measurements. For each iteration, the results will be the foundation
for the next one. In advance, we have planned experiments for a few iterations,
but based on the results we might have to add more or change the ones we
have planned. As an experiment can result in a dead end, there might be other
measurements than planned that is more useful to research. Also, we might
get results indicating that it’s more interesting to measure something in the
complete other direction than planned. This is the why we have chosen to do
experiments in several iterations.

5.1 Methodology
Before we start looking into how the experiments were executed in each itera-
tion, we will give a brief technical description of how the experiment environ-
ment was set up.

5.1.1 Tromsø Display Wall
All experiments andmeasurements were done using the Tromsø Display Wall at
the University of Tromsø. The display nodes, as well as the frontend, run Linux
with the Ubuntu 14.04 distro (64 bit). The display tiles run x11 for graphical

31



32 CHAPTER 5 EVALUAT ION

output with go version 1.3.1 and python 2.7.6 installed on them.

The hardware of a display node consists of a Intel Xeon W3550 processor, a
GeForce GTX 560 Ti graphics card and 12 gigabyte (gb) of system memory.
All the display tiles are connected to the internet by Gigabit Ethernet through
the same switch. Each of the projectors in this wall displays an image with
resolution of 1024x768 pixels with refresh rate of 60 Hz.

We are aware of the fact that others might use the cluster when we do our
experiments, which can affect our measurements. There is little we can do
about this, as we don’t have the opportunity to claim the whole cluster to
ourselves.

5.1.2 Data set
All experiments in this project use the same gigapixel image consisting of 10
zoom levels where each of the image fragments has the resolution of 256x256
pixels. This image has the approximate size of 5 gb, all zoom levels combined.
Through the experiments, a stream of image states will be generated to sim-
ulate the client interacting with the viewer through the interface. Two kinds
of streams will be generated with different image movements, one used when
experimenting with the cache levels separately and another for when they are
combined. The input stream created when experimenting with the cache layers
separately makes the image move in a rectangle before zooming in and out on
it. When multiple cache layers are enabled, we will use an input stream more
suited regarding the usage of the enabled cache layers. We will come back to
this in section 5.4.1.

Mainly, the image viewer will run fullscreen, with all 28 display tiles enabled as
this would create a greater dataset. The size of the display area in combination
with the input stream and the move speed will determine the amount of image
fragments that will be used from the selected gigapixel image for each run.
If any results indicates that we should experiment with a smaller number of
display tiles, we will do so in accordance with the needs as we see fit.

5.1.3 The image viewer
The experiments done to the image viewer will be executed with all 28 available
viewers enabled at 60 frames per second. When running, each viewer will write
data regarding measurements taken into its own log file. This happens once
after every frame has been viewed, creating one log file per viewer with one in
each log file for each frame displayed. Each viewerwill display the same amount



5.2 I TERAT ION ZERO - BASEL INE EXPER IMENTS WITHOUT CACHING 33

of frames and after all viewers has finished their input stream, all log files will
be parsed in order to collect the log data and compare the data belonging to
the same frame. In this way, when finding the average of some measurement,
all measurements of the same property in the same frame will be added and
divided by the number of its appearances. Each viewer will first do this once
for each image fragment appearing in the frame and then it will be done once
for the number of viewers participating. All cumulative measurements will
be the average value of a property measured once per frame, e.g. the cache
hit, during the same frame. It will be collected over the number of frames
displayed, increasing and decreasing respect to the average of the value in each
frame.

Synchronization will be disabled during the experiments, mainly because it
makes the system use a bit more time when running. Later when measuring
the frame rate, it will be enabled again.

The web interface was not used to control the image viewer under the exper-
iments. It was developed by using Google Chrome, version 41.0.2272.118 and
have been used to control the image viewer when using the prototype outside
experiments. Evaluation of the web interface has only been done manually and
not by the use of benchmarks.

5.2 Iteration zero - baseline experimentswithout caching
In order for the results of our experiments to have any meaning, we will first
create a baseline with no caching techniques enabled. Whether or not the
system will gain any performance from applying caching techniques will be
determined by comparing the baseline to the results of our coming experiments
and measurements. This will be discussed further in chapter 6.

5.2.1 Baseline
The measurements we will take when building the baseline are the frame rate
and the average fetch time without any cache layers enabled. These factors
indicate how well the system performs. Synchronization should not be enabled
when building the baseline. As no cache layers are enabled, the total fetch time
is the time it takes loading the image fragments from the nfs, i.e. the load
time in addition to the time it takes to load the image fragment into a texture.
We will use these results later when analysing the cache layers.



34 CHAPTER 5 EVALUAT ION

Figure 5.1: This graph shows the average fetch time without any caching layers en-
abled and with all 28 viewers enabled. Each sample in the graph is the
average fetch time of all viewers during the same frame. Each viewer cre-
ates an average fetch time from all image fragments in a frame and then
an average is created out of all viewers’ average fetch time from the same
frame.

Figure 5.1 shows that it takes about 5 milliseconds in average to load an image
fragment from the nfs and into a texture. Depending on the image position, a
frame is capable of containing upto 20 image fragments at once inside a single
viewer’s viewport.

5.3 Iteration one - fetch time and cache hit
After creating a baseline, we can now start measuring the hit ratio and average
time being used on fetching image fragments from the separate cache layers.
The total fetch time is measured from the moment the viewer finds out that it
needs an image fragment until the fragment is loaded into a texture. In order
to isolate the time being used on communication between the viewers and the
cache server, the remote fetch time is only measured when the cache server is
enabled. It starts when a request is written into a websocket and ends when
the same viewer receives a response from the same connection. The time it
takes to load an image fragment from the nfs and into the centralized cache is
called the load time and this time duration is subtracted from the remote fetch
time when writing to the log file. The psudocode below illustrates how total



5.3 I TERAT ION ONE - FETCH T IME AND CACHE HIT 35

fetch time and remote fetch time are measured when sending fetch requests
sequentially to the cache server.



