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Abstract

In the mining industry, equipment are continuously increasing in size and complexity. At
the same time, the demand for available plants and continuous production has never been
higher. The performance of equipment depends on the reliability and maintainability
performance of the equipment along with the maintenance supportability, operational
conditions, and environmental conditions. In order to improve plant availability, fully
utilize equipment performance, avoid equipment breakdowns and optimize operation and
maintenance (O&M), the concept of reliability, availability and maintainability (RAM)
analysis is required. In most industries, the only collected explanatory variables used
in RAM analysis have been time to failure (TTF) and time to repair (TTR). For a
more precise estimation of the reliability and maintainability characteristics of mining
equipment, factors influencing the reliability and maintainability of equipment should
be collected and included in the analysis.

In this thesis, the concept of RAM analysis is applied for availability improvement in
the mining industry as a quantitative case study. Furthermore, a framework for data
collection including influence factors has been developed, which highlights important
steps in the data collection process. For including the effects of influence factors in
RAM analysis, the Proportional Hazard Model (PHM) with the modified Proportional
Repair Model (PRM) are discussed. Finally, a qualitative case study is conducted to
demonstrate the application of the framework for data collection for RAM analysis.

The result of the RAM analysis have been used to determine optimum preventive main-
tenance interval in order to improve availability performance. Furthermore, aspects for
improvement of reliability performance and maintainability performance have been as-
sessed in order to improve overall system availability. The framework developed for data
collection is considered general enough to cover several industries. However, the frame-
work is especially suited for the mining industry with the use of the PHM and PRM for
including influence factors in reliability and maintainability analysis. The work in this
thesis, the framework for data collection especially, is considered valuable and necessary
as it addresses an area that has received less focus in today’s mining industry.

Keywords: RAM, mining, O&M optimization, data collection, influence factors, Propor-
tional hazard model, Proportional repair model
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Definitions

Availability
The ability of an item to be in a state to perform a required function under given condi-
tions at a given instant of time or over a given time interval, assuming that the required
external resources are provided

[ISO, 2006]

Corrective maintenance
Maintenance carried out after fault recognition and intended to put an item into a state
in which it can perform a required function

[ISO, 2006]

Degraded failure
Failure that does not cease the fundamental function(s), but compromises one or several
functions

[ISO, 2006]

Down state/Non-operating state
Internal disabled state of an item characterized either by a fault or by a possible inability
to perform a required function during preventive maintenance

[ISO, 2006]

Downtime
Time interval during which an item is in a down state

[ISO, 2006]

Failure
Termination of the ability of an item to perform a required function

[ISO, 2006]

Item
Any part, component, device, subsystem, functional unit, equipment or system that can
be individually considered
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[CEN, 1998]

Maintainability
The ability of an item under given conditions of use, to be retained in, or restored to, a
state in which it can perform a required function, when maintenance is performed under
given conditions and using stated procedures and resources

[ISO, 2006]

Maintenance
Combination of all technical and administrative actions, including supervisory actions,
intended to retain an item in, or restore it to, a state in which it can perform a required
function

[ISO, 2006]

Maintenance supportability
The ability of a maintenance organization of having the right maintenance support at the
necessary place to perform the required maintenance activity at a given instant of time
or during a given time interval

[CEN, 1998]

Operating time
Time interval during which an item is in operating state

[ISO, 2006]

Preventive maintenance
Maintenance carried out at predetermined intervals or according to prescribed criteria
and intended to reduce the probability of failure or the degradation of the functioning of
an item

[ISO, 2006]

Reliability
Ability of an item to perform a required function under given conditions for a given time
interval

[ISO, 2006]

Required function
Function or combination of functions of an item that is considered necessary to provide
a given service

[CEN, 1998]

Up state/Operating state
State when an item is performing a required function

[ISO, 2006]



Chapter 1

Introduction

This chapter presents the background of the topic for this thesis and the thesis problem.
Furthermore, it presents the main aim and objectives, research questions, and limita-
tions, before specifying the outline and structure of the thesis.

The reader of this thesis is assumed to have basic knowledge within RAM analysis, prob-
ability and statistics, and preferable some knowledge on the mining industry.

1.1 Background

The definition of reliability is the ability of an item to perform a required function under
given conditions for a given time interval [ISO, 2006]. In other words, it means that
the equipment, system, part, or component are working as supposed to for the period
intended. In everyday life and in society today people rely on machines and products now
more than ever. Ranging from small electrical products like mobile phones and laptops
to heavier machinery like automobiles and airplanes for transportation. In industries like
aviation, nuclear, oil and gas as well as the mining industry, the result of operating with
unreliable equipment can have catastrophic consequences with respect to health, safety,
and environment. These consequences are results of critical equipment breakdowns and
system failures. To avoid these breakdowns and failures, the industries have, in recent
decades, applied the concept of reliability engineering and reliability analysis.

The field of reliability engineering and reliability analysis rose from the need for more
complex and advance weapons and machinery duringWorldWar II [Blischke and Murthy,
2003]. Following World War II, the field of reliability engineering spread throughout sev-
eral industries like aerospace, military defense and electronics, to mention some [Dhillon,
1999]. The field itself grew into specialized application areas, such as mechanical reli-
ability, software reliability, human reliability, and structural reliability [Dhillon, 1999].
The basic reason behind the need for reliability analysis is the natural law that ”every-

1



2 CHAPTER 1. INTRODUCTION

thing eventually fails”. Even the best designed system with components made out of the
strongest material will, as time goes by, fail in some manner. That in mind, the field of
reliability analysis and reliability engineering is in constant development and the tools
and techniques used for analysis are getting increasingly advanced and complex, but at
the same time, providing more accurate and precise estimations and results.

For a complete understanding of the performance and condition of equipment the reliabil-
ity, availability, maintainability, and maintenance supportability should be investigated
and modeled. One of the most beneficial analyses to carry out on system level and com-
ponent level is a RAM analysis. A RAM analysis is aimed to investigate and model the
performance of reliability, availability, and maintainability. Here, the aspect of mainte-
nance supportability is defined as part of the maintainability performance. Furthermore,
the RAM analysis can be used to reveal the current integrity of the asset, predict future
developments, and asset condition and identify the most effective improvement measure
for optimization. Perhaps more importantly, the results of the analysis provides a basis
for decision-making, especially with respect to design, maintenance strategies, operation,
and resource allocation for the assets. The overall goals of a RAM analysis, for a pro-
duction process, are improvement of the availability performance, achieved by the means
of improving the reliability performance and maintainability performance. The analysis
is based on historical data, like failure times and repair times along with characteristics
of the specific system, like corrective maintenance and preventive maintenance, spare
parts, and logistics. As the analysis is based on historical data, there is a need for data
collection with sufficient details and information. The focus on achieving high quality
data is often insufficient. The data collection can be a costly activity, and the effort of
data collection needs to be balanced against the intended uses and benefits [Barabadi
et al., 2014]. The result of data collection being costly and benefits being complicated to
estimate directly, is less focus and motivation to collect the required data. It is essential
to collect accurate data, and data with sufficient information, as any analysis is only as
good as the data used.

1.2 Problem statement

Many analyses often only considers TTF and TTR as explanatory variables in the esti-
mation of the reliability and maintainability characteristics. For a precise modeling and
prediction of the reliability and maintainability performance, the data have to reflect the
operating and environmental conditions which the equipment experiences during oper-
ation and maintenance. Problems arise when applying historical TTFs and TTRs from
databases for design and operation in new environments, without taking into account the
operating and environmental condition the equipment will experience. Assessing these
influence factors affecting the failure and repair processes is important for an improved
understanding of the conditions equipment experiences. It is important to identify the
most important influence factors and determine means of collecting the effects of the
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influence factors during the data collection process [Barabadi et al., 2010].

A study of a stacker belt at the Svea coal mine on Svalbard concluded that the hazard
rate could be up to four times as high in the winter period opposed to rest of the
year [Furuly et al., 2013]. Predicting a hazard rate lower than the actual hazard rate
could lead to earlier expected failures occurring, and thus lead to very undesirable and
severe consequences. Predicting a hazard rate higher than the actual hazard rate could
lead to the expected failures occurring later, and could lead to unnecessary preventive
maintenance and unnecessary cost for the company. The study by Furuly et al. [2013]
concluded that changing the maintenance plan during the winter period in order to
assess the increased failure rate could lead to increased average time to failure.

There exist databases and standards on reliability and maintenance (RM) data and the
data collection method, including the collection planning and collection process. Unfor-
tunately, these standards lack information on data collection with respect to influence
factors. Two examples of sources of RM data are the Offshore Reliability Data (OREDA)
handbook and the 14224 Standard from the International Organization of Standardiza-
tion (ISO). The OREDA and ISO 14224 are mainly used for offshore industry but also
applicable for other onshore process industries, including the mining industry, which
operates with similar equipment. The OREDA handbook and the ISO 14224 standard
include accurate failure rates and repair rates for various equipment, after data collec-
tion over several years, in addition to special considerations when collecting data. Thus,
problems arises when equipment are used in locations other than where the equipment
have been used for the data collection in these databases. In unfamiliar locations environ-
mental factors and operational factors will influence the reliability and maintainability
of equipment causing the failure rates and repair rates in the existing data bases to be
insufficient and inaccurate [Barabadi et al., 2014]. Focus should lie on identifying which
factors influence the reliability and maintainability of equipment, furthermore these in-
fluence factors needs to be included in the data collection process. Finally, these influence
factors should be included when performing analysis with appropriate methods.

1.3 Aim and objectives

The aim of this study is to apply the concept of RAM analysis in the mining industry
and suggest a framework for data collection which includes the effects of influence factors
on the RAM performance of equipment.

More specifically the objectives of this thesis consists of:

• Review the existing approach for data collection for RAM analysis.

• Apply the concept of RAM analysis as a case study in the mining industry and
thus quantitatively analyse the availability performance.

• Suggest a framework for data collection with respect to RAM analysis.
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1.4 Research questions

With respect to the thesis problem and main aim and objectives the following three
research questions have been identified:

1. How one can improve availability performance by using the result of RAM analysis?

2. How to improve data collection method for RAM analysis?

3. How to include the effects of influence factors in reliability and maintainability
analysis?

1.5 Limitations

The limitations for the thesis consists of two parts; the limitations in general for the
thesis work and the limitations subjected to the RAM analysis in case study I.

1.5.1 Limitations in general

• Data collected by applying the framework suggested in this thesis will be the data
required for RAM analysis. Other analyses could need additional data.

• The concept of including the effects of influence factors in reliability and maintain-
ability analysis is not included in case study I as necessary data was not available.
However, the concept and application is discussed.

• Case study I and case study II applies to the mining industry.

1.5.2 Limitations for the analysis in case study I

• Repairable system is studied and subsystems are subject to both corrective and
preventive maintenance.

• Data is only from the process plant at Sydvaranger Gruve and is limited to the
operating period: 01.08.2013 to 31.12.2014 (1 year and 5 months).

• Failure times are date-based rather than hour-based. Consequently, a small part of
the total failures of the subsystems had dates with two or more failures. Whenever
this issue occurred one random failure was kept and the other removed from the
data set.

• Failure data on the following subsystems was not available: CH024, CH025, CH026
and HO001.

• Cost associated with any downtime or repair is not included in the analysis.
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1.6 Outline and structure

Following is an outline of the thesis and a brief chapter content.

Chapter 1: Presents the background and topic of this thesis. The main aim and
associated objectives along with research questions and limitations.

Chapter 2: Presents the research approach and methodologies used for achieving the
main aim and research objectives along with details on data collection and analysis.

Chapter 3: Presents the literature for the thesis topic. More specific it introduce
some basic probability and statistics before RAM performance measures are defined and
described. Finally, the concept of importance measures are presented.

Chapter 4: Presents case study I of the thesis. The case study involve applying the
concept of RAM analysis to the mining industry.

Chapter 5: Presents a framework for data collection for RAM analysis and case study
II of the thesis. The framework includes collecting the effects of influence factors for
reliability and maintainability analysis. Further, the chapter discusses two mathematical
models for including influence factors in reliability and maintainability analysis. Finally,
the chapter presents a case study applied to the mining industry for improvement of
data collection.

Chapter 6: Presents a discussion of the defined objectives of the thesis in conjunction
with the obtained results. Furthermore, a self-criticism of the study is given and a
summation of the main results obtained in chapter 4 and chapter 5. Finally, a conclusion
is drawn.

Chapter 7: Presents suggestions for further work within the specific research field and
thesis topic before the contribution of the thesis is given.
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Chapter 2

Research Approach and
Methodology

This chapter explains the research approach and the methodologies used for achieving the
research aim and objectives of the thesis. It will highlight important details on the data
collection and analysis with respect to sources of data and type of data along with some
statistical tests and methods used in case study I.

2.1 Research approach

As stated in the introduction the research problem led to the identification of three
research questions. Following, is a brief research approach for each of the research
questions.

How can the result of RAM analysis improve system availability performance?

The approach taken to resolve this research problem is by applying the concept of RAM
analysis to the mining industry as a case study. The case study concerns collecting and
processing historical field data from the mining industry into usable data for statistical
analysis, evaluate the data, and carry out methods for RAM analysis.

How to improve data collection method for system RAM analysis?

Developing a framework for RAM data collection that includes collecting the effects of
influence factors. The framework for data collection will be a descriptive and illustrative
framework divided into three parts; planning for data collection, collecting RAM data,
and types of analysis. The framework will be build on previous literature and standards
with the addition of influence factors.

7
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In what way can the effects of influence factors be included in RAM analysis?

The concept of a mathematical model with an modified extension for including influence
factors in reliability and maintainability analysis will be discussed. Furthermore, a sec-
ond case study will be conducted for demonstrating the application of the framework for
data collection. The case study will illustrate how current downtime reporting systems
in the mining industry with a slight modification can be better suited for reliability
analysis.

2.2 Data collection

The thesis consist of two case studies both done in cooperation with the mining company
Sydvaranger Gruve AS. Following this, is a description of the type and sources of data,
for the two case studies.

2.2.1 Case study I

For the RAM analysis, TTF and TTR data are collected. The data is quantitative
and based on historical raw data collected over a period of 1 year and 5 months. The
data collected is from daily downtime reports and maintenance records, such as work
orders created by maintenance personnel. The raw data is secondary data, meaning that
someone else besides the analyser collects it for some general purpose [Blaikie, 2003]. In
this case, that general purpose of the data collection is for production and maintenance
information. After collection, the processing (sorting and classification) of raw data is
performed. After processing, the data is in a format that is usable for statistical analysis.
The analysis deals with a repairable system, and the data collected is failure and repair
times of the subsystems compiling the entire system. The data is limited, and not very
suitable for statistical analysis. The analysis in this case study is for that reason more
of an analysis to illustrate the methodology of RAM analysis and how the result can be
used for improvement with respect to O&M and availability performance.

2.2.2 Case study II

Case study II is concerned with developing a new downtime reporting system for data
collection. The design and configuration of the reporting system is based on study litera-
ture and in addition discussions with experts at the mining company. The data is hence
considered qualitative. Equipment, sub-equipment, equipment codes etc. are collected
from the company CMMS or from discussions with maintenance personnel.
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2.3 Data evaluation

This section only concerns case study I, the RAM analysis. It describes the approach
needed for evaluation of the collected data in order to select appropriate probability and
statistical analysis techniques. The main assumption of the data is that the collected data
are independent and identically distributed (IID). This assumption needs verification by
appropriate statistical tests such as the trend and serial correlation test.

2.3.1 IID assumption

The assumption that the data sets are IID implies that probability distributions can be
used to model the subsystems. If the data sets does not fulfill the IID requirement, and
probability distributions are used for modeling, then the results and the conclusions of
the analysis can be totally wrong [Kumar et al., 1989]. The assumption that the data
sets are independent means that one failure is not dependent on the previous one, which
implies that the parameters of the chosen distribution do not change with time. The
assumption that the data sets are identical means that the different data points follow
the same distribution.

A simple illustrative example is a cone toss, where one toss is never dependent on the
previous one, neither is the probability of tossing heads or tails changing with time (the
probability is the same whether it is the 1st toss or the 100th toss). For that reason,
the probability distribution do is time-independent and the different tosses are identical
distributed.

Non-homogeneous processes, like the Poisson process, can be used for modeling, instead
of probability distributions, in the case where the IID requirement is not fulfilled [Kumar
et al., 1989]. The trend test can verify the independent assumption, either analytically
or graphically. While the serial correlation test can verify the identical assumption,
either analytically or graphically. In case study I, the IID assumption will be checked
graphically by the two mentioned tests.

