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Abstract

A new model for the unidirectional pulse propagation equations (UPPE) was

developed by Per Jacobsen[1], this model is based on the assumption of cylindrical

vector (CV) modes. The model will be strong for CV type electrical field represen-

tations where only a few modes will be excited. In this thesis we will investigate

the model further. The model will be implemented as a pseudo spectral method

where both the Fourier and Hankel transform are necessary.
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Chapter 1

Introduction

The main part of this thesis we will discuss the cylindrical vector modes (CV).

These have been of interest since the invention of the laser. A lot of research has

been devoted solely to express beams using linear optical elements, a review on

this matter can be found in[2]. The main interest is in the nonlinear interaction

experienced in optics and solitary pulses[3][4][5].

In the 80s Durnin stated that Bessel beam[6] solutions for the scalar wave

equation can be regarded as diffraction free in the ideal case. Since then a lot of

research has pointed towards generation and modulation of such beams. Most of

the research has been reviewed in the recent book[7].

These types of theoretical models have been studied through the scalar wave

equation approximation of the Maxwell equations. This together with the nonlin-

ear schroedinger equation, which is studied in [8], has been the two main equations

to model optical beams of this type. The search for a more general model for vector

modes representation has been going on since the beginning[9].

Lately there has been ongoing research by Per Jakobsen in[1]. The focus was to

find a more general model to the cylindrical vector modes of arbitrary nonlinear

polarization.

1



Chapter 1. Introduction 2

1.1 Numerical models

In this thesis we derive and implement a system for CV pulse propagation by

using cylindrical vector modes. The materials we want to model are of arbitrary

polarization. Such a formulation proves to be more effective than other models if

the goal is to simulate weakly nonlinear propagation in for instance axisymmetric

radially polarized pulses. Such fields can be represented through only a few modes

in the CV modes, while regular plane wave modes will use a large set of modes.

The typical conditions for which this type of formulation applies is nonlinear

propagation of ultrashort CV pulses in dispersive nonlinear materials, such as air.

For standard time domain models as FDTD, the problem lies in representing the

linear polarization in terms of differential equations because of a broad temporal

band. The propagation distances are often very long compared to optical wave-

lengths, and coupled with a complex transverse structure renders the problem

difficult in computational terms.

The type of model we will focus on is the UPPE[10]. The backbone of the model

is the assumption of no scattered fields. This assumption proves to be correct even

for the most extreme cases[11]. Such models can with ease handle any arbitrary

linear and nonlinear polarization.

These types of models have been investigated before. Instead of CV modes the

waves have been formulated as spectral amplitudes for the electrical field in terms

of Fourier plane wave modes. Such formulation needs many spectral modes in

order to represent a radially or azimuthally polarized CV pulse. For long propa-

gation distances and broad temporal spectrum, the numerical solutions for UPPE

equations becomes extremely difficult compared to a cylindrical formulation.

1.2 Structure

The main goal of this thesis is the cylindrical formulation of the CV modes. We

will start off by first introducing the Maxwell equations in its natural form in

chapter 2.
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Chapter 3 is dedicated to the numerical verification method. We will first

discuss the formulation of the method, and then explain how it can be applied to

the Maxwell equations.

In chapter 4 we will introduce our first model. This model is based upon the

assumption of the transverse electrical (TE) field. Such a model will result in

a single scalar equation. We will then proceed with a simple example to better

understand the true meaning of UPPE conditions. The representation of the model

can be made dimensionless through a rescaling method, as is done in section 3.3.

The next section we describe the numerical solution to the model, where we for

the first time introduce the pseudo spectral method.

The last model is introduced in chapter 5. This is the cylindrical formulation of

the CV modes. We will first go through the derivation and along the way discuss

the limitations such a formulation will put on the model. We will rescale it to a

non dimensional system and then propose a numerical solution.

The summary in chapter 6 we go through what we have done in the thesis, and

make a few conclusive sentences.





Chapter 2

Maxwell equations for UPPE

The Maxwell equations are used to describe electromagnetic behaviour in physics,

and the field of optical sciences are no different in this regard. This chapter is

devoted to give a quick introduction to how the Maxwell equations are used in the

framework of spatially propagating UPPE models.

2.1 Maxwell equations

In Nonlinear Optics we gaze upon the interaction between light and matter. This

interaction can often be so strong that the matter itself will deform and change

under the influence of light. Light is best explained as electromagnetic radiation,

and its movements is governed by the Maxwell equations. In its most basic form

it is called the microscopic Maxwell equations

∇× e + ∂tb = 0

∇ · b = 0

∇ · e =
ρ

ε0

∇× b− ε0µ0∂te = µ0J (2.1)

where e is the electrical field, b is the magnetic field, ρ is the charge, J is the

current, ε0 and µ0 is the permittivity and the permeability. In free space the

5



Chapter 2. Maxwell equations for UPPE framework 6

product of the last two holds the relation between them as the speed of light in

vacuum

1
√
µ0ε0

= c

The set of equations (2.1) gives a set of coupled Maxwell equations for every

charge ρi. For propagating light the distances are often measured in meters, while

electrons are at atomic scale. These equations are thus infeasible for numerical

calculations on the natural length scales of light propagation. It is possible to do a

spatial average to find the macroscopic Maxwell equations which is done in[12][8].

∇× E + ∂tB = 0

∇ ·B = 0

∇ ·D = ρF

∇×H− ∂tD = JF (2.2)

where E is the total electric field, B is the total magnetic field, D is the displace-

ment field and H is the magnetizing field at the positions and time (x, y, z, t). For

the displacement field we have the relation

D = ε0E + P

where P is the polarization. The two last quantities are the total amount of free

charges ρF and the free current JF . In the set of equations (2.2) we deal with

densities, such that theese are feasible for calculations over greater distances than

(2.1).

In most cases it is natural to assume the material light is propagating through,

to consist of a linear magnetizing field.
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µ0H = B

It is also common to assume the material to posses no free charges or current such

that

ρF = JF = 0

This reduces the Maxwell equations1 to

∇× E + ∂tB = 0

∇ ·B = 0

∇ · (ε0E + P) = 0

∇×B− µ0∂t(ε0E + P) = 0 (2.3)

In general the polarization is a function of the magnetic and/or electrical field.

The set of equations (2.3) can be written in component form, that leads to a

system of eight equations for six unknown field components. This means the set

of equations are redundant, and two of the equations has to either be removed or

be made implicit. For time propagating models the two divergence terms appears

as constraints on the field components, such models are derived in[13], and are the

most common models when solving the Maxwell equations.

For spatially propagating UPPE models we work with pulses that is assumed

known for all time. If the chosen propagation direction is z, the two equations

without a z derivative will become the constraints instead of divergence operators

have in time propagating models.

1From this point we mean the macroscopic Maxwell equations when we refer to the Maxwell
equations.
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2.2 Polarization

For weak fields the polarization can be expressed through a power series as shown

in [14], we have

P = ε0
(
χ(1)E + χ(2)E2χ(3)E3...

)
(2.4)

where χ are tensors with rank corresponding to the exponent number. The first

term is the linear polarization and can be expressed as

PL(t) =

∞∫
0

dτχ(1)(τ)E(t− τ)

It is assumed χ(1)(τ) respects the causality condition and holds the value 0 for

τ < 0. For time domain models the integral has to be evaluated for each time

step. For spatial models we can rewrite this integral through the use of pseudo

operators. Inserting the Fourier transform of both χ(1) and E(t) in (2.4) we can

through a few modifications get

PL(x, t) = ε0

∞∫
−∞

dωχ̂(ω)Ê(x, ω)e−iωt (2.5)

where we have introduced hat notation for the quantities to represent Fourier

transformation. We can expand the the first order tensor as a series

PL(x, t) = ε0

∞∫
−∞

dω

(
∞∑
n=0

χ̂n(0)

n!
ωn

)
Ê(x, ω)e−iωt (2.6)

If we do a few manipulations of (2.6) we get
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PL(x, t) = ε0

∞∑
n=0

χ̂n(0)

n!

 ∞∫
−∞

dωωnÊ(x, ω)e−iωt

 (2.7)

PL(x, t) = ε0

∞∑
n=0

χ̂n(0)

n!

 ∞∫
−∞

dω(i∂t)
nÊ(x, ω)e−iωt

 (2.8)

PL(x, t) = ε0

∞∑
n=0

χ̂n(0)

n!
(i∂nt )

 ∞∫
−∞

dωÊ(x, ω)e−iωt

 (2.9)

In the parenthesis we have the inverse Fourier transform of the electrical field,

such that the first order polarization can be written as

PL(x, t) = ε0χ̂(i∂t)E(x, t) (2.10)

When the transform of the linear polarization is taken, we have χ̂(ω) directly.

For the higher order parts of the polarization P (2) and P (3) there exists sev-

eral effects such as second harmonic generation (SHG), sum frequency generation

(SFG), difference frequency generation (SFG) and more. For the third order we

have the same families of polarization, but we will focus on the Kerr effect[15]

PNL(t) = ε0χ
(3)(E · E)E (2.11)

It is typical that the intensity of the laser will modify the medium to an optical

lens, which in turn will refocus the beam from its dispersion. In this setting the

tensor χ(3) is a material dependant constant. To further investigate the Kerr effect

we will go through an example

Example 2.1. Kerr effect To further investigate the Kerr effect we will go

through a short example, let us assume a wavepacket on the following form
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φ(z, t) = e−(t−vz)
(
eiω0t + e−iω0t

2

)

Inserting this into (2.11) gives

φ3(z, t) = e−3(t−vz)
(

3eiω0t + 3e−iω0t + ei3ω0t + e−i3ω0t

8

)

Which shows that frequencies at 3ω0 will be produced when the Kerr effect is

present. To know what the nonlinear term will produce is of great interest before

one attempts to develop a model.

This is the formulation of the Maxwell equations, including the linear polariza-

tion we will use to develop our numerical models.



Chapter 3

Method of Verification

In this chapter we will go through the general scheme to verify the numerical

implementations. Then we will discuss the specifics for the Maxwell equations

and the UPPE framework.

3.1 Numerical Verification

To verify the numerical implementation we have chosen to use Method of Man-

ufactured Solutions (MoMS)[16][17]. The method has been widely used in other

sciences, such as fluid mechanics. We will now introduce this method of verifying

numerical implementation to the field of optics.

In general the method is straight forward, but will more often than not result

in rather complicated algebraic manipulations.

For a typical system of partial differential equations an analytical solution is

hard to come by. For such systems we can modify the equations to a form where

an analytical solution is trivial to find. Assume the dynamical system of equations

L1E1 = 0

L2E2 = 0

L3E3 = 0

11
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where the operators L1, L2 and L3 are some complicated operator involving deriva-

tives and the other functions E1, E2 and E3. If an analytical solution cannot be

found, we can manipulate the equations by adding artificial sources

L1E1 = ρ1

L2E2 = ρ2

L3E3 = ρ3

where ρ1, ρ2 and ρ3 is arbitrary functions. For this system we can easily find an

analytical solution by simply choosing E1, E2 and E3 which satisfies the initial

conditions for the system. The source of each equation will now be chosen such

that the set of equations is consistent. Let us do an example to clarify

Example 3.1. The heat equation Let us assume the heat equation with the

following initial conditions

∂tf(x, t)− α∂xxf(x, t) = 0, f(−0.1, 0) = f(0.1, 0) = 300 (3.1)

For this example we will choose the function

f(x, t) = 300 + (0.01− x2)t (3.2)

The function f(x, t) obviously satisfies the initial condition, which is a requirement.

But the function is not a solution to the differential equation (3.1). By direct

insertion we get

0.01− x2 + 2αt = 0

The function can be made a solution to the modified system with an artificial source
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∂tf(x, t)− α∂xxf(x, t) = ρ(x, t)

where by insertion we now have

0.01− x2 + 2αt = ρ(x, t)

By choosing ρ(x, t) such that the equation is satisfied we have a consistent system

to verify the numerical implementation.

For the best results the exact solution and the source should both be smooth

functions, without any singularities. In general this is a mathematical formulation,

and disregard any physical assumptions. If the numerical scheme simulates a

physical system with assumptions out of the ordinary, these have to be properly

implemented within the source and the exact solution. The general numerical

scheme, without assumptions can also be tested, if possible.

In the method the source terms is arbitrary. We can choose the source to neglect

certain terms of the model. By choosing the function ρ(x, t) = ∂tf(x, t) + ρ′(x, t)

as the source in our example, we can neglect the first derivative from the model.

This way we can systematically verify each part of the model. For the process of

creating the numerical model, this can be a very powerful tool, as we get direct

verification for each step along the way.

3.2 The MoMS in UPPE equations

For the UPPE scheme we want to solve a system of equations which originates

from the Maxwell equations. We found the system relevant to be
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∇ ·B = 0

∇ ·D = 0

∇×B− 1

c2
∂tE = µ0∂tP

∇× E− ∂tB = 0 (3.3)

For complicated versions of the polarization, it is nontrivial to find a solution

satisfying all the equations. It is possible to simplify the search by expressing the

fields in terms of their potential

E = −∇φ− ∂tA (3.4)

B = ∇×A (3.5)

By a choice of the function φ and vector A we can find any arbitrary solution

satisfying the system (3.3), where it is known that both a electrical field and

magnetic field exists. The Maxwell equations can be approximated to the scalar

equation when the TE field is assumed[8]. For this example we will investigate the

equation

∂zzE −
1

c2
∂tt(χ(i∂t) + 1)E =

µ0

c
∂ttP

NL (3.6)

The polarization is usually defined as a function of the electrical and/or the mag-

netic field. In order to create a source, we can assume this arbitrary polarization

to be the source element. The choice of polarization can thus be written as

PNL(E,B) = PNL′(E,B) + ρ(E,B)
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Choosing the functions in (3.5) as φ = 0 and A = ∂tf and inserting them into

equation (3.6) gives

∂tt(−∂zzf +
1

c2
∂tt(χ(i∂t) + 1)f +

µ0

c2
(PNL′(−∂ttf,∇× ∂tf) + ρ)) = 0

Dependant on the nonlinear term PNL′ finding a source term ρ can either be trivial

or extremely complicated. The initial conditions of the equation have to follow

the exact solution as

E = −∂ttf , B = ∇× ∂tf

The solution can now be found through one function alone f , where we have

ensured both a magnetic and electrical field to exist. The calculations done here

assumes the general system for the equation (3.6).





Chapter 4

TE model

In this chapter we will derive our first model which is based upon the Transverse

Electrical (TE) field. This is the same model as discussed in[8], where we through

a multiple scales method approximated the model to the nonlinear schroedinger

equation.

We will then proceed to do a simple example of a analytically comprehensive

model, in order to understand what UPPE models are about. In the next parts

we will take the model through a scaling process where we end up with a dimen-

sionless system, and finally propose a suggestive method to solving the problem

numerically.

4.1 Derivation of TE model

The starting point of the model is the Maxwell equations as we derived them in

chapter 2.

∇× E + ∂tB = 0

∇×B− 1

c2
∂tE = µ0∂tP

∇ ·B = 0

∇ · ε0(E + P) = 0 (4.1)

17
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where the polarization consist of a linear term, and some nonlinear or linear term.

P = PL + PNL

For the linear polarization we are going to use the causal operator χ̂(i∂t). The

nonlinear term we are going to leave as any arbitrary function.

The chosen direction of propagation is z. The TE field is defined as the elec-

tromagnetic field perpendicular to the propagation direction of the field. It can

be written in Cartesian coordinates as

E(x, t) = E(z, x, t)j

B(x, t) = B1(z, x, t)i+B2(z, x, t)k

P(x, t) = P (z, x, t)j

By inserting our TE field into the Maxwell equations (4.1), the equations can be

reduced into component form

∂zE = ∂tB1 (4.2)

∂xE = −∂tB1 (4.3)

∂xB1 = −∂zB2 (4.4)

∂zB1 − ∂xB2 =
1

c2
∂t(E + χ(i∂t)E +

1

ε0
PNL) (4.5)

There are four equations in this set. We only need three to find a solution to

all our three field components. This means that the equations are redundant.

The three equations with the z derivative, equations (4.2), (4.4) and (4.5) will be

our dynamical system, and the last equation (4.3) is a constraint. Observe the

following
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∂xE + ∂tB2 = 0

∂z(∂xE + ∂tB2) = 0

∂zxE − ∂txB1 = 0

∂zxE − ∂zxE = 0

This means the constraint is automatically fulfilled.

If we take the time derivative of equation (4.5), and replace ∂tB1 with equa-

tion (4.2), and ∂tB2 with equation (4.3), we can remove the magnetic field from

equation (4.4)

∂zzE + ∂xxE =
1

c2
∂tt((1 + χ(i∂t))E +

1

ε0
PNL) (4.6)

We are now going to look for a solution to this system by mode expansion to the

linear part of the equation. We start by removing the nonlinearity PNL from the

equation.