36 CHAPTER 5 EVALUAT ION

func loadImageFragmentsIntoTextures ( fnames [] s t r i n g ){
fragmentChan := make( chan *imageFragment )
s ta r tFe tchT ime := time .Now()

fo r fname := range fnames{
go func ( fname){

fragmentChan <− sendFetchRequestToCacheServer ( fname)
}

}

fo r range len ( fnames ){
fragment := <−fragmentChan
bindToFreeTexture ( fragment )
log . Wr i teToFi le ( time . Since ( s tarFetchTime ))

}
}

func sendFetchRequestToCacheServer ( fname s t r i n g ) * imageFragment{
var fragment imageFragment
ws := createWebsocketConnect ion ()
message := MarshalFetchMessage ( fname)

startRemoteFetchTime := time .Now()
websocket . SendMessage (ws , message )
websocket . Receive (ws , &fragment )
remoteFetchTime := time . Since ( startRemoteFetchTime )
log . Wr i teToFi le ( remoteFetchTime−fragment . LoadTime)

re turn &fragment
}

We will run each experiment with one alternating factor to begin with, the
move speed of the image. Three different move speeds will be used, creating
three different datasets as the dataset grows with the move speed.

5.3.1 Fetch time
From the capstone project we learned that the fetch time was the main bottle-
neck in the system and therefore we have focused on improving the fetch time
during this project. Through this section of experiments we will measure the
fetch time separately on each of the implemented cache layers and compare
them up against each other to find out how much time we can expect them
to use individually. We expect the fetch time to increase for each cache level
further down in the system, as the path for finding the image fragment grows
longer for each miss.

To find out how much time is used on a single fetch request to the different



5.3 I TERAT ION ONE - FETCH T IME AND CACHE HIT 37

cache layers, we will conduct the experiment on the image viewer by running it
several times with each of the cache layers enabled separately. We will measure
the fetch time at the cache server with and without prefetching to see if the
fetch time changes. As the cache server is located on a different machine than
the viewers, we will also measure the time used on sending the data to and
from the server, i.e. the remote fetch time. This experiment gives an indication
of which time units to use when comparing the results and what combinations
of the cache layers to use in order to get the best result.

5.3.2 Cache hit
The main reason for measuring the cache hit at this point is to see if the fetch
time from the other experiments are related to the cache hit ratio. A cache hit
should result in low fetch time in contrast with a cache miss, that in this case,
should load the image from the nfs and use a lot more time. The cache hit
ratio will be measured in the same experiment as the fetch time, by measuring
cache hit and miss in each of the cache layers separately. The centralized cache
exists in one process located at the frontend, unlike the frame and local cache
that relies in the same process on the same display tile. For each request sent
to the cache server, the image data is returned with a value telling whether or
not the request resulted in a hit or miss. Each viewer will log the hit ratio from
the cache server based on the responses from its own requests. We will look at
the cache hit ratio at the cache server with and without prefetching to see if
we gain a greater cache hit ratio by doing so.

5.3.3 Results
The results gained from the first iteration will be presented in three sections,
one for each cache layer. As mentioned, the experiments was ran by using
three different move speeds for the image. The move speed is measured as
the number of pixels moved between each frame, and will be denoted as “p/f”
(pixels per frame).

Frame cache
By collecting the results from the experiments run by enabling only the frame
cache,we were able to create graphs illustrating the fetch time and the cache hit
ratio. Figure 5.2 shows the fetch time represented in three graphs, using three
different move speeds when moving the image across the screen. We first tried
creating graphs showing the fetch time for both cache hits and misses, but as a
cache miss results in loading the image fragment from the nfs, the fetch time



38 CHAPTER 5 EVALUAT ION

could take up to several milliseconds. The graph shows the average fetch time
for all image fragments in a frame from all participating viewers. A single miss
occurs often when using many viewers and makes the fetch time increase from
nanoseconds to milliseconds. The result was an unreadable graph and because
of this, the fetch time represented in the graphs using cache hits only.

As we compare the graphs in Figure 5.2, we see that the fetch time in gen-
eral varies from 150 to 300 nanoseconds. We explain this difference as the
display tiles using different amount of time when fetching the image fragments
from the frame cache. Some might be faster than others, making some tiles
to generate a higher average fetch time during the same frame. As the move
speed increases, we see that the fetch time occurs more often with a high value
around 250-300 nanoseconds. What actually happens is that when the data set
is increased by the move speed, we get a greater variation of requested image
fragments and the duration of an image fragment’s life time inside the viewer’s
viewport decreases. The amount of different versus the amount of similar image
fragments are requested often when using high versus low move speed.

The 40 last frames in these three graphs are the zoom movement, first zoom
in 20 frames and then zoom out 20 frames. We expect the increased fetch time
at the end to be the change of image size, as image fragments are stretched
when zooming.

During the experiments, the cache hit ratio was measured along with the fetch
time. The results from the cache hit measurements was collected into three
graphs, but as they were nearly identical, we will only show one of them.

From Figure 5.3 we see the cache hit increasing fast and reaches quickly 96%.
It stays there until the end, where it decreases a little when zooming out. This
is expected, as zooming out means that all image fragments in the frame must
be replaced, versus zoom in, where we scale up the current images until we
reach a new zoom level.



5.3 I TERAT ION ONE - FETCH T IME AND CACHE HIT 39

Figure 5.2: Average fetch time using the frame cache only. The first graph represents
the average fetch time when the image is moving with the lowest speed of
5 p/f, the second with 10 p/f and the third with 20 p/f. Only cache hits are
shown in these graphs and 28 viewers were used when generating them.



40 CHAPTER 5 EVALUAT ION

Figure 5.3: Cumulative cache hit in percentage with only the frame cache enabled.



5.3 I TERAT ION ONE - FETCH T IME AND CACHE HIT 41

Local cache
After gathering the results from the experiments with the frame cache, new
experiments was conducted with the local cache. As we faced some problems
representing both cache hits and misses in the same graph regarding the frame
cache, the experiments with the local cache also resulted in graphs showing
the fetch time for cache hits only.

As we can see from the graphs in Figure 5.4, a fetch request from the local
cache takes microseconds compared to the graphs in Figure 5.2, the frame
cache, using nanoseconds. As both cache levels are located in the same process
on the same physical machine and they both use a map containing the image
data, a lookup in the map should not differ in time, but as the data from the
local cache has to be bound to a texture, the fetch time automatically increases
when using the cache levels further down in the system. If we compare the
graphs from the local cache experiments, we see that the fetch time is almost
the same in all three graphs, between 200 and 250 microseconds. Even if this is
a thousand times more than the frame cache, it would still be possible for the
image viewer to run with a high frame rate, like 60 frames per second.