Trend test

In the trend test, the cumulative TTF/TTR is plotted against the cumulative failure
number/repair number. If a line drawn through the data points either resembles a
concave upwards or concave downwards trend in the data, the system is respectively an
improving or deteriorating system. However, if the line drawn through the data points
is approximately a straight line, then the data is free from trend, which implies that the
data set is identically distributed [Kumar et al., 1989].
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Serial correlation test

In the serial correlation test, the (i-1)th TTF/TTR is plotted against the ith TTF/TTR.
If the data points are randomly scattered without any clear pattern it implies a data set
free from serial correlation, which again implies that the data points in the data set are
independent of each other [Kumar et al., 1989].

2.4 Data analysis

This section describes the methods used for data analysis. The system is modeled
by TTF and TTR data analysis. Best-fit probability distributions are identified by a
goodness-of-fit test and parameters for the best fit distribution estimated through the
maximum likelihood estimation method.

2.4.1 TTF and TTR data analysis

For a repairable system the analysis is concerned with modeling both the time it takes
from a performed repair action (or restoration) to the next system failure (life of the
system) and the time it takes to restore the system (repair of the system) back to
operating state. The main goal of the TTF and TTR data analysis is to model the failure
and repair processes of the different subsystems. This is done by fitting a probability
distribution that best represent the failure data, and fitting a distribution that best
represent the repair data, and estimating parameters to fit the distributions to the
different data sets. For explanation and mathematical expressions on common used life
and repair distributions, see Appendix A on probability distributions.

It is common to assess the time between failures for analysis of repairable systems. In
this case, the downtime duration, and more specific, the repair duration, is considerable
lower than the uptime duration. For that reason the analysis considers the time from
restoration to system failure, denoted TTF, and the significant smaller repair duration,
denoted TTR.

Goodness-of-fit test

When choosing a probability distribution its goodness-of-fit should be identified by ap-
propriate test. There exist several goodness-of-fit tests suited for different conditions.
Some of the most used are the p-value test, the Chi-squared test, Kolmogorov-Smirnov
test and Anderson-Darling test [ReliaSoft, 2007]. The principle behind goodness-of-fit
tests is to see how far the chosen distribution is from the actual data set, or in other words
how well the chosen distribution represent the observed distribution. One goodness-of-fit
test often used in RAM analysis is the Kolmogorov-Smirnov (K-S) test. The original K-S
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test is only applicable for distributions with known parameters. For the case where the
parameters are calculated based on the data set itself, a modified K-S test can be used.
For more information on the modified K-S test used in the case study, see Appendix B
on goodness-of-fit test.

After fitting distributions to the data sets the parameters of the specific distributions
needs to be estimated. There are several methods available, like the Rank Regres-
sion method, the Maximum Likelihood Estimation (MLE) and the Bayesian Estimation
method. In the analysis the MLE method will be used. Appendix C on parameter
estimation highlights additional information on the MLE method.

Both the goodness-of-fit test and the parameter estimation by MLE method will be
performed by the reliability software Weibull++ version 7 from ReliaSoft.

2.4.2 Monte Carlo Simulation

For a complex repairable system, an analytical expression of the reliability and main-
tainability is not possible to obtain. The reason is that for a repairable system, the
model contains a multitude of probabilistic events, such as failure distributions and re-
pair distribution, along with other characteristics like uncertainties in the maintenance
response time, spare part availability and logistics. In these cases, the system is sim-
ulated by using discrete event simulation. The simulation technique is Monte Carlo
simulation. This technique is aimed at generating random TTFs and TTRs to model
the failure and repair processes of each subsystem, to obtain a model for the entire sys-
tem. The advantage of the simulation technique is that highly complex systems can be
modeled. There exist some disadvantages with this simulation technique. One is that
there is a lack of repeatability in the results, as each simulation yield new random num-
bers. In addition, each simulation depends on the number of simulations. This means
that a higher number of simulations will yield a more confident result on one hand, but
on the other hand, requires more time to run the simulation.

The simulation technique works as the following; the first simulation yields first a random
time to first failure, then a random time to first repair, then a random time to second
failure, then a random time to second repair, and so on, until the chosen mission time
ends. This sequence is repeated based on the number of simulations with each simulation
yielding a different sequence. All the different sequences are stored each time. The
number of simulations represents the number of different times to first failure, the number
of different times to first repair, and so on. The average of all times to first failure is
used as the time to first failure. Similar, the average of all times to first repair is used
as the repair time for the first repair. The same process applies for the rest of the
failures and repairs until the mission end time is reached. If the system consist of several
subsystems, this process is repeated for all of the subsystems, which compile the entire
system. After all simulations have run, quantities of interest can be estimated, such as
point availability, mean availability, point reliability, expected number of failures, among
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others. The estimates are based on the stored sequences of events, which illustrates how
the precision of the estimates depend on the number of simulations. How each random
TTF or random TTR is produced is by first generating a random number from 0 to
1, this random number, defined in the interval [0,1], is then used in conjunction with
the assigned probability distribution for that subsystem for failure or repair to derive a
random TTF or random TTR.

The Monte Carlo simulation will be performed by the use of the reliability software
BlockSim version 9 from ReliaSoft.



Chapter 3

Literature Review

This chapter presents the literature for this thesis. Some basic theory within probabil-
ity and statistics are given for mathematical understanding, before RAM performance
measures are defined and described. Finally, the concept of importance measure is de-
scribed.

3.1 Introduction

The concept of RAM analysis is being increasingly applied in several of today’s indus-
tries, ranging from the aviation, aerospace, and military industry, to nuclear power, oil
and gas, and the mining industry. As the demand of available plants and continuous
production increases, the need for reliable and maintainable systems and equipment is
essential and necessary. There exist numerous types of reliability analysis in the field
of reliability engineering today, from life cycle cost analysis and spare part analysis to
reliability-centered maintenance and RAM analysis and others. The common aspect of
all these different analyses is that they are applied for improvement of some sort. The
improvement can be increased control of asset and equipment condition, increased plant
and equipment availability, system failure reduction, better maintenance strategies in ad-
dition to several other aspects of improvement. In general, the analysis can be applied
for improvement with respect to health, safety and environment or towards production
and quality, maintenance, inventory or logistics. Nevertheless, the result of the analysis
is some sort of desired improvement with respect to the mentioned aspects. To be more
specific, in the oil and gas industry and the mining industry, the RAM analysis is gener-
ally applied for decision-making. Identifying and determining the decision which leads
to the most effective improvement is essential both with respect to cost and for O&M op-
timization. The RAM analysis will provide information to management, administration,
operation department, and maintenance department about the integrity of the asset,
performance indications, as well as implementation of improvement measures.

13
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In order to understand the mathematical definitions of RAM performance measures
some basic probability and statistics needs to be addressed. The upcoming sections will
present an introductory to some basic probability and statistics, along with definitions
and descriptions of RAM before describing the concept of importance measures.

3.2 Probability and statistics

First, consider a random variable X, which can take any value from 0 to ∞, hence is
said to be continuous. Now, consider the two functions f(x) and F (x), which is the
probability density function (PDF), and the cumulative distribution function (CDF),
respectively. Both of these functions are commonly used in probability and statistics, and
give a complete description of the probability distribution of a random variable.

3.2.1 Probability density function:

For a continuous random variable X, the PDF of X, is the function f(x), for any number
a and b, that satisfy the equation:

P (a < X < b) =

∫ b

a
f(x)dx (3.1)

[Walpole et al., 2012]

Which in other words, means that the probability that X is any value between a and b,
is the area under the probability density function. As probabilities can not be negative
and never greater than 1, the two following properties of the PDF are always true:∫ ∞

−∞
f(x)dx = 1 (3.2)

f(x) ≥ 0 (3.3)

[Walpole et al., 2012]

3.2.2 Cumulative distribution function:

For a random variable X, the CDF is the function F (x), defined by:

F (x) = P (X ≤ x) =

∫ x

0
f(x)dx (3.4)

[Walpole et al., 2012]
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Which in other words, means that the cumulative distribution function is the probability
that the value X, is less or equal to x.

The relationship between the PDF and the CDF is that the CDF is the cumulative
values of the PDF, meaning that a point on the CDF function curve, is the area under
the density function to the left of that point. Further, the PDF is the derivative of the
CDF, which provide the following expression on the relationship between the PDF and
the CDF:

f(x) =
d(F (x))

dx
(3.5)

[Walpole et al., 2012]

3.3 RAM performance measures

Recall that RAM stands for reliability, availability and maintainability. These perfor-
mance measurements provide the characteristics of the system and the related operation
and maintenance conditions. Each can be defined and expressed mathematically in terms
of probabilities.

3.3.1 Reliability

Definition

One commonly used definition of reliability is:

Ability of an item to perform a required function under given conditions for
a given time interval.

[ISO, 2006]

Reliability can also be defined probabilistic as:

The probability that an item (component, subsystem, or system) or process
operates properly for a specified amount of time (design life) under stated use
conditions (both environmental and operational conditions) without failure.

[Pohl, 2010]

In mathematical terms, the time to failure T , of an item, is defined as a continuous
random variable. The reliability, which is a function of time t, will then be expressed
as the probability that the time to failure T , is bigger than the operating time t. This
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means that the reliability is the probability that the failure has not occurred at time t,
and is given by:

R(t) = P (T > t) (3.6)

[Elsayed, 2012]

where R(0) = 1 and R(t) ≥ 0.

The reliability function can be derived from the cumulative distribution function F (x).
In reliability-sense the CDF is the probability that the random time to failure T is less
than or equal to the operating time t. The CDF for reliability is denoted F (t), and in
combination with the fact that the area under the probability density function is always
equal to 1, the reliability function is expressed as:

R(t) = P (T > t) = 1− F (t) (3.7)

The relation between the CDF and the PDF is given as:

F (t) =

∫ t

0
f(t)dt (3.8)

The reliability function is then obtained as:

R(t) = 1−
∫ t

0
f(t)dt (3.9)

R(t) =

∫ ∞

t
f(t)dt (3.10)

[Elsayed, 2012]

where f(t) is the probability density function of the time to failure.

The unreliability, or in other words the probability that the failure has occurred, is then
the opposite, and is defined as the probability that the time to failure T , is smaller than
or equal to the operating time t. This is the same as the CDF and is expressed as:

F (t) = P (T ≤ t) (3.11)

F (t) =

∫ t

0
f(t)dt (3.12)

[Elsayed, 2012]
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where F (0) = 0, F (t) ≥ 0, and f(t) is the probability density function of the time to
failure.

From the above discussion and the mentioned relationship between the PDF and CDF
in equation 3.5, the following expression is obtained for the relationship between the
probability density function and the reliability function:

f(t) =
dF (t)

dt
= −dR(t)

dt
(3.13)

[Elsayed, 2012]

Some probability distributions model the TTF and the life of items better, and are for
that reason called life distributions. Some of the most common life distributions are
the Weibull, log-normal and exponential distribution. The normal distribution is also
a good representative for modeling, but is not suited for reliability analysis, as its left
tail goes to negative infinity. This implies that it can take negative values and negative
times to failure make no sense. However, according to both Hamada et al. [2008] and
Modarres et al. [2009], the normal distribution can be used as long as it generates
a mean that is positive, and larger than the standard deviation by some factors. In
those cases the probability of obtaining negative times to failure is so low that it can
be considered negligible [Hamada et al., 2008], [Modarres et al., 2009]. To be on the
”safe” side, it is better to omit the use of the normal distribution. Instead, the use
of the log-normal distribution is a good substitute, given that the natural logarithm of
the times to failure are normally distributed. The log-normal distribution resembles the
normal distribution, but without the possibility of obtaining negative times to failure,
as the distribution cannot take negative values. The equations and characteristics of
the exponential 1-parameter distribution, the Weibull 2-parameter distribution, and the
log-normal distribution are listed in Appendix A.

Hazard rate

Another measure of interest in reliability estimations and in the evolution of failures,
is the probability of failure of an item in a small interval dt, given that the item has
not failed until the time of the beginning of the interval. This probability is given by
the product of the small interval dt, and the conditional probability of failure, called
the hazard rate usually denoted h(t), which is a function of time t [Zio, 2013]. This
probability can be expressed as the following:

h(t)dt = P (t < T ≤ t+ dt|T > t)

=
P (t < T ≤ t+ dt)

P (T > t)
=
f(t)dt

R(t)

(3.14)

[Zio, 2013]
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where T is the random time to failure variable, t is the operating time, f(t) is the prob-
ability density function, R(t) is the reliability function, and the hazard rate h represents
the number of failures per unit time t.

The hazard rate defines the lifetime distribution of the units, meaning the statistical
probability distribution of the time to (first) failure [ISO, 2006]. Another commonly
used notation for the hazard rate is λ. This notation have, in this study, been used
for the rate of the exponential distribution, and to avoid confusion, the hazard rate
is denoted h. The relation between the hazard rate, probability density function, and
reliability function is given as the following:

h(t) =
f(t)

R(t)
(3.15)

[Elsayed, 2012]

3.3.2 Availability

Definition

One commonly used definition of availability is:

Ability of an item to be in a state to perform a required function under given
conditions at a given instant of time or over a given time interval, assuming
that the required external resources are provided.

[ISO, 2006]

Availability can also be defined probabilistic as:

The probability that a system or component is performing its required function
at a given point in time or over a stated period of time when operated and
maintained in a prescribed manner.

[Ebeling, 1997]

Availabilities can be classified and estimated in various ways. According to [Elsayed,
2012] availabilities can be classified either as 1) time-interval availabilities or 2) downtime
availabilities. The time-interval availabilities include point availability, mean availability
and steady state availabilities. While downtime availabilities include inherent availabil-
ity, achieved availability and operational availability. The downtime availabilities are
steady state availabilities where different downtimes (repair and maintenance) are con-
sidered [Elsayed, 2012]. Hence, they are a subgroup of the steady state availability. In
this study only the time interval based availabilities are defined and expressed mathe-
matically along with the operational availability. The operational availability is included
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as it is the availability which is actually experienced after operation. Next, the different
time-interval availabilities along with the operational availability is described.

Point availability

The point availability is the availability at a specific time t and is the probability that
the system is available at time t. It can be expressed as:

Ap = P (system is functioning at time t) (3.16)

Availability considers both reliability and maintainability of the system. The point
availability is therefore the combination of the probability that the system has functioned
to time t, which is equal to R(t), and the probability that the system has functioned
since the last repair at time u. The probability that the system has functioned since the
last repair at time u is given by the expression:

∫ t

0
R(t− u)m(u)du (3.17)

[Elsayed, 2012]

Where m(u) is the renewal density function and 0 < u < t. Then, the point availability
function for time t, is the sum of these two functions given by:

Ap(t) = R(t) +

∫ t

0
R(t− u)m(u)du (3.18)

[Elsayed, 2012]

Mean availability

The mean availability is also known as the average uptime availability, and is the mean
time the system is functioning. It is given by:

Am =
1

t

∫ t

0
A(t)dt (3.19)

[Elsayed, 2012]
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Steady state availability

Steady state availability is defined as the availability as time approaches infinity, or after
a relatively long operating time t. It is given by:

A∞ = lim
t→∞

A(t) (3.20)

[Elsayed, 2012]

The actual availability is when all downtimes are considered, including corrective and
preventive maintenance, along with administrative time, logistics, and so on, and this
is only known when the operation is completed. For that reason this availability is
described as the operational availability and is given by:

Ao =
Uptime

Total time
=

Uptime

Uptime+Downtime
(3.21)

[Smith, 2001]

where uptime is the overall time the system or component is operating, downtime is the
overall time the system or component is not operating, and uptime + downtime is the
total time period being investigated. This expression can be divided further into the
specific uptimes and downtimes, but that is not considered in this study.

3.3.3 Maintainability and maintenance supportability

Maintainability and maintenance supportability addresses the duration of time the item
is in a down state/non-operating state. Here, the maintenance supportability perfor-
mance is considered to be a part of the maintainability performance. Whereas the
maintainability describes at which extent the item is repaired back to up state/operat-
ing state, the maintenance supportability describes at which extent the resources needed
for the repair or maintenance action is provided. More specially the maintainability per-
formance is the intrinsic factors directly related to the build-in characteristics designed
to help the maintenance of the item [ISO, 2006]. The maintenance supportability per-
formance is the extrinsic factors like logistics and spare parts designed to support the
maintenance actions [ISO, 2006]. For further clarification the term repair time is used
to define the time it takes to repair the item from a failed state to an operating state,
while the term restoration time or downtime is used to define the time it takes from the
item fails to when it is actually operating again.

The definition of maintainability is:

Ability of an item under given conditions of use, to be retained in, or restored
to, a state in which it can perform a required function, when maintenance is
performed under given conditions and using stated procedures and resources.
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[ISO, 2006]

Maintainability can also be defined probabilistic as:

The probability that a given active maintenance action, for an item under
given conditions of use can be carried out within a stated time interval, when
the maintenance is performed under stated conditions and using stated pro-
cedures and resources.