∂zzE + ∂xxE =
1

c2
∂tt(1 + χ(i∂t))E

If the medium is homogeneous we can reduce the equation to an algebraic equation

through Fourier transform in space and time.

−(k2 + ξ2)Ê =
(ω
c

)2
(1 + χ̂(ω))Ê

where we denote k as the longitudinal, ξ as the transverse wave number and ω is

frequency. We have denoted Ê as the Fourier transform of E. We introduce the

refractive index as
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n2(ω) = 1 + χ̂(ω)

By solving the equation for the longitudinal wave number k we can find the dis-

persion relation as

k = ±β(ω, ξ) = ±
√(ω

c

)2
n2(ω)− ξ2)

By expressing the longitudinal wave number in this way we can use it to expand

the electrical field in terms of a integral in the transverse direction and frequency.

E(z, x, t) =
1

4π2

∞∫
0

dω

∞∫
−∞

dξ{A+(z, ξ, ω)eiβz

+A−(z, ξ, ω)e−iβz}eiξx−ωt + (∗) (4.7)

where we have used the notation (∗) for the complex conjugate. The complex

conjugate ensures the reality of the electrical field. From the exponents we can

deduce that the amplitude A+ is travelling to the right, while the amplitude A−

is travelling to the left.

The expansion can be simplified through rewriting the complex conjugate in

the following way

∞∫
0

dω

∞∫
−∞

dξ{A∗+(z, ξ, ω)e−iβz + A∗−(z, ξ, ω)eiβz}ei(ωt−ξx)

−∞∫
0

dω

−∞∫
∞

dξ{A∗+(z,−ξ,−ω)e−iβz + A∗−(z,−ξ,−ω)eiβz}e−i(ωt−ξx)

0∫
−∞

dω

∞∫
−∞

dξ{A∗+(z,−ξ,−ω)e−iβz + A∗−(z,−ξ,−ω)eiβz}ei(ξx−ωt)
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where we have assumed that n(ω) is an even function. By introducing new ampli-

tudes we can simplify the transform to

E(z, x, t) =
1

4π2

∞∫
−∞

dω

∞∫
−∞

dξ{A(z, ξ, ω)eiβz +B(z, ξ, ω)e−iβz}e−iωt+iξx (4.8)

where the new amplitudes are defined as

A(z, ξ, ω) =

A+(z, ξ, ω), ω > 0

A∗−(z,−ξ,−ω), ω < 0

B(z, ξ, ω) =

A−(z, ξ, ω), ω > 0

A∗+(z,−ξ,−ω), ω < 0

We want to use this expansion to solve the nonlinear equation (4.6). To do so we

have to take the derivative in z on the expansion (4.7)

∂zE(z, x, t) =
1

4π2

∞∫
−∞

dω

∞∫
−∞

dξ{∂zAeiβz

+ iβAeiβz + ∂zBe
−iβz − iβBe−iβz}ei(ξx−ωt)

The expression can be reduced by the following constraint[18]

∂zAe
iβz + ∂zBe

−iβz = 0 (4.9)

Taking the second z derivative of the expansion (4.7) will give the expression
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∂zzE =
1

4π2

∞∫
−∞

dω

∞∫
−∞

dξ{−β2Aeiβz − β2Be−iβz

+ iβ∂zAe
iβz − iβ∂zBe−iβz}ei(ξx−ωt)

where the two last terms can be rewritten as 2iβ∂zA+e
iβz through equation (4.9).

Inserting this directly into the nonlinear equation (4.6), and proceeding with

the Fourier transform of the right hand side will we get the equation

2iβ∂zAe
iβz = N̂L (4.10)

where

NL =
1

c2ε0
∂ttP

NL (4.11)

and the relation between amplitude and electrical field is

E(z, x, t) =
1

4π2

∞∫
−∞

dω

∞∫
−∞

dξ{A(z, ξ, ω)eiβz +B(z, ξ, ω)e−iβz}e−iωt+iξx (4.12)

For the amplitude B(ω) we can observe the following

B∗(ω) = A∗−(ω) = A(−ω), ω > 0

B∗(ω) = A∗+(−ω) = A(−ω), ω < 0

Thus we have found the relation

B(ω) = A∗(−ω), ∀ ω

By focusing on the conjugate of the transform we can observe that
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1

4π2

∞∫
−∞

dω

∞∫
−∞

dξ A∗(z,−ξ,−ω)e−iβze−iωt+iξx (4.13)

=

 1

4π2

∞∫
−∞

dω

∞∫
−∞

dξ A(z,−ξ,−ω)eiβzeiωt−iξx

∗ (4.14)

Here we introduce the relations ω → −ω′ and ξ → −ξ′, such that the total integral

can be simplified to

E(z, x, t) =
1

4π2

∞∫
−∞

dω

∞∫
−∞

dξ{A(z, ξ, ω)eiβze−iωt+iξx + (∗) (4.15)

This means the amplitude B(ω) is redundant, and the electrical field can be found

by considering the value 2Re(A(ω)).

No assumptions breaking the Maxwells equations has been made this far. For

UPPE equations we assume there is no backwards travelling wave, or this wave is

rather small in comparison to the dominant forward travelling wave. For UPPE

equations we thus enforce the condition

A(z, ξ, ω) = 0, ω < 0

This assumption ensures a model only creating a right travelling wave. To put

further emphasis on the conditions creating such waves we will in the next section

go through a simple example explaining this phenomena.

The numerical problem has been reduced from a wave equation to a single ODE

solving for one amplitude A(ω, z), where the total electrical field can be found from

this amplitude alone.
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4.2 A Simple Example

To better understand the UPPE approximation we will here go through a sim-

ple example. We are going to assume a linearly polarized electromagnetic wave

propagating in the presence of a spatially varying refractive index

The relevant equation for this specific example is

∂zzE −
1

c2
∂ttE =

1

c2
χ(z)∂ttE (4.16)

We start by solving the homogeneous part

∂zzE −
1

c2
∂ttE = 0

The two modes solving this system is

eiβz−iωt, e−iβz−iωt, ω > 0

where β(ω) = 1
c2
|ω|. By the inverse transform we can recreate any real function

E = E(z, t).

E(z, t) =

∞∫
0

dω{A+(z, ω)eiβz + A−(z, ω)e−iβz}e−iωt + (∗)

Similarly to the TE model we can rewrite the integral transform to the following

form

E(z, t) =

∞∫
−∞

dω{A(z, ω)eiβz +B(z, ω)e−iβz}e−iωt (4.17)

where
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A(z, ω) =

A+(z, ω), ω > 0

A∗−(z, ω), ω < 0

B(z, ω) =

A−(z, ω), ω > 0

A∗+(z, ω), ω < 0

It is easy to show that

B(z, ω) = A∗(z,−ω) (4.18)

Thus the amplitude B is redundant. The amplitude A is at this point arbitrary

for all ω. The amplitude B will ensure that E is real.

To solve the starting point equation (4.16) we must take derivatives of our

expansion (4.17).

∂zE(z, t) =

∞∫
−∞

dω{iβAeiβz − iβBe−iβz + ∂zAe
iβz + ∂zBe

−iβz}e−iωt

The expansion (4.17) is redundant. We have four half range frequencies where we

only need two. This is because the reality of the electrical field satisfies

Ê(z, ω) = Ê∗(z,−ω)

We reduce this redundancy by introducing the constraint[18]

∂zAe
iβz + ∂zBe

−iβz = 0 (4.19)

Taking the second derivative of (4.17) will give
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∂zzE(z, t) =

∞∫
−∞

dω{iβ∂zAeiβz − iβ∂zBe−iβz − β2Aeiβz − β2Be−iβz}e−iωt (4.20)

Inserting (4.20) and (4.17) into equation (4.16) we get

∞∫
−∞

dω(
ω2

c2
− β2){Aeiβz + e−iβz}e−iωt

∞∫
−∞

dω{iβ∂zAeiβz − iβ∂zBe−iβz}e−iωt

= −
∞∫

−∞

dω
ω2

c2
χ̂(z){Aeiβz +Be−iβz}e−iωt

The first integral cancels, and in spectral domain we are left with

iβ∂zAe
iβz − iβ∂zBe−iβz

= −ω
2

c2
χ̂(z){Aeiβz +Be−iβz}

Using (4.19) again will give

2iβ∂zAe
iβz = −ω

2

c2
χ̂(z){Aeiβz +Be−iβz} (4.21)

Introducing (4.18) to (4.21) and a few manipulations give

∂zA(z, ω) = iαf(z){A(z, ω) + A∗(z,−ω)e−2iβz} (4.22)
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where

α =
ω2χ̂0

2βc2
=

1

2
βχ̂0

and

χ̂(z) = χ̂0f(z)

where χ̂0 is the strength of the function f(z) = O(1).

Underlying the UPPE assumption is a unidirectional wave. In order to achieve

this we will assume that A(z, ω) = 0 for ω < 0. For equation (4.22) this will for

ω > 0 mean that

∂zA(z, ω) = iαf(z)A(z, ω) (4.23)

We now check for consistency in according to the full system (4.22). For ω < 0 we

get

∂zA(z, ω) = iαf(z){A(z,−|ω|) + A∗(z, |ω|)e−2iβz} (4.24)

Even for the simple case where we assume that A(0,−|ω|) = 0, the equation (4.24)

gives

∂zA(0,−ω) = iαf(0){A∗(0, |ω|)} 6= 0

Thus a solution to (4.22) does not even exist.
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In order for (4.23) to be an approximation to (4.22) we need A(z, ω) ≈ 0 for all

ω < 0.For the assumption A(z,−|ω|) ≈ 0 we have for equation (4.22)

∂zA(z, |ω|) = iαf(z)A(z, |ω|) (4.25)

∂zA(z,−|ω|) = iαf(z)A∗(z, |ω|)e−2iβz (4.26)

In (4.26) we observe that

A(z,−|ω|) = iα

z∫
z0

dz′f(z′)A∗(z′, |ω|)e2iβz′

We observe from (4.25) that the characteristic length scale of variation of A(z, |ω|)

is

L+ ∼
1

α

In (4.26) the oscillatory exponent will vary on a length scale of

L− ∼
1

β

If it was the case that

L+ >> L− (4.27)

it would mean that the integral in (4.26) would be very small due to cancellations.

This is an example of the Riemann-Lebesgue lemma from theory of integration.

The unidirectional wave assumption is thus only valid whenever (4.27) holds. For

such cases when we have A(z0,−|ω|) ≈ 0 then A(z,−|ω|) ≈ 0 for z > z0 due

to integral cancellations. This is the assumption leading to existence of UPPE

models.
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4.3 Rescaling the TE model

From the derivation of the TE model we remember that we had the following

equations as our proposed numerical system

2iβ∂zA+e
iβz = N̂L (4.28)

where the electrical field can be found through the transform

E(z, x, t) =
1

4π2

∞∫
−∞

dω

∞∫
−∞

dξA+(z, ξ, ω)eiβze−iωt+iξx (4.29)

and the origin of the differential equation were

∂zzE + ∂xxE =
1

c2
∂tt((1 + χ(i∂t))E +

1

ε0
PNL) (4.30)

We will here start by introducing new variables. The variables will be dimension-

less, while the corresponding constant will typically be set by the initial condition.

z = z0z
′, x = x0x

′, E = E0E
′, t = t0t

′ (4.31)

By inserting the new variables (4.31) into (4.30) and a few manipulations we get

α∂x′x′E
′ + ∂z′z′E

′ − ∂t′t′E ′ = ∂t′t′χ(
i

t0
∂t′)E

′ + ∂t′t′P
NL′ (4.32)

where we have introduced the relation z0 = ct0. The new constant α is

α =
c2t20
x20

=

(
z0
x0

)2
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which is a constant of proportionality. The constant is length divided by length

and thus dimensionless.

The transversal part can be removed from equation (4.32) by

lim
x0→∞

α = lim
x0→∞

(
z0
x0

)2

≈ 0

The numerical approach we want for this model is based upon this assumption.

The relation between the amplitude and the electrical field can be found through

the transform (4.29). We will first look at the dispersion

β =

√(ω
c

)2
n2(ω)

We will use ω0t0 = 1 as the relationship between time and frequency. Together

with the aforemention relationship for the speed of light z0 = ct0 we have

β =
1

z0

√
(ω′)2 n2(ω′ω0)

where the function n(ωω0) is a dimensionless quantity. For the transform this will

ensure the exponent to be in dimensionless form. For the rest of the transform

(4.29) we have

E0E
′(z′, x′, t′) =

A0

t0

1

2π

∞∫
−∞

dω′A(z′, ω′)eiβ
′z′e−iω

′t′

where we observe that in terms of A0 we have E0 as

E0 ∼
A0

t0
(4.33)

direct insertion of 4.33) into (4.28) the equation gives
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A0

z20
2iβ′∂zA

′eiβ
′z′ = N̂L

where the nonlinearity has the dimension

NL′ =
E0

c2t20
PNL′ =

E0

z20
PNL′

From the Fourier transform we will get an extra factor t0. We have

A02iβ
′∂zA

′
+e

iβ′z′ = t0E0N̂L
′

through the relation of the initial electrical field E0 and the amplitude A0, we

observe that the differential equation is a dimensionless equation. We know the

Maxwell equations is a physical law and is dimensionless, this will thus be a weak

verification of the derivations done in the previous section. The dimensionless

equations are the ones we will use in our numerical implementation. The problem

has now through the assumption of α = 0 been reduced to solving

2iβ′∂zA
′
+e

iβ′z′ = N̂L
′

where the electrical field can be found through

E ′(z′, x′, t′) =
1

2π

∞∫
−∞

dω′A(z′, ω′)eiβ
′z′e−iω

′t′ (4.34)

and the arbitrary nonlinearity is expressed as

NL′ = PNL′

In this section we introduced new dimensionless variables. We made reasonable
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relations between the different quantities in terms of the physical phenomena we

want to model.

Next we went on to assume that the transverse part is gone by setting the

constant α = 0. This simplified our system to a propagating direction and a time

dependency.

4.4 Implementation of TE model

In this section we will explain the implementation of the TE model. We will treat

the model as the general Maxwell equation without the UPPE assumptions. We

will then go two different directions, one where we discuss the implementation of

the UPPE assumptions, and one where we discuss the verification of the numerical

system.

4.4.1 The model

To evolve the amplitude involves evaluating the polarization each time. The po-

larization is some function of the fields E or B. If we assume that the polarization

is of the type Kerr effect we have in the temporal domain

NL = E3

which in the spectral domain represents a double convolution. The convolution

can be avoided by reconstructing the electrical field, do the multiplication, and

then bring the polarization back to spectral domain. This type of method is called

a pseudo spectral method. To do so we have to implement the relation between

the electrical field and the amplitude

E(z, t) =
1

2π

∞∫
−∞

dωA(ω, z)eiβz−iωt + (∗) (4.35)
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Since the algorithm is based on repetitive use of the Fourier transform we have

chosen to implement a version of the Fast Fourier Transform (FFT) algorithm.

The FFT algorithm has a Nlog(N) complexity, compared to its counterpart the

Discrete Fourier Transform (DFT), which has a N2 complexity.

The algorithm itself does not have to be implemented, but in order to utilize

the FFT we have to go through a scale and shift process for our transform (4.35).

The full derivation is described in Appendix A.

We have chosen to implement the transform (4.35) with periodic boundaries.

Such an implementation has the advantage of recycling the domain, and thus

requires a smaller time domain for long distance propagation. For the general

wave it is enough to have the wave fully encapsulated by the time domain, and

the frequencies within the spectral domain.

To utilize the FFT algorithm, the domain of interest has to be discretized into

2m points. If the amount of points for the current discretization is not enough,

one will have to double the amount of points to achieve a finer discretization.

The general idea of the model is to simulate nonlinear interactions for few cycle

pulses. Nonlinear interactions like the Kerr effect produces new frequencies at

three times the mother frequency, as we discovered in Chapter 2. This means that

the discretization itself has to be fine enough to represent the pulse, and at the

same time leave room for these frequencies to appear in the spectral domain.

The evolution equation to find the amplitude at a given point z is expressed as

the differential equation

2iβ∂zA(ω, z)eiβz = N̂L(ω, z) (4.36)

To solve such a system we have used a standard ODE solver. The number of

differential equations equates the number of points in frequency. For nonlinear

ODEs it is advisible to use implicit methods. Because of the high number of points

in the system one should choose a solver which does not require the Jacobian to be

calculated beforehand. The chosen solver for this problem was the Adam Basforth

algorithm.
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The major part of time spent in the algorithm is on the right hand side. In

general this is where the numerical implementation should be made in as few steps

as possible where speed really matters. The outlay of our implementation can be

shown in a four step algorithm:

1. Reconstruct the electrical field from the transform (4.35)

2. Evaluate the polarization at this point z.

3. Bring the polarization into spectral domain and set it as the right hand side

of (4.36).