In each of the graphs there are a few spikes, indicating that the fetch time
was 4-5 times greater than the overall average. We are not completely sure
what causes them, but for the moment we assume they are noise from other
applications running at the cluster during the experiments.

The cache hit ratio was measured during the experiments, resulting in three
graphs and just like the frame cache, these graphs was nearly identical. One
of the graphs is shown in below.

From Figure 5.5 we can see that the hit ratio increases rapidly at the beginning,
reaching 97%, where it stays until we start zooming out at the end.



42 CHAPTER 5 EVALUAT ION

Figure 5.4: Average fetch time using only the local cache. The first graph shows the
average fetch time when the image is moving with the lowest speed of 5
p/f, the second with 10 p/f and the third with 20 p/f. Only cache hits are
shown in these graphs and 28 viewers were used when generating them.



5.3 I TERAT ION ONE - FETCH T IME AND CACHE HIT 43

Figure 5.5: Cumulative cache hit in percentage with only the local cache enabled.



44 CHAPTER 5 EVALUAT ION

Centralized cache
The last experiments conducted in this iteration were based on finding both the
total and the remote fetch time using the centralized cache. The cache hit ratio
was also measured during these experiments. The experiments were conducted
three times with the same parameters as with the other two cache layers. The
results were collected into three graphs showing the total and remote fetch
time for the different move speed parameters.

As we can see from Figure 5.6, the average total fetch time generally lies be-
tween 60 and 65 milliseconds. Also, most of this time goes into remote fetching
image fragments from the cache server. At the end of each of the graphs, the
remote fetch time decreases and as a direct consequence, the total fetch time
does too. We suspect the decreasing remote fetch time at the end is caused
by fewer fetch requests being sent to the cache server as some viewers com-
pletes the input stream before others. This would not happen if the viewers
were being synchronized, as the coordinator would force them to wait for each
other.

From Figure 5.7, we see that without enabling prefetching, the hit ratio in the
centralized cache grows rapidly in the beginning. In contrast with the other
cache layers, here it reaches approximately 100% cache hits. The high hit
percentage in this layer is because the same image fragment is fetched once
and used multiple times by several viewers. Once fetched into the cache, a
request for it will result in a cache hit as long as it is inside the combined
viewport of all participating viewers.

When prefetching is enabled, the cache hit is exactly 100%, as no image frag-
ments are missing when requesting the first frame. Comparing the two graphs
in Figure 5.7, we can see that they are almost the same. The main difference is
that enabling prefetching makes the image fragments current in the centralized
cache already before the first fetch request arrives. Even if the prefetching is
enabled, we will not gain any visual benefits, as the average fetch time still will
be the same after from the second frame and out.



5.3 I TERAT ION ONE - FETCH T IME AND CACHE HIT 45

Figure 5.6: These three graphs show the total and remote fetch time with only the
centralized cache server enabled using all 28 viewers. The first graph rep-
resents the image moving with the lowest speed of 5 p/f, the second with
10 p/f and the third with 20 p/f.



46 CHAPTER 5 EVALUAT ION

Figure 5.7: These graphs show the cumulative cache hit in percentage with only the
centralized cache server enabled. The first one, without prefetching and
the second with prefetching enabled.



5.4 I TERAT ION TWO - MULT IPLE CACHE LAYERS AND CACHE SERVER NETWORK
FLOW 47

5.4 Iteration two - multiple cache layers andcache server network flow
From the results of the first iteration, we can see that the fetch time grows
rapidly from each cache layer. In advance, we expected the results from the
fetch time measurement to give the best results when all cache layers are
combined, but after a quick peak at the graphs, we see that the cache server
has a fetch time way to high to give a good performance at all. As we already
know how much time we can expect each cache level to use on cache hits, it
would be interesting to find out how many requests goes to each of the cache
layers.

As it turns out, the cache server uses a lot more time than expected when
delivering images to the viewers. A closer look at the graphs reveals that
most of the time goes into communication between the viewers and the cache
server. Rather than combining this cache layer with the others, we will con-
duct other experiments on it in order to determine what makes this layer so
inefficient.

5.4.1 Combining cache levels
In iteration one, we conducted experiments on each of the cache layers sep-
arately and because of this, the experiments resulted in 100% of the cache
requests being received in each of the cache layers. When the cache layers are
combined, we expect the frame cache to protect the local cache so that very
few requests reaches the local cache. If the centralized cache was enabled too,
it would be protected by both the frame cache and the local cache, resulting
in even less requests being received. The ideal request flow would be the first
cache level, or the one being most efficient with respect to the time used, deliv-
ering most of the requests. We will conduct experiments measuring the number
of requests reaching each cache layer in order to determine how well the frame
cache protects the local cache.

In these experiments we will use another input stream more suited for the
usage of the local cache. The movement will still be in a rectangular shape, but
we will use a smaller area to simulate many short movements over the same
area.

As the frame cache will protect the local cache from a lot of the cache requests,
the only requests received in the local cache will be the ones missing in the
frame cache.



48 CHAPTER 5 EVALUAT ION

In the beginning, the local cache will contain little or no data and the first
cache requests after the first image load will be registered as a hit in the frame
cache and not in the local cache. Therefore, we expect the the local cache hit
to decrease during this experiment compared to the cache hit measured from
this cache layer separately.

By running the viewer three times with the frame and local cache enabled,
increasing the move speed for each time,we collected the data into three graphs
as shown below.

Greater move speed increases the data set, which affects both the cache layers.
Requests sent to the frame cache will more frequently result in a cache miss,
causing more requests to end up in the local cache. We can see this in Figure
5.8. If we compare the three graphs, we can see the hit ratio in the frame cache
decreasing when the move speed is increased. The figure also shows the local
cache’s hit ratio being changed more often, as a consequence of the cache miss
in the frame cache.



5.4 I TERAT ION TWO - MULT IPLE CACHE LAYERS AND CACHE SERVER NETWORK
FLOW 49

Figure 5.8: Cumulative cache hit in percentage with both the frame cache and the
local cache enabled. The first graph shows the hit ratio when the image
is moving with the lowest speed of 5 p/f, the second with 10 p/f and the
third with 20 p/f.