[IEC, 1990]

In mathematical terms, the time to repair T , of an item, is defined as a continuous
random variable. This random variable will have a probability density function like the
reliability function described in section 3.3.1. However, maintainability addresses the
probability that the repair has happened, and therefore the maintainability, which is a
function of time t, is expressed as:

M(t) = P (T ′ ≤ t) = F ′(t) (3.22)

[Dhillon, 2008]

where F ′(t) is the cumulative distribution function of the time to repair and T ′ is the
random time to repair variable.

In other words maintainability is the probability that the item will be repaired within a
time t. Saying that a system or a component has a maintainability of 80 % in one day, will
thus mean that there is 80 % probability that the system or component will be restored
or repaired within a day. The probability density function for the maintainability is
denoted f ′(t), then the maintainability functionM(t) can be further expressed as:

M(t) =

∫ t

0
f ′(t)dt (3.23)

[Dhillon, 2008]

where f ′(t) is defined to be the probability distribution for the repair time.

The probability distributions for the maintainability function can be the same as for the
reliability function, although the most used distributions are the exponential 1-parameter
distribution or the log-normal distribution. The reason for not applying other probability
distributions is that they often demand background information and thorough under-
standing of the maintenance actions performed, and the maintenance crew performing
the maintenance actions. If the Weibull 2-parameter distribution is chosen for describing
the repair process of some system and the shape parameter is positive, it will in reality
mean that the maintenance crew performing the maintenance actions are improving with
time, on the other hand, if the shape parameter is negative, it means that the mainte-
nance crew performing the maintenance actions are getting worse with time, which is



22 CHAPTER 3. LITERATURE REVIEW

rather unlikely. For that reason, the ”‘safer”’ choice is often to choose the exponential
1-parameter distribution or the log-normal distribution. Since some distributions better
represent repair times these distributions are referred to as repair distributions.

Repair rate

Another measure of interest in maintainability estimations is the repair rate. The repair
rate is equivalent to the hazard rate presented in section 3.3.1, and is denoted r if
constant, and r(t) if a function of time t. The repair rate represent the rate at which an
item is restored from a failed state to an operating state. Another often used notation
for the repair rate is µ. This notation have, in this study, been used for the mean of the
natural logarithm for the log-normal distribution, and to avoid confusion the repair rate
is in this study denoted r.

The factors which determine at which rate a component or system is brought back to
operating state or working condition, are a combination of the maintenance action itself
and the maintenance supportability. The next section will briefly describe the main
types of maintenance.

Maintenance

For maintenance actions there exist three basic types, namely corrective maintenance,
preventive maintenance, and inspection. In short, the three represent the following:

1. Corrective maintenance is the maintenance actions performed after failure of the
item. It is the actions necessary to restore the item back to operating state. The
actions are typically repair or replacement of components or subsystems, and is
performed randomly as failure times are not possible to know in advance.

2. Preventive maintenance is the maintenance actions performed before failure of the
item. It is the actions intended to prevent the failure. The actions can be many
but are typically component repairs, lubrication, and overhauls. For preventive
maintenance to be necessary and beneficial, two conditions have to be satisfied.
Firstly, the system or component have to experience wear-out, implying an increas-
ing failure rate. Secondly, the overall cost of the preventive maintenance actions
have to be less than the overall cost of the corrective maintenance actions.

3. Inspections are meant to discover hidden or future failures. The inspection tech-
niques can be many and consist of both visual and non-visual techniques. Common
for all inspections is that they do not alter the condition or age of the equipment,
as no repair or replacement takes place. An inspection can lead to repair or re-
placement but in that case the repair is either classified as corrective or preventive
maintenance.
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These maintenance types can be divided further into subtypes and disciplines. Some of
the most common are condition-based maintenance, periodic maintenance, design-out
maintenance, and opportunity maintenance. Which subtypes and disciplines that are
used in different companies and plants depend on the chosen and prepared maintenance
strategy and maintenance plan. It is, however, most common with a combination of all
three main maintenance types with associated disciplines, depending on probability of
failure and consequence of failure both with respect to health, safety, and environment,
production and quality.

The term maintenance is considered to be the actual repair time of the component or
system, whether corrective maintenance actions or preventive maintenance actions. The
term maintenance supportability is the excess downtime due to logistic delay, supply
delay, waiting time, or administrative time. The maintainability calculation can con-
sider the actual repair time used to bring the item back to operating condition or the
restoration time from failure back to operation depending on the desired goal.

3.4 Importance measures

In the mining industry, as well as other industries, it is desirable to identify the most
critical subsystem for knowing what subsystem will yield the most effective improvement
and knowing where to focus and allocate resources and time. In order to obtain the most
critical subsystem the concept of importance measures can be used. Instead of describing
it as the critical subsystem, it is perhaps better to describe it as the subsystem of highest
importance, as the result of the importance measure calculation will provide the means
of allocating resources and time towards the subsystem which will increase reliability or
availability the most. By that reason, the calculation of importance measures can be
said to be a tool for decision-making in the optimization of O&M.

Birnbaum [1969] was one of the first, if not the first, to derive an expression for the
relative importance of the reliability of one component towards the reliability of the
entire system. The expression by Birnbaum [1969] is the following:

IR(t) =
∂RS(t)

∂Ri(t)
(3.24)

[Birnbaum, 1969]

The expression gives the relationship between a change in reliability of one component
and the associated total change in reliability of the system. Since Birnbaum [1969] first
introduced this relative simple derivative, it has been used by mathematics and engineers
extensively, and some have used the same principles to derive similar expressions for
the availability importance and maintainability importance (see [Barabady and Kumar,
2006]). Even though the expression is simple, it is powerful and very much applicable in
several situations. Unfortunately, for a complex repairable system, the expression falls
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short. For a repairable system, this expression is not applicable, and the reason is that
an analytical relation between the system reliability and reliability of the components are
too difficult to obtain. For complex systems, modeled through simulation, there are other
means available for identifying the subsystem with highest importance. One method
is by investigating the relative relationship between component failures or component
downtime and how they contribute to the system total.



Chapter 4

Case Study I:
Applying RAM Analysis to the
Mining Industry

This chapter presents case study I of this thesis. The case study is a RAM analysis, which
has been conducted for the process plant at the mining company Sydvaranger Gruve AS.
First, a brief introduction to the cooperating company will be given, before the overall
process at the plant is described. Furthermore, the scope of analysis is presented. Fi-
nally, the analysis is carried out and the results along with suggestions for improvement
presented. The chapter aims to answer the research question on how to use the result of
RAM analysis to improve system availability performance.

4.1 Introduction

In the mining industry, the availability and production demand are continuously increas-
ing. Dhillon [2008] state that the competitive global economy is forcing mining companies
to modernize its operations through increased mechanization and automation. Heavier
and more complex machines are put to use every day to increase production rates and
increase revenue, and thereby profitability [Dhillon, 2008]. With the demand for higher
plant availability comes the need for more reliable equipment, systems, and machinery,
and as a consequence an increased maintenance cost for most companies. The overall
maintenance cost is especially high for the mining industry, where equipment experience
such harsh environments and failure mechanisms, in addition to the fact that the overall
mining process is very equipment dependent [Galar et al., 2014]. According to Lewis and
Steinberg [2001], the maintenance related cost is approximately 30 to 50 % of the overall
mining costs. With such high maintenance cost, focus should be directed at designing
equipment and machines as reliable and maintainable as possible. The main goal of this
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case study is to apply the concept of RAM analysis for improvement of the availability
performance. In the mining industry, equipment and systems degrade at a rapid pace.
This is a result of the different failure mechanisms they experience, which ranges from
shock and impact damages from several hundred kilos rocks, to erosion and other wear
mechanisms from high velocity movement of small rock particles. Applying the concept
of RAM analysis for O&M and decision-making will lead to a safer and more reliable
plant, resulting in higher production and less critical breakdowns and downtime.

4.1.1 Sydvaranger Gruve AS

This case study is conducted in cooperation with the mining company Sydvaranger
Gruve AS (SVG). SVG is a mining company located in northern Norway in a town
called Kirkenes. The production consist of high-grade iron ore concentrate and the pro-
cess consist of blasting, cobbing, primary crushing, secondary crushing, primary grind-
ing, secondary grinding, separation, and filtration. The mining company, owned by the
Australian company Northern Iron Limited, was established in 2007, and after refurbish-
ment of the old mine and processing plant and processing infrastructure the production
started in 2009 [Sydvaranger Gruve AS, 2015]. Today, the product which consist of
approximately 68 % iron ore and less than 5 % silica is shipped to the steel industry
worldwide [Sydvaranger Gruve AS, 2015].

4.1.2 Processing plant

The mining operations at Sydvaranger Gruve are located in two areas, the mine site in a
placed called Bjørnevatn and the processing plant in the town Kirkenes. In Bjørnevatn
the ore is blown out from the mountain with explosives, then cobbed and crushed in
the primary crushing plant. From Bjørnevatn the primary crushed ore is transported
approximately 8 kilometers to the process plant in Kirkenes. There, the ore is first
crushed into even smaller ore sizes by one secondary crusher and two tertiary crushers
in the secondary crushing plant. From the crushing plant, the ore is transported to the
separation plant adjacent to the secondary crushing plant by conveyors. In the separation
plant, the ore is grinded by one singular primary ball mill in the primary grinding system.
The primary mill and the secondary crusher in the crusher plant are considered to be
the most critical systems in the overall process plant (crusher and separation plant).
The reason being that those two systems are large and complex mechanical systems,
in combination with the absence of redundancy. If the mill or crusher breaks down for
some reason, the entire process will eventually stop. For instance, in 2013 the primary
mill broke down causing total plant downtime of 28 days. For that reason, the secondary
crusher system and the primary mill system are important and critical systems, which
needs to be maintained accordingly. That being said, there exist other systems without
redundancy in the plant like conveyors and pumps. However, these are smaller and less
expensive systems which are easier repaired or replaced. After the primary grinding
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the gangue (material other than ore which is not considered worthy of producing) is
separated from the ore by primary magnetic separators. The process is now a wet
process, which means that the material is a slurry consisting of ore, water and other
particles like silica. After the primary magnetic separators the ore is grinded even
further by 5 smaller secondary ball mills working in parallel in the secondary grinding
system. Even though these secondary mills are needed in the process, because they work
in parallel, a breakdown of one or two mills are not that critical as the grinding process
can continue, even if it is on a reduced level. From the secondary grinding system, the
ore is further separated from the gangue by the use of secondary magnetic separators and
tertiary magnetic separators. After the last process of magnetic separation the material,
which at this point is a slurry containing ore, a small part silica and water is filtrated and
dried in the filtration process. The filtration system consist of one large vertical plate
pressure filter and three vacuum disc filters. The three vacuum disc filters (in series)
work in parallel with the pressure filter, compiling the filtration system. A system failure
on the filtration system will only occur when all disc filters and the pressure filter breaks
down simultaneously, although the production rate will be reduced accordingly. It is very
important that the filtration system is able to dry the concentrate sufficiently. If the
concentrate is not dry enough, there will be a too high percentage of liquid content, which
could cause the ship to capsize during transportation to the marked. After filtration,
the concentrate is transported to several large silos for storage before shipment.

Maintenance in the processing plant

The maintenance for the processing plant is divided into corrective maintenance (CM)
and preventive maintenance (PM) where the preventive maintenance consist of both
periodic based maintenance and condition based maintenance. The periodic maintenance
normally has a higher priority than the condition based maintenance, which means
that the process plant has scheduled shuts and preventive maintenance task based on
equipment condition are moved to the appropriate shuts. Exceptions are made if the
condition of highly critical equipment is so poor that it is likely to break down prior to the
shut. In this analysis the preventive maintenance is defined as scheduled shuts rather
than actual preventive maintenance affecting the system. In the shuts equipment is
inspected, checked and tested, and more than often the work done cannot be considered
as PM. The shuts are divided into ten minor shuts (24 hours) and two major shuts
(7 days) during a year, resulting in one shut each month. In the analysis, the minor
shuts are denoted PM 1 and the major shuts are denoted PM 2. The minor shuts are
scheduled every month besides the months where the two major shuts are scheduled. The
two major shuts are usually scheduled in the months October and March. According
to experts at the SVG, the major shuts needs to be scheduled in the mentioned months
as the temperature during the winter months (December, January and February), in
this part of northern Norway, could drop to below minus 30 degrees causing a shut to
be problematic for many reasons. Therefore, to get the optimum interval and at the
same time the best conditions for the shut, the major shuts are scheduled in one of
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the spring months and autumn months. During these shuts all tasks such as cleaning,
inspections, and, in some cases, other repairs or replacements, are being executed by
several departments in the company including production, mechanical, electrical, and
automation, along with the preventive maintenance group.

4.2 Scope of analysis

The first objective of the analysis was to consider the primary mill at Sydvaranger Gruve.
As mentioned in section 4.1.2 the primary mill is one of two most critical systems in the
process plant. This was the main reason for choosing that system for the analysis. The
analysis was supposed to focus only on the primary mill, and to consider operational
failures of the parts and components of the mill causing system failure and mill downtime.
After discussion with experts at the company, it was decided that such an analysis
would most probably be of little use with respect to O&M optimization and availability
improvement. The scope was reconsidered, and the second and final scope was to study
the primary grinding system at the processing plant. This resulted in considering the
surrounding subsystems of the primary mill, including the primary mill itself, and focus
on the subsystems causing primary mill downtime. Analysing such a system would
hopefully provide a better potential and result for improvement. Whereas the level of
the first scope was down on parts and components, the level of the second scope would
focus on a larger system composed of several subsystems.

4.2.1 Primary Grinding System

The primary grinding system includes all systems between the crusher system and the
secondary grinding system. Although that means auxiliaries such as water, air and
power, along with cranes and other additional equipment the analysis was only to con-
sider the specific systems used in the process flow. The defined system with system
boundary, reliability block diagram and assumptions are presented in section 4.3.1.

4.3 System RAM analysis

The following sections presents the different steps conducted in the RAM analysis. The
different steps are:

• System definition, assumptions, and limitations

• Data analysis

• Data evaluation

• TTF and TTR data analysis
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• RAM analysis

• Results, discussion, and suggestions for improvement

4.3.1 System definition

When conducting a system analysis the first step is to define the system. This implies
defining what systems to include in the analysis, and at what level of focus the analysis
should have with respect to systems, subsystems, assemblies, parts, or components.
This can dependent on available data or it depend on what one wish to obtain from
the analysis. The system is defined to be the primary grinding system at the process
plant and more specific the separation plant. The overall system consist of the following
thirteen subsystems:

• CV026 (conveyor)

• CV028 (conveyor)

• CH024 (chute)

• CH025 (chute)

• ML001 (ball mill)

• HO001 (hopper)

• CH026 (chute)

• CV060 (conveyor)

• BN015 (scats bin)

• CV061 (conveyor)

• PP001 (pump)

• PP002 (pump)

• CC001 (cyclone cluster)

Out of these thirteen subsystems the scats bin (BN015) is left out as it is not considered
critical in the process flow. The three chutes and the one hopper (CH024, CH025, CH026
and HO001) are included in the system but is considered to be so reliable that they do not
fail. This assumption was needed as specific data on those subsystems was not available.
The limitations for this analysis is mentioned in section 1.5.2. The lack of available data
for the chutes and the one hopper subsystem have resulted in the assumption that they
are not subject to failure.

The defined system is better illustrated by a system boundary. Using a flow chart from
the process plant and a dashed line containing the subsystems, a system boundary has
been established. The system boundary is reported in Figure 4.1.
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Figure 4.1: System boundary of primary grinding system. Adapted from flow diagram
SVG-05–P-000/106 from SVG.

Assumptions for analysis and modeling

The following assumptions have been made for the system and the analysis for simplifi-
cation and for being able to model the behavior of the system.

• Repair is initiated immediately upon failure.

• Corrective repair actions on all subsystems are assumed to bring the item back to
bad-as-old condition.

• Some subsystems experience a decreasing failure rate based on collected failure
data. It is assumed that all subsystem receive preventive maintenance. This is a
result of mining engineering, which is necessary to keep them operational.

• All preventive maintenance tasks are assumed to bring the subsystems back to
bad-as-old condition.

• There are sufficient maintenance personnel to handle simultaneous failures.

• Some subsystems have been assumed to be reliable and not subject to failure, these
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subsystems include chutes and hopper subsystems.

• The transition between pump 1 and pump 2 is considered not possible to fail. In
addition, pump 1 is the primary pump and pump 2 is the secondary pump.

• The duration of the scheduled shuts for preventive maintenance can in reality vary,
however assumed to follow the planned schedule which is 10 stops for 24 hours and
two stops for 7 days during one operating year.

