

Investigating the security issues surrounding
usage of Ephemeral data within Android
environments

-
Erlend Skog Høgset

 INF-3981 Master's Thesis in Computer Science - August 2015

Faculty of Science and Technology
Department of Computer Science

2

3

Abstract

With mobile devices managing more and more of our personal data,

for many it has become a ubiquitous resource. This is also true in the

workplace where they are instituting Bring Your Own Device

practices. While this saves the enterprise money in terms of

equipment, it also increases the diversity of devices brought to work.

This presents security problems as corporate data received and

transmitted by personal devices can be intercepted by other malicious

apps on the mobile device or staying in memory for a long time.

This thesis presents an ephemeral classification, where the mobile

device only handles data in transit. This thesis further investigates

limitations and possibilities surrounding the use of ephemeral data

within Android mobile devices.

4

5

Acknowledgements

I would like to thank my advisor Professor Randi Karlsen and co-

advisor Federico Mancini (FFI) for always being positive and being

supportive of me.

Thanks also go out to the faculty adviser Jan Fuglesteg for always

being available and helpful with his advice.

I would especially like to thank my family for all their support

throughout the years.

6

7

Contents
/1 Introduction .. 13

1.1 Background ... 13

1.2 Problem Definition... 14

1.3 Methodology ... 14

1.4 Motivation ... 15

1.5 Context .. 15

1.6 Outline .. 15

/2 Background ... 17

2.1 Android ... 17

2.2 Ephemeral Data ... 20

2.3 Secure data deletion .. 21

2.4 Digital forensics .. 22

2.5 Linux Memory Extractor (LiME) .. 22

2.6 Volatility ... 22

/3 Related work .. 23

3.1 Android Memory Forensics .. 23

3.2 Memory acquisition methods .. 24

/4 Assumptions, requirements and adversarial model ... 27

4.1 Communication protocol ... 28

4.2 Threat model .. 29

4.3 Requirements ... 30

4.4 Our approximation of this system ... 30

/5 Expermental setup ... 31

5.1 Setting up the environment .. 31

5.2 Setting up LiME ... 36

5.3 Setting up Volatility ... 38

/6 MemoryTest Implementations .. 43

6.1 Overview .. 43

6.2 The difference between Java and C in the context of Android .. 45

6.3 Implementing the applications ... 46

6.4 Results .. 49

6.4 Conclusion ... 50

8

/7 Evaluation of threats ... 51

/8 Discussion and evaluation of results .. 53

8.1 OpenGL ... 53

8.2 Application crash .. 53

8.3 Data findings outside of virtual address ranges ... 54

8.3 Lessons learned by the author .. 54

/9 Conclusion ... 55

9

List of Figures

Figure 1: Android software stack ... 18

Figure 2: System architecture .. 27

Figure 3: Communication protocol between mobile device and server 28

10

11

List of abbreviations

ADB Android Debug Bridge

AP Access Point

BYOD Bring Your Own Device
DMD Droid Memory Dumper

GID Group Identifier

IDE Integrated development environment

IPC Inter Process Communication

LKM Loadable Kernel Module

NDK Native Development Kit

SDK Software Development Kit

TEE Trusted Execution Environment

UID Unique Identification Number

VM Virtual Machine

12

13

/1 Introduction

1.1 Background

As mobile devices continue to be an integral part of our daily lives, they are being more
and more used as a mobile technological platform in the workplace. Many enterprises
encourage their employees to utilize their own mobile devices as a part of their work
environment, instituting a "Bring Your Own Device" (BYOD) practice. This allows the
enterprise to cut costs while potentially improving productivity and improving client
service. The downside of this is that the enterprise has to have support for a large
variation of different mobile devices and the variation of different operating systems
which may reside on these devices. This means that building enterprise specific
applications becomes not only very expensive, but also very hard to keep secure.

Corporate data received and transmitted by personal devices can be intercepted by
other malicious apps on the mobile device or the data can stay in memory for a long
time, so that if the device is lost or stolen, this data may be compromised. Properly
implemented and deployed encryption schemes and MDM solutions can help protecting
data at rest and in transit, but it usually concerns only data written in persistent flash
memory or ready to be sent off the device. Much sensitive data is also kept in RAM
during processing, and may stay there until overwritten by new data. A recent cold boot
attack for mobile devices has been demonstrated that could be used to extract such data
in a targeted attack[1].

14

A possible solution to this is utilizing ephemeral data. Ephemeral data can be described
as ‘short lived’ data where the data is erased immediately after use. This is interesting in
a mobile environment because if achieved properly you can dismiss a lot of potential
security challenges.

In the first quarter of 2015, the International Data Corporations published data from
their Worldwide Quarterly Mobile Phone Tracker[2] showing that Android dominated
with a 78% share of the market in front of iOS at 18.3% and Windows Phone at a mere
2.7%. While this is a slight dip from the previous year where Android had 81.2%, the
overall market is still growing with android making new appearances on novel devices
such as smart watches[3], TVs[4], and cars[5].

For this reason we chose to focus our efforts on analyzing and implementing a possible
solution for Android OS, as it would affect the majority of mobile devices on the market
today. Besides it is also easier to work with it due to its open and extensible nature.

1.2 Problem Definition

This thesis explores the limitations and possibilities surrounding the use of ephemeral
data within an Android environment. This includes investigating how the Android
platform functions as a whole, and the technical aspects which bound each layer of the
Android stack. This research is intended to be a guiding point for developers that want
to make user privileged applications with extra focus on security.
Therefore the working hypothesis is that:
“It is possible to create an Android framework that can give developers the option of
creating secure applications that only use ephemeral data.”

1.3 Methodology

In order to design the component that will perform the wiping of the application memory, we

will proceed by creating several test application that writes sensitive data in memory, and set

up our development environment to collect live RAM dumps in order to analyze the effect of

different wiping strategies.

An important objective will be to show the numerous ways how this secure deletion of data

may fail as data retention may occur as a result of code in the entire Android software stack,

rather than just the application dedicated memory.

We will then develop and test our wiping modules/functionalities at different layers of the

Android system, and see how they function on the test applications.

An important point is that we limit the scope of this thesis only to the layers that can be

accessed without needing root access to the device or a modified kernel. The reason is that we

would like to understand how far we can go by using out-of-the-box devices, which would

constitute the standard reference device for most application. The assumption that the OS

integrity is also not compromised is also necessary to formulate any security guarantee of our

proposed solution.

Finally we will analyze the results of our tests and conclude to what extent we believe data

ephemerality can be achieved on out-of-the-box Android devices.

15

1.4 Motivation

This thesis can be considered to belong within a sub arch of digital forensics, and although

digital forensics traditionally has been focused on non-volatile data such as hard drives and

removable media, in recent years cold boot attacks have opened up research on a new field

named live forensics which handles volatile data collected from running machines.

Further research has been done with regards to live forensics in the context of mobile devices,

but never in the context of having an ephemeral classification on an application.

With Android being the largest mobile platform on the market, understanding possibilities

and limitations within this platform is a requirement for future work.

1.5 Context

This thesis can is done in collaboration with the Norwegian Defence Research

Establishment[6]. The Norwegian Defence Research Establishment is the chief adviser on

defence-related science and technology to the Ministry of Defence and the Norwegian Armed

Forces. This thesis aims to serve as a starting point for further research into employing

ephemeral classifications to applications on mobile devices.