4. repeat to evolve further.

This implementation is the same for both the UPPE conditions and the verifi-

cation of the model.

4.4.2 UPPE setup

To simulate real UPPE conditions we can modify the general propagation model.

As indicated in the first section of this chapter, we can set all negative frequencies

to zero, to simulate a right travelling wave. To initialize such a wave we can start

with a wave packet of the form

f0(t) = e−γtcos(ω0t)

Choosing the constants γ and ω0 properly will ensure this simulates a few cycle

pulse. Taking the Fourier transform of the function will give a wave propagating

in both negative and positive direction. We will keep only the positive frequencies

and use this to initiate the amplitude A(ω, z).

The electrical field can then be found through reconstruction as explained pre-

viously. From the constant ω0 we will get the initial frequency spike, if the non-

linearity is of the type Kerr effect, we will get new child frequencies at the points

3ω0 in the spectrum. The choice of ω0 should be chosen such that the point ω = 0
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is unpopulated, yet the domain does not get saturated from production of child

frequencies too fast.

Whenever we reconstruct the electrical field and conduct an evaluation of the

nonlinearity we will produce negative frequencies, these have to be set to zero each

time we want to propagate the amplitude A(ω, z). Since we know that negative

frequencies does not exist for A(ω, z) we can also choose to not propagate the

negative frequencies, and thus get a general speed up for the propagation model.

4.4.3 Verification

To verify the numerical implementation we will use the method described in chap-

ter 3. To produce an environment where the UPPE conditions are fulfilled requires

tinkering with the chosen analytical solution. In terms of testing the numerical

implementations as a system working together, it is sufficient to test the more

general model. We will thus assume both positive and negative frequencies exists

for this test.

The evolution of the electrical field will follow the differential equation which

was the origin of the amplitude equation

∂zzE − ∂ttE − ∂ttχ(i∂t)E = ∂ttP
NL (4.37)

The polarization has been treated as a general function of unknown type. For

verification purpose we can assume this to be any function of our choosing, and

thus represent our source term. In the TE model, the chosen representation of the

polarization is

∂ttP
NL(z, t) = ∂ttP

NL′(z, t) + ∂ttρ(z, t)

where PNL′ will be represented as the Kerr effect. The polarization can also be

represented as any kind of magnetic function, as we can ensure this through the

representation
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−∂ttf(z, t) = E(z, t)

The original equation is the driven wave equation. To analytically solve it we need

atleast two initial conditions. We choose the equations

E(z, t) =
1

2π

∞∫
−∞

dω{A(z, ω)eiβz +B(z, ω)e−iβz}e−iωt

∂zE(z, t) =
1

2π

∞∫
−∞

dω{iβAeiβz − iβBe−iβz}e−iωt

This is a system of two equations and two unknowns. We only have to solve it

for the amplitude A(ω, z) since the amplitude B(ω, z) is redundant. This will

initialize the general model.

4.5 Numerical Results

We will present the numerical results in the same order as we presented the sug-

gested numerical solutions of the systems.

4.5.1 TE model

For the polarization we have chosen to simulate the Kerr effect, and the material

Air

P ′kerr = ζE
′3

where the constant ζ = ηE2
0 , and is regarded as the strength of the nonlinearity.

The Kerr constant η is material dependant, and for air it holds the value η =

1.7 ∗ 10−25. The initial electrical field E0 is given by the intensity of the incident

laser beam, and can be found through the relation



Chapter 4. TE model 37

E0 =

(
2I

ε0c

)
× 102

The intensity of the laser we have chosen to model is of the strength I = 1015W/cm2.

The strength of the nonlinearity in this case will thus have the value

ζ = ηE2
0 = 0.001281

The refractive index is material dependant. In order to find analytical function of

the refractive index it is common to use the Sellmeier formulas. A short introduc-

tion in given in the Appendix B. For Air the formula is given as

n(ω) = 1 +
5.85096× 10−16

1.99884× 10−11 − ω2
+

2.01822× 10−14

8.29399× 10−10 − ω2

This function can be verified through the STP conditions of the medium. Inserting

the frequency ω = 0 into the formula for the refractive index gives the value 1.00027

which is the exact value for STP conditions in air.

To find the initial mode of the system we have chosen the function

f0(t) = e−t/2cos(5t)

The test run was ran with a time domain from −15 to 15, the discretization in

time direction was chosen to be T = 1024. For the only spatial direction we have

chosen to print the results with steplength dz = 0.1.
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Figure 4.1: The figure shows the development of A with ω on the y axis and
propagation direction z on the x axis. The discretization for ω is 1024 while in

z direction we have 1000 points.

Figure 4.2: This is the same function in the time domain. The y axis is now
time instead, discretized with 1024 points. The z discretization is the same as
the previous picture 1000 points. We can see the short pulse travelling through

the medium with periodic boundaries doing its work.
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The first figure (4.1) is the development of the spectrum, where the y axis is

frequency and the x axis is z. The chosen representation is a density plot where

we can see the mother frequency at the point ω = 5, and child frequencies emerge

along the frequency axis.

In the next figure (4.2) we have the same system in time and space. The pulse

is here travelling through the domain and reappearing on the negative side of the

time axis.

4.5.2 Verification

Both the Kerr coefficient, incident laser intensity and refractive index will be

present in this simulation as well. For this case however, we will simulate an exact

solution, and these functions and constants will not play the same role as in the

real experimental test.

For verification purpose the numerical constant was set to ζ = 0.002. And the

refractive index was set to be a constant n(ω) = 1. To find an exact solution we

chose the function

f(z, t) = e−(t−2z)
2

cos(10t)

The time domain spans from −30 to 30, where the discretization is of 1024

points.
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Figure 4.3: The figure shows the exact solution in blue, and numerical solution
in green in the same plot. The discretization in time is 1024 points, and this is
at the point z = 0.1. We can see that the solutions perfectly overlap each other.

Figure 4.4: The figure shows the exact solution in blue, and numerical solution
in green in the same plot. The discretization in time is 1024 points, and this is
at the point z = 2.5. We can see that the solutions perfectly overlap each other.
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Figure 4.5: The figure shows the exact solution in blue, and numerical solution
in green in the same plot. The discretization in time is 1024 points, and this is
at the point z = 5.0. We can see that the solutions perfectly overlap each other.

Figure 4.6: The figure shows the exact solution in blue, and numerical solution
in green in the same plot. The discretization in time is 1024 points, and this is
at the point z = 10. We can see that the solutions perfectly overlap each other.

The figures 4.3, 4.4, 4.5 and 4.6 shows the exact solution in blue against the

numerical solution in green. The figures shows the wave at the points z = 0.1,
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z = 2.5, z = 5.0 and z = 10.0. As we observe from the figures the numerical

solution and the exact solution are on top of each other. This is an indication that

the numerical solution does indeed simulate the exact solution.

4.6 Discussion

The final product of this derivation is a highly reduced model for a very specific

electrical field composition. The model is small enough to comprehend what to

expect from the different parts of the numerical scheme, and at the same time

produce a full solution. We have used this to get an introduction to the pseudo

spectral method, where the nonlinearity will be calculated in the time domain,

and the amplitude A(ω, z) will be propagated in the spectral domain.

From the test of the UPPE conditions we can observe the periodic boundaries in

work. These figures really shows the upper hand such an implementation has over

regular FDTD implementations, or non periodic boundary implementations. The

total discretization needed is reduced dramatically when the goal is to propagate

the pulse over greater distances.

Finding an analytical solution to the UPPE conditions proves difficult. In the

contrary, an through an artificial source it is rather trivial to find any solution to

the general system. Since the artificial source is an analytical expression it cannot

simulate the wave through the time domain several times. This means we cannot

measure the total inaccuracy from recycling the time domain.

For the first run through the time domain we are able to measure the total

error of the implementation.
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Figure 4.7: The absolute value of the difference between the exact solution
and the numerical solution at the point z = 0.1.

Figure 4.8: The absolute value of the difference between the exact solution
and the numerical solution at the point z = 2.5.
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Figure 4.9: The absolute value of the difference between the exact solution
and the numerical solution at the point z = 5.0.

Figure 4.10: The absolute value of the difference between the exact solution
and the numerical solution at the point z = 10.

The following figures (4.7) to (4.10) shows the total error within the system as

err = |exact − numerical|. The chosen points is z = 0.1, z = 2.5, z = 5.0 and

z = 10.0. As we can see from the figures, the error grows from 10−5 in figure (4.7)
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to 10−4 in figure (4.10). The total error of the system also spreads along the axis

as the pulse propagates.

The main source of error comes from the midpoint rule which has a weak error

estimation of O(h2). The transform is repetitively used at each point, and the

error should thus stack up for each reconstruction of the electrical field. As we

observe from the error plots the total error spreads as the wave propagate. The

linear speed of the initial condition should be located at t = 10 in the last picture,

the exact solution at t = 20, as can be seen from the exact solution chosen. The

total error is however small in comparison to the exact solution, and we have

atleast 6 significant digits of accuracy.

It is clear that the numerical verification is not the same as testing the true

UPPE conditions model. To run a UPPE conditions model we can highly reduce

the run time of the implementation by reducing the amount of frequency we have

to work with, this however requires modification of the numerical implementation.

The second and maybe most important aspect is the right hand side, in contrary

to the UPPE conditions, the verification method runs with a very significant right

hand side, and thus gives stronger change in the amplitude A(ω, z). It is to expect

for the verification to give a higher amount of total error than the true UPPE

conditions example.





Chapter 5

Vectorial model

5.1 Vector Cylindrical Model

We will now derive a formulation for the Maxwell equations based upon cylindrical

coordinates, this derivation is based upon the work done by Per Jakobsen[1]. The

base is the macroscopic Maxwell equations

∇× E + ∂tB = 0 (5.1)

∇×B− 1

c2
∂tE = µ0∂tP (5.2)

∇ ·B = 0 (5.3)

∇ · (ε0E + P) = 0 (5.4)

polarization P will be expressed as

P(x, t) = ε0χ(i∂t)E(x, t) + PNL(x, t) (5.5)

where the nonlinear polarization is assumed to be some arbitrary function.

The fields will be expressed in terms of cylindrical coordinates

47
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E(x, y, z, t) = Er(r, θ, z, t)r + Eθ(r, θ, z, t)θ + Ez(r, θ, z, t)z (5.6)

B(x, y, z, t) = Br(r, θ, z, t)r +Bθ(r, θ, z, t)θ +Bz(r, θ, z, t)z (5.7)

P(x, y, z, t) = Pr(r, θ, z, t)r + Pθ(r, θ, z, t)θ + Pz(r, θ, z, t)z (5.8)

Where we have allowed the components of the fields to vary in space and time. By

representing the fields in cylindrical coordinates instead of cartesian coordinates

a constraint is set on the model. It is evident that the cylindrical system has a

singularity at the point r = 0, and any field can not be represented at this point.

We proceed by inserting the fields into the first equation of Maxwell (5.1), and

get

1

r
∂θEz − ∂zEθ + ∂tBr = 0 (5.9)

∂zEr − ∂rEz + ∂tBθ = 0 (5.10)

1

r
(∂r(rEθ)− ∂θEr) + ∂tBz = 0 (5.11)

For the second Maxwell equation (5.2) we have

1

r
∂θBz − ∂zBθ −

1

c2
((1 + χ(i∂t))Er) = µ0∂tP

NL
r (5.12)

∂zBr − ∂rBz −
1

c2
((1 + χ(i∂t))Er) = µ0∂tP

NL
θ (5.13)

1

r
(∂r(rBθ)− ∂θBr)−

1

c2
((1 + χ(i∂t))Er) = µ0∂tP

NL
z (5.14)

The two divergence equations of Maxwell (5.3) and (5.4) gives
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1

r
∂r(rBr) +

1

r
∂θBθ + ∂zBz = 0 (5.15)

ε0(1 + χ(i∂t))(
1

r
∂r(rEr) +

1

r
∂θEθ + ∂zEz) =

1

r
∂r(rP

NL
r ) +

1

r
∂θP

NL
θ + ∂zP

NL
z (5.16)

This is a system of eight equations for six unknowns, and therefore overdetermined.

We need six equations to form our dynamical system for the six field components,

the chosen equations are

1

r
∂θEz − ∂zEθ + ∂tBr = 0 (5.17)

∂zEr − ∂rEz + ∂tBθ = 0 (5.18)

1

r
∂θBz − ∂zBθ −

1

c2
((1 + χ(i∂t))Er) = µ0∂tP

NL
r (5.19)

∂zBr − ∂rBz −
1

c2
((1 + χ(i∂t))Er) = µ0∂tP

NL
θ (5.20)

1

r
∂r(rBr) +

1

r
∂θBθ + ∂zBz = 0 (5.21)

ε0(1 + χ(i∂t))(
1

r
∂r(rEr) +

1

r
∂θEθ + ∂zEz) =

1

r
∂r(rP

NL
r ) +

1

r
∂θP

NL
θ + ∂zP

NL
z (5.22)

The two remaining equations forms a constraint to the solution of the system. We

can express them as

K1 ≡
1

r
(∂r(rEθ)− ∂θEr) + ∂tBz = 0 (5.23)

K2 ≡
1

r
(∂r(rBθ)− ∂θBr)

− 1

c2
((1 + χ(i∂t))Er)− µ0∂tP

NL
z = 0 (5.24)

The constraints (5.23) and (5.24) are preserved when the wave propagates. This

can be verified through the z derivative of the constraints them self. Observe that
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∂zK1 =
1

r
(∂r(r∂zEθ)− ∂θzEr) + ∂tzBz

=
1

r
(∂rθEz + ∂r(r∂tBr)− ∂θzEz

+ ∂θtBθ − ∂r(r∂tBr)− ∂θtBθ) = 0 (5.25)

where we use (5.17), (5.18) and (5.21) to manipulate equation (5.23). For the next

equation (5.24) we have

∂zK2 =
1

r
(∂r(r∂zBθ)− ∂θzBr)−

1

c2
((1 + χ(i∂t))∂zEr)− µ0∂tzP

NL
z

=− 1

c2
∂t(1 + χ(i∂t))(∂zEz +

1

r
∂θEθ

+ µ0(1 + χ(i∂t))
−1)

(
1

r
∂r(rP

NL
r ) +

1

r
∂θP

NL
θ + ∂zP

NL
z

)
= 0 (5.26)

where we use the relations (5.19) and (5.20). These two constraints serve the

same purpose as the divergence constraints for Maxwells equations as a dynamical

system in time. The constraints has to be imposed at one point, and this is usually

done at the entrance to the medium.

We will now remove the magnetic field components from the equations. Thus

we get a system consisting of electrical field components only. We begin by taking

the z derivative of equation (5.17)

∂zzEθ =
1

r
∂zθEz + ∂tzBr (5.27)

=
1

r
∂θzEz − ∂r

(
1

r
∂r(rEθ)

)
+ ∂r

(
1

r
∂θEr

)
+

1

c2
∂tt((1 + χ(i∂t))Eθ) + µ∂ttP

NL
θ (5.28)

where we have used equation (5.20) and (5.23). For the next component we get
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∂zzEr =∂zrEz − ∂ztBθ (5.29)

=∂zrEz +
1

r
∂θ

(
1

r
(∂r(rEθ))

)
− 1

r
∂θ

(
1

r
∂θEr

)
+

1

c2
∂tt((1 + χ(i∂t))Er)) + µ0∂ttP

NL
r (5.30)

where we use equation (5.19) and (5.24). Then equations (5.28), (5.30) and (5.22)

creates the three equations for the three electrical field components

∂zzEθ =
1

r
∂θzEz − ∂r

(
1

r
∂r(rEθ)

)
+ ∂r(

1

r
∂θEr)

+
1

c2
∂tt((1 + χ(i∂t))Eθ) + µ∂ttP

NL
θ (5.31)

∂zzEr = ∂zrEz +
1

r
∂θ

(
1

r
(∂r(rEθ))

)
− 1

r
∂θ

(
1

r
∂θEr

)
+

1

c2
∂tt((1 + χ(i∂t))Er)) + µ0∂ttP

NL
r (5.32)

∂zEz = −1

r
∂r(rEr)−

1

r
∂θEθ

− (ε0(1 + χ(i∂t)))
−1
(

1

r
∂r(rP

NL
r ) +

1

r
∂θP

NL
θ + ∂zP

NL
z

)
(5.33)

Since the term ∂zP
NL
z contains the z derivative of all the electric field components

including Ez, equation(5.33) has to be solved implicitly. The nonlinear polariza-

tion can be assumed a small perturbation, and equation (5.33) can be solved by

iteration.