• Ore is assumed to always be available. The case where subsystems need to be shut
down as a cause of no ore feed is not considered.

• Water, electricity, air, and other auxiliaries are assumed to always be available.

Two assumptions need further clarification and explanation. First, the assumption that
pump 1 is the primary pump and pump 2 is the secondary pump implies that when
pump 1 fails, pump 2 takes over, but after pump 1 is repaired it is re-activated again
(pump 2 only operates when pump 1 is under repair). Secondly, the usual assumption
on preventive maintenance actions is that they restore the item back to good-as-new
condition. However, for this case the data is limited with respect to both failures and
the short time period the data is collected from. In addition, the preventive maintenance
actions that are performed on the subsystems are not always preventive maintenance
tasks which alters the ”age” or condition of the subsystems. Often the subsystems, as a
consequence of mining engineering, require calibrations, lubrication, checks etc. which
bring the system down but do not improve the subsystem in some way. Recall that the
preventive maintenance task are in this case defined as scheduled shuts. Furthermore,
as will be seen in section 4.3.4, some subsystems reflect a decreasing failure rate, which
contradict the concept of preventive maintenance. However, to overcome the mentioned
issues and challenges with limiting data and mining engineering requirements, in addition
to illustrate how to model and simulate a system, the preventive maintenance actions are
included, and are assumed to bring the subsystems back to bad-as-old condition.

Reliability Block Diagram

From the system boundary reported in Figure 4.1 and from discussions with experts
at the mining company, a reliability block diagram (RBD) for the system has been
established. The RBD is reported in Figure 4.2, where the solid dark green blocks are
the subsystems subject to failures, and the light green dashed blocks are subsystems not
subject to failures. The larger light green box containing pump 1 and pump 2 indicates
that these two pumps works in parallel, where pump 1 is the active block indicated by
[A], and pump 2 is the standby block indicated by [S:1]. The rest of the subsystems
work in series.
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Figure 4.2: Reliability Block Diagram for the primary grinding system.

4.3.2 Data analysis

To get a clearer view of the failures of the subsystems, a bar chart can be used which
presents the failure frequency of the different subsystems compared to the total number
of failures. The bar chart is reported in Figure 4.3. As Figure 4.3 illustrates, the CV026
subsystem is the one with most failures.

Figure 4.3: Failure frequency of the subsystems in the primary grinding system.

Another way of illustrating the effect of the failures is by using a bar chart of the down-
time frequency of the subsystems. In Figure 4.4 the downtime frequency is reported,
showing that the ML001 subsystem is the subsystem causing the most downtime on the
grinding system. The failure frequency and the downtime frequency can be combined in
order to investigate the average downtime per failure for each subsystem. By combining
the two graphs it can be found that CV026 subsystem has the highest number of fail-
ures of all subsystems, however, only contributing to the fourth most downtime on the
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grinding system. From that observation it is evident that the reliability performance of
this subsystem should be improved, rather than its maintainability performance.

Figure 4.4: Downtime frequency of the subsystems in the primary grinding system.

4.3.3 Data evaluation

To be able to verify the IID assumption the TTFs and TTRs needs to be sorted and
arranged chronological, in addition the cumulative TTFs and cumulative TTRs needs
to be obtained. Table 4.1 lists a portion of the data set for the ML001 subsystem for
illustration.

Table 4.1: Portion of TTF and TTR data set for ML001 subsystem

No
TTF
(days)

TTR
(hours)

Cumulative
TTF

Cumulative
TTR

1 13 4 13 4
2 49 3 62 7
3 25 3 87 10
4 2 6 89 16
5 5 4 94 20
6 25 12 119 32
7 2 4 121 36
8 9 8 130 44
9 7 3 137 47
10 2 1 139 48
11 25 0,5 164 48,5
12 6 12 170 60,5
13 11 1 181 61,5
14 16 2 197 63,5
15 37 1 234 64,5
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IID assumption

In order to select appropriate statistical approaches for modeling the system, the as-
sumption that the data sets are independent and identically distributed needs to be
verified. This is achieved by performing trend tests and serial correlation tests on each
of the data sets. Both the trend test and the serial correlation tests have been conducted
graphically.

Trend test
In Figure 4.5a the trend test for the TTF data for the ML001 subsystem is reported.
As the figure illustrates, the data points indicate an approximately straight line, which
implies a data set free of trend, which further implies a identical distributed data set. The
same test was performed for the rest of the subsystems (both for TTF and TTR data)
which revealed that all data sets are trend free and therefore identical distributed.

Serial correlation test
In Figure 4.5b the serial correlation test for the TTF data for the ML001 subsystem
is reported. As the figure illustrates, the data points are randomly scattered and no
correlation is found, which results in independent data points in the data set, i.e., no
correlation among the data points. The same test was performed for the rest of the
subsystems (both for TTF and TTR data), and the same conclusion as for the ML001
subsystem could be drawn for the rest of the subsystems. Overall conclusion is that the
IID assumption is valid for all data sets (both for TTF and TTR data).

(a) Scatter plot of the cum. failure number
versus the cum. TTFs for ML001 failure times.

(b) Scatter plot of the ith TTF versus the
(i-1)th TTF. TTFs for ML001 failure times.

Figure 4.5: Trend test (a) and serial correlation test (b) for TTFs from ML001
subsystem.
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4.3.4 TTF and TTR data analysis

In TTF and TTR data analysis the goal is to model the failure and repair processes of
each subsystem. This is achieved by determining a probability distribution which best
fit the failure data and a probability distribution which best fit the repair data. Then,
estimate associated parameters which best represent the data. The next two sections
will present the TTF and TTR data analysis for the TTF and TTR data sets.

TTF data

For modeling the failure data for the subsystems, the exponential 1-parameter distribu-
tion, the Weibull 2-parameter distribution, and the log-normal distribution have been
selected. These three distribution are well known to be appropriate for modeling failures
of mechanical systems, as well as having different characteristics to cover a wide area
of types of data. To determine the best fitted distribution for the data sets the modi-
fied K-S goodness-of-fit test have been used. The parameters for the distributions are
estimated using the MLE method. Both for the modified K-S test and for parameter
estimation using MLE the reliability software package Weibull++ version 7 has been
used. The result of the modified K-S test for the three distributions, the best fitted
distribution, and estimated parameters are listed in Table 4.2.

Table 4.2: Goodness-of-fit test for TTF data

Subsystem K-S test Best fit Parameters

Exponential
2-parameter

Weibull
2-parameter

Log-normal

CV026 0.9999 0.9978 0.9537 log-normal σ= 1.1999;
µ= 1.1213

CV028 0.4964 0.0229 0.0005 log-normal σ= 1.4796;
µ= 2.6206

ML001 0.0944 0.2838 0.3676 exponential λ= 0.0603
1-parameter

CV060 0.8733 0.0103 0.0016 log-normal σ= 1.6515;
µ= 2.2419

CV061 0.8318 0.3113 0.3275 Weibull β = 0.8021;
2-parameter η = 14.6206

PP001 0.2674 0.1751 0.0852 log-normal σ= 1.5613;
µ= 2.6669

PP002 0.4723 2.72× 10−6 2.13× 10−7 log-normal σ= 2.3060;
µ= 2.8691

CC001 0.3026 0.047 0.1739 Weibull β =0.8000;
2-parameter η = 39.7887
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TTR data

For the repair data only the log-normal distribution has been chosen to model the repair
of all subsystems. According to Kline [1984], Zapata et al. [2008], and the Center for
Chemical Process Safety [CCPS] [1998], the best distribution to model repair data is
the log-normal. Both Kline [1984] and Zapata et al. [2008] conducted studies based
on investigating a larger amount of data sets and looking at which distribution fits the
majority of the data sets. The authors concluded that the log-normal distribution was
the best fit, and in the study of Kline [1984] it was shown that the only distribution
which could be used to model the repair of all data sets in the study was in fact the
log-normal distribution.

The MLE method has been used to estimate parameters from the log-normal distribu-
tion for the different TTR data sets, with the help of the reliability software package
Weibull++ version 7. The subsystems with the log-normal distribution and estimated
parameters are listed in Table 4.3.

Table 4.3: Log-normal distribution for TTR data with estimated parameters

Subsystem Distribution Parameter estimate

CV026 log-normal σ = 0.6374, µ = 0.6031
CV028 log-normal σ = 1.0281, µ = 1.0485
ML001 log-normal σ = 1.1324, µ = 1.1541
CV060 log-normal σ = 0.8197, µ = 1.0588
CV061 log-normal σ = 0.8057, µ = 0.8026
PP001 log-normal σ = 1.1507, µ = 1.2106
PP002 log-normal σ = 1.3390, µ = 1.6944
CC001 log-normal σ = 1.0034, µ = 1.3609

4.3.5 RAM analysis

In a RAM analysis, the goal is to achieve an improvement of either of the three RAM
performance measures. This can be achieved by several methods, techniques, and ap-
proaches. Although, when improving the characteristics of reliability or maintainability
it will result in improved overall availability. The approach for RAM analysis is to model
the defined system based on the model of each subsystem obtained in the TTF and TTR
data analysis. In this case, the defined system, with its subsystems and associated distri-
butions and parameters, will be simulated by the use of the reliability software package
BlockSim version 9. The software simulate by Monte Carlo simulation. The Monte
Carlo simulation method is previously discussed in section 2.4.2.
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System simulation

When simulating a system using Monte Carlo simulation it is critical that the number
of simulations are sufficient as the confidence of the simulation depends on the number
of simulations. In addition, as for this case, it is important that the simulation end time
is sufficient for the system to settle and the mean availability to reach a constant value.
In this case, the chosen number of simulations are 10 000. That number of simulations
should be sufficient, while at the same time be practical to simulate with an ordinary
computer, with respect to time needed for simulation. In Table 4.4 the system simulation
details are listed.

Table 4.4: System simulation details

Simulation detail Parameter Explanation

Simulation period 5 years For time perspective
Number of simulations 10 000 For simulation confidence
Failure distributions See Table 4.2 Historical failure data
Repair distributions See Table 4.3 Historical repair data
CM tasks When item fails Continuing production
PM 1 Every month* (constant) Based on TUM**
PM 2 Twice a year (constant) Based on TUM**

*Except for the months were preventive maintenance task 2 is assigned.

**TUM, Time Usage Model for plant Operation and Maintenance at SVG.

Analysis and simulation results

This section will present some of the most important results obtained from the simulation
for a 5 years simulated operating time. The main results are listed in Table 4.5. After
5 years of simulation, the mean availability approaches nearly a constant value. That
value, as can be seen in Table 4.5, is 91.22 %. Furthermore, the expected number of
failures is 195.95 and the number of PMs is 59.89.

Additionally, the number of expected failures causes a CM downtime of 974.16 hours
during 5 years. The number of PMs causes a PM downtime of 2 869.90 hours. That
gives a total maintenance downtime of 3 844.06 hours for 5 years of simulation. The
number of downing events and preventive maintenance actions are not a complete value
or a whole number as a result of the nature of the Monte Carlo simulation.

The mean availability graph during the simulation is reported in Figure 4.6. As the
figure shows, the availability drops at each scheduled PM 1 and PM 2 task. Referring
to the discussion on the preventive maintenance tasks and the bad-as-old condition in
section 4.3.1, it is established that these scheduled preventive maintenance tasks are
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Table 4.5: List of simulation results

Performance measures Result

Mean availability 91.22%
System uptime 3 844.06 hours
System downtime (CM) 974.16 hours
System downtime (PM) 2 869.90 hours
System downtime (Total) 3 844.06 hours
Expected number of system failures 195.95
Number of PMs 59.89

required as a result of mining engineering concerns, although they reduce the mean
availability. For instance, conveyors are brought down and locked for cleaning and
inspection at these schedules shuts. However, there is not performed any preventive
maintenance on them which alter the ”age” or condition of the conveyors.

Figure 4.6: Mean availability of the primary grinding system during a simulation
period of 5 years.

In Figure 4.7 the point availability during the first year of operation is reported. As
can be observed from the figure, the point availability drops to 0 at each preventive
maintenance task and remains 0 until the tasks are finished. Furthermore, the relation
between the mean availability in Figure 4.6 and the point availability in Figure 4.7 is
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that the mean availability is simply the area under the point availability curve.

Figure 4.7: Point availability of the primary grinding system during the first year of
simulation.

4.4 Discussion and suggestions for improvement

The main aim of system analysis is to improve the system itself or characteristics of
the system in order to improve O&M and the availability performance of the system.
The production demand in the mining industry is constantly increasing. To meet the de-
mand it is necessary to identify and implement improvement measures in an availability-
effective and cost-effective manner for overall availability improvement. There exist sev-
eral approaches and methods for improvement. In this case study two aspects of improve-
ment will be discussed. The first aspect concerns modifying the interval of preventive
maintenance for optimum mean availability. Identifying the optimum, or near optimum,
preventive maintenance interval is crucial for meeting today’s high production demand.
The second aspect of improvement concerns improving the reliability performance and
the maintainability performance of the system in order to increase mean availability.
This will be achieved by first identifying the most critical subsystem, then improvement
measures will be identified and implemented, and the system simulated with the im-
plemented measures. The simulation results from each improvement measure can be
compared in order to determine the most effective improvement measure.
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4.4.1 Aspect 1: Identifying optimum PM interval

There exist several approaches for identifying optimum PM interval. Some of the most
common involve using either cost or safety and reliability. As stated in section 1.5.2,
cost is not included in this analysis. Approaches for improvement using reliability is
often applied for safety systems and where the consequence of failure is very severe with
respect to safety. These approaches have not been considered. In this case the aspect
of improvement is to perform a trial and error method for different PM intervals in
order to increase mean availability of the system, and thereby identifying the optimum
interval. The method involves creating five scenarios where the only varying parameter
is the interval of the PM 1 (minor shuts). As a result of mining engineering concerns,
the interval of the PM 2 (major shuts) is required to be approximately twice a year and
not subject to change. The first scenario evaluated of the five scenarios is the baseline
condition of the system with a PM 1 interval of 1 month. The next four scenarios are
with PM 1 interval of 2 months, 3 months, 4 months, and 5 months. The results from
all five scenarios are listed in Table 4.6.

Table 4.6: Simulation results as the interval of PM 1 changes

PM 1
interval*

Availability
(%)

Total
downtime

CM
downtime

PM
downtime

Expected
failures

Scenario 1** 91.2236 3 844.06 974.16 2 869.90 195.95
Scenario 2 92.8239 3 143.13 988.24 2 154.89 198.84
Scenario 3 93.3614 2 907.70 991.45 1 916.25 199.58
Scenario 4 93.3595 2 908.55 992.22 1 916.33 199.77
Scenario 5 93.3562 2 909.97 993.37 1 916.60 199.65

*The different scenarios represent the monthly interval of PM 1.

**Scenario 1 is also the baseline system condition.

Based on the results from the simulations where the PM 1 interval changes a graph
has been drawn for the PM interval versus the mean availability value. The graph is
reported in Figure 4.8.

Three main results needs to be highlighted from the five simulations:

• As both Table 4.6 and Figure 4.8 illustrate, the interval of PM 1 that provides the
highest mean availability is the interval of 3 months.

• Table 4.6 can reveal that the CM downtime increases from scenario 1 to scenario
3 but remains nearly the same from scenario 3 to scenario 5.

• Table 4.6 can reveal that the PM downtime decreases from scenario 1 to scenario
3 but remains nearly the same from scenario 3 to scenario 5.

Stating the optimum interval and the behavior of the CM downtime and PM downtime
is not adequate in this case. With the characteristics of the model for this system, and
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Figure 4.8: Availability of the primary grinding system as the interval of PM 1 changes.

with its associated distributions and parameters, some explanation is needed. From the
estimated parameters of the failure rate of the subsystems in Table 4.2, some of the
subsystems reflect decreasing failure rates. This imply the subsystems are improving
with time. How some subsystems have a decreasing failure rate have an impact on the
overall system can be seen by plotting the overall system failure rate. The system failure
rate plot is reported in Figure 4.9, and shows that the total system failure rate is also
decreasing by time. The PM downtime remains the same from scenario 3 to scenario 5.
This can be explained by the fact that increasing the interval of PM 1 from 3 months to
5 months do not increase the overall number of PMs during the simulation. The reason
being that PM 2 is scheduled at each 6 month, with a higher priority, which will cancel
out PM 1 tasks whenever they overlap. This results in the total number of PMs being
identical for both scenario 3, 4 and 5. The CM downtime increases from scenario 1 to
scenario 3. This can be explained by the fact that a higher downtime due to PMs for
scenario 1 and scenario 2, will result in less uptime, and thereby a lower probability
of failure, resulting in lower CM downtime compared to scenario 3, 4 and 5. These
explanations on the behavior of the CM downtime and the PM downtime needs to be
seen in light with the bad-as-old assumption made on the preventive maintenance tasks,
and the fact that the overall system failure rate is decreasing.