50 CHAPTER 5 EVALUAT ION

5.4.2 Cache server network traffic
The cache server is now ruled out when combining cache layers for an optimal
fetch time, but it would be interesting to see what makes the remote fetch
time to increase when using this cache layer. We will conduct an experiment
using the cache server only, where we measure the remote fetch time as we
increase the number of participating viewers and requests sent. The number
of open connections at once and concurrent request handling might affect the
time used on sending the image from this particular cache level.

As the viewer and cache server run on different physical machines with unsyn-
chronized clocks, without proper clock synchronization we cannot determine
how much time is being used each way. Still, we assume most of the time be-
ing used on sending data to and from the cache server goes to transferring
image data in the response, as the response has a much greater size than the
request.

During this experiment, the remote fetch time was measured by using three
different send techniques. One, where the request for each image fragment in
the frames were sent sequentially, another where they were sent concurrently
and a third where all image fragments in the frame was bunched into one
request. The graph below shows how using these send techniques affects the
remote fetch time when increasing the number of participating viewers.

Figure 5.9: Average remote fetch time when sending requests sequentially, concurrent
and bunching them while increasing the number of participating viewers.



5.5 I TERAT ION THREE - FRAME RATE 51

As we can see from Figure 5.9, sending the image fragments one by one se-
quentially, concurrently or the whole frame at a time doesn’t seem to differ in
average fetch time used. What we do see is that using more viewers with more
requests does in fact increase the remote fetch time. It increases to around 60
milliseconds when using all 28 viewers in the cluster. This is the same value as
the time duration measured earlier using the cache server.

5.5 Iteration three - frame rate
The fetch time is a direct influence on the frame rate, as long fetch time results
in few frames being viewed. In this final iteration, we will measure the frame
rate in order to find out if the image viewer lives up to our expectations and
desired need.

5.5.1 Frame rate
Until now, we have conducted experiment where the image viewer was run
without synchronizing the viewers. In this experiment we will measure the
frame rate with and without synchronizing the viewers and see if the perfor-
mance changes. We will also compare the results to the frame rate measured
from the baseline.

Figure 5.10 shows that using both the frame cache and the local cache gives a
frame rate around 60 frames per second. Synchronizing the viewers seems to
straighten out the graph and we see that using synchronization don’t decrease
the frame rate. The baseline gives a frame rate between 25 and 30 frames per
second, which is barely half of the frames processed when applying the cache
layers mentioned.



52 CHAPTER 5 EVALUAT ION

Figure 5.10: This graph shows the average frame rate during the runtime of the viewer.
The image viewer was run three times. First, with the baseline enabled,
second, with the frame and local cache enabled and third, by synchroniz-
ing the viewers with the frame and local cache enabled.



6
Discussion
Through the experiments and measurements explained in the last chapter we
gained a lots of results, both expected and unexpected. During this chapter, we
will take a closer look at the results and answer questions regarding why we
get the results that we do, what they mean and whether they look promising or
not. We will also discuss whether or not the results lived up to our expectations
and if we got any surprises.

We will start by discussing the scenario giving the best results during the exper-
iments, using both the frame and local cache. This section will contain some of
the principles behind distributed systems and how the image viewer responds to
them. Performance in the sense of throughput and latency, and fault tolerance
are subjects we have chosen to focus on.

6.1 Optimal cache layer combination
In chapter 5, we determined that enabling both the frame cache and the local
cache gives the best results regarding fetch time, which directly affects the
frame rate. When it comes to the cache hit ratio, the cache server had the
advantage of prefetching and was thereby the cache layer giving most cache
hits. Still, 100% cache hit doesn’t help if we are not able to retrieve the cache
data fast enough. Both the frame cache and the local cache also have a very
high hit ratio with 96% and 97%. The most critical point seems to be at the

53



54 CHAPTER 6 DISCUSS ION

initial frame where both cache layers are empty. This is expected as prefetching
is not implemented for any of these cache layers.

6.1.1 Performance
In this project, the performance is measured by the frame rate the image viewer
is capable of deliver. As the client initializes the image viewer with the desired
frame rate, the experiments done to the image viewerwere all executedwith the
highest frame rate at 60 frames per second. As we saw from the measurements,
the image viewer is capable of holding the given frame rate both with and
without synchronizing the viewers.

By looking at the results from the baseline-, fetch time- and frame rate experi-
ments, we can see that applying these cache layers to the application increases
the performance, making the image viewer twice as efficient.

Throughput
In this application, the throughput is determined by the frame rate, the frame
size and the size of the image fragments. The image viewer processes about
33600 image fragments each second. This happens when the image viewer has
28 participating viewers with a frame rate of 60 frames per second, where a
viewer’s frame contains an average of 20 image fragment. This translates to
approximately 520mb of image data per second, as the images have an average
size of 15,5 kilobyte (kb).

When comparing the baseline up against the image viewer, with the frame
and local cache enabled, the frame rate is doubled. As a consequence, the
throughput is being doubled too.

By taking a closer look into the measurements regarding the fetch time, it uses
an average of 150 nanoseconds in the frame cache and 250 microseconds in
the local cache. Assuming all cache requests results in a cache hit, the frame
rate should become much greater than 60 frames per second. After some re-
search and a talk with some of the members of the hpds group, it turns out
that the display wall uses Vertical Synchronization (vsync). This is a software
component limiting the graphics card so it doesn’t increase the frame rate more
than the refresh rate of the projectors[31][32]. If the frame rate grows larger
than the refresh rate, the risk of screen tearing increases, which makes vsync
a good idea as the projectors’ refresh rate is around 60 Hz. As vsync limits the
application’s frame rate to 60 frames per second, we would have to turn off
vsync in order to benchmark the image viewer beyond this limit. We have not



6.1 OPT IMAL CACHE LAYER COMBINAT ION 55

focused on doing so as there are no need for the image viewer to run with a
frame rate greater than 60. However, it would have been interesting to measure
the application’s limit regarding the throughput.

