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Aerodynamic Modeling and Estimation of a Fixed-wing UAV  

 

Project Description 

Soon after the first flight of an unmanned aerial vehicle (UAV) in 1804 by George Cayley, 

the major technological challenges for unmanned aviation were defined as automatic 

stabilization, remote control and autonomous navigation. Since then, and especially in the last 

two decades, a considerable effort has been made to improve UAV technologies aiming at 

safety and reliability of unmanned aviation. The result is seen today as a growing use of UAV 

systems to perform a variety of tasks, such as military reconnaissance, geological surveys, 

environmental monitoring, and time-optimal search and rescue operations. 

 

One of the main challenges with fixed-wing UAVs is the aerodynamics which must be 

estimated with good precision in order to obtain good control of the rigid body. This can 

either be done using wind tunnel testing or estimators. Using wind tunnels a scaled-down 

model of a fixed-wing UAV can be used to calculate the aerodynamic forces and moments 

acting on it at different operating conditions. These results can then be used to create models 

for the aerodynamics which are required for control design.  

 

There are in general two different ways of representing the aerodynamics. One is to let the 

aerodynamic force vector be a function of sideslip and angle of attack and result in a fairly 

good aerodynamic representation. The main drawback with this method is that in order to 

control the UAV, it must be controlled using the angle of attack and sideslip angles in order to 

make the velocity components in y and z direction go to zero. Another method is to linearize 

the aerodynamics with regards to the linear velocity components resulting in a viscous 

damping matrix which is vital for control purposes of underactuated rigid bodies. This method 

enables a natural damping removing the requirement of controlling on the angles, and enables 

the system to be controlled directly on the linear velocity components. Using a linearized 

damping matrix in conjunction with a nonlinear damping matrix has been done for ship and 

AUVs, and with the same basis this should be possible to do for UAVs.  

 

Main task 

The main task of this project is to perform wind tunnel testing of the HINUAV-1 model and 

parameterize the aerodynamics using Taylor expansion for different operating points (i.e. 

changes in the orientation relative the wind vector). Furthermore the force aerodynamics shall 

be parameterized using linear velocity components in such a way that the natural damping 

becomes apparent which is critical for stability design.  
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Subtasks 

1. Study previous work done on wind tunnel testing and different methods of parameterizing 

the aerodynamics such as (Mclean, 1990), (Fossen, 2011)  

2. Perform wind tunnel testing of HINUAV-1 

3. Use the test results and obtain coefficients for the aerodynamic forces and moments both 

the linear damping matrix and the nonlinear matrix 

4. Augment the solution with observers to make sure that the coefficients converge to their 

correct values at all different states to capture additional uncertainty which may be present 

in the system. 

5. If time allows, design an adaptive controller that captures the nonlinearities of the 

aerodynamics.  



Summary

An experimental platform for obtaining flight data has been developed
and used to collect real flight data of a UAV. Post processing algorithms
have been used to improve the results. Methods for state estimation and
parameter estimation has been presented, but have not been successfully
implemented. Equations of motion for an aircraft both nonlinear and linear
have been developed and the dampening matrix in the linear case has been
highlighted.
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1 Introduction

1.1 A brief History of aerodynamics and UAV’s

There has been numerous contributors to the field of aerodynamics and
maybe one of the most prolific is George Clayton. He is said to be the first
aerodynamicist, born in 1773 he studied the aerodynamics of wings and used
his knowledge to build the first gliders to carry a pilot. He also was the first
to look into and identify the four forces that govern flight (weight, lift, drag
and thrust). Derived from his work there are a lot of good literature that
explain the dynamics of flight [1] and [2]. During the late 18th and whole
19th century there were numerous attempts to successfully build the first
powered flying machine, but none succeeded and it remained a dream.

On December 17th, 1903 the course of history drastically changed by
the flight of the first powered aerial vehicle. It was the famous Wright
brothers who bravely brought the millennia long dream of human flight to
our doorsteps. Since that day there have been numerous contributions to
the art of flight. Since the beginning, flight has always been dependant on
one crucial factor, a pilot, but recent developments have sought to phase
out the human interaction with the aircraft. This new breed of airplanes
are commonly referred to as Unmanned Aerial Vehicles(UAVs). UAVs have
several advantages especially within scientific research, some of them being

- Smaller and lighter aircrafts,

- Cheaper and faster to build or replace,

- Missions no longer dependent on human endurance.

It was not long after the first powered human flight that ideas of unmanned
aircrafts arose, but although several experiments and research projects were
conducted between the first and second world war there were no major de-
velopments. It was not until the 1960s which is still remarkably early that
UAVs were used successfully. The first ones called the Q2-C Firebee also
known as the lightning bug [3] developed by the Ryan Aeronautical company
for the US army, to be used in reconnaissance mission during the Vietnam
war. The main weakness however with those UAVs was their primitive nav-
igation algorithm and it was not until the availability of Satellite navigation
systems that UAVs truly fulfilled their potential.

1.2 System identification and estimation

Parameter estimation has its origin from Karl Friedrich Gauss in 1795,
which he derived from his work on estimating the position of the comet
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Ceres. He postulated that the most probable values of unknown parameters
are the ones that minimize the sum of the squares of the difference between
observations and computed results. This is also known as the Least-Squares
estimation method. Other methods has been developed over the years and
can be found summarized in various literature [4] and [5]. One of the more
major breakthroughs in estimation theory was in 1960, when a man known
as Kalman published a paper on what is today called the Kalman filter
[6]. One of the first implementations of the Kalman filter was done at the
Dynamics Analysis branch at Ames Research Center at NASA. The main
goal was to estimate the state vector for a manned lunar vehicle [7]. In fact
since the problem was inherently nonlinear, the development of the Extended
Kalman filter resulted from this work [8]. The Kalman filter approach has
been studied and implemented extensively in aerospace applications [9], [10],
[11] and [12]. Apart from these mentioned methods there is also Sampling
Methods, which unlike the previous mentioned methods, take into account
nonlinear effects on mean and covariance [13]. Although Sampling Methods
are usually more computationally heavy than the former methods, recent
advances has yielded a sampling method with the same computational load
as the Extended Kalman Filter, called the Unscented Kalman Filter [14]
and [15].

Recent advances in Micro-Electronic-Mechanical Systems (MEMS) tech-
nology has provided engineers with low cost and low weight sensors to use
in strap-down inertial navigation systems. These properties give them a
wide application area, in which one of them is fixed-wing UAV’s. There has
been a lot work in using measurements from such sensors for attitude and
state estimation of small vehicles [16], [17]. In this thesis low cost sensors
have been used to capture data of a fixed wing UAV in flight. Non-linear
observers have then been used to extract data from the measurements which
is used to estimate aerodynamic coefficients in an aerodynamic model.

1.3 Contributions and scope of the report

This thesis is an indirect part of the research project Artic EO, where it
serves as a basis for the PhD program Nonlinear Control of Multiple Fixed
Wing Unmanned Aerial Vehicles Flying in Formation by Espen Oland at
HiN. This thesis is a continuation of a previous work done by the author
at Narvik University College. The project was titled ’UAV Parameter Es-
timation using Recursive Least-Squares’, for more insight into the project
consult the digital appendix.

A similar approach to attitude estimation as shown in [18] will be used,
but with real flight data and a different approach to the modelling and
estimation of the aerodynamics. It was decided that instead of doing wind
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tunnel testing of the HINUAV-1 the work would rather focus on getting the
HINUAV-1 flight ready and gather flight data for post analysis.

1.3.1 Delimitations

To decrease the workload on this thesis, the following delimitations have
been introduced.

� NED coordinate frame is assumed to be sufficiently inertial for this
report. The UAVs flight speed is low and it flies for a limited amount
of time, meaning this assumption will hold reasonably well without
deteriorating the validity of the results in this report.

� Since the UAV will be flying at low altitudes and over a relatively
small area, the effects of the earths plumb-bob gravity vector will not
be considered. In other words the Earth will be assumed flat.

� The UAV is assumed to be a rigid-body, meaning the distance between
any two points on the UAV will remain constant.

1.4 Report outline

� Section 2: Notation of the thesis is introduced and the underlying
theory that the rest of the thesis is based on is presented.

� Section 3: The Non-linear equations of motion for a fixed-wing UAV
is presented as well as an linearized model with emphasis on stability
derivatives. The equations are then presented in a form as to show
the viscous dampening of the system in the linear case. The aerody-
namic model is presented and the method to estimate its coefficients
is presented. The different sensors models are presented. Two Non-
linear observers are shown that will extract data from the flight test
measurements.

� Section 4: The main estimation algorithms are presented.

� Section 5: The UAV and its properties are presented along with the
hardware and methods used to collect the flight test data and inertia
test data.

� Section 6: The experimental results are presented and a small discus-
sion of the results and their implications.

� Section 7: The results that are obtained by employing the non-linear
observers on the experimental data are shown.

� Section 8: The results from the aerodynamic estimation is presented.

� Section 9: Concluding remarks as well as suggestions for future work.
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2 Theoretical background

2.1 Notation

In this report boldface will be used to denote vectors such as v, scalars are
represented by normal face characters and ‖ · ‖ represents the vector norm,
this gives ‖v‖ = v. Superscripts on vectors represents the respective frame
of reference for instance vb is the velocity vector expressed in body frame
coordinates. For angular movement the subscript represents the relative
angular movement for instance the vector ωba,c is the angular velocity of
frame c relative to a expressed in b. The time derivative of a vector in an
inertial frame is written v̇i = dvi

dt implying v̈i = d2vi

dt2
, for a non inertial frame

the rotation of the frame has to be accounted for v̇b = dvb

dt + S(ωbi,b)v
b.