In a reliability sense, for a decreasing failure rate imposing PM actions actually do not
provide any improvement of the system. As PM actions will bring the system down,
it will only impose more downtime and reduce the mean availability. Strictly speaking,
removing all preventive maintenance tasks would actually provide the highest availability
by time. In industry, this is often not possible, as some subsystems (like mechanical
mining equipment in this case) require some different tasks regardless. Some systems
need calibration, lubrication, checks etc. These tasks are more associated with mining
engineering and do not actually modify the condition or ”age” of the equipment some
how.
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Figure 4.9: System failure rate of the the primary grinding system.

The reason for the decreasing failure rates for some subsystems in this system can be
difficult to explain. One reason can be the limiting period of time data is collected
from, and thereby the limiting failure data. This limitation results in a model that
do not reflect the actual behavior of the system. There is always uncertainty related
to modeling complex systems like the defined system in this case study. Being aware
of different concerns and in which degree the model reflects the real behavior of the
system, is important when assessing the analysis output and results. To overcome and
tackle this situation, additional detailed operational data can be used if available. In
addition, expert judgment or consultation with maintenance personnel can yield ideas
and indications on maintenance intervals whenever operational data is lacking.

4.4.2 Aspect 2: Improving reliability or maintainability

Before determining improvement measures for the reliability and maintainability the
most critical subsystem should be identified, as this help in allocating resources most ef-
fectively. To identify the most critical subsystem the Downtime Criticality Index (DTCI)
from ReliaSoft can be used [ReliaSoft, 2014]. The DTCI is a relative index which con-
siders each blocks downtime contribution to the total system downtime. The DTCI plot
for a simulating period of 5 years is reported in Figure 4.10.
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Figure 4.10: DTCI plot of the system illustrating each subsystem downtime to the
system total downtime.

As the plot in Figure 4.10 shows the subsystem which contributes to most downtime
of the system is the ML001 subsystem. Identifying the most critical subsystem can
be beneficial for many reasons. It will help in the decision-making regarding where to
allocate resources, and if time is limited it will indicate where the focus should be for
optimized improvement. When the most critical subsystem is identified, the reliability
performance and maintainability performance of that subsystem can be improved in
order to improve overall system availability performance.

Reliability improvement

There are several actions which can be taken in order to improve system reliability
performance. More commonly, components can be changed with other components out
of a different material, which is more resistant to wear, or the design of the system can be
changed in order to increase system reliability. According to the production department
at Sydvaranger Gruve, the company is considering the implementation of an additional
mill system, similar to ML001. For that reason, it is appropriate to choose this scenario
for reliability improvement. An additional subsystem identical to the critical subsystem
is implemented for added redundancy to the system. The new mill configuration is that
one of the mill subsystems is in active mode, while the other is in standby mode (similar
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to the pump configuration of pump 1 and pump 2). When the active subsystem fails, the
other will be activated and take over, and the failed subsystem will be repaired. In that
way, the production rate stays the same as before and the probability of system failure
for the mill is highly reduced, as the two subsystems will work in parallel. Which means
that unless the active subsystem fails and the new subsystem which takes over fails
before the first is repaired, this part of the system will never go down. This addition
and implementation results in a modified RBD of the system. The modified RBD is
reported in Figure 4.11.

Figure 4.11: Reliability Block Diagram for the primary grinding system with added
redundancy.

Improving reliability is often expensive and difficult to achieve in the operating phase
of a process plant. As practical issues, such as increased space and production stops,
are often needed. The ideal situation would be to assess the reliability in the design
phase and then deciding on the best options, although this is rarely the case. As for this
case, the mill system is identified as the most critical system for improvement. In reality
this system is highly expensive and occupies a larger area of the plant. However, some
improvement measures are possible, like using new components which are more resistant
to wear, which will last longer. In this case, the option for improvement has been to
implement an additional mill working in parallel with the original. Since production and
throughput capacity is not considered, instead of both working in parallel simultaneously,
one system is active while the other is in standby. This will increase the availability of
the total system in some degree. The result from the original configuration compared
to the new with the extra mill system is listed in Table 4.7. As can be seen the number
of system failures will be halved and the corrective maintenance downtime reduced by
approximately 600 hours during the simulation period.

Furthermore, the system reliability will improve with an additional mill, as two mills
working in parallel are more redundant than just one single mill. How the system
reliability is improved is illustrated by an overlay plot of the point reliability, with one
mill in series and two mills in parallel. The overlay plot is reported in Figure 4.12.

The mill is the critical subsystem in the grinding system not only based on the fact that
it contributes to most downtime but because it is the system which the primary grinding
system is surrounding. The mill is the actual equipment grinding the ore, and without



4.4. DISCUSSION AND SUGGESTIONS FOR IMPROVEMENT 45

Figure 4.12: Overlay plot of point reliability for one mill (series) and two mills
(parallel).

the mill, the grinding system cannot perform its required function. The other subsystems
are, of course, important systems, but are considered to be additional systems necessary
in the process flow.

The mill is also the main reason for the two major shuts twice a year. The inner surface
of the mill shell is covered with lining, which has the purpose of protecting the mill shell,
and also to improve the movement of the charge (combination of slurry and mill balls)
for optimum grinding and throughput. After the mill has operated for a certain period,
the lining is worn-out and needs to be changed (relined). That interval is approximately
6 months for this particularly ball mill. If an additional mill is implemented operating
in parallel, then one mill can be down for relining and maintenance, while the other is
operating. In that case, the two preventive maintenance task of 7 days duration could
be removed and the yearly downtime reduced by 14 days. The result of removing both
PM 2 tasks from the maintenance plan is listed in Table 4.8. As can be seen in the table,
the availability is increased by 3,2263 % when no PM 2 task is included.

The removal of PM 2 from the maintenance schedule is just an illustration, it is not
realistic to totally remove the two major shuts. The reason is because the two major days
shuts also include numerous other important maintenance tasks on several equipment
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Table 4.7: System availability considering an improved reliability performance of
ML001 (1)

Reliability
characteristic

Availability
(%)

Total
downtime

CM
downtime

PM
downtime

Expected
failures

In series 91.2236 3 844.06 974.16 2 869.90 195.95
In parallel* 92.5752 3 252.04 374.62 2 877.41 97.78

*Redundancy added to system by using an identical block as standby.

Table 4.8: System availability considering an improved reliability performance of
ML001 (2)

PM 2
characteristic

Availability
(%)

Total
downtime

CM
downtime

PM
downtime

Expected
failures

Twice a year* 91.2236 3 844.06 974.16 2 869.90 195.95
Once a year** 93.3682 2 904.75 995.22 1 909.53 199.88
No PM 2 94.4499 2 430.93 1 000.33 1 430.61 201.51

*7 days each of total of 14 days.

**5 days once of total of 5 days.

and systems in the plant besides the mill. In other words, just excluding the two major
shuts from the operating and maintenance schedule is not realistic. However, a reduction
of e.g. two shuts of 14 days total downtime to one shut of 5 days total downtime might
be a more realistic scenario. Running the same simulation with one PM 2 task of 5
days duration each year for 5 years yield an availability increase of 2,14 % as seen in
Table 4.8.

A final decision of implementing an additional mill must be made while including the
acquisition cost (including any structural engineering cost associated with installation),
operational and maintenance cost, and the resulting increase in availability, and thereby
production.

Maintainability improvement

There are several actions that can be taken in order to improve system maintainability
performance. Maintainability improvement measures are often cheaper to implement
than reliability improvement measures. Although, those measures can be difficult to
obtain and the maintainability improvement measures needs to be very effective in order
to improve the overall availability. Training of maintenance personnel, improved acces-
sibility of equipment, better spare part planning and improved logistics are some of the
measures which should be considered for maintainability and maintenance support im-
provement. In this case there is assumed that the effect of maintenance personnel repairs
on the mill system are improved in such a manner that the duration of the corrective
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maintenance actions on average are reduced by 50 %. As a consequence the repair rate
for corrective maintenance is reduced for the corrective maintenance actions. System
availability based on this assumption is reported in Table 4.9.

Table 4.9: System availability considering an improved maintainability (corrective
maintenance) performance of ML001 (1).

Mean
Log-
mean

Availability
(%)

Total
downtime

CM
downtime

PM
downtime

Expected
failures

3.1711 1.1541 91.2236 3 844.06 974.16 2 869.90 195.95
1.5855 0.4608 91.8960 3 549.56 674.21 2 875.35 197.19

As Table 4.9 shows the reduced repair rate of the mill system results in a mean availability
increase of nearly 0.7 %. If the training of personnel is cheap and manageable that
improvement measure should be considered for improvement. For further illustration it
is assumed that as a result of the trained personnel for repair on the mill system the
duration of PM 2 is also reduced from 7 days to 5 days. The results are reported in
Table 4.10.

Table 4.10: System availability considering an improved maintainability (preventive
maintenance) performance of ML001 (2).

PM 2
duration

Availability
(%)

Total
downtime

CM
downtime

PM
downtime

Expected
failures

7 days 91.2236 3 844.06 974.16 2 869.90 195.95
5 days 92.2988 3 373.12 982.84 2 390.27 197.72

As seen from Table 4.10 if the duration of PM 2 is reduced from 7 days to 5 days the
availability is increased to 92.3 %, which is a significant increase in mean availability.
This improvement should be considered, as it affects the preventive maintenance duration
of the other subsystems as well as the mill. As stated, it is not always possible to
achieve this degree of maintainability improvement. However, this simulation illustrate
the potential result of such an improvement if obtained.

Summary

Both reliability improvement and maintainability improvement needs to be considered
when aiming at improving overall system availability. Increased availability as a result
of reliability improvement are often easier to obtain, but as a consequence are often very
expensive and can be difficult to implement (space limitations, downtime due to installa-
tions, or component replacement etc.). Increased availability as a result of maintainabil-
ity improvement can be more difficult to obtain, the reason being that an improvement
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in maintainability needs to be significant in order to achieve increased availability. Al-
though, maintainability improvement often do not affect production in the same way as
reliability improvement besides the cases where production needs to shut down for some
design change with respect to maintainability improvement (accessibility and visibility
for instance).

In this case, the simulation results indicate that the most effective option is to imple-
ment an additional mill system working in parallel with the already installed mill. The
optimum availability is obtained when PM 2 is removed from the maintenance plan.
However, as discussed, this scenario is not realistic, as other maintenance tasks are also
performed on other equipment and systems during the major shuts. Thus, a reduction
in planned maintenance shuts is possible and needs to be assessed if an additional mill
is implemented. However, it is important that the final decision is made based on the
result of a cost-benefit analysis.

This analysis is limited with respect to cost not being included. Considerations needs to
be done towards what improvement measure will be the most cost-effective one.

The result of this analysis shows that implementing an addition mill is the best option.
When considering the complexity, size, and cost of that particular equipment, in addition
to other mining engineering concerns like the significant need for increased water and
power, it could be of interest to investigate the second and third most critical subsystem
instead. This is not considered in this case study, but the DTCI plot in Figure 4.10 can
reveal that these two subsystems are CV061 (conveyor) and CC001 (cyclone cluster)
respectively. These subsystems are smaller in size, less complex, and easier replaceable
than the mill.

Finally, a goal for this case study from the perspective of the cooperating company was
to assess the availability of data and quality of data for RAM analysis. For SVG it is
recommended that emphasize is put on recording failures in both date and time result-
ing in hour-based failure data. Furthermore it is recommended that repair actions are
recorded consistently on a lower level in the system hierarchy, in addition to put empha-
size on the different ways of recording corrective maintenance actions versus preventive
maintenance actions. For the corrective maintenance tasks it is recommended that the
time the failure is noticed is recorded, time when the failed component is found, waiting
time for spare parts, time at which the paperwork is finalized and other administrative
delay time, time when the CM task is performed, and time at which the system is oper-
ating again. This will lead to a better basis for knowing which part of the downtime is
more critical to focus on for improvement. All these recommendations will result in an
improved database of RAM data for analysis in the future.



Chapter 5

Framework for Data Collection

This chapter consist of two parts. The first part presents a framework for data collection
for RAM analysis and discusses two mathematical models for including the effects of
influence factors in reliability and maintainability analysis. The second part is a case
study from the process plant at Sydvaranger Gruve aiming to improve the data collection
for reliability analysis. This chapter aims to answer the research questions on how to
improve data collection for RAM analysis, and how the effects of influence factors can
be included in reliability and maintainability analysis.

5.1 Introduction

In industries today, the focus on health, safety, and environment is constantly increasing,
and rightly so. A goal of non fatalities, reduced injuries, and no release of toxic substances
to the environment is a goal all companies in the process industry should emphasize and
strive for. With this focus, in combination with a high production demand, the need for
quality risk and reliability analysis is higher than ever. There have been developed several
standards and handbooks on risk and reliability analysis as well as data collection for
analysis, like the OREDA handbook and the ISO 14224 standard discussed in chapter 1.
However, a shortcoming for these sources of data are the lack of focus on collecting data
on the factors that influence the reliability and maintainability of equipment [Barabadi
et al., 2014]. As discussed in chapter 1, often the only explanatory variables collected are
TTFs and TTRs. Collecting data on the effects of influence factors during failures and
repairs and how to use the data in analysis are equally important. According to Kumar
and Klefsjö [1993], a frequent problem for analysis of reliability data are that the data
have been collected under dissimilar conditions (operational or environmental). These
conditions should be isolated and their effects or influence estimated [Kumar and Klefsjö,
1993]. According to Barabadi et al. [2014], for a RAM analysis to lead to effective input
to the design, operation, and maintenance process the right person (in this case the
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analyser), needs the required data, in the right standardized format, at the right time.
In industry this is rarely the case, and many studies are using field data with many
drawbacks [Ansell and Phillips, 1997]. According to Ansell and Phillips [1997] some of
the potential causes for insufficient data are:

• Data are collected as a byproduct of the maintenance process and not solely to aid
reliability assessors.

• Component histories are fairly complex and are embedded in other process infor-
mation.

• Data are often aggregated making it difficult to extract the required and desirable
data and information on component failures.

[Ansell and Phillips, 1997]

The following framework is a retrieval of important steps from the methodology pro-
posed by Barabadi et al. [2014]. Although, this framework goes further in explaining
each step in more detail. Further, this framework include a planning part of the data
collection process, in addition to implementing some new aspects considered important
for collection of RAM data. Where additional information has been needed the various
sources have been referenced accordingly.

In section 5.2 the framework for data collection is presented and in section 5.3 the concept
of a mathematical model with a modified extension is discussed. The framework includes
collection of the effects of influence factors, and the two mathematical models illustrate
the concept of including the effects of influence factors in reliability and maintainability
analysis.

5.2 Framework for data collection

The following framework is suggested for RAM data collection considering influence
factors. The framework is divided in three parts and will highlight and explain important
steps when collecting RAM data, include additional information on the planning process
before data collection starts, and list different types of analysis possible to perform with
the data collected. In Figure 5.1 a composite view of the framework is illustrated. The
next sections will explain the different steps in the framework in more detail.
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Figure 5.1: Framework for data collection.



52 CHAPTER 5. FRAMEWORK FOR DATA COLLECTION

5.2.1 Planning the data collection

Before starting the actual data collection, the data collection process should be planned
and some preliminary work performed in order to collect optimal data and quality
data.

Define application and systems

First, one needs to define and limit the area and application of data collection. In the
mining industry, there will often be a mine pit, either underground or open, perhaps
a rail road for transportation, a crusher plant, separation plant and possibly a pellet
plant. In each location, the equipment types will vary and the operating conditions
change. When the area and application for data collection is defined the systems within
need to be investigated and defined. Tools and techniques, such as system boundaries
and reliability block diagrams, should be used to help define systems and equipment
before data collection.

Understanding system

To better understand the systems with respect to operation and failure characteristics,
there should be executed a Failure Modes and Effects Analysis (FMEA). An FMEA is
an analysis that reveals system failure modes, their causes, and the effects of the failure
mode occurrence on the system operation. It provides a basis for identifying potential
system failures and unacceptable failure effects and corrective actions to prevent them
[Carlson, 2012]. As an FMEA is time consuming and resource demanding it should
in the first place be conducted for high-risk and high-priority equipment, systems and
components. The different steps in an FMEA can be chronological implemented as the
following:

• Identification. Identify the component with appropriate numbering.

• Function/operational condition. Briefly describe the function of the compo-
nent with respect to the system and in which state the component has when the
system is operating normally.

• Potential failure mode. List all the ways the component can fail.