Latency
In our system, latency occurs from the moment the client interacts with the
web interface, to the corresponding frame is displayed on the display wall.
During this project we have not measured the latency, partly because we have
not observed a noticeable latency being built up when running the viewer
and partly because we wasn’t sure how to measure it. The latency could be
measured by making the viewers send a “done” message to the web interface
after drawing a frame and let the web interface measure the time used from a
state is sent until a response is received. The danger of measuring the latency
in this way is that the time duration might be incorrect as it takes some time
to transfer all done messages from the viewers to the web interface. Also, as
we have experienced with the centralized cache server, 28 viewers spamming a
centralized unit with requests might result in a huge latency itself. Even if the
data size is only a fraction of the size of a fetch response, receiving 28 responses
60 times a second makes 1680 responses per second, which might create an
incorrect latency measurement.

In the capstone project, the frame rate was limited to 30 frames per seconds in
the experiments. As the image viewer couldn’t always deliver a greater frame
rate, in order to prevent a huge latency, the viewer was implemented using
buffered channels for communication between the goroutines receiving states
and fetching image fragments. In this way it was able to drop states if the buffer
was getting full.

The image viewer developed in this project is at the moment implemented
using unbuffered channels, not dropping states. This, to prevent screen tearing
between the viewers by the state dropping. In advance, we were hoping for the
viewer to be able to deliver a high throughput by applying the designed cache
layers and measure via the experiments whether or not this was the case. If
it should turn out from the results that the system was not able to deliver the
desired frame rate, we would have to change the implementation and maybe
the design. As we have seen from the measurements, the image viewer is able
to deliver the desired frame rate, processing all incoming states.



56 CHAPTER 6 DISCUSS ION

6.1.2 Fault tolerance
Some times when the image viewer was used on all display tiles in the cluster,
some of the viewers’ viewports were black under the whole run. It was deter-
mined that this problem was caused by faulty projectors and not the compute
nodes, meaning the image viewer did work as it should, except some of the
display tiles could not display their image. This is a perfect example of how
vulnerable a distributed system can be, as it just as well could have been some
of the display tile machines crashing, e.g. because of overheating. As this prob-
lem relies in the architecture of the display wall and not in the image viewer,
it’s little we can do about it.

Often when a node goes down in a distributed system, to deal with the problem,
another node will take its place. In this architecture that is not possible, as
a projector is connected to one computer node only. As there are no other
machines physically connected to the projector, if a computer node goes down,
no other will take its place. Considering this architecture, we created a design
in which the viewers running at the computer nodes are loosely coupled. If a
viewer goes down because of a faulty computer node, the other viewers will
still be running and not even notice that the viewer disappeared.

We can, however, improve our application with respect to fault tolerance by
eliminating single point of failures. As the cache server is out of the picture,
we are left with two single point of failures in the image viewer’s design pat-
tern. That is the backend server hosting the web interface and the coordinator,
forwarding the states to the viewers.

Both the backend server and the coordinator run on the frontend node in
the rocks cluster and if this computer node goes down, none of them will be
available. To access the compute nodes, we must go through the frontend node.
As the backend server must be kept on the frontend node in order to be able to
provide the web interface, we cannot prevent this single point of failure. The
coordinator, however, do not have to run at the frontend node. It could be placed
at one of the 28 compute nodes, but as the coordinator causes both network
traffic and some cpu processing, it might slow down the viewer running at
the same compute node and thereby the whole image viewer. In order for the
coordinator to not affect the viewers by running on the same compute node as
any of them, we were forced to keep it on the frontend node.

Still, an improvement could be to let the backend server detect whether or not
the coordinator is alive and if it’s not, start a new coordinator process. This
could work in a case where the coordinator experiences an error, making only
the coordinator process to stop. If the coordinator makes the frontend node to
crash, this idea would not work.



6.2 CENTRAL IZED CACHE SERVER 57

6.1.3 Scalability
By manually using the application and through automated benchmarks, we see
that it scales from using one display tile to the maximum limit at the cluster, 28.
We were not able to increase the amount of active viewers any further, but we
do expect the coordinator to become a bottleneck when scaling the system to
include a large number of viewers. We believe that the broadcast implementa-
tion is not efficient enough to be used by a high number of participating viewers
and that it will slow down the application. In order to deal with this potential
problem, we could deploy another broadcast design and implementation. Let-
ting the coordinator broadcast to a set of viewers, which again broadcast the
states to the rest could be an approach to consider. The downside of using this
approach is that the viewers are no longer loosely coupled. If a viewer receives
a state and crashes before it reaches to broadcast it, the other viewers waiting
for this particular state will never get it.

6.2 Centralized cache server
From the results of the fetch time experiments, we noticed that the cache
server’s fetch time decreases when zooming out, compared to the other two
cache layers where it increases. This is caused by two factors. One, as we
pointed out earlier, some viewers completes the input stream before others,
making some viewers to send fetch requests when there are less load and
less requests at the cache server. Two, as the zoom movement changes the
size of the image fragments, fewer and fewer fragments are needed in each
frame, resulting in even less fetch requests sent to the cache. The time used
on changing the size of the textures goes unnoticed in this cache layer as it is
very small compared to the fetch time, which brings up the question of how we
thought this would be efficient in the first place.

The main idea with the centralized cache server was that each image fragment
loaded upon a request from one viewer would be available in the cache for
another. As the image is moving across the screen, it is likely that more than
one viewer would have the need of displaying the same image fragment during
the movement. In advance we thought a centralized cache server could work,
as the hit ratio would be very high and all machines are connected through
Gigabit Ethernet. It turns out that the high hit ratio doesn’t weigh up for the
number of open connections frequently transmitting great amounts of data. As
we compare the remote fetch time to the fetch time achieved in the baseline
experiment, it would be more effective to load the images directly from the
nfs.



58 CHAPTER 6 DISCUSS ION

6.2.1 The problem
From the results of the experiments regarding remote fetch time, we see that
using a single centralized cache server might not be the way to go. Too much
time goes into sending the image fragments from the cache server to the view-
ers. After looking at Figure 5.9, we see that the remote fetch time increases
with the number of participating viewers, but even if we are using one single
viewer, it still takes between 15 and 20 milliseconds before the viewer receives
one image fragment. By enabling prefetching, the cache server achieved 100%
cache hit during the whole lifetime of the experiment, but as the problem does
not lie in whether or not the request is a hit or miss, it doesn’t make a difference
what the hit ratio is.