From this set of equations (5.31) to (5.33) we will derive the spectral evolution

equations. Take note that to solve (5.33) we need the five quantities Er, Eθ, Ez

∂zEr and ∂zEθ. We can find a hidden constraint for these by the collection of

equations
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∂rEz − ∂tBθ − ∂zEr = 0 (5.34)

1

r
∂θEz + ∂tBr − ∂zEθ = 0 (5.35)

1

r
(∂r(rEθ)− ∂θEr) + ∂tBz = 0 (5.36)

1

r
(∂r(rBθ)− ∂θBr)

− 1

c2
∂t((1 + χ(i∂t))Ez) = µ0∂tP

NL
z (5.37)

The first two equations comes directly from Maxwells equations (5.17) and (5.18).

The next two equations are the same constraints we found earlier as K1 (5.23)

and K2 (5.24). The system now has four constraints for three components, and is

overdetermined. These equations can only be true if we either can remove one of

them or combine some of them in order to lift the redundancy.

We can remove the magnetic field from the equations, by starting with the time

derivative of the equation (5.37) we get

1

r
(∂rt(rBθ)− ∂θtBr)−

1

c2
∂t((1 + χ(i∂t))Ez) = µ0∂ttP

NL
z

1

r
(∂r(r(∂rEz − ∂zEr))− ∂θ(−

1

r
∂θEz + ∂zEθ))

− 1

c2
∂t((1 + χ(i∂t))Ez) = µ0∂ttP

NL
z

− 1

c2
∂t((1 + χ(i∂t))Ez +∇2

⊥Ez

−1

r
∂r(r∂zEr)−

1

r
∂θzEθ = µ0∂ttP

NL
z (5.38)

where we used the equations (5.34) and (5.35) to get to this point. This constraint

is preserved when the beam propagates, and only have to be imposed at the

entrance of the medium.

We will now look to expand the linear part of the equations (5.31), (5.33) and

(5.33) into modes, and use this expansion to get a full solution to the nonlinear

problem. The equations without the nonlinearities PNL
i reads
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∂zzEθ =
1

r
∂θzEz − ∂r

(
1

r
∂r(rEθ)

)
+ ∂r(

1

r
∂θEr)

+
1

c2
∂tt((1 + χ(i∂t))Eθ) (5.39)

∂zzEr = ∂zrEz +
1

r
∂θ

(
1

r
(∂r(rEθ))

)
− 1

r
∂θ

(
1

r
∂θEr

)
+

1

c2
∂tt((1 + χ(i∂t))Er)) (5.40)

∂zEz = −1

r
∂r(rEr)−

1

r
∂θEθ (5.41)

This can be solved by assuming no angular or radial electric field. Thus giving the

solution

Er = Eθ = 0, Ez = φ(r, θ, t)

that is the trivial solution. Instead we will seek nonzero solutions involving the

angular and radial terms. We start by removing the dependency of Ez from the

angular and radial parts

∂zzEr =− ∂r(
1

r
∂r(rEr))−

1

r
∂θ(

1

r
∂θEr) +

1

c2
∂tt((1 + χ(i∂t)Er)

− ∂r(
1

r
∂θEθ) +

1

r
∂θ(

1

r
(∂r(rEθ)))

∂zzEθ =− ∂r(
1

r
∂r(rEθ))−

1

r2
∂θθEθ +

1

c2
∂tt((1 + χ(i∂t)Eθ)

− 1

r2
∂θr(rEr) + ∂r(

1

r
∂θEr)

These two equations can be further reduced by manipulating the derivatives. We

get

−∂r(
1

r
∂θEθ) +

1

r
∂θ(

1

r
(∂r(rEθ))) =

1

r2
∂θEθ −

1

r
∂rθEθ +

1

r2
∂θEθ +

1

r
∂θrEθ =

2

r2
∂θEθ
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and similarly

− 1

r2
∂θr(rEr) + ∂r(

1

r
∂θEr) =

− 1

r2
∂θEr −

1

r
∂θrEr −

1

r2
∂θEr +

1

r
∂θrEr =− 2

r2
∂θEr

The two equations now reads

∂zzEr =− ∂r(
1

r
∂r(rEr))−

1

r
∂θ(

1

r
∂θEr)

+
1

c2
∂tt((1 + χ(i∂t)Er) +

2

r2
∂θEθ

∂zzEθ =− ∂r(
1

r
∂r(rEθ))−

1

r2
∂θθEθ

+
1

c2
∂tt((1 + χ(i∂t)Eθ)−

2

r2
∂θEr

observe that these equations are similar in terms of derivatives. We introduce the

operators according to

Lf = −∂r(
1

r
(rf))− 1

r2
∂θθf +

1

c2
∂tt((1 + χ(i∂t)f)

Qf =
2

r2
∂θf

This is the point we where want to expand the equation in modes. To do so we

have to find the spectral resolution to the operator

G =

 L Q

−Q L

 (5.42)

By introducing the inner product
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(φ, ψ) =

2π∫
0

dθ

θ∫
0

drrφ(r, θ)ψ(r, θ) (5.43)

We can observe that the L† = L and Q† = −Q.

If we assume that the space contains two component functions we can introduce

the new inner product as

[φ, ψ] = (φ1, ψ1) + (φ2, ψ2) (5.44)

Then we observe that

[Gφ, ψ] =

 L Q

−Q L

φ1

φ2

 ,

ψ1

ψ2


=

 Lφ1 +Qφ2

−Qφ1 + Lφ2

 ,

ψ1

ψ2


= (Lφ1 +Qφ2, ψ1) + (Lφ2 −Qφ1, ψ2)

= (Lφ1, ψ1) + (Qφ2, ψ1) + (Lφ2, ψ2)− (Qφ1, ψ2)

= (φ1, Lψ1)− (φ2, Qψ1) + (ψ2, Lφ2) + (φ1, Qψ2)

= (φ1, Lψ1 +Qψ2) + (φ2, Lψ2 −Qψ1)

=

φ1

φ2

 ,

 Lψ1 +Qψ2

−Qψ1 + Lψ2


=

φ1

φ2

 ,

 L Q

−Q L

ψ1

ψ2


This proves that the operator G is in fact self adjoint, which implies that the

spectrum is real. The spectral resolution with respect to G is
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Lφ1 +Qφ2 = λφ1

Lφ2 −Qφ1 = λφ2 (5.45)

We introduce the Fourier transform for time, and Fourier series for the angular

part

φj(r, θ, t) =
1

rπ2

∞∑
m=−∞

∞∫
−∞

dωφ̂j(r, ω,m)ei(mθ−ωt) j = 1, 2 (5.46)

the operator L in the spectral domain is

Lφj(r, θ, t) =
1

rπ2

∞∑
m=−∞

∞∫
−∞

dωLω,mφ̂j(r, ω,m)ei(mθ−ωt) j = 1, 2 (5.47)

which gives the spectral form as

Lω,mf = −∂r(
1

r
(rf) +

m2

r2
f −

(ω
c

)2
n2(ω)f (5.48)

where we have introduced the refractive index as

n2(ω) = 1 + χ(ω)

In the spectral domain the system (5.45) is

Lω,mφ̂1 +
2im

r2
φ̂2 = λφ̂1 (5.49)

Lω,mφ̂2 −
2im

r2
φ̂1 = λφ̂2 (5.50)
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for equation (5.49) we get

∂r(
1

r
∂r(rφ̂1)) +

m2

r2
φ̂1 −

(ω
c

)2
n2(ω)φ̂1 +

2im

r2
φ̂2 = λφ̂1

∂rrφ̂1 +
1

r
∂rφ̂1 + ξ2φ̂1 −

m2 + 1

r2
φ̂1 − 2imφ̂2 = 0

r2∂rrφ̂1 + r∂rφ̂1 + (r2ξ2 − (1 +m2))φ̂1 − 2imφ̂2 = 0

We can do a similar thing with (5.50)

−∂r(
1

r
∂r(rφ̂2)) +

m2

r2
φ̂2 −

(ω
c

)2
n2(ω)φ̂2 −

2im

r2
φ̂1 = φ̂1

∂rrφ̂2 +
1

r
∂rφ̂2 + ξ2φ̂2 −

m2 + 1

r2
p̂hi2 +

2im

r2
φ̂1 = 0

r2∂rrφ̂2 + r∂rφ̂2 + (r2ξ2 − (1 +m2))φ̂2 + 2imφ̂1 = 0

where we have introduced the new quantity ξ =
√(

ω
c

)2
n2(ω) + λ. This parameter

can be either real positive or imaginary depending on λ, depending on whether

λ is be bigger or smaller than −
(
ω
c

)2
n2(ω). This leaves us with the following

equations for the eigenvalues

r2∂rrφ̂1 + r∂rφ̂1 + (r2ξ2 − (1 +m2))φ̂1 − 2imφ̂2 = 0

r2∂rrφ̂2 + r∂rφ̂2 + (r2ξ2 − (1 +m2))φ̂2 + 2imφ̂1 = 0 (5.51)

If we add the term 2mφ̂j to the equations (5.51) we get

r2∂rrφ̂1 + r∂rφ̂1 + (r2ξ2 − (1 +m2))φ̂1 + 2mφ̂1 − 2imφ̂2 = 0

r2∂rrφ̂2 + r∂rφ̂2 + (r2ξ2 − (1 +m2))φ̂2 + 2mφ̂2 + 2imφ̂1 = 0

This system has the solution on the form of Bessel functions
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φ̂1 = iJm+1(ξr)

φ̂2 = Jm+1(ξr)

This can only be done for ξ real. For a pure imaginary ξ we will get the modified

Bessel functions, these have exponential growth and cannot be used to model real

physical fields. We get the following constraint on the spectrum

λ > −
(ω
c

)2
n2(ω)

We now have a positive ξ, and the eigenvalues of the equations have the range(−
(
ω
c

)2
n2(ω),∞).

by subtracting the same term 2mφ̂j from the equations (5.51)

r2∂rrφ̂1 + r∂rφ̂1 + (r2ξ2 − (1 +m2))φ̂1 − 2mφ̂1 − 2imφ̂2 = 0

r2∂rrφ̂2 + r∂rφ̂2 + (r2ξ2 − (1 +m2))φ̂2 − 2mφ̂2 + 2imφ̂1 = 0

We will in a similar fashion we find the two new solutions to the system

φ̂1 = Jm−1(ξr)

φ̂2 = iJm−1(ξr)

Together these will form the solutions to the system

iJm+1(ξr)

Jm+1(ξr)

 ,

Jm−1(ξr)
Jm−1(ξr)


that spans the eigenspace for λ. These will be used to expand the angular and

radial part of the field in terms of modes for the linearised system.
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∂zz

Er
Eθ

 = G

Er
Eθ

 (5.52)

Thus the modes of the expansion will take the form

A(z, ξ, ω,m)

iJm+1(ξr)

Jm+1

 eimθ−iωt (5.53)

B(z, ξ, ω,m)

Jm−1(ξr)
Jm−1

 eimθ−iωt (5.54)

By inserting the modes A and B into the linearised system we observe that they

must satisfy

∂zzA = λA

∂zzB = λB

We found the quantity ξ to be a real positive variable. From the relation

ξ2 =
(ω
c

)2
n2(ω) + λ

the eigenspace can be labelled ξ ∈ (0,∞). By defining

λ = −β2

we get the set of equations as
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∂zzA = −β2A

∂zzzB = −β2B

where β is defined as the propagation constant

β =

√(ω
c

)2
n2(ω)− ξ2

From these equations we will find the four modes

iJm+1(ξr)

Jm+1(ξr)

 ei(±βz+mθ−ωt) (5.55)

 Jm−1(ξr)

iJm−1(ξr)

 ei(±βz+mθ−ωt) (5.56)

For positive frequencies we observe that the plus sign is modes travelling to the

right, while negative sign is modes travelling to the left. From equation (5.41)

∂zEz = −1

r
∂r(rEr)−

1

r
∂θEθ (5.57)

To solve this equation we insert the modes found for the two other components.

The derivatives of the Bessel functions can be expressed as

J ′m+1(x) = Jm(x)− m+ 1

x
Jm+1(x)

and by using this to find the derivatives in (5.57) we get
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− 1

r
∂r(riJm+1(ξr))−

im

r
Jm+1(ξr) =

− i

r
Jm+1(ξr)− iξ(Jm(ξr)− m+ 1

ξr
Jm+1(ξr)) =

− iξJm(ξr)

By inserting the first two modes from (5.55) into equation (5.57) we can reduce it

to

∂zEz = −(
1

r
∂r(riJm+1(ξr))−

im

r
Jm+1(ξr))e

i(±βz+mθ−ωt)

= −iξJm(ξr)ei(±βz+mθ−ωt)

Ez = ∓ ξ
β
Jm(ξr)ei(±βz+mθ−ωt)

The modes for the expanding the linearised system is then


iβJm+1(ξr)

βJm+1(ξr)

∓ξβJm(ξr)

 ei(±βz+mθ−ωt) (5.58)

A similar thing can be done for the Jm−1 Bessel functions

J ′m−1(x) =
m− 1

x
Jm(x)− Jm(x)

where we get
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− 1

r
∂r(riJm−1(ξr))−

im

r
Jm−1(ξr) =

m− 1

r
Jm−1(ξr) + ξ(Jm(ξr) +

m− 1

ξr
Jm+1(ξr)) =

ξJm(ξr)

Inserting the mode (5.56) into equation (5.57) we get

∂zEz = −(
1

r
∂r(riJm−1(ξr))−

im

r
Jm−1(ξr))e

i(±βz+mθ−ωt)

= ξJm(ξr)ei(±βz+mθ−ωt)

Ez = ∓iξ
β
Jm(ξr)ei(±βz+mθ−ωt)

From this we get the two new modes as


βJm−1(ξr)

iβJm−1(ξr)

∓ξβJm(ξr)

 ei(±βz+mθ−ωt) (5.59)

The full solution of the linearised system (5.39) can be expressed as a superposition

of the modes


Er

Eθ

Ez

 (z, r, θ, t) =
1

2π

∑
s

∑
m

∞∫
|∞

dω

∞∫
ξ

dλ{As


iβJm+1(ξr)

βJm+1(ξr)

−sξJm(ξr)

 esiβz

+Bs


βJm−1(ξr)

iβJm−1(ξr)

−siξJm(ξr)

 esiβz}e−imθ−iωt +


0

0

1

 q(r, θ, t) (5.60)

where s can be either positive or negative. Setting ξ = −
(
ω
c

)2
n2(ω) we get
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2ξ2 = λ⇒ 2ξdξ = dλ (5.61)

We can absorb the factor two into the spectral amplitudes. If we apply the Hankel

transform on the last term we get the expansion (5.60) on the form


Er

Eθ

Ez

 (z, r, θ, t) =
1

2π

∑
s

∑
m

∞∫
−∞

dω

∞∫
0

dξξ{As


iβJm+1(ξr)

βJm+1(ξr)

−sξJm(ξr)

 esiβz

+Bs


βJm−1(ξr)

iβJm−1(ξr)

−siξJm(ξr)

 esiβz +
1

2
Q


0

0

Jm(ξr)

}e−imθ−iωt (5.62)

The reality of the fields is ensured by imposing the following conditions on the

spectral amplitudes

A+(ξ, ω,m) = (−1)m+1iB∗−(ξ,−ω,−m) (5.63)

B+(ξ, ω,m) = (−1)m−1iA∗−(ξ,−ω,−m) (5.64)

Q(ξ,−ω,−m) = (−1)mQ∗(ξ, ω,m) (5.65)

where denotes (∗) the complex conjugate. These amplitudes will now pose a

solution to the full set of equations, where the amplitudes have a z dependence.

Let us take a closer look at the point where s is negative
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1

2π

∑
m

∞∫
−∞

dω

∞∫
0

dξξ{A−


iβJm+1(ξr)

βJm+1(ξr)

ξJm(ξr)

 e−iβz

+B−


βJm−1(ξr)

iβJm−1(ξr)

iξJm(ξr)

 e−iβz +
1

2
Q


0

0

Jm(ξr)

}e−imθ−iωt
(

1

2π

∑
m

∞∫
−∞

dω

∞∫
0

dξξ{A∗−


−iβJm+1(ξr)

βJm+1(ξr)

ξJm(ξr)

 eiβz

+B∗−


βJm−1(ξr)

−iβJm−1(ξr)

−iξJm(ξr)

 eiβz +
1

2
Q∗


0

0

Jm(ξr)

}eimθ+iωt
)∗

Introducing the new variables m = −m′ and ω = −ω′ we will have the conjugated

modes in reversed m and ω as suggested in (5.65). The expression itself will be

(
1

2π

∑
−m′

∞∫
−∞

dω′
∞∫
0

dξξ{A∗−


−iβJ−m′+1(ξr)

βJ−m′+1(ξr)

ξJ−m′(ξr)

 eiβz

+B∗−


βJ−m′−1(ξr)

−iβJ−m′−1(ξr)

−iξJ−m′(ξr)

 eiβz +
1

2
Q∗


0

0

J−m′(ξr)

}e−im′θ−iωt
)∗

where the Bessel functions has the following identity for negative n.