1.6 Outline

 Chapter 2 Presents some background information related to this thesis

 Chapter 3 Presents related work within Android Forensics

 Chapter 4 Describes assumptions, and requirements as well as an adversarial model

 Chapter 5 Shows a set-by-set guide on how these experiments were set up

 Chapter 6 Goes through implementation and experiments of our testing applications

 Chapter 7 Evaluates the threat assessment in relation to the adversarial model

 Chapter 8 Shows discussion around the implementation and results of our applications

 Chapter 9 Concludes the thesis

16

17

/2 Background

2.1 Android
Android is a Linux based operating system intended for mobile devices.
The system was the product of Android Inc which was purchased by Google in 2005.
In 2007 the Open Handset Alliance consisting of device or micro electronics
manufacturers such as HTC, Samsung, Sony, T-Mobile, Qualcomm and Texas instruments
announced their plans for developing open standards for mobile devices. [7]
Android was their first product as a mobile device platform built on the Linux 2.6.25
Kernel. The Android platform is entirely open source and is created for a wide array of
devices and different form factors

18

The Android software stack
The Android software stack consists of five layers: the Linux kernel, a hardware
abstraction layer, libraries and the Android runtime, an application framework, and
applications at the top.

Figure 1: Android software stack

 At the bottom of the stack we find a modified Linux kernel which is responsible for all of
the basic services such as process scheduling, memory management, managing the
network stack, and handling security such as access control and providing means for
network security. The kernel also contains drivers for all the different components on
the device such as the display, camera, Bluetooth etc.

The next layer is the hardware abstraction layer and it does exactly what the name
suggests, it separates the android platform logic from the hardware as well as from the
operating system. By doing this it provides the above layers with interfaces to access the
underlying hardware.

19

At the layer above is the Android runtime and Android native libraries.
The Android runtime is the application runtime environment. Up until the Version 4.4
release (KitKat) the standard runtime environment was called Dalvik.
Dalvik is an open source process virtual machine that is a clean room implementation of
a Java virtual machine. Programs written in Java are compiled to bytecode for the Java
virtual machine, and then translated in to Dalvik bytecode which is stored in a Dalvik
executable file (.dex). At Android version 4.4, google introduced an alternative runtime
to Dalvik called ART (Android Runtime). In Android version 5.0 (Lollipop) ART replaced
Dalvik entirely.
The Android native libraries are a selection of default libraries which are bundled with
Android. Although Android applications are written using Java APIs, the
implementations of these APIs are often written using C and C++ which are made
available via the Java Native Interface.

The Android Application Framework provides services that are essential to the Android
platform. Such services include the Window Manager which manages the top-level
window’s look and behavior, and the Telephony Manager which keeps track of the state
of telephony services, amongst others.

At the top of the stack there are the native packaged applications that come with the
Android Platform. This is also where the third-party applications reside.

Android’s management of packaged and third party applications
There are four ways that an application can get introduced to an Android device.
An application can be pre-packaged with the device, installed through the official Play
store, installed through an unofficial app store, or installed through the Android Debug
Bridge. The official Play store is the default way to find and install new applications. It is
run by Google and offers a centralized portal to find applications, music, books and
more. The Play store uses an in-house automated anti-malware system called Google
Bouncer which is there to remove malicious applications uploaded to the marketplace. It
is also able to remotely uninstall applications off of devices if an application is found to
have hidden malware which gets it by the Bouncer, or receives an update with malware.

Each application in an Android environment runs in its own process with a distinct
user/group ID. This means that every application is sandboxed through tried and tested
Linux process management which is based on the decades-old, well-understood UNIX
security model.

In the Android environment there is a special process called “Zygote” whose job is to be
a pre-loaded template for new applications that is to be launched. At boot Zygote
launches the very first Dalvik VM and it is pre-loaded with all necessary Java classes and
resources. When a new application is launched, Zygote is forked so that it creates a clone
of itself. Once Zygote has forked, the new process is loaded with the code of the
launching application and it is ready to start its activities. This is done to make the
process of creating new VMs more resource efficient, but the real speedup is achieved by
not copying the shared libraries. These libraries will only be copied if the new process
tries to modify them, and this means that all of the core libraries can exist in one place
because they are read only.

20

As part of the hardware abstraction model, when an application wants to make use of
hardware modules such as Wi-Fi or the camera on the device it does not try to directly
operate the hardware itself, instead it uses services or managers to handle such
requests. These services and managers reside inside of the system server process and
are user space shared libraries that have predefined APIs which creates an abstraction
from the underlying driver. This allows applications to be somewhat hardware agnostic,
allowing the same code to run on different devices.

Androids security architecture is based on privilege-separation, in which each
application runs with a distinct system entity (Linux user ID and group ID).
Privileged parts of the system are also separated into distinct identities and are thus
isolated from applications. To allow applications to interact with device hardware
modules Android applications has permissions associated with it. By default an
application has no permissions, but in accordance with the developers manifest the
application requests specific fine grained permissions from the user at install time. This
happens at install time or when you update an application so that the user does not have
to get prompted every time it is launched. In a normal user situation where a user is
installing an application from the Google Play Store, the application cannot be installed if
the user does not grant the application its requested permissions. In any other cases
trying to use a feature that has not been granted permission to would result in a
SecurityException.

When an application wants to communicate with the system server, it does so through a
local manager which is a client side component that runs inside the VM, this manager
bridges the communication with the system server through Binder, which is a
lightweight procedure call mechanism that handles IPC. Binder pulls the UID and PID of
the calling process and hands it to the system server which then uses these IDs to check
permissions. Other Android permissions directly map to group IDs, which are then
enforced by the kernel. An example of this is the permission to use the internet where
the process ID is added to the inet group which is mapped to the group ID ‘3003’.

2.2 Ephemeral Data
Ephemerality is the concept of an object being transitory; existing only briefly.
In this context, ephemerality means that a specific data item should cease to exist within
an environment and have no duplicates which can be retrieved past the specific data’s
expiry point.

21

2.3 Secure data deletion
Secure data deletion is a term which is often also called data erasure, data clearing, or
data wiping. Secure data deletion in this thesis is referring to a software-based method
of completely deleting data from physical media such that it is irrecoverable. In the
digital world, the default protocol when deleting a file is not secure deletion, but rather
to remove pointers to the object and directly or indirectly marking it as free or available
storage space. This is largely because to the average user deleting a file is often done just
to reclaim the storage space instead of ensuring that its contents does not get leaked or
stolen. Another big factor is the fact that secure data deletion is costly in terms of
resources as it requires additional operations compared to just removing pointers.
This mode of operation causes a lot “deleted” data to reside inside of physical mediums
although they are not being referenced by anything anymore.

Reliable secure data deletion involves understanding the memory management of the
concerning software and also host device to a degree that you know for a fact where all
instances of the data resides in memory. Linux memory management is a complex
system which makes reliable secure data deletion very hard to get right.
Some prominent figures have this to say on the matter:

"Note that memory usage on modern operating systems like Linux is an extremely
complicated and difficult to understand area. In fact the chances of you actually
correctly interpreting whatever numbers you get is extremely low. (Pretty much
every time I look at memory usage numbers with other engineers, there is always
a long discussion about what they actually mean that only results in a vague
conclusion.)"
- Dianne Hackborn[8]

“Imagine you have an object inside a cardboard box, and you can’t open the box.
All you have are holes in the side which allows you to peek inside and get an
approximate view of where things are.”
- Karim Yaghmour[9]

22

2.4 Digital forensics
The term digital forensics was defined at the first Digital Forensics Research Workshop
(DFRWS) in 2001 as: the use of scientifically derived and proven methods toward the
preservation, collection, validation, identification, analysis, interpretation, documentation,
and presentation of digital evidence derived from digital sources for the purpose of
facilitating or furthering the reconstruction of events found to be criminal, or helping to
anticipate unauthorized actions shown to be disruptive to planned operations[10].
When collecting digital forensic evidence there are guidelines on what to do when and
what to avoid. Some of the best current practice is listed in RFC 3227[11].
We can separate digital forensics in to two parts, traditional digital forensics which
targets persistent storage mediums such as hard drives, NAND flash memory, SD cards,
and other removable media.
The newer field of digital forensics is what is called live forensics where you target
volatile data on a running machine. In other words, data that may be lost by powering
down the machine.