• Potential effect of failure. Which effect do the failure have on the system or
the end user. (if multiple effects from one failure mode use the most serious).

• Severity. Use a defined scale of severity do relatively determine the severity of
that particular effect for a specific failure mode.

• Potential causes. This should describe the specific reason for the failure and
preferably the root cause of the failure.
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• Occurrence. Rank the likelihood of occurrence of the cause.

• Controls. Actions already planned or in place to reduce or eliminate the risk of
potential cause of failure.

• Detection. Rank the likelihood of detection of the cause.

• Risk Priority Number (RPN). Rank the risk of the potential failure mode/-
cause by multiplying the severity number, occurrence number and the detection
number.

• Recommended actions. Task recommended to reduce or eliminate the risk with
potential cause of failure.

[Carlson, 2012]

A limitation regarding FMEA is the lack of investigation of the interactions between
several failure modes [Carlson, 2012]. For such an analysis of the interactions between
failure modes and for further thorough understanding of the system or component a
Fault Tree Analysis (FTA) can be conducted to support the FMEA.

Fault Tree Analysis
A FTA analysis is graphical technique applied either qualitative or quantitative. The
goal and objective of the FTA is to reveal all causes which can lead to a top event.
The fault tree exist of a top event, a failure or unwanted event of some sort, then the
different causes which could lead to the failure is identified all the way down to the basic
events. The FTA gives a more detailed and deeper understanding of the failure modes
and sequence of failures for the top event to occur. The top event can be many different
happenings, if the fault tree analysis is used in risk analysis the unwanted event often
refers to an event with severe consequences. In the case of the mining industry, the
top event can either be related to health or safety, but more often it can be related to
system and equipment breakdowns causing downtime and production loss. The FTA is a
deductive technique, meaning the top event is first opted, then the different ways the top
event can occur is deducted down to lowest level [Modarres, 2006]. The causes leading to
the top event are assigned either an OR gate or an AND gate, which are logical operator.
If the OR gate is assigned, then only one of the causes are required for the top event to
occur, while with the AND gate all the causes are required. If possibilities are assigned
to the different causes the probability of the top event occurring can be calculated by the
use of cut sets and Boolean algebra [Modarres, 2006]. For more information on FTA and
how to use it for risk and reliability analysis see Modarres [2006] and Smith [2001].

Identifying and formulating influence factors

It is vital that the most important influence factors for the defined plant, application,
or system is identified. Influence factors can be environmental conditions like varying
climate, wind speed, temperature, or operational like operator skill, type of shift or local
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workers vs commute workers and maintenance personnel skill. The selection of influence
factors can be based on experience and suggestions from experts, in combination with
potential failure records revealing useful information. Furthermore, the identified influ-
ence factors need to be checked for time-dependency. The condition of time-dependency
will determine which models to use for the analysis. The effects of influence factors
needs to be quantified by numerical variables, called covariates. Preferably, only the
influence factors that most probably has an significant impact on the failure and repair
processes, should be identified and collected data on during operation and maintenance.
In addition, to factors influencing repair, the factors which influence the maintenance
supportability (support covariates) should be collected data on [Barabadi et al., 2014].
How to include the effects of influence factors on failures and repairs in reliability and
maintainability analysis is presented in section 5.3.

Sources of data

This section describes two of the common sources of data for RAM analysis in the
industry. In general, the production and maintenance department will often collect
basic RAM data indirectly. The sources are often a downtime reporting system used by
the production department, and the CMMS used by both production and maintenance
department (although, mostly maintenance). The two next sections briefly highlight
what data and information can be found in each of those two sources of data.

Reporting system for failures and downtime events
The production department will often record the time and date when systems or equip-
ment fails. These records can be used to extract raw data, which then can be processed
into TTFs for equipment or systems. The recording of downtime events should in ad-
dition be used to capture information like failure modes, failure mechanisms and failure
causes. If possible, a link should be made between the downtime events and eventual
maintenance actions performed to restore the system or equipment back to operating
state [ISO, 2006].

Computerized Maintenance Management System (CMMS)
The CMMS contains work orders created for various maintenance tasks on equipment
and systems. These work order records can be extracted and processed into TTRs for
equipment and systems. However, the CMMS can, and should, also be used to capture
man-hours, spare parts, and material used for each repair action. A common fault in
many companies is that the CMMS is not fully utilized. A study from the Aitik mine in
Sweden identified several faults leading to improper use of the CMMS [Galar et al., 2014].
Continuous improvement on the use of the CMMS and focus on the most important
aspects will, with time, provide the RAM database with sufficient and accurate quality
data in addition to an improved utilization of the overall use of the CMMS.
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5.2.2 Collecting RAM data

After planning the data collection, the data collection can start. The next sections
will describe important types of data, which should be collected in order to establish a
comprehensive database of RAM data. The steps mentioned in the planning part will
benefit the data collection greatly if performed properly.

Failure times and influence factors

When a failure occurs the date and time should be recorded. This is the source for pro-
viding TTF when doing analysis. The influence factors on the failure process identified
in section 5.2.1 in the planning part should be collected data on continuously during
operation, but especially when a failure occurs. This will ensure that the required in-
formation (including conditions having an impact on the failure process) at the time of
failure is recorded for later use and analysis. When the equipment has been restored
back to operating state, the date and time should be recorded. This will provide the to-
tal downtime of the equipment. In addition, administrative delay time and time it takes
for shutting down and starting up the plant or specific equipment is recorded. Empha-
size should be made towards recording the failure down to component level, or at least
functional location level. It is also recommended that during preventive maintenance
shuts degraded failures are reported if encountered.

Failure characteristics

Failure characteristics which would be beneficial for reliability analysis to collect in the
case of a failure are the failure mode, the failure mechanism and the failure cause. Even
though this step is recommended, by ISO [2006] among others, it requires that the
operator present during the occurrence of failure have some basic technical knowledge
on the failure processes of the equipment. Even though the knowledge among operators
varies this step is recommended and after a transitional phase the operators will be
more used to identifying these failure characteristics when a failure occurs. For more
information on typical failure modes, the ISO [2006] standard can be used as guidance.
In addition to the failure characteristics described, a code should be assigned to the
failure, whether the failure causes downtime or not is irrelevant. This code unique for
each failure will be used when creating work orders, in order to connect repair actions
to specific failures.

Repair time and influence factors

When a failure occurs a repair is usually necessary to restore the equipment back to
operating state. When the repair action is initiated the date and time should be recorded.
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During the repair, the influence factors on the repair processes identified in section 5.2.1
in the planning part, should be collected data on. This will ensure that information
having an impact on the repair processes and the repair rate is collected. After the
repair action is performed, the date and time should be recorded. This will provide
the actual time used on repair. The restoration time (total time it takes to restore the
equipment back to operating state) is the same as the downtime collected in section
5.2.2.

Repair characteristics and resources

Repair characteristics beneficial to collect for maintainability analysis are typical the re-
sources needed for the repair, i.e: man-hours, spare parts, and material used, in addition
to special maintenance tools necessary for the repair action. This should be considered
a minimum. In addition, characteristics such as logistics and other reasons for repair
delays should be recorded. This will provide a basis for maintenance supportability
analysis. Furthermore, it is recommended that operational reports include the profile of
production level, plant throughput, and the cost of items (equipment and subsystems).
These data, if collected, will provide a basis for cost analyses.

Time operation schedule for data collection

As an addition to the framework, a time schedule for operation has been developed. By
combining the composite view of uptime and downtime from Blanchard and Fabrycky
[1998] and the schematic picture of the time for collecting RAM data by Barabadi et al.
[2014] a schematic time schedule for operation and downtime has been developed. The
time schedule is reported in Figure 5.2. This schedule is an illustrative tool showing
the relationship between uptime/downtime, the collection of influence factors during the
operating cycle, and the statistical RAM data, which is retrieved from the data collection.
As Figure 5.2 illustrates, the TTF and TTR are retrieved from the data collection
Furthermore, the time to support (TTS) before and after the active maintenance repair
is retrieved, which gives a basis for providing the time to restore (TTRres). The time
from a failure occurring to total non-operating state is a transition phase dependent on a
combination of the degree of failure and the run down time. The time from non-operating
state back to total operating state is a transition phase dependent on the ramp up time
[ISO, 2006].

5.2.3 Types of Analysis

This part of the framework is just an informative part on some of the common types of
analysis, which can be performed with this framework for data collection and with the
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Figure 5.2: Time schedule for operation. Adapted and merged from Blanchard and
Fabrycky [1998] and Barabadi et al. [2014].

data collected. The types of analysis are divided into four sections, namely risk and safety
analysis, reliability analysis, cost analysis, and other general types of analysis.

Risk analysis

Risk analysis can be conducted both quantitatively and qualitatively. With respect
to failure and maintenance, two common analysis are risk based maintenance and risk
based inspection. These two analysis are more considered as maintenance strategies,
in the sense that they guide the maintenance department how to maintain and inspect
their plant, systems, and equipment. Another typical tool used in risk analysis is Event
Tree Analysis (ETA).

Event Tree Analysis
The goal and objective of the ETA is to illustrate how an initiating event can lead to
several outcomes based on what subsequent events occur (or barriers prevents) after the
initiating event has happened. The event tree starts with an initiating event on one
side, then going through several events or barriers which either operates successfully
or not. If one event or barrier is not operating satisfactory, then this could lead to
either a final outcome or the next event or barrier can decide the path further. If
probabilities are assigned to the different events and barriers, the probability of the
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outcomes can be calculated. For more information on ETA and how to use it for Risk
and Reliability analysis see Modarres [2006] and Smith [2001]. Other common risk and
safety analysis:

• Safety integrity level

• Environmental- and social-impact assessment

• Failure mode, effects and criticality analysis (similar to FMEA but with criticality
included)

[ISO, 2006]

Reliability analysis

RAM and reliability-centered maintenance are two of the most commonly used analysis
and strategies in industry today. RAM analysis inform the O&M department, as well
as management, about the condition of the plant or assets and act as a guide in the
decision-making process. The reliability-centered maintenance is more of a maintenance
strategy applied by many companies, in several industries, for allocating maintenance
resources most effectively. The main goal for RAM analysis for systems is to increase
overall operating availability by improving the reliability or maintainability of the sys-
tem, subsystems, or components. Reliability-centered maintenance is a tool used to
identify preventive maintenance tasks and requirements to ensure that operations takes
place safe, cost-effective, and reliable [Carlson, 2012]. The FMEA already conducted in
the planning part of this framework will be a key part of the reliability-centered main-
tenance process, if chosen as a maintenance strategy [Carlson, 2012]. Other common
reliability analyses are:

• Root cause analysis

• Weibull lifetime analysis

• Sensitivity analysis

[ISO, 2006]

Cost analysis

Life Cycle Costing is an analysis which is used for decision-making when purchasing
products. When purchasing a product it is not only the initial price (acquisition cost)
that is of interest. One should also take into account operating and maintenance cost
(ownership cost) during the products life time and the cost with disposing (disposal cost)
the product afterwards [IEC, 2004]. That life cycle cost can then be compared to the life
cycle cost of other products to identify the best option. The life cycle costing analysis is
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based on the assumption that the technical aspects (such as reliability) of the products
compared are approximately identical. Other analysis related to cost are:

• Spare part analysis

• Cost-benefit analysis

[ISO, 2006]

Other types of analysis

In addition to the different types of analysis discussed in previous sections the following
analyses could be of interest based on preference.

• Markov Process analysis

• Six sigma

• Production analysis

• Availability analysis

[ISO, 2006] and [Modarres, 2006]

5.3 Proportional hazards model

A method for including the effects of influence factors in reliability analysis is by using
the proportional hazards model. In 1972 the statistician David R. Cox suggested the Cox
model, often referred to as proportional hazard model (PHM) [Cox, 1972]. The model is
very applicable and has since 1972 been modified, developed, and extended for the use
in medicine, economics, and reliability applications among others [Ansell and Phillips,
1997]. In traditional life modeling the assumption is that all items are identical and that
all items experience identical conditions. When this assumption is valid, then the items
are independent and identically distributed, with a probability distribution f(t) and a
reliability function R(t), where the failure characteristics of the items are best modeled
through the hazard function (hazard rate) [Spring and Freitas, 1989]. However, with
traditional life modeling and real life field data these mentioned assumptions are often
not valid as a result of the following:

• Items are not indistinguishable.

• Conditions vary from item to item.

• Specific parametric model for the underlying hazard rate cannot be specified.

[Spring and Freitas, 1989]
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These assumptions are not needed for the PHM model as the only assumption for the
PHM model is that the hazard rate it is given by the product of an arbitrary and
unspecified baseline hazard rate, h0(t), which is only dependent on the time, and a
positive influence function incorporating one or more influence factors, given by ψ(z; b),
which is independent of time [Kumar and Klefsjö, 1993], [Spring and Freitas, 1989]. The
PHM is a mathematical model which can be used to incorporate influence factors by
treating them as explanatory variables, or more common referred to as covariates. With
this assumption on the hazard rate, the hazard function takes the following form:

h(t; z) = h0(t)ψ(z; b) (5.1)

[Kumar and Klefsjö, 1993]

where h(t; z) is the resultant hazard rate, z is a row vector consisting of the covariates,
and b is a column vector consisting of the regression parameters. The influence factors
are conditions which affects the failure processes of equipment. The regression parameter
b is a measure of importance or weight of each covariate [Spring and Freitas, 1989]. The
baseline hazard rate is considered to be the rate at which the covariates have no effect
on the failure pattern (i.e. z = 0, which requires ψ(z;β) = 1).

The term ψ(z;β) can have different functional forms. Most commonly the exponential,
the logistic, the inverse linear, and the linear form respectively, i.e.:

ψ(z; b)exponential = exp(zb) (5.2)

ψ(z; b)logistic = log(1 + exp(zb)) (5.3)

ψ(z; b)inverse linear = 1/(1 + zb) (5.4)

ψ(z; b)linear = 1 + zb (5.5)

[Kumar and Klefsjö, 1993]

Determining the form of the PHM can be based on a combination of goodness-of-fit tests,
experience, and physical reality [Kumar, 1995]. The name of the model comes from the
fact that the ratio between any two individual hazard functions is time invariant (i.e.,
any two hazards are proportional) [Spring and Freitas, 1989]. In other, words if two
items are observed at any time t with associated covariates sets z1 and z2 the hazard
rates will be proportional to each other and can be written h(t; z1) ∝ h(t; z2) [Kumar
and Klefsjö, 1993]. How the effects of covariates influence the hazard rate is better
illustrated by the graph reported in Figure 5.3. In Figure 5.3, a negative influence on
the hazard rate will cause it to increase, while a positive influence will cause it to decrease
as illustrated.

Studies have been conducted where the effects of influence factors have been measured
related to the failure rate of systems or components. Furuly et al. [2013] concluded that
the failure rate during winter season for a stacker belt in the Svea Coal mine was four
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Figure 5.3: Relation between the actual hazard rate and the baseline hazard rate in the
presence of influential covariates. Adapted from Kumar and Klefsjö [1993].

times as high as during rest of the year. This study was based on collected historical
failure data and data on influence factors during failures treated as covariates with
the PHM model. Studies like this can be used to optimize maintenance strategies and
maintenance plans, where the influence factors on equipment varies during the operating
cycle.

Since D.R. Cox first suggested the proportional hazard model there have been suggested
several modified models and extensions of the original model. These modified models
take into account other factors, uses different assumptions, or consider other variables.
There also exist several case studies where the PHM has been used for modeling. Some of
them, as stated by Kumar and Klefsjö [1993], are component failures in a nuclear plant,
marine gas turbines, aircraft engines, and components of a mine loader. Recently Gao
et al. [2010] developed a modified model called the proportional repair model (PRM) for
considering influence factors on maintainability and repair rates.

For a repairable system experiencing both failures and repairs a modified model such
as the PRM is needed for also including the factors having an impact on the repair
processes. In section 5.3.1, the proportional repair model (modified from the PHM
model) suggested by [Gao et al., 2010] is presented.

5.3.1 Proportional repair model

The proportional repair model is a mathematical model which incorporates influence
factors on repair processes by treating them as covariates. The PRM is, like the PHM,
the product of an arbitrary and unspecified baseline repair rate r0(t), which is only
dependent on the time, and a positive influence function incorporating one or more
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influence factors given by ψ(z′; b), which is independent of time. It is given by:

r(t; z′) = r0(t)ψ(z
′; b) (5.6)

[Gao et al., 2010]

where r(t; z) is the resultant hazard rate, z′ is a row vector consisting of the covariates,
and b is a column vector consisting of the regression parameters. The influence factors
are conditions which affects the repair processes of equipment. The baseline repair rate
is considered to be the rate at which the covariates have no effect on the repair pattern
(i.e. z′ = 0, which requires ψ(z′;β) = 1). The term ψ(z′; b) can have different functional
forms. Most commonly the exponential, the logistic, the inverse linear, and the linear
form. Respectively given by:

ψ(z′; b)exponential = exp(zb) (5.7)

ψ(z′; b)logistic = log(1 + exp(zb)) (5.8)

ψ(z′; b)inverse linear = 1/(1 + zb) (5.9)

ψ(z′; b)linear = 1 + zb (5.10)

[Gao et al., 2010]

Like for the hazard rate the relation between the actual repair rate and the baseline
repair rate in the presence of covariates can be illustrated with a graph as reported in
Figure 5.4. Although, for the repair rate, a negative influence will cause the rate to
decrease and a positive influence will cause the rate to increase (opposite to the hazard
rate).