J−n(x) = (−1)nJn(x)

Using this relation in the integral gives
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(
1

2π

∑
−m′

∞∫
−∞

dω′
∞∫
0

dξξ{A∗−


−(−1)m

′−1iβJm′−1(ξr)

(−1)m
′−1βJm′−1(ξr)

(−1)m
′
ξJm′(ξr)

 eiβz

+B∗−


(−1)m

′+1βJm′+1(ξr)

−(−1)m
′+1iβJm′+1(ξr)

−(−1)m
′
iξJm′(ξr)

 eiβz

+
1

2
Q∗


0

0

(−1)m
′
Jm′(ξr)

}e−im′θ−iωt
)∗

Since m is just a dummy index we can reverse the sum back again, this gives us

(
1

2π

∑
m

∞∫
|∞

dω

∞∫
0

dξξ{A∗−


−(−1)m−1iβJm−1(ξr)

(−1)m−1βJm−1(ξr)

(−1)mξJm(ξr)

 eiβz

+B∗−


(−1)m+1βJm+1(ξr)

−(−1)m+1iβJm+1(ξr)

−(−1)miξJm(ξr)

 eiβz

+
1

2
Q∗


0

0

(−1)mJm(ξr)

}e−imθ−iωt
)∗

(5.66)

Comparing (5.66) with the original transform (5.62) we can see that through the

reality conditions suggested in (5.65), we only have to consider the positive modes

in order to recreate the electrical field components.

We see that we have four half range spectral amplitudes in A+, B+,A−, B−,

and one half range frequency in Q. Thus we have five half range frequencies de-

termining the three field components. The system is therefore redundant. To lift

the redundancy we introduce the following constraints[15]
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∂zA+e
iβz + ∂zA−e

−iβz = 0

∂zB+e
iβz + ∂zB−e

−iβz = 0 (5.67)

This constraint will in no way restrict the space of solutions to (5.31),(5.32) and

(5.33). The modal expansion can be written as

Er
Eθ

 =
1

2π

∑
s

∑
m

∞∫
−∞

dω

∞∫
0

dξξ{As

iβJm+1(ξr)

βJm+1(ξr)

 esiβz

+Bs

 βJm−1(ξr)

iβJm−1(ξr)

 esiβz}ei(−mθωt) (5.68)

Ez =
1

2π

∑
s

∑
m

∞∫
−∞

dω

∞∫
0

dξξ{

− sAsξJm(ξr)esiβz − sβiξJm(ξr)esiβz

+
1

2
QJm(ξr)}e−i(mθ+ωt) (5.69)

This will now be used to find a solution to the system (5.31) as the following

∂zz

Er
Eθ

 = G

Er
Eθ

+

N1

N2

 (5.70)

∂zEz = R

Er
Eθ

+N3 (5.71)

where the new operator

Rf =

(
−1

r
∂r(rf),−1

r
∂θf

)
(5.72)

and the nonlinearities are
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N1 = µ0∂ttP
NL
r

N2 = µ0∂ttP
NL
θ

N3 = −(1 + L)−1

ε0
(
1

r
∂r(rP

NL
r ) +

1

r
∂θP

NL
θ + ∂zP

NL
z )

To solve these equations we take the z derivative of the angular and radial part of

(5.68) to get

∂z

Er
Eθ

 =
1

2π

∑
s

∑
m

∞∫
−∞

dω

∞∫
0

dξξ{As

iβJm+1(ξr)

βJm+1(ξr)

 esiβz

+Bs

 βJm−1(ξr)

iβJm−1(ξr)

 esiβz}ei(−mθ−ωt)

where we have used the constraint (5.67). We can then take the double z derivative

of (5.68) and get

∂zz

Er
Eθ

 =
1

2π

∑
s

∑
m

∞∫
−∞

dω

∞∫
0

dξξ{−β2As

iβJm+1(ξr)

βJm+1(ξr)

 esiβz

+−β2Bs

 βJm−1(ξr)

iβJm−1(ξr)

 esiβz + siβ∂zAs

iβJm+1(ξr)

βJm+1(ξr)

 esiβz

+ siβ∂zBs

 βJm−1(ξr)

iβJm−1(ξr)

 esiβz}ei(−mθ−ωt)

From the equation (5.71) we get
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L

Er
Eθ

 =
1

2π

∑
s

∑
m

∞∫
−∞

dω

∞∫
0

dξξ{−β2As

iβJm+1(ξr)

βJm+1(ξr)

 esiβz

+−β2Bs

 βJm−1(ξr)

iβJm−1(ξr)

 esiβz}ei(−mθ−ωt) (5.73)

By inserting this into the equations (5.71) we end up with the two equations

1

2π

∑
m

∞∫
−∞

dω

∞∫
0

dξξ{−2β∂zA+

iβJm+1(ξr)

βJm+1(ξr)

 eiβz

− 2iβ∂zB+

 βJm−1(ξr)

iβJm−1(ξr)

 eiβz + ∂zQJm(ξr)}e−i(mθ+ωt) =

1

2π

∑
m

∞∫
−∞

dω

∞∫
0

dξξ{M1

iβJm+1(ξr)

βJm+1(ξr)

+M2

 βJm−1(ξr)

iβJm−1(ξr)

}e−i(mθ+ωt) (5.74)

By comparing both sides we see that the equations can be split into two differential

equations for the two amplitudes A+ and B+ as

2iβ∂zA+e
iβz = M1 (5.75)

2iβ∂zB+e
iβz = M2 (5.76)

where the terms M1 and M2 can be found in terms of the nonlinearities N1 and N2.

By taking the Fourier transform in time and Fourier series in angular direction we

get

N̂1

N̂2

 =

∞∫
0

dξξ{M1

iβJm+1(ξr)

βJm+1(ξr)

+M2

 βJm−1(ξr)

iβJm−1(ξr)

} (5.77)

We can list these in component form
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iβ

∞∫
0

dξξM1Jm+1(ξr) + β

∞∫
0

dξξM2Jm−1(ξr) = N̂1

β

∞∫
0

dξξM1Jm+1(ξr) + iβ

∞∫
0

dξξM2Jm−1(ξr) = N̂1

Then solving the system with respect to the quantities M1 and M2 will give

∞∫
0

dξξM1Jm+1(ξr) =
1

2iβ
(N̂1 + iN̂2) (5.78)

∞∫
0

dξξM2Jm−1(ξr) =
1

2iβ
(iN̂1 + N̂2) (5.79)

and by using the inverse Hankel transform we will obtain the quantities M1 and

M2 as

M1 =
1

2iβ

∞∫
0

drr(N̂1 + iN̂2)Jm+1(ξr) (5.80)

M2 =
1

2iβ

∞∫
0

drr(iN̂1 + N̂2)Jm−1(ξr) (5.81)

If we take the z derivative of the z component in (5.71) we get

∂zEz =
1

2π

∑
s

∑
m

∞∫
−∞

dω

∞∫
0

dξξ{−iβξAsJm(ξr)esiβz

+ βξBsJm(ξr)esiβz − sξ∂zAsJm(ξr)esiβz − siξ∂zBsJm(ξr)esiβz

+
1

2
∂zQJm(ξr)}e−i(mθ+ωt) (5.82)

From the construction of the modes we have
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R

Er
Eθ

 =
1

2π

∑
s

∑
m

∞∫
−∞

dω

∞∫
0

dξξ{−iβξAsJm(ξr)eiβz

+ βξBsJm(ξr)esiβz}e−i(mθ+ωt) (5.83)

We now insert the z derivative (5.82) and the relation (5.82) into the z component

of (5.71), and use the constraint (5.67) to get

1

2π

∑
m

∞∫
−∞

dω

∞∫
0

dξξ{−2ξ∂zA+Jm(ξr)eiβz − 2iξ∂zB+Jm(ξr)eiβz

+ ∂zQJm(ξr)}e−i(mθ+ωt) =
1

2π

∑
m

∞∫
−∞

dω

∞∫
0

dξξ{M3Jm(ξr)}e−i(mθ+ωt) (5.84)

We use the Hankel transform and the spectral evolution equations (5.75) and (5.76)

to get the equation

∂zQ = M3 +
ξ

iβ
M1 +

ξ

β
M2

The spectral evolution equations then sums up to the three equations

2iβ∂zA+e
iβz = M1 (5.85)

2iβ∂zB+e
iβz = M2 (5.86)

∂zQ = M3 +
ξ

iβ
M1 +

ξ

β
M2 (5.87)

where the constraints

∂zA+e
iβz + ∂zA−e

−iβz = 0

∂zB+e
iβz + ∂zB−e

−iβz = 0
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holds. The electrical field components expressed through the spectral amplitudes

as the expansion are


Er

Eθ

Ez

 (z, r, θ, t) =
1

2π

∑
s

∑
m

∞∫
|∞

dω

∞∫
0

dξξ{As


iβJm+1(ξr)

βJm+1(ξr)

−sξJm(ξr)

 esiβz

+Bs


βJm−1(ξr)

iβJm−1(ξr)

−siξJm(ξr)

 esiβz +
1

2
Q


0

0

Jm(ξr)

}e−imθ−iωt (5.88)

where we know that this will produce a real electrical field through the relations

A+(ξ, ω,m) = (−1)m+1iB∗−(ξ,−ω,−m) (5.89)

B+(ξ, ω,m) = (−1)m−1iA∗−(ξ,−ω,−m) (5.90)

Q(ξ,−ω,−m) = (−1)mQ∗(ξ, ω,m) (5.91)

and the nonlinearity relations are calculated through

M1 =
1

2iβ

∞∫
0

drr(N̂1 + iN̂2)Jm+1(ξr) (5.92)

M2 =
1

2iβ

∞∫
0

drr(iN̂1 + N̂2)Jm−1(ξr) (5.93)

M3 =

∞∫
0

drrN̂3Jm(ξr) (5.94)

where the original nonlinearities are
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N1 = µ0∂ttP
NL
r

N2 = µ0∂ttP
NL
θ

N3 =
(1 + χ(i∂t)

−1)

ε0
(
1

r
∂r(rP

NL
r ) +

1

r
∂θP

NL
θ + ∂zP

NL
z )

The spectral equations has to satisfy the constraint (5.38)

− 1

c2
∂tt(1 + χ(i∂t))q +∇2

⊥q = µ0∂ttP
NL
z (5.95)

where

q =
1

2π

∑
m

∞∫
−∞

dω

∞∫
0

dξξQJm(ξr)e−i(mθ+ωt)

We got this from the Maxwell equations, without making any assumptions , and

this is a true solution to the Maxwell equations. The Q mode is a longitudinal

mode, such modes has been mentioned before[19], and is more known in plasma

physics than in optics. These modes often require extreme conditions to even

start forming, and we will not be close to that domain. In general we set the mode

Q = 0. For the rest of the equation we are going to do the same as the TE model,

and let the left travelling waves be zero in all space and time. Then the simplified

system will contain of

2iβ∂zA+e
iβz = M1 (5.96)

2iβ∂zB+e
iβz = M2 (5.97)

where



Chapter 5. Vectorial model 73


Er

Eθ

Ez

 (z, r, θ, t) =
1

2π

∑
m

∞∫
0

dω

∞∫
0

dξξ{A+


iβJm+1(ξr)

βJm+1(ξr)

−ξJm(ξr)

 eiβz

+B+


βJm−1(ξr)

iβJm−1(ξr)

−iξJm(ξr)

 eiβz}e−imθ−iωt + (∗) (5.98)

and the collection of nonlinear terms M1 and M2 were

M1 =
1

2iβ

∞∫
0

drr(N̂1 + iN̂2)Jm+1(ξr) (5.99)

M2 =
1

2iβ

∞∫
0

drr(iN̂1 + N̂2)Jm−1(ξr) (5.100)

(5.101)

In general it is possible to make a few simplifications to the model. By assuming

the wave to be cylindrically symmetric, which is the same as setting m = 0, we

get


Er

Eθ

Ez

 (z, r, θ, t) =
1

2π

∞∫
0

dω

∞∫
0

dξξ{A+


iβJ1(ξr)

βJ1(ξr)

−ξJ0(ξr)

 eiβz

+B+


βJ−1(ξr)

iβJ−1(ξr)

−iξJ0(ξr)

 eiβz}e−iωt + (∗) (5.102)

To summarize we assumed the fields could be expressed in cylindrical coordinates.

This assumption put the constraint on the fields as we can only well represent

fields unpopulated at the point r = 0.
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In a few turns we could reduce the set of equations to three equations determin-

ing the evolution of the electrical field components along the propagation direction

z. We found a modal expansion for these through the use of Hankel transforms and

Fourier series in the spatial dimensions, and a Fourier transform in the temporal

dimension.

A complete transformation could be found through considering the transform of

A, B and Q alone, while ensuring the electrical field is real. We used this expansion

to find evolution equation for the modes, where we again have the nonlinearities

expressed as functions of the polarization.

5.2 Rescaling the Vector Model

For the case where we only assume UPPE conditions we are considering the evolu-

tion of the positive frequencies of A and B. For the general case of waves traveling

to the right and left, including longitudinal waves, we also have to include negative

frequencies, and the mode Q.

The respective evolution equation for the three modes present in the model was

2iβ∂zA+e
iβz = M1

2iβ∂zB+e
iβz = M2

∂zQ = M3 +
ξ

iβ
M1 +

ξ

β
M2 (5.103)

where

M1 =
1

2iβ

∞∫
0

drr(N̂1 + iN̂2)Jm+1(ξr) (5.104)

M2 =
1

2iβ

∞∫
0

drr(iN̂1 + N̂2)Jm−1(ξr) (5.105)

M3 =

∞∫
0

drrN̂3Jm(ξr) (5.106)
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the nonlinear terms was defined as

N1 = µ0∂ttP
NL
r (5.107)

N2 = µ0∂ttP
NL
θ (5.108)

N3 = −(1 + L)−1

ε0
(
1

r
∂r(rP

NL
r ) +

1

r
∂θP

NL
θ + ∂zP

NL
z ) (5.109)

where the related expansion formula was given as


Er

Eθ

Ez

 (z, r, θ, t) =
1

2π

∑
m

∞∫
−∞

dω

∞∫
0

dξξ{A+


iβJm+1(ξr)

βJm+1(ξr)

−ξJm(ξr)

 eiβz

−B+


iβJm+1(ξr)

βJm+1(ξr)

−iξJm(ξr)

 eiβz +
1

2
Q


0

0

Jm(ξr)

}e−mθ−iωt + (∗) (5.110)

The model itself was derived from the equations

∂zzEθ =
1

r
∂θzEz − ∂r

(
1

r
∂r(rEθ)

)
+ ∂r(

1

r
∂θEr)

+
1

c2
∂tt((1 + χ(i∂t))Eθ) + µ∂ttP

NL
θ (5.111)

∂zzEr =∂zrEz +
1

r
∂θ

(
1

r
(∂r(rEθ))

)
− 1

r
∂θ

(
1

r
∂θEr

)
+

1

c2
∂tt((1 + χ(i∂t))Er)) + µ0∂ttP

NL
r (5.112)

∂zEz =− 1

r
∂r(rEr)−

1

r
∂θEθ

− (ε0(1 + χ(i∂t)))
−1
(

1

r
∂r(rP

NL
r ) +

1

r
∂θP

NL
θ + ∂zP

NL
z

)
(5.113)

The nonlinearities will be assumed still to be some function where their dimension

can be expressed as ε0E0.

We introduce the same variables with corresponding dimensional constants as
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the TE model, by assuming that the electrical field will consist of equal strength

in all directions.

z = z0z
′, r = r0r

′, t = t0t
′ Ei = E0E

′
i

By inserting this into the equations, and dividing by all unnecessary constants we

end up with

∂z′z′E
′
θ =

α

r′
∂θz′E

′
z − α2∂r′

(
1

r′
∂r′(r

′E ′θ)

)
+ α2∂r′(

1

r′
∂θE

′
r)

+ ∂t′t′((1 + χ(iω0∂t′))E
′
θ) + ∂t′t′P

NL
θ (5.114)

∂z′z′E
′
r =α∂z′r′E

′
z +

α2

r′
∂θ

(
1

r′
(∂r′(r

′E ′θ))

)
− α2

r′
∂θ

(
1

r′
∂θE

′
r

)
+ ∂t′t′((1 + χ(iω0∂t′))E

′
r)) + ∂t′t′P

NL
r (5.115)

∂z′E
′
z =− α

r′
∂r′(r

′E ′r)−
α

r′
∂θE

′
θ

− ((1 + χ(iω0∂t′)))
−1
(α
r′
∂r′(r

′PNL
r ) +

α

r′
∂θP

NL
θ + ∂z′P

NL
z

)
(5.116)

where we used the relation z = ct0. Again the constant of proportionality is

expressed as

α =
z0
r0

The equations are now dimensionless, and the coefficients will be determined by

the relation of initial propagation of the beam. In the TE model we used the

relation t0ω0 = 1, which we will use here too, and also introduce the relation

r0ξ0 = 1 for the spectral domain produced by the Hankel transform.