One of the most important things to consider when doing live forensics is remembering
the order of volatility which says that when collecting evidence, one should proceed
from the volatile to the less volatile. An example of order of volatility for a typical system
could be:

1. Registers, cache
2. Routing table, ARP cache, process table, kernel statistics, memory
3. Temporary file systems
4. Hard drives
5. remote logging and monitoring data that is relevant to the system in question
6. Physical configuration, network topology
7. Archival media

2.5 Linux Memory Extractor (LiME)
LiME[12], previously known as Droid memory dumper (DMD), is a module created by
Joe Sylve that allows for forensically secure acquisition of memory from Linux devices.
Since its release in 2011, it has become the de facto standard of acquiring memory
dumps with minimal memory perturbation.

2.6 Volatility
The Volatility framework[13] is a cohesive collection of modules written in python that
parses and analyzes RAM dumps and has an extensible and scriptable API. It can analyze
RAM dumps from Windows, Mac, Linux, and Android devices, and because of its
modular design it allows for quick support as new operating systems and architectures
are released. Continually adding support for new features, volatility is an open source
framework that has become the market leader for forensic memory analysis.

23

/3 Related work

This chapter is split in to two sections. First we present the some of the milestones
within Android memory forensics and how they relate to the work being done in this
thesis. In the second section we look at different methods of memory acquisition from
Android devices, with their potential and limitations.

3.1 Android Memory Forensics

Traditionally the forensic research done on Android devices were focused on the
acquisition and analysis of non-volatile storage media such as internal flash NAND
memory or SD cards. This was largely due to the perception that the contents of volatile
memory, as long as it was properly secured through software sandboxing and privilege
enforcement, were unobtainable because it was erased immediately when the host
machine lost its power. In 2008, Halderman et al. [14] showed the world how one could
leverage temperature to exploit the remanence effect of DRAM[15]. By doing this,
Halderman was able to recover encryption keys from DRAM with which he defeated full
disk encryption schemes. The remanence effect states that the contents in RAM gradually
fade over time, and Halderman et al. showed a correlation between temperature and
degradation over time, meaning the colder you get the RAM chips, the longer it takes for
data to fade. This allowed them to boot the machine from an external USB device which
saved the contents of RAM in to a designated data partition on the device.

24

In 2011 Sylve[12] presented DMD(later LiME) a new method that is able obtain
forensically secure complete memory captures from rooted Android devices.
Their module works by pushing a loadable kernel module(LKM) on to the device via the
Android Debug Bridge. This kernel module acquires a copy of system RAM through
parsing the kernel’s iomem_resource structure to learn the physical memory address
ranges of the system RAM, and then performs physical to virtual address translation for
each page in memory whilst writing them to either a file on the device’s SD card, or
piping them through a TCP socket.

In 2012 Müller, et al[1] revealed that cold boot attacks could also be done to Android
devices. To do this they cooled down the device to -10 degree Celsius before they
rebooted it by disconnecting its battery very briefly. They then utilized a special key
combination upon reboot that sends you in to a menu called fastboot instead of booting
in to Android. From there their specially developed FROST recovery image was flashed
on to the device via USB. Once the recovery image was transferred, all they had to do
was boot up into the recovery partition where they placed the image. Once FROST has
booted it can use the LiME module inside to dump the memory image via TCP over USB
to a host computer.

In 2013 Stirparo, et al[16] wrote about how mobile applications manage users data
when these are loaded into volatile memory. To do this they utilized LiME and volatility
to analyze popular banking applications and find out how much sensitive information
they could find from data in use. This paper was a part of the MobiLeak project.

3.2 Memory acquisition methods

There are different methods to acquiring memory which acquire different amounts of
memory. On the smaller scale you have dumping the heap of a single process, going up a
bit you can dump the entire memory space of a single process, or lastly you can dump
the entire memory to a file.
To dump the heap of a single process you can use the DDMS-Tool which is located in the
tools-directory of the Android SDK[17]. This gives you the heap of a specific process
such that you can use a heap profiling tool (i.e. MAT) to analyze that process’ memory
profile.

To dump the memory of a single process you can utilize the NDK together with the
‘dumpsys’ command executed over ADB. This is an approach that has been automated in
to a library[18], but unless handled correctly it is prone to segmentation faults.

For capturing the memory of an entire system there are modules such as fmem which
does memory dumps from Linux environments. Seeing as Android uses a modified Linux
kernel one would think fmem would be a suitable candidate to do the job.
Sylve[11] however found that these modules relied on functions not found on the ARM
architecture, and he also discovered that fmem only recovers 80% of the original
memory of the device. His findings were that the high percentage of overwritten
memory (20%) was likely due to the fact that fmem requires extensive interaction with
userland which each time requires a context switch when swapping from kernelland.

25

Sylves solution was therefore to design his own module named DMD for Droid Memory
Dumper, which was later renamed to Linux Memory Extrator (LiME).
One of the main advantages of LiME is that it runs almost all of its instructions in
kernelland which minimizes memory perturbing due to context switches.
This is the module we use to obtain our memory dumps.

One problem faced with all LKMs is that the module is device-dependent, meaning that
you cannot create a generic kernel module that is device-agnostic.
The kernel performs a number of sanity checks on the kernel module to ensure that the
module was compiled for that specific kernel version.
The result is the need to cross-compile the kernel module up against the specific kernel
version you wish to extract memory from.

26

27

/4 Assumptions, requirements and

adversarial model

For the remainder of this thesis, we conceptualize a system where we have a Non-rooted
mobile device running Android 4.0.3 Ice Cream Sandwich, and a secured server at an
unspecified location ready to receive requests. The application is only allowed to have
user privileges. We assume the server is safe from physical attacks.
Communication between these two entities is assumed to be done across normal
internet where the mobile device is attached to an access point such as a Wi-Fi router
which is connected to the internet via landline, or directly communicating with a cellular
network provider’s cell tower over GSM, UMTS, or LTE frequencies.

Figure 2: System architecture

28

4.1 Communication protocol
Focusing on the communication between the mobile device (MD) and the server, we
assume the following protocol to be the communication standard when initializing a
transaction.
We can section this into five parts:
1. Establishing a secure connection to the
2. Authenticate session with credentials
3. Request data
4. Deliver edited data
5. Terminate session

Figure 3: Communication protocol between mobile device and server

29

4.2 Threat model
Based on this communication protocol we can establish a realistic adversarial model
that takes into consideration security threats that affect mobile devices differently from
other equipment.

Security objectives for this system can into the following categories:
 Confidentiality – Ensure that entered, transmitted, and temporarily stored data

 cannot be read by unauthorized parties.

 Integrity – Detect physical or software modifications to the mobile device,
 Detect changes to transmitted and stored data

 Availability – Ensuring that the resources of the system are available and that users
 can access them

We will now describe our perceived security threats based on this model

Loss of confidentiality:

1. The mobile device is stolen during a transaction and data present in the unit
is compromised.

2. Unauthorized personnel physically sees authorized personnel enter in
username/password or data.

3. Intruder uses software exploits to gain unauthorized access to device.
4. Another third party application with permissions on the device is allowed to

spy on data entered on the mobile device.

 Loss of Integrity:

1. The mobile device is physically attacked and has its software modified.
2. The mobile device is used with stolen credentials in order to enter false data

to the server.
3. An attacker uses software exploits to enter malware into the mobile device.
4. Man in the middle attack where attacker is pretending to be the server.