Rotation matrices are indicated by the letter R and Rb
n expressed the

rotation from n frame to b frame. In matlab the general convention is that
superscripts are always first after the variable name, then following from
left right is the subscript, as an example ωba,c would be written w b ac in
matlab. This convention is used consistently for all variable names. For two
vectors v1 = [v1v2v3]

T ,v2 ∈ R, S(v1) is the cross-product operator and can
be written as

S(v1) =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 (1)

such that S(v1)v2 = v1 × v2. The vex(·) operator functions as the inverse
of the cross-product operator, namely

vex(S(v1)) =

 v1
v2
v3

 (2)
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Figure 1: Illustration over the different control surfaces on the HINUAV-1

2.2 Aircraft definition

All aircrafts have control surfaces and as the name indicates, they are
used to control the movement of the aircraft. In Figure 1 three types of
control surfaces are shown. Ailerons are used to make the aircraft perform
lateral maneuvers, for instance a barrel roll. Often when an aircraft is doing
lateral maneuvers it also yaws the aircraft by using the rudder. The third
control surface is the elevator which pitches the aircraft. There is also a
fourth method to controlling the movement of the aircraft and that is the
thrust, which accelerates the aircraft along its local x-axis. Some aircraft
have additional control surfaces called flaps and are often used to brake or
to make the aircraft roll faster, flaps are not implemented on the HINUAV-1
and will not be included in the thesis. In Table 1 the symbols for each of the
control surfaces are shown, which are used extensively through literature.

When modelling an aircraft there are some quantities that are needed to
be specified for each individual aircraft. In Figure 2, the three geometric
quantities are shown

� c̄ - Mean aerodynamic chord is the average length from the leading
edge to the trailing edge of the main wing.

Table 1: Conventional control signals for an aircraft.
Thrust δT
Elevator δe
Aileron δa
Rudder δr

5



Figure 2: Illustration over the different parameters describing aircraft ge-
ometry.

� b - Wing span of entire main wing.

� S - Is the surface area of the main wing.

� m - Total mass of the aircraft.

� J - Inertia tensor, which shows how the mass is distributed on the
aircraft along its principal axis.

all these need to be defined a priori for aerodynamic parameter estimation.
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Figure 3: Body frame reference system of the HINUAV-1.

2.3 Mathematical and theoretical preliminaries

2.3.1 Coordinate frames

North East Down has the N axis pointing towards the geodetic north, the
Down axis pointing down towards the center of the earth, while the East
axis completes the right handed system(geodetic east).

Body frame has its center at the vehicles center of gravity, the x-axis points
forward lying in the symmetric plane of the vehicle, the y-axis points through
the right wing and is perpendicular to the x-axis. The z-axis completes the
right handed system pointing downwards as seen in Figure 3.

Stability frame is the vehicles body frame rotated around the y-axis by
the angle of attack.

Wind frame is the vehicles stability frame rotated around the z-axis by the
sideslip angle. Its direction coincides and is anti-parallel with the direction
of the wind.

ECEF has its center at the center of the earth, z-axis points along the
earth spin axis, x-axis points through the intersection between the mean
greenwich line and the equatorial plane and the y-axis completes the right
handed system.

Geographic frame is essentially the same frame as ECEF but instead of
cartesian coordinates it is spherical coordinates (µ, l, h) with a few distinc-
tion. The latitude(µ) in the angle between the equatorial plane and the
position vector, not the angle between the spin axis and the position vector

7



Table 2: Symbols used for different coordinate frames.
Coordinate system Axes

NED N, E, D

Body xb, yb, zb
Stability xs, ys, zs
wind xw, yw, zw
ECEF xe, ye, ze
Geographic µ, l, h

as conventional with spherical coordinates. The altitude(h) is the distance
from the WGS84 reference ellipsoid to the body as show in Figure. The
longitude(l) is equivalent to spherical coordinate convention. A summary of
the coordinate systems is shown in Table 1.

2.3.2 Rotation between frames of reference

A rotation matrix is defined by the properties

R = [R ∈ R3x3; R−1 = RT ; det R = 1] (3)

and it provides a means to map a vector from one frame to another. There
are three widely used methods to produce such matrices.

Euler Rotations in this method one rotates a reference frame around
some intermediate axis by certain angles to end up in the target reference
frame. The angles and the rotation is then collected into a single matrix
[19]

RA
B =

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 (4)

where s(·) and c(·) represents the sine and cosine operators respectively. The
angles φ, θ and ψ are often called the roll, pitch and yaw angles respectively.
Such that

bA = RA
Bb

B (5)

thereby describing the relation between the two reference frames. If one of
the frames are moving the rotation matrix will also change. The change in
euler angles can be related to the change in the orientation of the moving
frame by [20]  φ̇

θ̇

ψ̇

 =

 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

 ωx
ωy
ωz

 (6)
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where ωx, ωy and ωz are the angular velocities of the moving frame. Euler
rotations however contain singularities when solving for the euler angles,
making it unsuitable to represent all type of maneuvers.

Direct Cosine Matrices are constructed by the fact that one can rep-
resent a unit vector by its angles to the coordinate axes

ua =
A

‖A‖
=

Ax
‖A‖

i+
Ay
‖A‖

j +
Az
‖A‖

k = cosφxi+ cosφyj + cosφzk (7)

using this between two reference frames will produce a direct cosine matrix

RA
B =

 cosφx cosφy cosφz
cos θx cos θy cos θz
cosβx cosβy cosβz

 (8)

often presented in texts as

RA
B =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 (9)

and its time derivative is defined as [21]

ṘA
B = RA

BS(ωBA,B) (10)

where ωBA,B is the angular velocity of frame B relative to frame A, expressed
in frame B. The direct cosine method contains no singularities, meaning it
is suitable for all maneuvers, but at the cost of increased complexity. The
Euler rotation method has three constants of integration(θ, φ and ψ), while
the direct cosine representation has nine (cij , i, j = 1, 2, ..., 9).

Quaternions is based on Euler’s rotation theorem that states that any
rotation or composite rotation of a rigid body can be expressed as one ro-
tation about one axis. This axis is usually termed the euler axis. If one
calculates the eigenvectors of a direct cosine matrix

(RA
B − λI)e = 0 (11)

there will be one eigenvector satisfying

RA
Be = e (12)

λ = 1 (13)

and
e21 + e22 + e23 = 1 (14)
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this eigenvector lies along the euler axis. It was shown in how one can use
this euler axis to construct a quaternion q with four parameters to represent
any rotation in space.

q = [η ε] = [η 1ε 2ε 3ε]
T (15)

η = cos
θ

2
(16)

1ε = e1 · sin
θ

2
(17)

2ε = e2 · sin
θ

2
(18)

3ε = e3 · sin
θ

2
(19)

and also
η2 +1 ε

2 +2 ε
2 +3 ε

2 = 1 (20)

two quaternions representing two subsequent rotations can also be combined
into one quaternion representing the whole rotation. This is done by an
operation called the quaternion product

qa,b ⊗ qb,c =
1

2

[
ηa,bηb,c − εTa,bεb,c

ηb,cεa,b − ηa,bεb,c − S(εa,b)εb,c

]
= qa,c (21)

a more intuitive representation

qa,b ⊗ qb,c =


ηb,c 3εb,c −2εb,c 1εb,c

−3εb,c ηb,c 1εb,c 2εb,c
2εb,c −1εb,c ηb,c 3εb,c
−1εb,c −2εb,c −3εb,c ηb,c




1εa,b
2εa,b
3εa,b
ηa,b

 = qa,c (22)

this can also be used for the attitude error where qa,b would be the actual
attitude and qb,c would be there desired attitude. Quaternions can also be
used to keep track of the orientation of a body through its derivative

q̇a,b =

[
η̇a,b
ε̇a,b

]
=

[
−ηTa,b · ωba,b

(ηa,b · I + S(εa,b)) · ωba,b

]
(23)

where ωbo,b is the angular velocities of the body. By integrating this result
you end up with a scheme to time update an orientation. The quaternions
contain no singularities and only have four constants of integration making
the both numerically robust and fast.

A problem with quaternions however is that the group of quaternions
fulfilling (20) forms what is called a double cover on SO(3). Meaning that

10



there are actually two eigenvectors that fulfill the requirements in (12)-(13)
and (14). The eigenvector −e

RA
B(−e) = −e (24)

λ = 1 (25)

and

(−e1)2 + (−e2)2 + (−e3)2 = 1 (26)

this means that q and −q represents the same rotation, but differs where q
is a rotation of θ around the axis e and −q is a rotation −θ around the axis
−e.

It is possible to construct a rotation matrix by using a quaternion [19]

RA
B = I(η2 − ε2) + 2εεT − 2ηS(ε) (27)

which then can be used to rotate a vector. It is also possible to go the
reverse direction

η = ±1

2

√
1 + c11 + c22 + c33 (28)

1ε =
c23 − c32

4η
(29)

2ε =
c31 − c13

4η
(30)

3ε =
c12 − c21

4η
(31)

which is an often used method where one keeps track of the attitude with a
quaternion, but constructs a DCM, when it is needed to perform rotations.

It is important to know how to rotate between different reference frames
since the dynamics of the body will be derived in inertial space, measure-
ments will be collected in body frame and geographic frame, and the body’s
attitude will be the orientation between body and the inertial frame.