Introducing this to the dispersion relation we get

β′ =
1

z0

√
(ω′)n2(ω′ω0)−

z20
r20
ξ2 =

1

z0

√
(ω′)n2(ω′ω0)− α2ξ2
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Observe that the dispersion relation is proportional to the constant α.

Following the same procedure as with the TE model, we analyse the expansion

to find the dimensions of the modes in terms of the initial electrical field.

E0E
′
r(z
′, r′, θ, t′) =

A0

t0z0r20

1

2π

∑
m

∞∫
−∞

dω′
∞∫
0

dξ′ξ′{A′+iβ′Jm+1(ξ
′r′)eiβ

′z′

−B′+β′Jm+1(ξ
′r′)}e−mθ−iω′t′ + (∗)

The dimensions here are to be thought of as the relation between the electrical

field and the expanded amplitudes

E0 ∼
A0

t0z0r20

For the Q mode we have to consider the last integral

E0E
′
z(z
′, r′, θ, t′) =

1

2π

∑
m

∞∫
−∞

dω′
∞∫
0

dξ′ξ′{− A0

r30t0
ξA′+Jm(ξ′r′)

− A0

r30t0
ξ′B′+Jm(ξ′r′) +

Q0

t0r20

1

2
Q′Jm(ξ′r′)}e−imθ−iωt + (∗)

Removing excessive terms will lead to

E ′z(z
′, r′, θ, t′) =

1

2π

∑
m

∞∫
−∞

dω′
∞∫
0

dξ′ξ′{−αξA′+Jm(ξ′r′)

−αξ′B′+Jm(ξ′r′) +
Q0

t0r20E0

1

2
Q′Jm(ξ′r′)}e−imθ−iωt + (∗)

With the establishment of the relation between A0 and E0, and the requirement

of the transform to be dimensionless, we see that Q0 has to be of the dimension
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Q0 = E0r
2
0t0

For the differential equations of the modes A and B we have the dimensions

A0

z20
2iβ′∂z′A

′
+e

iβ′z′ = M0M
′
1 (5.117)

and in the right hand side we first consider the terms N1 and N2.

N0N
′
1 =

E0

z20
∂t′t′P

NL′

r

By inserting these constants in (5.117), together with a t0 from the time Fourier

transform, we get the right hand side to be

M0M
′
1 =

t0E0r
2
0

z0

1

2iβ′

∞∫
0

dr′r′(N̂1

′
+ iN̂2

′
)Jm+1(ξ

′r′)

Now we compare the sides

A0

z20
∼M0 ∼

t0E0r
2
0

z0
=
A0

z20

by the relation from the expansion. We see here that the equations are now

dimensionless. In the dimensionless quantities the two differential equations reads

2iβ′∂z′A
′
+e

iβ′z′ = M ′
1

2iβ′∂z′B
′
+e

iβ′z′ = M ′
2

Where the last differential equation involves the Q mode. For M3 we get
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M0M
′
3 = t0r

2
0N0

∞∫
0

dr′r′N̂3

′
Jm(ξ′r′)

where

N0N
′
3 = (1 + χ(i∂t′))(

E0

r′r0
∂r′(r

′PNL′

r ) +
E0

r′r0
∂θP

NL′

θ +
E0

z0
∂z′

N0N
′
3 =

E0

z0
(1 + χ(i∂t′))(

α

r′
∂r′(r

′PNL′

r ) +
α

r′
∂θP

NL′

θ + ∂z′P
NL′

z )

thus we have

M0 =
t0r

2
0E0

z0

For the differential equation itself we have

Q0

z0
∂z′Q

′ =
t0r

2
0E0

z0
M ′

3 + α
t0E0r

2
0

z0

ξ′

iβ′
M ′

1 + α
t0E0r

2
0

z0

ξ′

β′
M ′

2

∂z′Q
′ = M ′

3 + α
ξ′

iβ′
M ′

1 + α
ξ′

β′
M ′

2

The final rescaled system of equations is thus

2iβ′∂z′A
′
+e

iβ′z′ = M ′
1

2iβ′∂z′B
′
+e

iβ′z′ = M ′
2

∂z′Q
′ = M ′

3 + α
ξ′

iβ′
M ′

1 + α
ξ′

β′
M ′

2 (5.118)

where the nonlinearities are found as
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M ′
1 =

1

2iβ′

∞∫
0

dr′r′(N̂1

′
+ iN̂2

′
)Jm+1(ξ

′r′)

M ′
2 =

1

2iβ′

∞∫
0

dr′r′(iN̂1

′
+ N̂2

′
)Jm+1(ξ

′r′)

M ′
3 =

∞∫
0

dr′r′N̂3

′
Jm(ξ′r′) (5.119)

where

N ′1 = ∂t′t′P
NL′

r

N ′1 = ∂t′t′P
NL′

θ

N ′3 = (1 + χ(i∂t′))(
α

r′
∂r′(r

′PNL′

r ) +
α

r′
∂θP

NL′

θ + ∂z′P
NL′

z ) (5.120)

the transformation relevant to our system is


E ′r

E ′θ

E ′z

 (z′, r′, θ, t′) =
1

2π

∑
m

∞∫
−∞

dω′
∞∫
0

dξ′ξ′{A′+


iβ′Jm+1(ξ

′r′)

βJm+1(ξ
′r′)

−αξ′Jm(ξ′r′)

 eiβ
′z′

−B′+


iβ′Jm+1(ξ

′r′)

β′Jm+1(ξ
′r′)

−iαξ′Jm(ξ′r′)

 eiβ
′z′ +

1

2
Q′


0

0

Jm(ξ′r′)

}e−mθ−iω′t′ + (∗) (5.121)

In this section we introduced new dimensionless variables to the equations. Con-

trary to the TE model we have left the constant of proportionality between the

transverse direction and the longitudinal direction. This constant is typically set

by the incident laser beam.

We further investigated all the amplitudes dimensions, and made sure every

part of the numerical system is dimensionless. The numerical model is now about

solving the set of equations (5.118) where we use (5.119) for the nonlinearities and
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(5.120) gives the nonlinearities in terms of polarization.

5.3 Numerical Vectorial

The vectorial model is quite similar to the TE model. Now we have to solve three

differential equations at the same time, instead of one. Fortunately many of the

methods implemented can be directly transferred to the new model, such as the

Fourier transform algorithm and solving a system of differential equations.

We are going to consider the cylindrically symmetric version of equations for

the numerical part of the problem. We will do so by the proposed method of

setting m = 0 throughout the model.

5.3.1 The model

We end up with three evolution equations for the three modes present. These

three equations has the right hand side in the same form as the TE model. If the

polarization can be expressed as the Kerr effect

NLi(z, r, θ, t) = (E(z, r, θ, t) · E(z, r, θ, t))Ei(z, r, θ, t) (5.122)

it will represent a double convolution in the spectral domain for the radial dimen-

sion, and the time dimension. The Fourier transform implementation is directly

transferable from the TE model. The discretization i needed in order to utilize

FFT algorithm is i = 2M where M ∈ N. For the radial direction, the discretization

j should be large enough for the relevant function f(r), to be well represented.

The Hankel transform implementation for cylindrical coordinates is discussed

in Appendix A. This implementation uses a N2 multiplication and addition algo-

rithm, where the domain 0 to ∞ has to be discretized. Other Hankel transforms

uses a Mlog(M) multiplication and M2 + Mlog(M) additions algorithms, where

they focus on the advantage of FFT to do the Hankel transform. This requires

the domain to be from −∞ to ∞.
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Fν(ξ) =

∞∫
0

dξξf(r)Jν(ξr) (5.123)

The Hankel transform (5.123) requires the sampling of the function f(r) to be

sampled with the rate rn = jn,νR/jN,ν where jn,ν is the n’th zero of the Bessel

function ν and N is the last zero of the series. R is the maximum value of the

domain of interest where f(r) = 0 ∀r > R. The nature of the Bessel function

zeroes gives a nonuniform sampling close to the origin.

The general full transformation for the electrical field components is


Er

Eθ

Ez

 (z, r, t) =
1

2π

∞∫
−∞

dω

∞∫
0

dξξ{A+


iβJ1(ξr)

βJ1(ξr)

−αξJ0(ξr)

 eiβz

+B+


−iβJ1(ξr)

−βJ1(ξr)

−iαξJ0(ξr′)

 eiβz +
1

2
Q


0

0

J0(ξr)

}e−iωt + (∗) (5.124)

where we observe that the two field components Er and Eθ is found by the Hankel

transform of order ν = 1, while the last components is found by the transform of

order ν = 0. Zeroes of the Bessel functions jn,ν is different for each ν, and the

electrical field components will be on different grids compared to each other. This

creates a problem when we reconstruct them from the modes.

For electrical field components we cannot express them around r = 0, but the

nature of the Hankel transforms ensures the modes to be populated around the

point ξ = 0. The main problem is that j0,0 < j0,1, which means that in order to

reconstruct Ez we have to extrapolate the first point.

Extrapolation is in general a bad thing to do, and to avoid it we tried four

different approaches. The first approach was to keep the Ez component on the

same grid as Er and Eθ, and solve
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∂zEz =− α

r
∂r(rEr)− (1 + χ(i∂t))

−1
(α
r
∂r(rP

NL
r ) + ∂zP

NL
z

)
directly. For the first term it is possible to use a higher order finite difference

method, and such a method was implemented and can be found in Appendix A.

The second term requires a iterative method for evaluating ∂zEz on the right hand

side. Numerically it is a non trivial thing to do, and other methods were pursued.

We instead turn to interpolation methods. The first method to work around

the difficulty is to assume cylindrically symmetric components, we can assume

that the modes will be symmetric around the point ξ = 0, and we can produce the

modes A and B at the first point1 of H0. This method will put serious constraints

on the amount of fields we are able to simulate.

Another interpolation method is discussed in[20], and it can be shown[21][22]

that any function sampled at the grid rn,ν can be reconstructed at the arbitrary

point r by

f(r) =
∞∑
n=1

f(rn,ν)Sk(r)

where

Sk(r) =
2rn,νJν(Tr)

T (r2n,ν − r2)Jν+1(Krn,ν)

In order for this sum to converge to the point of the original function f(r) the

whole domain where f(rn,ν) is defined as to be summed. The method itself proves

to be time consuming and infeasible for the amount of iterations we seek to do.

The last method comes from the Hankel transform (5.123) itself. The Bessel

functions can in general be written as the sum

1We will use Hi as short for the Hankel transform of order ν = i.
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Jν(x) =
(x

2

)ν ∞∑
k=n

(−1)k

Γ(k + 1)Γ(−n+ k + 1)

(x
2

)2k
where it is obvious that Jν(0) = 0 ∀ ν > 1. Thus we know the value of the

Hankel transform itself at the point ξ = 0. This is the fastest method found

to work around this problem, and was the one ultimately used. To perform the

interpolation a cubic spline method was used. Such an implementation can also

be found in the Appendix A.

To evolve we modes we have to solve three differential equations

2iβ′∂z′A
′
+e

iβ′z′ = M ′
1

2iβ′∂z′B
′
+e

iβ′z′ = M ′
2

∂z′Q
′ = M ′

3 + α
ξ′

iβ′
M ′

1 + α
ξ′

β′
M ′

2 (5.125)

Each of these modes consists of j × i points, and we have to solve equally amount

of differential equations. These can be solved simultaneously through the standard

ODE solver. For the right hand side we follow the algorithm

1. From the modes A and B we can reconstruct the two field components Er

and Eθ.

2. The last field component is found through interpolating A and B from the

grid J1 to J0 through the method described, and then do the inverse trans-

form including the mode Q to reconstruct Ez.

3. Do the neccesary operations for the polarization expressions M1, M2 and

M3.

4. Insert the expressions for the right hand side of the evolution equations for

Er and Eθ
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5. For the last evolution equation, both M1 and M2 has to be interpolated to

the grid J0 before we can insert it into the right hand side of last equation

in (5.125).

For the method described it is clear that to reconstruct the electrical field

components we have to do i Hankel transforms, and j Fourier transforms for

each component. Since these have to be done sequentially we can use parallel

programming to speed up the calculation time.

5.3.2 Parallel programming in the model

On the right hand side of the evolution equations we evaluate the nonlinearity in

the real domain. The implementation to get from the spectral domain to the real

domain involves taking the Fourier transform N times, and Hankel transform M

times. These transforms are taken directly on vectors and are thus independent

of each other. Such a system is what we call ridiculously parallel.

The implementation was done with a for loop doing each transform sequentially.

The easiest way to parallelize such a loop is to use the open multi processing

(OpenMP) parallelization. Since no memory is shared between the two different

transforms there is no need to put any constraints on the parallelization.

The implementation of OpenMP is easy, and in order to parallelize a loop one

simply uses

int main(){

#pragma omp parallel for

int i;

for (i = 0; i < N; i++){

fouriertransform or

hankeltransform

};

};

and the loop will be distributed amongst the processors available. The package

OpenMP is included into the implementation by adding the flag
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gcc -fopenmp programname.c -o programname

to the makefile. This is the paralellization used for both Fourier transform and

Hankel transform of the electrical field components and the amplitudes. The same

approach can be done for doing the interpolation and the arithmetic operations

done on the grid.

5.3.3 Experimental setup

In the experimental case we want to simulate right travelling waves. We know

the existence of longitudinal modes requires extreme conditions, we will leave the

mode Q = 0 for all z. The chosen function

f0(r, t) = e−γ1(t−vz)
2−γ2(r−r0)2cos(ω0t)

will initialize the modes. The model is derived upon cylindrical coordinates, it has

the obvious singularity at the point r = 0, and the constants for the function f0

has to be chosen in such a way that the modes will not represent a electrical field

populated at the point r = 0.

In general one can choose to populate A, B or both A and B initially. For

the UPPE conditions we make the same approach as for the TE model, and we

pad the negative frequencies of the initial condition with zeroes. Whenever the

right hand side is evaluated, we pad the negative frequencies with zeroes. Thus

we ensure the produced wave is always travelling to the right.

5.3.4 Verification

As we did with the TE model, we will include left and right travelling waves

through both positive and negative frequencies. We will also include the Q mode

for longitudinal direction. This will then be a test for the complete system. In

order to verify the numerical model we now have to solve three equations simul-

taneously. The three equations are the origin of the model
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∂zzEθ =− α∂r
(

1

r
∂r(rEθ)

)
+ ∂tt((1 + χ(i∂t))Eθ) + ∂ttP

NL
θ

∂zzEr =α∂zrEz + ∂tt((1 + χ(i∂t))Er)) + ∂ttP
NL
r

∂zEz =− α

r
∂r(rEr)− (1 + χ(i∂t))

−1
(α
r
∂r(rP

NL
r ) + ∂zP

NL
z

)
(5.126)

The polarization in r and θ direction we will assume to be expressed as

PNL
r = ρr, PNL

θ = ρθ

The longitudinal direction is only included in the evolution of Q mode. This mode

for UPPE conditions is always zero, and thus irrelevant. For verifying the equation

we have to involve the development of this mode for completeness. What we will

do is to avoid the right hand side by assuming we can express the source as

−(1 + χ(i∂t))
−1
(α
r
∂r(rP

NL
r ) + ∂zP

NL
z

)
= ∂ttρz

Inserting the new definitions of the polarizations into the equations (5.126), will

give the source terms in analytical expressions through the functions

−∂ttfi(z, r, t) = Ei(z, r, t)

where i denotes a direction in space. The representation ensures the magnetic field

to exist. The functions fi we define as the wavepacket functions

fi(z, r, t) = e−(t−zvi)
2−(r−ri)2cos(ωit)

where each of the constants are different for each of the components. The system

requires five initial conditions, two for the components Er and Eθ and one for
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Ez. From the transformation and the constraint[15] we have the five following

equations for the modes A+, A−, B+, B− and Q


Er

Eθ

Ez

 (z, r, t) =
1

2π

∑
s

∞∫
−∞

dω

∞∫
0

dξξ{As


iβJ1(ξr)

βJ1(ξr)

−sαξJ0(ξr)

 esiβz

+Bs


−iβJ1(ξr)

−βJ1(ξr)

−siαξJ0(ξr)

 esiβz +
1

2
Q


0

0

J0(ξr)

}e−iω′t (5.127)

and

∂zEr
∂zEθ

 (z, r, t) =
1

2π

∑
s

∞∫
−∞

dω

∞∫
0

dξξ{siβAs

iβJ1(ξr)
βJ1(ξr))

 esiβz

+ siβBs

−iβJ1(ξr)
−βJ1(ξr)

 esiβz}e−iωt + (∗) (5.128)

This gives us five equations for five unknowns to solve for the initial condition

for each point of the modes. The system was solved by LU factorization, such

implementations are standard in any numerical library.