 Loss of availability:

1. Denial of service attack to the server.
2. The mobile device has its internet connection blocked.

30

4.3 Requirements

Security requirements
The system should strive to meet the following security requirements:

 No sensitive data should be stored outside of a transaction.
 The security measures of the device should not dependent on any external

sources.
 Strong full disk encryption with a strong lock screen password should be used

whenever possible.
 If the lock screen button is pushed whilst in an transaction, the device initiates

emergency data erasure so the device can return to a non-classified state.
 Information that is to be erased on the device has to be overwritten in memory,

even in the case of power failure or system restart.
 The device cannot be rooted.
 The bootloader has to be locked.

Functional requirements
The system should have the following functional requirements:

 The application should have text forms with normal editing functionality present.
In addition a submit/cancel button pair should be apparent.

 The application should automatically connect to the correct server.
 The device should give feedback to the user if a transaction succeeds or fails.
 The application should have a sign out button where when pressed the session

with the server is terminated and all data erased from memory.

4.4 Our approximation of this system

Creating this system with all of its aspects is outside the scope of this thesis as it is only a
30 point thesis running the course of one semester opposed to the standard 60 point
thesis that run the course of two semesters.
We use this system as a reference to what kind of environment our implementations are
meant to function in.

For our implementations we have the following functionality:
Have two buttons marked “Create” and “Delete”.
With pushing the “Create” button, display a known text on the screen for the user.
With pushing the “Delete” button, securely delete all known instances of said text.

This is done through locally creating the strings, and utilizing different methods of
deletion to destroy the data.
Through using known unique data in the strings, we are able to effectively search
through the ram dumps for the data.

31

/5 Expermental setup

In this chapter we present in detail how we were able to successfully set up an
environment where we are able to capture live ram dumps while using the emulator
bundled with the SDK. These ram dumps are used in chapter 6 for analysis.

5.1 Setting up the environment

In this section we hope to give a step by step guide on how to set up a functional
emulator running a 4.0.3 Ice Cream Sandwich image which we collected the memory
dumps from.

Hardware: Mac mini (2011) with Dual core Intel i5 2.3 GHz, and 8GB 1333MHz DDR3
SDRAM.

Operating system: Linux Mint 17.1 Rebecca – Cinnamon 64bit.

The first thing we did was to install the Java JDK, which in our case was 1.8.0_45.

We had the openjdk java version prepackaged with mint which we needed to purge it
from our system.

32

$ sudo apt-get purge openjdk-*

##This command will completely remove OpenJDK/JRE from the system

$ sudo mkdir -p /usr/local/java

##This command will create a directory to hold the Oracle Java JDK binaries

Download the latest compressed(tar.gz) binaries for your system architecture from
Oracles Java page[19].

$ cd /home/"your_user_name"/Downloads

$ sudo cp -r jdk-8u45-linux-x64.tar.gz /usr/local/java/

$ cd /usr/local/java

$ sudo tar xvzf jdk-8u45-linux-x64.tar.gz

By this point we should have the binaries inside /usr/local/java

$ sudo nano /etc/profile

Next we need to edit the system PATH file /etc/profile and add the

following system variables to the system path:

JAVA_HOME=/usr/local/java/jdk1.8.0_45

PATH=$PATH:$HOME/bin:$JAVA_HOME/bin

export JAVA_HOME

export PATH

##Save the /etc/profile file and exit.

$ sudo update-alternatives --install "/usr/bin/java" "java"

"/usr/local/java/jdk1.8.0_45/bin/java" 1

$sudo update-alternatives --install "/usr/bin/javac" "javac"

"/usr/local/java/jdk1.8.0_45/bin/javac" 1

$ sudo update-alternatives --install "/usr/bin/javaws" "javaws"

"/usr/local/java/jdk1.8.0_45/bin/javaws" 1

These commands will tell the system that the new Oracle Java version is

available for use.

$ sudo update-alternatives --set java /usr/local/java/jdk1.8.0_45/bin/java

$ sudo update-alternatives --set javac

/usr/local/java/jdk1.8.0_45/bin/javac

$ sudo update-alternatives --set javaws

/usr/local/java/jdk1.8.0_45/bin/javaws

##These commands will inform your system that Oracle Java JDK/JRE must be

the default Java

$ source /etc/profile

Reload the system wide PATH /etc/profile

33

$ java –version

This command displays the version of java running on the system

If done correctly, something like this should be displayed:

java version "1.8.0_45"

Java(TM) SE Runtime Environment (build 1.8.0_45-b26)

Java HotSpot(TM) Server VM (build 25.20-b23, mixed mode)

##After a reboot, the system will be fully configured for running java.

After setting up java, we need to set up Android studio[20] and the NDK packages[21].
First we install the full Android studio package which includes an IDE.
Once you have installed Android studio, make sure to run it once to complete the
installation.
Next we download the NDK package. To execute this package we need to make the file
executable.

$ chmod a+x android-ndk-r10e-darwin-x86_64.bin

$./android-ndk-r10e-darwin-x86_64.bin

##The folder containing the NDK extracts itself.

Next, we need to update some packages

$ sudo apt-get install bison g++-multilib git gperf libxml2-utils make

zlib1g-dev:i386 zip

The Android source tree is located in a Git repository hosted by Google.
We’ll refer you to the Android source site[22] as we did exactly as instructed there.
It should be noted that we checked out the master branch which is somewhere around
35GB of data to download. It should be possible to get away with specifying the 4.0.3
branch alone to avoid downloading the source code of branches that might never be
used.

After downloading the source code we need to initialize the environment with the
envsetup.sh script. And then build the code

34

$ source build/envsetup.sh

$ launch full-eng

At this point we should have our developer environment fully set up.

Next, we download the Android Kernel Source Code.
Because we use the Android Emulator, we are downloading the Goldfish Kernel as
shown below:

$ git clone https://android.googlesource.com/kernel/goldfish.git ~/source

Cloning into '/Users/erlend/source'...

remote: Total 2442118 (delta 2048282), reused 2442118 (delta 2048282)

Receiving objects: 100% (2442118/2442118), 501.84 MiB | 465 KiB/s, done.

Resolving deltas: 100% (2048284/2048284), done.

$ cd ~/source/

$ git branch –a

* master

 remotes/origin/HEAD -> origin/master

 remotes/origin/android-goldfish-2.6.29

 remotes/origin/android-goldfish-3.4

 remotes/origin/linux-goldfish-3.0-wip

 remotes/origin/master

$ git checkout -t remotes/origin/android-goldfish-2.6.29 -b goldfish

Checking out files: 100% (26821/26821), done.

Branch goldfish set up to track remote branch android-goldfish-2.6.29 from

origin.

Switched to a new branch 'goldfish'

At this point we create an AVD inside of Android Studios AVD manager.
For our experiments we found that we had to run it on a Nexus 4 – 4.7” 768x 1280 xhdpi
avd. When we tried creating an AVD running on nexus 5 phone with 1080 x 1920 xxhdpi
the avd would not boot with our image. Make sure to download and set the system
image to API 15 for 4.0.3 Ice Cream Sandwich using armeabi-v7a.

At this point we start the new AVD. Before we can build the Goldfish Kernel we need to
extract a working config from the running AVD.
Once the AVD is up and running:

$ cd ~/android-sdk/platform-tools

$./adb pull /proc/config.gz

Once we have the config.gz file, we decompress it, and copy it into the Goldfish source
directory as “.config”.