Geographic frame to ECEF, when given longitude l, latitude µ and
altitude h the transformation is defined as [22] xe

ye
ze

 =
[

(N + h) cosµ cos l (N + h) cosµ sin l (abN + h) sinµ
]

(32)

where N is the distance from the center of WGS84 ellipsoid to its surface
at the respective longitude and latitude.
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ECEF to NED is done by first choosing a reference vector which will
be the origin of the NED frame, this is usually the take off point for aerial
vehicles. Then subtracting the reference vector from all the position vectors
in ECEF frame to get position coordinates relative to the NED frame. These
new relative coordinates are then rotated to the NED frame

pN = RN
E (pE − pEreference) (33)

where RN
E is defined as

RN
E =

 − cos l sinµ − sin l − cos l cosµ
− sin l sinµ cos l − sin l cosµ

cosµ 0 − sinµ

T (34)

NED to Body is the rotation matrix that describes the attitude of the
body. It is usually estimated based on measurement data from various
sensors onboard the body. One simple method is called the TRIAD method,
where one could use two know vector quantities in the reference coordinate
system and two measured vectors in the body coordinate frame, and thereby
estimating the attitude by constructing two triads

t̂b1 = ab

‖ab‖ t̂b2 = ab×mb

‖ab×mb‖ t̂b3 = ab×(ab×mb)
‖ab×(ab×mb)‖

t̂n1 = an

‖an‖ t̂n2 = an×mn

‖an×mn‖ t̂n3 = an×(an×mn)
‖an×(an×mn)‖

(35)
where ab is the acceleration of the body frame with the assupmtion of weak

acceleration, that is the dominant acceleration of the vehicle is the gravita-
tional acceleration, an is the gravity acceleration in NED frame meaning

an =

 0
0

9.81

 (36)

mb is the magnetic field vector in body frame from the magnetometer on-
board the body and mn is the local magnetic field vector at the origin of
the NED frame. Collecting the triad vectors in matrix form yields[

t̂o1 t̂o2 t̂o3
]

= Mref (37)

and [
t̂b1 t̂b2 t̂b3

]
= Mobs (38)

now the estimated attitude can be written as

R̂ = Mref ·MT
obs (39)

where R̂ denotes that is an estimate of the true rotation matrix R.
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Body to Wind Transforming a vector vb consists of first rotating the
vector about the yb axis with an angle α, this forms the stability coordinate
system. Then another rotation is done about the new zs axis by an angle
β. Collecting the two rotations into one matrix gives us

Rw
b =

 cosα cosβ sinβ sinα cosβ
− cosα sinβ cosβ − sinα cosβ
− sinα 0 cosα

 (40)

the new x-axis xw now points in the opposite direction of the incoming
airflow.

2.4 Taylor expansion

It is well known that if a function is continuously differentiable in an open
interval which includes a point a, then the function can be expanded by a
Taylor series

f(x+a) = f(a)+
df(a)

dx
(x−a)+

1

2!

d2f(a)

dx2
(x−a)2+

1

3!

d3f(a)

dx3
(x−a)3+· · ·

=

∞∑
n=0

1

n!

dnf(a)

dxn
(x−a)n (41)

This can be used to approximate a function around a point a, by evaluating
the series up to m <∞

f(x+ a) ≈
m∑
n=0

1

n!

dnf(a)

dxn
(x− a)n (42)

this then becomes the mth order Taylor polynomial. If f represents a nonlin-
ear function, then a linear representation can be expressed by setting m < 2
which yields

f(x+ a) ≈ f(a) +
df(a)

dx
(x− a) (43)

this result has a central part in linearization theory. The Maclaurin series is
the Taylor series at a = 0 and for a function f(x) = ex can be expressed as

ex = f(0) +
df(0)

dx
x+

1

2!

d2f(0)

dx2
x2 +

1

3!

d3f(0)

dx3
x3+··· (44)
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It is also possible to construct the Taylor expansion of a multi-variable
function as

f(x1+a1, · · · , xn+an) = f(a1, · · · , an)+Df(a1, · · · , an)

 x1−a1...
xn−an



+
1

2!

 x1−a1...
xn−an


T

D2f(a1, · · · , an)

 x1−a1...
xn−an

+··· (45)

where D denotes the differential operator and is defined as

D =
[

∂
∂x1

∂
∂x2

· · · ∂
∂xn

]
(46)

such that
Df(x1, · · · , xn) =

[
∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

]
(47)

now applying the differential operator a second time results in

D2f(x1, · · · , xn) =


∂2f

(∂x1)2
∂2f

∂x1∂x2
· · · ∂2f

∂x1∂xn
∂2f

∂x1∂x2
∂2f

(∂x2)2
· · · ∂2f

∂x2∂xn
...

...
. . .

∂2f
∂xn∂x2

∂2f
∂xn∂x2

· · · ∂2f
(∂xn)2

 (48)

which is often termed the Hessian matrix.

The second order Taylor polynomial f(x) is a linear approximation of
f(x) at point x = a and is useful when linearizing non-linear differential
equations. Suppose that a set of non-linear differential equations can be
written as

f(x1,··· , xn) =


f1(x1,··· , xn)
f2(x1,··· , xn)

...
fn(x1,··· , xn)

 (49)

the linearization can then be expressed as

f(x1 + a1,··· , xn + an) = f(a1,··· , an) +Df(a1, · · · , an)

 x1 − a1
...

xn − an

 (50)

where

Df(a1, · · · , an) =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
∂fn
∂xn

∂fn
∂xn

· · · ∂fn
∂xn

 (51)
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is known as the Jacobian matrix.

2.5 State space and estimation

Most dynamic systems are inherently nonlinear. A consequence of this is
that tools like the laplace transform or classical control techniques cannot be
used to analyse the behaviour of the system, at least not without lineariza-
tion. Another problem is that a lot of systems is what is called MIMO-
systems, which have multiple inputs and multiple outputs and might be of
the order of 100th. If these systems were to be handled in the conventional
s-plane, it would make problems more complex and therefore more difficult
to solve. For this reason a new formulation called state-space was invented.
In the linear case, the differential equation governing the system is reduced
to first order differential equations about the systems states, the equations
are then collected into a matrix format

ẋ(t) = Ax(t) +Bu(t) (52)

y(t) = Cx(t) +Du(t) (53)

where A is the state matrix, x is the state vector, B is the input vector,
u is the input, y is the output, C is the output matrix, D is the feed-
forward matrix. This format allows the use of matrix algebra to solve the
equations, which is a great advantage when it comes to digitized computing.
It is important that the states in the state vector has enough entries to
completely characterize the behaviour of the dynamic system. Since the
dynamics are contained in (52) it is only necessary to solve (52), since (53)
only maps the states and inputs to the outputs. The solution to (52) can
be presented as [23]

x(t) = Φ(t)x(0) +

∫ t

0
Φ(t− τ)Bu(τ)dτ (54)

where Φ(t) = eAt, this equation can be rewritten in discrete form by specify-
ing that the solution is sampled at constant discrete time steps(tk+1−tk = h
and the state vector and input vector remains constant between the steps.
This simplifies the convolution between the state transition matrix and the
input into ∫ h

0
eA(h−τ)dτBuk (55)

which has the solution
A−1

[
eAh − I

]
B (56)

the state space can now be written in its discrete form

xk+1 = Φ(h)xk + ∆(h)uk (57)
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where Φ(h) = eAh and ∆(h) = A−1 [Φ(h)− I]B can be calculated using
the Taylor expansion of ex

Φ(h) = I +Ah+
A2h2

2!
+
A3h3

3!
+ · · · (58)

A−1 [Φ(h)− I]B =

[
Ih+

Ah2

2!
+
A2h3

3!
+ · · ·

]
B (59)

and lastly the output equation is written as

yk+1 = Cxk+1 +Duk+1 (60)

In the nonlinear case, it is not possible to separate the states and inputs
from the differential equations and the state-space takes the form

ẋ(t) = f(x,u, t) (61)

y(t) = h(x,u, t) (62)

since nonlinear systems do not conform to the superposition principle. This
also means that all the tools used in linear control theory do not apply
unless linearization is performed. For a quasi-linear system the linearization
process can be summarized as

As mentioned earlier in this section the states should completely charac-
terize the behaviour of the system. Therefore knowing the states, one can
use this to provide the system with inputs to drive the systems to states that
are desired. This realization has led to the development of observers, which
will use as much available information as possible to try and estimate the
values of the states that are not directly available from measurements. This
task in itself can be formidable since all practical systems are subjected to
noise, which can disguise the dynamics of the measured states and further
complicated the estimation of the unknown ones.

2.6 Numerical differentiation and integration

In some cases there will be a need for the time derivatives of states, and
if no type of sensor is employed to measure one has to rely on numerical
differentiation. An example of this is angular acceleration, although instru-
ments to measure angular acceleration exists, it is much more common to
have gyroscopes that measure angular velocities instead. Another exam-
ple is by GPS, which provides position data. Taking the derivative of the
GPS data will give the velocities, alternatively the velocities can be obtained
by numerical integration of acceleration data from an accelerometer. Once
the angular velocity measurements are gathered, numerical differentiation is
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done to determine the angular acceleration. However a problem with take
derivatives of measurements is that measurements always contain noise, and
when differentiation is done without care the noise will be amplified and no
useful data can be gathered from the process. One of the simplest methods
of differentiation calculates the time derivative directly

ẏ ≈ y(t+ ts)− y(t)

ts
(63)

Often a better result can be achieved by using the difference formula

ẏ ≈ y(t+ ts)− y(t− ts)
2ts

(64)

but as mentioned these methods tend to amplify the noise. A better ap-
proach is to fit a local polynomial for each data point and evaluate the
derivative based on this smoothed approximation.

y = a0 + a1t+
1

2
a2t

2 (65)

which gives the time derivative

ẏ = a1 + a2t (66)

to find the coefficients ai one can use simple least-squares estimation. If

z(i) = y(i) + v(i) (67)

where z(i) is the measured signal at sample time iδt that we wish to find
the time derivative of, y(i) is the actual signal and v(i) represents the noise.
One can formulate the equations relating the coefficients to the measured
data

a0 + a1(−2δt) + a2(−2δt)2 = z(i− 2) (68)

a0 + a1(−δt) + a2(−δt)2 = z(i− 1) (69)

a0 = z(i) (70)

a0 + a1(δt) + a2(δt)
2 = z(i+ 1) (71)

a0 + a1(2δt) + a2(2δt)
2 = z(i+ 2) (72)

Since there are 3 unknowns and 5 equation the principle of least squares
applies 

1 −2δt (−2δt)2

1 −δt (−δt)2
1 0 0
1 δt (δt)2

1 2δt (2δt)2


 a0
a1
a2

 =


z(i− 2)
z(i− 1)
z(i)

z(i+ 1)
z(i+ 2)