5.4 Numerical Results

As we did with the TE model we will show the experimental results first, then

proceed to show the verification of the numerical model.

5.4.1 Experimental results

The chosen material to simulate the wave is air. The nonlinearity is assumed to

be of the type Kerr effect. We will assume the same type of intensity for the laser

as we had for the TE model. The constant of nonlinearity will thus be
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ζ = ηE2
0 = 0.00128

The refractive index will be the same Sellmeier expansion

n(ω) = 1 +
5.85096× 10−16

1.99884× 10−11 − ω2
+

2.01822× 10−14

8.29399× 10−10 − ω2

For the vectorial model we also have to specify the proportionality constant, and

have set this to be α = 0.001. The time domain runs from −10 to 10, discretized

in 1024 points. For the radial direction we have chosen the domain from 0 to 10,

and discretization of 124 points.

The plots are all at the point z = 5. This ensures the wave has gone through

enough iterations to move.

The model was initialized with the A mode only. We have chosen the function

f(r, t) = e−0.5t
2−(5−r)2cos(10t)

to initiate the mode.
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Figure 5.1: The figure shows the mode A at the point z = 5. The discretization
in ξ direction is 125 while discretization in ω is 1025.

Figure 5.2: The figure shows the mode B at the point z = 5. The discretization
in ξ direction is 125, while discretization in ω is 1025.

The two figures (5.1) and (5.2) show the modes at the point z = 5. At start we

only initiated the mode A. The mode B will be constructed by the nonlinearity

itself. The mode A is in the order O(1), while the B mode is in order O(10−3).
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Figure 5.3: The figure shows the field component Er at the point z = 5. The
discretization in r is 125 points, while discretization in time is 1025.

Figure 5.4: The figure shows the field component Eθ at the point z = 5. The
discretization in r is 125 points, while discretization in time is 1025.
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Figure 5.5: The figure shows the field component Ez at the point z = 5. The
discretization in r is 125 points, while discretization in time is 1025.

The figures (5.3), (5.4) and (5.5) show the electrical field components at the

point z = 5. The first two components Er and Eθ is in the order of O(10), while

the last one Ez is in the order of O(10−3).

5.4.2 Verification

To verify the model we used the constant refractive index n(ω) = 1. The nonlin-

earity constant ζ is not included in the evaluation since we assume the polarization

to be the source alone. For the proportionality constant the value α = 0.001 is

chosen. The discretization is again 1025 for time and 125 for radial direction.

The system is tested with the following functions

fr(r, z, t) = e−(t−0.4z)
2−(r−4)2cos(9t)

fθ(r, z, t) = e−(t−2z)
2−(r−5)2cos(10t)

fz(r, z, t) = e−(t−3z)
2−(r−6)2cos(11t)



Chapter 5. Vectorial model 93

Thus all the exact waves travels with different speeds and oscillates differently.

The chosen representation shows the exact solution against the numerical model

in the same plot. The plots are for time represented at the point r = 4.8 and

z = 3.0

Figure 5.6: The figure shows the numerical value of the component Er plotted
against its exact value. The radial point is r = 4.8 while the x-axis is time. The

y-axis shows the strength of the electrical field along time.
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Figure 5.7: The figure shows the numerical value of the component Eθ plotted
against its exact value. The radial point is r = 4.8 while the x-axis is time. The

y-axis shows the strength of the electrical field along time.

Figure 5.8: The figure shows the numerical value of the component Ez plotted
against its exact value. The radial point is r = 4.8 while the x-axis is time. The

y-axis shows the strength of the electrical field along time.

In all the figures (5.6), (5.7) and (5.8) we have perfect overlap between the

numerical value and the exact value.
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5.5 Discussion

To verify the CV model is more tedious than verifying the TE model. We have to

include both the negative frequencies of A and B, and the longitudinal Q mode.

Some of the numerical calculation of these modes is not included in the model we

seek a solution to, the UPPE conditions. When unnecessary numerical work is

done, it should be expected to give more unnecessary numerical error as well.

In the transform implementation both the Hankel transform and Fourier trans-

form are integral approximations. In general we will expect the error estimate

from such implementations to be less than O(h2). For the Fourier transform this

will be true, and for the Hankel transform we have a nonuniform grid close to the

origin. We can expect the error close the origin to manifest itself in an unexpected

way.

For the cubic spline interpolation we have the error estimation of O(h4), which

is much stronger then the integral approximations. However, close to the origin

we are interpolating on a nonuniform grid, where the steplength can vary in our

disfavour dependant on the discretization chosen. The first point is approximated

to be zero through the Bessel function. For bad sampling, the first step in ξ

direction will be long compared to the rest, and thus create a larger margin for

error associated with the interpolation. Thus we can not disregard numerical error

from the interpolation close to the origin.

For the last component we propagate the mode Q. The implementation simu-

lates Q on the grid relevant for the Bessel function of order ν = 0, that requires

interpolation of both M1 and M2 in order to find the right hand side. The amount

of interpolation and transforms needed to propagate it is a reason for stronger

numerical errors than should be expected for the general UPPE model.

To get a view of how the error is through the verification of the model, we will

show plots of the three components at the point z = 3.0. These plots will be a

mesh of the total error in radial direction and in time.
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Figure 5.9: The mesh of the error of the component Eθ, the x-axis has time,
while the y-axis has radial direction.

Figure 5.10: The mesh of the error of the component Er, the x-axis has time,
while the y-axis has radial direction.
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Figure 5.11: The mesh of the error of the component Ez, the x-axis has time,
while the y-axis has radial direction.

From the figures (5.10), (5.9) and (5.11), we observe that the error is in the

region 10−5 to 10−3, which was typical for the tests ran with the model. In com-

parison with the numerical results we had for the verification tests, the peak value

was at 102, which in total gives us six digits of significance. The general the error

is within a reasonable margin of what we can expect.

In the last figure (5.11) we have an error spreading along the radial axis. The

error can be assumed to be an artefact from the zeroth order Hankel transform,

which by definition is not zero at the origin, if the function f(ξ) is nonzero. The

artefact can be further investigated through the inclusion of the azimuthal direc-

tion. The second mode for instance will include Hankel transform of order ν = 1

and ν = 2 to reconstruct the fields. However, for the UPPE conditions we assume

the Q mode to be zero, and the longitudinal component Ez is a result of A and

B proportional to α. If α is small we would expect Ez to be small or not even

exist. The two other components does not posses this radial error, and it can be a

property of the Q mode itself. If this is true the error will be close to nonexistant

for the UPPE conditions model. In general the errors within the model is within

an acceptable amount.
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Most of the time spent in the numerical model is in the transform. The most

time consuming of them is the Hankel transform, which has a complexity of N2

multiplications and additions. For our simulations we have chosen a Gaussian in

the radial direction. These functions does not need a very fine discretization to be

well represented. If the goal is to simulate complex functions in the radial direction

the time consumption from the Hankel transform will become even more signifi-

cant. The time spent can be reduced by the means of inner parallel programming

for the Hankel transform.

For the cylindrical case we chose to simulate simple radially directed functions,

thus the need for a true fine discretization was not present. For long distance

propagation the run time was significant. For time reduction we used the basic

for loop parallelization OpenMP. For test runs of the numerical UPPE scheme,

which requires a reconstruction of electrical field components and back to spectral

domain for the nonlinearities, we experienced a 2.8 times faster run speed. This

test was done with only three cores available, and is the total time of the whole

implementation. The parallelization can be classified as almost linear, and we can

expect it to stay linear for a few more cores before we reach saturation.
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Summary

In this thesis we have successfully implemented a model which predicts the de-

velopment of the electrical field in cylindrical coordinates under the assumption

of UPPE conditions. In order to get to this point we developed a minor model

from the TE field, where we first introduced the pseudo spectral method, and the

periodic Fourier transform. The CV model included the implementation of the

Hankel transform, cubic spline interpolation and LU factorization.

For electrical fields with the shape of cylindrical vector modes a typical plane

wave formulation have to include many modes to represent the wave. Our model

will highly reduce the amount of modes we have to include in order to produce a

proper representation. The advantage of the representation will maintain as long

as the propagating wave does not excite too many of the modes. We can conclude

that the model is limited, but in some circumstances, potentially a much more

effective representation of the electrical field in terms of simulation.

The models were tested with the Method of Manufactured Solutions, and the

result was atleast six digits of significance. The verification method assumed the

full generalized model, without the assumption of the UPPE conditions. However,

all the same numerical implementations are still in use for this model, and the

test has verified them as a coherent unit. The verification tests requires us to

modify the equations in order to find an exact solution. For a full model it will

make sense to simulate real waves, and compare to the experimental results. The

experimental results will almost never be the same as a numerical results where
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perfect conditions are assumed.

The numerical implementation does only include the cylindrically symmetric

case. For our discretization of 1024× 125 it requires approximately 2GB memory,

where the whole implementation is mode specific. The memory requirement will

thus linearly increase with the increase of modes, adding an adequate discretization

of the azimuthal direction may require in the region of 200GB of memory. Such

an computer was not available at the present time.

6.1 Future work

The future of the model should be to implement the azimuthal direction. The

difference between our cylindrically symmetric version and the general version is

the inclusion of m. Doing so will be trivial, all we have to do is the exact same

thing for each m in the series.

The obvious requirement would be a supercomputer with adequate amount of

memory. Throughout our implementation we have introduced a scheme which has

a ridiculously parallel right hand side. Adding the azimuthal direction will require

the model to do as many transforms as the discretization in the azimuthal direction

is. Which in turn will render the implementation even more parallelizeable.

In our implementation we used a cubic spline interpolation. The rest of the

implementation has a general highest accuracy of O(h2), which is the same as the

linear interpolation. If the discretization in m is large, the amount of interpolation

will also increase linearly. Thus the general speed of the algorithm can be increased

if linear interpolation is possible.

Most of the time is spent within the Hankel transform. The form of implemen-

tation we have chosen is regarded as a fast algorithm. Other implementations use

double FFT algorithms in order to do a Hankel transform. The FFT algorithms

uses a uniform grid, thus we can escape the interpolation by such an implementa-

tion.
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Appendix A

A.1 Fourier Transform

We will now derive the shift and rescaling process needed in order to apply the

FFT algorithm to a regular Fourier transform. The procedure is specific for the

representation chosen by the library you use. We use the programming language

C and the GSL library is relevant for us. The FFT is represented as

vs =
n−1∑
r=0

ure
−2πi sr

n , ur =
1

n

n−1∑
s=0

vse
2πi sr

n (A.1)

where they denote the first one as the FFT forward, and the second as the FFT

backward.

The expansions we have derived in our numerical models are defined as the

continuous integrals

f(t) =
1√
2π

∞∫
−∞

dωF (ω)e−iωt, F (ω) =
1√
2π

∞∫
−∞

dtf(t)eiωt (A.2)

The integrals can be approximated by the midpoint rule. We discretize the

variables ω and t as
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aj = (j − 1

2
)∆t, bl = (l − 1

2
)∆ω, j, l ∈ Z (A.3)

Between each of these steps we will use the midpoint rule, the mid point of each

step will then be

tj =
1

2
(aj+1 + aj), ωl =

1

2
(bl+1 + bl) (A.4)

where we get the step length to be defined as

aj+1 − aj = ∆t, tj = j∆t (A.5)

bl+1 − bl = ∆ω ωl = l∆ω (A.6)

Applying this to the continuous integrals in (A.2) we get them in the following

form

f(t) =
1√
2π

∞∑
l=−∞

bl+1∫
bl

dωF (ω)e−ωt ≈ ∆ω√
2π

∞∑
j=−∞

F (ωl)e
−itωl

F (ω) =
1√
2π

∞∑
j=−∞

aj+1∫
aj

dtf(t)eiωt ≈ ∆t√
2π

∞∑
j=−∞

f(tj)e
iωtj

Now we assume the functions are bounded, such that

Fl ≡ F (ωl) ≈ 0, for |l| > N

fj ≡ f(ωt) ≈ 0, for |j| > N

The sums can be truncated at the same N.
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f(t) ≈ ∆ω√
2π

N∑
j=−N

F (ωl)e
−itωl , F (ω) ≈ ∆t√

2π

N∑
j=−N

f(tj)e
iωtj

This is true for the general condition of periodic functions. The minimum and

maximum period of such functions must be

Pmax =
2π

∆ω
, Pmin =

2π

∆ωN

In order for the function f to be well represented on the grid of tj, the period

has to atleast be of the size 2δt. From this we can deduce the minimum of the

frequency domain to be

∆t =
π

N∆ω
(A.7)

This (A.7) will be the relation between the discretization in time domain and spec-

tral domain for the numerical calculations. For periodic functions it is common to

associate the last therm N with the first term −N . This is how periodic functions

is formed. The end product of this procedure is the following two identities

fj =
∆ω√

2π

N−1∑
j=−N

Fle
−iπ jl

N , Fl =
∆t√
2π

N−1∑
j=−N

fje
iπ jl
N (A.8)

We observe that the last term in the exponent is close to what we have in the

FFT algorithms (A.1). The difference is, our representation has a negative in front

of the rs sum in the inverse, while the FFT has a positive sign here. What we will

do is to associate FFT inverse with our forward, and vice versa.

Now we are going to reformulate the indexing in order to approximate the FFT

algorithms (A.1 proposed by the GSL library.
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First we have to introduce new indexes in order to rectify the sums. The GSL

sum is from 0 to n, so we introduce the new indexes according to

r = N + l, l = −N, ..., 0, ..., N − 1

s = N + j, j = −N, ..., 0, ..., N − 1

This modification gives the new relations

fs−N =
∆ω√

2π

2N−1∑
r=0

Fr−Ne
−iπ(N−r−s+ rs

N
), Fr−N =

∆t√
2π

2N−1∑
s=0

fs−Ne
iπ(N−r−s+ rs

N
)

(A.9)

We have too many terms in our representation to properly associate it with the

FFT algorithm. To get rid of some of them we introduce the scaling constants

according to

Fr−N = βrur, fs−N = αsvs

The scaling constants βr and αs we represent as

βr = b0e
iπ(N−r), αs = a0e

−iπs

Inserting this into the equations (A.9) we get

vs =
∆ω√

2π

2N−1∑
r=0

b0
a0
e−iπ(

rs
N

), ur =
∆t√
2π

2N−1∑
s=0

a0
b0
eiπ(

rs
N

)

Now we see that the constants a0 and b0 has to satisfy the relations
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∆ωb0√
2πa0

= 1,
∆ta0√
2πb0

=
1

2N

From this we observe that

b0∆ω

a0
√

2π
= 1⇒ b0∆ω∆t

a0
√

2π∆t
⇒ b0

√
2π

a0∆t
= 2N

These are the same, thus we only have to impose one of them. We make the choice

of the constants as

a0 = ∆ω, b0 =
√

2π (A.10)

Inserting this into the transforms and setting 2N = n we arrive at the formulas of

(A.1).

Thus we have deduced the algorithm in order to make use of the fft scheme to

make Fourier transforms. To do a Fourier transform we have to go to the quantity

ur, and for the inverse we have to get the quantity vs. These are found through

vs =
1

∆ω
e−iπsfs−N , ur =

1√
2π
e−iπ(N−r)fr−N , r, s ∈ 0, .., n− 1

To get the quantities in reverse we have to use

Fr−N =
√

2πeiπ(N−r)ur, fs−N = ∆ωeiπsvs, j, l = −N, .., N − 1

We have now derived the relation between the functions we are interested in

f and F , and their corresponding vector associated with FFT. In order to do a

forward transform we first find v from f , conduct the FFT on v to get u, last we

go from u to F .
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A.2 Hankel Transform

This section goes through the algorithm for implementing the Hankel transform,

the implementation is inspired by [23]. We start by defining the transform in the

continuous domain as

Fν(k) =

∞∫
0

f(r)Jν(kr)rdr, ν ≥ −1/2 (A.11)

f(r) =

∞∫
0

Fν(k)Jν(kr)kdk, ν ≥ −1/2 (A.12)

where the following integral exists and is absolutely convergent.