35

$ tar -xvzf config.tar.gz

$ cp config ~/source/.config

Next we need to enable loadable kernel modules in the .config file.
We do this simply by adding the following lines:

CONFIG_MODULES=y

CONFIG_MODULES_UNLOAD=y

CONFIG_MODULES_FORCE_UNLOAD=y

At this point we need to make sure that all the tools and the cross-compilation tool chain
is in our path. Below is an excerpt of our .bashrc file.

export USE_CCACHE=1

export PATH=$PATH:~/Android/Sdk/tools/

export PATH=$PATH:~/Android/Sdk/platform-tools/

export ANDROID_SWT=~/Android/Sdk/tools/lib/x86_64/

export CCOMPILER=~/android-ndk-r10d/toolchains/arm-linux-androideabi-

4.6/prebuilt/linux-x86_64/bin/arm-linux-androideabi-

At this point, we should be able to switch to the Goldfish source folder and compile the
kernel.
A little word of warning on this: This Goldfish Makefile is recursive. We had a bit of
trouble compiling this without error and sometimes it would compile but would ignore
the file writeout so that we were left without an Image. What we found was that it was
easiest to back up the untouched Goldfish source folder to have a clean slate to work
with in case the compilation did not work.

Inside the Goldfish source folder type:

$ make ARCH=arm SUBARCH=arm CROSS_COMPILE=$CCOMPILER EXTRA_CFLAGS=-fno-pic

modules_prepare

If the code compiled successfully, we will have a new image at

~/goldfish-source/arch/arm/boot/zImage

36

If that does not compile, we would suggest removing the extra flags of –fno-pic and

modules_prepare
We had to play around with the them to make it compile correctly.

At this point we should be able to emulate the newly compiled kernel with the AVD we

created earlier.

$ ~/Android/Sdk/tools/emulator -avd myAvd -kernel ~/android-

source/arch/arm/boot/zImage -show-kernel -verbose

5.2 Setting up LiME

The next step in our journey is downloading and cross compiling LiME with our kernel.

We use SVN to check out the LiME trunk:

$ svn checkout http://lime-forensics.googlecode.com/svn/trunk/ ~/lime-

forensics

Inside of this folder we will find a sample Makefile (Makefile.sample) which we can use as a

template to create our own. Our Makefile is shown below.

obj-m := lime.o

lime-objs := tcp.o disk.o main.o

KDIR_GOLD := ~/source

KVER := $(shell uname -r)

PWD := $(shell pwd)

CCPATH := ~/android-ndk-r10d/toolchains/arm-linux-androideabi-

4.6/prebuilt/linux-x86_64/bin/

default:

 # cross-compile for Android emulator

 $(MAKE) ARCH=arm CROSS_COMPILE=$(CCPATH)/arm-linux-androideabi- -C

$(KDIR_GOLD) EXTRA_CFLAGS=-fno-pic M=$(PWD) modules

 $(CCPATH)/arm-linux-androideabi-strip --strip-unneeded lime.ko

 mv lime.ko lime-goldfish.ko

 # compile for local system

 $(MAKE) -C /lib/modules/$(KVER)/build M=$(PWD) modules

 strip --strip-unneeded lime.ko

 mv lime.ko lime-$(KVER).ko

 $(MAKE) tidy

tidy:

37

 rm -f *.o *.mod.c Module.symvers Module.markers modules.order

\.*.o.cmd \.*.ko.cmd \.*.o.d

 rm -rf \.tmp_versions

clean:

 $(MAKE) tidy

 rm -f *.ko

Once we have compiled the code we get two output files. The one we are interested in should

be called “lime-goldfish.ko”.

To load the LiME LKM on to the Android device we use ADB.

$ ~/Android/Sdk/platform-tools/

$./adb push ~/lime-forensics/src/lime-goldfish.ko /sdcard/lime.ko

To extract the ram dump from the device we can either dump it to the SD-card then copy it

over, or pipe it directly to the pc via forwarded TCP.

We choose to pipe the memory dump via TCP.

$ adb forward tcp:4444 tcp:4444

$ adb shell

$ su

insmod /sdcard/lime.ko "path=tcp:4444 format=lime"

Now on the PC, we can establish the connection and acquire the memory using netcat.

$ nc localhost 4444 > ram.lime

If all went well, we should have a good memory dump named “ram.lime” to analyze.

38

5.3 Setting up Volatility
In order to do memory analysis we utilize the Volatility framework.
To install and set it up correctly we first install Dwarfdump[23] which is an application
used to print DWARF debug information in a human readable form.

$ sudo apt-get install dwarfdump

Once we have Dwarfdump installed we can install the Volatility framework.

$ svn checkout https://volatility.googlecode.com/svn/trunk/ ~/android-

volatility

$ cd ~android-volatility/tools/linux

To start using the Volatility framework we need to correctly build a volatility profile.

We must edit the Makefile inside of the tools/linux directory to correspond with the paths on

our system. We have added the Makefile we used to compile our profile below:

obj-m += module.o

KDIR ?= ~/source

KVER ?= $(shell uname -r)

CCPATH := ~/android-ndk-r10d/toolchains/arm-linux-androideabi-

4.6/prebuilt/linux-x86_64/bin/

-include version.mk

all: dwarf

dwarf: module.c

 $(MAKE) ARCH=arm CROSS_COMPILE=$(CCPATH)/arm-linux-androideabi- -C

$(KDIR) CONFIG_DEBUG_INFO=y M=$(PWD) modules

 dwarfdump -di module.ko > module.dwarf

clean:

 $(MAKE) -C $(KDIR)/lib/modules/$(KVER)/build M="$(PWD)" clean

 rm -f module.dwarf

With this Makefile we can compile the module.dwarf driver.

The final step is to combine that module.dwarf file and the System.map file from the Goldfish

source directory into a zip file. Put that zip file in the volatility/plugins/overlays/linux

directory.

$ zip ~/android-volatility/volatility/plugins/overlays/linux/Golfish-

2.6.29.zip module.dwarf ~/source/System.map

39

 adding: module.dwarf (deflated 90%)

 adding: Users/erlend/source/System.map (deflated 73%)

We now have a fully functioning Volatility profile, and with that our testing environment is

nearly complete.

In order to install applications on the device we need to compile the code in Android Studio,

and then we can install an .apk file via ADB like this:

$./adb install ~/AndroidStudioProjects/MemoryTest/app/build/outputs/apk/

app-debug.apk

Volatility uses a modular plugin structure where each plugin should be usable as a standalone

tool, but they are also able to call on each other so that the results of one plugin can be used

for further processing.

A list of plugins can be generated using the –info command.

Below you can see an excerpt from this list with some interesting plugins.

$ python vol.py –info

Plugins

linux_dump_map - Writes selected memory mappings to disk

linux_find_file - Recovers tmpfs filesystems from memory

linux_lsof - Lists open files

linux_memmap - Dumps the memory map for linux tasks

linux_netstat - Lists open sockets

linux_proc_maps - Gathers process maps for linux

linux_psaux - Gathers processes along with full command line

and start time

linux_pslist - Gather active tasks by walking the task_struct-

>task list

linux_pslist_cache - Gather tasks from the kmem_cache

linux_pstree - Shows the parent/child relationship between

processes

First we can look at linux_psaux which lists up all the processes along with the full command

line from when they were launched. Below is an excerpt from the resulting list.

Let’s make a note the PID of the application bundled com.erlend.memorytest.

40

$ python vol.py --profile=LinuxGoldfish-2_6_29ARM -f ~/ram.lime linux_psaux

Volatility Foundation Volatility Framework 2.3.1

Pid Uid Gid Arguments

1 0 0 /init

339 10011 10011 com.android.providers.calendar

353 10007 10007 android.process.media

373 10017 10017 com.android.exchange

386 10027 10027 com.android.email

407 10028 10028 com.android.mms

488 10003 10003 com.android.defcontainer

504 10023 10023 com.svox.pico

517 10033 10033 com.android.quicksearchbox

536 10040 10040 com.erlend.memorytest

549 0 0 /system/bin/sh -

551 0 0 sh

553 0 0 insmod /sdcard/lime.ko path=tcp:4444 format=lime

Let’s take a look at linux_proc_maps. This plugin prints details of process memory, including

heaps, stacks and shared libraries. While using this plugin we provide it with a specific

process id 536, which corresponds to the memorytest application.