To be exact, the problem is that it takes too much time sending image data
over the network with a centralized architecture where the cache server is
using concurrent request handling. As we have already tried bunching image
fragments, sending them sequentially and concurrently without any difference
in time, we will have to consider other design patterns and implementations
for achieving an efficient level three cache. There are several alternatives to
solve this problem and we will now discuss some of them.

6.2.2 Alternatives
As the image viewer performs well without the cache server, we might not need
a third cache layer. Still, a miss in both the frame cache and the local cache
will result in loading the image fragment from the NFS and as we see from
the baseline, this gives an average fetch time of 5 milliseconds. If we want to
improve the fetch time in such a case, we could consider some of the following
approaches.

Distributed cache layer
One approach to the problem is the idea of a distributed level three cache. As
each of the image viewers cannot store the entire gigapixel image, an alternative
could be to implement a distributed cache layer, where each of the compute
nodes store a small part of the gigapixel image.

In order to retrieve images from another compute node, communication like
remote procedure calls could be used. For this approach to be a better alter-
native than the centralized cache server, we will need a distribution algorithm
capable of distributing the image fragments to the various compute nodes. If
the image fragments are not properly distributed, one compute node might



6.2 CENTRAL IZED CACHE SERVER 59

receive the cache requests from all the others and we are basically back to a
centralized cache server with an even smaller cache size.

Also, the gigapixel images compatible with the image viewer can be of a much
greater size and contain a lot more zoom levels than the image used in our
experiments. Therefore, we cannot let the distributed cache layer store all
image fragments from the gigapixel image, as some gigapixel images might
be of a greater size than the memory limitations on the cluster. This requires
a solid replacement policy and prefetching might be a great idea in order to
improve the cache hit ratio and fetch time.

Coordinator as prefetch detector
In advance, the programmer was thinking of an approach where the view-
ers were prefetching image fragments into their local cache layer based on a
prefetch command from the coordinator. In this way, there would be no need
for a third cache level, as the local cache would always have a cache hit of
100%. The problem with using the coordinator for determining the need of
prefetching in this approach is that the prefetch request might not be received
by the viewers early enough, risking the coming cache request to result in a
miss anyway. In order to use the coordinator as a prefetch detector, we might
have to use another prefetch algorithm based on guessing which direction will
be the next. If we assume the current move direction will remain over multiple
frames, we will probably have guessed right a lot of times, but in the cases
when the direction changes, this method of prefetching will fail.

Viewer based prefetch signalling
Another approach could be to let each viewer signal its neighbours to prefetch
a set of image fragments. E.g. if the image moves to the right, all viewers could
send a prefetch signal to the viewer on its right side. In this simple example,
each viewer will have to send one prefetch signal only. Using this principle as a
foundation, we could add support for all six directions over three axes.

Unfortunately, this approach also have some problems that prevents us from
achieving 100% hit rate. If we look a the example where the image moves
to the right, we see that the viewers most to the left are not receiving any
prefetch signals. Whatever direction the image moves to, some viewers will not
get the prefetch signal. Running fullscreen at the Tromsø Display Wall, a move
direction along the x-axis will result in 1/7 viewers to not receive the signal.
Moving in a direction along the y-axis 1/4 will miss the signal and in the z-axis
all viewers will miss it.



60 CHAPTER 6 DISCUSS ION

Also, as we pointed out in the previous section, the viewers will not be able
to send a prefetch signal based on the current incoming state early enough.
Therefore, we will have to use another prefetch algorithm. Even if this approach
cannot achieve 100% cache hit in all cases, it still would be better to deploy it
to our current implementation, as it often would give us cache hits where we
otherwise would have load the image fragment from the NFS.

6.3 Problems, bugs and errors
During this project we faced some problems, which not all have been solved yet.
Some of them have been small and of minor importance for the performance,
and others have made the image viewer a danger for the display wall cluster.
We will go through some of them and give a brief description of the problem
and how we solved it.

6.3.1 Memory leak
During the experiments when using only the cache server without prefetching
and any other cache layers enabled, there was discovered a major memory leak.
Even if the cache server was limited to only contain a maximum number of
2000 minisurfaces at this point, it used more memory than it was allowed and
during a few minutes it had used 100% of the cluster memory.

At first we thought the cause was due to the fact that a single line of code was
commented out, as a result from an earlier debugging session still remaining
in the source code. It would have made sense, as this particular line of code
was responsible for inserting the loaded minisurfaces into the cache map. As
only the cache server was enabled with no protection against cache requests
from the other two cache layers, it would receive all cache requests from all 28
participating viewers.

Like we have discussed earlier i this chapter, the image viewer has a high
throughput with around 520 mb of data each second. Go’s garbage collector
runs periodically each other minute[22]. During these two minutes, the cache
server would have tried to load about 62,4 gb of data into the memory and
we was sure the missing line of code made the loaded image fragments stay in
memory until the garbage collector freed them.

Unfortunately, after inserting this line of code again, the cache server did not
change its behaviour. By using the built-in profiling tool in the go programming
language, it turned out that the memory leakwas caused by not properly closing



6.3 PROBLEMS , BUGS AND ERRORS 61

the websocket connections at the server side. As the cache server manages
connections and requests concurrently, by not closing the connections between
each frame, the amount of open websocket connections grows quickly and
over time, it would would require more memory than available. After closing
the connections properly and ending the goroutines responsible for this, the
memory usage did not exceed the given memory limit.

6.3.2 To fast prefetch rate
After the experiments were done, a bit later we were using the image viewer
manually over a long period of time and by surprise, we discovered that the
centralized cache did not have a cache hit of 100%. The hit ratio decreased over
a longer time period because the cache server was prefetching image fragments
too fast compared to how often the viewers requested them. A while after this
cache was filled, the cache server started to replace image fragments that was
still in use by the viewers, believing their location was outside the current
viewport. When the viewers then requested these image fragments, the result
was always a miss. This was not discovered in the experiments, because they
did not last long enough in time.

To deal with this problem, we could have adapted the prefetch rate at the cache
server in order to wait for all viewers to finish viewing the frame before prefetch-
ing a new one, but as the experiments gave the results they did regarding the
cache server, we did not spend time trying to correct this bug.

6.3.3 Shaking zoom
There appears to be a bug in the implementation of the image viewer’s zoom
movement. As we zoom in and out, the image is moving back and forth just a
bit, creating a shaking effect. As the screen of the mobile device, either phone,
tablet or laptop, are smaller than the display wall, the image’s position has to
be scaled up in order to match the same position at the display wall.