 (73)
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giving the least-squares solution

 a0a1
a2

 =




1 −2δt (−2δt)2

1 −δt (−δt)2
1 0 0
1 δt (δt)2

1 2δt (2δt)2


T 

1 −2δt (−2δt)2

1 −δt (−δt)2
1 0 0
1 δt (δt)2

1 2δt (2δt)2



−1


1 −2δt (−2δt)2

1 −δt (−δt)2
1 0 0
1 δt (δt)2

1 2δt (2δt)2


T 

z(i−2)
z(i−1)
z(i)

z(i+1)
z(i+2)



(74)

As mentioned earlier velocity data can be obtained by numeric intergra-
tion of accelerometer data. A method for numerical intergration of differen-
tial equations is called Runge-Kutta where

yi+1 = yi + hΦ(ti,yi, h) (75)

where Φ is a weighted average of the derivative dy
dt evaluated at several points

between ti and ti+h. The higher the order of the Runge-Kutta method, the
more points are evaluated between ti and ti + h and consequently, the more
accurate the method becomes. In short the algorithm can be presented as
[24]

t̃m = ti + amh (76)

ỹm = yi + h

m−1∑
n=1

bmnf̃n (77)

yi+1 = yi + h
s∑

m=1

cmf(t̃m, ỹm) (78)

where

a =


a1
a2
a3
...
as

 b =


b11
b21 b22
b31 b32 b33
...

...
...

. . .

bs,1 bs,2 bs,3 . . . bs,s−1

 c =


c1
c2
c3
...
cs

 (79)

are the weighting coefficients.
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Example RK4

a =


0
1
2
1
2
1

 b =


0 0 0
1
2 0 0
0 1

2 0
0 0 1

 c =


1
6
1
3
1
3
1
6

 (80)

f̃1 = f(ti,yi) (81)

f̃2 = f(ti +
1

2
h,yi +

1

2
hf̃1) (82)

f̃3 = f(ti +
1

2
h,yi +

1

2
hf̃2) (83)

f̃4 = f(ti + h,yi + hf̃3) (84)

yi+1 = yi + h

(
1

6
f̃1 +

1

3
f̃2 +

1

3
f̃3 +

1

6
f̃4

)
(85)
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3 Modeling

3.1 Inertia

For a detailed discussion about the derivation of the inertia matrix and its
properties consult [24]. In this thesis only the main results will be considered.
When working with the dynamics of rigid bodies it is important to have
knowledge of the mass distribution within the body, this can be represented
as a tensor

J =

 Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 (86)

which is commonly called the inertia tensor or inertia matrix. For airplanes
which are symmetric along the xz axis the inertia tensor can be simplified
to

J =

 Ixx 0 −Ixz
0 Iyy 0
−Ixz 0 Izz

 (87)

this simplification applies to most airplanes, since airplanes tend to have
symmetry about the xz axis [20]. A simple way of measuring these quantities
is by suspending the aircraft in a pendulum configuration along one of its
body axes as shown in Figure 4. This system can be modeled as a linearized
pendulum system where the inertia around the center of mass is expressed
as [18]

ICM = m̂R

(
gT 2

4π2
−R

)
− Irig (88)

this is then done for the x, y and z body axis of the aircraft. The term Ixz
is found by measuring the oscillation period around an axis ε which is done
by measuring the inertia of the x axis, but rotating the aircraft along the z
axis by an angle ξ

Ixz =
Iξ − Ix cos2 ξ − Iz sin2 ξ

sin 2ξ
(89)

3.2 Aircraft equations of motion

The equations of motion for a rigid-body aircraft are derived from the two
classical equations ∑

F =
dp

dt
(90)∑

τ =
dh

dt
(91)

where p denotes the linear momentum vector mv, h is the angular momen-
tum vector Jω, F is the forces acting on the body and τ is the applied
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Figure 4: Illustration of the trifilar pendulum rig.

torques. The forces working on an airplane in body-frame are in general the
gravitational force, the thrust and the aerodynamic forces

f bg + f bthrust + f baero =
dpb

dt
(92)

τ baero =
dhb

dt
(93)

the gravitational force works on the aircrafts center of gravity and there-
fore does not introduce a torque, the thrust is often said to work through
the xb axis and does not produce any torque on the body. This leaves the
aerodynamic forces which indeed will apply torques on the airplane by ma-
nipulation of the various control surfaces on the aircraft. Expanding the
right side of (92) yields

f bg + f bthrust + f baero = ṗb + S(ωbn,b)p
b (94)

since p = mv and the mass of the airplane remains constant we can rewrite
(94) into

f bg + f bthrust + f baero = m(v̇b + S(ωbn,b)v
b) (95)

and solving with respect to v̇b gives

v̇b =
1

m
(f bg + f bthrust + f baero)− S(ωbn,b)v

b (96)

Similarly with the torque equation, expanding the right side yields

τ baero = ḣb + S(ωbn,b)h
b (97)
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since the inertia is constant (94) can be rewritten as

τ baero = Jω̇bn,b + S(ωbn,b)Jω
b
n,b (98)

and solving for ω̇bn,b yields

ω̇bn,b = J−1(−S(ωbn,b)Jω
b
n,b + τ ) (99)

then collecting the two final equations in vector form as

v̇b =
1

m
(f bg + f bthrust + f baero)− S(ωbn,b)v

b (100)

ω̇bn,b = J−1(−S(ωbn,b)Jω
b
n,b + τ ) (101)

and in component form

u̇ =
1

m
(−mg sin θ + T + Fx)− (qw − vr) (102)

v̇ =
1

m
(mg cos θ sinφ+ Fy) + (pw − ur) (103)

ẇ =
1

m
(mg cos θ cosφ+ Fz)− (pv − uq) (104)

ṗ =
Ixz(ṙ + pq)− qr(Iyy − Izz) + τx

Ixx
(105)

q̇ =
Ixz(r

2 − p2)− pr(Izz − Ixx) + τy
Iyy

(106)

ṙ =
Ixz(ṗ− qr) + pq(Ixx − Iyy) + τz

Izz
(107)

These equations represent the nonlinear dynamics of a rigid body aircraft.

The f bg can be further expanded as

f bg = mRb
nG

n (108)

where

Gn =

 0
0
g

 (109)

is the gravity acceleration (g = 9.81) in NED frame. The thrust can also be
further expanded as

f bthrust =

 T
0
0

 (110)

where T for a spinning propeller can be modeled as

T = CTρn
2D4 (111)
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where CT is the thrust coefficient, ρ is the air density, n is the angular
velocity of the propeller and D is the propeller diameter. It is important to
keep in mind however that as the velocity of the airplane increases the thrust
will decrease, because of the fact that the generated thrust depends on the
difference between the incoming air to the propeller and the outcoming air
of the propeller. When the velocity of the airplane increases this difference
will decrease resulting in lower thrust. This can be taken into account the
pressure difference in front of and behind the propeller [25]

pupstream = p0 +
1

2
ρv2air (112)

pdownstream = p0 +
1

2
ρv2exit (113)

and by using a linear relationship between the control signal to the propeller
and vexit the propeller thrust equation can be written as

T =
1

2
ρSpropCT

 (kmotorδt)
2 − v2air

0
0

 (114)

where Sprop is the area being swept by the propeller Sprop ≈ D2π
4 and kmotor is

a constant which specifies the efficiency of the motor. The main advantage of
(114) compared to (111) is the addition of the difference between incoming
velocity of the air versus the outgoing velocity. The assumption of the
linear relation between angular velocity and control signal also simplifies the
problem of estimating the thrust since the control signal is usually known,
but the rad per second of the propeller is often unknown. The coefficient CT
must either be estimated from flight data or calculated using software like
for instance Propcalc which uses geometry data for the propeller to estimate
CT .

It is also possible to take the result in (100) and (101) and linearize them
by the use of perturbation theory. This means that the aircraft is assumed to
be in an equilibrium position and the dynamics are modeled as perturbations
from the equilibrium point. The following derivation is a summary from [26]

The variables in (102)-(107) reordered to with respect to the forces

X = m(u̇+ g sin θ + (qw − vr)) (115)

Y = m(v̇ − g cos θ sinφ− (pw − ur)) (116)

Z = m(ẇ − g cos θ cosφ+ (pv − uq)) (117)

L = Ixxṗ− Ixz(ṙ + pq) + qr(Izz − Iyy) (118)

M = Iyy q̇ + Ixz(p
2 − r2) + pr(Ixx − Izz) (119)

N = Izz ṙ + Ixz(qr − ṗ) + pq(Iyy − Ixx) (120)
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where Fx+T , Fy, Fz, τx, τy and τz has been renamed to X, Y , Z, L, M and
N respectively. This is done to simplify the notation that will follow from
the linearization process. The states have also been redefined to consist of
a equilibrium part and a perturbation part

u , u0 + u v , v0 + v w , w0 + w

p , p0 + p q , q0 + q r , r0 + r

L , L0 + L M ,M0 +M N , N0 +N

X , X0 +X Y , Y0 + Y Z , Z0 + Z

(121)

the equations representing the equilibrium position can then be represented
as

X0 = m(g sin θ0 + (q0w0 − v0r0)) (122)

Y0 = m(−g cos θ0 sinφ0 − (p0w0 − u0r0)) (123)

Z0 = m(−g cos θ0 cosφ0 + (p0v0 − u0q0)) (124)

L0 = −Ixzp0q0 + q0r0(Izz − Iyy) (125)

M0 = Ixz(p
2
0 − r20) + p0r0(Ixx − Izz) (126)

N0 = Ixzq0r0 + p0q0(Iyy − Ixx) (127)

the perturbed equations of motions can be found by inserting (121) into
(115)-(120) and subtracting (122)-(127), keeping in mind that products of
squares of perturbations are small and therefore negligible such as qv or p2,
similarly for cosines of perturbed angles are approximately unity and sines of
perturbed angles equals the angles themselves. Keeping this in mind results
in