∞∫
0

dxf(x)x1/2

and the function f(x) satisfies the Dirichlet conditions. We will now assume that

the function f(x) = 0 for all x ≥ Rmax. We can then define

y =
kRmax

jN

where jN us the Nth zeroif Jν(x). Through the variable change r = xRmax we get

the transform on the following form

Fν

(
yjn
Rmax

)
= R2

max

1∫
0

f(xRmax)Jν(xyjN)xdx (A.13)

f(xRmax) =
j2N
R2
max

∞∫
0

Fν

(
yjn
Rmax

)
Jν(xyjN)ydy (A.14)

By expanding this function with Lommel’s generalization of Fourier Bessel series,

we get
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f(xRmax) =


∑∞

m=1
2Am

Jν+1(jm)
Jν , 0 ≤ x ≤ 1,

0, 1 < x ≤ ∞
(A.15)

where jm indicates the mth zero of the Bessel function, with the zeroes in ascending

order. The coefficients Am is then found through

Am =

1∫
0

xf(xRmax)Jν(jmx)dx

We can now assume that Am = 0 for all m ≥ N . This can be done without any

loss f generality, since we can choose N and T arbitrarily large anyway. By taking

the transform of equation (A.15) we get the result

Fν(
jm
Rmax

) = R2
maxAm, when y =

jm
jN

(A.16)

and

Fν(
yjN
Rmax

) =
N−1∑
m=1

2Fν(
jm

Rmax
)Jν(rjN)jm

Jν+1(jm)(j2m − y2j2N)
, 0 ≤ y ≤ ∞ (A.17)

When using (A.16) in (A.15) we get

f(xRmax) =


∑N−1

m=1

2Fν(
jm

Rmax
)

Jν+1(jm)R2
max

Jν(jmx), 0 ≤ x ≤ 1,

0, 1 < x ≤ ∞
(A.18)

This equation is the relationship between the function f(xRmax and the values of

its transform for particular values of r. In order to retrieve a similar relationship

for the reverse transform we use an identity relationship[23]
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4

Jν+1(jm)j2N

N−1∑
p=1

Jp(jmjp/jN)Jν(jijp/jN)

jν+1(jp)
= δm,i, m, i < N (A.19)

which is the orthogonality relation. If we set x = jp/jN and multiply both sides

by Jν(jpji/jn) and sum we get

Fν(ji/Rmax) =
1

Rmax2

N−1∑
m=1

2Jν(jpji/jN)

J2
ν+1(jp)

f(jpRmax/jN) (A.20)

From this we can shorten the expression to yield

f(i) =
1

R2
max

N−1∑
m=1

Yν(m, i)Fν(m), Fν(m) =
Rmax2

j2N

N−1∑
m=1

Yν(m, i)f(i) (A.21)

where

Fν(m) = Fν(jm/Rmax), f(i) = f(jiRmax/jN), Yν(i,m) = 2Jν(jijm/jN)/J2
ν+1(jm)

(A.22)

These are the algorithms we need in order to do a Hankel transform. The scaling

constants needed in order to do a forward transform is 1
R2
max

while a inverse is R2
max

j2N
.

These transforms are actually the same transform, thus we only need one of them

in order to do both. the difference between them is the coefficient.

Example A.1. 1 We are going to start with the function

f(x) =

1, x < a

0, x > a

(A.23)

Which has the analytic Hankel transform of
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Figure A.1: Figure shows the numerical Hankel transform of the heaviside
function, with a step at a = 3.5 plotted against the exact one. The discretization
in this picture is Rmax = 10 and divided into N = 512. Thus giving 52 points
within the picture. We have chosen to zoom in on the left most part of the
graph, as it is here the interesting parts of the function are. We can see that

they overlap perfectly.

F (r) = aJ0(ar)/r (A.24)

In this experiment we chose to use a = 3.5 and set the maximum of x to be

Rmax = 10. Thus we are ensured that the function is zero at that point. We cut

the interval short to further enhance the picture closer to zero where the most of

the fluctuations are.

123

Example A.2. 2 The next example we are going to do is the Gaussian. Since

most of our calculations evolves around Gaussian functions it is instructive to

further validate the method in this retrospect.

f(x) = e−
1
2
a2x2 (A.25)

which has the analytical Hankel transform of
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Figure A.2: Figure shows the numerical Hankel transform of a Gaussian
function, plotted against the exact one. The discretization in this picture is
Rmax = 10 and divided into N = 512. Thus giving 52 points within the picture.
We have chosen to zoom in on the left most part of the graph, as it is here the
interesting parts of the function are. We can see that they overlap perfectly.

F (r) =
1

a2
e−

r2

2a2 (A.26)

In order to ensure enough decay of the function, we have chosen a = 1 and

Rmax = 10 in this picture.

A.3 Interpolation

Interpolation is a method used to evaluate a function of discrete points at points

not present in the grid. Assume the grid is given by integer values f(1), f(2) etc.

If the function itself needs to be evaluated at the point f(1.5) an interpolation

scheme is needed.

The three main interpolation schemes is the linear, quadratic and the cubic

spline. For the linear interpolation we have

y(x) = ya + (yb − ya)
x− xa
xb − xa

(A.27)
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where (xa, ya) and (xb, yb) is the function y at the point x known from a discrete

perspective. A straight line will be drawn between these, and y(x) can be found

on the line between these points. The drawback with this type of interpolation is

accuracy in functions with a big derivative.

For the quadratic, or polynomial interpolation it is assumed

p(x) = anx
n + an−1x

n−1 + an−2x
n−2 + ...+ a2x

2 + a1x+ a0 (A.28)

If p interpolate the data points we have

p(xi) = yi, ∀i ∈ {0, 1, ..., n} (A.29)

This gives the system


xn0 xn−10 xn−20 . . . x0 1

xn1 xn−11 xn−21 . . . x1 1
...

...
...

...
...

xnn xn−1n xn−2n ... xn 1




an

an−1
...

a0

 =


y0

y1
...

yn

 (A.30)

In order to interpolate, we have to solve this system, then insert the given an

into equation (A.28) and the function can be found at any x. However, solving

a system such as (A.30) includes solving a Vandermonde system, the condition

number of such systems may be large, and thus render the interpolation highly

inaccurate. This phenomena is called Runges phenomena.

The last of the three is the cubic spline interpolation. It assumes the function

split into n pieces such that

Si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di, forx ∈ {xi, xi+1} (A.31)
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There are 4n parameters, 2n of them can be found by the endpoints of he interval

Si(xi) = yi, Si(xi+1) = yi+1 (A.32)

By forcing smooth and continuous function in both the derivative and double

derivative we have

S ′i−1(xi) = S ′i(xi), S ′′i−1(xi) = S ′′i (xi) (A.33)

This can be applied for i ∈ {1, ..., n− 1}. Thus we get 2(n− 1) constraints. The

last two constraints can be chosen, three popular choices is the natural

S ′′0 (x0) = 0, S ′′n−1(xn) = 0 (A.34)

clamped

S ′0(x0) = f ′(x0), S ′n−1(xn) = f ′(xn) (A.35)

or periodic boundaries. We then define the following

hi = xi+1 − xi (A.36)

bi =
yi+1 − yi

hi
(A.37)

vi = 2(hi−1 + hi) (A.38)

ui = 6(bi − bi−1) (A.39)

z0 = zn = 0 (A.40)

where zi = S ′′(xi) for i = 0, ..., n. This will reduce to the following tridiagonal

system
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v1 h1

h1 v2 h3

h2 v3 h3
. . . . . . . . .

. . . . . . hn−2

hn−2 vn−1





z1

z2

z3
...

zn−2

zn−1


=



u1

u2

u3
...

un−2

un−1


(A.41)

where

ai =
zi+1

6hi

bi =
zi

6hi

ci =
yi+1

hi
− zi+1hi

6

di =
yi
hi
− hizi

6

Which goes back into (A.31) and forms the interpolating function.

Example A.3. Example The test of the numerical scheme is done using a Gaus-

sian function of the type

f(x) = e−x
2

The grid is chosen from −10 to 10 with nonuniform discretization. A numerical

solution is thus found through the cubic spline interpolation

In the first figure (A.3) we see the numerical solution calculated with the cubic

spline method against the exact solution. Both these functions are here evaluated

on the same nonuniform grid.

The last figure (A.4) shows the relative error between the exact solution and the

numerical solution. The magnitude of the error is in the order of 10−3.
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Figure A.3: The exact solution and numerical interpolated solution plotted
against each other on a nonuniform grid.

Figure A.4: The relative error of the numerical solution against the exact
solution.

A.4 The First Order Finite Difference Method

When we do calculations we always want the highest order of accuracy we can get.

The usual first order difference methods are the forward-, backward- and center

difference methods.
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f ′(x) =
f(x+ dx)− f(x)

dx
(A.42)

f ′(x) =
f(x)− f(x− dx)

dx
(A.43)

f ′(x) =
f(x+ dx)− f(x− dx)

2dx
(A.44)

They all come from the same type of Taylor expansion, where we expand the

function f(x) around the point x we want to find the derivative of. For the forward

method we have

f(x) = f(x0) +
d

dx
f(x0)(x− x0) +

d2

dx2
f(x0)

(x− x0)2

2!
+ ...

To find the forward method we isolate the first derivative by truncating higher

terms

d

dx
f(x0) =

f(x)− f(x0)

(x− x0)

The error we get from this can be calculated as

d

dx
f(x0)−

f(x)− f(x0)

(x− x0)
=

d2

dx2
f(x0)

(x− x0)
2!

...

This error is atleast of magnitude (x− x0). That is first order. The same can

be applied for the backward difference, and the result will be the same. In order

to get the central difference we need the Taylor expansion of the backward as well,

it is

f(x) = −f(x0) +
d

dx
f(x0)(x− x0) +

d2

dx2
f(x0)

(x− x0)2

2!
− ...
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if we adding the forward from the backward we get

f(x0 + h) + f(x0 − h) =
d

dx
f(x0)(h) +

d

dx
f(x0)(h) +O(h3)

What we observe from this is that the accuracy is higher, it is actually double

the accuracy of the two former methods. Inspired by this we will adopt a notation

for calculating the derivative of a known vector as a second order Taylor expan-

sion. If we assume we have a vector f1, ..., fi, ..., fN of values evaluated on a grid

x1, ..., xi, ..., xN . Then the derivative can be approximated to the second order by

the three point list

1. For the first element we have a special case, we cannot solve as central

difference, since f0 does not exist. What we do is to solve the following

system of equations

f1 = a

f2 = a+ b(x1 − x2) + c(x1 − x2)2

f3 = a+ b(x1 − x3) + c(x1 − x3)2

2. The middle elements are clear, we will adopt something similar to the central

difference scheme in order to achieve double accuracy magnitude

fi−1 = a+ b(xi − xi−1) + c(xi − xi−1)2

fi = a

fi+1 = a+ b(xi − xi+1) + c(xi − xi+1)
2

3. At the end we will have the same problem as the beginning, thus we will use

a reverse scheme of what we used at the beginning
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fN−2 = a+ b(xN − xN−2) + c(xN − xN−2)2

fN−1 = a+ b(xN − xN−1) + c(xN − xN−1)2

fN = a

This results in a system of equations to be solved for the particular derivatives

of the function which takes the form

Ax = b

Solving this system will also give the derivatives at a higher order at the end-

points than the forward and backward differences can give.
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Appendix B

B.1 The Sellmeier formula

For most cases it is rather difficult to find a mathematical exact formula for the

refractive index. Since the rise of the laser itself, studies has been done and

it is actually possible to measure the refractive index. This graph can then be

approximated analytically by a method of curve fitting.

The Sellmeier formula is an empirical relationship between the refractive index

and the wavelength. It was first discovered in 1871 by Wilhelm Sellmeier (ref).

The most common form of the equation for glasses is

n2(λ) ≈ 1 +
B1λ

2

λ2 − C1

+
B2λ

2

λ2 − C2

+
B3λ

2

λ2 − C3

(B.1)

where n is the refractive index, λ is the wavelength, and the constantsB1, B2, B3, C1, C2, C3

can be found experimentally and are called the Sellmeier coefficients. For some

cases where the refractive index is close to 1 it is possible to use a simplified version

of the formula.

n(λ)− 1 ≈ B1λ
2

λ2 − C1

+
B2λ

2

λ2 − C2

+
B3λ

2

λ2 − C3

(B.2)

where some but always all of the constants are needed in order to approximate

119
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the refractive index of the medium. This case is more often discussed in the case

of rare gases.

These formulas follows the universal notation of λ as the wavelength. The

wavelength in the Sellmeier formulas are typically given in terms of micrometers.

In order for us to do numerics on these formulas we have to first relate these

towards the typical wavelengths, and scale them to appropriate factors for our

system. We will use the linear formula between the wavelength and the frequency

as

λ× 106 =
2πc

ω
(B.3)

We can insert these into the equation in order to get the refractive index on the

form of frequency instead of the wavelength, doing so for the typical glass equation

we get

n2(ω) ≈ 1 +
B1(

2πc×10−6

ω
)2

(2πc×10
−6

ω
)2 − C1

+
B2(

2πc×10−6

ω
)2

(2πc×10
−6

ω
)2 − C2

+
B3(

2πc×10−6

ω
)2

(2πc×10
−6

ω
)2 − C3

(B.4)

which through a few manipulations can be rewritten in the more convenient way

as

n2(ω) ≈ 1 +
β1

α1 − ω2
+

β2
α2 − ω2

+
β3

α3 − ω2
(B.5)

where all we have done is to redefine the constants in such a way that everything

is included in them. The last part of this is off course the scaling matter. We will

need this in a scaled form, as such we will set ω = ω′ω0

n2(ω′ω0) ≈ 1 +
β1

α1 − (ω′ω0)2
+

β2
α2 − (ω′ω0)2

+
β3

α3 − (ω′ω0)2
(B.6)

This is the function that will be used throughout the numerical calculations.
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B.2 The Cylindrical Derivative Operators

Within this thesis the cylindrical vector operators such as curl and divergence are

used. These will be listed here for convenience of the reader.

The unit vectors in cylindrical vector space is

x̂ = cos(φ)ρ̂− sin(φ)φ̂

ŷ = sin(φ)ρ̂+ cos(φ)φ̂

ẑ = ẑ

A vector field is defined as

A = Aρρ̂+ Aφφ̂+ Azẑ

The gradient of the scalar field f is then

∇f = ∂ρfρ̂+
1

ρ
∂φfφ̂+ ∂zf ẑ

The divergence of the field A is

∇ ·A =
1

ρ
∂ρ(ρAρ) +

1

ρ
∂φAφ + ∂zAz

And finally the curl of the field A is

∇×A =

(
1

ρ
∂φAz − ∂zAφ

)
ρ̂+ (∂zAρ − ∂ρAz) +

1

ρ
(∂ρ(ρAφ)− ∂φAρ))
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This appendix is dedicated to inform the people interested in more specific details

of the implementation. In the following is dedicated to how we chose to set up the

program for the vectorial model in order to best keep track of all its components.

Main.c The main function we decide the size of the domain, its discretization

and runs all initialization functions. Solving the ODE is also implemented

in this part, together with the right hand side.

Initialization.c This is where we define the structures to store all domain vec-

tors. We also find the initial value of the electrical field and modes in a

separate function implemented here, for verification we also include the LU

factorization in this section.

FFT.c Both inverse and forward fourier transform implementation.

Hankel.c Both inverse and forward hankel transform implementation.

Interpolation.c Interpolation schemes both in the spectral and real domain.

Functions.c To save space and keep the other implementations clean we have all

the analytic functions needed in this segment.

Source.c All the needed analytical functions for the source test is included in this

file.
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Throughout the implementation we have chosen not to store the matrices and

the auxiliary vectors needed throughout the functions. The reason to do so is the

shared memory complexity when using parallel programming.

When utilizing multi core programming it is most powerful when none of the

processes has to wait for another one to finish. However, this requires us to allocate

and deallocate memory to avoid leaks along the way. In general optimization can

be done on this aspect, as some of the matrices may be better left at static presence.

Throughout the implementation there is several step which one might check in

order to verify if the implementation is correct. When the modes are found for the

first time, these can be checked against the reality conditions of the field. Over

the whole frequency domain these shall be satisfied. The next step is to check

whether the reconstruction works by verifying the electrical field with its initial

condition. When first propagating the model through the verification method it

is easiest done by assuming the longitudinal component is zero Ez = 0 for all time

and space. Doing so will make interpolation unnecessary. In the last segment

it is to include the longitudinal component, where we will have to include both

the interpolation and the Q mode. The process described is the one we followed

when implementing the algorithm, and gives a natural progression of the numerical

scheme, where every part can be truly verified.
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