Below is a small excerpt detailing some of the data elements that show for each file in the

memory there is a start memory address, and an end.

$./python vol.py --profile=LinuxGoldfish-2_6_29ARM -f ~/ram.lime

linux_proc_maps –p 536

Volatility Foundation Volatility Framework 2.3.1

Pid Start End File Path

-------- ------------------ ------------------ ------------------------

536 0x000000004ab18000 0x000000004ab20000 /data/app/com.erlend.memorytest-

1.apk

536 0x000000004ab20000 0x000000004ad86000 /data/dalvik-

cache/data@app@com.erlend.memorytest-1.apk@classes.dex

536 0x000000004ad86000 0x000000004ad8c000 /dev/ashmem/InputChannel 419369b8

com.e...est/com.erlend.memorytest.MainActivity

41

Using the linux_dump_map plugin we can extract the memory of every process into distinct

.vma files which cover the different memory ranges that each processes’ virtual memory

address space consists of. Using this plugin we can also specify a single process to dump from

or from a specific memory address within that process.

In order to test the data localization of the strings in the application we needed to do a search

of the entire memory dump. Strings[24] is a good candidate as it is useful for determining the

contents of non-text files. For each file given, Strings will look through the file and print the

printable character sequences that are at least 4 characters long and are followed by an

unprintable character.

When we find one or more instances of the data item through using Strings we must attempt

to localize them. The first thing we do is to is to run linux_dump_map for only the targeted

application, as it’s a good bet that one or more hits will be in there. We then need to run the

Strings command on all of the resulting .vma files to know which one, if any, contains the

data. Since there are so many files in memory for each process it seemed prudent to automate

the process a bit. We therefore created a small bash script to help with the acquisition of

strings.

#!/bin/bash

 for i in $(ls); do

 $(strings $i > ./strings/$i.txt)

 done

This script executes the strings command on every file in the current directory, creating text

document with the results inside for each pass through the loop.

Correspondingly, for each file in memory we get one .vma file and one .txt file.

Now that we have successfully extrapolated the strings from the binary files we can do a grep

lookup to see if we have a match in any of the files.

$ grep –rnw . –e “ce656850400574e9f9cffb285ee8abc0”

If this search is successful it should show us which files, and therefore correspondingly

memory area, the data is in.

If we have not accounted for all of the data instances found by our initial Strings scan, we can

scope out further and run linux_dump_map without specifying a process to dump from. With

this command we get the virtual address space of every process in the linux_psaux list.

If we do the same procedure with the script and then grep, we should now be able to see if the

data is contained in any of the other processes virtual memory address space.

42

43

/6 MemoryTest Implementations

In chapter 4 we detailed our approximation of the conceptualized system.

This chapter describes the design and implementation of the three testing applications we

built to investigate the possibilities and limitations surrounding the memory management in

Android. These applications are not meant to be thought of as a testing ground for

experimentations around data in memory.

6.1 Overview

We have sectioned these tests into three applications:

The first application named “MemoryTest” is fully written in Java and acts as a baseline for

the test of the tests.

The second application named “MemoryTestNative” utilizes the Android Native

Development Kit (NDK) so that it has one part written in java, and another part written in C.

The third application named “MemoryTestNativeBuffer” also utilizes the NDK with one part

written in java, and the other written in C, but we use different means of communication

between the two parts.

44

The purpose of these applications is to present the different aspects within the Android

platform that hinders the concept of data ephemerality through secure deletion.

As detailed in chapter 4, the function of these applications are very simple.

1. Through pressing a button named “Create”, display a string on screen.

2. By pressing the button named “Delete”, delete all known instances of said string.

In order to verify the destruction of the data it is important that the string is both known and

unique. It is important that the string is known because we will search through extracted ram

dumps for its signature. It is also important that it is unique because we want the results from

these searches to be as accurate as possible, and if the content of the string is not unique, it

may lead to false positive results. For these reasons we landed on using a the hash value

“ce656850400574e9f9cffb285ee8abc0”, which is the md5 hash of “secretKey”.

The reason we use strings as the selected form of data is because it is both easier to verify the

results of our tests, and it is easier to create a unique piece of data that is searchable.

The procedure for collecting the memory dumps of these applications were as described in

chapter 5. For the “MemoryTest” application that was fully written in Java, we performed

only one memory dump. This is because we wanted this application to serve as a baseline for

the other tests and it does not have a “Destroy” function. As such the memory dump was

performed while data was intact and on screen. For the two other applications we performed

two tests. The first test involved dumping memory while data was intact and on screen, and

the other test after we had pressed the “Delete” button.

Step Test 1 Test 2

1 Reboot emulator Reboot emulator

2 Launch the app Launch the app

3 Press Create button Press Create button

4 Memory Dump Press Delete button

5 Finish Memory Dump

6 Finish
Table 1: Step-by-step procedure for the tests

To ensure we got proper results we deleted the Android Virtual Device (avd) folder in

~/.android/avd between each test, and replaced it with a clean backup.

45

6.2 The difference between Java and C in the context of

Android

The common approach to writing applications for the Android platform is to write them in

Java, and execute them within the virtual machine environment, called Dalvik or ART.

Because the Android platform is running on a Linux kernel written in C, you get the option of

writing C or C++ code for your application. The way this works is that you have a toolset

called the Native Development Kit which allows you to call C or C++ code from the Java

application through a Java Native Interface (JNI). The reasons for using this feature is usually

performance related, but we use it for enhanced security.

Java is a high-level object oriented programming language; this means that data is abstractly

referenced by objects of different types. Being high-level, Java abstracts away from the notion

of the developer handling his own memory allocations. This means that you cannot easily

reference direct memory addresses.

In stark contrast, C is a low-level procedural programming language that allows for dynamic

memory allocation. This dynamic memory allocation allows for blocks of memory of

arbitrary size to be requested at run-time from the heap.

Because the Java developer is not tasked with handling is own memory allocation he is not

tasked with deleting data either. Java therefore has a garbage collector that attempts to reclaim

“garbage”, which is memory occupied by objects that are no longer in use by the program.

Android through Dalvik and ART also has this. The traditional garbage collection scheme for

Android has been mark-and-sweep, where algorithm consists of two phases: In the first phase,

it finds and marks all accessible objects. The first phase is called the mark phase. In the

second phase, the garbage collection algorithm scans through the heap and reclaims all the

unmarked objects. The second phase is called the sweep phase. If this garbage collection

scheme runs multiple times over the course of a long-running program you may end up with

what is called fragmentation. This problem occurs when live objects end up being separated

by many, small unused memory regions and can cause the application to crash because it

could not allocate a big enough memory segment.

In 2014 google announced that they have a compacting garbage collector under

development[25], and this will be very influential for developers that want to try the path of

secure deletion using Java within Android. Opposed to the traditional mark-and-sweep

techniques used by Androids garbage collectors, a compacting garbage collector

moves(copies) objects in use in order to avoid fragmentation. This can very quickly lead to

unwanted duplicates of sensitive data in memory.

46

6.3 Implementing the applications

MemoryTest

This application is built to be as simple as possible. We allocate a String object on the heap

with the known string value, and pass it on to our TextView via the setText method.

String key = new String("ce656850400574e9f9cffb285ee8abc0");

TextView secretKeyTextView = (TextView)findViewById(R.id.secretKey);

secretKeyTextView.setText(key);

This displays the hash value on the screen.