X = m(u̇+ q0w + w0q − r0v − v0r + g cos θ0θ) (128)

Y = m(v̇ − p0w − w0p+ u0r + r0u− g(cos θ0 cosφ0φ− sin θ0 sinφ0θ)
(129)

Z = m(ẇ + p0v + v0p− u0q − q0u+ g(cos θ0 sinφ0φ+ sin θ0 cosφ0θ)
(130)

L = Ixxṗ− Ixz ṙ − Ixz(p0q + q0p) + (Izz − Iyy)(q0r + r0q) (131)

M = Iyy q̇ − 2Ixz(r0r − p0p) + (Ixx − Izz)(p0r + r0p) (132)

N = Izz ṙ − Ixz ṗ+ Ixz(qr0 + rq0) + (Iyy − Ixx)(p0q + q0p) (133)

it is now possible continue from these equations by expanding the left side.
This is done by a Taylor approximation around the trimmed flight condition
where the higher order terms are neglected. Thus the following notation is
introduced

Xx = ∂X
∂x Yx = ∂Y

∂x Zx = ∂Z
∂x

Lx = ∂L
∂x Lx = ∂M

∂x Nx = ∂N
∂x

(134)
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in the expansion the influence of control variables are also included, the
Taylor expansion yields

X = Xuu+Xu̇u̇+Xvv +Xv̇v̇ +Xww +Xẇẇ

+Xpp+Xṗṗ+Xqq +Xq̇ q̇ +Xrr +Xṙṙ

+XδT δT +Xδ̇T
δ̇T +Xδeδe +Xδ̇e

δ̇e

+Xδaδa +Xδ̇a
δ̇a +Xδrδr +Xδ̇r

δ̇r

(135)

Y = Yuu+ Yu̇u̇+ Yvv + Yv̇v̇ + Yww + Yẇẇ

+ Ypp+ Yṗṗ+ Yqq + Yq̇ q̇ + Yrr + Yṙṙ

+ YδT δT + Yδ̇T δ̇T + Yδeδe + Yδ̇e δ̇e

+ Yδaδa + Yδ̇a δ̇a + Yδrδr + Yδ̇r δ̇r

(136)

Z = Zuu+ Zu̇u̇+ Zvv + Zv̇v̇ + Zww + Zẇẇ

+ Zpp+ Zṗṗ+ Zqq + Zq̇ q̇ + Zrr + Zṙṙ

+ ZδT δT + Zδ̇T δ̇T + Zδeδe + Zδ̇e δ̇e

+ Zδaδa + Zδ̇a δ̇a + Zδrδr + Zδ̇r δ̇r

(137)

L = Luu+ Lu̇u̇+ Lvv + Lv̇v̇ + Lww + Lẇẇ

+ Lpp+ Lṗṗ+ Lqq + Lq̇ q̇ + Lrr + Lṙṙ

+ LδT δT + Lδ̇T δ̇T + Lδeδe + Lδ̇e δ̇e

+ Lδaδa + Lδ̇a δ̇a + Lδrδr + Lδ̇r δ̇r

(138)

M = Muu+Mu̇u̇+Mvv +Mv̇v̇ +Mww +Mẇẇ

+Mpp+Mṗṗ+Mqq +Mq̇ q̇ +Mrr +Mṙṙ

+MδT δT +Mδ̇T
δ̇T +Mδeδe +Mδ̇e

δ̇e

+Mδaδa +Mδ̇a
δ̇a +Mδrδr +Mδ̇r

δ̇r

(139)

N = Nuu+Nu̇u̇+Nvv +Nv̇v̇ +Nww +Nẇẇ

+Npp+Nṗṗ+Nqq +Nq̇ q̇ +Nrr +Nṙṙ

+NδT δT +Nδ̇T
δ̇T +Nδeδe +Nδ̇e

δ̇e

+Nδaδa +Nδ̇a
δ̇a +Nδrδr +Nδ̇r

δ̇r

(140)

collected the result together in a state space, since the UAV is of a small
size and the response time of the actuators are low the actuators can be ap-
proximated to be working instantaneously, therefore neglecting the actuator
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dynamics yields

X
Y
Z
L
M
N

 =



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ
Lu̇ Lv̇ Lẇ Lṗ Lq̇ Lṙ
Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ





u̇
v̇
ẇ
ṗ
q̇
ṙ



+



Xu Xv Xw Xp Xq Xr

Yu Yv Yw Yp Yq Yr
Zu Zv Zw Zp Zq Zr
Lu Lv Lw Lp Lq Lr
Mu Mv Mw Mp Mq Mr

Nu Nv Nw Np Nq Nr





u
v
w
p
q
r



+



XδT Xδe Xδa Xδr

YδT Yδe Yδa Yδr
ZδT Zδe Zδa Zδr
LδT Lδe Lδa Lδr
MδT Mδe Mδa Mδr

NδT Nδe Nδa Nδr



δT
δe
δa
δr



(141)

further on adapting the notation of that of [22] and [27]

τ = −MF ν̇ −NFν +Bu (142)
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where

τ =



X
Y
Z
L
M
N

 ν =



u
v
w
p
q
r

 u =


δT
δe
δa
δr



−MF =



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ
Lu̇ Lv̇ Lẇ Lṗ Lq̇ Lṙ
Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ



−NF =



Xu Xv Xw Xp Xq Xr

Yu Yv Yw Yp Yq Yr
Zu Zv Zw Zp Zq Zr
Lu Lv Lw Lp Lq Lr
Mu Mv Mw Mp Mq Mr

Nu Nv Nw Np Nq Nr



B =



XδT Xδe Xδa Xδr

YδT Yδe Yδa Yδr
ZδT Zδe Zδa Zδr
LδT Lδe Lδa Lδr
MδT Mδe Mδa Mδr

NδT Nδe Nδa Nδr


applying the same notation to (128)-(133)

τ = MRBν̇ +NRBν +Gη
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where

MRB =



m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ixx 0 −Ixz
0 0 0 0 Iyy 0
0 0 0 −Ixz 0 Izz



G =



0 0 0 0 mg cos θ0 0
0 0 0 −mg cos θ0 cosφ0 mg sin θ0 sinφ0 0
0 0 0 mg cos θ0 sinφ0 mg sin θ0 cosφ0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



η =



xn
yn
zn
φ
θ
ψ



NRB =



0 −mr0 mq0 0 mw0 −mv0
mr0 0 −mp0 −mw0 0 mu0
−mq0 mp0 0 mv0 −mu0 0

0 0 0 −Ixzq0 −Ixzp0+(Izz−Iyy)r0 (Izz−Iyy)q0
0 0 0 2Ixzp0+(Ixx−Izz)r0 0 −2Ixzr0+(Ixx−Izz)p0
0 0 0 (Iyy−Ixx)q0 Ixzr0+(Ixx−Ixx)p0 Ixzq0


we can now collect everything into one equation

MRBν̇ +NRBν +Gη = −MF ν̇ −NFν +Bu (143)

rearranging yields

(MRB +MF )ν̇ + (NRB +NF )ν +Gη = Bu (144)

and finally solving for ν̇

ν̇ =(MRB+MF )−1Bu

−(MRB+MF )−1(NRB+NF )ν−(MRB+MF )−1Gη
(145)

the matrix NF is referred to as the linear dampening matrix. It is also
possible to further simplify the equations by separating the longitudal and
lateral dynamics and the fact that several of the stability derivatives can be
neglected. Consult [26] for more information on this topic.
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3.3 Aerodynamics

For UAV application a good model for aerodynamics is very important.
Aerodynamics describe the relation between the incoming airstream and
how it translates to forces and torques acting on the aircraft. There are
many ways and methods to model this relation. One model was inadver-
tently presented during the linearization of the aircraft dynamics namely
(141). Most of the dimensional derivatives in (141) can be neglected for a
conventional aircraft resulting in [20]

X = Xuu+Xww +Xqq +Xδδ (146)

Z = Zuu+ Zww + Zẇẇ + Zqq + Zδδ (147)

M = Muu+Mww +Mẇẇ +Mqq +Mδδ (148)

Y = Yvv + Ypp+ Yrr + Yδδ (149)

L = Lvv + Lpp+ Lrr + Lδδ (150)

N = Nvv +Npp+Nrr +Nδδ (151)

where the equations have been divided into longitudal (X, Z, M) and lateral
(Y, L, N) forces.

For an aircraft there are in general two measurements of velocity, ground
velocity Vg and velocity relative to the surrounding air Vair. The ground
velocity is a quantity often given by GPS-receivers, while air speed is mea-
sured with an instrument called a pitot tube. They are related together
through

vbair = Rb
n(vng − vnw) (152)

where vnw is the wind vector expressed in NED frame. If its a calm day and
no wind is present then

vbg = vbair (153)

when this relation holds the angle of attack and sideslip can be expressed as

α = tan−1
w

u
(154)

β = sin−1
v

‖vb‖
(155)

often the aerodynamic models derived from wind tunnel tests are dependent
on the angle of attack and sideslip angles. The most common means of
modeling aerodynamic relationships is through Taylor expansions equivalent
to that of (135)-(140). The expansions in (135)-(140) are called dimensional
derivatives, it is possible to express them as nondimensional aerodynamic
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coefficients [20]

CX = CX0 + CXu
∆u

u0
+ CXw

∆w

u0
+ CXq

qc̄

2u0
+ CXδ∆δ (156)

CY = CY0 + CYβ∆β + CYp
pb

2V0
+ CYr

rb

2V0
+ CYδ∆δ (157)

CZ = CZ0 + CZu
∆u

u0
+ CZw

∆w

u0
+ CZẇ

[
ẇ

u0

]
c̄

2u0
+ CZq

qc̄

2u0
+ CZδ∆δ

(158)

Cl = Cl0 + Clβ∆β + Clp
pb

2V0
+ Clr

rb

2V0
+ Clδ∆δ (159)

Cm = Cm0 + Cmu
∆u

u0
+ Cmw

∆w

u0
+ Cẇ

[
ẇ

u0

]
c̄

2u0
+ Cmq

qc̄

2u0
+ Cmδ∆δ

(160)

Cn = Cn0 + Cnβ∆β + Cnp
pb

2V0
+ Cnr

rb

2V0
+ Cnδ∆δ (161)

where ∆ signifies the difference between the equilibrium state and perturbed
state i.e. ∆u = u0 − u. The model presented in (156)-(161) is linear and is
only valid with small perturbations from the aircrafts equilibrium state. It is
also possible to define a nonlinear model for the aerodynamics by including
higher order terms from the Taylor expansion, or by letting the dimensionless
derivatives become functions of the states. Modelling the aerodynamics of a
aircraft is a formidable task and the model structure will depend on the type
of aircraft and its intended goal. Aerodynamic models range from simplified
linear equations for fix-winged UAVs [18] to global nonlinear equations for
F-16 aircrafts [28].