Figure 5.4: Relation between the actual repair rate and the baseline repair rate in the
presence of influential covariates. Adapted from Gao et al. [2010].

There have been suggested several modified models from the Cox model, like the PRM
from Gao et al. [2010] discussed in this study. When applying the PHM or the PRM, the
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assumption that the covariates are time-independent needs to be verified. In the cases
where the covariates are time-dependent, the proportionality assumption is violated, and
other modified models have to be used for modeling. For time-dependent covariates,
either an extension of the Cox regression model or a stratified Cox regression model
can be used [Barabadi et al., 2011]. Kumar and Westberg [1996] illustrated how to
model time-dependent covariates for reliability analysis by using linear regression, and
Barabadi et al. [2010] illustrated how to use the stratified Cox model for time-dependent
covariates for maintainability analysis.

5.3.2 Influence factors

Factors having an impact on failure processes and repair processes can be many and can
vary greatly in influence. For some applications there are only a few influence factors
while for other applications there can be several factors, where some affects failure and
repair processes more than others. According to Barabadi et al. [2014], the influence
factors can be classified into whether they are categorical (e.g. effect of maintenance crew
skill), or continuous (e.g temperature, wind, rain etc.), or dichotomous (e.g. whether or
not it is raining).

Influence factors for, but not limited to, general plant operation typical for the mining
industry, are the following (both for the failure process and the repair process):

Operational

• Operator skill

• Maintenance personnel skill

• Effect of repair

• Material of components

• Accessibility of system or component

• Ore characteristics (type, hardness, content)

Environmental

• Temperature

• Humidity

• Visibility (darkness)

• Wind

• Dust

• Snow/ice

• Rain
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5.3.3 Discussion of the PHM and PRM

There are several benefits and reasons for deploying the PHM and PRM. Both models
are very flexible, as seen by the many case studies covering several different applications
and industries. Special for reliability and maintainability analysis is that these models
give more accurate estimation of reliability and maintainability. As a result of using
the factors that influence the reliability and maintainability, reduced sample sizes can
be used for estimation [Spring and Freitas, 1989]. According to Ansell and Phillips
[1997], the PHMmodel is relative robust to departures from the proportional assumption,
which leads to that significant effects of explanatory variables would be obtained even
in the cases where the model is not wholly appropriate. This further result in the
advantage that the model can be used as an exploratory technique to identify explanatory
variables [Ansell and Phillips, 1997]. The aspect of identifying the conditions that have
the greatest influence on the reliability of equipment can help with determining which
factors to control or improve in order to improve reliability of the system or plant. As
a result of the flexibility of the model it can often be extended to a wide range of other
reliability estimation situations [Spring and Freitas, 1989]. These aspects mentioned
here are all related to reliability and maintainability analysis. In more detail, the PHM
can be used for O&M optimization by, for instance, identifying optimum maintenance
intervals, as done by Love and Guo [1991]. It can also be used for identifying periods
of increased prediction of the failure rate of equipment, to optimize the maintenance
strategy based on varying environmental conditions, like the work of Furuly et al. [2013].
Furthermore, the PRM can be used for estimating the maintainability function taking
into account influence factors like temperature, shift, location, wind, icing, and rain
as done by Barabadi et al. [2010]. Barabadi et al. [2010], in addition, illustrated how
the PRM assumption, if not valid, can lead to wrong estimates on the maintainability.
This element, of course, also apply to the PHM assumption, and in the cases where
the assumptions are not valid, other approaches like the extended Cox model or, the
stratified approach can be applied (assuming the covariates can be stratified) [Barabadi
et al., 2014].

5.4 Case study II:
Data collection for reliability analysis

5.4.1 Introduction

Based on discussions with experts at Sydvaranger Gruve and the suggested framework
for data collection, case study II aims at developing a new reporting system including
influence factors. The reporting system should be a software program and replace the
current manual writing reporting system. The new reporting system is illustrated in
Figure 5.5a.
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The goal is to develop a new reporting system for downtime events on various equipment
and systems causing downtime on either the secondary crusher or the primary mill. The
reporting system will hopefully provide more precise and accurate data than the current
reporting system. The new developed system will also lead the path towards a better
database of RAM data in the future, with respect to higher quality data, additional
desired information in the data collection like failure modes, and including influence
factors in the data collection.

For the process plant (including crushing, grinding, milling, separation, and filtration)
the metallurgists at Sydvaranger Gruve have a main report called Daily Downtime Break-
down, where all downtime on equipment causing downtime on the secondary crusher or
the primary mill is reported. This report also tell the percentage of planned loss, break-
down loss, availability, and run time of the plant, along with other process information
and details. The report is created in MS Excel and can be ran for specific dates which
makes it able to compare downtime for different periods during a year or to compare
from year to year. The reason for recording the events causing downtime on the sec-
ondary crusher and the primary mill is because these two systems are critical in the
overall process. To improve and maintain the already high availability of these systems,
it is essential to investigate surrounding equipment causing downtime. Surrounding
equipment typical causing downtime on the secondary crusher and the primary mill are
conveyors, screens, pumps, cyclones, and, of course, the systems themselves. For more
information on Sydvaranger Gruve and the overall process of the plant see sections 4.1.1
and 4.1.2.

The Daily Downtime Breakdown report at the process plant provides important infor-
mation regarding downtime events, such as date of the event, duration of the event, the
reason for the downtime, and an allocated code based on a time usage model for the
company. The allocated code is needed to know which department the downtime came
from, whether it is corrective or preventive maintenance downtime, production delay,
production standby etc. Before presenting the new developed reporting system, a brief
description of the current reporting system in the process plant is given.
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(a) New reporting system including some some plausible events.

(b) Potential modification of the new reporting system including covariates and some plausible events.

Figure 5.5: Design of new reporting system (a) and modified design of new reporting system (b) for data collection.
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5.4.2 Current downtime reporting system

The downtime and information which the metallurgists record in this Daily Downtime
Breakdown report is based on a manually written report done by the operators in the
control room during the three shifts (morning, day and night). This report is a paper
log sheet mostly filled with important process parameters necessary to monitor during
production and operation. However, at the bottom of that paper log sheet is a section
with three columns which is used for downtime reporting. The part of the log sheet used
for downtime reporting is illustrated in Figure 5.6 for the secondary crusher (same setup
is used for the primary mill). There are some identified disadvantages with reporting by
manual writing and those are:

• It is time consuming. The transfer of data from the paper sheet report into the
computerized Daily Downtime Breakdown report in MS Excel takes time.

• It occur interpretation faults from the metallurgists reading the paper report as a
consequence of bad handwriting from operators.

• Insufficient and variable data and information from operator to operator (the pre-
cision and accuracy of downtime reporting varies from operator to operator).

Figure 5.6: Part of crusher log sheet used for downtime reporting. Retrieved from SVG.

5.4.3 New downtime reporting system

As a case study for data collection improvement it was decided that instead of manual
writing for reporting downtime a reporting system software should be used. The software
was chosen to be MS Excel (same software as used for the Daily Downtime Breakdown
report). There are several advantages and goals hopefully achieved by using a computer
software instead of manual writing. Some of the immediate advantages are the reduced
time consumption to report downtime and the elimination of interpretation errors as a
consequence of bad handwriting. The report system is as mentioned programmed using
MS Excel. It is designed to be user-friendly, and at the same time comprehensive enough
to provide the necessary and desired information. The report page for the secondary
crusher with three plausible example events is reported in Figure 5.5a.
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The process of reporting downtime events in the new system are as following (done by
control room operator):

1. Implement name of operator in the control room under the right shift.

2. When equipment stops:

• Report the current shift (morning, day or night) in the column ”Shift”.

• Report the time the equipment stopped in the column called ”Time off”.

• Report the main equipment in the column ”Main equipment”.

• Report the connecting sub-equipment/functional location of the main equip-
ment in the column ”Functional location”.

• Write a more detailed description of the fault in the column ”Description of
fault”.

• The next two columns are left blank to be filled out by the metallurgists. The
columns are used to record a time-code for the event and a description of the
code (based the time usage model for SVG).

3. When the equipment starts again, report the time the equipment started in the
column called ”Time on” and the individual downtime (in minutes) and the total
downtime (in minutes) are calculated automatically. Repeat step 2 and 3 until
04.00 AM.

4. At 04.00 AM the report is sent to the metallurgists by hitting the ”send report”
button in the upper right corner of the screen. After sending the report both pages
are reset by hitting the button ”Reset page” in the upper right corner. Then repeat
step 1 to step 4 continuously.

The software program is currently in the test phase. A metallurgist has received knowl-
edge about the program and how it works, and will start implementation with the
operator on the day shift for one week. If this test run for one week is successful the
program will be implemented and used on all shifts for downtime reporting. The design
of the program, the different formulas, macros, and drop-down lists were programmed
in a fairly manageable way. The more difficult issue to handle were the large equipment
list which were going to be implemented in the reporting system. To do this in a gentle
way, the entire equipment list was first extracted from the CMMS, then only relevant
equipment for downtime reporting were chosen, and the rest removed, but stored in a
separate list. Still, after removing all irrelevant equipment, the equipment list was too
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long (250–300). This practical issue made it impractical to use an ordinary drop-down
list in Excel. To solve this problem, a searchable drop-down list were programmed and
implemented in the program. That way, both the drop-down list can be used, but also
a search in the list using equipment code (two letters unique for each equipment type),
or the area code (10, 20, 30,...,90), or the equipment number (three digit number) can
be used to find the equipment in the equipment list which is to be reported downtime
on. The program is easy to use as a result of the automatically updated fields and
the drop-down lists, where one is searchable. This is essential for the operators to use
the program, and feel comfortable with it. Recording the correct equipment with the
standardized equipment code is easy when using the searchable drop-down list for the
main equipment. To reduce time consumption and unnecessary work macros have been
programmed for resetting the pages and sending the report to the metallurgists each
day. How the report macro works is that when hitting the ”send report” button, a copy
of the report page is made and placed in a folder only accessible for the metallurgists
responsible for the main downtime breakdown reporting. In that copy, the metallur-
gist can filter the downtime by type of equipment or area code and sort the downtime
from largest to smallest and vice versa. This was programmed after preference from the
metallurgists.

Future potential features

In the future some features of the software program can be implemented either because
they are necessary or because they are desirable for improvement or additional informa-
tion. The features can help improve the reporting system with respect to software issues
or practical issues, or they can be implemented for improved data collection with re-
spect to reliability analysis. The two next sections will briefly highlight future potential
features.

Improvement of reporting system and software program

• If the report is not sent at 04.00 AM, because of different reasons, a macro could
be programmed to send the report automatically every 04.00 AM.

• Make the report compatible to be implemented directly into the main Daily Down-
time Breakdown report. This will demand a format change in the template but
should be manageable. This would provide a reduction in the time spent on re-
porting.

• Program a code that automatically transfer the reported downtime in the program
to the main Daily Downtime Breakdown report without having to do it manually.
This will eliminate the time used to transfer the downtime from the control room
to the main report. Although this process will be less time consuming it could lead
to loss of data and other errors. For this reason, the transfer of data should be
monitored occasionally to justify that the transfer of downtime reports from the
program in the control room to the main downtime report works satisfactory.
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Improvement with respect to reliability analysis

• The ISO 14224 standard suggest that also failure modes, failure mechanisms and
failure causes are recorded while reporting downtime events. In the reporting
system this would easily be done by additional columns.

• A link should be made between the downtime events and an eventual repair action.
This could be done by adding a column called ”‘Event code”’. The same event code
should be used when creating work orders in the CMMS and thereby connecting
the downtime event to a specific maintenance action.

• In addition to what the ISO 14224 standard suggest the reporting of downtime
events should also include collecting influence factors for the failure and repair
processes. In the reporting system, columns on influence factors can easily be
added after they have been identified (influence factors on repair processes are
more problematic to collect, however the recording of work orders in the CMMS
could be a useful tool).

The ideal with having a reporting system using software and especially MS Excel is
that it is very flexible to changes and modifications. The reporting system shown in
Figure 5.5b illustrates the original design of the downtime reporting system, based on
the previous manual reporting system and discussions with experts (metallurgists) at
SVG. However, this reporting system can be modified with respect to collecting RAM
data in addition to the already implemented information that production receives from
the current template. In section 5.4.3 on improvement for reliability analysis, there are
three main additions which would be highly beneficial to implement for this reporting
system. These are failure characteristics (failure modes, mechanism, and cause), a link
between failure/downtime events and repair actions and last influence factors which
has an impact on the failure processes of equipment. Because implementation of new
procedures and learning new systems is time consuming, it was decided that the first
version and design of the system should not include too many columns to fill out. In
Figure 5.5b a new potential design for the system is showned, illustrating how influence
factors (covariates) could be implemented at a later stage. The influence factors can
vary from application to application, but for the crusher system in this case, the two
influence factors dust and ore type have been identified to be two of the influence factors
having most impact on the failure processes of the equipment. In this case, the dust
level is divided into whether there is a normal (0) or high (1) amount of dust present in
the plant. The ore characteristics are divided into whether the hardness is normal (0)
or harder than normal (1), as can be seen in Figure 5.5b.

5.4.4 Results and discussion

Other features, not mentioned here, are possible and even more feasible when the report-
ing is performed by using some sort of computer software like MS Excel. These men-
tioned features are not designed into the software program as the metallurgists wanted
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to test the program before more advanced features were added. There could be that
practical issues which prevents the use of the program. These issues can be difficulties
with learning how to use the program and software errors, among other issues. If this is
the case, it will be unnecessary to use more hours on more advanced features before the
program is properly implemented and used.

To summarize the advantages with the new reporting system compared to the previ-
ous reporting system and with respect to reliability analysis are (some already men-
tioned):

• Less time consuming.

• Precise and accurate data.

• Same amount of information at each downtime event.

• Easier to detect and handle recurrent events when also sub-equipment is reported
in each event.

Finally, a goal for this case study from the perspective of the cooperating company was
to establish and develop a system for data collection with respect to improved data
quality. This was achieved mainly by using a software instead of manual writing in
addition to changing the reporting from one field called ”Description” to three fields
respectively called ”Equipment”, ”Functional location”, and ”Description of fault”. The
latter providing more options for recording required information.

Regarding improved data collection with respect to reliability analysis the following
recommendations are suggested:

• It is recommended that SVG implement the reporting of failure modes. Eventually
also failure mechanism and cause of failure are reported.

• Further, it suggested that a link is established between each reported failure/down-
time event and the associated potential maintenance action necessary to restore
the equipment back operating state.

• It is recommended that influence factors are identified, formulated and collected
data on for both failures and repairs.

• Last, it is recommended that profile production levels, plant throughput and cost
of items (equipment and subsystems) are collected and stored for later use as they
provide the basis for performing cost analysis such as life cycle cost analysis and
cost-benefit analysis.
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Chapter 6

Discussion, Results and
Conclusion

This chapter presents a short summary of the discussion in chapter 4 and chapter 5
based on the defined thesis objectives. Further, a section a self criticism of the study is
given and main results obtained in the thesis listed. Finally, a conclusion is drawn.

6.1 Discussion of results and thesis objectives

6.1.1 Existing approach for data collection for RAM analysis

The review discovered shortcomings in the data collection method with respect to the
inclusion of influence factors. Mathematical models exist, which can provide improved
estimates of the reliability and maintainability characteristics of equipment operating
in various operational and environmental conditions. Regardless of the flexibility of
these models and the possibility of utilizing smaller sample sizes of data, they do require
some data on the failure and repair processes. Today, the sources of data in the oil
and gas industry and the mining industry are mainly handbooks, like the OREDA
handbook, standards like ISO 14224, and data collected internally by companies. The
handbooks and standards available lack information on including the effects influence
factors, an issue which should be focused on in the years to come. The sources of data
collected internally by companies are mainly downtime reporting logs from production
and maintenance records collected from the CMMS from maintenance. These sources
of data are not directly suited for RAM analysis. They can provide TTFs and TTRs
but other data for statistical analysis are difficult to extract. The reason being that
information is not reported and recorded in a proper way. For failures, there should be
developed a system and a reporting culture where not only the effects of influence factors
are recorded, but the failure mode, failure mechanism, and failure cause additionally.