MemoryTestNative

This application is written using the NDK to link C code together with Java code.

As such we have created our on C-library called “nativeLib” which we use to provide low-

level data allocation and secure deletion of data.

As the application is launched, the java segment starts by creating the linkage to the C

segment. The Java segment controls the graphical parts of the application and is responsible

for the two buttons “Create” and “Delete” as well as the TextViews.

The methods that triggers when either of the “Create” and “destroy” buttons are pressed

further calls down to different native JNI methods.

public void createObjects(View v) {

 TextView fullNameTextView = (TextView)findViewById(R.id.fullName);

 TextView secretKeyTextView =

(TextView)findViewById(R.id.secretKey);

 fullNameTextView.setText(getfullName());

 secretKeyTextView.setText(getsecretKey());

}

This Java method calls upon two different JNI methods, getfullName(), and getsecretKey().

The strings we search for in the memory dump now gets declared in C as volatile char arrays.

The volatile keyword acts as a data type qualifier and alters the way the compiler handles the

variable so that it does not attempt to optimize the storage of it.

47

volatile char fullName[] = "SECRET_NAME";

volatile char key[] = "ce656850400574e9f9cffb285ee8abc0";

The two C functions that correspond to the two JNI methods that gets invoked when the

“Create” button is called are very simple. They each return a built in JNI function called

NewStringUTF.

JNIEXPORT jstring JNICALL

Java_com_erlend_memorytestnative_MemtestActivity_getsecretKey (JNIEnv *env,

jobject obj){

 return (*env)->NewStringUTF(env, key);

}

What this JNI function does is to convert the contents of the C char array into a jstring, which

corresponds to a normal Java String. The resulting string is then displayed in the TextView.

When the “Delete” button is pressed, the C function of destroyData is invoked.

JNIEXPORT void JNICALL

Java_com_erlend_memorytestnative_MemtestActivity_destroyData (JNIEnv *env,

jobject obj){

 int fullNameSize = sizeof(fullName);

 int keySize = sizeof(key);

 secure_memset(fullName, 'a', fullNameSize);

 secure_memset(key, 'a', keySize);

 fullNameSize = 0;

 keySize = 0;

 return;

}

This function is responsible to call the secure_memset function which handles the overwriting

of the char arrays.

void *secure_memset(void *v, int c, unsigned int n) {

 volatile char *p = v;

 while (n--) *p++ = c;

 return v;

}

48

This is an elegant little function similar to the regular memset which is used to overwrite a

memory address range. The reason for using this function instead of memset is that because

the data is not used after it is overwritten, there is a chance that certain compilers might

optimize the entire overwriting process out. By using the volatile keyword as well as our own

memset function, we can be assured that the secure deletion takes place.

MemoryTestNativeBuffer

This application is similar to the other Native application, but relies on a different approach to

sending the data through JNI. Within this application we utilize a Direct ByteBuffer to send

the data from C to java. A ByteBuffer functions like a view of some underlying storage of

bytes. A byte buffer is either direct of non-direct, meaning that with a direct buffer the

overlaying virtual machine will make a best effort to perform native I/O operations on it. This

means that it will avoid copying the buffers content into an intermediate buffer when handled

through underlying operating system native I/O operations. Using this buffer technique

should allow the data to be allocated in C, and allow Java methods to fetch the contents of the

same memory address with only passing the buffer reference through JNI. This buffer, when

allocated in C will be stored on the Native heap, meaning that it is outside of the scope of any

garbage collection activities.

ByteBuffer b = (ByteBuffer) allocNative(32);}

In Java, this fetches the reference to the ByteBuffer.

JNIEXPORT jobject JNICALL

Java_com_erlend_memorytestnativeBuffer_MemtestActivity_allocNative(JNIEnv*

env, jlong size){

 byte* buffer = malloc(keySize);

 CharToByte(key, buffer, keySize);

 jobject directBuffer = (*env)->NewDirectByteBuffer(env, buffer,

keySize);

 jobject globalRef = (*env)->NewGlobalRef(env, directBuffer);

 return globalRef;

}

This is the corresponding C function which handles the memory allocation and copies the

contents of the char array into the buffer. To handle the copy we added a simple ByteToChar

Function.

void ByteToChar(byte* bytes, char* chars, unsigned int count){

 unsigned int i = 0;

 while(i < count)

 {

 chars[i] = (char)bytes[i];

 i++;

 }}

49

Once we have received the buffer reference on the java side, because the char array in C is

ASCII encoded we need to decode this to UTF in order to send it on to the TextView.

Charset charset = Charset.forName("US-ASCII");

CharsetDecoder decoder = charset.newDecoder();

String str = null;

str = decoder.decode(b).toString();

fullNameTextView.setText(str);

Note that this is a suboptimal method for extracting the data from the buffer because like in

the “MemoryTest” application we are creating a Java string with the contents of the buffer.

Otherwise we should be able to delete the sensitive data by overwriting the char arrays and

the contents of the bytebuffer. We were not able to find a successful way of transferring the

string data of the bytebuffer to the TextView without storing it in an intermediate buffer or

string which effectively creates a duplicate or the data.

6.4 Results

Using the memory acquisition methods discussed in chapter 5, we now present our results

after running tests on the built applications.

MemoryTest

As previously stated we did no attempts to destroy the data in this application so the memory

acquisition was taken while the data was on screen.

Our findings were that we only found one instance of the given data, and it was located inside

the Dalvik cache of our application process.

/data/dalvik-cache/data@app@com.erlend.memorytest-1.apk@classes.dex

50

MemoryTestNative

With this application we did two tests: First one where the data was intact and in the view,

and the second where the data was deleted both from the original char array and the view.

On the first test we got four hits in the memory dump

Upon further investigation we discovered that two of these hits were located within the

System_server process, and one was in the applications own virtual address space.

The system_server process is responsible for starting all system services and managers.

Although we were able to find that both hits were in the same memory address range of

0x4ad26000, there was no listing of description for that address.

The hit in the application’s own virtual address space was located in the compiled library file

for our nativeLib.

/data/data/com.erlend.memorytestnative/lib/libnativeLib.so

That leaves one instance of the data somewhere in the memory dump that is outside of any

processes virtual memory address space.

On the second test where we attempted to securely delete the data we got three hits in the

memory dump.

Two of the hits were still in the system_server, but the hit from within the application was not

found! We still had one hit outside of known virtual address space.

MemoryTestBuffer

Unfortunately we were unable to test this application due to some bugs within the code.

While we were able to run it on the stock emulator that runs with android studio, we were

sadly not able to make it run on our custom image.

6.4 Conclusion

In the MemoryTest application we saw a hit point to the dalvik cache .dex file, and in the first

test of the MemoryTestNative application we saw a hit point to the compiled custom added

native library libnativeLib.so. In neither of the tests had we done any attempted deletion of

sensitive data, so it is quite natural that we would get hits in both those places. However, in

the second test of MemoryTestNative we did proceed with secure deletion of the local char

array in the native library and the tests showed that the data hit was gone. We take this to

mean that secure deletion work for that purpose. We only need to figure out how to send the

data up to the screen properly.

51

/7 Evaluation of threats
In chapter 4 we defined an adversarial model, and listed potential threats.

In this chapter we describe solutions that may handle the given threats to an acceptable

degree.

Loss of confidentiality:

1. The mobile device is stolen during a transaction and data present in the
unit is compromised. This is the worst case scenario. Without highly advanced

methods of detection by the mobile device, data will be compromised. The only

thing one can do is to limit the damage as much as possible. To that end we propose

doing data deletion at the end of every transaction instead of log-on session; so that

we erase the applications memory as soon as it gets the confirmation that the data

has been delivered. This way, the amount of potential sensitive data is reduced to its

absolute minimum.