3.4 Sensor models

3.4.1 Rate gyros

Most commonly rate gyros in a strapdown configuration measure the an-
gular velocity of the vehicles body frame with respect to an inertial frame,
expressed in the vehicles body frame. Rate gyros are usually affected by
noise and a constant bias, which is why integrating rate gyro measurements
will lead to divergence of the attitude over time. The error model for a
typical rate gyro can then be expressed as [16]

mω
b
i,b = tω

b
i,b + bω + vω (162)

where m denotes the measured angular velocity, t denotes the true angular
velocity, bω is the gyro bias and vω is the additive measurement noise.
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3.4.2 Accelerometer

Accelerometers in a strapdown configuration measure the translational
acceleration of the vehicle in body frame. The translational force acting on
a mass can be expressed as [29]

F = ma = mζ +mg (163)

where F is the total force, m is the mass, ζ is the acceleration produced by
other forces than the gravitational field and g is the gravitational accelera-
tion. The inside of a small accelerometer can be expressed as a small proof
mass connected to a cage by two springs on either side of the mass as shown
in Figure 5. When the accelerometer is accelerated the mass is displaced
from its equilibrium position, this displacement is measured by the displace-
ment of the needle on the displacement pick-off. When the accelerometer
sits on the table, the sum of the forces acting on the accelerometer is zero
which means according to (163)

−mζ = mg (164)

therefore the output of the accelerometer will be equal to ζ = −g. Similarly
if the accelerometer is in free-fall, the mass will be at its equilibrium position
and f = 0, which results in

a = g (165)

following from this the output equation from the accelerometer can be ex-
pressed as

a = ζ − g (166)

or in vector form in a strapdown configuration

ab = ζb − gb (167)

but knowing from (100) that

v̇b + S(ωbn,b)v
b −

f bg
m

=
1

m
(f bthrust + f baero) (168)

we can rewrite the output equation for the accelerometer as [20]

ab =
1

m
(f bthrust + f baero) (169)

the error model for the accelerometer can be expressed as [16]

ma
b = ta

b + ba + va (170)

where m denotes the measured acceleration, t denotes the true acceleration,
ba is the accelerometer bias and va is the additive measurement noise.

31



Figure 5: Illustration of a conceptual accelerometer

3.4.3 Magnetometer

A magnetometer measures the magnetic field vector in body frame, given
by [30]

mb = Rb
n

 cosϕ cosχ
sinϕ cosχ

sinχ

Bn (171)

where Bn is the magnitude of the flux density, ϕ is the declination angle and
χ is the inclination angle. The magnetic field vector can also be found in
NED frame as a function of its reference position in geographic coordinates

mn(pgref ) =

 cosϕ(pgref ) cosχ(pgref )

sinϕ(pgref ) cosχ(pgref )

sinχ(pgref )

B(pgref ) (172)

where pgref = [l, µ, h]. For attitude estimation the magnitude of the magnetic
field vector is of no importance and the vector is usually normalized

m̄b =
mb

‖mb‖
(173)

for a typical magnetometer (171) can be extended to include noise and
disturbances as found in [16]

mm
b = Rb

nm
n +Bm + vm (174)

where Bm is the local magnetic disturbances in body-fixed frame. Although
the magnetometer gives the aircrafts orientation relative to the magnetic
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field, it is not enough to determine the attitude of the aircraft. This can
easily be show by using a small rotation in the body axes [31] H ′x

H ′y
H ′z

 =

 cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 Hx

Hy

Hz

 (175)

where [Hx Hy Hz]
T is the new direction of the magnetic field vector after

a small rotation. For small rotation it holds that cos(·) ≈ 1 and sin(·) ≈ (·),
this simplifies the rotation into H ′x

H ′y
H ′z

 =

 1 −ψ θ
ψ 1 −φ
−θ φ 1

 Hx

Hy

Hz

 (176)

and this can be written as H ′x
H ′y
H ′z

 =

I +

 0 −ψ θ
ψ 0 −φ
−θ φ 0

 Hx

Hy

Hz

 (177)

the equation can now be rewritten in terms of the incremental rotation ∆H ′x ∆H ′x
∆H ′y
∆H ′z

 =

 0 −ψ θ
ψ 0 −φ
−θ φ 0

 Hx

Hy

Hz

 (178)

since the rotation matrix is singular there is no unique solution with respect
to the euler angles [φ θ ψ]. At most two of the angles can be known while
the third will a free variable, another vector measurement is needed.

3.4.4 GPS

GPS measurements have a tendency to be bias free. The only drawback
with GPS is its precision. If one leaves a GPS receiver in a fixed position
for an extended period of time, the measured position will be stable and not
drift, but the measurements will not improve over time. In this thesis GPS
measurements will be modeled as

mp
n = tp

n + vgps (179)

and the velocity will be given as the derivative of the position

mv
n = mṗ

n (180)

3.4.5 Pressure sensor

There are mainly two types of pressure sensors which have important
applications in aerospace, those being the absolute pressure sensor and the
differential pressure sensor.
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The absolute pressure sensor measures the absolute pressure often ex-
pressed as kilo Pascal. The measurements can be used to estimate the
altitude of the aircraft or to estimate the dynamic pressure q̄. The sen-
sors are usually have a temperature related bias drift and is subjected to
measurement noise and can be represented by the equation [25]

mp = tp+Bp + vp (181)

where vp is additive noise. Since the pressure reduces with attitude it can
be used to calculate altitude by using the relation between pressure and
altitude [25]

p = p0

[
T0

T0 + L0hasl

] gM
RL0

(182)

where p0 is the standard pressure at sea level, hasl is altitude above sea level,
L0 is the lapse rate, g is the gravitational constant, R is the universal gas
constant for air, T0 is the standard temperature at sea level and M is the
standard molar mass of atmospheric air. Solving this equation with respect
to altitude yields

hasl =
T0
L0

(
p0
p

)RL0
gM

− T0
L0

(183)

It is important to keep in mind that this altitude is with respect to the sea
level and will differ from the altitude from the GPS which is with respect
to the WGS84 ellipsoid.

Differential pressure sensors are used together with a pitot-tube to mea-
sure the aircrafts airspeed. The pitot-tube must be placed clear of the air-
craft body to prevent the body from disturbing the airflow to the pitot-tube.
The pitot static-tube sensor works by measuring the difference between the
dynamic and static pressure and then using bernoulli’s equation the airspeed
can be calculated [12]

V 2
pitot = K

2∆P

ρ
(184)

where ∆p is the dynamic pressure from the pitot-tube sensor, ρ is the air
density and K is a correction factor.

In [12] it was demonstrated that it is possible to estimate the wind di-
rection and speed by using a pitot-tube and a GPS-receiver. By using the
relation from (152)

vnw ≈ vg −Rn
b

 1
β
α

Vpitot (185)
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where va has been approximated to be

vba ≈

 1
β
α

Vpitot (186)

which holds for small angles of α and β. To show this consider the relation
between speed relative to surrounding air and pitot speed [12]

V 2
pitot = ‖vair‖2 cosα cosβ (187)

‖vair‖2 =
V 2
pitot

cosα cosβ
(188)

(189)

but from (186) we have that

‖vbair‖2 = V 2
pitot(1 + β2 + α2) (190)

this gives
1

cosα cosβ
= (1 + β2 + α2) (191)

cosα ≈ 1 for small angles of α, which also means that α2 ≈ 0 and the same
holds for the β angle.

It shares the same model structure as the absolute pressure sensor, with
additive noise and a temperature related bias drift [25]

mp = tp+Bp + vp (192)
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4 State and parameter estimation

4.1 Kalman filter

The Kalman filter is often referred to as an optimal observer. It estimates
the states of a linear system in presence of noise. Like most observers and
estimators it is made up of a prediction and correction term. What is
interesting about the Kalman filter is that it minimizes the variance of the
state error

x̃ = x− x̂ (193)

where x̃ is the state error, x is the state and x̂ is the estimated state.