73
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Identifying recurrent failures due to one specific failure mode will significantly help in
root cause analysis of these recurrent system failures.

6.1.2 Applying the concept of RAM analysis as a case study

The case study of applying RAM analysis in the mining industry was conducted for
the mining company Sydvaranger Gruve. The case study illustrates how reliability
performance and maintainability performance of equipment have an impact on the overall
availability. The result of the analysis is somewhat suffering from limiting data with
respect to the short time period of data collection, in addition to reduced quality of
repair data. For statistical analysis, it is important that the data sets are of sufficient
population with respect to time interval and sample size. Regardless of the limiting data
the analysis illustrates how identifying optimum interval of preventive maintenance can
improve overall system availability. Furthermore, it illustrates how there exist methods
for identifying the most critical subsystem and several different aspects of improvement
measures which, all should be considered for identifying the most availability-effective
and cost-effective improvement.

This analysis with its limited data further support and stress the need for collection of
influence factors. In this case, including influence factors would have resulted in more
precise reliability and maintainability estimates, causing the analysis not to suffer in the
same manner. The limited data in the analysis combined with the suggested framework
for data collection also highlight the importance of overall quality data collection. Re-
garding the analysis, there will always be some uncertainty because of limited data and
assumptions made for the model. In addition, the results in RAM analyses are always
estimates. With respect to the methods used in the analysis, they are considered ro-
bust and powerful methods also used by numerous other authors. Barabady and Kumar
[2006] and [Kumar et al., 1989] have applied similar methods on importance measures,
goodness-of-fit test, and test for IID. Xie et al. [2003] have applied the method of MLE
for parameter estimation.

6.1.3 Framework for data collection for RAM analysis

The framework suggested in this thesis is considered appropriate for several process in-
dustries, especially suited for the mining industry. The framework includes the aspect
of influence factors and the importance of including them in the data collection process.
Furthermore, the planning of the data collection is considered to be of high importance.
The quality of the data collection and the quality of data depends on the quality of
the planning part of the data collection process. Being aware of what data is required
for proper RAM analysis and doing preliminary steps to ensure that the required data
is collected are both vital and necessary. In this framework, tools and techniques are
presented to help planning the data collection. However, the framework depends on
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the quality of the utilization of these techniques. A poorly constructed RBD or system
boundary will be of no use. The issue of not executing the steps properly is not con-
sidered in this thesis, but emphasize should be made towards performing the steps in
the best possible way. It is recommended that several disciplines including production
and maintenance personnel as well as reliability engineers contribute with input and
discussions in the data planning and data collection process.

6.2 Self criticism

• Regarding the analysis in case study I there will always be limitations, assumptions,
and obstacles affecting the analysis result and outcome. In this analysis the aspect
of scheduled shuts and preventive maintenance could have been assessed with an-
other approach. In addition to the two preventive maintenance tasks, which both
were assumed to bring the systems back to bad-as-old condition, a third mainte-
nance task could have been added. That preventive maintenance task would have
been individual for each subsystem. The duration would have been minimal but
the task would bring the system back to good as new condition. The interval of
each task would be based on expert judgment and input from maintenance per-
sonnel. That way, the overall model would reflect a more realistic behavior of the
system, and its operational conditions and maintenance characteristics.

• Another approach for the analysis concerning the limited data and decreasing fail-
ure rates could be to modify the input data used in the analysis. The modification
could have led to a model closer to the realistic system.

6.3 Summary of results

With the work, theory, and case studies in this thesis the following results were achieved.

• In case study I: Suggestions for O&M optimization and increased system availabil-
ity based on a RAM analysis performed as a case study in the mining industry.
Aspects for improvement included optimum preventive maintenance interval and
improvement of reliability and maintainability performance.

• A framework for data collection with respect to RAM analysis where the effects of
influence factors are included was developed.

• For including the effects of influence factors in reliability and maintainability anal-
ysis the characteristics of a mathematical model (PHM) was discussed along with
the characteristics of a modified extension of the model (PRM).

• In case study II: A downtime reporting system (software) was programmed for
higher quality reliability data as a case study in the mining industry. The reporting
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system is more suited for additional features, which will if implemented at a later
stage, provide a better database of reliability data for analysis for the specific
company in the case study. The program in addition illustrates how it can be
easily modified for providing vital data for RAM analysis.

6.4 Conclusion

The initial research problem posed in beginning of this thesis was the lack of focus on
including influence factors in data collection for reliability and maintainability analysis.
Influence factors provide an improved reflection of the conditions that equipment expe-
riences during operation and maintenance, and hence, will give more accurate results
if included in analysis. Furthermore, only applying historical TTFs and TTRs from
databases for design and operation in new locations, without taking into account the
actual conditions the equipment will experience, could lead to inaccurate estimations
on the reliability and maintainability characteristics. This is especially a concern for oil
and gas operations. The research approach was to apply the concept of RAM analysis
to the mining industry and suggest a framework for data collection including influence
factors.

Applying the concept of RAM analysis as a case study in the mining industry illustrated
the problems with limited failure and repair data. In the case study the only data avail-
able for statistical analysis were TTFs and TTRs. The data sets were in addition limited
and unsuitable. Including influence factors in analysis by, treating them as covariates
and applying the PHM and PRM model, would provided the analysis with a model bet-
ter reflecting the real behavior of the system. Furthermore, the developed framework for
data collection, which is considered detailed and descriptive for real industry practices,
includes the aspect of influence factors. There is a concern that industries lack the focus
of collecting data for RAM analysis. Data collected are in most cases collected only for
a process or maintenance purpose and analyses and studies will suffer from this when
using the data. In many cases, the data collection methods for some general purposes, in
this case production and maintenance, can be modified for also providing quality RAM
data. Case study II illustrated a modified downtime reporting system which both serves
as a reporting system for production purposes and reliabiltiy purposes in the mining
industry. The discussion of the PHM and PRM model provides a basis for including the
effects of influence factors in reliability and maintainability analysis. The main concern
still lie within identifying and formulating the influence factors equipment experiences
and actually collecting the effects of covariates from the field. It seems the application of
various mathematical models have been satisfactory conducted for several real industry
situations, as seen by the many existing case studies. These case studies can be used as
a guide for both the formulation of influence factors into quantitative numerical covari-
ates, and for applying them in reliability and maintainability estimations, and last for
interpretation of the results for O&M improvement.



Chapter 7

Further Work and Contribution

This chapter presents suggestions for further work and research within RAM analysis
and data collection for RAM analysis and last a summary of the contribution for the
thesis.

7.1 Suggestion for further work and research

Based on the results and discussions in this thesis, the following recommendations for
further work are suggested.

• It is suggested on a general basis that the focus on data collection is increased.
This implies that initially the data collection process is improved, and then the
utilization of powerful mathematical models for analysis is used with the necessary
data. In todays industry, analyses often suffers from unnecessary limitations often
due to poor available field data and lack of field data. Therefore, there is a necessity
of developing standards similar to ISO 14224 which covers issues with including
the effects of influence factors.

• A database should be established covering different factors having most impact on
equipment reliability performance and maintainability performance for different
applications and areas similar to the OREDA database. When operating in remote
and new environments, the degradation and wear of equipment changes and failure
rates for the same equipment operating in known locations cannot be used as it
will lead to improper estimation of the failure rate. In addition, for areas where
the operating conditions vary throughout the operating period (month to month,
season to season and year to year), the failure rate and repair rate will vary, which
should be analysed and considered in the maintenance plan and strategy.

• It is suggested that case studies illustrating the effect of the planning part of the
data collection process for the framework suggested in this thesis are conducted.
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Such case studies will reveal in what degree proper planning of the data collection
affects the data collection process. Further, it will illustrate more in detail what is
required with respect to the different steps. For instance, what data can be used
in order to establish system boundaries and reliability block diagrams.

• Furthermore, it is suggested that additional case studies on RAM analyses, which
includes influence factors, are conducted and carried out similar to the work and
case studies by Furuly et al. [2013], Barabadi et al. [2010], and Gao et al. [2010].
Furuly et al. [2013] estimated the effects of temperature for a stacker belt in the
Svea Coal mine and concluded that the failure rate could be up to four times as
high in the winter season compared to the rest of the year. Barabadi et al. [2010]
illustrated, with a case study, how the maintainability estimation is improved with
including the effects of influence factors with the PRM model for time in-dependent
covariates, and with the stratification approach for time-dependent covariates. Gao
et al. [2010] illustrated a case study for including influence factors for reliability
and maintainability estimation for equipment on an offshore gas production facility.
Furuly et al. [2013], Barabadi et al. [2010] and Gao et al. [2010] have all applied
either PHM, PRM, or both, for identification of influence factors having an impact
on the failure or repair rate. Furthermore, they have illustrated how the PHM or
PRM can be used for planning operation, improving maintenance strategies, and
enhancing overall O&M.

7.2 Contribution

This section lists the author’s contribution in this thesis.

• Initially, the topic for this thesis is considered to address an area, which has re-
ceived little focus in the mining industry. The work done in this thesis, with the
suggested framework for data collection especially, highlight important areas of
data collection, which needs improvement. Furthermore, it is recommended that
industry focus on improved data collection and on quality analysis as both aspects
are equally important.

• The first case study in this thesis illustrates how RAM analysis can be applied
for increased availability, which is an increasing concern and demand in industry
today. It further illustrates how an analysis can suffer from limited data, stressing
the necessity of including influence factors in both data collection and analysis

• The suggested framework is considered descriptive and illustrative to be used as
guidance in the data collection process for the mining industry.

• Finally, the second case study illustrates how data collection process in industry can
easily be modified to serve both as a source of data for production and maintenance,
as well as for RAM analysis.
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Appendix A

Probability distributions

In the following sections the most commonly used life and repair distributions with their
equations and characteristics are described.

Exponential 1-parameter distribution

Because of the simplicity of the exponential distribution it is frequently used in life
data analysis, however, it is not always the best fitted distribution for the data and
hence could be inappropriate to use. The reason being that the item need to reflect a
constant failure rate, which is rarely the case with mechanical systems. The exponential
distribution only consists of one parameter, namely the rate parameter λ. Its probability
density function f(t), cumulative distribution function F (t) and reliability function R(t)
are respectively given by:

f(t) = λe−λt (A.1)

F (t) = 1− e−λt (A.2)

R(t) = e−λt (A.3)

[Pohl, 2010]

In Figure A.1 a plot illustrates the shape of the exponential 1-parameter probability
density function as the rate parameter λ varies from 0.02 to 0.03 to 0.05.
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Figure A.1: Exponential 1-parameter probability density function as λ varies.

Weibull 2-parameter distribution

The Weibull 2-parameter distribution is often the most appropriate distribution to use
in life data analysis. The distribution changes form depending on its parameters, and
can handle both increasing, decreasing, and constant failure rates [CCPS, 1998]. It con-
sists of the two parameters β and η which are the shape parameter and scale parameter
respectively. Its probability density function f(t), cumulative distribution function F (t)
and reliability function R(t) are respectively given by:

f(t) =
β

η

( t
η

)β−1
e
−( t

η
)
β

(A.4)

F (t) = 1− e
−( t

η
)
β

(A.5)

R(t) = e
−( t

η
)
β

(A.6)

[Pohl, 2010]

In Figure A.2 a plot of the Weibull probability density function is illustrated with the
scale parameter η varying from 50 to 100 to 200 and the failure rate β held constant at
3 in all three cases implying an increasing failure rate.
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Figure A.2: Weibull 2-parameter probability density function as η varies.

Log-normal distribution

The log-normal distribution is a distribution derived from the well-known normal dis-
tribution. The log-normal distribution contains the parameter µ′ (mean of the natural
logarithms of the times to failure) and σ′ (standard deviation of the natural logarithms
of the times to failure). Since the log-normal distribution only takes positive values it is
appropriate to use as a life distribution eliminating the risk of modeling negative times
to failure. When the natural logarithms of the TTFs or TTRs are distributed normally
the data follows a log-normal distribution. Its probability density function f(t) is given
by:

f(t) =
1

tσ′
√
2π
e−

1
2
(
ln(t)−µ′

σ′ )2 (A.7)

[Elsayed, 2012]

Where f(t) ≥ 0, t > 0, -∞ < µ′ < ∞ and σ′ > 0.

It is not possible to define a general analytical expression for the cumulative distribution
function F (t) for the log-normal distribution. The reason being that the distribution
has no closed form [Hamada et al., 2008]. In other words, the cumulative distribution
function has to be derived from the specific distribution with known parameters µ′ and
σ′. That implies that an general analytical expression for the reliability function R(t) is
not possible to define either. The expressions obtained for the cumulative distribution
function F (t) and reliability function R(t) are respectively:
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F (t) = Φ

(
t′ − µ′

σ′

)
(A.8)

R(t) = 1− Φ

(
t′ − µ′

σ′

)
(A.9)

[Hamada et al., 2008]

Where Φ is the standard normal cumulative distribution function:

In Figure A.3 a plot of the log-normal probability density function is illustrated with the
mean parameter µ varying from 2 to 4 to 6 and the standard deviation σ held constant
at 1.

Figure A.3: Log-normal probability density function.



Appendix B

Goodness-of-fit test

This appendix gives a description on the modified Kolmogorov-Smirnov goodness-of-fit
test.

Modified Kolmogorov-Smirnov test

For selecting the best fit distribution the Kolmogorov-Smirnov test can be used as a
goodness-of-fit test. For the K-S test the parameters of the data sets needs to be known
to be able to use it, however, for unknown parameters a modified K-S test can be used.
The modified K-S test identifies the difference, or the distance, between the cumulative
distribution of the reference distribution and the distribution for the data set and thereby
identifies if it is a good fit and with the case of several reference distributions identifies
the best fit distribution. Following is a brief description of the modified K-S test.

For a given data set with N failure times (t1, t2,..., tN ) a function SN (t) is defined
giving the fraction of data points to the left of a given value ti(i = 1, 2, ..., N ). SN (t) is
constant between consecutive ti values, and jumps by the same constant 1/N value at
each ti.

The modified K-S test uses Dmax, the maximum of the absolute difference between SN (t)
and the fitted cumulative distribution function, Q(t).

D = max|SN (x)−Q(x)| (B.1)

The modified K-S test returns the probability that DCRIT <Dmax. The closer the
probability is to 1 the higher difference between the theoretical distribution and the
data set.

[ReliaSoft, 2007]
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Parameter estimation method

This appendix gives a description on the Maximum Likelihood Estimation method which
is a parameter estimation method for probability distributions.

Maximum Likelihood Estimation method

As the name implies the the goal of the MLE method is to maximize the likelihood
function. The parameter estimated is the parameter value which produces the largest
probability of obtaining the sample. This is achieved by differentiating the likelihood
function with respect to the estimator parameter, setting the derivative to zero and
solving [Walpole et al., 2012]. Further, the a property with the MLE is that it makes use
of the underlying distribution in order to determine an appropriate estimator [Walpole
et al., 2012]. A formal definition is:

Given independent observations x1, x2,...,xn from a probability density function f(x; θ̂),
the maximum likelihood estimator θ is that which maximizes the likelihood function
given by:

L(x1, x2, . . . , xn; θ) = f(x; θ) = f(x1, θ)f(x2, θ) · · · f(xn, θ) (C.1)

[Walpole et al., 2012]

where θ1, θ2, ..., θk are k unknown parameters to be estimated for n independent obser-
vations x1, x2, ..., xn (where x are either TTF or TTR). The likelihood function is then
given by:

L(θ1, θ2, ..., θk|x1, x2, ..., xn) = L =

n∏
i=1

f(xi; θ1, θ2, ..., θk) dx (C.2)

[Elsayed, 2012]
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where i = 1, 2, ..., n. Thus the product of the terms dx1, dx2,...dxn do not depend on θ,
the equation is rewritten as:

L(θ1, θ2, ..., θk|x1, x2, ..., xn) = L = K
n∏

i=1

f(xi; θ1, θ2, ..., θk) (C.3)

[Elsayed, 2012]

The natural logarithm of the likelihood function is often easier to differentiate, hence
the natural logarithm of the likelihood function is given by:

Λ = ln L =

n∑
i=1

ln f(xi; θ1, θ2, ..., θk) (C.4)

[Elsayed, 2012]

The parameter values of θ1, θ2, ..., θk can then be obtained my maximizing either L or Λ.
When maximizing the logarithm of the likelihood function the estimators of θ1, θ2, ..., θk
are the solutions of k equations such that:

∂Λ

∂θj
= 0 (C.5)

[Elsayed, 2012]

where j = 1, 2, ..., k.
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