We expect there to be a bug in the translation of the image position as a “mis-
placement” of just a few pixels on the mobile device would be of a greater
magnitude when scaled. Such a miscalculation would be capable of creating
this kind of effect.

This issue has not been solved yet, as we have chosen to keep our focus on the
image viewer itself, it’s design, implementation, experiments and results.



62 CHAPTER 6 DISCUSS ION

6.3.4 Synchronize rate
As we have described earlier, the viewers are synchronized by the coordinator
once after each frame. We can, however, change the synchronize rate by choos-
ing how many frames to forward to the viewers before synchronizing them.
For a while, we did try to increase the amount of states being forwarded before
synchronizing, but in some cases when moving the image across the screen, we
ended up with the image disappearing and coming back, creating a blinking
effect.

Synchronizing the viewers once per frame might be a bit more than needed,
but because of the good results we got from the experiments, we kept this
synchronization rate to ensure that screen tearing does not happen.



7
Conclusion
Through this project, we have researched design patterns for a gigapixel image
viewer controlled by mobile devices via a web interface. A prototype was im-
plemented from a chosen design pattern, which have been evaluated through
experiments and measurements.

The image viewer prototype is capable of delivering a frame rate of 60 frames
per second while running fullscreen with 28 viewers, where the viewers are
synchronized. The results from the experiments shows that using two cache
layers, the frame and local cache, gives the best performance with regards to
the fetch time and as a direct “consequence”, the frame rate.

The latency was not measured, but by manually using the application, we don’t
notice a delay or a latency being built up over time. With this, and through
the experiment results, we make the conclusion of our application to have high
throughput an low latency.

As the image viewer receives a input stream consisting of the current state
of the image position, other interaction systems, such as gesture systems, are
supported as they can periodically send the image position to the gigapixel
image viewer.

We are happy to say that the end result solves the problem definition and that
we are satisfied with the results given by the evaluation of the prototype during
the limited time frame of this thesis.

63



64 CHAPTER 7 CONCLUS ION

7.1 Concluding Remarks
The development of this application was time consuming as the application
was developed without a proper Integrated Development Environment (ide),
nor the opportunity to build the application on the laptop used under the
implementation.

There exists a plug-in for the go programming language in the Eclipse ide,
but this was discovered a bit too late in order to have any use for it during the
development of the prototype.

Without the opportunity to build the source code on the same machine as it
was written, the developer pushed the code into a git repository from his laptop
and pull it to the display wall cluster in order to compile it. The compute nodes
at the cluster could be wiped out at any time without notice and therefore
the cluster could not be used as a storage alone. This was inconvenient as the
code had to be compiled quite often and thereby, one of the causes to why the
implementation took so long.

Building go applications can be done using a single command. As our applica-
tion contained multiple components, supposed to run on different machines,
building the whole application requires more than one build. Therefore, python
was used to create a make script building the different components.

7.2 Future Work
Although we are proud of the result gained and that Giga-View solves the given
problem definition, we still have some improvements that would make the
application better. Some of them would improve user experience and others
would improve the performance and cache hit ratio.

7.2.1 Prefetching
In section 6.2.2, we mentioned some alternatives to a centralized cache server.
We believe some of these suggestions would improve the performance by in-
creasing the hit ratio and thereby improve the average fetch time even more.
As we ended up with an application not using prefetching, which conflicts with
the ideas we had before the project, we would like to see this concept being
used in the future.



7.2 FUTURE WORK 65

7.2.2 Multiple users
In order to further develop this application, multiple users should be supported.
At the moment, the image viewer only supports one user at a time, viewing
only one image. As a user may not run the image viewer on all display tiles,
some would be free to use by others and this suggestion should therefore be
considered under further development.

7.2.3 Extend flexibility
The implemented prototype is currently not integrated with Display Cloud. Nei-
ther are on the fly reconfiguration or on the fly switching of images supported,
but the design of the image viewer has been made in such a way that it is
possible to integrate with these features later. By implementing these features,
the application will be far more flexible for use at the Tromsø Museum and the
uit.

7.2.4 Web interface - image tiling
For the moment, the image displayed in the web interface at the client is not
exchanged when reaching new zoom levels on zoom interaction. The result
is a image with small resolution being stretched into a size 2n times greater
than the original at the n-th zoom level, making the whole image so blurry
that you cannot see what’s in it. During this project, we have not focused on
improving the user experience by tiling images in the web interface. This is a
task we leave as future work as the time frame of this thesis was limited.





Bibliography
[1] Anshus, O., et al. “NineYears of the Tromsø Display Wall.” Proceedings of

Powerwall, SIGCHI Workshop. 2013.

[2] Tiede, Lars, John Markus Bjørndalen, and Otto J. Anshus. “Cloud displays
for mobile users in a display cloud.” Proceedings of the 14th Workshop on
Mobile Computing Systems and Applications. ACM, 2013.

[3] Aydin, Galip, et al. “Building and applying geographical information sys-
tem Grids.” Concurrency and Computation: Practice and Experience 20.14
(2008): 1653-1695.

[4] Google Maps explained “Traffic Analysis on Google
Maps with GMaps-Trafficker”, [Online]. Available:
http://www.ioactive.com/pdfs/SSLTrafficAnalysisOnGoogleMaps.pdf.
[Accessed May 25th 2015].

[5] Liu, Zao, et al. “Implementing a caching and tiling map server: a web
2.0 case study.” Collaborative Technologies and Systems, 2007. CTS 2007.
International Symposium on. IEEE, 2007.

[6] Haklay, Mordechai, and Patrick Weber. “Openstreetmap: User-generated
street maps.” Pervasive Computing, IEEE 7.4 (2008): 12-18.

[7] Kopf, Johannes, et al. “Capturing and viewing gigapixel images.” ACM
Transactions on Graphics (TOG) 26.3 (2007): 93.

[8] Ponto, Kevin, Kai Doerr, and Falko Kuester. “Giga-stack: A method for vi-
sualizing giga-pixel layered imagery on massively tiled displays.” Future
Generation Computer Systems 26.5 (2010): 693-700.