In most literature it is the discrete time Kalman filter which is explained
since its simpler and is usually the algorithm that is implemented. The
prediction step for a luenberger observer is given as [23]

x̂k+1|k = Φx̂k|k + ∆uk (194)

ẑk+1 = Cx̂k+1|k (195)

and the correction step is given as [23]

z̃k+1 = zk+1 − ẑk+1 (196)

x̂k+1|k+1 = x̂k+1|k +Kz̃k+1 (197)

the Kalman filter is similar in structure to the luenberger but the main
difference is the gain matrix K which is used to determine how much the
state estimates should be corrected. For a Kalman filter this gain matrix is
determined such that the covariance matrix P = E[x̃x̃T ] is minimized. One
of the main difference between the Kalman Filter and Luenberger observer
aside from the gain matrix K, is that the Kalman Filter assumes the system
is corrupted with noise. Consider the system in (52)-(53) with no feed
forward and with added noise

ẋ(t) = Ax(t) +Bu(t) + Γwk (198)

y(t) = Cx(t) + vk (199)

Assume that v and w are white noise with E[v] = 0 and E[w] = 0, then
the full algorithm can be expressed as the following equations [23]

P ∗k = ΦPkΦ
T + ΓQΓT (200)

Kk+1 = P ∗kC
T
[
CP ∗kC

T +R
]−1

(201)

x̂k+1|k+1 = [I −Kk+1C]
[
Φx̂k|k + ∆uk

]
+Kk+1zk+1 (202)

Pk+1 = [I −Kk+1C]P ∗k (203)

where R = E[vvT ] and Q = E[wwT ]. For more detail on the derivation
process consult [23]
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4.2 Extended Kalman filter

One of the main drawbacks of the kalman filter is that it only applies to
linear systems while most dynamic systems are nonlinear. The Extended
Kalman Filter is intended to bridge the gap, at least for systems that are
near linear. The Extended Kalman filter linearizes the system along the
estimated trajectory and evaluates the covariance and correction gain matrix
from the linearized system. The estimated states and output are calculated
using the full nonlinear equations. The first step is extrapolation/prediction

x̂k+1|k = x̂k|k +

∫ tk+1

tk

f [x̂k|k, ūk]dt (204)

P ∗k ≈ ΦkPkΦ
T
k + ΓQΓT (205)

the next step is the update/correction step

ŷk+1 = h[x̂k+1|k,uk] (206)

Kk+1 = P ∗kC
T [CP ∗kC

T +R]−1 (207)

x̂k+1|k+1 = x̂k+1|k +Kk[zk − ŷk+1] (208)

Pk+1 = [I −Kk+1C]P ∗k (209)

these equations are under the assumption that the model and measurement
noise are additive and is not included in the nonlinear model. It is clear
that there are similarities between the Extended and the Linear Kalman
Filters. This algorithm also requires the linearization of the state equations
and output equations defined as

C ≈ dh

dx
=


∂h1
∂x1

∂h1
∂x2

· · · ∂h1
∂xn

∂h2
∂x1

∂h2
∂x2

· · · ∂h2
∂xn

...
...

. . .
∂hn
∂xn

∂hn
∂xn

· · · ∂hn
∂xn

 (210)

and

A ≈ df

dx
=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
∂fn
∂xn

∂fn
∂xn

· · · ∂fn
∂xn

 (211)

where Φ is found from A by using (58). The integral in (204) can be
evaluated using Runge-Kutta integration.

4.3 Explicit complementary filter

The explicit complementary filter assumes the aircraft is under weak accel-
eration and therefore the gravitational acceleration is dominant. In other
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words it assumes that ab

‖ab‖ ≈ −R
b
ne3. In addition to an accelerometer the

aircraft needs to have a magnetometer and a 3-axis gyro. The accelerometer
and magnetometer is used to estimate the attitude of the aircraft while the
gyro’s are used to improve the estimate. The observer can be presented as
[16]

ωmes = −vex

(
n∑
i=1

ki
2

(viv̂
T
i − v̂ivTi ))

)
(212)

˙̂q =
1

2
q̂ ⊗ p(ωbn,b − b̂+ kPωmes) (213)

˙̂
b = −kIωmes (214)

where b̂ is the estimated gyro noise, v̂i are the reference vector in a known
coordinate frame which have been rotated to body frame using the estimated
attitude, vi are the measured reference vectors in body frame and ki, kI and
kP are positive gains used to tune the observer. The attitude error is defined
as

R̂ := R̂bT
n R

b
n (215)

which will converge towards I.

4.4 Observer from Hua

The observer found in [17] has some similarities with the explicit comple-
mentary filter in [16]. It can be presented as [17]

˙̂vn = k1(v
n − v̂n) + ge3 +Qab (216)

Q̇ = QS(ωbn,b) + kv(v − v̂)abT − ρQ (217)

˙̂
R = R̂S(ωbn,b + σ) (218)

σ = k2m
b × R̂nT

b mn + k3a
b × R̂n

bT (Qab + k1(v − v̂)) (219)

ρ = kqmax(0, ‖Q‖ −
√

3) (220)

This observer uses measurements of ab from an accelerometer, ωbn,b from a

rate gyro, mb from a magnetometer and vn from a gyro and estimates the
attitude R̂n

b and the acceleration in NED frame ˙̂vn.
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Table 3: Geometric quantities found from manufacturer.
c̄ 0.214 m

b 1.68 m

S 0.355 m2

5 Implementation

5.1 HINUAV-1

The UAV considered in this thesis is a SkyWalker EPO V2 airplane bought
from bevrc.com. The airframe was assembled as a project by a former
student Thomas Gansmoe. The total mass of the UAV was also measured
to be 1.8 kg. The three geometric quantities were measured experimentally
and then verified using documentation of the SkyWalker. The quantities
can be seen in Table 3.

5.2 Hardware and data collection

The hardware on the UAV is based on a previous project at Narvik Uni-
versity College by a student named Benyamin Akdemir. The HINUAV-1 is
equipped with four servos, one for each aileron, one for the rudder and one
for the elevator. The airframe can be seen in Figure 6 the UAV is equipped
with a Futaba 6EX 2.4GHz 6-channel transmitter and a Futaba R617FS
receiver. The HINUAV-1 is equipped with a 3-axis accelerometer ADXL345
from sparkfun. It has a selectable measuring range from ±2g to ±16g and a
resolution of 13 bit, which gives a precision of 4mg/LSB at the highest mea-
suring range. The UAV is also equipped with a 3-axis gyroscope ITG-3000
from sparkfun. It has a measurement range of ±2000o/sec with a resolution
of 16-bits. This gives a precision of 14.375o/sec/LSB. The gyro also has
a temperature sensor to help compensate for temperature dependent drift.
There is also a magnetometer onboard the UAV. It is also from sparkfun,
the HMC5883L has an adjustable measuring range from ±0.88Ga to ±8.1Ga
with a resolution of 12-bit, giving a precision between 0.73mGa to 4.35mGa
depending on the measurement range. The magnetometer measures both
the direction and magnitude of the magnetic field vector. The GPS onboard
the UAV is an UP501 GPS receiver. It has a selectable refresh rate of 1Hz,
5Hz and 10Hz and a precision as high as 1.8 meter. It outputs data automat-
ically in accordance with the standard NMEA-protocol. The messages can
be chosen to be any combination of GGA, RMC, GSV and/or GSA. For this
thesis only GGA messages were collected. Two pressure sensors are used on
the HINUAV-1, there is one absolute pressure sensor MPX5100A that mea-
sure the absolute pressure and one differential pressure sensor MPX5010DP
that is used with a pitot-tube. The pitot-tube can be used to estimate the
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Figure 6: Picture of the HINUAV-1

wind direction and speed, while the absolute pressure sensor can be used to
aid the altitude measurements of the GPS receiver.

These sensors make it possible to measure all the states necessary for aero-
dynamic estimation. The on-board processor is a FEZ Spider with a data
logging algorithm written in C# based on the .NET Framework. The drivers
for the sensors were initially written by Benyamin Akdemir, but modified to
become more suitable for this thesis. Initially the hardware was not designed
to capture control signals, but a work around was produced by setting up a
second R617FS receiver which was connected to a MSP430F2416 microcon-
troller. The R16FS receiver generates control signals to the actuators which
are pseudo pulse width modulated. The micrcontroller uses its capture pe-
ripherals to time the length of the pulses and sends it to the computer over
UART where it is stored to a text file.
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Figure 7: HINUAV-1 during trifilar inertia experiment, the Z-axis is being
measured.

Table 4: Inertia values calculated from experiment.
Ixx Iyy Izz

0.0827 0.147 0.169

6 Experimental Results

6.1 Inertia and geometry

The aircraft was suspended in a trifilar pendulum configuration as show in
Figure 7. The measurements were done for each body axis of HINUAV-1
where the period of oscillation was recorded. The results obtained from the
experiment can be seen in Table 4 where (88) was used to calculate the
inertia values.
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Figure 8: First flight of the HiNUAV-1

6.2 Flight data

A small series of test flights were performed on the 30th of June and data
was successfully captured. The data captured can be seen in Figure 9-18.
Figures 9 to 12 show the captured control signal. The value on y-axis is
the pulsewidth of the pulse width modulated signal sent from the receiver
to the actuators. The max pulse length is about 1.9-2ms and the shortest
is about 1.0-1.1. As can be seen from the data of the Ailerons, Elevator
and Rudder the data indicates that the control input was mostly in one
direction for each control surface. For instance the elevator signal is mostly
above 1.5 millisecond which indicates a lot of pitching downwards. This
seems inconsistent with the GPS data.
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Figure 9: Aileron Control Signal

Figure 10: Elevator Control Signal
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Figure 11: Thrust Control Signal

Figure 12: Rudder Control Signal
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Figure 13: Accelerometer measurements

As can be seen from the sensor measurements there is a great deal of
noise on the measurements. The noise of the accelerometer and gyro mea-
surements as most likely from vibrations in the aircraft structure.
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Figure 14: Gyroscope measurements

Figure 15: Magnetometer measurements
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Figure 16: Absolute Pressure measurements

Figure 17: differential pressure measurements
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Figure 18: Altitude measurements from GPS

Figures 19 to 20 show the calculated position from GPS data of the
UAV. The GPS signal has been decimated to match the number of samples
from the other sensors. This will inherently introduce noise of the GPS mea-
surements, but since GPS measurements have very low noise characteristic
compared to the accelerometer and gyro, it should not cause any problems.
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Figure 19: GPS position measurements in ECEF frame

Figure 20: GPS position measurements in NED frame
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Figure 21: Position in NED frame with where each 10th measurement(1
measurement per second) is marked.