2. Unauthorized personnel physically see authorized personnel enter in
username/password or data. This is an issue that can be prevented if the
proper steps are taken. First and foremost the authorized personnel that is to
handle the device should be very aware of their surroundings when they start a
classified session. Functional measures should be taken to prevent this such as
not displaying key presses on the screen for more than a second. Physical
measures could be taken by adding a privacy filter to the screen that reduces
viewing angle of the display.

52

3. Intruder uses software exploits to gain unauthorized access to device. The
chance of this can be lowered by being strict on what applications one allows in
the mobile environment as well as always keeping the software up to date. In
the case that someone targets a device specifically and has knowledge of
software vulnerabilities on it there is not much you can do.

4. Another third party application with permissions on the device is allowed
to spy on data entered on the mobile device. This threat can be greatly
diminished by being critical to what applications you allow on the device. For
extreme security measures verified boot and trusted execution environment
would be the next step.

 Loss of Integrity:

1. The mobile device is physically attacked and has its software modified.
The only way to prevent this is to have verified boot within a trusted
execution environment. For this to work you would need to have a root of
trust based in hardware, as software gets easily manipulated.

2. The mobile device is used with stolen credentials in order to enter false
data to the server. There is not much to do to mitigate this other than look at
users access patterns to closely monitor and try to catch irregular behavior.

3. An attacker uses software exploits to enter malware into the mobile
device. This threat can be diminished by reducing the amount of attack
vectors available on the mobile device through strict application installation
approval, and frequently updating the software that is on the device.
Verified boot and a TEE could help detect such modifications.

4. Man in the middle attack where attacker is pretending to be the server.
Can be prevented by keeping a copy of the server’s public key certificate on
the mobile device. If such an attack were to happen, the only data the attacker
would receive would be an encrypted challenge.

Loss of availability:

1. Denial of service attack to the server. Can be partially mitigated through
having good server infrastructure with load balancers and being aware of the
load on the network.

2. The mobile device has its internet connection blocked. No mitigation
available.

53

/8 Discussion and evaluation of results

8.1 OpenGL

Most of our problems with the results involve getting the data to the screen. At some point

they have to be temporarily stored as Java strings. An alternative to this is avoiding using the

java view all together by opting to use the OpenGL library to draw on the screen directly

from C. Using third party libraries like FreeType[26] you can render fonts into a bitmap.

We have not explored the full potential of this path but it seems promising.

8.2 Application crash

In the event that the application crashes before a secure erasure of data can be done the

memory segment dedicated to the application will still reside in memory but will be marked

freed by the garbage collector. This means that sensitive data can still reside within the

memory segment until that area of the memory is allocated to another process and the specific

memory addresses are overwritten. We see no way to avoid this apart from modifying the

kernel to invoke some special procedure should the application crash.

54

8.3 Data findings outside of virtual address ranges

In our MemoryTestNative application we found a result that pointed to the fact that one of the

instances of the sensitive string must lie outside of the virtual address range of any of the

running processes. What this means is that we have one instance in memory of the string that

are not accounted for by any process. It could be that these additional string reside in physical

pages that are no longer allocated so they wouldn’t be mapped to any process’ virtual address

space. This could be a side effect of the kernel’s memory manager trying to relocate the

pages. Another possibility is that the strings are in pages that are allocated, but in kernel

memory. This could happen if we were seeing some of the dex files in the kernel’s file system

cache.

8.3 Lessons learned by the author

Coming from a background of very little Java experience, having done no Android

development, and having very little knowledge about mobile forensics or secure data deletion;

this thesis has forced the author to learn a lot in a very short amount of time.

There was an awful lot of debugging involved with setting up LiME and volatility correctly.

Java is still a programming language the author is learning to handle.

55

/9 Conclusion

The main goal of this thesis was to illustrate and elaborate on the use of ephemeral data in an

Android environment. To do this we illustrated an architecture where the ephemeral data was

a lynchpin and exposed potential weaknesses in relation to the mobile platform and how to

best overcome them. In addition we showed in great detail how to set up a virtual android

device so that memory forensics experiments could be conducted. We also demonstrated how

the volatility framework functions, and demonstrated that Linux memory management is a

highly complex system.

56

Bibliography

1. Tilo Muller, M.S., and Felix C. Freiling. . Frost: Forensic Recovery of Scrambled
Telephones. 2012; http://www1.cs.fau.de/filepool/projects/frost/frost.pdf.

2. International Data Corporations. Worldwide Quarterly Mobile Phone Tracker.
2015; http://www.idc.com/tracker/.

3. Google. Android Wear. 2015; http://www.android.com/wear/.
4. Google. Google TV. 2015; http://www.android.com/tv/.
5. Google. Google Auto. 2015; http://www.android.com/auto/.
6. The Norwegian Defence Research Establishment (FFI). [cited 2015;

http://www.ffi.no/en/Sider/default.aspx.
7. Open Handset Alliance. "Industry Leaders Announce Open Platform for Mobile

Devices". 2007.
8. Hackborn, D. 2013; http://stackoverflow.com/a/2299813/5252645.
9. Yaghmour, K. Opersys - Memory Management Internals. 2015;

https://www.youtube.com/watch?v=0BLLt_U5pus.
10. DFRWS, A Road Map for Digital Forensic Research. 2001: p. 16.
11. The Internet Society, Guidelines for Evidence Collection and Archiving. 2002.
12. Sylve, J., Android Memory Capture and Applications for Security and Privacy. 2011.
13. Volatility. The Volatility Framework. [cited 2015;

https://code.google.com/p/volatility/.
14. Halderman, e.a., We Remember: Cold Boot Attacks on Encryptions Keys. 2008.
15. Gutmann, P., Data Remanence in Semiconductor Devices. 2001.
16. Pasquale Stirparo, I.N.F., Ioannis Kounelis, Data-in-Use leakages from Android

Memory - Test and Analysis. 2013.
17. Google. Capturing a Heap Dump. 2015;

https://developer.android.com/tools/debugging/debugging-
memory.html#HeapDump.

18. Teoh, P. How to dump memory of any running processes in Android (rooted). 2011;
https://tthtlc.wordpress.com/2011/12/10/how-to-dump-memory-of-any-
running-processes-in-android-2/.

19. Oracle. Java SE Downloads. 2015;
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

20. Google. Android Studio. 2015; http://developer.android.com/sdk/index.html.
21. Google. NDK Downloads. 2015;

http://developer.android.com/ndk/downloads/index.html.
22. Google. Downloading the Source. 2015;

http://source.android.com/source/downloading.html.
23. Dwarf Debugging Format. Libdwarf And Dwarfdump. 2014;

http://wiki.dwarfstd.org/index.php?title=Libdwarf_And_Dwarfdump.
24. About.com. 2015; http://linux.about.com/library/cmd/blcmdl1_strings.htm.
25. Google. Compacting garbage collector under development. 2015;

http://developer.android.com/guide/practices/verifying-apps-art.html.
26. FreeType software library to render fonts. 2015; http://www.freetype.org/.

http://www1.cs.fau.de/filepool/projects/frost/frost.pdf
http://www.idc.com/tracker/
http://www.android.com/wear/
http://www.android.com/tv/
http://www.android.com/auto/
http://www.ffi.no/en/Sider/default.aspx
http://stackoverflow.com/a/2299813/5252645
http://www.youtube.com/watch?v=0BLLt_U5pus
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/ndk/downloads/index.html
http://source.android.com/source/downloading.html
http://wiki.dwarfstd.org/index.php?title=Libdwarf_And_Dwarfdump
http://linux.about.com/library/cmd/blcmdl1_strings.htm
http://developer.android.com/guide/practices/verifying-apps-art.html
http://www.freetype.org/