[9] Yamaoka, So, Kai-Uwe Doerr, and Falko Kuester. “Visualization of high-
resolution image collections on large tiled displaywalls.” Future Generation
Computer Systems 27.5 (2011): 498-505.

67



68 B IBL IOGRAPHY

[10] Powell, Mark W., Ryan A. Rossi, and Khawaja Shams. “A Scalable Image
Processing Framework for gigapixel Mars and other celestial body images.”
Aerospace Conference, 2010 IEEE. IEEE, 2010.

[11] GIGAmacro “Exploring Small Things in a Big Way”, [Online]. Available:
http://gigamacro.com/. [Accessed May 28th 2015]

[12] Wallace, Grant, et al. “Tools and applications for large-scale display walls.”
Computer Graphics and Applications, IEEE 25.4 (2005): 24-33.

[13] Stone, Maureen C. “Color and brightness appearance issues in tiled dis-
plays.” Computer Graphics and Applications, IEEE 21.5 (2001): 58-66.

[14] Stöckli, Reto, et al. “The Blue Marble Next Generation-A true color earth
dataset including seasonal dynamics from MODIS.” Published by the NASA
Earth Observatory (2005).

[15] Grammeltvedt, Åsmund. “Frag: A distributed approach to display wall
gaming.” (2006).

[16] Beaver, Doug, et al. “Finding a Needle in Haystack: Facebook’s Photo
Storage.” OSDI. Vol. 10. 2010.

[17] Huang, Qi, et al. “An analysis of Facebook photo caching.” Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles.
ACM, 2013.

[18] Go, “The Go Programming Language”, [Online]. Available:
https://golang.org/. [Accessed May 6th 2015].

[19] The Go Programming manguage “The Go Project”, [Online]. Available:
https://golang.org/project/. [Accessed May 25th 2015]

[20] Go documentation “GoDoc”, [Online]. Available: https://godoc.org/. [Ac-
cessed May 25th 2015].

[21] Go-gl, “Go bindings for OpenGL”, [Online]. Available:
https://github.com/banthar/gl. [Accessed May 6th 2015].

[22] Dave Cheney “Visualising the Go garbage collector”, [Online]. Available:
http://dave.cheney.net/2014/07/11/visualising-the-go-garbage-collector.
[Accessed May 26th 2015]

[23] Flask, “Flask - web development, one drop at a time”, [Online]. Available:



BIBL IOGRAPHY 69

http://flask.pocoo.org/.[Accessed May 6th 2015].

[24] jQuery, “jQuery API”, [Online]. Available: http://api.jquery.com/. [Ac-
cessed May 6th 2015].

[25] LocalStorage, “Window.localStorage”, [On-
line]. Available: https://developer.mozilla.org/en-
US/docs/Web/API/Window/localStorage. [Accessed May 6th 2015].

[26] OpenGL, “OpenGL tutorials”, [Online]. Available: http://www.opengl-
tutorial.org/. [Accessed May 18th 2015].

[27] OpenGL, “Introduction”, [Online]. Available: https://open.gl/. [Accessed
May 18th 2015].

[28] “Parallel OpenGL FAQ”, [Online]. Available:
http://www.equalizergraphics.com/documentation/parallelOpenGLFAQ.ht-
ml [Accessed May 26th 2015]

[29] OpenGL, “OpenGL and multithreading”, [Online]. Available:
https://www.opengl.org/wiki/OpenGL_and_multithreading. [Accessed
May 26th 2015]

[30] Apple developer, “OpenGL and Concurrency”, [Online]. Available:
https://developer.apple.com/library/mac/documentation/GraphicsImagi-
ng/Conceptual/OpenGL-MacProgGuide/opengl_threading/opengl_thread-
ing.html. [Accessed May 26th 2015]

[31] Geforce, “Adaptive VSync”, [Online]. Available:
http://www.geforce.com/hardware/technology/adaptive-
vsync/technology. [Accessed May 26th 2015]

[32] Tweakersguide, “Graphics Settings - Frames Per Second”, [Online]. Avail-
able: http://www.tweakguides.com/Graphics_5.html. [Accessed May 26th
2015]




	Abstract
	Acknowledgements
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Problem Definition
	1.2 Giga-View
	1.3 Contributions
	1.4 Project limitations
	1.5 Outline

	2 Related Work
	2.1 The Tromsø Display Wall
	2.2 Concurrency in a Distributed Gigapixel Image Viewer
	2.3 Gigapixel image viewers
	2.4 Web map services
	2.5 Facebook photo caching

	3 Architecture and Design
	3.1 Architecture
	3.2 Web interface
	3.3 The Coordinator
	3.4 The Viewer
	3.5 Cache
	3.5.1 The cache levels
	3.5.2 Replacement algorithms
	3.5.3 Prefetching algorithm

	3.6 Communication

	4 Implementation
	4.1 Web interface
	4.2 Coordinator
	4.3 Viewer
	4.3.1 Graphical framework
	4.3.2 Data flow

	4.4 Cache
	4.4.1 The centralized cache
	4.4.2 The local cache
	4.4.3 The frame cache


	5 Evaluation
	5.1 Methodology
	5.1.1 Tromsø Display Wall
	5.1.2 Data set
	5.1.3 The image viewer

	5.2 Iteration zero - baseline experiments without caching
	5.2.1 Baseline

	5.3 Iteration one - fetch time and cache hit
	5.3.1 Fetch time
	5.3.2 Cache hit
	5.3.3 Results

	5.4 Iteration two - multiple cache layers and cache server network flow
	5.4.1 Combining cache levels
	5.4.2 Cache server network traffic

	5.5 Iteration three - frame rate
	5.5.1 Frame rate


	6 Discussion
	6.1 Optimal cache layer combination
	6.1.1 Performance
	6.1.2 Fault tolerance
	6.1.3 Scalability

	6.2 Centralized cache server
	6.2.1 The problem
	6.2.2 Alternatives

	6.3 Problems, bugs and errors
	6.3.1 Memory leak
	6.3.2 To fast prefetch rate
	6.3.3 Shaking zoom
	6.3.4 Synchronize rate


	7 Conclusion
	7.1 Concluding Remarks
	7.2 Future Work
	7.2.1 Prefetching
	7.2.2 Multiple users
	7.2.3 Extend flexibility
	7.2.4 Web interface - image tiling


	Bibliography