All the measurements start from the first sample in which the GPS had
a fix on the location of the UAV. The GPS fix happened about 29 seconds
into the flight. In Figure 21 a problem with the first GPS measurements is
highlighted. From the graph where the space between 2 nodes represent 1
second of flight time it is clear the something happened in the beginning of
the measurements. The UAV takes a turn and then starts climbing rapidly in
altitude. From the graph it can be roughly estimated that in one second the
UAV climbs from about -50 meters to almost 150 meters. This corresponds
to a velocity of 360kmh which far outside the range of the UAV. Figure 22
show the magnitude of the differentiated position vector. As can be seen
in the figure the is a sharp peek at about 30 seconds with a magnitude of
over 500kmh . It seems like the GPS wrongly estimated the altitude in the
beginning and the after 30 seconds converged to the correct position. It is
obvious that measurements should be take after this initial mistake in the
altitude. The altitude calculated from the filtered pressure measurements
does not show the same change in altitude as GPS does in the time interval.
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Figure 22: Magnitude of the differentiated GPS position vector before dec-
imation.
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Figure 23: Altitude calculated from filtered absolute pressure measurements.

Figure 24: Accelerometer for the whole flight.
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6.3 Filtered measurements

Since there was prevalent noise on the measurements it was difficult to infer
the validity of the data. Therefore a simple low-pass filter based on fourier
analysis was employed to remove some of the noise. Figures 25-40 show the
comparison before and after filtering. Great care must be taken when filter-
ing to not disrupt the signal. It would have been better to have implemented
a wiener optimal filter which is more careful in removing higher frequency
components.

Figure 25: Frequency response of the measured angular velocity on x-axis
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Figure 26: Frequency response of the measured angular velocity on y-axis

Figure 27: Frequency response of the measured angular velocity on z-axis
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Figure 28: The measured angular velocity vs the filtered angular velocity
on x-axis

In figure 25-27 the frequency plot for the angular velocity measurements
are shown. The reconstructed angular velocity used a filter length of 50,
which is a bit of a inbetween values. It filters away most of the noise, but
it keeps the signal responsive enough to follow fast changes in the measured
data.
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Figure 29: The measured angular velocity vs the filtered angular velocity
on y-axis

Figure 30: The measured angular velocity vs the filtered angular velocity
on z-axis
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Figure 31: Frequency response of the measured acceleration on x-axis

Figure 32: Frequency response of the measured acceleration on y-axis
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Figure 33: Frequency response of the measured acceleration on z-axis

Figure 34: The measured acceleration vs the filtered acceleration on x-axis
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Figure 35: The measured acceleration vs the filtered acceleration on y-axis

Figure 36: The measured acceleration vs the filtered acceleration on z-axis
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Figure 37: Frequency response of the measured absolute pressure

Figure 38: The measured absolute pressure vs the filtered absolute pressure
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Figure 39: Frequency response of the measured pitot pressure

Figure 40: The measured pitot pressure vs the filtered pitot pressure
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Table 5: Calculated magnetic vector based on IGRF11 model.
Dec Inc Horiz Intens North Comp East Comp Vert Comp

6.99o 77.56o 11420.5 nT 11342.8 nT 1329.7 nT 51790.5 nT

Figure 41: Illustration of the two reference vectors.

7 UAV state estimation Results

For the Explicit complementary filter the two known reference vectors were
set to be

Gn =

 0
0

9.81

 (221)

and the magnetic field vector at the origin of the NED reference frame was
calculated based on the calculator from NASA using the IGRF11 model.
normalizing the vectors gives 0

0
1

  0.2139
0.0251
0.9765

 (222)

A potential problem with the attitude estimation is highlighted in Figure
41. The two reference vectors almost point in the same direction which
results in poor information about the attitude of the UAV. It is an early
indication that the performance of the filter will be deterred. The Explicit
Complimentary filter was tuned with the following gains values the initial

Table 6: tuning parameters for ECF
kacc kmag kI kP
10 6 0.001 0.001
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Figure 42: Attitude estimation using ECF with noisy measurements

Figure 43: Attitude estimation using ECF with filtered measurements
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value for the gyro bias was set as

b̂(0) =

 0.1
0.1
0.1

 (223)

for the initial attitude the TRIAD method was used to provide an estimate.
Figure 42 show the result of the attitude estimation for the last 60 seconds
of the flight. Its obvious from the figure that the filter did not converge, the
reason for this might be the low amount of samples per second. The step
time was set as 0.1 seconds since the measurements were taken 10 times per
second. For the integration of the attitude and gyro bias the forward euler
method was used which is known to give bad results for high step sizes. In
Figure 43 filtered data was tried with the explicit complementary filter. The
results suggest improvement, which is as expected although it still does not
converge.

For the observer from [17], the velocity in NED frame is needed. Since
the GPS only stored GGA messages the velocity has to be differentiated
numerically from the position. Since the GPS data has been decimated the
direct calculation of the velocity using (64) introduced noise to the velocity.
This is nearly avoided when using (74). Figure 44 and 45 show the difference
between the two differentiating methods. The Least Squares smoothing is
equivalent to a low-pass filter with a cut-off frequency of 2Hz. Applying the
observer from [17] did not yield desired results, as with ECF the observer
did not converge. In Figure 46 and Figure 47 it can be seen that the filter
is not operating as desired. The reason for this might be same as with the
ECF filter i.e. low sampling of data.

There are two ways to increase the accuracy of numerical integration,
the first is to increase the sampling rate of the data. In this case this is
not possible without modification to the software logger and another flight
test. The second method is to use a higher order approach, for instance the
4th order Runge-Kutta algorithm. By implementing RK4 in the Explicit
complementary filter for integration of the attitude and using the trapezoid
rule for integrating the bias. The result can be seen in Figure 48, immediatly
it looks like an improvement from the previous results. However as can be
seen from Figure 49-51, the measurements settle at around 30-40 seconds
while the attitude estimation settles right after 15 seconds. Furthermore it
can be seen from the magnetometer data and gyro data that they do not
completely coincide.
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Figure 44: vn obtained by using (64)

Figure 45: vn obtained by using (74)
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Figure 46: Estimated vn using hua

Figure 47: vn obtained from differentiating pn
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Figure 48: Estimated attitude using ECF with RK4 integration.

Figure 49: Accelerometer data used in ECF.

67



Figure 50: Gyro data used in ECF.

Figure 51: Magnetometer data used in ECF.
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8 Aerodynamic model estimation Results

Since no states were estimated and the data from the flight was not ideal,
the estimation of aerodynamic parameters was not performed. Since there
was also difficulties with the relation between the logged control signals and
the actual deflections of the control surfaces it would also be difficult to
perform model validation of the estimated parameters.
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9 Conclusion

In this thesis a framework for flight data gathering and analysis has been
developed, in both hardware and software and used to collect flight data of
a UAV. Two data loggers were written, one for logging control signals and
one for logging the onboard sensor data onboard the HiNUAV-1. Theory
of moment of inertia has been presented and implemented through experi-
mental testing that was done to obtain the inertia matrix of the HINUAV-1.
The result from the flight test was presented and has been discussed. Two
non-linear observers were presented, but implementation was unsuccessful,
it is likely that the sampling rate for the flight data was too low. The theory
behind the Extended and the Linear Kalman filter was presented but not
implemented because of problems with the state estimation. Methods for
post processing data, such as filtering, smoothing and numerical differen-
tiation, has been presented and applied to actual data with great success,
giving further insight into the dynamics of the UAV. When collecting flight
data it is important to perform data compatibility analysis, to verify that
the measured data over the different sensors are consistent. Since there were
uncertainties with the measured data, this analysis would have been difficult
to perform and even more difficult to perform accurately. This thesis while
lacking some results, will serve as a foundation for the future development
of the HINUAV-1 parameter estimation. It is also important to note that
when performing flight tests, it is important to have decided what the goal
of the flight test is. What type of control inputs and maneuvers are desir-
able. Because of time constraints this was not possible and as a result the
data used in the thesis were not ideal.

9.1 Future work

- The hardware onboard the HINUAV-1 should be done again with more
careful planning, to ensure better performance of the sensors.

- To take full advantage of the FEZ Spider kit it is recommended to
rewrite the software in native code, which is a lot faster and will po-
tentially open up the possibility to increase the sampling rate by a
significant amount.

- It can be seen from the accelerometer and gyro data that there is a lot
of vibration in the structure of the HINUAV-1. To try and dampen
this vibration reinforcement of the airframe might prove effective.

- In this thesis the capturing of the control signal was done through an
extra receiver connected to a computer via UART, this can cause data
to not be synchronized making the post-flight data processing more
complicated. It would therefore be good to implement the control
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signal logger onboard the UAV and have the capturing synchronized
with the rest of the system.

- One specific problem is to try and relate the pulse-width modulated
signal to the state of the actuator. Investigating this relationship will
lead to accurate modeling of the thrust and control surfaces which will
again improve the accuracy of the estimation.

- Some sensors have a wide measuring range, a lot wider than what is
necessary, this leads to loss of accuracy and more noise on the data.
Some sensors could be replaced with better alternatives. Some sug-
gestions have been added to the digital appendix.

- When a good setup for logging data and a good aerodynamic model
has been estimated, an accurate simulink representation of the UAV
can the be constructed for preliminary testing of regulators and control
algorithms.
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Table 7: DVD folder structure with explanation.
Folder Name Description

Applied Space Technology Previous work on UAV parameter estima-
tion.

Control Signal Logger Code implementation for capturing control
signals.

Data Logger Code implementation for collecting onboard
sensor data.

Flight Data The collected flight data used in this thesis.

Matlab Various Matlab scripts used in this thesis.

PCB Designs Schematics and Layouts of circuit boards de-
signed during the thesis.

Pictures Various pictures from the flight test and in-
ertia experiment.

PropCalc en Win Program for calculating thrust coefficient of
propeller blades.

Simulink Various simulink implementations, made
during the thesis.

A Digital Attachment

On the DVD one will find the folder structure seen in Table 7
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